xref: /freebsd/sys/kern/kern_synch.c (revision 206b73d0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_sched.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/condvar.h>
48 #include <sys/kdb.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/refcount.h>
56 #include <sys/sched.h>
57 #include <sys/sdt.h>
58 #include <sys/signalvar.h>
59 #include <sys/sleepqueue.h>
60 #include <sys/smp.h>
61 #include <sys/sx.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysproto.h>
64 #include <sys/vmmeter.h>
65 #ifdef KTRACE
66 #include <sys/uio.h>
67 #include <sys/ktrace.h>
68 #endif
69 
70 #include <machine/cpu.h>
71 
72 static void synch_setup(void *dummy);
73 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
74     NULL);
75 
76 int	hogticks;
77 static uint8_t pause_wchan[MAXCPU];
78 
79 static struct callout loadav_callout;
80 
81 struct loadavg averunnable =
82 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83 /*
84  * Constants for averages over 1, 5, and 15 minutes
85  * when sampling at 5 second intervals.
86  */
87 static fixpt_t cexp[3] = {
88 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91 };
92 
93 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
94 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
95 
96 static void	loadav(void *arg);
97 
98 SDT_PROVIDER_DECLARE(sched);
99 SDT_PROBE_DEFINE(sched, , , preempt);
100 
101 static void
102 sleepinit(void *unused)
103 {
104 
105 	hogticks = (hz / 10) * 2;	/* Default only. */
106 	init_sleepqueues();
107 }
108 
109 /*
110  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
111  * it is available.
112  */
113 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);
114 
115 /*
116  * General sleep call.  Suspends the current thread until a wakeup is
117  * performed on the specified identifier.  The thread will then be made
118  * runnable with the specified priority.  Sleeps at most sbt units of time
119  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
120  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
121  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
122  * signal becomes pending, ERESTART is returned if the current system
123  * call should be restarted if possible, and EINTR is returned if the system
124  * call should be interrupted by the signal (return EINTR).
125  *
126  * The lock argument is unlocked before the caller is suspended, and
127  * re-locked before _sleep() returns.  If priority includes the PDROP
128  * flag the lock is not re-locked before returning.
129  */
130 int
131 _sleep(void *ident, struct lock_object *lock, int priority,
132     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
133 {
134 	struct thread *td;
135 	struct lock_class *class;
136 	uintptr_t lock_state;
137 	int catch, pri, rval, sleepq_flags;
138 	WITNESS_SAVE_DECL(lock_witness);
139 
140 	td = curthread;
141 #ifdef KTRACE
142 	if (KTRPOINT(td, KTR_CSW))
143 		ktrcsw(1, 0, wmesg);
144 #endif
145 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
146 	    "Sleeping on \"%s\"", wmesg);
147 	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
148 	    ("sleeping without a lock"));
149 	KASSERT(ident != NULL, ("_sleep: NULL ident"));
150 	KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
151 	KASSERT(td->td_epochnest == 0, ("sleeping in an epoch section"));
152 	if (priority & PDROP)
153 		KASSERT(lock != NULL && lock != &Giant.lock_object,
154 		    ("PDROP requires a non-Giant lock"));
155 	if (lock != NULL)
156 		class = LOCK_CLASS(lock);
157 	else
158 		class = NULL;
159 
160 	if (SCHEDULER_STOPPED_TD(td)) {
161 		if (lock != NULL && priority & PDROP)
162 			class->lc_unlock(lock);
163 		return (0);
164 	}
165 	catch = priority & PCATCH;
166 	pri = priority & PRIMASK;
167 
168 	KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
169 
170 	if ((uint8_t *)ident >= &pause_wchan[0] &&
171 	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
172 		sleepq_flags = SLEEPQ_PAUSE;
173 	else
174 		sleepq_flags = SLEEPQ_SLEEP;
175 	if (catch)
176 		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
177 
178 	sleepq_lock(ident);
179 	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
180 	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
181 
182 	if (lock == &Giant.lock_object)
183 		mtx_assert(&Giant, MA_OWNED);
184 	DROP_GIANT();
185 	if (lock != NULL && lock != &Giant.lock_object &&
186 	    !(class->lc_flags & LC_SLEEPABLE)) {
187 		WITNESS_SAVE(lock, lock_witness);
188 		lock_state = class->lc_unlock(lock);
189 	} else
190 		/* GCC needs to follow the Yellow Brick Road */
191 		lock_state = -1;
192 
193 	/*
194 	 * We put ourselves on the sleep queue and start our timeout
195 	 * before calling thread_suspend_check, as we could stop there,
196 	 * and a wakeup or a SIGCONT (or both) could occur while we were
197 	 * stopped without resuming us.  Thus, we must be ready for sleep
198 	 * when cursig() is called.  If the wakeup happens while we're
199 	 * stopped, then td will no longer be on a sleep queue upon
200 	 * return from cursig().
201 	 */
202 	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
203 	if (sbt != 0)
204 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
205 	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
206 		sleepq_release(ident);
207 		WITNESS_SAVE(lock, lock_witness);
208 		lock_state = class->lc_unlock(lock);
209 		sleepq_lock(ident);
210 	}
211 	if (sbt != 0 && catch)
212 		rval = sleepq_timedwait_sig(ident, pri);
213 	else if (sbt != 0)
214 		rval = sleepq_timedwait(ident, pri);
215 	else if (catch)
216 		rval = sleepq_wait_sig(ident, pri);
217 	else {
218 		sleepq_wait(ident, pri);
219 		rval = 0;
220 	}
221 #ifdef KTRACE
222 	if (KTRPOINT(td, KTR_CSW))
223 		ktrcsw(0, 0, wmesg);
224 #endif
225 	PICKUP_GIANT();
226 	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
227 		class->lc_lock(lock, lock_state);
228 		WITNESS_RESTORE(lock, lock_witness);
229 	}
230 	return (rval);
231 }
232 
233 int
234 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
235     sbintime_t sbt, sbintime_t pr, int flags)
236 {
237 	struct thread *td;
238 	int rval;
239 	WITNESS_SAVE_DECL(mtx);
240 
241 	td = curthread;
242 	KASSERT(mtx != NULL, ("sleeping without a mutex"));
243 	KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
244 	KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
245 
246 	if (SCHEDULER_STOPPED_TD(td))
247 		return (0);
248 
249 	sleepq_lock(ident);
250 	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
251 	    td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
252 
253 	DROP_GIANT();
254 	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
255 	WITNESS_SAVE(&mtx->lock_object, mtx);
256 	mtx_unlock_spin(mtx);
257 
258 	/*
259 	 * We put ourselves on the sleep queue and start our timeout.
260 	 */
261 	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
262 	if (sbt != 0)
263 		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
264 
265 	/*
266 	 * Can't call ktrace with any spin locks held so it can lock the
267 	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
268 	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
269 	 * we handle those requests.  This is safe since we have placed our
270 	 * thread on the sleep queue already.
271 	 */
272 #ifdef KTRACE
273 	if (KTRPOINT(td, KTR_CSW)) {
274 		sleepq_release(ident);
275 		ktrcsw(1, 0, wmesg);
276 		sleepq_lock(ident);
277 	}
278 #endif
279 #ifdef WITNESS
280 	sleepq_release(ident);
281 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
282 	    wmesg);
283 	sleepq_lock(ident);
284 #endif
285 	if (sbt != 0)
286 		rval = sleepq_timedwait(ident, 0);
287 	else {
288 		sleepq_wait(ident, 0);
289 		rval = 0;
290 	}
291 #ifdef KTRACE
292 	if (KTRPOINT(td, KTR_CSW))
293 		ktrcsw(0, 0, wmesg);
294 #endif
295 	PICKUP_GIANT();
296 	mtx_lock_spin(mtx);
297 	WITNESS_RESTORE(&mtx->lock_object, mtx);
298 	return (rval);
299 }
300 
301 /*
302  * pause_sbt() delays the calling thread by the given signed binary
303  * time. During cold bootup, pause_sbt() uses the DELAY() function
304  * instead of the _sleep() function to do the waiting. The "sbt"
305  * argument must be greater than or equal to zero. A "sbt" value of
306  * zero is equivalent to a "sbt" value of one tick.
307  */
308 int
309 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
310 {
311 	KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));
312 
313 	/* silently convert invalid timeouts */
314 	if (sbt == 0)
315 		sbt = tick_sbt;
316 
317 	if ((cold && curthread == &thread0) || kdb_active ||
318 	    SCHEDULER_STOPPED()) {
319 		/*
320 		 * We delay one second at a time to avoid overflowing the
321 		 * system specific DELAY() function(s):
322 		 */
323 		while (sbt >= SBT_1S) {
324 			DELAY(1000000);
325 			sbt -= SBT_1S;
326 		}
327 		/* Do the delay remainder, if any */
328 		sbt = howmany(sbt, SBT_1US);
329 		if (sbt > 0)
330 			DELAY(sbt);
331 		return (EWOULDBLOCK);
332 	}
333 	return (_sleep(&pause_wchan[curcpu], NULL,
334 	    (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
335 }
336 
337 /*
338  * Potentially release the last reference for refcount.  Check for
339  * unlikely conditions and signal the caller as to whether it was
340  * the final ref.
341  */
342 bool
343 refcount_release_last(volatile u_int *count, u_int n, u_int old)
344 {
345 	u_int waiter;
346 
347 	waiter = old & REFCOUNT_WAITER;
348 	old = REFCOUNT_COUNT(old);
349 	if (__predict_false(n > old || REFCOUNT_SATURATED(old))) {
350 		/*
351 		 * Avoid multiple destructor invocations if underflow occurred.
352 		 * This is not perfect since the memory backing the containing
353 		 * object may already have been reallocated.
354 		 */
355 		_refcount_update_saturated(count);
356 		return (false);
357 	}
358 
359 	/*
360 	 * Attempt to atomically clear the waiter bit.  Wakeup waiters
361 	 * if we are successful.
362 	 */
363 	if (waiter != 0 && atomic_cmpset_int(count, REFCOUNT_WAITER, 0))
364 		wakeup(__DEVOLATILE(u_int *, count));
365 
366 	/*
367 	 * Last reference.  Signal the user to call the destructor.
368 	 *
369 	 * Ensure that the destructor sees all updates.  The fence_rel
370 	 * at the start of refcount_releasen synchronizes with this fence.
371 	 */
372 	atomic_thread_fence_acq();
373 	return (true);
374 }
375 
376 /*
377  * Wait for a refcount wakeup.  This does not guarantee that the ref is still
378  * zero on return and may be subject to transient wakeups.  Callers wanting
379  * a precise answer should use refcount_wait().
380  */
381 void
382 refcount_sleep(volatile u_int *count, const char *wmesg, int pri)
383 {
384 	void *wchan;
385 	u_int old;
386 
387 	if (REFCOUNT_COUNT(*count) == 0)
388 		return;
389 	wchan = __DEVOLATILE(void *, count);
390 	sleepq_lock(wchan);
391 	old = *count;
392 	for (;;) {
393 		if (REFCOUNT_COUNT(old) == 0) {
394 			sleepq_release(wchan);
395 			return;
396 		}
397 		if (old & REFCOUNT_WAITER)
398 			break;
399 		if (atomic_fcmpset_int(count, &old, old | REFCOUNT_WAITER))
400 			break;
401 	}
402 	sleepq_add(wchan, NULL, wmesg, 0, 0);
403 	sleepq_wait(wchan, pri);
404 }
405 
406 /*
407  * Make all threads sleeping on the specified identifier runnable.
408  */
409 void
410 wakeup(void *ident)
411 {
412 	int wakeup_swapper;
413 
414 	sleepq_lock(ident);
415 	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
416 	sleepq_release(ident);
417 	if (wakeup_swapper) {
418 		KASSERT(ident != &proc0,
419 		    ("wakeup and wakeup_swapper and proc0"));
420 		kick_proc0();
421 	}
422 }
423 
424 /*
425  * Make a thread sleeping on the specified identifier runnable.
426  * May wake more than one thread if a target thread is currently
427  * swapped out.
428  */
429 void
430 wakeup_one(void *ident)
431 {
432 	int wakeup_swapper;
433 
434 	sleepq_lock(ident);
435 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
436 	sleepq_release(ident);
437 	if (wakeup_swapper)
438 		kick_proc0();
439 }
440 
441 void
442 wakeup_any(void *ident)
443 {
444 	int wakeup_swapper;
445 
446 	sleepq_lock(ident);
447 	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR,
448 	    0, 0);
449 	sleepq_release(ident);
450 	if (wakeup_swapper)
451 		kick_proc0();
452 }
453 
454 static void
455 kdb_switch(void)
456 {
457 	thread_unlock(curthread);
458 	kdb_backtrace();
459 	kdb_reenter();
460 	panic("%s: did not reenter debugger", __func__);
461 }
462 
463 /*
464  * The machine independent parts of context switching.
465  */
466 void
467 mi_switch(int flags, struct thread *newtd)
468 {
469 	uint64_t runtime, new_switchtime;
470 	struct thread *td;
471 
472 	td = curthread;			/* XXX */
473 	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
474 	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
475 #ifdef INVARIANTS
476 	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
477 		mtx_assert(&Giant, MA_NOTOWNED);
478 #endif
479 	KASSERT(td->td_critnest == 1 || panicstr,
480 	    ("mi_switch: switch in a critical section"));
481 	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
482 	    ("mi_switch: switch must be voluntary or involuntary"));
483 	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
484 
485 	/*
486 	 * Don't perform context switches from the debugger.
487 	 */
488 	if (kdb_active)
489 		kdb_switch();
490 	if (SCHEDULER_STOPPED_TD(td))
491 		return;
492 	if (flags & SW_VOL) {
493 		td->td_ru.ru_nvcsw++;
494 		td->td_swvoltick = ticks;
495 	} else {
496 		td->td_ru.ru_nivcsw++;
497 		td->td_swinvoltick = ticks;
498 	}
499 #ifdef SCHED_STATS
500 	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
501 #endif
502 	/*
503 	 * Compute the amount of time during which the current
504 	 * thread was running, and add that to its total so far.
505 	 */
506 	new_switchtime = cpu_ticks();
507 	runtime = new_switchtime - PCPU_GET(switchtime);
508 	td->td_runtime += runtime;
509 	td->td_incruntime += runtime;
510 	PCPU_SET(switchtime, new_switchtime);
511 	td->td_generation++;	/* bump preempt-detect counter */
512 	VM_CNT_INC(v_swtch);
513 	PCPU_SET(switchticks, ticks);
514 	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
515 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
516 #ifdef KDTRACE_HOOKS
517 	if (SDT_PROBES_ENABLED() &&
518 	    ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
519 	    (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED)))
520 		SDT_PROBE0(sched, , , preempt);
521 #endif
522 	sched_switch(td, newtd, flags);
523 	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
524 	    td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
525 
526 	/*
527 	 * If the last thread was exiting, finish cleaning it up.
528 	 */
529 	if ((td = PCPU_GET(deadthread))) {
530 		PCPU_SET(deadthread, NULL);
531 		thread_stash(td);
532 	}
533 }
534 
535 /*
536  * Change thread state to be runnable, placing it on the run queue if
537  * it is in memory.  If it is swapped out, return true so our caller
538  * will know to awaken the swapper.
539  */
540 int
541 setrunnable(struct thread *td)
542 {
543 
544 	THREAD_LOCK_ASSERT(td, MA_OWNED);
545 	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
546 	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
547 	switch (td->td_state) {
548 	case TDS_RUNNING:
549 	case TDS_RUNQ:
550 		return (0);
551 	case TDS_INHIBITED:
552 		/*
553 		 * If we are only inhibited because we are swapped out
554 		 * then arange to swap in this process. Otherwise just return.
555 		 */
556 		if (td->td_inhibitors != TDI_SWAPPED)
557 			return (0);
558 		/* FALLTHROUGH */
559 	case TDS_CAN_RUN:
560 		break;
561 	default:
562 		printf("state is 0x%x", td->td_state);
563 		panic("setrunnable(2)");
564 	}
565 	if ((td->td_flags & TDF_INMEM) == 0) {
566 		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
567 			td->td_flags |= TDF_SWAPINREQ;
568 			return (1);
569 		}
570 	} else
571 		sched_wakeup(td);
572 	return (0);
573 }
574 
575 /*
576  * Compute a tenex style load average of a quantity on
577  * 1, 5 and 15 minute intervals.
578  */
579 static void
580 loadav(void *arg)
581 {
582 	int i, nrun;
583 	struct loadavg *avg;
584 
585 	nrun = sched_load();
586 	avg = &averunnable;
587 
588 	for (i = 0; i < 3; i++)
589 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
590 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
591 
592 	/*
593 	 * Schedule the next update to occur after 5 seconds, but add a
594 	 * random variation to avoid synchronisation with processes that
595 	 * run at regular intervals.
596 	 */
597 	callout_reset_sbt(&loadav_callout,
598 	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
599 	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
600 }
601 
602 /* ARGSUSED */
603 static void
604 synch_setup(void *dummy)
605 {
606 	callout_init(&loadav_callout, 1);
607 
608 	/* Kick off timeout driven events by calling first time. */
609 	loadav(NULL);
610 }
611 
612 int
613 should_yield(void)
614 {
615 
616 	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
617 }
618 
619 void
620 maybe_yield(void)
621 {
622 
623 	if (should_yield())
624 		kern_yield(PRI_USER);
625 }
626 
627 void
628 kern_yield(int prio)
629 {
630 	struct thread *td;
631 
632 	td = curthread;
633 	DROP_GIANT();
634 	thread_lock(td);
635 	if (prio == PRI_USER)
636 		prio = td->td_user_pri;
637 	if (prio >= 0)
638 		sched_prio(td, prio);
639 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
640 	thread_unlock(td);
641 	PICKUP_GIANT();
642 }
643 
644 /*
645  * General purpose yield system call.
646  */
647 int
648 sys_yield(struct thread *td, struct yield_args *uap)
649 {
650 
651 	thread_lock(td);
652 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
653 		sched_prio(td, PRI_MAX_TIMESHARE);
654 	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
655 	thread_unlock(td);
656 	td->td_retval[0] = 0;
657 	return (0);
658 }
659