xref: /freebsd/sys/kern/kern_switch.c (revision 3157ba21)
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_sched.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kdb.h>
36 #include <sys/kernel.h>
37 #include <sys/ktr.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45 
46 #include <machine/cpu.h>
47 
48 /* Uncomment this to enable logging of critical_enter/exit. */
49 #if 0
50 #define	KTR_CRITICAL	KTR_SCHED
51 #else
52 #define	KTR_CRITICAL	0
53 #endif
54 
55 #ifdef FULL_PREEMPTION
56 #ifndef PREEMPTION
57 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
58 #endif
59 #endif
60 
61 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
62 
63 /*
64  * kern.sched.preemption allows user space to determine if preemption support
65  * is compiled in or not.  It is not currently a boot or runtime flag that
66  * can be changed.
67  */
68 #ifdef PREEMPTION
69 static int kern_sched_preemption = 1;
70 #else
71 static int kern_sched_preemption = 0;
72 #endif
73 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
74     &kern_sched_preemption, 0, "Kernel preemption enabled");
75 
76 /*
77  * Support for scheduler stats exported via kern.sched.stats.  All stats may
78  * be reset with kern.sched.stats.reset = 1.  Stats may be defined elsewhere
79  * with SCHED_STAT_DEFINE().
80  */
81 #ifdef SCHED_STATS
82 SYSCTL_NODE(_kern_sched, OID_AUTO, stats, CTLFLAG_RW, 0, "switch stats");
83 
84 /* Switch reasons from mi_switch(). */
85 DPCPU_DEFINE(long, sched_switch_stats[SWT_COUNT]);
86 SCHED_STAT_DEFINE_VAR(uncategorized,
87     &DPCPU_NAME(sched_switch_stats[SWT_NONE]), "");
88 SCHED_STAT_DEFINE_VAR(preempt,
89     &DPCPU_NAME(sched_switch_stats[SWT_PREEMPT]), "");
90 SCHED_STAT_DEFINE_VAR(owepreempt,
91     &DPCPU_NAME(sched_switch_stats[SWT_OWEPREEMPT]), "");
92 SCHED_STAT_DEFINE_VAR(turnstile,
93     &DPCPU_NAME(sched_switch_stats[SWT_TURNSTILE]), "");
94 SCHED_STAT_DEFINE_VAR(sleepq,
95     &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQ]), "");
96 SCHED_STAT_DEFINE_VAR(sleepqtimo,
97     &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQTIMO]), "");
98 SCHED_STAT_DEFINE_VAR(relinquish,
99     &DPCPU_NAME(sched_switch_stats[SWT_RELINQUISH]), "");
100 SCHED_STAT_DEFINE_VAR(needresched,
101     &DPCPU_NAME(sched_switch_stats[SWT_NEEDRESCHED]), "");
102 SCHED_STAT_DEFINE_VAR(idle,
103     &DPCPU_NAME(sched_switch_stats[SWT_IDLE]), "");
104 SCHED_STAT_DEFINE_VAR(iwait,
105     &DPCPU_NAME(sched_switch_stats[SWT_IWAIT]), "");
106 SCHED_STAT_DEFINE_VAR(suspend,
107     &DPCPU_NAME(sched_switch_stats[SWT_SUSPEND]), "");
108 SCHED_STAT_DEFINE_VAR(remotepreempt,
109     &DPCPU_NAME(sched_switch_stats[SWT_REMOTEPREEMPT]), "");
110 SCHED_STAT_DEFINE_VAR(remotewakeidle,
111     &DPCPU_NAME(sched_switch_stats[SWT_REMOTEWAKEIDLE]), "");
112 
113 static int
114 sysctl_stats_reset(SYSCTL_HANDLER_ARGS)
115 {
116 	struct sysctl_oid *p;
117 	uintptr_t counter;
118         int error;
119 	int val;
120 	int i;
121 
122         val = 0;
123         error = sysctl_handle_int(oidp, &val, 0, req);
124         if (error != 0 || req->newptr == NULL)
125                 return (error);
126         if (val == 0)
127                 return (0);
128 	/*
129 	 * Traverse the list of children of _kern_sched_stats and reset each
130 	 * to 0.  Skip the reset entry.
131 	 */
132 	SLIST_FOREACH(p, oidp->oid_parent, oid_link) {
133 		if (p == oidp || p->oid_arg1 == NULL)
134 			continue;
135 		counter = (uintptr_t)p->oid_arg1;
136 		CPU_FOREACH(i) {
137 			*(long *)(dpcpu_off[i] + counter) = 0;
138 		}
139 	}
140 	return (0);
141 }
142 
143 SYSCTL_PROC(_kern_sched_stats, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_WR, NULL,
144     0, sysctl_stats_reset, "I", "Reset scheduler statistics");
145 #endif
146 
147 /************************************************************************
148  * Functions that manipulate runnability from a thread perspective.	*
149  ************************************************************************/
150 /*
151  * Select the thread that will be run next.
152  */
153 struct thread *
154 choosethread(void)
155 {
156 	struct thread *td;
157 
158 retry:
159 	td = sched_choose();
160 
161 	/*
162 	 * If we are in panic, only allow system threads,
163 	 * plus the one we are running in, to be run.
164 	 */
165 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
166 	    (td->td_flags & TDF_INPANIC) == 0)) {
167 		/* note that it is no longer on the run queue */
168 		TD_SET_CAN_RUN(td);
169 		goto retry;
170 	}
171 
172 	TD_SET_RUNNING(td);
173 	return (td);
174 }
175 
176 /*
177  * Kernel thread preemption implementation.  Critical sections mark
178  * regions of code in which preemptions are not allowed.
179  */
180 void
181 critical_enter(void)
182 {
183 	struct thread *td;
184 
185 	td = curthread;
186 	td->td_critnest++;
187 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
188 	    (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
189 }
190 
191 void
192 critical_exit(void)
193 {
194 	struct thread *td;
195 	int flags;
196 
197 	td = curthread;
198 	KASSERT(td->td_critnest != 0,
199 	    ("critical_exit: td_critnest == 0"));
200 
201 	if (td->td_critnest == 1) {
202 		td->td_critnest = 0;
203 		if (td->td_owepreempt) {
204 			td->td_critnest = 1;
205 			thread_lock(td);
206 			td->td_critnest--;
207 			flags = SW_INVOL | SW_PREEMPT;
208 			if (TD_IS_IDLETHREAD(td))
209 				flags |= SWT_IDLE;
210 			else
211 				flags |= SWT_OWEPREEMPT;
212 			mi_switch(flags, NULL);
213 			thread_unlock(td);
214 		}
215 	} else
216 		td->td_critnest--;
217 
218 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
219 	    (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
220 }
221 
222 /************************************************************************
223  * SYSTEM RUN QUEUE manipulations and tests				*
224  ************************************************************************/
225 /*
226  * Initialize a run structure.
227  */
228 void
229 runq_init(struct runq *rq)
230 {
231 	int i;
232 
233 	bzero(rq, sizeof *rq);
234 	for (i = 0; i < RQ_NQS; i++)
235 		TAILQ_INIT(&rq->rq_queues[i]);
236 }
237 
238 /*
239  * Clear the status bit of the queue corresponding to priority level pri,
240  * indicating that it is empty.
241  */
242 static __inline void
243 runq_clrbit(struct runq *rq, int pri)
244 {
245 	struct rqbits *rqb;
246 
247 	rqb = &rq->rq_status;
248 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
249 	    rqb->rqb_bits[RQB_WORD(pri)],
250 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
251 	    RQB_BIT(pri), RQB_WORD(pri));
252 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
253 }
254 
255 /*
256  * Find the index of the first non-empty run queue.  This is done by
257  * scanning the status bits, a set bit indicates a non-empty queue.
258  */
259 static __inline int
260 runq_findbit(struct runq *rq)
261 {
262 	struct rqbits *rqb;
263 	int pri;
264 	int i;
265 
266 	rqb = &rq->rq_status;
267 	for (i = 0; i < RQB_LEN; i++)
268 		if (rqb->rqb_bits[i]) {
269 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
270 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
271 			    rqb->rqb_bits[i], i, pri);
272 			return (pri);
273 		}
274 
275 	return (-1);
276 }
277 
278 static __inline int
279 runq_findbit_from(struct runq *rq, u_char pri)
280 {
281 	struct rqbits *rqb;
282 	rqb_word_t mask;
283 	int i;
284 
285 	/*
286 	 * Set the mask for the first word so we ignore priorities before 'pri'.
287 	 */
288 	mask = (rqb_word_t)-1 << (pri & (RQB_BPW - 1));
289 	rqb = &rq->rq_status;
290 again:
291 	for (i = RQB_WORD(pri); i < RQB_LEN; mask = -1, i++) {
292 		mask = rqb->rqb_bits[i] & mask;
293 		if (mask == 0)
294 			continue;
295 		pri = RQB_FFS(mask) + (i << RQB_L2BPW);
296 		CTR3(KTR_RUNQ, "runq_findbit_from: bits=%#x i=%d pri=%d",
297 		    mask, i, pri);
298 		return (pri);
299 	}
300 	if (pri == 0)
301 		return (-1);
302 	/*
303 	 * Wrap back around to the beginning of the list just once so we
304 	 * scan the whole thing.
305 	 */
306 	pri = 0;
307 	goto again;
308 }
309 
310 /*
311  * Set the status bit of the queue corresponding to priority level pri,
312  * indicating that it is non-empty.
313  */
314 static __inline void
315 runq_setbit(struct runq *rq, int pri)
316 {
317 	struct rqbits *rqb;
318 
319 	rqb = &rq->rq_status;
320 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
321 	    rqb->rqb_bits[RQB_WORD(pri)],
322 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
323 	    RQB_BIT(pri), RQB_WORD(pri));
324 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
325 }
326 
327 /*
328  * Add the thread to the queue specified by its priority, and set the
329  * corresponding status bit.
330  */
331 void
332 runq_add(struct runq *rq, struct thread *td, int flags)
333 {
334 	struct rqhead *rqh;
335 	int pri;
336 
337 	pri = td->td_priority / RQ_PPQ;
338 	td->td_rqindex = pri;
339 	runq_setbit(rq, pri);
340 	rqh = &rq->rq_queues[pri];
341 	CTR4(KTR_RUNQ, "runq_add: td=%p pri=%d %d rqh=%p",
342 	    td, td->td_priority, pri, rqh);
343 	if (flags & SRQ_PREEMPTED) {
344 		TAILQ_INSERT_HEAD(rqh, td, td_runq);
345 	} else {
346 		TAILQ_INSERT_TAIL(rqh, td, td_runq);
347 	}
348 }
349 
350 void
351 runq_add_pri(struct runq *rq, struct thread *td, u_char pri, int flags)
352 {
353 	struct rqhead *rqh;
354 
355 	KASSERT(pri < RQ_NQS, ("runq_add_pri: %d out of range", pri));
356 	td->td_rqindex = pri;
357 	runq_setbit(rq, pri);
358 	rqh = &rq->rq_queues[pri];
359 	CTR4(KTR_RUNQ, "runq_add_pri: td=%p pri=%d idx=%d rqh=%p",
360 	    td, td->td_priority, pri, rqh);
361 	if (flags & SRQ_PREEMPTED) {
362 		TAILQ_INSERT_HEAD(rqh, td, td_runq);
363 	} else {
364 		TAILQ_INSERT_TAIL(rqh, td, td_runq);
365 	}
366 }
367 /*
368  * Return true if there are runnable processes of any priority on the run
369  * queue, false otherwise.  Has no side effects, does not modify the run
370  * queue structure.
371  */
372 int
373 runq_check(struct runq *rq)
374 {
375 	struct rqbits *rqb;
376 	int i;
377 
378 	rqb = &rq->rq_status;
379 	for (i = 0; i < RQB_LEN; i++)
380 		if (rqb->rqb_bits[i]) {
381 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
382 			    rqb->rqb_bits[i], i);
383 			return (1);
384 		}
385 	CTR0(KTR_RUNQ, "runq_check: empty");
386 
387 	return (0);
388 }
389 
390 /*
391  * Find the highest priority process on the run queue.
392  */
393 struct thread *
394 runq_choose_fuzz(struct runq *rq, int fuzz)
395 {
396 	struct rqhead *rqh;
397 	struct thread *td;
398 	int pri;
399 
400 	while ((pri = runq_findbit(rq)) != -1) {
401 		rqh = &rq->rq_queues[pri];
402 		/* fuzz == 1 is normal.. 0 or less are ignored */
403 		if (fuzz > 1) {
404 			/*
405 			 * In the first couple of entries, check if
406 			 * there is one for our CPU as a preference.
407 			 */
408 			int count = fuzz;
409 			int cpu = PCPU_GET(cpuid);
410 			struct thread *td2;
411 			td2 = td = TAILQ_FIRST(rqh);
412 
413 			while (count-- && td2) {
414 				if (td2->td_lastcpu == cpu) {
415 					td = td2;
416 					break;
417 				}
418 				td2 = TAILQ_NEXT(td2, td_runq);
419 			}
420 		} else
421 			td = TAILQ_FIRST(rqh);
422 		KASSERT(td != NULL, ("runq_choose_fuzz: no proc on busy queue"));
423 		CTR3(KTR_RUNQ,
424 		    "runq_choose_fuzz: pri=%d thread=%p rqh=%p", pri, td, rqh);
425 		return (td);
426 	}
427 	CTR1(KTR_RUNQ, "runq_choose_fuzz: idleproc pri=%d", pri);
428 
429 	return (NULL);
430 }
431 
432 /*
433  * Find the highest priority process on the run queue.
434  */
435 struct thread *
436 runq_choose(struct runq *rq)
437 {
438 	struct rqhead *rqh;
439 	struct thread *td;
440 	int pri;
441 
442 	while ((pri = runq_findbit(rq)) != -1) {
443 		rqh = &rq->rq_queues[pri];
444 		td = TAILQ_FIRST(rqh);
445 		KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
446 		CTR3(KTR_RUNQ,
447 		    "runq_choose: pri=%d thread=%p rqh=%p", pri, td, rqh);
448 		return (td);
449 	}
450 	CTR1(KTR_RUNQ, "runq_choose: idlethread pri=%d", pri);
451 
452 	return (NULL);
453 }
454 
455 struct thread *
456 runq_choose_from(struct runq *rq, u_char idx)
457 {
458 	struct rqhead *rqh;
459 	struct thread *td;
460 	int pri;
461 
462 	if ((pri = runq_findbit_from(rq, idx)) != -1) {
463 		rqh = &rq->rq_queues[pri];
464 		td = TAILQ_FIRST(rqh);
465 		KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
466 		CTR4(KTR_RUNQ,
467 		    "runq_choose_from: pri=%d thread=%p idx=%d rqh=%p",
468 		    pri, td, td->td_rqindex, rqh);
469 		return (td);
470 	}
471 	CTR1(KTR_RUNQ, "runq_choose_from: idlethread pri=%d", pri);
472 
473 	return (NULL);
474 }
475 /*
476  * Remove the thread from the queue specified by its priority, and clear the
477  * corresponding status bit if the queue becomes empty.
478  * Caller must set state afterwards.
479  */
480 void
481 runq_remove(struct runq *rq, struct thread *td)
482 {
483 
484 	runq_remove_idx(rq, td, NULL);
485 }
486 
487 void
488 runq_remove_idx(struct runq *rq, struct thread *td, u_char *idx)
489 {
490 	struct rqhead *rqh;
491 	u_char pri;
492 
493 	KASSERT(td->td_flags & TDF_INMEM,
494 		("runq_remove_idx: thread swapped out"));
495 	pri = td->td_rqindex;
496 	KASSERT(pri < RQ_NQS, ("runq_remove_idx: Invalid index %d\n", pri));
497 	rqh = &rq->rq_queues[pri];
498 	CTR4(KTR_RUNQ, "runq_remove_idx: td=%p, pri=%d %d rqh=%p",
499 	    td, td->td_priority, pri, rqh);
500 	TAILQ_REMOVE(rqh, td, td_runq);
501 	if (TAILQ_EMPTY(rqh)) {
502 		CTR0(KTR_RUNQ, "runq_remove_idx: empty");
503 		runq_clrbit(rq, pri);
504 		if (idx != NULL && *idx == pri)
505 			*idx = (pri + 1) % RQ_NQS;
506 	}
507 }
508