xref: /freebsd/sys/kern/kern_tc.c (revision aa0a1e58)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12 
13 #include "opt_ntp.h"
14 
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23 
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP	200
31 
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37 
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41 	static u_int now;
42 
43 	return (++now);
44 }
45 
46 static struct timecounter dummy_timecounter = {
47 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49 
50 struct timehands {
51 	/* These fields must be initialized by the driver. */
52 	struct timecounter	*th_counter;
53 	int64_t			th_adjustment;
54 	uint64_t		th_scale;
55 	u_int	 		th_offset_count;
56 	struct bintime		th_offset;
57 	struct timeval		th_microtime;
58 	struct timespec		th_nanotime;
59 	/* Fields not to be copied in tc_windup start with th_generation. */
60 	volatile u_int		th_generation;
61 	struct timehands	*th_next;
62 };
63 
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75 	&dummy_timecounter,
76 	0,
77 	(uint64_t)-1 / 1000000,
78 	0,
79 	{1, 0},
80 	{0, 0},
81 	{0, 0},
82 	1,
83 	&th1
84 };
85 
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89 
90 int tc_min_ticktock_freq = 1;
91 
92 time_t time_second = 1;
93 time_t time_uptime = 1;
94 
95 struct bintime boottimebin;
96 struct timeval boottime;
97 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
98 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
99     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
100 
101 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
102 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
103 
104 static int timestepwarnings;
105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106     &timestepwarnings, 0, "Log time steps");
107 
108 static void tc_windup(void);
109 static void cpu_tick_calibrate(int);
110 
111 static int
112 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
113 {
114 #ifdef SCTL_MASK32
115 	int tv[2];
116 
117 	if (req->flags & SCTL_MASK32) {
118 		tv[0] = boottime.tv_sec;
119 		tv[1] = boottime.tv_usec;
120 		return SYSCTL_OUT(req, tv, sizeof(tv));
121 	} else
122 #endif
123 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
124 }
125 
126 static int
127 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
128 {
129 	u_int ncount;
130 	struct timecounter *tc = arg1;
131 
132 	ncount = tc->tc_get_timecount(tc);
133 	return sysctl_handle_int(oidp, &ncount, 0, req);
134 }
135 
136 static int
137 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
138 {
139 	uint64_t freq;
140 	struct timecounter *tc = arg1;
141 
142 	freq = tc->tc_frequency;
143 	return sysctl_handle_64(oidp, &freq, 0, req);
144 }
145 
146 /*
147  * Return the difference between the timehands' counter value now and what
148  * was when we copied it to the timehands' offset_count.
149  */
150 static __inline u_int
151 tc_delta(struct timehands *th)
152 {
153 	struct timecounter *tc;
154 
155 	tc = th->th_counter;
156 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
157 	    tc->tc_counter_mask);
158 }
159 
160 /*
161  * Functions for reading the time.  We have to loop until we are sure that
162  * the timehands that we operated on was not updated under our feet.  See
163  * the comment in <sys/time.h> for a description of these 12 functions.
164  */
165 
166 void
167 binuptime(struct bintime *bt)
168 {
169 	struct timehands *th;
170 	u_int gen;
171 
172 	do {
173 		th = timehands;
174 		gen = th->th_generation;
175 		*bt = th->th_offset;
176 		bintime_addx(bt, th->th_scale * tc_delta(th));
177 	} while (gen == 0 || gen != th->th_generation);
178 }
179 
180 void
181 nanouptime(struct timespec *tsp)
182 {
183 	struct bintime bt;
184 
185 	binuptime(&bt);
186 	bintime2timespec(&bt, tsp);
187 }
188 
189 void
190 microuptime(struct timeval *tvp)
191 {
192 	struct bintime bt;
193 
194 	binuptime(&bt);
195 	bintime2timeval(&bt, tvp);
196 }
197 
198 void
199 bintime(struct bintime *bt)
200 {
201 
202 	binuptime(bt);
203 	bintime_add(bt, &boottimebin);
204 }
205 
206 void
207 nanotime(struct timespec *tsp)
208 {
209 	struct bintime bt;
210 
211 	bintime(&bt);
212 	bintime2timespec(&bt, tsp);
213 }
214 
215 void
216 microtime(struct timeval *tvp)
217 {
218 	struct bintime bt;
219 
220 	bintime(&bt);
221 	bintime2timeval(&bt, tvp);
222 }
223 
224 void
225 getbinuptime(struct bintime *bt)
226 {
227 	struct timehands *th;
228 	u_int gen;
229 
230 	do {
231 		th = timehands;
232 		gen = th->th_generation;
233 		*bt = th->th_offset;
234 	} while (gen == 0 || gen != th->th_generation);
235 }
236 
237 void
238 getnanouptime(struct timespec *tsp)
239 {
240 	struct timehands *th;
241 	u_int gen;
242 
243 	do {
244 		th = timehands;
245 		gen = th->th_generation;
246 		bintime2timespec(&th->th_offset, tsp);
247 	} while (gen == 0 || gen != th->th_generation);
248 }
249 
250 void
251 getmicrouptime(struct timeval *tvp)
252 {
253 	struct timehands *th;
254 	u_int gen;
255 
256 	do {
257 		th = timehands;
258 		gen = th->th_generation;
259 		bintime2timeval(&th->th_offset, tvp);
260 	} while (gen == 0 || gen != th->th_generation);
261 }
262 
263 void
264 getbintime(struct bintime *bt)
265 {
266 	struct timehands *th;
267 	u_int gen;
268 
269 	do {
270 		th = timehands;
271 		gen = th->th_generation;
272 		*bt = th->th_offset;
273 	} while (gen == 0 || gen != th->th_generation);
274 	bintime_add(bt, &boottimebin);
275 }
276 
277 void
278 getnanotime(struct timespec *tsp)
279 {
280 	struct timehands *th;
281 	u_int gen;
282 
283 	do {
284 		th = timehands;
285 		gen = th->th_generation;
286 		*tsp = th->th_nanotime;
287 	} while (gen == 0 || gen != th->th_generation);
288 }
289 
290 void
291 getmicrotime(struct timeval *tvp)
292 {
293 	struct timehands *th;
294 	u_int gen;
295 
296 	do {
297 		th = timehands;
298 		gen = th->th_generation;
299 		*tvp = th->th_microtime;
300 	} while (gen == 0 || gen != th->th_generation);
301 }
302 
303 /*
304  * Initialize a new timecounter and possibly use it.
305  */
306 void
307 tc_init(struct timecounter *tc)
308 {
309 	u_int u;
310 	struct sysctl_oid *tc_root;
311 
312 	u = tc->tc_frequency / tc->tc_counter_mask;
313 	/* XXX: We need some margin here, 10% is a guess */
314 	u *= 11;
315 	u /= 10;
316 	if (u > hz && tc->tc_quality >= 0) {
317 		tc->tc_quality = -2000;
318 		if (bootverbose) {
319 			printf("Timecounter \"%s\" frequency %ju Hz",
320 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
321 			printf(" -- Insufficient hz, needs at least %u\n", u);
322 		}
323 	} else if (tc->tc_quality >= 0 || bootverbose) {
324 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
325 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
326 		    tc->tc_quality);
327 	}
328 
329 	tc->tc_next = timecounters;
330 	timecounters = tc;
331 	/*
332 	 * Set up sysctl tree for this counter.
333 	 */
334 	tc_root = SYSCTL_ADD_NODE(NULL,
335 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
336 	    CTLFLAG_RW, 0, "timecounter description");
337 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
338 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
339 	    "mask for implemented bits");
340 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
341 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
342 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
343 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
344 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
345 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
346 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
347 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
348 	    "goodness of time counter");
349 	/*
350 	 * Never automatically use a timecounter with negative quality.
351 	 * Even though we run on the dummy counter, switching here may be
352 	 * worse since this timecounter may not be monotonous.
353 	 */
354 	if (tc->tc_quality < 0)
355 		return;
356 	if (tc->tc_quality < timecounter->tc_quality)
357 		return;
358 	if (tc->tc_quality == timecounter->tc_quality &&
359 	    tc->tc_frequency < timecounter->tc_frequency)
360 		return;
361 	(void)tc->tc_get_timecount(tc);
362 	(void)tc->tc_get_timecount(tc);
363 	timecounter = tc;
364 }
365 
366 /* Report the frequency of the current timecounter. */
367 uint64_t
368 tc_getfrequency(void)
369 {
370 
371 	return (timehands->th_counter->tc_frequency);
372 }
373 
374 /*
375  * Step our concept of UTC.  This is done by modifying our estimate of
376  * when we booted.
377  * XXX: not locked.
378  */
379 void
380 tc_setclock(struct timespec *ts)
381 {
382 	struct timespec tbef, taft;
383 	struct bintime bt, bt2;
384 
385 	cpu_tick_calibrate(1);
386 	nanotime(&tbef);
387 	timespec2bintime(ts, &bt);
388 	binuptime(&bt2);
389 	bintime_sub(&bt, &bt2);
390 	bintime_add(&bt2, &boottimebin);
391 	boottimebin = bt;
392 	bintime2timeval(&bt, &boottime);
393 
394 	/* XXX fiddle all the little crinkly bits around the fiords... */
395 	tc_windup();
396 	nanotime(&taft);
397 	if (timestepwarnings) {
398 		log(LOG_INFO,
399 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
400 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
401 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
402 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
403 	}
404 	cpu_tick_calibrate(1);
405 }
406 
407 /*
408  * Initialize the next struct timehands in the ring and make
409  * it the active timehands.  Along the way we might switch to a different
410  * timecounter and/or do seconds processing in NTP.  Slightly magic.
411  */
412 static void
413 tc_windup(void)
414 {
415 	struct bintime bt;
416 	struct timehands *th, *tho;
417 	uint64_t scale;
418 	u_int delta, ncount, ogen;
419 	int i;
420 	time_t t;
421 
422 	/*
423 	 * Make the next timehands a copy of the current one, but do not
424 	 * overwrite the generation or next pointer.  While we update
425 	 * the contents, the generation must be zero.
426 	 */
427 	tho = timehands;
428 	th = tho->th_next;
429 	ogen = th->th_generation;
430 	th->th_generation = 0;
431 	bcopy(tho, th, offsetof(struct timehands, th_generation));
432 
433 	/*
434 	 * Capture a timecounter delta on the current timecounter and if
435 	 * changing timecounters, a counter value from the new timecounter.
436 	 * Update the offset fields accordingly.
437 	 */
438 	delta = tc_delta(th);
439 	if (th->th_counter != timecounter)
440 		ncount = timecounter->tc_get_timecount(timecounter);
441 	else
442 		ncount = 0;
443 	th->th_offset_count += delta;
444 	th->th_offset_count &= th->th_counter->tc_counter_mask;
445 	while (delta > th->th_counter->tc_frequency) {
446 		/* Eat complete unadjusted seconds. */
447 		delta -= th->th_counter->tc_frequency;
448 		th->th_offset.sec++;
449 	}
450 	if ((delta > th->th_counter->tc_frequency / 2) &&
451 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
452 		/* The product th_scale * delta just barely overflows. */
453 		th->th_offset.sec++;
454 	}
455 	bintime_addx(&th->th_offset, th->th_scale * delta);
456 
457 	/*
458 	 * Hardware latching timecounters may not generate interrupts on
459 	 * PPS events, so instead we poll them.  There is a finite risk that
460 	 * the hardware might capture a count which is later than the one we
461 	 * got above, and therefore possibly in the next NTP second which might
462 	 * have a different rate than the current NTP second.  It doesn't
463 	 * matter in practice.
464 	 */
465 	if (tho->th_counter->tc_poll_pps)
466 		tho->th_counter->tc_poll_pps(tho->th_counter);
467 
468 	/*
469 	 * Deal with NTP second processing.  The for loop normally
470 	 * iterates at most once, but in extreme situations it might
471 	 * keep NTP sane if timeouts are not run for several seconds.
472 	 * At boot, the time step can be large when the TOD hardware
473 	 * has been read, so on really large steps, we call
474 	 * ntp_update_second only twice.  We need to call it twice in
475 	 * case we missed a leap second.
476 	 */
477 	bt = th->th_offset;
478 	bintime_add(&bt, &boottimebin);
479 	i = bt.sec - tho->th_microtime.tv_sec;
480 	if (i > LARGE_STEP)
481 		i = 2;
482 	for (; i > 0; i--) {
483 		t = bt.sec;
484 		ntp_update_second(&th->th_adjustment, &bt.sec);
485 		if (bt.sec != t)
486 			boottimebin.sec += bt.sec - t;
487 	}
488 	/* Update the UTC timestamps used by the get*() functions. */
489 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
490 	bintime2timeval(&bt, &th->th_microtime);
491 	bintime2timespec(&bt, &th->th_nanotime);
492 
493 	/* Now is a good time to change timecounters. */
494 	if (th->th_counter != timecounter) {
495 		th->th_counter = timecounter;
496 		th->th_offset_count = ncount;
497 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
498 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
499 	}
500 
501 	/*-
502 	 * Recalculate the scaling factor.  We want the number of 1/2^64
503 	 * fractions of a second per period of the hardware counter, taking
504 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
505 	 * processing provides us with.
506 	 *
507 	 * The th_adjustment is nanoseconds per second with 32 bit binary
508 	 * fraction and we want 64 bit binary fraction of second:
509 	 *
510 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
511 	 *
512 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
513 	 * we can only multiply by about 850 without overflowing, that
514 	 * leaves no suitably precise fractions for multiply before divide.
515 	 *
516 	 * Divide before multiply with a fraction of 2199/512 results in a
517 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
518 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
519  	 *
520 	 * We happily sacrifice the lowest of the 64 bits of our result
521 	 * to the goddess of code clarity.
522 	 *
523 	 */
524 	scale = (uint64_t)1 << 63;
525 	scale += (th->th_adjustment / 1024) * 2199;
526 	scale /= th->th_counter->tc_frequency;
527 	th->th_scale = scale * 2;
528 
529 	/*
530 	 * Now that the struct timehands is again consistent, set the new
531 	 * generation number, making sure to not make it zero.
532 	 */
533 	if (++ogen == 0)
534 		ogen = 1;
535 	th->th_generation = ogen;
536 
537 	/* Go live with the new struct timehands. */
538 	time_second = th->th_microtime.tv_sec;
539 	time_uptime = th->th_offset.sec;
540 	timehands = th;
541 }
542 
543 /* Report or change the active timecounter hardware. */
544 static int
545 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
546 {
547 	char newname[32];
548 	struct timecounter *newtc, *tc;
549 	int error;
550 
551 	tc = timecounter;
552 	strlcpy(newname, tc->tc_name, sizeof(newname));
553 
554 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
555 	if (error != 0 || req->newptr == NULL ||
556 	    strcmp(newname, tc->tc_name) == 0)
557 		return (error);
558 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
559 		if (strcmp(newname, newtc->tc_name) != 0)
560 			continue;
561 
562 		/* Warm up new timecounter. */
563 		(void)newtc->tc_get_timecount(newtc);
564 		(void)newtc->tc_get_timecount(newtc);
565 
566 		timecounter = newtc;
567 		return (0);
568 	}
569 	return (EINVAL);
570 }
571 
572 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
573     0, 0, sysctl_kern_timecounter_hardware, "A",
574     "Timecounter hardware selected");
575 
576 
577 /* Report or change the active timecounter hardware. */
578 static int
579 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
580 {
581 	char buf[32], *spc;
582 	struct timecounter *tc;
583 	int error;
584 
585 	spc = "";
586 	error = 0;
587 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
588 		sprintf(buf, "%s%s(%d)",
589 		    spc, tc->tc_name, tc->tc_quality);
590 		error = SYSCTL_OUT(req, buf, strlen(buf));
591 		spc = " ";
592 	}
593 	return (error);
594 }
595 
596 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
597     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
598 
599 /*
600  * RFC 2783 PPS-API implementation.
601  */
602 
603 int
604 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
605 {
606 	pps_params_t *app;
607 	struct pps_fetch_args *fapi;
608 #ifdef PPS_SYNC
609 	struct pps_kcbind_args *kapi;
610 #endif
611 
612 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
613 	switch (cmd) {
614 	case PPS_IOC_CREATE:
615 		return (0);
616 	case PPS_IOC_DESTROY:
617 		return (0);
618 	case PPS_IOC_SETPARAMS:
619 		app = (pps_params_t *)data;
620 		if (app->mode & ~pps->ppscap)
621 			return (EINVAL);
622 		pps->ppsparam = *app;
623 		return (0);
624 	case PPS_IOC_GETPARAMS:
625 		app = (pps_params_t *)data;
626 		*app = pps->ppsparam;
627 		app->api_version = PPS_API_VERS_1;
628 		return (0);
629 	case PPS_IOC_GETCAP:
630 		*(int*)data = pps->ppscap;
631 		return (0);
632 	case PPS_IOC_FETCH:
633 		fapi = (struct pps_fetch_args *)data;
634 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
635 			return (EINVAL);
636 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
637 			return (EOPNOTSUPP);
638 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
639 		fapi->pps_info_buf = pps->ppsinfo;
640 		return (0);
641 	case PPS_IOC_KCBIND:
642 #ifdef PPS_SYNC
643 		kapi = (struct pps_kcbind_args *)data;
644 		/* XXX Only root should be able to do this */
645 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
646 			return (EINVAL);
647 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
648 			return (EINVAL);
649 		if (kapi->edge & ~pps->ppscap)
650 			return (EINVAL);
651 		pps->kcmode = kapi->edge;
652 		return (0);
653 #else
654 		return (EOPNOTSUPP);
655 #endif
656 	default:
657 		return (ENOIOCTL);
658 	}
659 }
660 
661 void
662 pps_init(struct pps_state *pps)
663 {
664 	pps->ppscap |= PPS_TSFMT_TSPEC;
665 	if (pps->ppscap & PPS_CAPTUREASSERT)
666 		pps->ppscap |= PPS_OFFSETASSERT;
667 	if (pps->ppscap & PPS_CAPTURECLEAR)
668 		pps->ppscap |= PPS_OFFSETCLEAR;
669 }
670 
671 void
672 pps_capture(struct pps_state *pps)
673 {
674 	struct timehands *th;
675 
676 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
677 	th = timehands;
678 	pps->capgen = th->th_generation;
679 	pps->capth = th;
680 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
681 	if (pps->capgen != th->th_generation)
682 		pps->capgen = 0;
683 }
684 
685 void
686 pps_event(struct pps_state *pps, int event)
687 {
688 	struct bintime bt;
689 	struct timespec ts, *tsp, *osp;
690 	u_int tcount, *pcount;
691 	int foff, fhard;
692 	pps_seq_t *pseq;
693 
694 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
695 	/* If the timecounter was wound up underneath us, bail out. */
696 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
697 		return;
698 
699 	/* Things would be easier with arrays. */
700 	if (event == PPS_CAPTUREASSERT) {
701 		tsp = &pps->ppsinfo.assert_timestamp;
702 		osp = &pps->ppsparam.assert_offset;
703 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
704 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
705 		pcount = &pps->ppscount[0];
706 		pseq = &pps->ppsinfo.assert_sequence;
707 	} else {
708 		tsp = &pps->ppsinfo.clear_timestamp;
709 		osp = &pps->ppsparam.clear_offset;
710 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
711 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
712 		pcount = &pps->ppscount[1];
713 		pseq = &pps->ppsinfo.clear_sequence;
714 	}
715 
716 	/*
717 	 * If the timecounter changed, we cannot compare the count values, so
718 	 * we have to drop the rest of the PPS-stuff until the next event.
719 	 */
720 	if (pps->ppstc != pps->capth->th_counter) {
721 		pps->ppstc = pps->capth->th_counter;
722 		*pcount = pps->capcount;
723 		pps->ppscount[2] = pps->capcount;
724 		return;
725 	}
726 
727 	/* Convert the count to a timespec. */
728 	tcount = pps->capcount - pps->capth->th_offset_count;
729 	tcount &= pps->capth->th_counter->tc_counter_mask;
730 	bt = pps->capth->th_offset;
731 	bintime_addx(&bt, pps->capth->th_scale * tcount);
732 	bintime_add(&bt, &boottimebin);
733 	bintime2timespec(&bt, &ts);
734 
735 	/* If the timecounter was wound up underneath us, bail out. */
736 	if (pps->capgen != pps->capth->th_generation)
737 		return;
738 
739 	*pcount = pps->capcount;
740 	(*pseq)++;
741 	*tsp = ts;
742 
743 	if (foff) {
744 		timespecadd(tsp, osp);
745 		if (tsp->tv_nsec < 0) {
746 			tsp->tv_nsec += 1000000000;
747 			tsp->tv_sec -= 1;
748 		}
749 	}
750 #ifdef PPS_SYNC
751 	if (fhard) {
752 		uint64_t scale;
753 
754 		/*
755 		 * Feed the NTP PLL/FLL.
756 		 * The FLL wants to know how many (hardware) nanoseconds
757 		 * elapsed since the previous event.
758 		 */
759 		tcount = pps->capcount - pps->ppscount[2];
760 		pps->ppscount[2] = pps->capcount;
761 		tcount &= pps->capth->th_counter->tc_counter_mask;
762 		scale = (uint64_t)1 << 63;
763 		scale /= pps->capth->th_counter->tc_frequency;
764 		scale *= 2;
765 		bt.sec = 0;
766 		bt.frac = 0;
767 		bintime_addx(&bt, scale * tcount);
768 		bintime2timespec(&bt, &ts);
769 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
770 	}
771 #endif
772 }
773 
774 /*
775  * Timecounters need to be updated every so often to prevent the hardware
776  * counter from overflowing.  Updating also recalculates the cached values
777  * used by the get*() family of functions, so their precision depends on
778  * the update frequency.
779  */
780 
781 static int tc_tick;
782 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
783     "Approximate number of hardclock ticks in a millisecond");
784 
785 void
786 tc_ticktock(int cnt)
787 {
788 	static int count;
789 
790 	count += cnt;
791 	if (count < tc_tick)
792 		return;
793 	count = 0;
794 	tc_windup();
795 }
796 
797 static void
798 inittimecounter(void *dummy)
799 {
800 	u_int p;
801 
802 	/*
803 	 * Set the initial timeout to
804 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
805 	 * People should probably not use the sysctl to set the timeout
806 	 * to smaller than its inital value, since that value is the
807 	 * smallest reasonable one.  If they want better timestamps they
808 	 * should use the non-"get"* functions.
809 	 */
810 	if (hz > 1000)
811 		tc_tick = (hz + 500) / 1000;
812 	else
813 		tc_tick = 1;
814 	p = (tc_tick * 1000000) / hz;
815 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
816 
817 	/* warm up new timecounter (again) and get rolling. */
818 	(void)timecounter->tc_get_timecount(timecounter);
819 	(void)timecounter->tc_get_timecount(timecounter);
820 	tc_windup();
821 }
822 
823 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
824 
825 /* Cpu tick handling -------------------------------------------------*/
826 
827 static int cpu_tick_variable;
828 static uint64_t	cpu_tick_frequency;
829 
830 static uint64_t
831 tc_cpu_ticks(void)
832 {
833 	static uint64_t base;
834 	static unsigned last;
835 	unsigned u;
836 	struct timecounter *tc;
837 
838 	tc = timehands->th_counter;
839 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
840 	if (u < last)
841 		base += (uint64_t)tc->tc_counter_mask + 1;
842 	last = u;
843 	return (u + base);
844 }
845 
846 void
847 cpu_tick_calibration(void)
848 {
849 	static time_t last_calib;
850 
851 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
852 		cpu_tick_calibrate(0);
853 		last_calib = time_uptime;
854 	}
855 }
856 
857 /*
858  * This function gets called every 16 seconds on only one designated
859  * CPU in the system from hardclock() via cpu_tick_calibration()().
860  *
861  * Whenever the real time clock is stepped we get called with reset=1
862  * to make sure we handle suspend/resume and similar events correctly.
863  */
864 
865 static void
866 cpu_tick_calibrate(int reset)
867 {
868 	static uint64_t c_last;
869 	uint64_t c_this, c_delta;
870 	static struct bintime  t_last;
871 	struct bintime t_this, t_delta;
872 	uint32_t divi;
873 
874 	if (reset) {
875 		/* The clock was stepped, abort & reset */
876 		t_last.sec = 0;
877 		return;
878 	}
879 
880 	/* we don't calibrate fixed rate cputicks */
881 	if (!cpu_tick_variable)
882 		return;
883 
884 	getbinuptime(&t_this);
885 	c_this = cpu_ticks();
886 	if (t_last.sec != 0) {
887 		c_delta = c_this - c_last;
888 		t_delta = t_this;
889 		bintime_sub(&t_delta, &t_last);
890 		/*
891 		 * Headroom:
892 		 * 	2^(64-20) / 16[s] =
893 		 * 	2^(44) / 16[s] =
894 		 * 	17.592.186.044.416 / 16 =
895 		 * 	1.099.511.627.776 [Hz]
896 		 */
897 		divi = t_delta.sec << 20;
898 		divi |= t_delta.frac >> (64 - 20);
899 		c_delta <<= 20;
900 		c_delta /= divi;
901 		if (c_delta > cpu_tick_frequency) {
902 			if (0 && bootverbose)
903 				printf("cpu_tick increased to %ju Hz\n",
904 				    c_delta);
905 			cpu_tick_frequency = c_delta;
906 		}
907 	}
908 	c_last = c_this;
909 	t_last = t_this;
910 }
911 
912 void
913 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
914 {
915 
916 	if (func == NULL) {
917 		cpu_ticks = tc_cpu_ticks;
918 	} else {
919 		cpu_tick_frequency = freq;
920 		cpu_tick_variable = var;
921 		cpu_ticks = func;
922 	}
923 }
924 
925 uint64_t
926 cpu_tickrate(void)
927 {
928 
929 	if (cpu_ticks == tc_cpu_ticks)
930 		return (tc_getfrequency());
931 	return (cpu_tick_frequency);
932 }
933 
934 /*
935  * We need to be slightly careful converting cputicks to microseconds.
936  * There is plenty of margin in 64 bits of microseconds (half a million
937  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
938  * before divide conversion (to retain precision) we find that the
939  * margin shrinks to 1.5 hours (one millionth of 146y).
940  * With a three prong approach we never lose significant bits, no
941  * matter what the cputick rate and length of timeinterval is.
942  */
943 
944 uint64_t
945 cputick2usec(uint64_t tick)
946 {
947 
948 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
949 		return (tick / (cpu_tickrate() / 1000000LL));
950 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
951 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
952 	else
953 		return ((tick * 1000000LL) / cpu_tickrate());
954 }
955 
956 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
957