xref: /freebsd/sys/kern/kern_proc.c (revision f56f82e0)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 #include "opt_stack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/elf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exec.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/loginclass.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/refcount.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sched.h>
63 #include <sys/smp.h>
64 #include <sys/stack.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/signalvar.h>
70 #include <sys/sdt.h>
71 #include <sys/sx.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74 #include <sys/wait.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/uma.h>
88 
89 #ifdef COMPAT_FREEBSD32
90 #include <compat/freebsd32/freebsd32.h>
91 #include <compat/freebsd32/freebsd32_util.h>
92 #endif
93 
94 SDT_PROVIDER_DEFINE(proc);
95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96     "int");
97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98     "int");
99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100     "struct thread *");
101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104 
105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109 
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115     int preferthread);
116 static void pgadjustjobc(struct pgrp *pgrp, int entering);
117 static void pgdelete(struct pgrp *);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123 static struct proc *zpfind_locked(pid_t pid);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl;
129 u_long pidhash;
130 struct pgrphashhead *pgrphashtbl;
131 u_long pgrphash;
132 struct proclist allproc;
133 struct proclist zombproc;
134 struct sx allproc_lock;
135 struct sx proctree_lock;
136 struct mtx ppeers_lock;
137 uma_zone_t proc_zone;
138 
139 /*
140  * The offset of various fields in struct proc and struct thread.
141  * These are used by kernel debuggers to enumerate kernel threads and
142  * processes.
143  */
144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
146 const int proc_off_p_list = offsetof(struct proc, p_list);
147 const int proc_off_p_threads = offsetof(struct proc, p_threads);
148 const int thread_off_td_tid = offsetof(struct thread, td_tid);
149 const int thread_off_td_name = offsetof(struct thread, td_name);
150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152 const int thread_off_td_plist = offsetof(struct thread, td_plist);
153 
154 int kstack_pages = KSTACK_PAGES;
155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156     "Kernel stack size in pages");
157 static int vmmap_skip_res_cnt = 0;
158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159     &vmmap_skip_res_cnt, 0,
160     "Skip calculation of the pages resident count in kern.proc.vmmap");
161 
162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163 #ifdef COMPAT_FREEBSD32
164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165 #endif
166 
167 /*
168  * Initialize global process hashing structures.
169  */
170 void
171 procinit(void)
172 {
173 
174 	sx_init(&allproc_lock, "allproc");
175 	sx_init(&proctree_lock, "proctree");
176 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177 	LIST_INIT(&allproc);
178 	LIST_INIT(&zombproc);
179 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182 	    proc_ctor, proc_dtor, proc_init, proc_fini,
183 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184 	uihashinit();
185 }
186 
187 /*
188  * Prepare a proc for use.
189  */
190 static int
191 proc_ctor(void *mem, int size, void *arg, int flags)
192 {
193 	struct proc *p;
194 	struct thread *td;
195 
196 	p = (struct proc *)mem;
197 	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
198 	EVENTHANDLER_INVOKE(process_ctor, p);
199 	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
200 	td = FIRST_THREAD_IN_PROC(p);
201 	if (td != NULL) {
202 		/* Make sure all thread constructors are executed */
203 		EVENTHANDLER_INVOKE(thread_ctor, td);
204 	}
205 	return (0);
206 }
207 
208 /*
209  * Reclaim a proc after use.
210  */
211 static void
212 proc_dtor(void *mem, int size, void *arg)
213 {
214 	struct proc *p;
215 	struct thread *td;
216 
217 	/* INVARIANTS checks go here */
218 	p = (struct proc *)mem;
219 	td = FIRST_THREAD_IN_PROC(p);
220 	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
221 	if (td != NULL) {
222 #ifdef INVARIANTS
223 		KASSERT((p->p_numthreads == 1),
224 		    ("bad number of threads in exiting process"));
225 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
226 #endif
227 		/* Free all OSD associated to this thread. */
228 		osd_thread_exit(td);
229 		td_softdep_cleanup(td);
230 		MPASS(td->td_su == NULL);
231 
232 		/* Make sure all thread destructors are executed */
233 		EVENTHANDLER_INVOKE(thread_dtor, td);
234 	}
235 	EVENTHANDLER_INVOKE(process_dtor, p);
236 	if (p->p_ksi != NULL)
237 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
238 	SDT_PROBE3(proc, , dtor, return, p, size, arg);
239 }
240 
241 /*
242  * Initialize type-stable parts of a proc (when newly created).
243  */
244 static int
245 proc_init(void *mem, int size, int flags)
246 {
247 	struct proc *p;
248 
249 	p = (struct proc *)mem;
250 	SDT_PROBE3(proc, , init, entry, p, size, flags);
251 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
252 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
253 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
254 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
255 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
256 	cv_init(&p->p_pwait, "ppwait");
257 	cv_init(&p->p_dbgwait, "dbgwait");
258 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
259 	EVENTHANDLER_INVOKE(process_init, p);
260 	p->p_stats = pstats_alloc();
261 	p->p_pgrp = NULL;
262 	SDT_PROBE3(proc, , init, return, p, size, flags);
263 	return (0);
264 }
265 
266 /*
267  * UMA should ensure that this function is never called.
268  * Freeing a proc structure would violate type stability.
269  */
270 static void
271 proc_fini(void *mem, int size)
272 {
273 #ifdef notnow
274 	struct proc *p;
275 
276 	p = (struct proc *)mem;
277 	EVENTHANDLER_INVOKE(process_fini, p);
278 	pstats_free(p->p_stats);
279 	thread_free(FIRST_THREAD_IN_PROC(p));
280 	mtx_destroy(&p->p_mtx);
281 	if (p->p_ksi != NULL)
282 		ksiginfo_free(p->p_ksi);
283 #else
284 	panic("proc reclaimed");
285 #endif
286 }
287 
288 /*
289  * Is p an inferior of the current process?
290  */
291 int
292 inferior(struct proc *p)
293 {
294 
295 	sx_assert(&proctree_lock, SX_LOCKED);
296 	PROC_LOCK_ASSERT(p, MA_OWNED);
297 	for (; p != curproc; p = proc_realparent(p)) {
298 		if (p->p_pid == 0)
299 			return (0);
300 	}
301 	return (1);
302 }
303 
304 struct proc *
305 pfind_locked(pid_t pid)
306 {
307 	struct proc *p;
308 
309 	sx_assert(&allproc_lock, SX_LOCKED);
310 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
311 		if (p->p_pid == pid) {
312 			PROC_LOCK(p);
313 			if (p->p_state == PRS_NEW) {
314 				PROC_UNLOCK(p);
315 				p = NULL;
316 			}
317 			break;
318 		}
319 	}
320 	return (p);
321 }
322 
323 /*
324  * Locate a process by number; return only "live" processes -- i.e., neither
325  * zombies nor newly born but incompletely initialized processes.  By not
326  * returning processes in the PRS_NEW state, we allow callers to avoid
327  * testing for that condition to avoid dereferencing p_ucred, et al.
328  */
329 struct proc *
330 pfind(pid_t pid)
331 {
332 	struct proc *p;
333 
334 	sx_slock(&allproc_lock);
335 	p = pfind_locked(pid);
336 	sx_sunlock(&allproc_lock);
337 	return (p);
338 }
339 
340 static struct proc *
341 pfind_tid_locked(pid_t tid)
342 {
343 	struct proc *p;
344 	struct thread *td;
345 
346 	sx_assert(&allproc_lock, SX_LOCKED);
347 	FOREACH_PROC_IN_SYSTEM(p) {
348 		PROC_LOCK(p);
349 		if (p->p_state == PRS_NEW) {
350 			PROC_UNLOCK(p);
351 			continue;
352 		}
353 		FOREACH_THREAD_IN_PROC(p, td) {
354 			if (td->td_tid == tid)
355 				goto found;
356 		}
357 		PROC_UNLOCK(p);
358 	}
359 found:
360 	return (p);
361 }
362 
363 /*
364  * Locate a process group by number.
365  * The caller must hold proctree_lock.
366  */
367 struct pgrp *
368 pgfind(pid_t pgid)
369 {
370 	struct pgrp *pgrp;
371 
372 	sx_assert(&proctree_lock, SX_LOCKED);
373 
374 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
375 		if (pgrp->pg_id == pgid) {
376 			PGRP_LOCK(pgrp);
377 			return (pgrp);
378 		}
379 	}
380 	return (NULL);
381 }
382 
383 /*
384  * Locate process and do additional manipulations, depending on flags.
385  */
386 int
387 pget(pid_t pid, int flags, struct proc **pp)
388 {
389 	struct proc *p;
390 	int error;
391 
392 	sx_slock(&allproc_lock);
393 	if (pid <= PID_MAX) {
394 		p = pfind_locked(pid);
395 		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
396 			p = zpfind_locked(pid);
397 	} else if ((flags & PGET_NOTID) == 0) {
398 		p = pfind_tid_locked(pid);
399 	} else {
400 		p = NULL;
401 	}
402 	sx_sunlock(&allproc_lock);
403 	if (p == NULL)
404 		return (ESRCH);
405 	if ((flags & PGET_CANSEE) != 0) {
406 		error = p_cansee(curthread, p);
407 		if (error != 0)
408 			goto errout;
409 	}
410 	if ((flags & PGET_CANDEBUG) != 0) {
411 		error = p_candebug(curthread, p);
412 		if (error != 0)
413 			goto errout;
414 	}
415 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
416 		error = EPERM;
417 		goto errout;
418 	}
419 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
420 		error = ESRCH;
421 		goto errout;
422 	}
423 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
424 		/*
425 		 * XXXRW: Not clear ESRCH is the right error during proc
426 		 * execve().
427 		 */
428 		error = ESRCH;
429 		goto errout;
430 	}
431 	if ((flags & PGET_HOLD) != 0) {
432 		_PHOLD(p);
433 		PROC_UNLOCK(p);
434 	}
435 	*pp = p;
436 	return (0);
437 errout:
438 	PROC_UNLOCK(p);
439 	return (error);
440 }
441 
442 /*
443  * Create a new process group.
444  * pgid must be equal to the pid of p.
445  * Begin a new session if required.
446  */
447 int
448 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
449 {
450 
451 	sx_assert(&proctree_lock, SX_XLOCKED);
452 
453 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
454 	KASSERT(p->p_pid == pgid,
455 	    ("enterpgrp: new pgrp and pid != pgid"));
456 	KASSERT(pgfind(pgid) == NULL,
457 	    ("enterpgrp: pgrp with pgid exists"));
458 	KASSERT(!SESS_LEADER(p),
459 	    ("enterpgrp: session leader attempted setpgrp"));
460 
461 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
462 
463 	if (sess != NULL) {
464 		/*
465 		 * new session
466 		 */
467 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
468 		PROC_LOCK(p);
469 		p->p_flag &= ~P_CONTROLT;
470 		PROC_UNLOCK(p);
471 		PGRP_LOCK(pgrp);
472 		sess->s_leader = p;
473 		sess->s_sid = p->p_pid;
474 		refcount_init(&sess->s_count, 1);
475 		sess->s_ttyvp = NULL;
476 		sess->s_ttydp = NULL;
477 		sess->s_ttyp = NULL;
478 		bcopy(p->p_session->s_login, sess->s_login,
479 			    sizeof(sess->s_login));
480 		pgrp->pg_session = sess;
481 		KASSERT(p == curproc,
482 		    ("enterpgrp: mksession and p != curproc"));
483 	} else {
484 		pgrp->pg_session = p->p_session;
485 		sess_hold(pgrp->pg_session);
486 		PGRP_LOCK(pgrp);
487 	}
488 	pgrp->pg_id = pgid;
489 	LIST_INIT(&pgrp->pg_members);
490 
491 	/*
492 	 * As we have an exclusive lock of proctree_lock,
493 	 * this should not deadlock.
494 	 */
495 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
496 	pgrp->pg_jobc = 0;
497 	SLIST_INIT(&pgrp->pg_sigiolst);
498 	PGRP_UNLOCK(pgrp);
499 
500 	doenterpgrp(p, pgrp);
501 
502 	return (0);
503 }
504 
505 /*
506  * Move p to an existing process group
507  */
508 int
509 enterthispgrp(struct proc *p, struct pgrp *pgrp)
510 {
511 
512 	sx_assert(&proctree_lock, SX_XLOCKED);
513 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
514 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
515 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
516 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
517 	KASSERT(pgrp->pg_session == p->p_session,
518 		("%s: pgrp's session %p, p->p_session %p.\n",
519 		__func__,
520 		pgrp->pg_session,
521 		p->p_session));
522 	KASSERT(pgrp != p->p_pgrp,
523 		("%s: p belongs to pgrp.", __func__));
524 
525 	doenterpgrp(p, pgrp);
526 
527 	return (0);
528 }
529 
530 /*
531  * Move p to a process group
532  */
533 static void
534 doenterpgrp(struct proc *p, struct pgrp *pgrp)
535 {
536 	struct pgrp *savepgrp;
537 
538 	sx_assert(&proctree_lock, SX_XLOCKED);
539 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
540 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
541 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
542 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
543 
544 	savepgrp = p->p_pgrp;
545 
546 	/*
547 	 * Adjust eligibility of affected pgrps to participate in job control.
548 	 * Increment eligibility counts before decrementing, otherwise we
549 	 * could reach 0 spuriously during the first call.
550 	 */
551 	fixjobc(p, pgrp, 1);
552 	fixjobc(p, p->p_pgrp, 0);
553 
554 	PGRP_LOCK(pgrp);
555 	PGRP_LOCK(savepgrp);
556 	PROC_LOCK(p);
557 	LIST_REMOVE(p, p_pglist);
558 	p->p_pgrp = pgrp;
559 	PROC_UNLOCK(p);
560 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
561 	PGRP_UNLOCK(savepgrp);
562 	PGRP_UNLOCK(pgrp);
563 	if (LIST_EMPTY(&savepgrp->pg_members))
564 		pgdelete(savepgrp);
565 }
566 
567 /*
568  * remove process from process group
569  */
570 int
571 leavepgrp(struct proc *p)
572 {
573 	struct pgrp *savepgrp;
574 
575 	sx_assert(&proctree_lock, SX_XLOCKED);
576 	savepgrp = p->p_pgrp;
577 	PGRP_LOCK(savepgrp);
578 	PROC_LOCK(p);
579 	LIST_REMOVE(p, p_pglist);
580 	p->p_pgrp = NULL;
581 	PROC_UNLOCK(p);
582 	PGRP_UNLOCK(savepgrp);
583 	if (LIST_EMPTY(&savepgrp->pg_members))
584 		pgdelete(savepgrp);
585 	return (0);
586 }
587 
588 /*
589  * delete a process group
590  */
591 static void
592 pgdelete(struct pgrp *pgrp)
593 {
594 	struct session *savesess;
595 	struct tty *tp;
596 
597 	sx_assert(&proctree_lock, SX_XLOCKED);
598 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
599 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
600 
601 	/*
602 	 * Reset any sigio structures pointing to us as a result of
603 	 * F_SETOWN with our pgid.
604 	 */
605 	funsetownlst(&pgrp->pg_sigiolst);
606 
607 	PGRP_LOCK(pgrp);
608 	tp = pgrp->pg_session->s_ttyp;
609 	LIST_REMOVE(pgrp, pg_hash);
610 	savesess = pgrp->pg_session;
611 	PGRP_UNLOCK(pgrp);
612 
613 	/* Remove the reference to the pgrp before deallocating it. */
614 	if (tp != NULL) {
615 		tty_lock(tp);
616 		tty_rel_pgrp(tp, pgrp);
617 	}
618 
619 	mtx_destroy(&pgrp->pg_mtx);
620 	free(pgrp, M_PGRP);
621 	sess_release(savesess);
622 }
623 
624 static void
625 pgadjustjobc(struct pgrp *pgrp, int entering)
626 {
627 
628 	PGRP_LOCK(pgrp);
629 	if (entering)
630 		pgrp->pg_jobc++;
631 	else {
632 		--pgrp->pg_jobc;
633 		if (pgrp->pg_jobc == 0)
634 			orphanpg(pgrp);
635 	}
636 	PGRP_UNLOCK(pgrp);
637 }
638 
639 /*
640  * Adjust pgrp jobc counters when specified process changes process group.
641  * We count the number of processes in each process group that "qualify"
642  * the group for terminal job control (those with a parent in a different
643  * process group of the same session).  If that count reaches zero, the
644  * process group becomes orphaned.  Check both the specified process'
645  * process group and that of its children.
646  * entering == 0 => p is leaving specified group.
647  * entering == 1 => p is entering specified group.
648  */
649 void
650 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
651 {
652 	struct pgrp *hispgrp;
653 	struct session *mysession;
654 	struct proc *q;
655 
656 	sx_assert(&proctree_lock, SX_LOCKED);
657 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
658 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
659 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
660 
661 	/*
662 	 * Check p's parent to see whether p qualifies its own process
663 	 * group; if so, adjust count for p's process group.
664 	 */
665 	mysession = pgrp->pg_session;
666 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
667 	    hispgrp->pg_session == mysession)
668 		pgadjustjobc(pgrp, entering);
669 
670 	/*
671 	 * Check this process' children to see whether they qualify
672 	 * their process groups; if so, adjust counts for children's
673 	 * process groups.
674 	 */
675 	LIST_FOREACH(q, &p->p_children, p_sibling) {
676 		hispgrp = q->p_pgrp;
677 		if (hispgrp == pgrp ||
678 		    hispgrp->pg_session != mysession)
679 			continue;
680 		if (q->p_state == PRS_ZOMBIE)
681 			continue;
682 		pgadjustjobc(hispgrp, entering);
683 	}
684 }
685 
686 void
687 killjobc(void)
688 {
689 	struct session *sp;
690 	struct tty *tp;
691 	struct proc *p;
692 	struct vnode *ttyvp;
693 
694 	p = curproc;
695 	MPASS(p->p_flag & P_WEXIT);
696 	/*
697 	 * Do a quick check to see if there is anything to do with the
698 	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
699 	 */
700 	PROC_LOCK(p);
701 	if (!SESS_LEADER(p) &&
702 	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
703 	    LIST_EMPTY(&p->p_children)) {
704 		PROC_UNLOCK(p);
705 		return;
706 	}
707 	PROC_UNLOCK(p);
708 
709 	sx_xlock(&proctree_lock);
710 	if (SESS_LEADER(p)) {
711 		sp = p->p_session;
712 
713 		/*
714 		 * s_ttyp is not zero'd; we use this to indicate that
715 		 * the session once had a controlling terminal. (for
716 		 * logging and informational purposes)
717 		 */
718 		SESS_LOCK(sp);
719 		ttyvp = sp->s_ttyvp;
720 		tp = sp->s_ttyp;
721 		sp->s_ttyvp = NULL;
722 		sp->s_ttydp = NULL;
723 		sp->s_leader = NULL;
724 		SESS_UNLOCK(sp);
725 
726 		/*
727 		 * Signal foreground pgrp and revoke access to
728 		 * controlling terminal if it has not been revoked
729 		 * already.
730 		 *
731 		 * Because the TTY may have been revoked in the mean
732 		 * time and could already have a new session associated
733 		 * with it, make sure we don't send a SIGHUP to a
734 		 * foreground process group that does not belong to this
735 		 * session.
736 		 */
737 
738 		if (tp != NULL) {
739 			tty_lock(tp);
740 			if (tp->t_session == sp)
741 				tty_signal_pgrp(tp, SIGHUP);
742 			tty_unlock(tp);
743 		}
744 
745 		if (ttyvp != NULL) {
746 			sx_xunlock(&proctree_lock);
747 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
748 				VOP_REVOKE(ttyvp, REVOKEALL);
749 				VOP_UNLOCK(ttyvp, 0);
750 			}
751 			vrele(ttyvp);
752 			sx_xlock(&proctree_lock);
753 		}
754 	}
755 	fixjobc(p, p->p_pgrp, 0);
756 	sx_xunlock(&proctree_lock);
757 }
758 
759 /*
760  * A process group has become orphaned;
761  * if there are any stopped processes in the group,
762  * hang-up all process in that group.
763  */
764 static void
765 orphanpg(struct pgrp *pg)
766 {
767 	struct proc *p;
768 
769 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
770 
771 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
772 		PROC_LOCK(p);
773 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
774 			PROC_UNLOCK(p);
775 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
776 				PROC_LOCK(p);
777 				kern_psignal(p, SIGHUP);
778 				kern_psignal(p, SIGCONT);
779 				PROC_UNLOCK(p);
780 			}
781 			return;
782 		}
783 		PROC_UNLOCK(p);
784 	}
785 }
786 
787 void
788 sess_hold(struct session *s)
789 {
790 
791 	refcount_acquire(&s->s_count);
792 }
793 
794 void
795 sess_release(struct session *s)
796 {
797 
798 	if (refcount_release(&s->s_count)) {
799 		if (s->s_ttyp != NULL) {
800 			tty_lock(s->s_ttyp);
801 			tty_rel_sess(s->s_ttyp, s);
802 		}
803 		mtx_destroy(&s->s_mtx);
804 		free(s, M_SESSION);
805 	}
806 }
807 
808 #ifdef DDB
809 
810 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
811 {
812 	struct pgrp *pgrp;
813 	struct proc *p;
814 	int i;
815 
816 	for (i = 0; i <= pgrphash; i++) {
817 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
818 			printf("\tindx %d\n", i);
819 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
820 				printf(
821 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
822 				    (void *)pgrp, (long)pgrp->pg_id,
823 				    (void *)pgrp->pg_session,
824 				    pgrp->pg_session->s_count,
825 				    (void *)LIST_FIRST(&pgrp->pg_members));
826 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
827 					printf("\t\tpid %ld addr %p pgrp %p\n",
828 					    (long)p->p_pid, (void *)p,
829 					    (void *)p->p_pgrp);
830 				}
831 			}
832 		}
833 	}
834 }
835 #endif /* DDB */
836 
837 /*
838  * Calculate the kinfo_proc members which contain process-wide
839  * informations.
840  * Must be called with the target process locked.
841  */
842 static void
843 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
844 {
845 	struct thread *td;
846 
847 	PROC_LOCK_ASSERT(p, MA_OWNED);
848 
849 	kp->ki_estcpu = 0;
850 	kp->ki_pctcpu = 0;
851 	FOREACH_THREAD_IN_PROC(p, td) {
852 		thread_lock(td);
853 		kp->ki_pctcpu += sched_pctcpu(td);
854 		kp->ki_estcpu += sched_estcpu(td);
855 		thread_unlock(td);
856 	}
857 }
858 
859 /*
860  * Clear kinfo_proc and fill in any information that is common
861  * to all threads in the process.
862  * Must be called with the target process locked.
863  */
864 static void
865 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
866 {
867 	struct thread *td0;
868 	struct tty *tp;
869 	struct session *sp;
870 	struct ucred *cred;
871 	struct sigacts *ps;
872 	struct timeval boottime;
873 
874 	/* For proc_realparent. */
875 	sx_assert(&proctree_lock, SX_LOCKED);
876 	PROC_LOCK_ASSERT(p, MA_OWNED);
877 	bzero(kp, sizeof(*kp));
878 
879 	kp->ki_structsize = sizeof(*kp);
880 	kp->ki_paddr = p;
881 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
882 	kp->ki_args = p->p_args;
883 	kp->ki_textvp = p->p_textvp;
884 #ifdef KTRACE
885 	kp->ki_tracep = p->p_tracevp;
886 	kp->ki_traceflag = p->p_traceflag;
887 #endif
888 	kp->ki_fd = p->p_fd;
889 	kp->ki_vmspace = p->p_vmspace;
890 	kp->ki_flag = p->p_flag;
891 	kp->ki_flag2 = p->p_flag2;
892 	cred = p->p_ucred;
893 	if (cred) {
894 		kp->ki_uid = cred->cr_uid;
895 		kp->ki_ruid = cred->cr_ruid;
896 		kp->ki_svuid = cred->cr_svuid;
897 		kp->ki_cr_flags = 0;
898 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
899 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
900 		/* XXX bde doesn't like KI_NGROUPS */
901 		if (cred->cr_ngroups > KI_NGROUPS) {
902 			kp->ki_ngroups = KI_NGROUPS;
903 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
904 		} else
905 			kp->ki_ngroups = cred->cr_ngroups;
906 		bcopy(cred->cr_groups, kp->ki_groups,
907 		    kp->ki_ngroups * sizeof(gid_t));
908 		kp->ki_rgid = cred->cr_rgid;
909 		kp->ki_svgid = cred->cr_svgid;
910 		/* If jailed(cred), emulate the old P_JAILED flag. */
911 		if (jailed(cred)) {
912 			kp->ki_flag |= P_JAILED;
913 			/* If inside the jail, use 0 as a jail ID. */
914 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
915 				kp->ki_jid = cred->cr_prison->pr_id;
916 		}
917 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
918 		    sizeof(kp->ki_loginclass));
919 	}
920 	ps = p->p_sigacts;
921 	if (ps) {
922 		mtx_lock(&ps->ps_mtx);
923 		kp->ki_sigignore = ps->ps_sigignore;
924 		kp->ki_sigcatch = ps->ps_sigcatch;
925 		mtx_unlock(&ps->ps_mtx);
926 	}
927 	if (p->p_state != PRS_NEW &&
928 	    p->p_state != PRS_ZOMBIE &&
929 	    p->p_vmspace != NULL) {
930 		struct vmspace *vm = p->p_vmspace;
931 
932 		kp->ki_size = vm->vm_map.size;
933 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
934 		FOREACH_THREAD_IN_PROC(p, td0) {
935 			if (!TD_IS_SWAPPED(td0))
936 				kp->ki_rssize += td0->td_kstack_pages;
937 		}
938 		kp->ki_swrss = vm->vm_swrss;
939 		kp->ki_tsize = vm->vm_tsize;
940 		kp->ki_dsize = vm->vm_dsize;
941 		kp->ki_ssize = vm->vm_ssize;
942 	} else if (p->p_state == PRS_ZOMBIE)
943 		kp->ki_stat = SZOMB;
944 	if (kp->ki_flag & P_INMEM)
945 		kp->ki_sflag = PS_INMEM;
946 	else
947 		kp->ki_sflag = 0;
948 	/* Calculate legacy swtime as seconds since 'swtick'. */
949 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
950 	kp->ki_pid = p->p_pid;
951 	kp->ki_nice = p->p_nice;
952 	kp->ki_fibnum = p->p_fibnum;
953 	kp->ki_start = p->p_stats->p_start;
954 	getboottime(&boottime);
955 	timevaladd(&kp->ki_start, &boottime);
956 	PROC_STATLOCK(p);
957 	rufetch(p, &kp->ki_rusage);
958 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
959 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
960 	PROC_STATUNLOCK(p);
961 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
962 	/* Some callers want child times in a single value. */
963 	kp->ki_childtime = kp->ki_childstime;
964 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
965 
966 	FOREACH_THREAD_IN_PROC(p, td0)
967 		kp->ki_cow += td0->td_cow;
968 
969 	tp = NULL;
970 	if (p->p_pgrp) {
971 		kp->ki_pgid = p->p_pgrp->pg_id;
972 		kp->ki_jobc = p->p_pgrp->pg_jobc;
973 		sp = p->p_pgrp->pg_session;
974 
975 		if (sp != NULL) {
976 			kp->ki_sid = sp->s_sid;
977 			SESS_LOCK(sp);
978 			strlcpy(kp->ki_login, sp->s_login,
979 			    sizeof(kp->ki_login));
980 			if (sp->s_ttyvp)
981 				kp->ki_kiflag |= KI_CTTY;
982 			if (SESS_LEADER(p))
983 				kp->ki_kiflag |= KI_SLEADER;
984 			/* XXX proctree_lock */
985 			tp = sp->s_ttyp;
986 			SESS_UNLOCK(sp);
987 		}
988 	}
989 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
990 		kp->ki_tdev = tty_udev(tp);
991 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
992 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
993 		if (tp->t_session)
994 			kp->ki_tsid = tp->t_session->s_sid;
995 	} else {
996 		kp->ki_tdev = NODEV;
997 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
998 	}
999 	if (p->p_comm[0] != '\0')
1000 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1001 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1002 	    p->p_sysent->sv_name[0] != '\0')
1003 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1004 	kp->ki_siglist = p->p_siglist;
1005 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1006 	kp->ki_acflag = p->p_acflag;
1007 	kp->ki_lock = p->p_lock;
1008 	if (p->p_pptr) {
1009 		kp->ki_ppid = proc_realparent(p)->p_pid;
1010 		if (p->p_flag & P_TRACED)
1011 			kp->ki_tracer = p->p_pptr->p_pid;
1012 	}
1013 }
1014 
1015 /*
1016  * Fill in information that is thread specific.  Must be called with
1017  * target process locked.  If 'preferthread' is set, overwrite certain
1018  * process-related fields that are maintained for both threads and
1019  * processes.
1020  */
1021 static void
1022 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1023 {
1024 	struct proc *p;
1025 
1026 	p = td->td_proc;
1027 	kp->ki_tdaddr = td;
1028 	PROC_LOCK_ASSERT(p, MA_OWNED);
1029 
1030 	if (preferthread)
1031 		PROC_STATLOCK(p);
1032 	thread_lock(td);
1033 	if (td->td_wmesg != NULL)
1034 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1035 	else
1036 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1037 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1038 	    sizeof(kp->ki_tdname)) {
1039 		strlcpy(kp->ki_moretdname,
1040 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1041 		    sizeof(kp->ki_moretdname));
1042 	} else {
1043 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1044 	}
1045 	if (TD_ON_LOCK(td)) {
1046 		kp->ki_kiflag |= KI_LOCKBLOCK;
1047 		strlcpy(kp->ki_lockname, td->td_lockname,
1048 		    sizeof(kp->ki_lockname));
1049 	} else {
1050 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1051 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1052 	}
1053 
1054 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1055 		if (TD_ON_RUNQ(td) ||
1056 		    TD_CAN_RUN(td) ||
1057 		    TD_IS_RUNNING(td)) {
1058 			kp->ki_stat = SRUN;
1059 		} else if (P_SHOULDSTOP(p)) {
1060 			kp->ki_stat = SSTOP;
1061 		} else if (TD_IS_SLEEPING(td)) {
1062 			kp->ki_stat = SSLEEP;
1063 		} else if (TD_ON_LOCK(td)) {
1064 			kp->ki_stat = SLOCK;
1065 		} else {
1066 			kp->ki_stat = SWAIT;
1067 		}
1068 	} else if (p->p_state == PRS_ZOMBIE) {
1069 		kp->ki_stat = SZOMB;
1070 	} else {
1071 		kp->ki_stat = SIDL;
1072 	}
1073 
1074 	/* Things in the thread */
1075 	kp->ki_wchan = td->td_wchan;
1076 	kp->ki_pri.pri_level = td->td_priority;
1077 	kp->ki_pri.pri_native = td->td_base_pri;
1078 
1079 	/*
1080 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1081 	 * the maximum u_char CPU value.
1082 	 */
1083 	if (td->td_lastcpu == NOCPU)
1084 		kp->ki_lastcpu_old = NOCPU_OLD;
1085 	else if (td->td_lastcpu > MAXCPU_OLD)
1086 		kp->ki_lastcpu_old = MAXCPU_OLD;
1087 	else
1088 		kp->ki_lastcpu_old = td->td_lastcpu;
1089 
1090 	if (td->td_oncpu == NOCPU)
1091 		kp->ki_oncpu_old = NOCPU_OLD;
1092 	else if (td->td_oncpu > MAXCPU_OLD)
1093 		kp->ki_oncpu_old = MAXCPU_OLD;
1094 	else
1095 		kp->ki_oncpu_old = td->td_oncpu;
1096 
1097 	kp->ki_lastcpu = td->td_lastcpu;
1098 	kp->ki_oncpu = td->td_oncpu;
1099 	kp->ki_tdflags = td->td_flags;
1100 	kp->ki_tid = td->td_tid;
1101 	kp->ki_numthreads = p->p_numthreads;
1102 	kp->ki_pcb = td->td_pcb;
1103 	kp->ki_kstack = (void *)td->td_kstack;
1104 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1105 	kp->ki_pri.pri_class = td->td_pri_class;
1106 	kp->ki_pri.pri_user = td->td_user_pri;
1107 
1108 	if (preferthread) {
1109 		rufetchtd(td, &kp->ki_rusage);
1110 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1111 		kp->ki_pctcpu = sched_pctcpu(td);
1112 		kp->ki_estcpu = sched_estcpu(td);
1113 		kp->ki_cow = td->td_cow;
1114 	}
1115 
1116 	/* We can't get this anymore but ps etc never used it anyway. */
1117 	kp->ki_rqindex = 0;
1118 
1119 	if (preferthread)
1120 		kp->ki_siglist = td->td_siglist;
1121 	kp->ki_sigmask = td->td_sigmask;
1122 	thread_unlock(td);
1123 	if (preferthread)
1124 		PROC_STATUNLOCK(p);
1125 }
1126 
1127 /*
1128  * Fill in a kinfo_proc structure for the specified process.
1129  * Must be called with the target process locked.
1130  */
1131 void
1132 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1133 {
1134 
1135 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1136 
1137 	fill_kinfo_proc_only(p, kp);
1138 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1139 	fill_kinfo_aggregate(p, kp);
1140 }
1141 
1142 struct pstats *
1143 pstats_alloc(void)
1144 {
1145 
1146 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1147 }
1148 
1149 /*
1150  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1151  */
1152 void
1153 pstats_fork(struct pstats *src, struct pstats *dst)
1154 {
1155 
1156 	bzero(&dst->pstat_startzero,
1157 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1158 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1159 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1160 }
1161 
1162 void
1163 pstats_free(struct pstats *ps)
1164 {
1165 
1166 	free(ps, M_SUBPROC);
1167 }
1168 
1169 static struct proc *
1170 zpfind_locked(pid_t pid)
1171 {
1172 	struct proc *p;
1173 
1174 	sx_assert(&allproc_lock, SX_LOCKED);
1175 	LIST_FOREACH(p, &zombproc, p_list) {
1176 		if (p->p_pid == pid) {
1177 			PROC_LOCK(p);
1178 			break;
1179 		}
1180 	}
1181 	return (p);
1182 }
1183 
1184 /*
1185  * Locate a zombie process by number
1186  */
1187 struct proc *
1188 zpfind(pid_t pid)
1189 {
1190 	struct proc *p;
1191 
1192 	sx_slock(&allproc_lock);
1193 	p = zpfind_locked(pid);
1194 	sx_sunlock(&allproc_lock);
1195 	return (p);
1196 }
1197 
1198 #ifdef COMPAT_FREEBSD32
1199 
1200 /*
1201  * This function is typically used to copy out the kernel address, so
1202  * it can be replaced by assignment of zero.
1203  */
1204 static inline uint32_t
1205 ptr32_trim(void *ptr)
1206 {
1207 	uintptr_t uptr;
1208 
1209 	uptr = (uintptr_t)ptr;
1210 	return ((uptr > UINT_MAX) ? 0 : uptr);
1211 }
1212 
1213 #define PTRTRIM_CP(src,dst,fld) \
1214 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1215 
1216 static void
1217 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1218 {
1219 	int i;
1220 
1221 	bzero(ki32, sizeof(struct kinfo_proc32));
1222 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1223 	CP(*ki, *ki32, ki_layout);
1224 	PTRTRIM_CP(*ki, *ki32, ki_args);
1225 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1226 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1227 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1228 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1229 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1230 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1231 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1232 	CP(*ki, *ki32, ki_pid);
1233 	CP(*ki, *ki32, ki_ppid);
1234 	CP(*ki, *ki32, ki_pgid);
1235 	CP(*ki, *ki32, ki_tpgid);
1236 	CP(*ki, *ki32, ki_sid);
1237 	CP(*ki, *ki32, ki_tsid);
1238 	CP(*ki, *ki32, ki_jobc);
1239 	CP(*ki, *ki32, ki_tdev);
1240 	CP(*ki, *ki32, ki_tdev_freebsd11);
1241 	CP(*ki, *ki32, ki_siglist);
1242 	CP(*ki, *ki32, ki_sigmask);
1243 	CP(*ki, *ki32, ki_sigignore);
1244 	CP(*ki, *ki32, ki_sigcatch);
1245 	CP(*ki, *ki32, ki_uid);
1246 	CP(*ki, *ki32, ki_ruid);
1247 	CP(*ki, *ki32, ki_svuid);
1248 	CP(*ki, *ki32, ki_rgid);
1249 	CP(*ki, *ki32, ki_svgid);
1250 	CP(*ki, *ki32, ki_ngroups);
1251 	for (i = 0; i < KI_NGROUPS; i++)
1252 		CP(*ki, *ki32, ki_groups[i]);
1253 	CP(*ki, *ki32, ki_size);
1254 	CP(*ki, *ki32, ki_rssize);
1255 	CP(*ki, *ki32, ki_swrss);
1256 	CP(*ki, *ki32, ki_tsize);
1257 	CP(*ki, *ki32, ki_dsize);
1258 	CP(*ki, *ki32, ki_ssize);
1259 	CP(*ki, *ki32, ki_xstat);
1260 	CP(*ki, *ki32, ki_acflag);
1261 	CP(*ki, *ki32, ki_pctcpu);
1262 	CP(*ki, *ki32, ki_estcpu);
1263 	CP(*ki, *ki32, ki_slptime);
1264 	CP(*ki, *ki32, ki_swtime);
1265 	CP(*ki, *ki32, ki_cow);
1266 	CP(*ki, *ki32, ki_runtime);
1267 	TV_CP(*ki, *ki32, ki_start);
1268 	TV_CP(*ki, *ki32, ki_childtime);
1269 	CP(*ki, *ki32, ki_flag);
1270 	CP(*ki, *ki32, ki_kiflag);
1271 	CP(*ki, *ki32, ki_traceflag);
1272 	CP(*ki, *ki32, ki_stat);
1273 	CP(*ki, *ki32, ki_nice);
1274 	CP(*ki, *ki32, ki_lock);
1275 	CP(*ki, *ki32, ki_rqindex);
1276 	CP(*ki, *ki32, ki_oncpu);
1277 	CP(*ki, *ki32, ki_lastcpu);
1278 
1279 	/* XXX TODO: wrap cpu value as appropriate */
1280 	CP(*ki, *ki32, ki_oncpu_old);
1281 	CP(*ki, *ki32, ki_lastcpu_old);
1282 
1283 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1284 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1285 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1286 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1287 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1288 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1289 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1290 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1291 	CP(*ki, *ki32, ki_tracer);
1292 	CP(*ki, *ki32, ki_flag2);
1293 	CP(*ki, *ki32, ki_fibnum);
1294 	CP(*ki, *ki32, ki_cr_flags);
1295 	CP(*ki, *ki32, ki_jid);
1296 	CP(*ki, *ki32, ki_numthreads);
1297 	CP(*ki, *ki32, ki_tid);
1298 	CP(*ki, *ki32, ki_pri);
1299 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1300 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1301 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1302 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1303 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1304 	CP(*ki, *ki32, ki_sflag);
1305 	CP(*ki, *ki32, ki_tdflags);
1306 }
1307 #endif
1308 
1309 int
1310 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1311 {
1312 	struct thread *td;
1313 	struct kinfo_proc ki;
1314 #ifdef COMPAT_FREEBSD32
1315 	struct kinfo_proc32 ki32;
1316 #endif
1317 	int error;
1318 
1319 	PROC_LOCK_ASSERT(p, MA_OWNED);
1320 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1321 
1322 	error = 0;
1323 	fill_kinfo_proc(p, &ki);
1324 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1325 #ifdef COMPAT_FREEBSD32
1326 		if ((flags & KERN_PROC_MASK32) != 0) {
1327 			freebsd32_kinfo_proc_out(&ki, &ki32);
1328 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1329 				error = ENOMEM;
1330 		} else
1331 #endif
1332 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1333 				error = ENOMEM;
1334 	} else {
1335 		FOREACH_THREAD_IN_PROC(p, td) {
1336 			fill_kinfo_thread(td, &ki, 1);
1337 #ifdef COMPAT_FREEBSD32
1338 			if ((flags & KERN_PROC_MASK32) != 0) {
1339 				freebsd32_kinfo_proc_out(&ki, &ki32);
1340 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1341 					error = ENOMEM;
1342 			} else
1343 #endif
1344 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1345 					error = ENOMEM;
1346 			if (error != 0)
1347 				break;
1348 		}
1349 	}
1350 	PROC_UNLOCK(p);
1351 	return (error);
1352 }
1353 
1354 static int
1355 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1356     int doingzomb)
1357 {
1358 	struct sbuf sb;
1359 	struct kinfo_proc ki;
1360 	struct proc *np;
1361 	int error, error2;
1362 	pid_t pid;
1363 
1364 	pid = p->p_pid;
1365 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1366 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1367 	error = kern_proc_out(p, &sb, flags);
1368 	error2 = sbuf_finish(&sb);
1369 	sbuf_delete(&sb);
1370 	if (error != 0)
1371 		return (error);
1372 	else if (error2 != 0)
1373 		return (error2);
1374 	if (doingzomb)
1375 		np = zpfind(pid);
1376 	else {
1377 		if (pid == 0)
1378 			return (0);
1379 		np = pfind(pid);
1380 	}
1381 	if (np == NULL)
1382 		return (ESRCH);
1383 	if (np != p) {
1384 		PROC_UNLOCK(np);
1385 		return (ESRCH);
1386 	}
1387 	PROC_UNLOCK(np);
1388 	return (0);
1389 }
1390 
1391 static int
1392 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1393 {
1394 	int *name = (int *)arg1;
1395 	u_int namelen = arg2;
1396 	struct proc *p;
1397 	int flags, doingzomb, oid_number;
1398 	int error = 0;
1399 
1400 	oid_number = oidp->oid_number;
1401 	if (oid_number != KERN_PROC_ALL &&
1402 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1403 		flags = KERN_PROC_NOTHREADS;
1404 	else {
1405 		flags = 0;
1406 		oid_number &= ~KERN_PROC_INC_THREAD;
1407 	}
1408 #ifdef COMPAT_FREEBSD32
1409 	if (req->flags & SCTL_MASK32)
1410 		flags |= KERN_PROC_MASK32;
1411 #endif
1412 	if (oid_number == KERN_PROC_PID) {
1413 		if (namelen != 1)
1414 			return (EINVAL);
1415 		error = sysctl_wire_old_buffer(req, 0);
1416 		if (error)
1417 			return (error);
1418 		sx_slock(&proctree_lock);
1419 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1420 		if (error == 0)
1421 			error = sysctl_out_proc(p, req, flags, 0);
1422 		sx_sunlock(&proctree_lock);
1423 		return (error);
1424 	}
1425 
1426 	switch (oid_number) {
1427 	case KERN_PROC_ALL:
1428 		if (namelen != 0)
1429 			return (EINVAL);
1430 		break;
1431 	case KERN_PROC_PROC:
1432 		if (namelen != 0 && namelen != 1)
1433 			return (EINVAL);
1434 		break;
1435 	default:
1436 		if (namelen != 1)
1437 			return (EINVAL);
1438 		break;
1439 	}
1440 
1441 	if (!req->oldptr) {
1442 		/* overestimate by 5 procs */
1443 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1444 		if (error)
1445 			return (error);
1446 	}
1447 	error = sysctl_wire_old_buffer(req, 0);
1448 	if (error != 0)
1449 		return (error);
1450 	sx_slock(&proctree_lock);
1451 	sx_slock(&allproc_lock);
1452 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1453 		if (!doingzomb)
1454 			p = LIST_FIRST(&allproc);
1455 		else
1456 			p = LIST_FIRST(&zombproc);
1457 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
1458 			/*
1459 			 * Skip embryonic processes.
1460 			 */
1461 			PROC_LOCK(p);
1462 			if (p->p_state == PRS_NEW) {
1463 				PROC_UNLOCK(p);
1464 				continue;
1465 			}
1466 			KASSERT(p->p_ucred != NULL,
1467 			    ("process credential is NULL for non-NEW proc"));
1468 			/*
1469 			 * Show a user only appropriate processes.
1470 			 */
1471 			if (p_cansee(curthread, p)) {
1472 				PROC_UNLOCK(p);
1473 				continue;
1474 			}
1475 			/*
1476 			 * TODO - make more efficient (see notes below).
1477 			 * do by session.
1478 			 */
1479 			switch (oid_number) {
1480 
1481 			case KERN_PROC_GID:
1482 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1483 					PROC_UNLOCK(p);
1484 					continue;
1485 				}
1486 				break;
1487 
1488 			case KERN_PROC_PGRP:
1489 				/* could do this by traversing pgrp */
1490 				if (p->p_pgrp == NULL ||
1491 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1492 					PROC_UNLOCK(p);
1493 					continue;
1494 				}
1495 				break;
1496 
1497 			case KERN_PROC_RGID:
1498 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1499 					PROC_UNLOCK(p);
1500 					continue;
1501 				}
1502 				break;
1503 
1504 			case KERN_PROC_SESSION:
1505 				if (p->p_session == NULL ||
1506 				    p->p_session->s_sid != (pid_t)name[0]) {
1507 					PROC_UNLOCK(p);
1508 					continue;
1509 				}
1510 				break;
1511 
1512 			case KERN_PROC_TTY:
1513 				if ((p->p_flag & P_CONTROLT) == 0 ||
1514 				    p->p_session == NULL) {
1515 					PROC_UNLOCK(p);
1516 					continue;
1517 				}
1518 				/* XXX proctree_lock */
1519 				SESS_LOCK(p->p_session);
1520 				if (p->p_session->s_ttyp == NULL ||
1521 				    tty_udev(p->p_session->s_ttyp) !=
1522 				    (dev_t)name[0]) {
1523 					SESS_UNLOCK(p->p_session);
1524 					PROC_UNLOCK(p);
1525 					continue;
1526 				}
1527 				SESS_UNLOCK(p->p_session);
1528 				break;
1529 
1530 			case KERN_PROC_UID:
1531 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1532 					PROC_UNLOCK(p);
1533 					continue;
1534 				}
1535 				break;
1536 
1537 			case KERN_PROC_RUID:
1538 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1539 					PROC_UNLOCK(p);
1540 					continue;
1541 				}
1542 				break;
1543 
1544 			case KERN_PROC_PROC:
1545 				break;
1546 
1547 			default:
1548 				break;
1549 
1550 			}
1551 
1552 			error = sysctl_out_proc(p, req, flags, doingzomb);
1553 			if (error) {
1554 				sx_sunlock(&allproc_lock);
1555 				sx_sunlock(&proctree_lock);
1556 				return (error);
1557 			}
1558 		}
1559 	}
1560 	sx_sunlock(&allproc_lock);
1561 	sx_sunlock(&proctree_lock);
1562 	return (0);
1563 }
1564 
1565 struct pargs *
1566 pargs_alloc(int len)
1567 {
1568 	struct pargs *pa;
1569 
1570 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1571 		M_WAITOK);
1572 	refcount_init(&pa->ar_ref, 1);
1573 	pa->ar_length = len;
1574 	return (pa);
1575 }
1576 
1577 static void
1578 pargs_free(struct pargs *pa)
1579 {
1580 
1581 	free(pa, M_PARGS);
1582 }
1583 
1584 void
1585 pargs_hold(struct pargs *pa)
1586 {
1587 
1588 	if (pa == NULL)
1589 		return;
1590 	refcount_acquire(&pa->ar_ref);
1591 }
1592 
1593 void
1594 pargs_drop(struct pargs *pa)
1595 {
1596 
1597 	if (pa == NULL)
1598 		return;
1599 	if (refcount_release(&pa->ar_ref))
1600 		pargs_free(pa);
1601 }
1602 
1603 static int
1604 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1605     size_t len)
1606 {
1607 	ssize_t n;
1608 
1609 	/*
1610 	 * This may return a short read if the string is shorter than the chunk
1611 	 * and is aligned at the end of the page, and the following page is not
1612 	 * mapped.
1613 	 */
1614 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1615 	if (n <= 0)
1616 		return (ENOMEM);
1617 	return (0);
1618 }
1619 
1620 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1621 
1622 enum proc_vector_type {
1623 	PROC_ARG,
1624 	PROC_ENV,
1625 	PROC_AUX,
1626 };
1627 
1628 #ifdef COMPAT_FREEBSD32
1629 static int
1630 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1631     size_t *vsizep, enum proc_vector_type type)
1632 {
1633 	struct freebsd32_ps_strings pss;
1634 	Elf32_Auxinfo aux;
1635 	vm_offset_t vptr, ptr;
1636 	uint32_t *proc_vector32;
1637 	char **proc_vector;
1638 	size_t vsize, size;
1639 	int i, error;
1640 
1641 	error = 0;
1642 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1643 	    sizeof(pss)) != sizeof(pss))
1644 		return (ENOMEM);
1645 	switch (type) {
1646 	case PROC_ARG:
1647 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1648 		vsize = pss.ps_nargvstr;
1649 		if (vsize > ARG_MAX)
1650 			return (ENOEXEC);
1651 		size = vsize * sizeof(int32_t);
1652 		break;
1653 	case PROC_ENV:
1654 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1655 		vsize = pss.ps_nenvstr;
1656 		if (vsize > ARG_MAX)
1657 			return (ENOEXEC);
1658 		size = vsize * sizeof(int32_t);
1659 		break;
1660 	case PROC_AUX:
1661 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1662 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1663 		if (vptr % 4 != 0)
1664 			return (ENOEXEC);
1665 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1666 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1667 			    sizeof(aux))
1668 				return (ENOMEM);
1669 			if (aux.a_type == AT_NULL)
1670 				break;
1671 			ptr += sizeof(aux);
1672 		}
1673 		if (aux.a_type != AT_NULL)
1674 			return (ENOEXEC);
1675 		vsize = i + 1;
1676 		size = vsize * sizeof(aux);
1677 		break;
1678 	default:
1679 		KASSERT(0, ("Wrong proc vector type: %d", type));
1680 		return (EINVAL);
1681 	}
1682 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1683 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1684 		error = ENOMEM;
1685 		goto done;
1686 	}
1687 	if (type == PROC_AUX) {
1688 		*proc_vectorp = (char **)proc_vector32;
1689 		*vsizep = vsize;
1690 		return (0);
1691 	}
1692 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1693 	for (i = 0; i < (int)vsize; i++)
1694 		proc_vector[i] = PTRIN(proc_vector32[i]);
1695 	*proc_vectorp = proc_vector;
1696 	*vsizep = vsize;
1697 done:
1698 	free(proc_vector32, M_TEMP);
1699 	return (error);
1700 }
1701 #endif
1702 
1703 static int
1704 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1705     size_t *vsizep, enum proc_vector_type type)
1706 {
1707 	struct ps_strings pss;
1708 	Elf_Auxinfo aux;
1709 	vm_offset_t vptr, ptr;
1710 	char **proc_vector;
1711 	size_t vsize, size;
1712 	int i;
1713 
1714 #ifdef COMPAT_FREEBSD32
1715 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1716 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1717 #endif
1718 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1719 	    sizeof(pss)) != sizeof(pss))
1720 		return (ENOMEM);
1721 	switch (type) {
1722 	case PROC_ARG:
1723 		vptr = (vm_offset_t)pss.ps_argvstr;
1724 		vsize = pss.ps_nargvstr;
1725 		if (vsize > ARG_MAX)
1726 			return (ENOEXEC);
1727 		size = vsize * sizeof(char *);
1728 		break;
1729 	case PROC_ENV:
1730 		vptr = (vm_offset_t)pss.ps_envstr;
1731 		vsize = pss.ps_nenvstr;
1732 		if (vsize > ARG_MAX)
1733 			return (ENOEXEC);
1734 		size = vsize * sizeof(char *);
1735 		break;
1736 	case PROC_AUX:
1737 		/*
1738 		 * The aux array is just above env array on the stack. Check
1739 		 * that the address is naturally aligned.
1740 		 */
1741 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1742 		    * sizeof(char *);
1743 #if __ELF_WORD_SIZE == 64
1744 		if (vptr % sizeof(uint64_t) != 0)
1745 #else
1746 		if (vptr % sizeof(uint32_t) != 0)
1747 #endif
1748 			return (ENOEXEC);
1749 		/*
1750 		 * We count the array size reading the aux vectors from the
1751 		 * stack until AT_NULL vector is returned.  So (to keep the code
1752 		 * simple) we read the process stack twice: the first time here
1753 		 * to find the size and the second time when copying the vectors
1754 		 * to the allocated proc_vector.
1755 		 */
1756 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1757 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1758 			    sizeof(aux))
1759 				return (ENOMEM);
1760 			if (aux.a_type == AT_NULL)
1761 				break;
1762 			ptr += sizeof(aux);
1763 		}
1764 		/*
1765 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1766 		 * not reached AT_NULL, it is most likely we are reading wrong
1767 		 * data: either the process doesn't have auxv array or data has
1768 		 * been modified. Return the error in this case.
1769 		 */
1770 		if (aux.a_type != AT_NULL)
1771 			return (ENOEXEC);
1772 		vsize = i + 1;
1773 		size = vsize * sizeof(aux);
1774 		break;
1775 	default:
1776 		KASSERT(0, ("Wrong proc vector type: %d", type));
1777 		return (EINVAL); /* In case we are built without INVARIANTS. */
1778 	}
1779 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1780 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1781 		free(proc_vector, M_TEMP);
1782 		return (ENOMEM);
1783 	}
1784 	*proc_vectorp = proc_vector;
1785 	*vsizep = vsize;
1786 
1787 	return (0);
1788 }
1789 
1790 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1791 
1792 static int
1793 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1794     enum proc_vector_type type)
1795 {
1796 	size_t done, len, nchr, vsize;
1797 	int error, i;
1798 	char **proc_vector, *sptr;
1799 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1800 
1801 	PROC_ASSERT_HELD(p);
1802 
1803 	/*
1804 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1805 	 */
1806 	nchr = 2 * (PATH_MAX + ARG_MAX);
1807 
1808 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1809 	if (error != 0)
1810 		return (error);
1811 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1812 		/*
1813 		 * The program may have scribbled into its argv array, e.g. to
1814 		 * remove some arguments.  If that has happened, break out
1815 		 * before trying to read from NULL.
1816 		 */
1817 		if (proc_vector[i] == NULL)
1818 			break;
1819 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1820 			error = proc_read_string(td, p, sptr, pss_string,
1821 			    sizeof(pss_string));
1822 			if (error != 0)
1823 				goto done;
1824 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1825 			if (done + len >= nchr)
1826 				len = nchr - done - 1;
1827 			sbuf_bcat(sb, pss_string, len);
1828 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1829 				break;
1830 			done += GET_PS_STRINGS_CHUNK_SZ;
1831 		}
1832 		sbuf_bcat(sb, "", 1);
1833 		done += len + 1;
1834 	}
1835 done:
1836 	free(proc_vector, M_TEMP);
1837 	return (error);
1838 }
1839 
1840 int
1841 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1842 {
1843 
1844 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1845 }
1846 
1847 int
1848 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1849 {
1850 
1851 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1852 }
1853 
1854 int
1855 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1856 {
1857 	size_t vsize, size;
1858 	char **auxv;
1859 	int error;
1860 
1861 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1862 	if (error == 0) {
1863 #ifdef COMPAT_FREEBSD32
1864 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1865 			size = vsize * sizeof(Elf32_Auxinfo);
1866 		else
1867 #endif
1868 			size = vsize * sizeof(Elf_Auxinfo);
1869 		if (sbuf_bcat(sb, auxv, size) != 0)
1870 			error = ENOMEM;
1871 		free(auxv, M_TEMP);
1872 	}
1873 	return (error);
1874 }
1875 
1876 /*
1877  * This sysctl allows a process to retrieve the argument list or process
1878  * title for another process without groping around in the address space
1879  * of the other process.  It also allow a process to set its own "process
1880  * title to a string of its own choice.
1881  */
1882 static int
1883 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1884 {
1885 	int *name = (int *)arg1;
1886 	u_int namelen = arg2;
1887 	struct pargs *newpa, *pa;
1888 	struct proc *p;
1889 	struct sbuf sb;
1890 	int flags, error = 0, error2;
1891 
1892 	if (namelen != 1)
1893 		return (EINVAL);
1894 
1895 	flags = PGET_CANSEE;
1896 	if (req->newptr != NULL)
1897 		flags |= PGET_ISCURRENT;
1898 	error = pget((pid_t)name[0], flags, &p);
1899 	if (error)
1900 		return (error);
1901 
1902 	pa = p->p_args;
1903 	if (pa != NULL) {
1904 		pargs_hold(pa);
1905 		PROC_UNLOCK(p);
1906 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1907 		pargs_drop(pa);
1908 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1909 		_PHOLD(p);
1910 		PROC_UNLOCK(p);
1911 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1912 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1913 		error = proc_getargv(curthread, p, &sb);
1914 		error2 = sbuf_finish(&sb);
1915 		PRELE(p);
1916 		sbuf_delete(&sb);
1917 		if (error == 0 && error2 != 0)
1918 			error = error2;
1919 	} else {
1920 		PROC_UNLOCK(p);
1921 	}
1922 	if (error != 0 || req->newptr == NULL)
1923 		return (error);
1924 
1925 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1926 		return (ENOMEM);
1927 	newpa = pargs_alloc(req->newlen);
1928 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1929 	if (error != 0) {
1930 		pargs_free(newpa);
1931 		return (error);
1932 	}
1933 	PROC_LOCK(p);
1934 	pa = p->p_args;
1935 	p->p_args = newpa;
1936 	PROC_UNLOCK(p);
1937 	pargs_drop(pa);
1938 	return (0);
1939 }
1940 
1941 /*
1942  * This sysctl allows a process to retrieve environment of another process.
1943  */
1944 static int
1945 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1946 {
1947 	int *name = (int *)arg1;
1948 	u_int namelen = arg2;
1949 	struct proc *p;
1950 	struct sbuf sb;
1951 	int error, error2;
1952 
1953 	if (namelen != 1)
1954 		return (EINVAL);
1955 
1956 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1957 	if (error != 0)
1958 		return (error);
1959 	if ((p->p_flag & P_SYSTEM) != 0) {
1960 		PRELE(p);
1961 		return (0);
1962 	}
1963 
1964 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1965 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1966 	error = proc_getenvv(curthread, p, &sb);
1967 	error2 = sbuf_finish(&sb);
1968 	PRELE(p);
1969 	sbuf_delete(&sb);
1970 	return (error != 0 ? error : error2);
1971 }
1972 
1973 /*
1974  * This sysctl allows a process to retrieve ELF auxiliary vector of
1975  * another process.
1976  */
1977 static int
1978 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1979 {
1980 	int *name = (int *)arg1;
1981 	u_int namelen = arg2;
1982 	struct proc *p;
1983 	struct sbuf sb;
1984 	int error, error2;
1985 
1986 	if (namelen != 1)
1987 		return (EINVAL);
1988 
1989 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1990 	if (error != 0)
1991 		return (error);
1992 	if ((p->p_flag & P_SYSTEM) != 0) {
1993 		PRELE(p);
1994 		return (0);
1995 	}
1996 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1997 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1998 	error = proc_getauxv(curthread, p, &sb);
1999 	error2 = sbuf_finish(&sb);
2000 	PRELE(p);
2001 	sbuf_delete(&sb);
2002 	return (error != 0 ? error : error2);
2003 }
2004 
2005 /*
2006  * This sysctl allows a process to retrieve the path of the executable for
2007  * itself or another process.
2008  */
2009 static int
2010 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2011 {
2012 	pid_t *pidp = (pid_t *)arg1;
2013 	unsigned int arglen = arg2;
2014 	struct proc *p;
2015 	struct vnode *vp;
2016 	char *retbuf, *freebuf;
2017 	int error;
2018 
2019 	if (arglen != 1)
2020 		return (EINVAL);
2021 	if (*pidp == -1) {	/* -1 means this process */
2022 		p = req->td->td_proc;
2023 	} else {
2024 		error = pget(*pidp, PGET_CANSEE, &p);
2025 		if (error != 0)
2026 			return (error);
2027 	}
2028 
2029 	vp = p->p_textvp;
2030 	if (vp == NULL) {
2031 		if (*pidp != -1)
2032 			PROC_UNLOCK(p);
2033 		return (0);
2034 	}
2035 	vref(vp);
2036 	if (*pidp != -1)
2037 		PROC_UNLOCK(p);
2038 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2039 	vrele(vp);
2040 	if (error)
2041 		return (error);
2042 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2043 	free(freebuf, M_TEMP);
2044 	return (error);
2045 }
2046 
2047 static int
2048 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2049 {
2050 	struct proc *p;
2051 	char *sv_name;
2052 	int *name;
2053 	int namelen;
2054 	int error;
2055 
2056 	namelen = arg2;
2057 	if (namelen != 1)
2058 		return (EINVAL);
2059 
2060 	name = (int *)arg1;
2061 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2062 	if (error != 0)
2063 		return (error);
2064 	sv_name = p->p_sysent->sv_name;
2065 	PROC_UNLOCK(p);
2066 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2067 }
2068 
2069 #ifdef KINFO_OVMENTRY_SIZE
2070 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2071 #endif
2072 
2073 #ifdef COMPAT_FREEBSD7
2074 static int
2075 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2076 {
2077 	vm_map_entry_t entry, tmp_entry;
2078 	unsigned int last_timestamp;
2079 	char *fullpath, *freepath;
2080 	struct kinfo_ovmentry *kve;
2081 	struct vattr va;
2082 	struct ucred *cred;
2083 	int error, *name;
2084 	struct vnode *vp;
2085 	struct proc *p;
2086 	vm_map_t map;
2087 	struct vmspace *vm;
2088 
2089 	name = (int *)arg1;
2090 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2091 	if (error != 0)
2092 		return (error);
2093 	vm = vmspace_acquire_ref(p);
2094 	if (vm == NULL) {
2095 		PRELE(p);
2096 		return (ESRCH);
2097 	}
2098 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2099 
2100 	map = &vm->vm_map;
2101 	vm_map_lock_read(map);
2102 	for (entry = map->header.next; entry != &map->header;
2103 	    entry = entry->next) {
2104 		vm_object_t obj, tobj, lobj;
2105 		vm_offset_t addr;
2106 
2107 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2108 			continue;
2109 
2110 		bzero(kve, sizeof(*kve));
2111 		kve->kve_structsize = sizeof(*kve);
2112 
2113 		kve->kve_private_resident = 0;
2114 		obj = entry->object.vm_object;
2115 		if (obj != NULL) {
2116 			VM_OBJECT_RLOCK(obj);
2117 			if (obj->shadow_count == 1)
2118 				kve->kve_private_resident =
2119 				    obj->resident_page_count;
2120 		}
2121 		kve->kve_resident = 0;
2122 		addr = entry->start;
2123 		while (addr < entry->end) {
2124 			if (pmap_extract(map->pmap, addr))
2125 				kve->kve_resident++;
2126 			addr += PAGE_SIZE;
2127 		}
2128 
2129 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2130 			if (tobj != obj)
2131 				VM_OBJECT_RLOCK(tobj);
2132 			if (lobj != obj)
2133 				VM_OBJECT_RUNLOCK(lobj);
2134 			lobj = tobj;
2135 		}
2136 
2137 		kve->kve_start = (void*)entry->start;
2138 		kve->kve_end = (void*)entry->end;
2139 		kve->kve_offset = (off_t)entry->offset;
2140 
2141 		if (entry->protection & VM_PROT_READ)
2142 			kve->kve_protection |= KVME_PROT_READ;
2143 		if (entry->protection & VM_PROT_WRITE)
2144 			kve->kve_protection |= KVME_PROT_WRITE;
2145 		if (entry->protection & VM_PROT_EXECUTE)
2146 			kve->kve_protection |= KVME_PROT_EXEC;
2147 
2148 		if (entry->eflags & MAP_ENTRY_COW)
2149 			kve->kve_flags |= KVME_FLAG_COW;
2150 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2151 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2152 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2153 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2154 
2155 		last_timestamp = map->timestamp;
2156 		vm_map_unlock_read(map);
2157 
2158 		kve->kve_fileid = 0;
2159 		kve->kve_fsid = 0;
2160 		freepath = NULL;
2161 		fullpath = "";
2162 		if (lobj) {
2163 			vp = NULL;
2164 			switch (lobj->type) {
2165 			case OBJT_DEFAULT:
2166 				kve->kve_type = KVME_TYPE_DEFAULT;
2167 				break;
2168 			case OBJT_VNODE:
2169 				kve->kve_type = KVME_TYPE_VNODE;
2170 				vp = lobj->handle;
2171 				vref(vp);
2172 				break;
2173 			case OBJT_SWAP:
2174 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2175 					kve->kve_type = KVME_TYPE_VNODE;
2176 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2177 						vp = lobj->un_pager.swp.swp_tmpfs;
2178 						vref(vp);
2179 					}
2180 				} else {
2181 					kve->kve_type = KVME_TYPE_SWAP;
2182 				}
2183 				break;
2184 			case OBJT_DEVICE:
2185 				kve->kve_type = KVME_TYPE_DEVICE;
2186 				break;
2187 			case OBJT_PHYS:
2188 				kve->kve_type = KVME_TYPE_PHYS;
2189 				break;
2190 			case OBJT_DEAD:
2191 				kve->kve_type = KVME_TYPE_DEAD;
2192 				break;
2193 			case OBJT_SG:
2194 				kve->kve_type = KVME_TYPE_SG;
2195 				break;
2196 			default:
2197 				kve->kve_type = KVME_TYPE_UNKNOWN;
2198 				break;
2199 			}
2200 			if (lobj != obj)
2201 				VM_OBJECT_RUNLOCK(lobj);
2202 
2203 			kve->kve_ref_count = obj->ref_count;
2204 			kve->kve_shadow_count = obj->shadow_count;
2205 			VM_OBJECT_RUNLOCK(obj);
2206 			if (vp != NULL) {
2207 				vn_fullpath(curthread, vp, &fullpath,
2208 				    &freepath);
2209 				cred = curthread->td_ucred;
2210 				vn_lock(vp, LK_SHARED | LK_RETRY);
2211 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2212 					kve->kve_fileid = va.va_fileid;
2213 					/* truncate */
2214 					kve->kve_fsid = va.va_fsid;
2215 				}
2216 				vput(vp);
2217 			}
2218 		} else {
2219 			kve->kve_type = KVME_TYPE_NONE;
2220 			kve->kve_ref_count = 0;
2221 			kve->kve_shadow_count = 0;
2222 		}
2223 
2224 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2225 		if (freepath != NULL)
2226 			free(freepath, M_TEMP);
2227 
2228 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2229 		vm_map_lock_read(map);
2230 		if (error)
2231 			break;
2232 		if (last_timestamp != map->timestamp) {
2233 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2234 			entry = tmp_entry;
2235 		}
2236 	}
2237 	vm_map_unlock_read(map);
2238 	vmspace_free(vm);
2239 	PRELE(p);
2240 	free(kve, M_TEMP);
2241 	return (error);
2242 }
2243 #endif	/* COMPAT_FREEBSD7 */
2244 
2245 #ifdef KINFO_VMENTRY_SIZE
2246 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2247 #endif
2248 
2249 static void
2250 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2251     struct kinfo_vmentry *kve)
2252 {
2253 	vm_object_t obj, tobj;
2254 	vm_page_t m, m_adv;
2255 	vm_offset_t addr;
2256 	vm_paddr_t locked_pa;
2257 	vm_pindex_t pi, pi_adv, pindex;
2258 
2259 	locked_pa = 0;
2260 	obj = entry->object.vm_object;
2261 	addr = entry->start;
2262 	m_adv = NULL;
2263 	pi = OFF_TO_IDX(entry->offset);
2264 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2265 		if (m_adv != NULL) {
2266 			m = m_adv;
2267 		} else {
2268 			pi_adv = atop(entry->end - addr);
2269 			pindex = pi;
2270 			for (tobj = obj;; tobj = tobj->backing_object) {
2271 				m = vm_page_find_least(tobj, pindex);
2272 				if (m != NULL) {
2273 					if (m->pindex == pindex)
2274 						break;
2275 					if (pi_adv > m->pindex - pindex) {
2276 						pi_adv = m->pindex - pindex;
2277 						m_adv = m;
2278 					}
2279 				}
2280 				if (tobj->backing_object == NULL)
2281 					goto next;
2282 				pindex += OFF_TO_IDX(tobj->
2283 				    backing_object_offset);
2284 			}
2285 		}
2286 		m_adv = NULL;
2287 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2288 		    (addr & (pagesizes[1] - 1)) == 0 &&
2289 		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2290 		    MINCORE_SUPER) != 0) {
2291 			kve->kve_flags |= KVME_FLAG_SUPER;
2292 			pi_adv = atop(pagesizes[1]);
2293 		} else {
2294 			/*
2295 			 * We do not test the found page on validity.
2296 			 * Either the page is busy and being paged in,
2297 			 * or it was invalidated.  The first case
2298 			 * should be counted as resident, the second
2299 			 * is not so clear; we do account both.
2300 			 */
2301 			pi_adv = 1;
2302 		}
2303 		kve->kve_resident += pi_adv;
2304 next:;
2305 	}
2306 	PA_UNLOCK_COND(locked_pa);
2307 }
2308 
2309 /*
2310  * Must be called with the process locked and will return unlocked.
2311  */
2312 int
2313 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2314 {
2315 	vm_map_entry_t entry, tmp_entry;
2316 	struct vattr va;
2317 	vm_map_t map;
2318 	vm_object_t obj, tobj, lobj;
2319 	char *fullpath, *freepath;
2320 	struct kinfo_vmentry *kve;
2321 	struct ucred *cred;
2322 	struct vnode *vp;
2323 	struct vmspace *vm;
2324 	vm_offset_t addr;
2325 	unsigned int last_timestamp;
2326 	int error;
2327 
2328 	PROC_LOCK_ASSERT(p, MA_OWNED);
2329 
2330 	_PHOLD(p);
2331 	PROC_UNLOCK(p);
2332 	vm = vmspace_acquire_ref(p);
2333 	if (vm == NULL) {
2334 		PRELE(p);
2335 		return (ESRCH);
2336 	}
2337 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2338 
2339 	error = 0;
2340 	map = &vm->vm_map;
2341 	vm_map_lock_read(map);
2342 	for (entry = map->header.next; entry != &map->header;
2343 	    entry = entry->next) {
2344 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2345 			continue;
2346 
2347 		addr = entry->end;
2348 		bzero(kve, sizeof(*kve));
2349 		obj = entry->object.vm_object;
2350 		if (obj != NULL) {
2351 			for (tobj = obj; tobj != NULL;
2352 			    tobj = tobj->backing_object) {
2353 				VM_OBJECT_RLOCK(tobj);
2354 				lobj = tobj;
2355 			}
2356 			if (obj->backing_object == NULL)
2357 				kve->kve_private_resident =
2358 				    obj->resident_page_count;
2359 			if (!vmmap_skip_res_cnt)
2360 				kern_proc_vmmap_resident(map, entry, kve);
2361 			for (tobj = obj; tobj != NULL;
2362 			    tobj = tobj->backing_object) {
2363 				if (tobj != obj && tobj != lobj)
2364 					VM_OBJECT_RUNLOCK(tobj);
2365 			}
2366 		} else {
2367 			lobj = NULL;
2368 		}
2369 
2370 		kve->kve_start = entry->start;
2371 		kve->kve_end = entry->end;
2372 		kve->kve_offset = entry->offset;
2373 
2374 		if (entry->protection & VM_PROT_READ)
2375 			kve->kve_protection |= KVME_PROT_READ;
2376 		if (entry->protection & VM_PROT_WRITE)
2377 			kve->kve_protection |= KVME_PROT_WRITE;
2378 		if (entry->protection & VM_PROT_EXECUTE)
2379 			kve->kve_protection |= KVME_PROT_EXEC;
2380 
2381 		if (entry->eflags & MAP_ENTRY_COW)
2382 			kve->kve_flags |= KVME_FLAG_COW;
2383 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2384 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2385 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2386 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2387 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2388 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2389 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2390 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2391 
2392 		last_timestamp = map->timestamp;
2393 		vm_map_unlock_read(map);
2394 
2395 		freepath = NULL;
2396 		fullpath = "";
2397 		if (lobj != NULL) {
2398 			vp = NULL;
2399 			switch (lobj->type) {
2400 			case OBJT_DEFAULT:
2401 				kve->kve_type = KVME_TYPE_DEFAULT;
2402 				break;
2403 			case OBJT_VNODE:
2404 				kve->kve_type = KVME_TYPE_VNODE;
2405 				vp = lobj->handle;
2406 				vref(vp);
2407 				break;
2408 			case OBJT_SWAP:
2409 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2410 					kve->kve_type = KVME_TYPE_VNODE;
2411 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2412 						vp = lobj->un_pager.swp.swp_tmpfs;
2413 						vref(vp);
2414 					}
2415 				} else {
2416 					kve->kve_type = KVME_TYPE_SWAP;
2417 				}
2418 				break;
2419 			case OBJT_DEVICE:
2420 				kve->kve_type = KVME_TYPE_DEVICE;
2421 				break;
2422 			case OBJT_PHYS:
2423 				kve->kve_type = KVME_TYPE_PHYS;
2424 				break;
2425 			case OBJT_DEAD:
2426 				kve->kve_type = KVME_TYPE_DEAD;
2427 				break;
2428 			case OBJT_SG:
2429 				kve->kve_type = KVME_TYPE_SG;
2430 				break;
2431 			case OBJT_MGTDEVICE:
2432 				kve->kve_type = KVME_TYPE_MGTDEVICE;
2433 				break;
2434 			default:
2435 				kve->kve_type = KVME_TYPE_UNKNOWN;
2436 				break;
2437 			}
2438 			if (lobj != obj)
2439 				VM_OBJECT_RUNLOCK(lobj);
2440 
2441 			kve->kve_ref_count = obj->ref_count;
2442 			kve->kve_shadow_count = obj->shadow_count;
2443 			VM_OBJECT_RUNLOCK(obj);
2444 			if (vp != NULL) {
2445 				vn_fullpath(curthread, vp, &fullpath,
2446 				    &freepath);
2447 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2448 				cred = curthread->td_ucred;
2449 				vn_lock(vp, LK_SHARED | LK_RETRY);
2450 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2451 					kve->kve_vn_fileid = va.va_fileid;
2452 					kve->kve_vn_fsid = va.va_fsid;
2453 					kve->kve_vn_fsid_freebsd11 =
2454 					    kve->kve_vn_fsid; /* truncate */
2455 					kve->kve_vn_mode =
2456 					    MAKEIMODE(va.va_type, va.va_mode);
2457 					kve->kve_vn_size = va.va_size;
2458 					kve->kve_vn_rdev = va.va_rdev;
2459 					kve->kve_vn_rdev_freebsd11 =
2460 					    kve->kve_vn_rdev; /* truncate */
2461 					kve->kve_status = KF_ATTR_VALID;
2462 				}
2463 				vput(vp);
2464 			}
2465 		} else {
2466 			kve->kve_type = KVME_TYPE_NONE;
2467 			kve->kve_ref_count = 0;
2468 			kve->kve_shadow_count = 0;
2469 		}
2470 
2471 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2472 		if (freepath != NULL)
2473 			free(freepath, M_TEMP);
2474 
2475 		/* Pack record size down */
2476 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2477 			kve->kve_structsize =
2478 			    offsetof(struct kinfo_vmentry, kve_path) +
2479 			    strlen(kve->kve_path) + 1;
2480 		else
2481 			kve->kve_structsize = sizeof(*kve);
2482 		kve->kve_structsize = roundup(kve->kve_structsize,
2483 		    sizeof(uint64_t));
2484 
2485 		/* Halt filling and truncate rather than exceeding maxlen */
2486 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2487 			error = 0;
2488 			vm_map_lock_read(map);
2489 			break;
2490 		} else if (maxlen != -1)
2491 			maxlen -= kve->kve_structsize;
2492 
2493 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2494 			error = ENOMEM;
2495 		vm_map_lock_read(map);
2496 		if (error != 0)
2497 			break;
2498 		if (last_timestamp != map->timestamp) {
2499 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2500 			entry = tmp_entry;
2501 		}
2502 	}
2503 	vm_map_unlock_read(map);
2504 	vmspace_free(vm);
2505 	PRELE(p);
2506 	free(kve, M_TEMP);
2507 	return (error);
2508 }
2509 
2510 static int
2511 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2512 {
2513 	struct proc *p;
2514 	struct sbuf sb;
2515 	int error, error2, *name;
2516 
2517 	name = (int *)arg1;
2518 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2519 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2520 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2521 	if (error != 0) {
2522 		sbuf_delete(&sb);
2523 		return (error);
2524 	}
2525 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2526 	error2 = sbuf_finish(&sb);
2527 	sbuf_delete(&sb);
2528 	return (error != 0 ? error : error2);
2529 }
2530 
2531 #if defined(STACK) || defined(DDB)
2532 static int
2533 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2534 {
2535 	struct kinfo_kstack *kkstp;
2536 	int error, i, *name, numthreads;
2537 	lwpid_t *lwpidarray;
2538 	struct thread *td;
2539 	struct stack *st;
2540 	struct sbuf sb;
2541 	struct proc *p;
2542 
2543 	name = (int *)arg1;
2544 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2545 	if (error != 0)
2546 		return (error);
2547 
2548 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2549 	st = stack_create();
2550 
2551 	lwpidarray = NULL;
2552 	PROC_LOCK(p);
2553 	do {
2554 		if (lwpidarray != NULL) {
2555 			free(lwpidarray, M_TEMP);
2556 			lwpidarray = NULL;
2557 		}
2558 		numthreads = p->p_numthreads;
2559 		PROC_UNLOCK(p);
2560 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2561 		    M_WAITOK | M_ZERO);
2562 		PROC_LOCK(p);
2563 	} while (numthreads < p->p_numthreads);
2564 
2565 	/*
2566 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2567 	 * of changes could have taken place.  Should we check to see if the
2568 	 * vmspace has been replaced, or the like, in order to prevent
2569 	 * giving a snapshot that spans, say, execve(2), with some threads
2570 	 * before and some after?  Among other things, the credentials could
2571 	 * have changed, in which case the right to extract debug info might
2572 	 * no longer be assured.
2573 	 */
2574 	i = 0;
2575 	FOREACH_THREAD_IN_PROC(p, td) {
2576 		KASSERT(i < numthreads,
2577 		    ("sysctl_kern_proc_kstack: numthreads"));
2578 		lwpidarray[i] = td->td_tid;
2579 		i++;
2580 	}
2581 	numthreads = i;
2582 	for (i = 0; i < numthreads; i++) {
2583 		td = thread_find(p, lwpidarray[i]);
2584 		if (td == NULL) {
2585 			continue;
2586 		}
2587 		bzero(kkstp, sizeof(*kkstp));
2588 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2589 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2590 		thread_lock(td);
2591 		kkstp->kkst_tid = td->td_tid;
2592 		if (TD_IS_SWAPPED(td)) {
2593 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2594 		} else if (TD_IS_RUNNING(td)) {
2595 			if (stack_save_td_running(st, td) == 0)
2596 				kkstp->kkst_state = KKST_STATE_STACKOK;
2597 			else
2598 				kkstp->kkst_state = KKST_STATE_RUNNING;
2599 		} else {
2600 			kkstp->kkst_state = KKST_STATE_STACKOK;
2601 			stack_save_td(st, td);
2602 		}
2603 		thread_unlock(td);
2604 		PROC_UNLOCK(p);
2605 		stack_sbuf_print(&sb, st);
2606 		sbuf_finish(&sb);
2607 		sbuf_delete(&sb);
2608 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2609 		PROC_LOCK(p);
2610 		if (error)
2611 			break;
2612 	}
2613 	_PRELE(p);
2614 	PROC_UNLOCK(p);
2615 	if (lwpidarray != NULL)
2616 		free(lwpidarray, M_TEMP);
2617 	stack_destroy(st);
2618 	free(kkstp, M_TEMP);
2619 	return (error);
2620 }
2621 #endif
2622 
2623 /*
2624  * This sysctl allows a process to retrieve the full list of groups from
2625  * itself or another process.
2626  */
2627 static int
2628 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2629 {
2630 	pid_t *pidp = (pid_t *)arg1;
2631 	unsigned int arglen = arg2;
2632 	struct proc *p;
2633 	struct ucred *cred;
2634 	int error;
2635 
2636 	if (arglen != 1)
2637 		return (EINVAL);
2638 	if (*pidp == -1) {	/* -1 means this process */
2639 		p = req->td->td_proc;
2640 		PROC_LOCK(p);
2641 	} else {
2642 		error = pget(*pidp, PGET_CANSEE, &p);
2643 		if (error != 0)
2644 			return (error);
2645 	}
2646 
2647 	cred = crhold(p->p_ucred);
2648 	PROC_UNLOCK(p);
2649 
2650 	error = SYSCTL_OUT(req, cred->cr_groups,
2651 	    cred->cr_ngroups * sizeof(gid_t));
2652 	crfree(cred);
2653 	return (error);
2654 }
2655 
2656 /*
2657  * This sysctl allows a process to retrieve or/and set the resource limit for
2658  * another process.
2659  */
2660 static int
2661 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2662 {
2663 	int *name = (int *)arg1;
2664 	u_int namelen = arg2;
2665 	struct rlimit rlim;
2666 	struct proc *p;
2667 	u_int which;
2668 	int flags, error;
2669 
2670 	if (namelen != 2)
2671 		return (EINVAL);
2672 
2673 	which = (u_int)name[1];
2674 	if (which >= RLIM_NLIMITS)
2675 		return (EINVAL);
2676 
2677 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2678 		return (EINVAL);
2679 
2680 	flags = PGET_HOLD | PGET_NOTWEXIT;
2681 	if (req->newptr != NULL)
2682 		flags |= PGET_CANDEBUG;
2683 	else
2684 		flags |= PGET_CANSEE;
2685 	error = pget((pid_t)name[0], flags, &p);
2686 	if (error != 0)
2687 		return (error);
2688 
2689 	/*
2690 	 * Retrieve limit.
2691 	 */
2692 	if (req->oldptr != NULL) {
2693 		PROC_LOCK(p);
2694 		lim_rlimit_proc(p, which, &rlim);
2695 		PROC_UNLOCK(p);
2696 	}
2697 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2698 	if (error != 0)
2699 		goto errout;
2700 
2701 	/*
2702 	 * Set limit.
2703 	 */
2704 	if (req->newptr != NULL) {
2705 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2706 		if (error == 0)
2707 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2708 	}
2709 
2710 errout:
2711 	PRELE(p);
2712 	return (error);
2713 }
2714 
2715 /*
2716  * This sysctl allows a process to retrieve ps_strings structure location of
2717  * another process.
2718  */
2719 static int
2720 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2721 {
2722 	int *name = (int *)arg1;
2723 	u_int namelen = arg2;
2724 	struct proc *p;
2725 	vm_offset_t ps_strings;
2726 	int error;
2727 #ifdef COMPAT_FREEBSD32
2728 	uint32_t ps_strings32;
2729 #endif
2730 
2731 	if (namelen != 1)
2732 		return (EINVAL);
2733 
2734 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2735 	if (error != 0)
2736 		return (error);
2737 #ifdef COMPAT_FREEBSD32
2738 	if ((req->flags & SCTL_MASK32) != 0) {
2739 		/*
2740 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2741 		 * process.
2742 		 */
2743 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2744 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2745 		PROC_UNLOCK(p);
2746 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2747 		return (error);
2748 	}
2749 #endif
2750 	ps_strings = p->p_sysent->sv_psstrings;
2751 	PROC_UNLOCK(p);
2752 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2753 	return (error);
2754 }
2755 
2756 /*
2757  * This sysctl allows a process to retrieve umask of another process.
2758  */
2759 static int
2760 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2761 {
2762 	int *name = (int *)arg1;
2763 	u_int namelen = arg2;
2764 	struct proc *p;
2765 	int error;
2766 	u_short fd_cmask;
2767 
2768 	if (namelen != 1)
2769 		return (EINVAL);
2770 
2771 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2772 	if (error != 0)
2773 		return (error);
2774 
2775 	FILEDESC_SLOCK(p->p_fd);
2776 	fd_cmask = p->p_fd->fd_cmask;
2777 	FILEDESC_SUNLOCK(p->p_fd);
2778 	PRELE(p);
2779 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2780 	return (error);
2781 }
2782 
2783 /*
2784  * This sysctl allows a process to set and retrieve binary osreldate of
2785  * another process.
2786  */
2787 static int
2788 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2789 {
2790 	int *name = (int *)arg1;
2791 	u_int namelen = arg2;
2792 	struct proc *p;
2793 	int flags, error, osrel;
2794 
2795 	if (namelen != 1)
2796 		return (EINVAL);
2797 
2798 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2799 		return (EINVAL);
2800 
2801 	flags = PGET_HOLD | PGET_NOTWEXIT;
2802 	if (req->newptr != NULL)
2803 		flags |= PGET_CANDEBUG;
2804 	else
2805 		flags |= PGET_CANSEE;
2806 	error = pget((pid_t)name[0], flags, &p);
2807 	if (error != 0)
2808 		return (error);
2809 
2810 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2811 	if (error != 0)
2812 		goto errout;
2813 
2814 	if (req->newptr != NULL) {
2815 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2816 		if (error != 0)
2817 			goto errout;
2818 		if (osrel < 0) {
2819 			error = EINVAL;
2820 			goto errout;
2821 		}
2822 		p->p_osrel = osrel;
2823 	}
2824 errout:
2825 	PRELE(p);
2826 	return (error);
2827 }
2828 
2829 static int
2830 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2831 {
2832 	int *name = (int *)arg1;
2833 	u_int namelen = arg2;
2834 	struct proc *p;
2835 	struct kinfo_sigtramp kst;
2836 	const struct sysentvec *sv;
2837 	int error;
2838 #ifdef COMPAT_FREEBSD32
2839 	struct kinfo_sigtramp32 kst32;
2840 #endif
2841 
2842 	if (namelen != 1)
2843 		return (EINVAL);
2844 
2845 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2846 	if (error != 0)
2847 		return (error);
2848 	sv = p->p_sysent;
2849 #ifdef COMPAT_FREEBSD32
2850 	if ((req->flags & SCTL_MASK32) != 0) {
2851 		bzero(&kst32, sizeof(kst32));
2852 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2853 			if (sv->sv_sigcode_base != 0) {
2854 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2855 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2856 				    *sv->sv_szsigcode;
2857 			} else {
2858 				kst32.ksigtramp_start = sv->sv_psstrings -
2859 				    *sv->sv_szsigcode;
2860 				kst32.ksigtramp_end = sv->sv_psstrings;
2861 			}
2862 		}
2863 		PROC_UNLOCK(p);
2864 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2865 		return (error);
2866 	}
2867 #endif
2868 	bzero(&kst, sizeof(kst));
2869 	if (sv->sv_sigcode_base != 0) {
2870 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2871 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2872 		    *sv->sv_szsigcode;
2873 	} else {
2874 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2875 		    *sv->sv_szsigcode;
2876 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2877 	}
2878 	PROC_UNLOCK(p);
2879 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2880 	return (error);
2881 }
2882 
2883 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2884 
2885 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2886 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2887 	"Return entire process table");
2888 
2889 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2890 	sysctl_kern_proc, "Process table");
2891 
2892 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2893 	sysctl_kern_proc, "Process table");
2894 
2895 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2896 	sysctl_kern_proc, "Process table");
2897 
2898 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2899 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2900 
2901 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2902 	sysctl_kern_proc, "Process table");
2903 
2904 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2905 	sysctl_kern_proc, "Process table");
2906 
2907 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2908 	sysctl_kern_proc, "Process table");
2909 
2910 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2911 	sysctl_kern_proc, "Process table");
2912 
2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2914 	sysctl_kern_proc, "Return process table, no threads");
2915 
2916 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2917 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2918 	sysctl_kern_proc_args, "Process argument list");
2919 
2920 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2921 	sysctl_kern_proc_env, "Process environment");
2922 
2923 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2924 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2925 
2926 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2927 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2928 
2929 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2930 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2931 	"Process syscall vector name (ABI type)");
2932 
2933 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2934 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2935 
2936 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2937 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2938 
2939 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2940 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2941 
2942 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2943 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2944 
2945 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2946 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2947 
2948 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2949 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2950 
2951 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2952 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2953 
2954 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2955 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2956 
2957 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2958 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2959 	"Return process table, no threads");
2960 
2961 #ifdef COMPAT_FREEBSD7
2962 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2963 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2964 #endif
2965 
2966 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2967 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2968 
2969 #if defined(STACK) || defined(DDB)
2970 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2971 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2972 #endif
2973 
2974 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2975 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2976 
2977 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2978 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2979 	"Process resource limits");
2980 
2981 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2982 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2983 	"Process ps_strings location");
2984 
2985 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2986 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2987 
2988 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2989 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2990 	"Process binary osreldate");
2991 
2992 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2993 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2994 	"Process signal trampoline location");
2995 
2996 int allproc_gen;
2997 
2998 /*
2999  * stop_all_proc() purpose is to stop all process which have usermode,
3000  * except current process for obvious reasons.  This makes it somewhat
3001  * unreliable when invoked from multithreaded process.  The service
3002  * must not be user-callable anyway.
3003  */
3004 void
3005 stop_all_proc(void)
3006 {
3007 	struct proc *cp, *p;
3008 	int r, gen;
3009 	bool restart, seen_stopped, seen_exiting, stopped_some;
3010 
3011 	cp = curproc;
3012 allproc_loop:
3013 	sx_xlock(&allproc_lock);
3014 	gen = allproc_gen;
3015 	seen_exiting = seen_stopped = stopped_some = restart = false;
3016 	LIST_REMOVE(cp, p_list);
3017 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3018 	for (;;) {
3019 		p = LIST_NEXT(cp, p_list);
3020 		if (p == NULL)
3021 			break;
3022 		LIST_REMOVE(cp, p_list);
3023 		LIST_INSERT_AFTER(p, cp, p_list);
3024 		PROC_LOCK(p);
3025 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3026 			PROC_UNLOCK(p);
3027 			continue;
3028 		}
3029 		if ((p->p_flag & P_WEXIT) != 0) {
3030 			seen_exiting = true;
3031 			PROC_UNLOCK(p);
3032 			continue;
3033 		}
3034 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3035 			/*
3036 			 * Stopped processes are tolerated when there
3037 			 * are no other processes which might continue
3038 			 * them.  P_STOPPED_SINGLE but not
3039 			 * P_TOTAL_STOP process still has at least one
3040 			 * thread running.
3041 			 */
3042 			seen_stopped = true;
3043 			PROC_UNLOCK(p);
3044 			continue;
3045 		}
3046 		_PHOLD(p);
3047 		sx_xunlock(&allproc_lock);
3048 		r = thread_single(p, SINGLE_ALLPROC);
3049 		if (r != 0)
3050 			restart = true;
3051 		else
3052 			stopped_some = true;
3053 		_PRELE(p);
3054 		PROC_UNLOCK(p);
3055 		sx_xlock(&allproc_lock);
3056 	}
3057 	/* Catch forked children we did not see in iteration. */
3058 	if (gen != allproc_gen)
3059 		restart = true;
3060 	sx_xunlock(&allproc_lock);
3061 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3062 		kern_yield(PRI_USER);
3063 		goto allproc_loop;
3064 	}
3065 }
3066 
3067 void
3068 resume_all_proc(void)
3069 {
3070 	struct proc *cp, *p;
3071 
3072 	cp = curproc;
3073 	sx_xlock(&allproc_lock);
3074 	LIST_REMOVE(cp, p_list);
3075 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3076 	for (;;) {
3077 		p = LIST_NEXT(cp, p_list);
3078 		if (p == NULL)
3079 			break;
3080 		LIST_REMOVE(cp, p_list);
3081 		LIST_INSERT_AFTER(p, cp, p_list);
3082 		PROC_LOCK(p);
3083 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3084 			sx_xunlock(&allproc_lock);
3085 			_PHOLD(p);
3086 			thread_single_end(p, SINGLE_ALLPROC);
3087 			_PRELE(p);
3088 			PROC_UNLOCK(p);
3089 			sx_xlock(&allproc_lock);
3090 		} else {
3091 			PROC_UNLOCK(p);
3092 		}
3093 	}
3094 	sx_xunlock(&allproc_lock);
3095 }
3096 
3097 /* #define	TOTAL_STOP_DEBUG	1 */
3098 #ifdef TOTAL_STOP_DEBUG
3099 volatile static int ap_resume;
3100 #include <sys/mount.h>
3101 
3102 static int
3103 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3104 {
3105 	int error, val;
3106 
3107 	val = 0;
3108 	ap_resume = 0;
3109 	error = sysctl_handle_int(oidp, &val, 0, req);
3110 	if (error != 0 || req->newptr == NULL)
3111 		return (error);
3112 	if (val != 0) {
3113 		stop_all_proc();
3114 		syncer_suspend();
3115 		while (ap_resume == 0)
3116 			;
3117 		syncer_resume();
3118 		resume_all_proc();
3119 	}
3120 	return (0);
3121 }
3122 
3123 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3124     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3125     sysctl_debug_stop_all_proc, "I",
3126     "");
3127 #endif
3128