xref: /freebsd/sys/kern/kern_sig.c (revision 39beb93c)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/signalvar.h>
47 #include <sys/vnode.h>
48 #include <sys/acct.h>
49 #include <sys/condvar.h>
50 #include <sys/event.h>
51 #include <sys/fcntl.h>
52 #include <sys/kernel.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/posix4.h>
61 #include <sys/pioctl.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sdt.h>
64 #include <sys/sbuf.h>
65 #include <sys/sleepqueue.h>
66 #include <sys/smp.h>
67 #include <sys/stat.h>
68 #include <sys/sx.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysent.h>
72 #include <sys/syslog.h>
73 #include <sys/sysproto.h>
74 #include <sys/timers.h>
75 #include <sys/unistd.h>
76 #include <sys/wait.h>
77 #include <vm/vm.h>
78 #include <vm/vm_extern.h>
79 #include <vm/uma.h>
80 
81 #include <machine/cpu.h>
82 
83 #include <security/audit/audit.h>
84 
85 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
86 
87 SDT_PROVIDER_DECLARE(proc);
88 SDT_PROBE_DEFINE(proc, kernel, , signal_send);
89 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
90 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
91 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
92 SDT_PROBE_DEFINE(proc, kernel, , signal_clear);
93 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
94 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
95 SDT_PROBE_DEFINE(proc, kernel, , signal_discard);
96 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
99 
100 static int	coredump(struct thread *);
101 static char	*expand_name(const char *, uid_t, pid_t);
102 static int	killpg1(struct thread *td, int sig, int pgid, int all);
103 static int	issignal(struct thread *p);
104 static int	sigprop(int sig);
105 static void	tdsigwakeup(struct thread *, int, sig_t, int);
106 static void	sig_suspend_threads(struct thread *, struct proc *, int);
107 static int	filt_sigattach(struct knote *kn);
108 static void	filt_sigdetach(struct knote *kn);
109 static int	filt_signal(struct knote *kn, long hint);
110 static struct thread *sigtd(struct proc *p, int sig, int prop);
111 static void	sigqueue_start(void);
112 
113 static uma_zone_t	ksiginfo_zone = NULL;
114 struct filterops sig_filtops =
115 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
116 
117 int	kern_logsigexit = 1;
118 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
119     &kern_logsigexit, 0,
120     "Log processes quitting on abnormal signals to syslog(3)");
121 
122 static int	kern_forcesigexit = 1;
123 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
124     &kern_forcesigexit, 0, "Force trap signal to be handled");
125 
126 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
127 
128 static int	max_pending_per_proc = 128;
129 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
130     &max_pending_per_proc, 0, "Max pending signals per proc");
131 
132 static int	preallocate_siginfo = 1024;
133 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
134 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
135     &preallocate_siginfo, 0, "Preallocated signal memory size");
136 
137 static int	signal_overflow = 0;
138 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
139     &signal_overflow, 0, "Number of signals overflew");
140 
141 static int	signal_alloc_fail = 0;
142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
143     &signal_alloc_fail, 0, "signals failed to be allocated");
144 
145 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
146 
147 /*
148  * Policy -- Can ucred cr1 send SIGIO to process cr2?
149  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
150  * in the right situations.
151  */
152 #define CANSIGIO(cr1, cr2) \
153 	((cr1)->cr_uid == 0 || \
154 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
155 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
156 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
157 	    (cr1)->cr_uid == (cr2)->cr_uid)
158 
159 int sugid_coredump;
160 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
161     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
162 
163 static int	do_coredump = 1;
164 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
165 	&do_coredump, 0, "Enable/Disable coredumps");
166 
167 static int	set_core_nodump_flag = 0;
168 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
169 	0, "Enable setting the NODUMP flag on coredump files");
170 
171 /*
172  * Signal properties and actions.
173  * The array below categorizes the signals and their default actions
174  * according to the following properties:
175  */
176 #define	SA_KILL		0x01		/* terminates process by default */
177 #define	SA_CORE		0x02		/* ditto and coredumps */
178 #define	SA_STOP		0x04		/* suspend process */
179 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
180 #define	SA_IGNORE	0x10		/* ignore by default */
181 #define	SA_CONT		0x20		/* continue if suspended */
182 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
183 #define	SA_PROC		0x80		/* deliverable to any thread */
184 
185 static int sigproptbl[NSIG] = {
186         SA_KILL|SA_PROC,		/* SIGHUP */
187         SA_KILL|SA_PROC,		/* SIGINT */
188         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
189         SA_KILL|SA_CORE,		/* SIGILL */
190         SA_KILL|SA_CORE,		/* SIGTRAP */
191         SA_KILL|SA_CORE,		/* SIGABRT */
192         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
193         SA_KILL|SA_CORE,		/* SIGFPE */
194         SA_KILL|SA_PROC,		/* SIGKILL */
195         SA_KILL|SA_CORE,		/* SIGBUS */
196         SA_KILL|SA_CORE,		/* SIGSEGV */
197         SA_KILL|SA_CORE,		/* SIGSYS */
198         SA_KILL|SA_PROC,		/* SIGPIPE */
199         SA_KILL|SA_PROC,		/* SIGALRM */
200         SA_KILL|SA_PROC,		/* SIGTERM */
201         SA_IGNORE|SA_PROC,		/* SIGURG */
202         SA_STOP|SA_PROC,		/* SIGSTOP */
203         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
204         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
205         SA_IGNORE|SA_PROC,		/* SIGCHLD */
206         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
207         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
208         SA_IGNORE|SA_PROC,		/* SIGIO */
209         SA_KILL,			/* SIGXCPU */
210         SA_KILL,			/* SIGXFSZ */
211         SA_KILL|SA_PROC,		/* SIGVTALRM */
212         SA_KILL|SA_PROC,		/* SIGPROF */
213         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
214         SA_IGNORE|SA_PROC,		/* SIGINFO */
215         SA_KILL|SA_PROC,		/* SIGUSR1 */
216         SA_KILL|SA_PROC,		/* SIGUSR2 */
217 };
218 
219 static void
220 sigqueue_start(void)
221 {
222 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
223 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
224 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
225 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
226 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
227 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
228 }
229 
230 ksiginfo_t *
231 ksiginfo_alloc(int wait)
232 {
233 	int flags;
234 
235 	flags = M_ZERO;
236 	if (! wait)
237 		flags |= M_NOWAIT;
238 	if (ksiginfo_zone != NULL)
239 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
240 	return (NULL);
241 }
242 
243 void
244 ksiginfo_free(ksiginfo_t *ksi)
245 {
246 	uma_zfree(ksiginfo_zone, ksi);
247 }
248 
249 static __inline int
250 ksiginfo_tryfree(ksiginfo_t *ksi)
251 {
252 	if (!(ksi->ksi_flags & KSI_EXT)) {
253 		uma_zfree(ksiginfo_zone, ksi);
254 		return (1);
255 	}
256 	return (0);
257 }
258 
259 void
260 sigqueue_init(sigqueue_t *list, struct proc *p)
261 {
262 	SIGEMPTYSET(list->sq_signals);
263 	SIGEMPTYSET(list->sq_kill);
264 	TAILQ_INIT(&list->sq_list);
265 	list->sq_proc = p;
266 	list->sq_flags = SQ_INIT;
267 }
268 
269 /*
270  * Get a signal's ksiginfo.
271  * Return:
272  * 	0	-	signal not found
273  *	others	-	signal number
274  */
275 int
276 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
277 {
278 	struct proc *p = sq->sq_proc;
279 	struct ksiginfo *ksi, *next;
280 	int count = 0;
281 
282 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
283 
284 	if (!SIGISMEMBER(sq->sq_signals, signo))
285 		return (0);
286 
287 	if (SIGISMEMBER(sq->sq_kill, signo)) {
288 		count++;
289 		SIGDELSET(sq->sq_kill, signo);
290 	}
291 
292 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
293 		if (ksi->ksi_signo == signo) {
294 			if (count == 0) {
295 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
296 				ksi->ksi_sigq = NULL;
297 				ksiginfo_copy(ksi, si);
298 				if (ksiginfo_tryfree(ksi) && p != NULL)
299 					p->p_pendingcnt--;
300 			}
301 			if (++count > 1)
302 				break;
303 		}
304 	}
305 
306 	if (count <= 1)
307 		SIGDELSET(sq->sq_signals, signo);
308 	si->ksi_signo = signo;
309 	return (signo);
310 }
311 
312 void
313 sigqueue_take(ksiginfo_t *ksi)
314 {
315 	struct ksiginfo *kp;
316 	struct proc	*p;
317 	sigqueue_t	*sq;
318 
319 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
320 		return;
321 
322 	p = sq->sq_proc;
323 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
324 	ksi->ksi_sigq = NULL;
325 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
326 		p->p_pendingcnt--;
327 
328 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
329 	     kp = TAILQ_NEXT(kp, ksi_link)) {
330 		if (kp->ksi_signo == ksi->ksi_signo)
331 			break;
332 	}
333 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
334 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
335 }
336 
337 int
338 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
339 {
340 	struct proc *p = sq->sq_proc;
341 	struct ksiginfo *ksi;
342 	int ret = 0;
343 
344 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
345 
346 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
347 		SIGADDSET(sq->sq_kill, signo);
348 		goto out_set_bit;
349 	}
350 
351 	/* directly insert the ksi, don't copy it */
352 	if (si->ksi_flags & KSI_INS) {
353 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
354 		si->ksi_sigq = sq;
355 		goto out_set_bit;
356 	}
357 
358 	if (__predict_false(ksiginfo_zone == NULL)) {
359 		SIGADDSET(sq->sq_kill, signo);
360 		goto out_set_bit;
361 	}
362 
363 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
364 		signal_overflow++;
365 		ret = EAGAIN;
366 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
367 		signal_alloc_fail++;
368 		ret = EAGAIN;
369 	} else {
370 		if (p != NULL)
371 			p->p_pendingcnt++;
372 		ksiginfo_copy(si, ksi);
373 		ksi->ksi_signo = signo;
374 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
375 		ksi->ksi_sigq = sq;
376 	}
377 
378 	if ((si->ksi_flags & KSI_TRAP) != 0) {
379 		if (ret != 0)
380 			SIGADDSET(sq->sq_kill, signo);
381 		ret = 0;
382 		goto out_set_bit;
383 	}
384 
385 	if (ret != 0)
386 		return (ret);
387 
388 out_set_bit:
389 	SIGADDSET(sq->sq_signals, signo);
390 	return (ret);
391 }
392 
393 void
394 sigqueue_flush(sigqueue_t *sq)
395 {
396 	struct proc *p = sq->sq_proc;
397 	ksiginfo_t *ksi;
398 
399 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
400 
401 	if (p != NULL)
402 		PROC_LOCK_ASSERT(p, MA_OWNED);
403 
404 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
405 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
406 		ksi->ksi_sigq = NULL;
407 		if (ksiginfo_tryfree(ksi) && p != NULL)
408 			p->p_pendingcnt--;
409 	}
410 
411 	SIGEMPTYSET(sq->sq_signals);
412 	SIGEMPTYSET(sq->sq_kill);
413 }
414 
415 void
416 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
417 {
418 	ksiginfo_t *ksi;
419 
420 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
421 
422 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
423 		SIGADDSET(*set, ksi->ksi_signo);
424 	SIGSETOR(*set, sq->sq_kill);
425 }
426 
427 void
428 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
429 {
430 	sigset_t tmp, set;
431 	struct proc *p1, *p2;
432 	ksiginfo_t *ksi, *next;
433 
434 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
435 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
436 	/*
437 	 * make a copy, this allows setp to point to src or dst
438 	 * sq_signals without trouble.
439 	 */
440 	set = *setp;
441 	p1 = src->sq_proc;
442 	p2 = dst->sq_proc;
443 	/* Move siginfo to target list */
444 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
445 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
446 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
447 			if (p1 != NULL)
448 				p1->p_pendingcnt--;
449 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
450 			ksi->ksi_sigq = dst;
451 			if (p2 != NULL)
452 				p2->p_pendingcnt++;
453 		}
454 	}
455 
456 	/* Move pending bits to target list */
457 	tmp = src->sq_kill;
458 	SIGSETAND(tmp, set);
459 	SIGSETOR(dst->sq_kill, tmp);
460 	SIGSETNAND(src->sq_kill, tmp);
461 
462 	tmp = src->sq_signals;
463 	SIGSETAND(tmp, set);
464 	SIGSETOR(dst->sq_signals, tmp);
465 	SIGSETNAND(src->sq_signals, tmp);
466 
467 	/* Finally, rescan src queue and set pending bits for it */
468 	sigqueue_collect_set(src, &src->sq_signals);
469 }
470 
471 void
472 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
473 {
474 	sigset_t set;
475 
476 	SIGEMPTYSET(set);
477 	SIGADDSET(set, signo);
478 	sigqueue_move_set(src, dst, &set);
479 }
480 
481 void
482 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
483 {
484 	struct proc *p = sq->sq_proc;
485 	ksiginfo_t *ksi, *next;
486 
487 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
488 
489 	/* Remove siginfo queue */
490 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
491 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
492 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
493 			ksi->ksi_sigq = NULL;
494 			if (ksiginfo_tryfree(ksi) && p != NULL)
495 				p->p_pendingcnt--;
496 		}
497 	}
498 	SIGSETNAND(sq->sq_kill, *set);
499 	SIGSETNAND(sq->sq_signals, *set);
500 	/* Finally, rescan queue and set pending bits for it */
501 	sigqueue_collect_set(sq, &sq->sq_signals);
502 }
503 
504 void
505 sigqueue_delete(sigqueue_t *sq, int signo)
506 {
507 	sigset_t set;
508 
509 	SIGEMPTYSET(set);
510 	SIGADDSET(set, signo);
511 	sigqueue_delete_set(sq, &set);
512 }
513 
514 /* Remove a set of signals for a process */
515 void
516 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
517 {
518 	sigqueue_t worklist;
519 	struct thread *td0;
520 
521 	PROC_LOCK_ASSERT(p, MA_OWNED);
522 
523 	sigqueue_init(&worklist, NULL);
524 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
525 
526 	FOREACH_THREAD_IN_PROC(p, td0)
527 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
528 
529 	sigqueue_flush(&worklist);
530 }
531 
532 void
533 sigqueue_delete_proc(struct proc *p, int signo)
534 {
535 	sigset_t set;
536 
537 	SIGEMPTYSET(set);
538 	SIGADDSET(set, signo);
539 	sigqueue_delete_set_proc(p, &set);
540 }
541 
542 void
543 sigqueue_delete_stopmask_proc(struct proc *p)
544 {
545 	sigset_t set;
546 
547 	SIGEMPTYSET(set);
548 	SIGADDSET(set, SIGSTOP);
549 	SIGADDSET(set, SIGTSTP);
550 	SIGADDSET(set, SIGTTIN);
551 	SIGADDSET(set, SIGTTOU);
552 	sigqueue_delete_set_proc(p, &set);
553 }
554 
555 /*
556  * Determine signal that should be delivered to process p, the current
557  * process, 0 if none.  If there is a pending stop signal with default
558  * action, the process stops in issignal().
559  */
560 int
561 cursig(struct thread *td)
562 {
563 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
564 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
565 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
566 	return (SIGPENDING(td) ? issignal(td) : 0);
567 }
568 
569 /*
570  * Arrange for ast() to handle unmasked pending signals on return to user
571  * mode.  This must be called whenever a signal is added to td_sigqueue or
572  * unmasked in td_sigmask.
573  */
574 void
575 signotify(struct thread *td)
576 {
577 	struct proc *p;
578 	sigset_t set;
579 
580 	p = td->td_proc;
581 
582 	PROC_LOCK_ASSERT(p, MA_OWNED);
583 
584 	/*
585 	 * If our mask changed we may have to move signal that were
586 	 * previously masked by all threads to our sigqueue.
587 	 */
588 	set = p->p_sigqueue.sq_signals;
589 	SIGSETNAND(set, td->td_sigmask);
590 	if (! SIGISEMPTY(set))
591 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
592 	if (SIGPENDING(td)) {
593 		thread_lock(td);
594 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
595 		thread_unlock(td);
596 	}
597 }
598 
599 int
600 sigonstack(size_t sp)
601 {
602 	struct thread *td = curthread;
603 
604 	return ((td->td_pflags & TDP_ALTSTACK) ?
605 #if defined(COMPAT_43)
606 	    ((td->td_sigstk.ss_size == 0) ?
607 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
608 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
609 #else
610 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
611 #endif
612 	    : 0);
613 }
614 
615 static __inline int
616 sigprop(int sig)
617 {
618 
619 	if (sig > 0 && sig < NSIG)
620 		return (sigproptbl[_SIG_IDX(sig)]);
621 	return (0);
622 }
623 
624 int
625 sig_ffs(sigset_t *set)
626 {
627 	int i;
628 
629 	for (i = 0; i < _SIG_WORDS; i++)
630 		if (set->__bits[i])
631 			return (ffs(set->__bits[i]) + (i * 32));
632 	return (0);
633 }
634 
635 /*
636  * kern_sigaction
637  * sigaction
638  * freebsd4_sigaction
639  * osigaction
640  */
641 int
642 kern_sigaction(td, sig, act, oact, flags)
643 	struct thread *td;
644 	register int sig;
645 	struct sigaction *act, *oact;
646 	int flags;
647 {
648 	struct sigacts *ps;
649 	struct proc *p = td->td_proc;
650 
651 	if (!_SIG_VALID(sig))
652 		return (EINVAL);
653 
654 	PROC_LOCK(p);
655 	ps = p->p_sigacts;
656 	mtx_lock(&ps->ps_mtx);
657 	if (oact) {
658 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
659 		oact->sa_flags = 0;
660 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
661 			oact->sa_flags |= SA_ONSTACK;
662 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
663 			oact->sa_flags |= SA_RESTART;
664 		if (SIGISMEMBER(ps->ps_sigreset, sig))
665 			oact->sa_flags |= SA_RESETHAND;
666 		if (SIGISMEMBER(ps->ps_signodefer, sig))
667 			oact->sa_flags |= SA_NODEFER;
668 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
669 			oact->sa_flags |= SA_SIGINFO;
670 			oact->sa_sigaction =
671 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
672 		} else
673 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
674 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
675 			oact->sa_flags |= SA_NOCLDSTOP;
676 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
677 			oact->sa_flags |= SA_NOCLDWAIT;
678 	}
679 	if (act) {
680 		if ((sig == SIGKILL || sig == SIGSTOP) &&
681 		    act->sa_handler != SIG_DFL) {
682 			mtx_unlock(&ps->ps_mtx);
683 			PROC_UNLOCK(p);
684 			return (EINVAL);
685 		}
686 
687 		/*
688 		 * Change setting atomically.
689 		 */
690 
691 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
692 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
693 		if (act->sa_flags & SA_SIGINFO) {
694 			ps->ps_sigact[_SIG_IDX(sig)] =
695 			    (__sighandler_t *)act->sa_sigaction;
696 			SIGADDSET(ps->ps_siginfo, sig);
697 		} else {
698 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
699 			SIGDELSET(ps->ps_siginfo, sig);
700 		}
701 		if (!(act->sa_flags & SA_RESTART))
702 			SIGADDSET(ps->ps_sigintr, sig);
703 		else
704 			SIGDELSET(ps->ps_sigintr, sig);
705 		if (act->sa_flags & SA_ONSTACK)
706 			SIGADDSET(ps->ps_sigonstack, sig);
707 		else
708 			SIGDELSET(ps->ps_sigonstack, sig);
709 		if (act->sa_flags & SA_RESETHAND)
710 			SIGADDSET(ps->ps_sigreset, sig);
711 		else
712 			SIGDELSET(ps->ps_sigreset, sig);
713 		if (act->sa_flags & SA_NODEFER)
714 			SIGADDSET(ps->ps_signodefer, sig);
715 		else
716 			SIGDELSET(ps->ps_signodefer, sig);
717 		if (sig == SIGCHLD) {
718 			if (act->sa_flags & SA_NOCLDSTOP)
719 				ps->ps_flag |= PS_NOCLDSTOP;
720 			else
721 				ps->ps_flag &= ~PS_NOCLDSTOP;
722 			if (act->sa_flags & SA_NOCLDWAIT) {
723 				/*
724 				 * Paranoia: since SA_NOCLDWAIT is implemented
725 				 * by reparenting the dying child to PID 1 (and
726 				 * trust it to reap the zombie), PID 1 itself
727 				 * is forbidden to set SA_NOCLDWAIT.
728 				 */
729 				if (p->p_pid == 1)
730 					ps->ps_flag &= ~PS_NOCLDWAIT;
731 				else
732 					ps->ps_flag |= PS_NOCLDWAIT;
733 			} else
734 				ps->ps_flag &= ~PS_NOCLDWAIT;
735 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
736 				ps->ps_flag |= PS_CLDSIGIGN;
737 			else
738 				ps->ps_flag &= ~PS_CLDSIGIGN;
739 		}
740 		/*
741 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
742 		 * and for signals set to SIG_DFL where the default is to
743 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
744 		 * have to restart the process.
745 		 */
746 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
747 		    (sigprop(sig) & SA_IGNORE &&
748 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
749 			/* never to be seen again */
750 			sigqueue_delete_proc(p, sig);
751 			if (sig != SIGCONT)
752 				/* easier in psignal */
753 				SIGADDSET(ps->ps_sigignore, sig);
754 			SIGDELSET(ps->ps_sigcatch, sig);
755 		} else {
756 			SIGDELSET(ps->ps_sigignore, sig);
757 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
758 				SIGDELSET(ps->ps_sigcatch, sig);
759 			else
760 				SIGADDSET(ps->ps_sigcatch, sig);
761 		}
762 #ifdef COMPAT_FREEBSD4
763 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
764 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
765 		    (flags & KSA_FREEBSD4) == 0)
766 			SIGDELSET(ps->ps_freebsd4, sig);
767 		else
768 			SIGADDSET(ps->ps_freebsd4, sig);
769 #endif
770 #ifdef COMPAT_43
771 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
772 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
773 		    (flags & KSA_OSIGSET) == 0)
774 			SIGDELSET(ps->ps_osigset, sig);
775 		else
776 			SIGADDSET(ps->ps_osigset, sig);
777 #endif
778 	}
779 	mtx_unlock(&ps->ps_mtx);
780 	PROC_UNLOCK(p);
781 	return (0);
782 }
783 
784 #ifndef _SYS_SYSPROTO_H_
785 struct sigaction_args {
786 	int	sig;
787 	struct	sigaction *act;
788 	struct	sigaction *oact;
789 };
790 #endif
791 int
792 sigaction(td, uap)
793 	struct thread *td;
794 	register struct sigaction_args *uap;
795 {
796 	struct sigaction act, oact;
797 	register struct sigaction *actp, *oactp;
798 	int error;
799 
800 	actp = (uap->act != NULL) ? &act : NULL;
801 	oactp = (uap->oact != NULL) ? &oact : NULL;
802 	if (actp) {
803 		error = copyin(uap->act, actp, sizeof(act));
804 		if (error)
805 			return (error);
806 	}
807 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
808 	if (oactp && !error)
809 		error = copyout(oactp, uap->oact, sizeof(oact));
810 	return (error);
811 }
812 
813 #ifdef COMPAT_FREEBSD4
814 #ifndef _SYS_SYSPROTO_H_
815 struct freebsd4_sigaction_args {
816 	int	sig;
817 	struct	sigaction *act;
818 	struct	sigaction *oact;
819 };
820 #endif
821 int
822 freebsd4_sigaction(td, uap)
823 	struct thread *td;
824 	register struct freebsd4_sigaction_args *uap;
825 {
826 	struct sigaction act, oact;
827 	register struct sigaction *actp, *oactp;
828 	int error;
829 
830 
831 	actp = (uap->act != NULL) ? &act : NULL;
832 	oactp = (uap->oact != NULL) ? &oact : NULL;
833 	if (actp) {
834 		error = copyin(uap->act, actp, sizeof(act));
835 		if (error)
836 			return (error);
837 	}
838 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
839 	if (oactp && !error)
840 		error = copyout(oactp, uap->oact, sizeof(oact));
841 	return (error);
842 }
843 #endif	/* COMAPT_FREEBSD4 */
844 
845 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
846 #ifndef _SYS_SYSPROTO_H_
847 struct osigaction_args {
848 	int	signum;
849 	struct	osigaction *nsa;
850 	struct	osigaction *osa;
851 };
852 #endif
853 int
854 osigaction(td, uap)
855 	struct thread *td;
856 	register struct osigaction_args *uap;
857 {
858 	struct osigaction sa;
859 	struct sigaction nsa, osa;
860 	register struct sigaction *nsap, *osap;
861 	int error;
862 
863 	if (uap->signum <= 0 || uap->signum >= ONSIG)
864 		return (EINVAL);
865 
866 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
867 	osap = (uap->osa != NULL) ? &osa : NULL;
868 
869 	if (nsap) {
870 		error = copyin(uap->nsa, &sa, sizeof(sa));
871 		if (error)
872 			return (error);
873 		nsap->sa_handler = sa.sa_handler;
874 		nsap->sa_flags = sa.sa_flags;
875 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
876 	}
877 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
878 	if (osap && !error) {
879 		sa.sa_handler = osap->sa_handler;
880 		sa.sa_flags = osap->sa_flags;
881 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
882 		error = copyout(&sa, uap->osa, sizeof(sa));
883 	}
884 	return (error);
885 }
886 
887 #if !defined(__i386__)
888 /* Avoid replicating the same stub everywhere */
889 int
890 osigreturn(td, uap)
891 	struct thread *td;
892 	struct osigreturn_args *uap;
893 {
894 
895 	return (nosys(td, (struct nosys_args *)uap));
896 }
897 #endif
898 #endif /* COMPAT_43 */
899 
900 /*
901  * Initialize signal state for process 0;
902  * set to ignore signals that are ignored by default.
903  */
904 void
905 siginit(p)
906 	struct proc *p;
907 {
908 	register int i;
909 	struct sigacts *ps;
910 
911 	PROC_LOCK(p);
912 	ps = p->p_sigacts;
913 	mtx_lock(&ps->ps_mtx);
914 	for (i = 1; i <= NSIG; i++)
915 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
916 			SIGADDSET(ps->ps_sigignore, i);
917 	mtx_unlock(&ps->ps_mtx);
918 	PROC_UNLOCK(p);
919 }
920 
921 /*
922  * Reset signals for an exec of the specified process.
923  */
924 void
925 execsigs(struct proc *p)
926 {
927 	struct sigacts *ps;
928 	int sig;
929 	struct thread *td;
930 
931 	/*
932 	 * Reset caught signals.  Held signals remain held
933 	 * through td_sigmask (unless they were caught,
934 	 * and are now ignored by default).
935 	 */
936 	PROC_LOCK_ASSERT(p, MA_OWNED);
937 	td = FIRST_THREAD_IN_PROC(p);
938 	ps = p->p_sigacts;
939 	mtx_lock(&ps->ps_mtx);
940 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
941 		sig = sig_ffs(&ps->ps_sigcatch);
942 		SIGDELSET(ps->ps_sigcatch, sig);
943 		if (sigprop(sig) & SA_IGNORE) {
944 			if (sig != SIGCONT)
945 				SIGADDSET(ps->ps_sigignore, sig);
946 			sigqueue_delete_proc(p, sig);
947 		}
948 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
949 	}
950 	/*
951 	 * Reset stack state to the user stack.
952 	 * Clear set of signals caught on the signal stack.
953 	 */
954 	td->td_sigstk.ss_flags = SS_DISABLE;
955 	td->td_sigstk.ss_size = 0;
956 	td->td_sigstk.ss_sp = 0;
957 	td->td_pflags &= ~TDP_ALTSTACK;
958 	/*
959 	 * Reset no zombies if child dies flag as Solaris does.
960 	 */
961 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
962 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
963 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
964 	mtx_unlock(&ps->ps_mtx);
965 }
966 
967 /*
968  * kern_sigprocmask()
969  *
970  *	Manipulate signal mask.
971  */
972 int
973 kern_sigprocmask(td, how, set, oset, old)
974 	struct thread *td;
975 	int how;
976 	sigset_t *set, *oset;
977 	int old;
978 {
979 	int error;
980 
981 	PROC_LOCK(td->td_proc);
982 	if (oset != NULL)
983 		*oset = td->td_sigmask;
984 
985 	error = 0;
986 	if (set != NULL) {
987 		switch (how) {
988 		case SIG_BLOCK:
989 			SIG_CANTMASK(*set);
990 			SIGSETOR(td->td_sigmask, *set);
991 			break;
992 		case SIG_UNBLOCK:
993 			SIGSETNAND(td->td_sigmask, *set);
994 			signotify(td);
995 			break;
996 		case SIG_SETMASK:
997 			SIG_CANTMASK(*set);
998 			if (old)
999 				SIGSETLO(td->td_sigmask, *set);
1000 			else
1001 				td->td_sigmask = *set;
1002 			signotify(td);
1003 			break;
1004 		default:
1005 			error = EINVAL;
1006 			break;
1007 		}
1008 	}
1009 	PROC_UNLOCK(td->td_proc);
1010 	return (error);
1011 }
1012 
1013 #ifndef _SYS_SYSPROTO_H_
1014 struct sigprocmask_args {
1015 	int	how;
1016 	const sigset_t *set;
1017 	sigset_t *oset;
1018 };
1019 #endif
1020 int
1021 sigprocmask(td, uap)
1022 	register struct thread *td;
1023 	struct sigprocmask_args *uap;
1024 {
1025 	sigset_t set, oset;
1026 	sigset_t *setp, *osetp;
1027 	int error;
1028 
1029 	setp = (uap->set != NULL) ? &set : NULL;
1030 	osetp = (uap->oset != NULL) ? &oset : NULL;
1031 	if (setp) {
1032 		error = copyin(uap->set, setp, sizeof(set));
1033 		if (error)
1034 			return (error);
1035 	}
1036 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1037 	if (osetp && !error) {
1038 		error = copyout(osetp, uap->oset, sizeof(oset));
1039 	}
1040 	return (error);
1041 }
1042 
1043 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1044 #ifndef _SYS_SYSPROTO_H_
1045 struct osigprocmask_args {
1046 	int	how;
1047 	osigset_t mask;
1048 };
1049 #endif
1050 int
1051 osigprocmask(td, uap)
1052 	register struct thread *td;
1053 	struct osigprocmask_args *uap;
1054 {
1055 	sigset_t set, oset;
1056 	int error;
1057 
1058 	OSIG2SIG(uap->mask, set);
1059 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1060 	SIG2OSIG(oset, td->td_retval[0]);
1061 	return (error);
1062 }
1063 #endif /* COMPAT_43 */
1064 
1065 int
1066 sigwait(struct thread *td, struct sigwait_args *uap)
1067 {
1068 	ksiginfo_t ksi;
1069 	sigset_t set;
1070 	int error;
1071 
1072 	error = copyin(uap->set, &set, sizeof(set));
1073 	if (error) {
1074 		td->td_retval[0] = error;
1075 		return (0);
1076 	}
1077 
1078 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1079 	if (error) {
1080 		if (error == ERESTART)
1081 			return (error);
1082 		td->td_retval[0] = error;
1083 		return (0);
1084 	}
1085 
1086 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1087 	td->td_retval[0] = error;
1088 	return (0);
1089 }
1090 
1091 int
1092 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1093 {
1094 	struct timespec ts;
1095 	struct timespec *timeout;
1096 	sigset_t set;
1097 	ksiginfo_t ksi;
1098 	int error;
1099 
1100 	if (uap->timeout) {
1101 		error = copyin(uap->timeout, &ts, sizeof(ts));
1102 		if (error)
1103 			return (error);
1104 
1105 		timeout = &ts;
1106 	} else
1107 		timeout = NULL;
1108 
1109 	error = copyin(uap->set, &set, sizeof(set));
1110 	if (error)
1111 		return (error);
1112 
1113 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1114 	if (error)
1115 		return (error);
1116 
1117 	if (uap->info)
1118 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1119 
1120 	if (error == 0)
1121 		td->td_retval[0] = ksi.ksi_signo;
1122 	return (error);
1123 }
1124 
1125 int
1126 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1127 {
1128 	ksiginfo_t ksi;
1129 	sigset_t set;
1130 	int error;
1131 
1132 	error = copyin(uap->set, &set, sizeof(set));
1133 	if (error)
1134 		return (error);
1135 
1136 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1137 	if (error)
1138 		return (error);
1139 
1140 	if (uap->info)
1141 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1142 
1143 	if (error == 0)
1144 		td->td_retval[0] = ksi.ksi_signo;
1145 	return (error);
1146 }
1147 
1148 int
1149 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1150 	struct timespec *timeout)
1151 {
1152 	struct sigacts *ps;
1153 	sigset_t savedmask;
1154 	struct proc *p;
1155 	int error, sig, hz, i, timevalid = 0;
1156 	struct timespec rts, ets, ts;
1157 	struct timeval tv;
1158 
1159 	p = td->td_proc;
1160 	error = 0;
1161 	sig = 0;
1162 	ets.tv_sec = 0;
1163 	ets.tv_nsec = 0;
1164 	SIG_CANTMASK(waitset);
1165 
1166 	PROC_LOCK(p);
1167 	ps = p->p_sigacts;
1168 	savedmask = td->td_sigmask;
1169 	if (timeout) {
1170 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1171 			timevalid = 1;
1172 			getnanouptime(&rts);
1173 		 	ets = rts;
1174 			timespecadd(&ets, timeout);
1175 		}
1176 	}
1177 
1178 restart:
1179 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1180 		if (!SIGISMEMBER(waitset, i))
1181 			continue;
1182 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1183 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1184 				sigqueue_move(&p->p_sigqueue,
1185 					&td->td_sigqueue, i);
1186 			} else
1187 				continue;
1188 		}
1189 
1190 		SIGFILLSET(td->td_sigmask);
1191 		SIG_CANTMASK(td->td_sigmask);
1192 		SIGDELSET(td->td_sigmask, i);
1193 		mtx_lock(&ps->ps_mtx);
1194 		sig = cursig(td);
1195 		mtx_unlock(&ps->ps_mtx);
1196 		if (sig)
1197 			goto out;
1198 		else {
1199 			/*
1200 			 * Because cursig() may have stopped current thread,
1201 			 * after it is resumed, things may have already been
1202 			 * changed, it should rescan any pending signals.
1203 			 */
1204 			goto restart;
1205 		}
1206 	}
1207 
1208 	if (error)
1209 		goto out;
1210 
1211 	/*
1212 	 * POSIX says this must be checked after looking for pending
1213 	 * signals.
1214 	 */
1215 	if (timeout) {
1216 		if (!timevalid) {
1217 			error = EINVAL;
1218 			goto out;
1219 		}
1220 		getnanouptime(&rts);
1221 		if (timespeccmp(&rts, &ets, >=)) {
1222 			error = EAGAIN;
1223 			goto out;
1224 		}
1225 		ts = ets;
1226 		timespecsub(&ts, &rts);
1227 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1228 		hz = tvtohz(&tv);
1229 	} else
1230 		hz = 0;
1231 
1232 	td->td_sigmask = savedmask;
1233 	SIGSETNAND(td->td_sigmask, waitset);
1234 	signotify(td);
1235 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1236 	if (timeout) {
1237 		if (error == ERESTART) {
1238 			/* timeout can not be restarted. */
1239 			error = EINTR;
1240 		} else if (error == EAGAIN) {
1241 			/* will calculate timeout by ourself. */
1242 			error = 0;
1243 		}
1244 	}
1245 	goto restart;
1246 
1247 out:
1248 	td->td_sigmask = savedmask;
1249 	signotify(td);
1250 	if (sig) {
1251 		ksiginfo_init(ksi);
1252 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1253 		ksi->ksi_signo = sig;
1254 
1255 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1256 
1257 		if (ksi->ksi_code == SI_TIMER)
1258 			itimer_accept(p, ksi->ksi_timerid, ksi);
1259 		error = 0;
1260 
1261 #ifdef KTRACE
1262 		if (KTRPOINT(td, KTR_PSIG)) {
1263 			sig_t action;
1264 
1265 			mtx_lock(&ps->ps_mtx);
1266 			action = ps->ps_sigact[_SIG_IDX(sig)];
1267 			mtx_unlock(&ps->ps_mtx);
1268 			ktrpsig(sig, action, &td->td_sigmask, 0);
1269 		}
1270 #endif
1271 		if (sig == SIGKILL)
1272 			sigexit(td, sig);
1273 	}
1274 	PROC_UNLOCK(p);
1275 	return (error);
1276 }
1277 
1278 #ifndef _SYS_SYSPROTO_H_
1279 struct sigpending_args {
1280 	sigset_t	*set;
1281 };
1282 #endif
1283 int
1284 sigpending(td, uap)
1285 	struct thread *td;
1286 	struct sigpending_args *uap;
1287 {
1288 	struct proc *p = td->td_proc;
1289 	sigset_t pending;
1290 
1291 	PROC_LOCK(p);
1292 	pending = p->p_sigqueue.sq_signals;
1293 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1294 	PROC_UNLOCK(p);
1295 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1296 }
1297 
1298 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1299 #ifndef _SYS_SYSPROTO_H_
1300 struct osigpending_args {
1301 	int	dummy;
1302 };
1303 #endif
1304 int
1305 osigpending(td, uap)
1306 	struct thread *td;
1307 	struct osigpending_args *uap;
1308 {
1309 	struct proc *p = td->td_proc;
1310 	sigset_t pending;
1311 
1312 	PROC_LOCK(p);
1313 	pending = p->p_sigqueue.sq_signals;
1314 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1315 	PROC_UNLOCK(p);
1316 	SIG2OSIG(pending, td->td_retval[0]);
1317 	return (0);
1318 }
1319 #endif /* COMPAT_43 */
1320 
1321 #if defined(COMPAT_43)
1322 /*
1323  * Generalized interface signal handler, 4.3-compatible.
1324  */
1325 #ifndef _SYS_SYSPROTO_H_
1326 struct osigvec_args {
1327 	int	signum;
1328 	struct	sigvec *nsv;
1329 	struct	sigvec *osv;
1330 };
1331 #endif
1332 /* ARGSUSED */
1333 int
1334 osigvec(td, uap)
1335 	struct thread *td;
1336 	register struct osigvec_args *uap;
1337 {
1338 	struct sigvec vec;
1339 	struct sigaction nsa, osa;
1340 	register struct sigaction *nsap, *osap;
1341 	int error;
1342 
1343 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1344 		return (EINVAL);
1345 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1346 	osap = (uap->osv != NULL) ? &osa : NULL;
1347 	if (nsap) {
1348 		error = copyin(uap->nsv, &vec, sizeof(vec));
1349 		if (error)
1350 			return (error);
1351 		nsap->sa_handler = vec.sv_handler;
1352 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1353 		nsap->sa_flags = vec.sv_flags;
1354 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1355 	}
1356 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1357 	if (osap && !error) {
1358 		vec.sv_handler = osap->sa_handler;
1359 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1360 		vec.sv_flags = osap->sa_flags;
1361 		vec.sv_flags &= ~SA_NOCLDWAIT;
1362 		vec.sv_flags ^= SA_RESTART;
1363 		error = copyout(&vec, uap->osv, sizeof(vec));
1364 	}
1365 	return (error);
1366 }
1367 
1368 #ifndef _SYS_SYSPROTO_H_
1369 struct osigblock_args {
1370 	int	mask;
1371 };
1372 #endif
1373 int
1374 osigblock(td, uap)
1375 	register struct thread *td;
1376 	struct osigblock_args *uap;
1377 {
1378 	struct proc *p = td->td_proc;
1379 	sigset_t set;
1380 
1381 	OSIG2SIG(uap->mask, set);
1382 	SIG_CANTMASK(set);
1383 	PROC_LOCK(p);
1384 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1385 	SIGSETOR(td->td_sigmask, set);
1386 	PROC_UNLOCK(p);
1387 	return (0);
1388 }
1389 
1390 #ifndef _SYS_SYSPROTO_H_
1391 struct osigsetmask_args {
1392 	int	mask;
1393 };
1394 #endif
1395 int
1396 osigsetmask(td, uap)
1397 	struct thread *td;
1398 	struct osigsetmask_args *uap;
1399 {
1400 	struct proc *p = td->td_proc;
1401 	sigset_t set;
1402 
1403 	OSIG2SIG(uap->mask, set);
1404 	SIG_CANTMASK(set);
1405 	PROC_LOCK(p);
1406 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1407 	SIGSETLO(td->td_sigmask, set);
1408 	signotify(td);
1409 	PROC_UNLOCK(p);
1410 	return (0);
1411 }
1412 #endif /* COMPAT_43 */
1413 
1414 /*
1415  * Suspend calling thread until signal, providing mask to be set in the
1416  * meantime.
1417  */
1418 #ifndef _SYS_SYSPROTO_H_
1419 struct sigsuspend_args {
1420 	const sigset_t *sigmask;
1421 };
1422 #endif
1423 /* ARGSUSED */
1424 int
1425 sigsuspend(td, uap)
1426 	struct thread *td;
1427 	struct sigsuspend_args *uap;
1428 {
1429 	sigset_t mask;
1430 	int error;
1431 
1432 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1433 	if (error)
1434 		return (error);
1435 	return (kern_sigsuspend(td, mask));
1436 }
1437 
1438 int
1439 kern_sigsuspend(struct thread *td, sigset_t mask)
1440 {
1441 	struct proc *p = td->td_proc;
1442 
1443 	/*
1444 	 * When returning from sigsuspend, we want
1445 	 * the old mask to be restored after the
1446 	 * signal handler has finished.  Thus, we
1447 	 * save it here and mark the sigacts structure
1448 	 * to indicate this.
1449 	 */
1450 	PROC_LOCK(p);
1451 	td->td_oldsigmask = td->td_sigmask;
1452 	td->td_pflags |= TDP_OLDMASK;
1453 	SIG_CANTMASK(mask);
1454 	td->td_sigmask = mask;
1455 	signotify(td);
1456 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1457 		/* void */;
1458 	PROC_UNLOCK(p);
1459 	/* always return EINTR rather than ERESTART... */
1460 	return (EINTR);
1461 }
1462 
1463 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1464 /*
1465  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1466  * convention: libc stub passes mask, not pointer, to save a copyin.
1467  */
1468 #ifndef _SYS_SYSPROTO_H_
1469 struct osigsuspend_args {
1470 	osigset_t mask;
1471 };
1472 #endif
1473 /* ARGSUSED */
1474 int
1475 osigsuspend(td, uap)
1476 	struct thread *td;
1477 	struct osigsuspend_args *uap;
1478 {
1479 	struct proc *p = td->td_proc;
1480 	sigset_t mask;
1481 
1482 	PROC_LOCK(p);
1483 	td->td_oldsigmask = td->td_sigmask;
1484 	td->td_pflags |= TDP_OLDMASK;
1485 	OSIG2SIG(uap->mask, mask);
1486 	SIG_CANTMASK(mask);
1487 	SIGSETLO(td->td_sigmask, mask);
1488 	signotify(td);
1489 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1490 		/* void */;
1491 	PROC_UNLOCK(p);
1492 	/* always return EINTR rather than ERESTART... */
1493 	return (EINTR);
1494 }
1495 #endif /* COMPAT_43 */
1496 
1497 #if defined(COMPAT_43)
1498 #ifndef _SYS_SYSPROTO_H_
1499 struct osigstack_args {
1500 	struct	sigstack *nss;
1501 	struct	sigstack *oss;
1502 };
1503 #endif
1504 /* ARGSUSED */
1505 int
1506 osigstack(td, uap)
1507 	struct thread *td;
1508 	register struct osigstack_args *uap;
1509 {
1510 	struct sigstack nss, oss;
1511 	int error = 0;
1512 
1513 	if (uap->nss != NULL) {
1514 		error = copyin(uap->nss, &nss, sizeof(nss));
1515 		if (error)
1516 			return (error);
1517 	}
1518 	oss.ss_sp = td->td_sigstk.ss_sp;
1519 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1520 	if (uap->nss != NULL) {
1521 		td->td_sigstk.ss_sp = nss.ss_sp;
1522 		td->td_sigstk.ss_size = 0;
1523 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1524 		td->td_pflags |= TDP_ALTSTACK;
1525 	}
1526 	if (uap->oss != NULL)
1527 		error = copyout(&oss, uap->oss, sizeof(oss));
1528 
1529 	return (error);
1530 }
1531 #endif /* COMPAT_43 */
1532 
1533 #ifndef _SYS_SYSPROTO_H_
1534 struct sigaltstack_args {
1535 	stack_t	*ss;
1536 	stack_t	*oss;
1537 };
1538 #endif
1539 /* ARGSUSED */
1540 int
1541 sigaltstack(td, uap)
1542 	struct thread *td;
1543 	register struct sigaltstack_args *uap;
1544 {
1545 	stack_t ss, oss;
1546 	int error;
1547 
1548 	if (uap->ss != NULL) {
1549 		error = copyin(uap->ss, &ss, sizeof(ss));
1550 		if (error)
1551 			return (error);
1552 	}
1553 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1554 	    (uap->oss != NULL) ? &oss : NULL);
1555 	if (error)
1556 		return (error);
1557 	if (uap->oss != NULL)
1558 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1559 	return (error);
1560 }
1561 
1562 int
1563 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1564 {
1565 	struct proc *p = td->td_proc;
1566 	int oonstack;
1567 
1568 	oonstack = sigonstack(cpu_getstack(td));
1569 
1570 	if (oss != NULL) {
1571 		*oss = td->td_sigstk;
1572 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1573 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1574 	}
1575 
1576 	if (ss != NULL) {
1577 		if (oonstack)
1578 			return (EPERM);
1579 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1580 			return (EINVAL);
1581 		if (!(ss->ss_flags & SS_DISABLE)) {
1582 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1583 				return (ENOMEM);
1584 
1585 			td->td_sigstk = *ss;
1586 			td->td_pflags |= TDP_ALTSTACK;
1587 		} else {
1588 			td->td_pflags &= ~TDP_ALTSTACK;
1589 		}
1590 	}
1591 	return (0);
1592 }
1593 
1594 /*
1595  * Common code for kill process group/broadcast kill.
1596  * cp is calling process.
1597  */
1598 static int
1599 killpg1(td, sig, pgid, all)
1600 	register struct thread *td;
1601 	int sig, pgid, all;
1602 {
1603 	register struct proc *p;
1604 	struct pgrp *pgrp;
1605 	int nfound = 0;
1606 
1607 	if (all) {
1608 		/*
1609 		 * broadcast
1610 		 */
1611 		sx_slock(&allproc_lock);
1612 		FOREACH_PROC_IN_SYSTEM(p) {
1613 			PROC_LOCK(p);
1614 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1615 			    p == td->td_proc || p->p_state == PRS_NEW) {
1616 				PROC_UNLOCK(p);
1617 				continue;
1618 			}
1619 			if (p_cansignal(td, p, sig) == 0) {
1620 				nfound++;
1621 				if (sig)
1622 					psignal(p, sig);
1623 			}
1624 			PROC_UNLOCK(p);
1625 		}
1626 		sx_sunlock(&allproc_lock);
1627 	} else {
1628 		sx_slock(&proctree_lock);
1629 		if (pgid == 0) {
1630 			/*
1631 			 * zero pgid means send to my process group.
1632 			 */
1633 			pgrp = td->td_proc->p_pgrp;
1634 			PGRP_LOCK(pgrp);
1635 		} else {
1636 			pgrp = pgfind(pgid);
1637 			if (pgrp == NULL) {
1638 				sx_sunlock(&proctree_lock);
1639 				return (ESRCH);
1640 			}
1641 		}
1642 		sx_sunlock(&proctree_lock);
1643 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1644 			PROC_LOCK(p);
1645 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1646 				p->p_state == PRS_NEW ) {
1647 				PROC_UNLOCK(p);
1648 				continue;
1649 			}
1650 			if (p_cansignal(td, p, sig) == 0) {
1651 				nfound++;
1652 				if (sig)
1653 					psignal(p, sig);
1654 			}
1655 			PROC_UNLOCK(p);
1656 		}
1657 		PGRP_UNLOCK(pgrp);
1658 	}
1659 	return (nfound ? 0 : ESRCH);
1660 }
1661 
1662 #ifndef _SYS_SYSPROTO_H_
1663 struct kill_args {
1664 	int	pid;
1665 	int	signum;
1666 };
1667 #endif
1668 /* ARGSUSED */
1669 int
1670 kill(td, uap)
1671 	register struct thread *td;
1672 	register struct kill_args *uap;
1673 {
1674 	register struct proc *p;
1675 	int error;
1676 
1677 	AUDIT_ARG(signum, uap->signum);
1678 	AUDIT_ARG(pid, uap->pid);
1679 	if ((u_int)uap->signum > _SIG_MAXSIG)
1680 		return (EINVAL);
1681 
1682 	if (uap->pid > 0) {
1683 		/* kill single process */
1684 		if ((p = pfind(uap->pid)) == NULL) {
1685 			if ((p = zpfind(uap->pid)) == NULL)
1686 				return (ESRCH);
1687 		}
1688 		AUDIT_ARG(process, p);
1689 		error = p_cansignal(td, p, uap->signum);
1690 		if (error == 0 && uap->signum)
1691 			psignal(p, uap->signum);
1692 		PROC_UNLOCK(p);
1693 		return (error);
1694 	}
1695 	switch (uap->pid) {
1696 	case -1:		/* broadcast signal */
1697 		return (killpg1(td, uap->signum, 0, 1));
1698 	case 0:			/* signal own process group */
1699 		return (killpg1(td, uap->signum, 0, 0));
1700 	default:		/* negative explicit process group */
1701 		return (killpg1(td, uap->signum, -uap->pid, 0));
1702 	}
1703 	/* NOTREACHED */
1704 }
1705 
1706 #if defined(COMPAT_43)
1707 #ifndef _SYS_SYSPROTO_H_
1708 struct okillpg_args {
1709 	int	pgid;
1710 	int	signum;
1711 };
1712 #endif
1713 /* ARGSUSED */
1714 int
1715 okillpg(td, uap)
1716 	struct thread *td;
1717 	register struct okillpg_args *uap;
1718 {
1719 
1720 	AUDIT_ARG(signum, uap->signum);
1721 	AUDIT_ARG(pid, uap->pgid);
1722 	if ((u_int)uap->signum > _SIG_MAXSIG)
1723 		return (EINVAL);
1724 
1725 	return (killpg1(td, uap->signum, uap->pgid, 0));
1726 }
1727 #endif /* COMPAT_43 */
1728 
1729 #ifndef _SYS_SYSPROTO_H_
1730 struct sigqueue_args {
1731 	pid_t pid;
1732 	int signum;
1733 	/* union sigval */ void *value;
1734 };
1735 #endif
1736 int
1737 sigqueue(struct thread *td, struct sigqueue_args *uap)
1738 {
1739 	ksiginfo_t ksi;
1740 	struct proc *p;
1741 	int error;
1742 
1743 	if ((u_int)uap->signum > _SIG_MAXSIG)
1744 		return (EINVAL);
1745 
1746 	/*
1747 	 * Specification says sigqueue can only send signal to
1748 	 * single process.
1749 	 */
1750 	if (uap->pid <= 0)
1751 		return (EINVAL);
1752 
1753 	if ((p = pfind(uap->pid)) == NULL) {
1754 		if ((p = zpfind(uap->pid)) == NULL)
1755 			return (ESRCH);
1756 	}
1757 	error = p_cansignal(td, p, uap->signum);
1758 	if (error == 0 && uap->signum != 0) {
1759 		ksiginfo_init(&ksi);
1760 		ksi.ksi_signo = uap->signum;
1761 		ksi.ksi_code = SI_QUEUE;
1762 		ksi.ksi_pid = td->td_proc->p_pid;
1763 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1764 		ksi.ksi_value.sival_ptr = uap->value;
1765 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1766 	}
1767 	PROC_UNLOCK(p);
1768 	return (error);
1769 }
1770 
1771 /*
1772  * Send a signal to a process group.
1773  */
1774 void
1775 gsignal(pgid, sig)
1776 	int pgid, sig;
1777 {
1778 	struct pgrp *pgrp;
1779 
1780 	if (pgid != 0) {
1781 		sx_slock(&proctree_lock);
1782 		pgrp = pgfind(pgid);
1783 		sx_sunlock(&proctree_lock);
1784 		if (pgrp != NULL) {
1785 			pgsignal(pgrp, sig, 0);
1786 			PGRP_UNLOCK(pgrp);
1787 		}
1788 	}
1789 }
1790 
1791 /*
1792  * Send a signal to a process group.  If checktty is 1,
1793  * limit to members which have a controlling terminal.
1794  */
1795 void
1796 pgsignal(pgrp, sig, checkctty)
1797 	struct pgrp *pgrp;
1798 	int sig, checkctty;
1799 {
1800 	register struct proc *p;
1801 
1802 	if (pgrp) {
1803 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1804 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1805 			PROC_LOCK(p);
1806 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1807 				psignal(p, sig);
1808 			PROC_UNLOCK(p);
1809 		}
1810 	}
1811 }
1812 
1813 /*
1814  * Send a signal caused by a trap to the current thread.  If it will be
1815  * caught immediately, deliver it with correct code.  Otherwise, post it
1816  * normally.
1817  */
1818 void
1819 trapsignal(struct thread *td, ksiginfo_t *ksi)
1820 {
1821 	struct sigacts *ps;
1822 	struct proc *p;
1823 	int sig;
1824 	int code;
1825 
1826 	p = td->td_proc;
1827 	sig = ksi->ksi_signo;
1828 	code = ksi->ksi_code;
1829 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1830 
1831 	PROC_LOCK(p);
1832 	ps = p->p_sigacts;
1833 	mtx_lock(&ps->ps_mtx);
1834 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1835 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1836 		td->td_ru.ru_nsignals++;
1837 #ifdef KTRACE
1838 		if (KTRPOINT(curthread, KTR_PSIG))
1839 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1840 			    &td->td_sigmask, code);
1841 #endif
1842 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1843 				ksi, &td->td_sigmask);
1844 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1845 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1846 			SIGADDSET(td->td_sigmask, sig);
1847 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1848 			/*
1849 			 * See kern_sigaction() for origin of this code.
1850 			 */
1851 			SIGDELSET(ps->ps_sigcatch, sig);
1852 			if (sig != SIGCONT &&
1853 			    sigprop(sig) & SA_IGNORE)
1854 				SIGADDSET(ps->ps_sigignore, sig);
1855 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1856 		}
1857 		mtx_unlock(&ps->ps_mtx);
1858 	} else {
1859 		/*
1860 		 * Avoid a possible infinite loop if the thread
1861 		 * masking the signal or process is ignoring the
1862 		 * signal.
1863 		 */
1864 		if (kern_forcesigexit &&
1865 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1866 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1867 			SIGDELSET(td->td_sigmask, sig);
1868 			SIGDELSET(ps->ps_sigcatch, sig);
1869 			SIGDELSET(ps->ps_sigignore, sig);
1870 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1871 		}
1872 		mtx_unlock(&ps->ps_mtx);
1873 		p->p_code = code;	/* XXX for core dump/debugger */
1874 		p->p_sig = sig;		/* XXX to verify code */
1875 		tdsignal(p, td, sig, ksi);
1876 	}
1877 	PROC_UNLOCK(p);
1878 }
1879 
1880 static struct thread *
1881 sigtd(struct proc *p, int sig, int prop)
1882 {
1883 	struct thread *td, *signal_td;
1884 
1885 	PROC_LOCK_ASSERT(p, MA_OWNED);
1886 
1887 	/*
1888 	 * Check if current thread can handle the signal without
1889 	 * switching conetxt to another thread.
1890 	 */
1891 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1892 		return (curthread);
1893 	signal_td = NULL;
1894 	FOREACH_THREAD_IN_PROC(p, td) {
1895 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1896 			signal_td = td;
1897 			break;
1898 		}
1899 	}
1900 	if (signal_td == NULL)
1901 		signal_td = FIRST_THREAD_IN_PROC(p);
1902 	return (signal_td);
1903 }
1904 
1905 /*
1906  * Send the signal to the process.  If the signal has an action, the action
1907  * is usually performed by the target process rather than the caller; we add
1908  * the signal to the set of pending signals for the process.
1909  *
1910  * Exceptions:
1911  *   o When a stop signal is sent to a sleeping process that takes the
1912  *     default action, the process is stopped without awakening it.
1913  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1914  *     regardless of the signal action (eg, blocked or ignored).
1915  *
1916  * Other ignored signals are discarded immediately.
1917  *
1918  * NB: This function may be entered from the debugger via the "kill" DDB
1919  * command.  There is little that can be done to mitigate the possibly messy
1920  * side effects of this unwise possibility.
1921  */
1922 void
1923 psignal(struct proc *p, int sig)
1924 {
1925 	(void) tdsignal(p, NULL, sig, NULL);
1926 }
1927 
1928 int
1929 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
1930 {
1931 	struct thread *td = NULL;
1932 
1933 	PROC_LOCK_ASSERT(p, MA_OWNED);
1934 
1935 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
1936 
1937 	/*
1938 	 * ksi_code and other fields should be set before
1939 	 * calling this function.
1940 	 */
1941 	ksi->ksi_signo = sigev->sigev_signo;
1942 	ksi->ksi_value = sigev->sigev_value;
1943 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1944 		td = thread_find(p, sigev->sigev_notify_thread_id);
1945 		if (td == NULL)
1946 			return (ESRCH);
1947 	}
1948 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
1949 }
1950 
1951 int
1952 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
1953 {
1954 	sig_t action;
1955 	sigqueue_t *sigqueue;
1956 	int prop;
1957 	struct sigacts *ps;
1958 	int intrval;
1959 	int ret = 0;
1960 	int wakeup_swapper;
1961 
1962 	PROC_LOCK_ASSERT(p, MA_OWNED);
1963 
1964 	if (!_SIG_VALID(sig))
1965 		panic("tdsignal(): invalid signal %d", sig);
1966 
1967 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("tdsignal: ksi on queue"));
1968 
1969 	/*
1970 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
1971 	 */
1972 	if (p->p_state == PRS_ZOMBIE) {
1973 		if (ksi && (ksi->ksi_flags & KSI_INS))
1974 			ksiginfo_tryfree(ksi);
1975 		return (ret);
1976 	}
1977 
1978 	ps = p->p_sigacts;
1979 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
1980 	prop = sigprop(sig);
1981 
1982 	/*
1983 	 * If the signal is blocked and not destined for this thread, then
1984 	 * assign it to the process so that we can find it later in the first
1985 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
1986 	 */
1987 	if (td == NULL) {
1988 		td = sigtd(p, sig, prop);
1989 		if (SIGISMEMBER(td->td_sigmask, sig))
1990 			sigqueue = &p->p_sigqueue;
1991 		else
1992 			sigqueue = &td->td_sigqueue;
1993 	} else {
1994 		KASSERT(td->td_proc == p, ("invalid thread"));
1995 		sigqueue = &td->td_sigqueue;
1996 	}
1997 
1998 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
1999 
2000 	/*
2001 	 * If the signal is being ignored,
2002 	 * then we forget about it immediately.
2003 	 * (Note: we don't set SIGCONT in ps_sigignore,
2004 	 * and if it is set to SIG_IGN,
2005 	 * action will be SIG_DFL here.)
2006 	 */
2007 	mtx_lock(&ps->ps_mtx);
2008 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2009 		SDT_PROBE(proc, kernel, , signal_discard, ps, td, sig, 0, 0 );
2010 
2011 		mtx_unlock(&ps->ps_mtx);
2012 		if (ksi && (ksi->ksi_flags & KSI_INS))
2013 			ksiginfo_tryfree(ksi);
2014 		return (ret);
2015 	}
2016 	if (SIGISMEMBER(td->td_sigmask, sig))
2017 		action = SIG_HOLD;
2018 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2019 		action = SIG_CATCH;
2020 	else
2021 		action = SIG_DFL;
2022 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2023 		intrval = EINTR;
2024 	else
2025 		intrval = ERESTART;
2026 	mtx_unlock(&ps->ps_mtx);
2027 
2028 	if (prop & SA_CONT)
2029 		sigqueue_delete_stopmask_proc(p);
2030 	else if (prop & SA_STOP) {
2031 		/*
2032 		 * If sending a tty stop signal to a member of an orphaned
2033 		 * process group, discard the signal here if the action
2034 		 * is default; don't stop the process below if sleeping,
2035 		 * and don't clear any pending SIGCONT.
2036 		 */
2037 		if ((prop & SA_TTYSTOP) &&
2038 		    (p->p_pgrp->pg_jobc == 0) &&
2039 		    (action == SIG_DFL)) {
2040 			if (ksi && (ksi->ksi_flags & KSI_INS))
2041 				ksiginfo_tryfree(ksi);
2042 			return (ret);
2043 		}
2044 		sigqueue_delete_proc(p, SIGCONT);
2045 		if (p->p_flag & P_CONTINUED) {
2046 			p->p_flag &= ~P_CONTINUED;
2047 			PROC_LOCK(p->p_pptr);
2048 			sigqueue_take(p->p_ksi);
2049 			PROC_UNLOCK(p->p_pptr);
2050 		}
2051 	}
2052 
2053 	ret = sigqueue_add(sigqueue, sig, ksi);
2054 	if (ret != 0)
2055 		return (ret);
2056 	signotify(td);
2057 	/*
2058 	 * Defer further processing for signals which are held,
2059 	 * except that stopped processes must be continued by SIGCONT.
2060 	 */
2061 	if (action == SIG_HOLD &&
2062 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2063 		return (ret);
2064 	/*
2065 	 * SIGKILL: Remove procfs STOPEVENTs.
2066 	 */
2067 	if (sig == SIGKILL) {
2068 		/* from procfs_ioctl.c: PIOCBIC */
2069 		p->p_stops = 0;
2070 		/* from procfs_ioctl.c: PIOCCONT */
2071 		p->p_step = 0;
2072 		wakeup(&p->p_step);
2073 	}
2074 	/*
2075 	 * Some signals have a process-wide effect and a per-thread
2076 	 * component.  Most processing occurs when the process next
2077 	 * tries to cross the user boundary, however there are some
2078 	 * times when processing needs to be done immediatly, such as
2079 	 * waking up threads so that they can cross the user boundary.
2080 	 * We try do the per-process part here.
2081 	 */
2082 	if (P_SHOULDSTOP(p)) {
2083 		/*
2084 		 * The process is in stopped mode. All the threads should be
2085 		 * either winding down or already on the suspended queue.
2086 		 */
2087 		if (p->p_flag & P_TRACED) {
2088 			/*
2089 			 * The traced process is already stopped,
2090 			 * so no further action is necessary.
2091 			 * No signal can restart us.
2092 			 */
2093 			goto out;
2094 		}
2095 
2096 		if (sig == SIGKILL) {
2097 			/*
2098 			 * SIGKILL sets process running.
2099 			 * It will die elsewhere.
2100 			 * All threads must be restarted.
2101 			 */
2102 			p->p_flag &= ~P_STOPPED_SIG;
2103 			goto runfast;
2104 		}
2105 
2106 		if (prop & SA_CONT) {
2107 			/*
2108 			 * If SIGCONT is default (or ignored), we continue the
2109 			 * process but don't leave the signal in sigqueue as
2110 			 * it has no further action.  If SIGCONT is held, we
2111 			 * continue the process and leave the signal in
2112 			 * sigqueue.  If the process catches SIGCONT, let it
2113 			 * handle the signal itself.  If it isn't waiting on
2114 			 * an event, it goes back to run state.
2115 			 * Otherwise, process goes back to sleep state.
2116 			 */
2117 			p->p_flag &= ~P_STOPPED_SIG;
2118 			PROC_SLOCK(p);
2119 			if (p->p_numthreads == p->p_suspcount) {
2120 				PROC_SUNLOCK(p);
2121 				p->p_flag |= P_CONTINUED;
2122 				p->p_xstat = SIGCONT;
2123 				PROC_LOCK(p->p_pptr);
2124 				childproc_continued(p);
2125 				PROC_UNLOCK(p->p_pptr);
2126 				PROC_SLOCK(p);
2127 			}
2128 			if (action == SIG_DFL) {
2129 				thread_unsuspend(p);
2130 				PROC_SUNLOCK(p);
2131 				sigqueue_delete(sigqueue, sig);
2132 				goto out;
2133 			}
2134 			if (action == SIG_CATCH) {
2135 				/*
2136 				 * The process wants to catch it so it needs
2137 				 * to run at least one thread, but which one?
2138 				 */
2139 				PROC_SUNLOCK(p);
2140 				goto runfast;
2141 			}
2142 			/*
2143 			 * The signal is not ignored or caught.
2144 			 */
2145 			thread_unsuspend(p);
2146 			PROC_SUNLOCK(p);
2147 			goto out;
2148 		}
2149 
2150 		if (prop & SA_STOP) {
2151 			/*
2152 			 * Already stopped, don't need to stop again
2153 			 * (If we did the shell could get confused).
2154 			 * Just make sure the signal STOP bit set.
2155 			 */
2156 			p->p_flag |= P_STOPPED_SIG;
2157 			sigqueue_delete(sigqueue, sig);
2158 			goto out;
2159 		}
2160 
2161 		/*
2162 		 * All other kinds of signals:
2163 		 * If a thread is sleeping interruptibly, simulate a
2164 		 * wakeup so that when it is continued it will be made
2165 		 * runnable and can look at the signal.  However, don't make
2166 		 * the PROCESS runnable, leave it stopped.
2167 		 * It may run a bit until it hits a thread_suspend_check().
2168 		 */
2169 		wakeup_swapper = 0;
2170 		PROC_SLOCK(p);
2171 		thread_lock(td);
2172 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2173 			wakeup_swapper = sleepq_abort(td, intrval);
2174 		thread_unlock(td);
2175 		PROC_SUNLOCK(p);
2176 		if (wakeup_swapper)
2177 			kick_proc0();
2178 		goto out;
2179 		/*
2180 		 * Mutexes are short lived. Threads waiting on them will
2181 		 * hit thread_suspend_check() soon.
2182 		 */
2183 	} else if (p->p_state == PRS_NORMAL) {
2184 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2185 			tdsigwakeup(td, sig, action, intrval);
2186 			goto out;
2187 		}
2188 
2189 		MPASS(action == SIG_DFL);
2190 
2191 		if (prop & SA_STOP) {
2192 			if (p->p_flag & P_PPWAIT)
2193 				goto out;
2194 			p->p_flag |= P_STOPPED_SIG;
2195 			p->p_xstat = sig;
2196 			PROC_SLOCK(p);
2197 			sig_suspend_threads(td, p, 1);
2198 			if (p->p_numthreads == p->p_suspcount) {
2199 				/*
2200 				 * only thread sending signal to another
2201 				 * process can reach here, if thread is sending
2202 				 * signal to its process, because thread does
2203 				 * not suspend itself here, p_numthreads
2204 				 * should never be equal to p_suspcount.
2205 				 */
2206 				thread_stopped(p);
2207 				PROC_SUNLOCK(p);
2208 				sigqueue_delete_proc(p, p->p_xstat);
2209 			} else
2210 				PROC_SUNLOCK(p);
2211 			goto out;
2212 		}
2213 	} else {
2214 		/* Not in "NORMAL" state. discard the signal. */
2215 		sigqueue_delete(sigqueue, sig);
2216 		goto out;
2217 	}
2218 
2219 	/*
2220 	 * The process is not stopped so we need to apply the signal to all the
2221 	 * running threads.
2222 	 */
2223 runfast:
2224 	tdsigwakeup(td, sig, action, intrval);
2225 	PROC_SLOCK(p);
2226 	thread_unsuspend(p);
2227 	PROC_SUNLOCK(p);
2228 out:
2229 	/* If we jump here, proc slock should not be owned. */
2230 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2231 	return (ret);
2232 }
2233 
2234 /*
2235  * The force of a signal has been directed against a single
2236  * thread.  We need to see what we can do about knocking it
2237  * out of any sleep it may be in etc.
2238  */
2239 static void
2240 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2241 {
2242 	struct proc *p = td->td_proc;
2243 	register int prop;
2244 	int wakeup_swapper;
2245 
2246 	wakeup_swapper = 0;
2247 	PROC_LOCK_ASSERT(p, MA_OWNED);
2248 	prop = sigprop(sig);
2249 
2250 	PROC_SLOCK(p);
2251 	thread_lock(td);
2252 	/*
2253 	 * Bring the priority of a thread up if we want it to get
2254 	 * killed in this lifetime.
2255 	 */
2256 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2257 		sched_prio(td, PUSER);
2258 	if (TD_ON_SLEEPQ(td)) {
2259 		/*
2260 		 * If thread is sleeping uninterruptibly
2261 		 * we can't interrupt the sleep... the signal will
2262 		 * be noticed when the process returns through
2263 		 * trap() or syscall().
2264 		 */
2265 		if ((td->td_flags & TDF_SINTR) == 0)
2266 			goto out;
2267 		/*
2268 		 * If SIGCONT is default (or ignored) and process is
2269 		 * asleep, we are finished; the process should not
2270 		 * be awakened.
2271 		 */
2272 		if ((prop & SA_CONT) && action == SIG_DFL) {
2273 			thread_unlock(td);
2274 			PROC_SUNLOCK(p);
2275 			sigqueue_delete(&p->p_sigqueue, sig);
2276 			/*
2277 			 * It may be on either list in this state.
2278 			 * Remove from both for now.
2279 			 */
2280 			sigqueue_delete(&td->td_sigqueue, sig);
2281 			return;
2282 		}
2283 
2284 		/*
2285 		 * Give low priority threads a better chance to run.
2286 		 */
2287 		if (td->td_priority > PUSER)
2288 			sched_prio(td, PUSER);
2289 
2290 		wakeup_swapper = sleepq_abort(td, intrval);
2291 	} else {
2292 		/*
2293 		 * Other states do nothing with the signal immediately,
2294 		 * other than kicking ourselves if we are running.
2295 		 * It will either never be noticed, or noticed very soon.
2296 		 */
2297 #ifdef SMP
2298 		if (TD_IS_RUNNING(td) && td != curthread)
2299 			forward_signal(td);
2300 #endif
2301 	}
2302 out:
2303 	PROC_SUNLOCK(p);
2304 	thread_unlock(td);
2305 	if (wakeup_swapper)
2306 		kick_proc0();
2307 }
2308 
2309 static void
2310 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2311 {
2312 	struct thread *td2;
2313 
2314 	PROC_LOCK_ASSERT(p, MA_OWNED);
2315 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2316 
2317 	FOREACH_THREAD_IN_PROC(p, td2) {
2318 		thread_lock(td2);
2319 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2320 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2321 		    (td2->td_flags & TDF_SINTR) &&
2322 		    !TD_IS_SUSPENDED(td2)) {
2323 			thread_suspend_one(td2);
2324 		} else {
2325 			if (sending || td != td2)
2326 				td2->td_flags |= TDF_ASTPENDING;
2327 #ifdef SMP
2328 			if (TD_IS_RUNNING(td2) && td2 != td)
2329 				forward_signal(td2);
2330 #endif
2331 		}
2332 		thread_unlock(td2);
2333 	}
2334 }
2335 
2336 int
2337 ptracestop(struct thread *td, int sig)
2338 {
2339 	struct proc *p = td->td_proc;
2340 
2341 	PROC_LOCK_ASSERT(p, MA_OWNED);
2342 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2343 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2344 
2345 	td->td_dbgflags |= TDB_XSIG;
2346 	td->td_xsig = sig;
2347 	PROC_SLOCK(p);
2348 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2349 		if (p->p_flag & P_SINGLE_EXIT) {
2350 			td->td_dbgflags &= ~TDB_XSIG;
2351 			PROC_SUNLOCK(p);
2352 			return (sig);
2353 		}
2354 		/*
2355 		 * Just make wait() to work, the last stopped thread
2356 		 * will win.
2357 		 */
2358 		p->p_xstat = sig;
2359 		p->p_xthread = td;
2360 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2361 		sig_suspend_threads(td, p, 0);
2362 stopme:
2363 		thread_suspend_switch(td);
2364 		if (!(p->p_flag & P_TRACED)) {
2365 			break;
2366 		}
2367 		if (td->td_dbgflags & TDB_SUSPEND) {
2368 			if (p->p_flag & P_SINGLE_EXIT)
2369 				break;
2370 			goto stopme;
2371 		}
2372 	}
2373 	PROC_SUNLOCK(p);
2374 	return (td->td_xsig);
2375 }
2376 
2377 /*
2378  * If the current process has received a signal (should be caught or cause
2379  * termination, should interrupt current syscall), return the signal number.
2380  * Stop signals with default action are processed immediately, then cleared;
2381  * they aren't returned.  This is checked after each entry to the system for
2382  * a syscall or trap (though this can usually be done without calling issignal
2383  * by checking the pending signal masks in cursig.) The normal call
2384  * sequence is
2385  *
2386  *	while (sig = cursig(curthread))
2387  *		postsig(sig);
2388  */
2389 static int
2390 issignal(td)
2391 	struct thread *td;
2392 {
2393 	struct proc *p;
2394 	struct sigacts *ps;
2395 	sigset_t sigpending;
2396 	int sig, prop, newsig;
2397 
2398 	p = td->td_proc;
2399 	ps = p->p_sigacts;
2400 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2401 	PROC_LOCK_ASSERT(p, MA_OWNED);
2402 	for (;;) {
2403 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2404 
2405 		sigpending = td->td_sigqueue.sq_signals;
2406 		SIGSETNAND(sigpending, td->td_sigmask);
2407 
2408 		if (p->p_flag & P_PPWAIT)
2409 			SIG_STOPSIGMASK(sigpending);
2410 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2411 			return (0);
2412 		sig = sig_ffs(&sigpending);
2413 
2414 		if (p->p_stops & S_SIG) {
2415 			mtx_unlock(&ps->ps_mtx);
2416 			stopevent(p, S_SIG, sig);
2417 			mtx_lock(&ps->ps_mtx);
2418 		}
2419 
2420 		/*
2421 		 * We should see pending but ignored signals
2422 		 * only if P_TRACED was on when they were posted.
2423 		 */
2424 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2425 			sigqueue_delete(&td->td_sigqueue, sig);
2426 			continue;
2427 		}
2428 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2429 			/*
2430 			 * If traced, always stop.
2431 			 */
2432 			mtx_unlock(&ps->ps_mtx);
2433 			newsig = ptracestop(td, sig);
2434 			mtx_lock(&ps->ps_mtx);
2435 
2436 			if (sig != newsig) {
2437 				ksiginfo_t ksi;
2438 				/*
2439 				 * clear old signal.
2440 				 * XXX shrug off debugger, it causes siginfo to
2441 				 * be thrown away.
2442 				 */
2443 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2444 
2445 				/*
2446 				 * If parent wants us to take the signal,
2447 				 * then it will leave it in p->p_xstat;
2448 				 * otherwise we just look for signals again.
2449 			 	*/
2450 				if (newsig == 0)
2451 					continue;
2452 				sig = newsig;
2453 
2454 				/*
2455 				 * Put the new signal into td_sigqueue. If the
2456 				 * signal is being masked, look for other signals.
2457 				 */
2458 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2459 				if (SIGISMEMBER(td->td_sigmask, sig))
2460 					continue;
2461 				signotify(td);
2462 			}
2463 
2464 			/*
2465 			 * If the traced bit got turned off, go back up
2466 			 * to the top to rescan signals.  This ensures
2467 			 * that p_sig* and p_sigact are consistent.
2468 			 */
2469 			if ((p->p_flag & P_TRACED) == 0)
2470 				continue;
2471 		}
2472 
2473 		prop = sigprop(sig);
2474 
2475 		/*
2476 		 * Decide whether the signal should be returned.
2477 		 * Return the signal's number, or fall through
2478 		 * to clear it from the pending mask.
2479 		 */
2480 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2481 
2482 		case (intptr_t)SIG_DFL:
2483 			/*
2484 			 * Don't take default actions on system processes.
2485 			 */
2486 			if (p->p_pid <= 1) {
2487 #ifdef DIAGNOSTIC
2488 				/*
2489 				 * Are you sure you want to ignore SIGSEGV
2490 				 * in init? XXX
2491 				 */
2492 				printf("Process (pid %lu) got signal %d\n",
2493 					(u_long)p->p_pid, sig);
2494 #endif
2495 				break;		/* == ignore */
2496 			}
2497 			/*
2498 			 * If there is a pending stop signal to process
2499 			 * with default action, stop here,
2500 			 * then clear the signal.  However,
2501 			 * if process is member of an orphaned
2502 			 * process group, ignore tty stop signals.
2503 			 */
2504 			if (prop & SA_STOP) {
2505 				if (p->p_flag & P_TRACED ||
2506 		    		    (p->p_pgrp->pg_jobc == 0 &&
2507 				     prop & SA_TTYSTOP))
2508 					break;	/* == ignore */
2509 				mtx_unlock(&ps->ps_mtx);
2510 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2511 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2512 				p->p_flag |= P_STOPPED_SIG;
2513 				p->p_xstat = sig;
2514 				PROC_SLOCK(p);
2515 				sig_suspend_threads(td, p, 0);
2516 				thread_suspend_switch(td);
2517 				PROC_SUNLOCK(p);
2518 				mtx_lock(&ps->ps_mtx);
2519 				break;
2520 			} else if (prop & SA_IGNORE) {
2521 				/*
2522 				 * Except for SIGCONT, shouldn't get here.
2523 				 * Default action is to ignore; drop it.
2524 				 */
2525 				break;		/* == ignore */
2526 			} else
2527 				return (sig);
2528 			/*NOTREACHED*/
2529 
2530 		case (intptr_t)SIG_IGN:
2531 			/*
2532 			 * Masking above should prevent us ever trying
2533 			 * to take action on an ignored signal other
2534 			 * than SIGCONT, unless process is traced.
2535 			 */
2536 			if ((prop & SA_CONT) == 0 &&
2537 			    (p->p_flag & P_TRACED) == 0)
2538 				printf("issignal\n");
2539 			break;		/* == ignore */
2540 
2541 		default:
2542 			/*
2543 			 * This signal has an action, let
2544 			 * postsig() process it.
2545 			 */
2546 			return (sig);
2547 		}
2548 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2549 	}
2550 	/* NOTREACHED */
2551 }
2552 
2553 void
2554 thread_stopped(struct proc *p)
2555 {
2556 	int n;
2557 
2558 	PROC_LOCK_ASSERT(p, MA_OWNED);
2559 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2560 	n = p->p_suspcount;
2561 	if (p == curproc)
2562 		n++;
2563 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2564 		PROC_SUNLOCK(p);
2565 		p->p_flag &= ~P_WAITED;
2566 		PROC_LOCK(p->p_pptr);
2567 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2568 			CLD_TRAPPED : CLD_STOPPED);
2569 		PROC_UNLOCK(p->p_pptr);
2570 		PROC_SLOCK(p);
2571 	}
2572 }
2573 
2574 /*
2575  * Take the action for the specified signal
2576  * from the current set of pending signals.
2577  */
2578 void
2579 postsig(sig)
2580 	register int sig;
2581 {
2582 	struct thread *td = curthread;
2583 	register struct proc *p = td->td_proc;
2584 	struct sigacts *ps;
2585 	sig_t action;
2586 	ksiginfo_t ksi;
2587 	sigset_t returnmask;
2588 
2589 	KASSERT(sig != 0, ("postsig"));
2590 
2591 	PROC_LOCK_ASSERT(p, MA_OWNED);
2592 	ps = p->p_sigacts;
2593 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2594 	ksiginfo_init(&ksi);
2595 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2596 	ksi.ksi_signo = sig;
2597 	if (ksi.ksi_code == SI_TIMER)
2598 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2599 	action = ps->ps_sigact[_SIG_IDX(sig)];
2600 #ifdef KTRACE
2601 	if (KTRPOINT(td, KTR_PSIG))
2602 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2603 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2604 #endif
2605 	if (p->p_stops & S_SIG) {
2606 		mtx_unlock(&ps->ps_mtx);
2607 		stopevent(p, S_SIG, sig);
2608 		mtx_lock(&ps->ps_mtx);
2609 	}
2610 
2611 	if (action == SIG_DFL) {
2612 		/*
2613 		 * Default action, where the default is to kill
2614 		 * the process.  (Other cases were ignored above.)
2615 		 */
2616 		mtx_unlock(&ps->ps_mtx);
2617 		sigexit(td, sig);
2618 		/* NOTREACHED */
2619 	} else {
2620 		/*
2621 		 * If we get here, the signal must be caught.
2622 		 */
2623 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2624 		    ("postsig action"));
2625 		/*
2626 		 * Set the new mask value and also defer further
2627 		 * occurrences of this signal.
2628 		 *
2629 		 * Special case: user has done a sigsuspend.  Here the
2630 		 * current mask is not of interest, but rather the
2631 		 * mask from before the sigsuspend is what we want
2632 		 * restored after the signal processing is completed.
2633 		 */
2634 		if (td->td_pflags & TDP_OLDMASK) {
2635 			returnmask = td->td_oldsigmask;
2636 			td->td_pflags &= ~TDP_OLDMASK;
2637 		} else
2638 			returnmask = td->td_sigmask;
2639 
2640 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2641 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2642 			SIGADDSET(td->td_sigmask, sig);
2643 
2644 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2645 			/*
2646 			 * See kern_sigaction() for origin of this code.
2647 			 */
2648 			SIGDELSET(ps->ps_sigcatch, sig);
2649 			if (sig != SIGCONT &&
2650 			    sigprop(sig) & SA_IGNORE)
2651 				SIGADDSET(ps->ps_sigignore, sig);
2652 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2653 		}
2654 		td->td_ru.ru_nsignals++;
2655 		if (p->p_sig == sig) {
2656 			p->p_code = 0;
2657 			p->p_sig = 0;
2658 		}
2659 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2660 	}
2661 }
2662 
2663 /*
2664  * Kill the current process for stated reason.
2665  */
2666 void
2667 killproc(p, why)
2668 	struct proc *p;
2669 	char *why;
2670 {
2671 
2672 	PROC_LOCK_ASSERT(p, MA_OWNED);
2673 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2674 		p, p->p_pid, p->p_comm);
2675 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2676 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2677 	psignal(p, SIGKILL);
2678 }
2679 
2680 /*
2681  * Force the current process to exit with the specified signal, dumping core
2682  * if appropriate.  We bypass the normal tests for masked and caught signals,
2683  * allowing unrecoverable failures to terminate the process without changing
2684  * signal state.  Mark the accounting record with the signal termination.
2685  * If dumping core, save the signal number for the debugger.  Calls exit and
2686  * does not return.
2687  */
2688 void
2689 sigexit(td, sig)
2690 	struct thread *td;
2691 	int sig;
2692 {
2693 	struct proc *p = td->td_proc;
2694 
2695 	PROC_LOCK_ASSERT(p, MA_OWNED);
2696 	p->p_acflag |= AXSIG;
2697 	/*
2698 	 * We must be single-threading to generate a core dump.  This
2699 	 * ensures that the registers in the core file are up-to-date.
2700 	 * Also, the ELF dump handler assumes that the thread list doesn't
2701 	 * change out from under it.
2702 	 *
2703 	 * XXX If another thread attempts to single-thread before us
2704 	 *     (e.g. via fork()), we won't get a dump at all.
2705 	 */
2706 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2707 		p->p_sig = sig;
2708 		/*
2709 		 * Log signals which would cause core dumps
2710 		 * (Log as LOG_INFO to appease those who don't want
2711 		 * these messages.)
2712 		 * XXX : Todo, as well as euid, write out ruid too
2713 		 * Note that coredump() drops proc lock.
2714 		 */
2715 		if (coredump(td) == 0)
2716 			sig |= WCOREFLAG;
2717 		if (kern_logsigexit)
2718 			log(LOG_INFO,
2719 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2720 			    p->p_pid, p->p_comm,
2721 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2722 			    sig &~ WCOREFLAG,
2723 			    sig & WCOREFLAG ? " (core dumped)" : "");
2724 	} else
2725 		PROC_UNLOCK(p);
2726 	exit1(td, W_EXITCODE(0, sig));
2727 	/* NOTREACHED */
2728 }
2729 
2730 /*
2731  * Send queued SIGCHLD to parent when child process's state
2732  * is changed.
2733  */
2734 static void
2735 sigparent(struct proc *p, int reason, int status)
2736 {
2737 	PROC_LOCK_ASSERT(p, MA_OWNED);
2738 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2739 
2740 	if (p->p_ksi != NULL) {
2741 		p->p_ksi->ksi_signo  = SIGCHLD;
2742 		p->p_ksi->ksi_code   = reason;
2743 		p->p_ksi->ksi_status = status;
2744 		p->p_ksi->ksi_pid    = p->p_pid;
2745 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2746 		if (KSI_ONQ(p->p_ksi))
2747 			return;
2748 	}
2749 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2750 }
2751 
2752 static void
2753 childproc_jobstate(struct proc *p, int reason, int status)
2754 {
2755 	struct sigacts *ps;
2756 
2757 	PROC_LOCK_ASSERT(p, MA_OWNED);
2758 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2759 
2760 	/*
2761 	 * Wake up parent sleeping in kern_wait(), also send
2762 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2763 	 * that parent will awake, because parent may masked
2764 	 * the signal.
2765 	 */
2766 	p->p_pptr->p_flag |= P_STATCHILD;
2767 	wakeup(p->p_pptr);
2768 
2769 	ps = p->p_pptr->p_sigacts;
2770 	mtx_lock(&ps->ps_mtx);
2771 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2772 		mtx_unlock(&ps->ps_mtx);
2773 		sigparent(p, reason, status);
2774 	} else
2775 		mtx_unlock(&ps->ps_mtx);
2776 }
2777 
2778 void
2779 childproc_stopped(struct proc *p, int reason)
2780 {
2781 	childproc_jobstate(p, reason, p->p_xstat);
2782 }
2783 
2784 void
2785 childproc_continued(struct proc *p)
2786 {
2787 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2788 }
2789 
2790 void
2791 childproc_exited(struct proc *p)
2792 {
2793 	int reason;
2794 	int status = p->p_xstat; /* convert to int */
2795 
2796 	reason = CLD_EXITED;
2797 	if (WCOREDUMP(status))
2798 		reason = CLD_DUMPED;
2799 	else if (WIFSIGNALED(status))
2800 		reason = CLD_KILLED;
2801 	/*
2802 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2803 	 * done in exit1().
2804 	 */
2805 	sigparent(p, reason, status);
2806 }
2807 
2808 static char corefilename[MAXPATHLEN] = {"%N.core"};
2809 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2810 	      sizeof(corefilename), "process corefile name format string");
2811 
2812 /*
2813  * expand_name(name, uid, pid)
2814  * Expand the name described in corefilename, using name, uid, and pid.
2815  * corefilename is a printf-like string, with three format specifiers:
2816  *	%N	name of process ("name")
2817  *	%P	process id (pid)
2818  *	%U	user id (uid)
2819  * For example, "%N.core" is the default; they can be disabled completely
2820  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2821  * This is controlled by the sysctl variable kern.corefile (see above).
2822  */
2823 static char *
2824 expand_name(name, uid, pid)
2825 	const char *name;
2826 	uid_t uid;
2827 	pid_t pid;
2828 {
2829 	struct sbuf sb;
2830 	const char *format;
2831 	char *temp;
2832 	size_t i;
2833 
2834 	format = corefilename;
2835 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2836 	if (temp == NULL)
2837 		return (NULL);
2838 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
2839 	for (i = 0; format[i]; i++) {
2840 		switch (format[i]) {
2841 		case '%':	/* Format character */
2842 			i++;
2843 			switch (format[i]) {
2844 			case '%':
2845 				sbuf_putc(&sb, '%');
2846 				break;
2847 			case 'N':	/* process name */
2848 				sbuf_printf(&sb, "%s", name);
2849 				break;
2850 			case 'P':	/* process id */
2851 				sbuf_printf(&sb, "%u", pid);
2852 				break;
2853 			case 'U':	/* user id */
2854 				sbuf_printf(&sb, "%u", uid);
2855 				break;
2856 			default:
2857 			  	log(LOG_ERR,
2858 				    "Unknown format character %c in "
2859 				    "corename `%s'\n", format[i], format);
2860 			}
2861 			break;
2862 		default:
2863 			sbuf_putc(&sb, format[i]);
2864 		}
2865 	}
2866 	if (sbuf_overflowed(&sb)) {
2867 		sbuf_delete(&sb);
2868 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
2869 		    "long\n", (long)pid, name, (u_long)uid);
2870 		free(temp, M_TEMP);
2871 		return (NULL);
2872 	}
2873 	sbuf_finish(&sb);
2874 	sbuf_delete(&sb);
2875 	return (temp);
2876 }
2877 
2878 /*
2879  * Dump a process' core.  The main routine does some
2880  * policy checking, and creates the name of the coredump;
2881  * then it passes on a vnode and a size limit to the process-specific
2882  * coredump routine if there is one; if there _is not_ one, it returns
2883  * ENOSYS; otherwise it returns the error from the process-specific routine.
2884  */
2885 
2886 static int
2887 coredump(struct thread *td)
2888 {
2889 	struct proc *p = td->td_proc;
2890 	register struct vnode *vp;
2891 	register struct ucred *cred = td->td_ucred;
2892 	struct flock lf;
2893 	struct nameidata nd;
2894 	struct vattr vattr;
2895 	int error, error1, flags, locked;
2896 	struct mount *mp;
2897 	char *name;			/* name of corefile */
2898 	off_t limit;
2899 	int vfslocked;
2900 
2901 	PROC_LOCK_ASSERT(p, MA_OWNED);
2902 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
2903 	_STOPEVENT(p, S_CORE, 0);
2904 
2905 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
2906 	if (name == NULL) {
2907 		PROC_UNLOCK(p);
2908 #ifdef AUDIT
2909 		audit_proc_coredump(td, NULL, EINVAL);
2910 #endif
2911 		return (EINVAL);
2912 	}
2913 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
2914 		PROC_UNLOCK(p);
2915 #ifdef AUDIT
2916 		audit_proc_coredump(td, name, EFAULT);
2917 #endif
2918 		free(name, M_TEMP);
2919 		return (EFAULT);
2920 	}
2921 
2922 	/*
2923 	 * Note that the bulk of limit checking is done after
2924 	 * the corefile is created.  The exception is if the limit
2925 	 * for corefiles is 0, in which case we don't bother
2926 	 * creating the corefile at all.  This layout means that
2927 	 * a corefile is truncated instead of not being created,
2928 	 * if it is larger than the limit.
2929 	 */
2930 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
2931 	PROC_UNLOCK(p);
2932 	if (limit == 0) {
2933 #ifdef AUDIT
2934 		audit_proc_coredump(td, name, EFBIG);
2935 #endif
2936 		free(name, M_TEMP);
2937 		return (EFBIG);
2938 	}
2939 
2940 restart:
2941 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
2942 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
2943 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, NULL);
2944 	if (error) {
2945 #ifdef AUDIT
2946 		audit_proc_coredump(td, name, error);
2947 #endif
2948 		free(name, M_TEMP);
2949 		return (error);
2950 	}
2951 	vfslocked = NDHASGIANT(&nd);
2952 	NDFREE(&nd, NDF_ONLY_PNBUF);
2953 	vp = nd.ni_vp;
2954 
2955 	/* Don't dump to non-regular files or files with links. */
2956 	if (vp->v_type != VREG ||
2957 	    VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
2958 		VOP_UNLOCK(vp, 0);
2959 		error = EFAULT;
2960 		goto close;
2961 	}
2962 
2963 	VOP_UNLOCK(vp, 0);
2964 	lf.l_whence = SEEK_SET;
2965 	lf.l_start = 0;
2966 	lf.l_len = 0;
2967 	lf.l_type = F_WRLCK;
2968 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
2969 
2970 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2971 		lf.l_type = F_UNLCK;
2972 		if (locked)
2973 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2974 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
2975 			goto out;
2976 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
2977 			goto out;
2978 		VFS_UNLOCK_GIANT(vfslocked);
2979 		goto restart;
2980 	}
2981 
2982 	VATTR_NULL(&vattr);
2983 	vattr.va_size = 0;
2984 	if (set_core_nodump_flag)
2985 		vattr.va_flags = UF_NODUMP;
2986 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2987 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
2988 	VOP_SETATTR(vp, &vattr, cred);
2989 	VOP_UNLOCK(vp, 0);
2990 	vn_finished_write(mp);
2991 	PROC_LOCK(p);
2992 	p->p_acflag |= ACORE;
2993 	PROC_UNLOCK(p);
2994 
2995 	error = p->p_sysent->sv_coredump ?
2996 	  p->p_sysent->sv_coredump(td, vp, limit) :
2997 	  ENOSYS;
2998 
2999 	if (locked) {
3000 		lf.l_type = F_UNLCK;
3001 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3002 	}
3003 close:
3004 	error1 = vn_close(vp, FWRITE, cred, td);
3005 	if (error == 0)
3006 		error = error1;
3007 out:
3008 #ifdef AUDIT
3009 	audit_proc_coredump(td, name, error);
3010 #endif
3011 	free(name, M_TEMP);
3012 	VFS_UNLOCK_GIANT(vfslocked);
3013 	return (error);
3014 }
3015 
3016 /*
3017  * Nonexistent system call-- signal process (may want to handle it).  Flag
3018  * error in case process won't see signal immediately (blocked or ignored).
3019  */
3020 #ifndef _SYS_SYSPROTO_H_
3021 struct nosys_args {
3022 	int	dummy;
3023 };
3024 #endif
3025 /* ARGSUSED */
3026 int
3027 nosys(td, args)
3028 	struct thread *td;
3029 	struct nosys_args *args;
3030 {
3031 	struct proc *p = td->td_proc;
3032 
3033 	PROC_LOCK(p);
3034 	psignal(p, SIGSYS);
3035 	PROC_UNLOCK(p);
3036 	return (ENOSYS);
3037 }
3038 
3039 /*
3040  * Send a SIGIO or SIGURG signal to a process or process group using stored
3041  * credentials rather than those of the current process.
3042  */
3043 void
3044 pgsigio(sigiop, sig, checkctty)
3045 	struct sigio **sigiop;
3046 	int sig, checkctty;
3047 {
3048 	struct sigio *sigio;
3049 
3050 	SIGIO_LOCK();
3051 	sigio = *sigiop;
3052 	if (sigio == NULL) {
3053 		SIGIO_UNLOCK();
3054 		return;
3055 	}
3056 	if (sigio->sio_pgid > 0) {
3057 		PROC_LOCK(sigio->sio_proc);
3058 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3059 			psignal(sigio->sio_proc, sig);
3060 		PROC_UNLOCK(sigio->sio_proc);
3061 	} else if (sigio->sio_pgid < 0) {
3062 		struct proc *p;
3063 
3064 		PGRP_LOCK(sigio->sio_pgrp);
3065 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3066 			PROC_LOCK(p);
3067 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3068 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3069 				psignal(p, sig);
3070 			PROC_UNLOCK(p);
3071 		}
3072 		PGRP_UNLOCK(sigio->sio_pgrp);
3073 	}
3074 	SIGIO_UNLOCK();
3075 }
3076 
3077 static int
3078 filt_sigattach(struct knote *kn)
3079 {
3080 	struct proc *p = curproc;
3081 
3082 	kn->kn_ptr.p_proc = p;
3083 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3084 
3085 	knlist_add(&p->p_klist, kn, 0);
3086 
3087 	return (0);
3088 }
3089 
3090 static void
3091 filt_sigdetach(struct knote *kn)
3092 {
3093 	struct proc *p = kn->kn_ptr.p_proc;
3094 
3095 	knlist_remove(&p->p_klist, kn, 0);
3096 }
3097 
3098 /*
3099  * signal knotes are shared with proc knotes, so we apply a mask to
3100  * the hint in order to differentiate them from process hints.  This
3101  * could be avoided by using a signal-specific knote list, but probably
3102  * isn't worth the trouble.
3103  */
3104 static int
3105 filt_signal(struct knote *kn, long hint)
3106 {
3107 
3108 	if (hint & NOTE_SIGNAL) {
3109 		hint &= ~NOTE_SIGNAL;
3110 
3111 		if (kn->kn_id == hint)
3112 			kn->kn_data++;
3113 	}
3114 	return (kn->kn_data != 0);
3115 }
3116 
3117 struct sigacts *
3118 sigacts_alloc(void)
3119 {
3120 	struct sigacts *ps;
3121 
3122 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3123 	ps->ps_refcnt = 1;
3124 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3125 	return (ps);
3126 }
3127 
3128 void
3129 sigacts_free(struct sigacts *ps)
3130 {
3131 
3132 	mtx_lock(&ps->ps_mtx);
3133 	ps->ps_refcnt--;
3134 	if (ps->ps_refcnt == 0) {
3135 		mtx_destroy(&ps->ps_mtx);
3136 		free(ps, M_SUBPROC);
3137 	} else
3138 		mtx_unlock(&ps->ps_mtx);
3139 }
3140 
3141 struct sigacts *
3142 sigacts_hold(struct sigacts *ps)
3143 {
3144 	mtx_lock(&ps->ps_mtx);
3145 	ps->ps_refcnt++;
3146 	mtx_unlock(&ps->ps_mtx);
3147 	return (ps);
3148 }
3149 
3150 void
3151 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3152 {
3153 
3154 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3155 	mtx_lock(&src->ps_mtx);
3156 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3157 	mtx_unlock(&src->ps_mtx);
3158 }
3159 
3160 int
3161 sigacts_shared(struct sigacts *ps)
3162 {
3163 	int shared;
3164 
3165 	mtx_lock(&ps->ps_mtx);
3166 	shared = ps->ps_refcnt > 1;
3167 	mtx_unlock(&ps->ps_mtx);
3168 	return (shared);
3169 }
3170