xref: /freebsd/sys/kern/kern_proc.c (revision 39beb93c)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/refcount.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysent.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/stack.h>
56 #include <sys/sysctl.h>
57 #include <sys/filedesc.h>
58 #include <sys/tty.h>
59 #include <sys/signalvar.h>
60 #include <sys/sdt.h>
61 #include <sys/sx.h>
62 #include <sys/user.h>
63 #include <sys/jail.h>
64 #include <sys/vnode.h>
65 #include <sys/eventhandler.h>
66 #ifdef KTRACE
67 #include <sys/uio.h>
68 #include <sys/ktrace.h>
69 #endif
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/uma.h>
81 
82 SDT_PROVIDER_DEFINE(proc);
83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
88 SDT_PROBE_DEFINE(proc, kernel, ctor, return);
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
98 SDT_PROBE_DEFINE(proc, kernel, dtor, return);
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
102 SDT_PROBE_DEFINE(proc, kernel, init, entry);
103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
106 SDT_PROBE_DEFINE(proc, kernel, init, return);
107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
110 
111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
112 MALLOC_DEFINE(M_SESSION, "session", "session header");
113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
115 
116 static void doenterpgrp(struct proc *, struct pgrp *);
117 static void orphanpg(struct pgrp *pg);
118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
121     int preferthread);
122 static void pgadjustjobc(struct pgrp *pgrp, int entering);
123 static void pgdelete(struct pgrp *);
124 static int proc_ctor(void *mem, int size, void *arg, int flags);
125 static void proc_dtor(void *mem, int size, void *arg);
126 static int proc_init(void *mem, int size, int flags);
127 static void proc_fini(void *mem, int size);
128 static void pargs_free(struct pargs *pa);
129 
130 /*
131  * Other process lists
132  */
133 struct pidhashhead *pidhashtbl;
134 u_long pidhash;
135 struct pgrphashhead *pgrphashtbl;
136 u_long pgrphash;
137 struct proclist allproc;
138 struct proclist zombproc;
139 struct sx allproc_lock;
140 struct sx proctree_lock;
141 struct mtx ppeers_lock;
142 uma_zone_t proc_zone;
143 uma_zone_t ithread_zone;
144 
145 int kstack_pages = KSTACK_PAGES;
146 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
147 
148 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
149 
150 /*
151  * Initialize global process hashing structures.
152  */
153 void
154 procinit()
155 {
156 
157 	sx_init(&allproc_lock, "allproc");
158 	sx_init(&proctree_lock, "proctree");
159 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
160 	LIST_INIT(&allproc);
161 	LIST_INIT(&zombproc);
162 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
163 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
164 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
165 	    proc_ctor, proc_dtor, proc_init, proc_fini,
166 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
167 	uihashinit();
168 }
169 
170 /*
171  * Prepare a proc for use.
172  */
173 static int
174 proc_ctor(void *mem, int size, void *arg, int flags)
175 {
176 	struct proc *p;
177 
178 	p = (struct proc *)mem;
179 	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
180 	EVENTHANDLER_INVOKE(process_ctor, p);
181 	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
182 	return (0);
183 }
184 
185 /*
186  * Reclaim a proc after use.
187  */
188 static void
189 proc_dtor(void *mem, int size, void *arg)
190 {
191 	struct proc *p;
192 	struct thread *td;
193 
194 	/* INVARIANTS checks go here */
195 	p = (struct proc *)mem;
196 	td = FIRST_THREAD_IN_PROC(p);
197 	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
198 	if (td != NULL) {
199 #ifdef INVARIANTS
200 		KASSERT((p->p_numthreads == 1),
201 		    ("bad number of threads in exiting process"));
202 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
203 #endif
204 		/* Free all OSD associated to this thread. */
205 		osd_thread_exit(td);
206 
207 		/* Dispose of an alternate kstack, if it exists.
208 		 * XXX What if there are more than one thread in the proc?
209 		 *     The first thread in the proc is special and not
210 		 *     freed, so you gotta do this here.
211 		 */
212 		if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
213 			vm_thread_dispose_altkstack(td);
214 	}
215 	EVENTHANDLER_INVOKE(process_dtor, p);
216 	if (p->p_ksi != NULL)
217 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
218 	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
219 }
220 
221 /*
222  * Initialize type-stable parts of a proc (when newly created).
223  */
224 static int
225 proc_init(void *mem, int size, int flags)
226 {
227 	struct proc *p;
228 
229 	p = (struct proc *)mem;
230 	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
231 	p->p_sched = (struct p_sched *)&p[1];
232 	bzero(&p->p_mtx, sizeof(struct mtx));
233 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
234 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
235 	cv_init(&p->p_pwait, "ppwait");
236 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
237 	EVENTHANDLER_INVOKE(process_init, p);
238 	p->p_stats = pstats_alloc();
239 	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
240 	return (0);
241 }
242 
243 /*
244  * UMA should ensure that this function is never called.
245  * Freeing a proc structure would violate type stability.
246  */
247 static void
248 proc_fini(void *mem, int size)
249 {
250 #ifdef notnow
251 	struct proc *p;
252 
253 	p = (struct proc *)mem;
254 	EVENTHANDLER_INVOKE(process_fini, p);
255 	pstats_free(p->p_stats);
256 	thread_free(FIRST_THREAD_IN_PROC(p));
257 	mtx_destroy(&p->p_mtx);
258 	if (p->p_ksi != NULL)
259 		ksiginfo_free(p->p_ksi);
260 #else
261 	panic("proc reclaimed");
262 #endif
263 }
264 
265 /*
266  * Is p an inferior of the current process?
267  */
268 int
269 inferior(p)
270 	register struct proc *p;
271 {
272 
273 	sx_assert(&proctree_lock, SX_LOCKED);
274 	for (; p != curproc; p = p->p_pptr)
275 		if (p->p_pid == 0)
276 			return (0);
277 	return (1);
278 }
279 
280 /*
281  * Locate a process by number; return only "live" processes -- i.e., neither
282  * zombies nor newly born but incompletely initialized processes.  By not
283  * returning processes in the PRS_NEW state, we allow callers to avoid
284  * testing for that condition to avoid dereferencing p_ucred, et al.
285  */
286 struct proc *
287 pfind(pid)
288 	register pid_t pid;
289 {
290 	register struct proc *p;
291 
292 	sx_slock(&allproc_lock);
293 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
294 		if (p->p_pid == pid) {
295 			if (p->p_state == PRS_NEW) {
296 				p = NULL;
297 				break;
298 			}
299 			PROC_LOCK(p);
300 			break;
301 		}
302 	sx_sunlock(&allproc_lock);
303 	return (p);
304 }
305 
306 /*
307  * Locate a process group by number.
308  * The caller must hold proctree_lock.
309  */
310 struct pgrp *
311 pgfind(pgid)
312 	register pid_t pgid;
313 {
314 	register struct pgrp *pgrp;
315 
316 	sx_assert(&proctree_lock, SX_LOCKED);
317 
318 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
319 		if (pgrp->pg_id == pgid) {
320 			PGRP_LOCK(pgrp);
321 			return (pgrp);
322 		}
323 	}
324 	return (NULL);
325 }
326 
327 /*
328  * Create a new process group.
329  * pgid must be equal to the pid of p.
330  * Begin a new session if required.
331  */
332 int
333 enterpgrp(p, pgid, pgrp, sess)
334 	register struct proc *p;
335 	pid_t pgid;
336 	struct pgrp *pgrp;
337 	struct session *sess;
338 {
339 	struct pgrp *pgrp2;
340 
341 	sx_assert(&proctree_lock, SX_XLOCKED);
342 
343 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
344 	KASSERT(p->p_pid == pgid,
345 	    ("enterpgrp: new pgrp and pid != pgid"));
346 
347 	pgrp2 = pgfind(pgid);
348 
349 	KASSERT(pgrp2 == NULL,
350 	    ("enterpgrp: pgrp with pgid exists"));
351 	KASSERT(!SESS_LEADER(p),
352 	    ("enterpgrp: session leader attempted setpgrp"));
353 
354 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
355 
356 	if (sess != NULL) {
357 		/*
358 		 * new session
359 		 */
360 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
361 		PROC_LOCK(p);
362 		p->p_flag &= ~P_CONTROLT;
363 		PROC_UNLOCK(p);
364 		PGRP_LOCK(pgrp);
365 		sess->s_leader = p;
366 		sess->s_sid = p->p_pid;
367 		refcount_init(&sess->s_count, 1);
368 		sess->s_ttyvp = NULL;
369 		sess->s_ttyp = NULL;
370 		bcopy(p->p_session->s_login, sess->s_login,
371 			    sizeof(sess->s_login));
372 		pgrp->pg_session = sess;
373 		KASSERT(p == curproc,
374 		    ("enterpgrp: mksession and p != curproc"));
375 	} else {
376 		pgrp->pg_session = p->p_session;
377 		sess_hold(pgrp->pg_session);
378 		PGRP_LOCK(pgrp);
379 	}
380 	pgrp->pg_id = pgid;
381 	LIST_INIT(&pgrp->pg_members);
382 
383 	/*
384 	 * As we have an exclusive lock of proctree_lock,
385 	 * this should not deadlock.
386 	 */
387 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
388 	pgrp->pg_jobc = 0;
389 	SLIST_INIT(&pgrp->pg_sigiolst);
390 	PGRP_UNLOCK(pgrp);
391 
392 	doenterpgrp(p, pgrp);
393 
394 	return (0);
395 }
396 
397 /*
398  * Move p to an existing process group
399  */
400 int
401 enterthispgrp(p, pgrp)
402 	register struct proc *p;
403 	struct pgrp *pgrp;
404 {
405 
406 	sx_assert(&proctree_lock, SX_XLOCKED);
407 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
408 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
409 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
410 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
411 	KASSERT(pgrp->pg_session == p->p_session,
412 		("%s: pgrp's session %p, p->p_session %p.\n",
413 		__func__,
414 		pgrp->pg_session,
415 		p->p_session));
416 	KASSERT(pgrp != p->p_pgrp,
417 		("%s: p belongs to pgrp.", __func__));
418 
419 	doenterpgrp(p, pgrp);
420 
421 	return (0);
422 }
423 
424 /*
425  * Move p to a process group
426  */
427 static void
428 doenterpgrp(p, pgrp)
429 	struct proc *p;
430 	struct pgrp *pgrp;
431 {
432 	struct pgrp *savepgrp;
433 
434 	sx_assert(&proctree_lock, SX_XLOCKED);
435 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
436 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
437 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
438 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
439 
440 	savepgrp = p->p_pgrp;
441 
442 	/*
443 	 * Adjust eligibility of affected pgrps to participate in job control.
444 	 * Increment eligibility counts before decrementing, otherwise we
445 	 * could reach 0 spuriously during the first call.
446 	 */
447 	fixjobc(p, pgrp, 1);
448 	fixjobc(p, p->p_pgrp, 0);
449 
450 	PGRP_LOCK(pgrp);
451 	PGRP_LOCK(savepgrp);
452 	PROC_LOCK(p);
453 	LIST_REMOVE(p, p_pglist);
454 	p->p_pgrp = pgrp;
455 	PROC_UNLOCK(p);
456 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
457 	PGRP_UNLOCK(savepgrp);
458 	PGRP_UNLOCK(pgrp);
459 	if (LIST_EMPTY(&savepgrp->pg_members))
460 		pgdelete(savepgrp);
461 }
462 
463 /*
464  * remove process from process group
465  */
466 int
467 leavepgrp(p)
468 	register struct proc *p;
469 {
470 	struct pgrp *savepgrp;
471 
472 	sx_assert(&proctree_lock, SX_XLOCKED);
473 	savepgrp = p->p_pgrp;
474 	PGRP_LOCK(savepgrp);
475 	PROC_LOCK(p);
476 	LIST_REMOVE(p, p_pglist);
477 	p->p_pgrp = NULL;
478 	PROC_UNLOCK(p);
479 	PGRP_UNLOCK(savepgrp);
480 	if (LIST_EMPTY(&savepgrp->pg_members))
481 		pgdelete(savepgrp);
482 	return (0);
483 }
484 
485 /*
486  * delete a process group
487  */
488 static void
489 pgdelete(pgrp)
490 	register struct pgrp *pgrp;
491 {
492 	struct session *savesess;
493 	struct tty *tp;
494 
495 	sx_assert(&proctree_lock, SX_XLOCKED);
496 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
497 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
498 
499 	/*
500 	 * Reset any sigio structures pointing to us as a result of
501 	 * F_SETOWN with our pgid.
502 	 */
503 	funsetownlst(&pgrp->pg_sigiolst);
504 
505 	PGRP_LOCK(pgrp);
506 	tp = pgrp->pg_session->s_ttyp;
507 	LIST_REMOVE(pgrp, pg_hash);
508 	savesess = pgrp->pg_session;
509 	PGRP_UNLOCK(pgrp);
510 
511 	/* Remove the reference to the pgrp before deallocating it. */
512 	if (tp != NULL) {
513 		tty_lock(tp);
514 		tty_rel_pgrp(tp, pgrp);
515 	}
516 
517 	mtx_destroy(&pgrp->pg_mtx);
518 	free(pgrp, M_PGRP);
519 	sess_release(savesess);
520 }
521 
522 static void
523 pgadjustjobc(pgrp, entering)
524 	struct pgrp *pgrp;
525 	int entering;
526 {
527 
528 	PGRP_LOCK(pgrp);
529 	if (entering)
530 		pgrp->pg_jobc++;
531 	else {
532 		--pgrp->pg_jobc;
533 		if (pgrp->pg_jobc == 0)
534 			orphanpg(pgrp);
535 	}
536 	PGRP_UNLOCK(pgrp);
537 }
538 
539 /*
540  * Adjust pgrp jobc counters when specified process changes process group.
541  * We count the number of processes in each process group that "qualify"
542  * the group for terminal job control (those with a parent in a different
543  * process group of the same session).  If that count reaches zero, the
544  * process group becomes orphaned.  Check both the specified process'
545  * process group and that of its children.
546  * entering == 0 => p is leaving specified group.
547  * entering == 1 => p is entering specified group.
548  */
549 void
550 fixjobc(p, pgrp, entering)
551 	register struct proc *p;
552 	register struct pgrp *pgrp;
553 	int entering;
554 {
555 	register struct pgrp *hispgrp;
556 	register struct session *mysession;
557 
558 	sx_assert(&proctree_lock, SX_LOCKED);
559 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
560 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
561 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
562 
563 	/*
564 	 * Check p's parent to see whether p qualifies its own process
565 	 * group; if so, adjust count for p's process group.
566 	 */
567 	mysession = pgrp->pg_session;
568 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
569 	    hispgrp->pg_session == mysession)
570 		pgadjustjobc(pgrp, entering);
571 
572 	/*
573 	 * Check this process' children to see whether they qualify
574 	 * their process groups; if so, adjust counts for children's
575 	 * process groups.
576 	 */
577 	LIST_FOREACH(p, &p->p_children, p_sibling) {
578 		hispgrp = p->p_pgrp;
579 		if (hispgrp == pgrp ||
580 		    hispgrp->pg_session != mysession)
581 			continue;
582 		PROC_LOCK(p);
583 		if (p->p_state == PRS_ZOMBIE) {
584 			PROC_UNLOCK(p);
585 			continue;
586 		}
587 		PROC_UNLOCK(p);
588 		pgadjustjobc(hispgrp, entering);
589 	}
590 }
591 
592 /*
593  * A process group has become orphaned;
594  * if there are any stopped processes in the group,
595  * hang-up all process in that group.
596  */
597 static void
598 orphanpg(pg)
599 	struct pgrp *pg;
600 {
601 	register struct proc *p;
602 
603 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
604 
605 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
606 		PROC_LOCK(p);
607 		if (P_SHOULDSTOP(p)) {
608 			PROC_UNLOCK(p);
609 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
610 				PROC_LOCK(p);
611 				psignal(p, SIGHUP);
612 				psignal(p, SIGCONT);
613 				PROC_UNLOCK(p);
614 			}
615 			return;
616 		}
617 		PROC_UNLOCK(p);
618 	}
619 }
620 
621 void
622 sess_hold(struct session *s)
623 {
624 
625 	refcount_acquire(&s->s_count);
626 }
627 
628 void
629 sess_release(struct session *s)
630 {
631 
632 	if (refcount_release(&s->s_count)) {
633 		if (s->s_ttyp != NULL) {
634 			tty_lock(s->s_ttyp);
635 			tty_rel_sess(s->s_ttyp, s);
636 		}
637 		mtx_destroy(&s->s_mtx);
638 		free(s, M_SESSION);
639 	}
640 }
641 
642 #include "opt_ddb.h"
643 #ifdef DDB
644 #include <ddb/ddb.h>
645 
646 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
647 {
648 	register struct pgrp *pgrp;
649 	register struct proc *p;
650 	register int i;
651 
652 	for (i = 0; i <= pgrphash; i++) {
653 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
654 			printf("\tindx %d\n", i);
655 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
656 				printf(
657 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
658 				    (void *)pgrp, (long)pgrp->pg_id,
659 				    (void *)pgrp->pg_session,
660 				    pgrp->pg_session->s_count,
661 				    (void *)LIST_FIRST(&pgrp->pg_members));
662 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
663 					printf("\t\tpid %ld addr %p pgrp %p\n",
664 					    (long)p->p_pid, (void *)p,
665 					    (void *)p->p_pgrp);
666 				}
667 			}
668 		}
669 	}
670 }
671 #endif /* DDB */
672 
673 /*
674  * Calculate the kinfo_proc members which contain process-wide
675  * informations.
676  * Must be called with the target process locked.
677  */
678 static void
679 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
680 {
681 	struct thread *td;
682 
683 	PROC_LOCK_ASSERT(p, MA_OWNED);
684 
685 	kp->ki_estcpu = 0;
686 	kp->ki_pctcpu = 0;
687 	kp->ki_runtime = 0;
688 	FOREACH_THREAD_IN_PROC(p, td) {
689 		thread_lock(td);
690 		kp->ki_pctcpu += sched_pctcpu(td);
691 		kp->ki_runtime += cputick2usec(td->td_runtime);
692 		kp->ki_estcpu += td->td_estcpu;
693 		thread_unlock(td);
694 	}
695 }
696 
697 /*
698  * Clear kinfo_proc and fill in any information that is common
699  * to all threads in the process.
700  * Must be called with the target process locked.
701  */
702 static void
703 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
704 {
705 	struct thread *td0;
706 	struct tty *tp;
707 	struct session *sp;
708 	struct ucred *cred;
709 	struct sigacts *ps;
710 
711 	PROC_LOCK_ASSERT(p, MA_OWNED);
712 	bzero(kp, sizeof(*kp));
713 
714 	kp->ki_structsize = sizeof(*kp);
715 	kp->ki_paddr = p;
716 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
717 	kp->ki_args = p->p_args;
718 	kp->ki_textvp = p->p_textvp;
719 #ifdef KTRACE
720 	kp->ki_tracep = p->p_tracevp;
721 	mtx_lock(&ktrace_mtx);
722 	kp->ki_traceflag = p->p_traceflag;
723 	mtx_unlock(&ktrace_mtx);
724 #endif
725 	kp->ki_fd = p->p_fd;
726 	kp->ki_vmspace = p->p_vmspace;
727 	kp->ki_flag = p->p_flag;
728 	cred = p->p_ucred;
729 	if (cred) {
730 		kp->ki_uid = cred->cr_uid;
731 		kp->ki_ruid = cred->cr_ruid;
732 		kp->ki_svuid = cred->cr_svuid;
733 		/* XXX bde doesn't like KI_NGROUPS */
734 		kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS);
735 		bcopy(cred->cr_groups, kp->ki_groups,
736 		    kp->ki_ngroups * sizeof(gid_t));
737 		kp->ki_rgid = cred->cr_rgid;
738 		kp->ki_svgid = cred->cr_svgid;
739 		/* If jailed(cred), emulate the old P_JAILED flag. */
740 		if (jailed(cred)) {
741 			kp->ki_flag |= P_JAILED;
742 			/* If inside a jail, use 0 as a jail ID. */
743 			if (!jailed(curthread->td_ucred))
744 				kp->ki_jid = cred->cr_prison->pr_id;
745 		}
746 	}
747 	ps = p->p_sigacts;
748 	if (ps) {
749 		mtx_lock(&ps->ps_mtx);
750 		kp->ki_sigignore = ps->ps_sigignore;
751 		kp->ki_sigcatch = ps->ps_sigcatch;
752 		mtx_unlock(&ps->ps_mtx);
753 	}
754 	PROC_SLOCK(p);
755 	if (p->p_state != PRS_NEW &&
756 	    p->p_state != PRS_ZOMBIE &&
757 	    p->p_vmspace != NULL) {
758 		struct vmspace *vm = p->p_vmspace;
759 
760 		kp->ki_size = vm->vm_map.size;
761 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
762 		FOREACH_THREAD_IN_PROC(p, td0) {
763 			if (!TD_IS_SWAPPED(td0))
764 				kp->ki_rssize += td0->td_kstack_pages;
765 			if (td0->td_altkstack_obj != NULL)
766 				kp->ki_rssize += td0->td_altkstack_pages;
767 		}
768 		kp->ki_swrss = vm->vm_swrss;
769 		kp->ki_tsize = vm->vm_tsize;
770 		kp->ki_dsize = vm->vm_dsize;
771 		kp->ki_ssize = vm->vm_ssize;
772 	} else if (p->p_state == PRS_ZOMBIE)
773 		kp->ki_stat = SZOMB;
774 	if (kp->ki_flag & P_INMEM)
775 		kp->ki_sflag = PS_INMEM;
776 	else
777 		kp->ki_sflag = 0;
778 	/* Calculate legacy swtime as seconds since 'swtick'. */
779 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
780 	kp->ki_pid = p->p_pid;
781 	kp->ki_nice = p->p_nice;
782 	rufetch(p, &kp->ki_rusage);
783 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
784 	PROC_SUNLOCK(p);
785 	if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
786 		kp->ki_start = p->p_stats->p_start;
787 		timevaladd(&kp->ki_start, &boottime);
788 		PROC_SLOCK(p);
789 		calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
790 		PROC_SUNLOCK(p);
791 		calccru(p, &kp->ki_childutime, &kp->ki_childstime);
792 
793 		/* Some callers want child-times in a single value */
794 		kp->ki_childtime = kp->ki_childstime;
795 		timevaladd(&kp->ki_childtime, &kp->ki_childutime);
796 	}
797 	tp = NULL;
798 	if (p->p_pgrp) {
799 		kp->ki_pgid = p->p_pgrp->pg_id;
800 		kp->ki_jobc = p->p_pgrp->pg_jobc;
801 		sp = p->p_pgrp->pg_session;
802 
803 		if (sp != NULL) {
804 			kp->ki_sid = sp->s_sid;
805 			SESS_LOCK(sp);
806 			strlcpy(kp->ki_login, sp->s_login,
807 			    sizeof(kp->ki_login));
808 			if (sp->s_ttyvp)
809 				kp->ki_kiflag |= KI_CTTY;
810 			if (SESS_LEADER(p))
811 				kp->ki_kiflag |= KI_SLEADER;
812 			/* XXX proctree_lock */
813 			tp = sp->s_ttyp;
814 			SESS_UNLOCK(sp);
815 		}
816 	}
817 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
818 		kp->ki_tdev = tty_udev(tp);
819 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
820 		if (tp->t_session)
821 			kp->ki_tsid = tp->t_session->s_sid;
822 	} else
823 		kp->ki_tdev = NODEV;
824 	if (p->p_comm[0] != '\0')
825 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
826 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
827 	    p->p_sysent->sv_name[0] != '\0')
828 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
829 	kp->ki_siglist = p->p_siglist;
830 	kp->ki_xstat = p->p_xstat;
831 	kp->ki_acflag = p->p_acflag;
832 	kp->ki_lock = p->p_lock;
833 	if (p->p_pptr)
834 		kp->ki_ppid = p->p_pptr->p_pid;
835 }
836 
837 /*
838  * Fill in information that is thread specific.  Must be called with p_slock
839  * locked.  If 'preferthread' is set, overwrite certain process-related
840  * fields that are maintained for both threads and processes.
841  */
842 static void
843 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
844 {
845 	struct proc *p;
846 
847 	p = td->td_proc;
848 	PROC_LOCK_ASSERT(p, MA_OWNED);
849 
850 	thread_lock(td);
851 	if (td->td_wmesg != NULL)
852 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
853 	else
854 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
855 	if (td->td_name[0] != '\0')
856 		strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
857 	if (TD_ON_LOCK(td)) {
858 		kp->ki_kiflag |= KI_LOCKBLOCK;
859 		strlcpy(kp->ki_lockname, td->td_lockname,
860 		    sizeof(kp->ki_lockname));
861 	} else {
862 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
863 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
864 	}
865 
866 	if (p->p_state == PRS_NORMAL) { /* approximate. */
867 		if (TD_ON_RUNQ(td) ||
868 		    TD_CAN_RUN(td) ||
869 		    TD_IS_RUNNING(td)) {
870 			kp->ki_stat = SRUN;
871 		} else if (P_SHOULDSTOP(p)) {
872 			kp->ki_stat = SSTOP;
873 		} else if (TD_IS_SLEEPING(td)) {
874 			kp->ki_stat = SSLEEP;
875 		} else if (TD_ON_LOCK(td)) {
876 			kp->ki_stat = SLOCK;
877 		} else {
878 			kp->ki_stat = SWAIT;
879 		}
880 	} else if (p->p_state == PRS_ZOMBIE) {
881 		kp->ki_stat = SZOMB;
882 	} else {
883 		kp->ki_stat = SIDL;
884 	}
885 
886 	/* Things in the thread */
887 	kp->ki_wchan = td->td_wchan;
888 	kp->ki_pri.pri_level = td->td_priority;
889 	kp->ki_pri.pri_native = td->td_base_pri;
890 	kp->ki_lastcpu = td->td_lastcpu;
891 	kp->ki_oncpu = td->td_oncpu;
892 	kp->ki_tdflags = td->td_flags;
893 	kp->ki_tid = td->td_tid;
894 	kp->ki_numthreads = p->p_numthreads;
895 	kp->ki_pcb = td->td_pcb;
896 	kp->ki_kstack = (void *)td->td_kstack;
897 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
898 	kp->ki_pri.pri_class = td->td_pri_class;
899 	kp->ki_pri.pri_user = td->td_user_pri;
900 
901 	if (preferthread) {
902 		kp->ki_runtime = cputick2usec(td->td_runtime);
903 		kp->ki_pctcpu = sched_pctcpu(td);
904 		kp->ki_estcpu = td->td_estcpu;
905 	}
906 
907 	/* We can't get this anymore but ps etc never used it anyway. */
908 	kp->ki_rqindex = 0;
909 
910 	SIGSETOR(kp->ki_siglist, td->td_siglist);
911 	kp->ki_sigmask = td->td_sigmask;
912 	thread_unlock(td);
913 }
914 
915 /*
916  * Fill in a kinfo_proc structure for the specified process.
917  * Must be called with the target process locked.
918  */
919 void
920 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
921 {
922 
923 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
924 
925 	fill_kinfo_proc_only(p, kp);
926 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
927 	fill_kinfo_aggregate(p, kp);
928 }
929 
930 struct pstats *
931 pstats_alloc(void)
932 {
933 
934 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
935 }
936 
937 /*
938  * Copy parts of p_stats; zero the rest of p_stats (statistics).
939  */
940 void
941 pstats_fork(struct pstats *src, struct pstats *dst)
942 {
943 
944 	bzero(&dst->pstat_startzero,
945 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
946 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
947 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
948 }
949 
950 void
951 pstats_free(struct pstats *ps)
952 {
953 
954 	free(ps, M_SUBPROC);
955 }
956 
957 /*
958  * Locate a zombie process by number
959  */
960 struct proc *
961 zpfind(pid_t pid)
962 {
963 	struct proc *p;
964 
965 	sx_slock(&allproc_lock);
966 	LIST_FOREACH(p, &zombproc, p_list)
967 		if (p->p_pid == pid) {
968 			PROC_LOCK(p);
969 			break;
970 		}
971 	sx_sunlock(&allproc_lock);
972 	return (p);
973 }
974 
975 #define KERN_PROC_ZOMBMASK	0x3
976 #define KERN_PROC_NOTHREADS	0x4
977 
978 /*
979  * Must be called with the process locked and will return with it unlocked.
980  */
981 static int
982 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
983 {
984 	struct thread *td;
985 	struct kinfo_proc kinfo_proc;
986 	int error = 0;
987 	struct proc *np;
988 	pid_t pid = p->p_pid;
989 
990 	PROC_LOCK_ASSERT(p, MA_OWNED);
991 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
992 
993 	fill_kinfo_proc(p, &kinfo_proc);
994 	if (flags & KERN_PROC_NOTHREADS)
995 		error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
996 		    sizeof(kinfo_proc));
997 	else {
998 		FOREACH_THREAD_IN_PROC(p, td) {
999 			fill_kinfo_thread(td, &kinfo_proc, 1);
1000 			error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
1001 			    sizeof(kinfo_proc));
1002 			if (error)
1003 				break;
1004 		}
1005 	}
1006 	PROC_UNLOCK(p);
1007 	if (error)
1008 		return (error);
1009 	if (flags & KERN_PROC_ZOMBMASK)
1010 		np = zpfind(pid);
1011 	else {
1012 		if (pid == 0)
1013 			return (0);
1014 		np = pfind(pid);
1015 	}
1016 	if (np == NULL)
1017 		return (ESRCH);
1018 	if (np != p) {
1019 		PROC_UNLOCK(np);
1020 		return (ESRCH);
1021 	}
1022 	PROC_UNLOCK(np);
1023 	return (0);
1024 }
1025 
1026 static int
1027 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1028 {
1029 	int *name = (int*) arg1;
1030 	u_int namelen = arg2;
1031 	struct proc *p;
1032 	int flags, doingzomb, oid_number;
1033 	int error = 0;
1034 
1035 	oid_number = oidp->oid_number;
1036 	if (oid_number != KERN_PROC_ALL &&
1037 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1038 		flags = KERN_PROC_NOTHREADS;
1039 	else {
1040 		flags = 0;
1041 		oid_number &= ~KERN_PROC_INC_THREAD;
1042 	}
1043 	if (oid_number == KERN_PROC_PID) {
1044 		if (namelen != 1)
1045 			return (EINVAL);
1046 		error = sysctl_wire_old_buffer(req, 0);
1047 		if (error)
1048 			return (error);
1049 		p = pfind((pid_t)name[0]);
1050 		if (!p)
1051 			return (ESRCH);
1052 		if ((error = p_cansee(curthread, p))) {
1053 			PROC_UNLOCK(p);
1054 			return (error);
1055 		}
1056 		error = sysctl_out_proc(p, req, flags);
1057 		return (error);
1058 	}
1059 
1060 	switch (oid_number) {
1061 	case KERN_PROC_ALL:
1062 		if (namelen != 0)
1063 			return (EINVAL);
1064 		break;
1065 	case KERN_PROC_PROC:
1066 		if (namelen != 0 && namelen != 1)
1067 			return (EINVAL);
1068 		break;
1069 	default:
1070 		if (namelen != 1)
1071 			return (EINVAL);
1072 		break;
1073 	}
1074 
1075 	if (!req->oldptr) {
1076 		/* overestimate by 5 procs */
1077 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1078 		if (error)
1079 			return (error);
1080 	}
1081 	error = sysctl_wire_old_buffer(req, 0);
1082 	if (error != 0)
1083 		return (error);
1084 	sx_slock(&allproc_lock);
1085 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1086 		if (!doingzomb)
1087 			p = LIST_FIRST(&allproc);
1088 		else
1089 			p = LIST_FIRST(&zombproc);
1090 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1091 			/*
1092 			 * Skip embryonic processes.
1093 			 */
1094 			PROC_SLOCK(p);
1095 			if (p->p_state == PRS_NEW) {
1096 				PROC_SUNLOCK(p);
1097 				continue;
1098 			}
1099 			PROC_SUNLOCK(p);
1100 			PROC_LOCK(p);
1101 			KASSERT(p->p_ucred != NULL,
1102 			    ("process credential is NULL for non-NEW proc"));
1103 			/*
1104 			 * Show a user only appropriate processes.
1105 			 */
1106 			if (p_cansee(curthread, p)) {
1107 				PROC_UNLOCK(p);
1108 				continue;
1109 			}
1110 			/*
1111 			 * TODO - make more efficient (see notes below).
1112 			 * do by session.
1113 			 */
1114 			switch (oid_number) {
1115 
1116 			case KERN_PROC_GID:
1117 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1118 					PROC_UNLOCK(p);
1119 					continue;
1120 				}
1121 				break;
1122 
1123 			case KERN_PROC_PGRP:
1124 				/* could do this by traversing pgrp */
1125 				if (p->p_pgrp == NULL ||
1126 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1127 					PROC_UNLOCK(p);
1128 					continue;
1129 				}
1130 				break;
1131 
1132 			case KERN_PROC_RGID:
1133 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1134 					PROC_UNLOCK(p);
1135 					continue;
1136 				}
1137 				break;
1138 
1139 			case KERN_PROC_SESSION:
1140 				if (p->p_session == NULL ||
1141 				    p->p_session->s_sid != (pid_t)name[0]) {
1142 					PROC_UNLOCK(p);
1143 					continue;
1144 				}
1145 				break;
1146 
1147 			case KERN_PROC_TTY:
1148 				if ((p->p_flag & P_CONTROLT) == 0 ||
1149 				    p->p_session == NULL) {
1150 					PROC_UNLOCK(p);
1151 					continue;
1152 				}
1153 				/* XXX proctree_lock */
1154 				SESS_LOCK(p->p_session);
1155 				if (p->p_session->s_ttyp == NULL ||
1156 				    tty_udev(p->p_session->s_ttyp) !=
1157 				    (dev_t)name[0]) {
1158 					SESS_UNLOCK(p->p_session);
1159 					PROC_UNLOCK(p);
1160 					continue;
1161 				}
1162 				SESS_UNLOCK(p->p_session);
1163 				break;
1164 
1165 			case KERN_PROC_UID:
1166 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1167 					PROC_UNLOCK(p);
1168 					continue;
1169 				}
1170 				break;
1171 
1172 			case KERN_PROC_RUID:
1173 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1174 					PROC_UNLOCK(p);
1175 					continue;
1176 				}
1177 				break;
1178 
1179 			case KERN_PROC_PROC:
1180 				break;
1181 
1182 			default:
1183 				break;
1184 
1185 			}
1186 
1187 			error = sysctl_out_proc(p, req, flags | doingzomb);
1188 			if (error) {
1189 				sx_sunlock(&allproc_lock);
1190 				return (error);
1191 			}
1192 		}
1193 	}
1194 	sx_sunlock(&allproc_lock);
1195 	return (0);
1196 }
1197 
1198 struct pargs *
1199 pargs_alloc(int len)
1200 {
1201 	struct pargs *pa;
1202 
1203 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1204 		M_WAITOK);
1205 	refcount_init(&pa->ar_ref, 1);
1206 	pa->ar_length = len;
1207 	return (pa);
1208 }
1209 
1210 static void
1211 pargs_free(struct pargs *pa)
1212 {
1213 
1214 	free(pa, M_PARGS);
1215 }
1216 
1217 void
1218 pargs_hold(struct pargs *pa)
1219 {
1220 
1221 	if (pa == NULL)
1222 		return;
1223 	refcount_acquire(&pa->ar_ref);
1224 }
1225 
1226 void
1227 pargs_drop(struct pargs *pa)
1228 {
1229 
1230 	if (pa == NULL)
1231 		return;
1232 	if (refcount_release(&pa->ar_ref))
1233 		pargs_free(pa);
1234 }
1235 
1236 /*
1237  * This sysctl allows a process to retrieve the argument list or process
1238  * title for another process without groping around in the address space
1239  * of the other process.  It also allow a process to set its own "process
1240  * title to a string of its own choice.
1241  */
1242 static int
1243 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1244 {
1245 	int *name = (int*) arg1;
1246 	u_int namelen = arg2;
1247 	struct pargs *newpa, *pa;
1248 	struct proc *p;
1249 	int error = 0;
1250 
1251 	if (namelen != 1)
1252 		return (EINVAL);
1253 
1254 	p = pfind((pid_t)name[0]);
1255 	if (!p)
1256 		return (ESRCH);
1257 
1258 	if ((error = p_cansee(curthread, p)) != 0) {
1259 		PROC_UNLOCK(p);
1260 		return (error);
1261 	}
1262 
1263 	if (req->newptr && curproc != p) {
1264 		PROC_UNLOCK(p);
1265 		return (EPERM);
1266 	}
1267 
1268 	pa = p->p_args;
1269 	pargs_hold(pa);
1270 	PROC_UNLOCK(p);
1271 	if (req->oldptr != NULL && pa != NULL)
1272 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1273 	pargs_drop(pa);
1274 	if (error != 0 || req->newptr == NULL)
1275 		return (error);
1276 
1277 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1278 		return (ENOMEM);
1279 	newpa = pargs_alloc(req->newlen);
1280 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1281 	if (error != 0) {
1282 		pargs_free(newpa);
1283 		return (error);
1284 	}
1285 	PROC_LOCK(p);
1286 	pa = p->p_args;
1287 	p->p_args = newpa;
1288 	PROC_UNLOCK(p);
1289 	pargs_drop(pa);
1290 	return (0);
1291 }
1292 
1293 /*
1294  * This sysctl allows a process to retrieve the path of the executable for
1295  * itself or another process.
1296  */
1297 static int
1298 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1299 {
1300 	pid_t *pidp = (pid_t *)arg1;
1301 	unsigned int arglen = arg2;
1302 	struct proc *p;
1303 	struct vnode *vp;
1304 	char *retbuf, *freebuf;
1305 	int error, vfslocked;
1306 
1307 	if (arglen != 1)
1308 		return (EINVAL);
1309 	if (*pidp == -1) {	/* -1 means this process */
1310 		p = req->td->td_proc;
1311 	} else {
1312 		p = pfind(*pidp);
1313 		if (p == NULL)
1314 			return (ESRCH);
1315 		if ((error = p_cansee(curthread, p)) != 0) {
1316 			PROC_UNLOCK(p);
1317 			return (error);
1318 		}
1319 	}
1320 
1321 	vp = p->p_textvp;
1322 	if (vp == NULL) {
1323 		if (*pidp != -1)
1324 			PROC_UNLOCK(p);
1325 		return (0);
1326 	}
1327 	vref(vp);
1328 	if (*pidp != -1)
1329 		PROC_UNLOCK(p);
1330 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1331 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1332 	vrele(vp);
1333 	VFS_UNLOCK_GIANT(vfslocked);
1334 	if (error)
1335 		return (error);
1336 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1337 	free(freebuf, M_TEMP);
1338 	return (error);
1339 }
1340 
1341 static int
1342 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1343 {
1344 	struct proc *p;
1345 	char *sv_name;
1346 	int *name;
1347 	int namelen;
1348 	int error;
1349 
1350 	namelen = arg2;
1351 	if (namelen != 1)
1352 		return (EINVAL);
1353 
1354 	name = (int *)arg1;
1355 	if ((p = pfind((pid_t)name[0])) == NULL)
1356 		return (ESRCH);
1357 	if ((error = p_cansee(curthread, p))) {
1358 		PROC_UNLOCK(p);
1359 		return (error);
1360 	}
1361 	sv_name = p->p_sysent->sv_name;
1362 	PROC_UNLOCK(p);
1363 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1364 }
1365 
1366 #ifdef KINFO_OVMENTRY_SIZE
1367 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1368 #endif
1369 
1370 #ifdef COMPAT_FREEBSD7
1371 static int
1372 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1373 {
1374 	vm_map_entry_t entry, tmp_entry;
1375 	unsigned int last_timestamp;
1376 	char *fullpath, *freepath;
1377 	struct kinfo_ovmentry *kve;
1378 	struct vattr va;
1379 	struct ucred *cred;
1380 	int error, *name;
1381 	struct vnode *vp;
1382 	struct proc *p;
1383 	vm_map_t map;
1384 	struct vmspace *vm;
1385 
1386 	name = (int *)arg1;
1387 	if ((p = pfind((pid_t)name[0])) == NULL)
1388 		return (ESRCH);
1389 	if (p->p_flag & P_WEXIT) {
1390 		PROC_UNLOCK(p);
1391 		return (ESRCH);
1392 	}
1393 	if ((error = p_candebug(curthread, p))) {
1394 		PROC_UNLOCK(p);
1395 		return (error);
1396 	}
1397 	_PHOLD(p);
1398 	PROC_UNLOCK(p);
1399 	vm = vmspace_acquire_ref(p);
1400 	if (vm == NULL) {
1401 		PRELE(p);
1402 		return (ESRCH);
1403 	}
1404 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1405 
1406 	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1407 	vm_map_lock_read(map);
1408 	for (entry = map->header.next; entry != &map->header;
1409 	    entry = entry->next) {
1410 		vm_object_t obj, tobj, lobj;
1411 		vm_offset_t addr;
1412 		int vfslocked;
1413 
1414 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1415 			continue;
1416 
1417 		bzero(kve, sizeof(*kve));
1418 		kve->kve_structsize = sizeof(*kve);
1419 
1420 		kve->kve_private_resident = 0;
1421 		obj = entry->object.vm_object;
1422 		if (obj != NULL) {
1423 			VM_OBJECT_LOCK(obj);
1424 			if (obj->shadow_count == 1)
1425 				kve->kve_private_resident =
1426 				    obj->resident_page_count;
1427 		}
1428 		kve->kve_resident = 0;
1429 		addr = entry->start;
1430 		while (addr < entry->end) {
1431 			if (pmap_extract(map->pmap, addr))
1432 				kve->kve_resident++;
1433 			addr += PAGE_SIZE;
1434 		}
1435 
1436 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1437 			if (tobj != obj)
1438 				VM_OBJECT_LOCK(tobj);
1439 			if (lobj != obj)
1440 				VM_OBJECT_UNLOCK(lobj);
1441 			lobj = tobj;
1442 		}
1443 
1444 		kve->kve_start = (void*)entry->start;
1445 		kve->kve_end = (void*)entry->end;
1446 		kve->kve_offset = (off_t)entry->offset;
1447 
1448 		if (entry->protection & VM_PROT_READ)
1449 			kve->kve_protection |= KVME_PROT_READ;
1450 		if (entry->protection & VM_PROT_WRITE)
1451 			kve->kve_protection |= KVME_PROT_WRITE;
1452 		if (entry->protection & VM_PROT_EXECUTE)
1453 			kve->kve_protection |= KVME_PROT_EXEC;
1454 
1455 		if (entry->eflags & MAP_ENTRY_COW)
1456 			kve->kve_flags |= KVME_FLAG_COW;
1457 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1458 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1459 
1460 		last_timestamp = map->timestamp;
1461 		vm_map_unlock_read(map);
1462 
1463 		kve->kve_fileid = 0;
1464 		kve->kve_fsid = 0;
1465 		freepath = NULL;
1466 		fullpath = "";
1467 		if (lobj) {
1468 			vp = NULL;
1469 			switch (lobj->type) {
1470 			case OBJT_DEFAULT:
1471 				kve->kve_type = KVME_TYPE_DEFAULT;
1472 				break;
1473 			case OBJT_VNODE:
1474 				kve->kve_type = KVME_TYPE_VNODE;
1475 				vp = lobj->handle;
1476 				vref(vp);
1477 				break;
1478 			case OBJT_SWAP:
1479 				kve->kve_type = KVME_TYPE_SWAP;
1480 				break;
1481 			case OBJT_DEVICE:
1482 				kve->kve_type = KVME_TYPE_DEVICE;
1483 				break;
1484 			case OBJT_PHYS:
1485 				kve->kve_type = KVME_TYPE_PHYS;
1486 				break;
1487 			case OBJT_DEAD:
1488 				kve->kve_type = KVME_TYPE_DEAD;
1489 				break;
1490 			default:
1491 				kve->kve_type = KVME_TYPE_UNKNOWN;
1492 				break;
1493 			}
1494 			if (lobj != obj)
1495 				VM_OBJECT_UNLOCK(lobj);
1496 
1497 			kve->kve_ref_count = obj->ref_count;
1498 			kve->kve_shadow_count = obj->shadow_count;
1499 			VM_OBJECT_UNLOCK(obj);
1500 			if (vp != NULL) {
1501 				vn_fullpath(curthread, vp, &fullpath,
1502 				    &freepath);
1503 				cred = curthread->td_ucred;
1504 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1505 				vn_lock(vp, LK_SHARED | LK_RETRY);
1506 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1507 					kve->kve_fileid = va.va_fileid;
1508 					kve->kve_fsid = va.va_fsid;
1509 				}
1510 				vput(vp);
1511 				VFS_UNLOCK_GIANT(vfslocked);
1512 			}
1513 		} else {
1514 			kve->kve_type = KVME_TYPE_NONE;
1515 			kve->kve_ref_count = 0;
1516 			kve->kve_shadow_count = 0;
1517 		}
1518 
1519 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1520 		if (freepath != NULL)
1521 			free(freepath, M_TEMP);
1522 
1523 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1524 		vm_map_lock_read(map);
1525 		if (error)
1526 			break;
1527 		if (last_timestamp != map->timestamp) {
1528 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1529 			entry = tmp_entry;
1530 		}
1531 	}
1532 	vm_map_unlock_read(map);
1533 	vmspace_free(vm);
1534 	PRELE(p);
1535 	free(kve, M_TEMP);
1536 	return (error);
1537 }
1538 #endif	/* COMPAT_FREEBSD7 */
1539 
1540 #ifdef KINFO_VMENTRY_SIZE
1541 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1542 #endif
1543 
1544 static int
1545 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1546 {
1547 	vm_map_entry_t entry, tmp_entry;
1548 	unsigned int last_timestamp;
1549 	char *fullpath, *freepath;
1550 	struct kinfo_vmentry *kve;
1551 	struct vattr va;
1552 	struct ucred *cred;
1553 	int error, *name;
1554 	struct vnode *vp;
1555 	struct proc *p;
1556 	struct vmspace *vm;
1557 	vm_map_t map;
1558 
1559 	name = (int *)arg1;
1560 	if ((p = pfind((pid_t)name[0])) == NULL)
1561 		return (ESRCH);
1562 	if (p->p_flag & P_WEXIT) {
1563 		PROC_UNLOCK(p);
1564 		return (ESRCH);
1565 	}
1566 	if ((error = p_candebug(curthread, p))) {
1567 		PROC_UNLOCK(p);
1568 		return (error);
1569 	}
1570 	_PHOLD(p);
1571 	PROC_UNLOCK(p);
1572 	vm = vmspace_acquire_ref(p);
1573 	if (vm == NULL) {
1574 		PRELE(p);
1575 		return (ESRCH);
1576 	}
1577 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1578 
1579 	map = &vm->vm_map;	/* XXXRW: More locking required? */
1580 	vm_map_lock_read(map);
1581 	for (entry = map->header.next; entry != &map->header;
1582 	    entry = entry->next) {
1583 		vm_object_t obj, tobj, lobj;
1584 		vm_offset_t addr;
1585 		int vfslocked;
1586 
1587 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1588 			continue;
1589 
1590 		bzero(kve, sizeof(*kve));
1591 
1592 		kve->kve_private_resident = 0;
1593 		obj = entry->object.vm_object;
1594 		if (obj != NULL) {
1595 			VM_OBJECT_LOCK(obj);
1596 			if (obj->shadow_count == 1)
1597 				kve->kve_private_resident =
1598 				    obj->resident_page_count;
1599 		}
1600 		kve->kve_resident = 0;
1601 		addr = entry->start;
1602 		while (addr < entry->end) {
1603 			if (pmap_extract(map->pmap, addr))
1604 				kve->kve_resident++;
1605 			addr += PAGE_SIZE;
1606 		}
1607 
1608 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1609 			if (tobj != obj)
1610 				VM_OBJECT_LOCK(tobj);
1611 			if (lobj != obj)
1612 				VM_OBJECT_UNLOCK(lobj);
1613 			lobj = tobj;
1614 		}
1615 
1616 		kve->kve_start = entry->start;
1617 		kve->kve_end = entry->end;
1618 		kve->kve_offset = entry->offset;
1619 
1620 		if (entry->protection & VM_PROT_READ)
1621 			kve->kve_protection |= KVME_PROT_READ;
1622 		if (entry->protection & VM_PROT_WRITE)
1623 			kve->kve_protection |= KVME_PROT_WRITE;
1624 		if (entry->protection & VM_PROT_EXECUTE)
1625 			kve->kve_protection |= KVME_PROT_EXEC;
1626 
1627 		if (entry->eflags & MAP_ENTRY_COW)
1628 			kve->kve_flags |= KVME_FLAG_COW;
1629 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1630 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1631 
1632 		last_timestamp = map->timestamp;
1633 		vm_map_unlock_read(map);
1634 
1635 		kve->kve_fileid = 0;
1636 		kve->kve_fsid = 0;
1637 		freepath = NULL;
1638 		fullpath = "";
1639 		if (lobj) {
1640 			vp = NULL;
1641 			switch (lobj->type) {
1642 			case OBJT_DEFAULT:
1643 				kve->kve_type = KVME_TYPE_DEFAULT;
1644 				break;
1645 			case OBJT_VNODE:
1646 				kve->kve_type = KVME_TYPE_VNODE;
1647 				vp = lobj->handle;
1648 				vref(vp);
1649 				break;
1650 			case OBJT_SWAP:
1651 				kve->kve_type = KVME_TYPE_SWAP;
1652 				break;
1653 			case OBJT_DEVICE:
1654 				kve->kve_type = KVME_TYPE_DEVICE;
1655 				break;
1656 			case OBJT_PHYS:
1657 				kve->kve_type = KVME_TYPE_PHYS;
1658 				break;
1659 			case OBJT_DEAD:
1660 				kve->kve_type = KVME_TYPE_DEAD;
1661 				break;
1662 			default:
1663 				kve->kve_type = KVME_TYPE_UNKNOWN;
1664 				break;
1665 			}
1666 			if (lobj != obj)
1667 				VM_OBJECT_UNLOCK(lobj);
1668 
1669 			kve->kve_ref_count = obj->ref_count;
1670 			kve->kve_shadow_count = obj->shadow_count;
1671 			VM_OBJECT_UNLOCK(obj);
1672 			if (vp != NULL) {
1673 				vn_fullpath(curthread, vp, &fullpath,
1674 				    &freepath);
1675 				cred = curthread->td_ucred;
1676 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1677 				vn_lock(vp, LK_SHARED | LK_RETRY);
1678 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1679 					kve->kve_fileid = va.va_fileid;
1680 					kve->kve_fsid = va.va_fsid;
1681 				}
1682 				vput(vp);
1683 				VFS_UNLOCK_GIANT(vfslocked);
1684 			}
1685 		} else {
1686 			kve->kve_type = KVME_TYPE_NONE;
1687 			kve->kve_ref_count = 0;
1688 			kve->kve_shadow_count = 0;
1689 		}
1690 
1691 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1692 		if (freepath != NULL)
1693 			free(freepath, M_TEMP);
1694 
1695 		/* Pack record size down */
1696 		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1697 		    strlen(kve->kve_path) + 1;
1698 		kve->kve_structsize = roundup(kve->kve_structsize,
1699 		    sizeof(uint64_t));
1700 		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1701 		vm_map_lock_read(map);
1702 		if (error)
1703 			break;
1704 		if (last_timestamp != map->timestamp) {
1705 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1706 			entry = tmp_entry;
1707 		}
1708 	}
1709 	vm_map_unlock_read(map);
1710 	vmspace_free(vm);
1711 	PRELE(p);
1712 	free(kve, M_TEMP);
1713 	return (error);
1714 }
1715 
1716 #if defined(STACK) || defined(DDB)
1717 static int
1718 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1719 {
1720 	struct kinfo_kstack *kkstp;
1721 	int error, i, *name, numthreads;
1722 	lwpid_t *lwpidarray;
1723 	struct thread *td;
1724 	struct stack *st;
1725 	struct sbuf sb;
1726 	struct proc *p;
1727 
1728 	name = (int *)arg1;
1729 	if ((p = pfind((pid_t)name[0])) == NULL)
1730 		return (ESRCH);
1731 	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1732 	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1733 		PROC_UNLOCK(p);
1734 		return (ESRCH);
1735 	}
1736 	if ((error = p_candebug(curthread, p))) {
1737 		PROC_UNLOCK(p);
1738 		return (error);
1739 	}
1740 	_PHOLD(p);
1741 	PROC_UNLOCK(p);
1742 
1743 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1744 	st = stack_create();
1745 
1746 	lwpidarray = NULL;
1747 	numthreads = 0;
1748 	PROC_LOCK(p);
1749 repeat:
1750 	if (numthreads < p->p_numthreads) {
1751 		if (lwpidarray != NULL) {
1752 			free(lwpidarray, M_TEMP);
1753 			lwpidarray = NULL;
1754 		}
1755 		numthreads = p->p_numthreads;
1756 		PROC_UNLOCK(p);
1757 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1758 		    M_WAITOK | M_ZERO);
1759 		PROC_LOCK(p);
1760 		goto repeat;
1761 	}
1762 	i = 0;
1763 
1764 	/*
1765 	 * XXXRW: During the below loop, execve(2) and countless other sorts
1766 	 * of changes could have taken place.  Should we check to see if the
1767 	 * vmspace has been replaced, or the like, in order to prevent
1768 	 * giving a snapshot that spans, say, execve(2), with some threads
1769 	 * before and some after?  Among other things, the credentials could
1770 	 * have changed, in which case the right to extract debug info might
1771 	 * no longer be assured.
1772 	 */
1773 	FOREACH_THREAD_IN_PROC(p, td) {
1774 		KASSERT(i < numthreads,
1775 		    ("sysctl_kern_proc_kstack: numthreads"));
1776 		lwpidarray[i] = td->td_tid;
1777 		i++;
1778 	}
1779 	numthreads = i;
1780 	for (i = 0; i < numthreads; i++) {
1781 		td = thread_find(p, lwpidarray[i]);
1782 		if (td == NULL) {
1783 			continue;
1784 		}
1785 		bzero(kkstp, sizeof(*kkstp));
1786 		(void)sbuf_new(&sb, kkstp->kkst_trace,
1787 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1788 		thread_lock(td);
1789 		kkstp->kkst_tid = td->td_tid;
1790 		if (TD_IS_SWAPPED(td))
1791 			kkstp->kkst_state = KKST_STATE_SWAPPED;
1792 		else if (TD_IS_RUNNING(td))
1793 			kkstp->kkst_state = KKST_STATE_RUNNING;
1794 		else {
1795 			kkstp->kkst_state = KKST_STATE_STACKOK;
1796 			stack_save_td(st, td);
1797 		}
1798 		thread_unlock(td);
1799 		PROC_UNLOCK(p);
1800 		stack_sbuf_print(&sb, st);
1801 		sbuf_finish(&sb);
1802 		sbuf_delete(&sb);
1803 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1804 		PROC_LOCK(p);
1805 		if (error)
1806 			break;
1807 	}
1808 	_PRELE(p);
1809 	PROC_UNLOCK(p);
1810 	if (lwpidarray != NULL)
1811 		free(lwpidarray, M_TEMP);
1812 	stack_destroy(st);
1813 	free(kkstp, M_TEMP);
1814 	return (error);
1815 }
1816 #endif
1817 
1818 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1819 
1820 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1821 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1822 	"Return entire process table");
1823 
1824 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1825 	sysctl_kern_proc, "Process table");
1826 
1827 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1828 	sysctl_kern_proc, "Process table");
1829 
1830 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1831 	sysctl_kern_proc, "Process table");
1832 
1833 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1834 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1835 
1836 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
1837 	sysctl_kern_proc, "Process table");
1838 
1839 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1840 	sysctl_kern_proc, "Process table");
1841 
1842 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1843 	sysctl_kern_proc, "Process table");
1844 
1845 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1846 	sysctl_kern_proc, "Process table");
1847 
1848 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
1849 	sysctl_kern_proc, "Return process table, no threads");
1850 
1851 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1852 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
1853 	sysctl_kern_proc_args, "Process argument list");
1854 
1855 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
1856 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
1857 
1858 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
1859 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
1860 	"Process syscall vector name (ABI type)");
1861 
1862 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1863 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1864 
1865 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1866 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1867 
1868 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1869 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1870 
1871 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
1872 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1873 
1874 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1875 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1876 
1877 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1878 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1879 
1880 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1881 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1882 
1883 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1884 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1885 
1886 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1887 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
1888 	"Return process table, no threads");
1889 
1890 #ifdef COMPAT_FREEBSD7
1891 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
1892 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
1893 #endif
1894 
1895 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
1896 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
1897 
1898 #if defined(STACK) || defined(DDB)
1899 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
1900 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
1901 #endif
1902