xref: /freebsd/sys/kern/kern_thread.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef	HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62 
63 #include <security/audit/audit.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69 
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x478,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x530,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3d0,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3e8,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x2ec,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x338,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x27c,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x290,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x31c,
118     "struct proc KBI p_emuldata");
119 #endif
120 
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123 
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128 
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132 
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136 
137 #define TID_BUFFER_SIZE	1024
138 
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144 
145 struct	tidhashhead *tidhashtbl;
146 u_long	tidhash;
147 struct	rwlock tidhash_lock;
148 
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153 
154 static lwpid_t
155 tid_alloc(void)
156 {
157 	lwpid_t	tid;
158 
159 	tid = alloc_unr(tid_unrhdr);
160 	if (tid != -1)
161 		return (tid);
162 	mtx_lock(&tid_lock);
163 	if (tid_head == tid_tail) {
164 		mtx_unlock(&tid_lock);
165 		return (-1);
166 	}
167 	tid = tid_buffer[tid_head];
168 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169 	mtx_unlock(&tid_lock);
170 	return (tid);
171 }
172 
173 static void
174 tid_free(lwpid_t tid)
175 {
176 	lwpid_t tmp_tid = -1;
177 
178 	mtx_lock(&tid_lock);
179 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180 		tmp_tid = tid_buffer[tid_head];
181 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182 	}
183 	tid_buffer[tid_tail] = tid;
184 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185 	mtx_unlock(&tid_lock);
186 	if (tmp_tid != -1)
187 		free_unr(tid_unrhdr, tmp_tid);
188 }
189 
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196 	struct thread	*td;
197 
198 	td = (struct thread *)mem;
199 	td->td_state = TDS_INACTIVE;
200 	td->td_lastcpu = td->td_oncpu = NOCPU;
201 
202 	td->td_tid = tid_alloc();
203 
204 	/*
205 	 * Note that td_critnest begins life as 1 because the thread is not
206 	 * running and is thereby implicitly waiting to be on the receiving
207 	 * end of a context switch.
208 	 */
209 	td->td_critnest = 1;
210 	td->td_lend_user_pri = PRI_MAX;
211 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213 	audit_thread_alloc(td);
214 #endif
215 	umtx_thread_alloc(td);
216 	return (0);
217 }
218 
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225 	struct thread *td;
226 
227 	td = (struct thread *)mem;
228 
229 #ifdef INVARIANTS
230 	/* Verify that this thread is in a safe state to free. */
231 	switch (td->td_state) {
232 	case TDS_INHIBITED:
233 	case TDS_RUNNING:
234 	case TDS_CAN_RUN:
235 	case TDS_RUNQ:
236 		/*
237 		 * We must never unlink a thread that is in one of
238 		 * these states, because it is currently active.
239 		 */
240 		panic("bad state for thread unlinking");
241 		/* NOTREACHED */
242 	case TDS_INACTIVE:
243 		break;
244 	default:
245 		panic("bad thread state");
246 		/* NOTREACHED */
247 	}
248 #endif
249 #ifdef AUDIT
250 	audit_thread_free(td);
251 #endif
252 	/* Free all OSD associated to this thread. */
253 	osd_thread_exit(td);
254 	td_softdep_cleanup(td);
255 	MPASS(td->td_su == NULL);
256 
257 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258 	tid_free(td->td_tid);
259 }
260 
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267 	struct thread *td;
268 
269 	td = (struct thread *)mem;
270 
271 	td->td_sleepqueue = sleepq_alloc();
272 	td->td_turnstile = turnstile_alloc();
273 	td->td_rlqe = NULL;
274 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275 	umtx_thread_init(td);
276 	epoch_thread_init(td);
277 	td->td_kstack = 0;
278 	td->td_sel = NULL;
279 	return (0);
280 }
281 
282 /*
283  * Tear down type-stable parts of a thread (just before being discarded).
284  */
285 static void
286 thread_fini(void *mem, int size)
287 {
288 	struct thread *td;
289 
290 	td = (struct thread *)mem;
291 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
292 	rlqentry_free(td->td_rlqe);
293 	turnstile_free(td->td_turnstile);
294 	sleepq_free(td->td_sleepqueue);
295 	umtx_thread_fini(td);
296 	epoch_thread_fini(td);
297 	seltdfini(td);
298 }
299 
300 /*
301  * For a newly created process,
302  * link up all the structures and its initial threads etc.
303  * called from:
304  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
305  * proc_dtor() (should go away)
306  * proc_init()
307  */
308 void
309 proc_linkup0(struct proc *p, struct thread *td)
310 {
311 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
312 	proc_linkup(p, td);
313 }
314 
315 void
316 proc_linkup(struct proc *p, struct thread *td)
317 {
318 
319 	sigqueue_init(&p->p_sigqueue, p);
320 	p->p_ksi = ksiginfo_alloc(1);
321 	if (p->p_ksi != NULL) {
322 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
323 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
324 	}
325 	LIST_INIT(&p->p_mqnotifier);
326 	p->p_numthreads = 0;
327 	thread_link(td, p);
328 }
329 
330 /*
331  * Initialize global thread allocation resources.
332  */
333 void
334 threadinit(void)
335 {
336 
337 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
338 
339 	/*
340 	 * pid_max cannot be greater than PID_MAX.
341 	 * leave one number for thread0.
342 	 */
343 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
344 
345 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
346 	    thread_ctor, thread_dtor, thread_init, thread_fini,
347 	    32 - 1, UMA_ZONE_NOFREE);
348 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
349 	rw_init(&tidhash_lock, "tidhash");
350 }
351 
352 /*
353  * Place an unused thread on the zombie list.
354  * Use the slpq as that must be unused by now.
355  */
356 void
357 thread_zombie(struct thread *td)
358 {
359 	mtx_lock_spin(&zombie_lock);
360 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
361 	mtx_unlock_spin(&zombie_lock);
362 }
363 
364 /*
365  * Release a thread that has exited after cpu_throw().
366  */
367 void
368 thread_stash(struct thread *td)
369 {
370 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
371 	thread_zombie(td);
372 }
373 
374 /*
375  * Reap zombie resources.
376  */
377 void
378 thread_reap(void)
379 {
380 	struct thread *td_first, *td_next;
381 
382 	/*
383 	 * Don't even bother to lock if none at this instant,
384 	 * we really don't care about the next instant.
385 	 */
386 	if (!TAILQ_EMPTY(&zombie_threads)) {
387 		mtx_lock_spin(&zombie_lock);
388 		td_first = TAILQ_FIRST(&zombie_threads);
389 		if (td_first)
390 			TAILQ_INIT(&zombie_threads);
391 		mtx_unlock_spin(&zombie_lock);
392 		while (td_first) {
393 			td_next = TAILQ_NEXT(td_first, td_slpq);
394 			thread_cow_free(td_first);
395 			thread_free(td_first);
396 			td_first = td_next;
397 		}
398 	}
399 }
400 
401 /*
402  * Allocate a thread.
403  */
404 struct thread *
405 thread_alloc(int pages)
406 {
407 	struct thread *td;
408 
409 	thread_reap(); /* check if any zombies to get */
410 
411 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
412 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
413 	if (!vm_thread_new(td, pages)) {
414 		uma_zfree(thread_zone, td);
415 		return (NULL);
416 	}
417 	cpu_thread_alloc(td);
418 	return (td);
419 }
420 
421 int
422 thread_alloc_stack(struct thread *td, int pages)
423 {
424 
425 	KASSERT(td->td_kstack == 0,
426 	    ("thread_alloc_stack called on a thread with kstack"));
427 	if (!vm_thread_new(td, pages))
428 		return (0);
429 	cpu_thread_alloc(td);
430 	return (1);
431 }
432 
433 /*
434  * Deallocate a thread.
435  */
436 void
437 thread_free(struct thread *td)
438 {
439 
440 	lock_profile_thread_exit(td);
441 	if (td->td_cpuset)
442 		cpuset_rel(td->td_cpuset);
443 	td->td_cpuset = NULL;
444 	cpu_thread_free(td);
445 	if (td->td_kstack != 0)
446 		vm_thread_dispose(td);
447 	callout_drain(&td->td_slpcallout);
448 	uma_zfree(thread_zone, td);
449 }
450 
451 void
452 thread_cow_get_proc(struct thread *newtd, struct proc *p)
453 {
454 
455 	PROC_LOCK_ASSERT(p, MA_OWNED);
456 	newtd->td_ucred = crhold(p->p_ucred);
457 	newtd->td_limit = lim_hold(p->p_limit);
458 	newtd->td_cowgen = p->p_cowgen;
459 }
460 
461 void
462 thread_cow_get(struct thread *newtd, struct thread *td)
463 {
464 
465 	newtd->td_ucred = crhold(td->td_ucred);
466 	newtd->td_limit = lim_hold(td->td_limit);
467 	newtd->td_cowgen = td->td_cowgen;
468 }
469 
470 void
471 thread_cow_free(struct thread *td)
472 {
473 
474 	if (td->td_ucred != NULL)
475 		crfree(td->td_ucred);
476 	if (td->td_limit != NULL)
477 		lim_free(td->td_limit);
478 }
479 
480 void
481 thread_cow_update(struct thread *td)
482 {
483 	struct proc *p;
484 	struct ucred *oldcred;
485 	struct plimit *oldlimit;
486 
487 	p = td->td_proc;
488 	oldcred = NULL;
489 	oldlimit = NULL;
490 	PROC_LOCK(p);
491 	if (td->td_ucred != p->p_ucred) {
492 		oldcred = td->td_ucred;
493 		td->td_ucred = crhold(p->p_ucred);
494 	}
495 	if (td->td_limit != p->p_limit) {
496 		oldlimit = td->td_limit;
497 		td->td_limit = lim_hold(p->p_limit);
498 	}
499 	td->td_cowgen = p->p_cowgen;
500 	PROC_UNLOCK(p);
501 	if (oldcred != NULL)
502 		crfree(oldcred);
503 	if (oldlimit != NULL)
504 		lim_free(oldlimit);
505 }
506 
507 /*
508  * Discard the current thread and exit from its context.
509  * Always called with scheduler locked.
510  *
511  * Because we can't free a thread while we're operating under its context,
512  * push the current thread into our CPU's deadthread holder. This means
513  * we needn't worry about someone else grabbing our context before we
514  * do a cpu_throw().
515  */
516 void
517 thread_exit(void)
518 {
519 	uint64_t runtime, new_switchtime;
520 	struct thread *td;
521 	struct thread *td2;
522 	struct proc *p;
523 	int wakeup_swapper;
524 
525 	td = curthread;
526 	p = td->td_proc;
527 
528 	PROC_SLOCK_ASSERT(p, MA_OWNED);
529 	mtx_assert(&Giant, MA_NOTOWNED);
530 
531 	PROC_LOCK_ASSERT(p, MA_OWNED);
532 	KASSERT(p != NULL, ("thread exiting without a process"));
533 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
534 	    (long)p->p_pid, td->td_name);
535 	SDT_PROBE0(proc, , , lwp__exit);
536 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
537 
538 	/*
539 	 * drop FPU & debug register state storage, or any other
540 	 * architecture specific resources that
541 	 * would not be on a new untouched process.
542 	 */
543 	cpu_thread_exit(td);
544 
545 	/*
546 	 * The last thread is left attached to the process
547 	 * So that the whole bundle gets recycled. Skip
548 	 * all this stuff if we never had threads.
549 	 * EXIT clears all sign of other threads when
550 	 * it goes to single threading, so the last thread always
551 	 * takes the short path.
552 	 */
553 	if (p->p_flag & P_HADTHREADS) {
554 		if (p->p_numthreads > 1) {
555 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
556 			thread_unlink(td);
557 			td2 = FIRST_THREAD_IN_PROC(p);
558 			sched_exit_thread(td2, td);
559 
560 			/*
561 			 * The test below is NOT true if we are the
562 			 * sole exiting thread. P_STOPPED_SINGLE is unset
563 			 * in exit1() after it is the only survivor.
564 			 */
565 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
566 				if (p->p_numthreads == p->p_suspcount) {
567 					thread_lock(p->p_singlethread);
568 					wakeup_swapper = thread_unsuspend_one(
569 						p->p_singlethread, p, false);
570 					thread_unlock(p->p_singlethread);
571 					if (wakeup_swapper)
572 						kick_proc0();
573 				}
574 			}
575 
576 			PCPU_SET(deadthread, td);
577 		} else {
578 			/*
579 			 * The last thread is exiting.. but not through exit()
580 			 */
581 			panic ("thread_exit: Last thread exiting on its own");
582 		}
583 	}
584 #ifdef	HWPMC_HOOKS
585 	/*
586 	 * If this thread is part of a process that is being tracked by hwpmc(4),
587 	 * inform the module of the thread's impending exit.
588 	 */
589 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
590 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
591 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
592 	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
593 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
594 #endif
595 	PROC_UNLOCK(p);
596 	PROC_STATLOCK(p);
597 	thread_lock(td);
598 	PROC_SUNLOCK(p);
599 
600 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
601 	new_switchtime = cpu_ticks();
602 	runtime = new_switchtime - PCPU_GET(switchtime);
603 	td->td_runtime += runtime;
604 	td->td_incruntime += runtime;
605 	PCPU_SET(switchtime, new_switchtime);
606 	PCPU_SET(switchticks, ticks);
607 	VM_CNT_INC(v_swtch);
608 
609 	/* Save our resource usage in our process. */
610 	td->td_ru.ru_nvcsw++;
611 	ruxagg(p, td);
612 	rucollect(&p->p_ru, &td->td_ru);
613 	PROC_STATUNLOCK(p);
614 
615 	td->td_state = TDS_INACTIVE;
616 #ifdef WITNESS
617 	witness_thread_exit(td);
618 #endif
619 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
620 	sched_throw(td);
621 	panic("I'm a teapot!");
622 	/* NOTREACHED */
623 }
624 
625 /*
626  * Do any thread specific cleanups that may be needed in wait()
627  * called with Giant, proc and schedlock not held.
628  */
629 void
630 thread_wait(struct proc *p)
631 {
632 	struct thread *td;
633 
634 	mtx_assert(&Giant, MA_NOTOWNED);
635 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
636 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
637 	td = FIRST_THREAD_IN_PROC(p);
638 	/* Lock the last thread so we spin until it exits cpu_throw(). */
639 	thread_lock(td);
640 	thread_unlock(td);
641 	lock_profile_thread_exit(td);
642 	cpuset_rel(td->td_cpuset);
643 	td->td_cpuset = NULL;
644 	cpu_thread_clean(td);
645 	thread_cow_free(td);
646 	callout_drain(&td->td_slpcallout);
647 	thread_reap();	/* check for zombie threads etc. */
648 }
649 
650 /*
651  * Link a thread to a process.
652  * set up anything that needs to be initialized for it to
653  * be used by the process.
654  */
655 void
656 thread_link(struct thread *td, struct proc *p)
657 {
658 
659 	/*
660 	 * XXX This can't be enabled because it's called for proc0 before
661 	 * its lock has been created.
662 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
663 	 */
664 	td->td_state    = TDS_INACTIVE;
665 	td->td_proc     = p;
666 	td->td_flags    = TDF_INMEM;
667 
668 	LIST_INIT(&td->td_contested);
669 	LIST_INIT(&td->td_lprof[0]);
670 	LIST_INIT(&td->td_lprof[1]);
671 	sigqueue_init(&td->td_sigqueue, p);
672 	callout_init(&td->td_slpcallout, 1);
673 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
674 	p->p_numthreads++;
675 }
676 
677 /*
678  * Called from:
679  *  thread_exit()
680  */
681 void
682 thread_unlink(struct thread *td)
683 {
684 	struct proc *p = td->td_proc;
685 
686 	PROC_LOCK_ASSERT(p, MA_OWNED);
687 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
688 	p->p_numthreads--;
689 	/* could clear a few other things here */
690 	/* Must  NOT clear links to proc! */
691 }
692 
693 static int
694 calc_remaining(struct proc *p, int mode)
695 {
696 	int remaining;
697 
698 	PROC_LOCK_ASSERT(p, MA_OWNED);
699 	PROC_SLOCK_ASSERT(p, MA_OWNED);
700 	if (mode == SINGLE_EXIT)
701 		remaining = p->p_numthreads;
702 	else if (mode == SINGLE_BOUNDARY)
703 		remaining = p->p_numthreads - p->p_boundary_count;
704 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
705 		remaining = p->p_numthreads - p->p_suspcount;
706 	else
707 		panic("calc_remaining: wrong mode %d", mode);
708 	return (remaining);
709 }
710 
711 static int
712 remain_for_mode(int mode)
713 {
714 
715 	return (mode == SINGLE_ALLPROC ? 0 : 1);
716 }
717 
718 static int
719 weed_inhib(int mode, struct thread *td2, struct proc *p)
720 {
721 	int wakeup_swapper;
722 
723 	PROC_LOCK_ASSERT(p, MA_OWNED);
724 	PROC_SLOCK_ASSERT(p, MA_OWNED);
725 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
726 
727 	wakeup_swapper = 0;
728 	switch (mode) {
729 	case SINGLE_EXIT:
730 		if (TD_IS_SUSPENDED(td2))
731 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
732 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
733 			wakeup_swapper |= sleepq_abort(td2, EINTR);
734 		break;
735 	case SINGLE_BOUNDARY:
736 	case SINGLE_NO_EXIT:
737 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
738 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
739 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
740 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
741 		break;
742 	case SINGLE_ALLPROC:
743 		/*
744 		 * ALLPROC suspend tries to avoid spurious EINTR for
745 		 * threads sleeping interruptable, by suspending the
746 		 * thread directly, similarly to sig_suspend_threads().
747 		 * Since such sleep is not performed at the user
748 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
749 		 * is used to avoid immediate un-suspend.
750 		 */
751 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
752 		    TDF_ALLPROCSUSP)) == 0)
753 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
754 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
755 			if ((td2->td_flags & TDF_SBDRY) == 0) {
756 				thread_suspend_one(td2);
757 				td2->td_flags |= TDF_ALLPROCSUSP;
758 			} else {
759 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
760 			}
761 		}
762 		break;
763 	}
764 	return (wakeup_swapper);
765 }
766 
767 /*
768  * Enforce single-threading.
769  *
770  * Returns 1 if the caller must abort (another thread is waiting to
771  * exit the process or similar). Process is locked!
772  * Returns 0 when you are successfully the only thread running.
773  * A process has successfully single threaded in the suspend mode when
774  * There are no threads in user mode. Threads in the kernel must be
775  * allowed to continue until they get to the user boundary. They may even
776  * copy out their return values and data before suspending. They may however be
777  * accelerated in reaching the user boundary as we will wake up
778  * any sleeping threads that are interruptable. (PCATCH).
779  */
780 int
781 thread_single(struct proc *p, int mode)
782 {
783 	struct thread *td;
784 	struct thread *td2;
785 	int remaining, wakeup_swapper;
786 
787 	td = curthread;
788 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
789 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
790 	    ("invalid mode %d", mode));
791 	/*
792 	 * If allowing non-ALLPROC singlethreading for non-curproc
793 	 * callers, calc_remaining() and remain_for_mode() should be
794 	 * adjusted to also account for td->td_proc != p.  For now
795 	 * this is not implemented because it is not used.
796 	 */
797 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
798 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
799 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
800 	mtx_assert(&Giant, MA_NOTOWNED);
801 	PROC_LOCK_ASSERT(p, MA_OWNED);
802 
803 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
804 		return (0);
805 
806 	/* Is someone already single threading? */
807 	if (p->p_singlethread != NULL && p->p_singlethread != td)
808 		return (1);
809 
810 	if (mode == SINGLE_EXIT) {
811 		p->p_flag |= P_SINGLE_EXIT;
812 		p->p_flag &= ~P_SINGLE_BOUNDARY;
813 	} else {
814 		p->p_flag &= ~P_SINGLE_EXIT;
815 		if (mode == SINGLE_BOUNDARY)
816 			p->p_flag |= P_SINGLE_BOUNDARY;
817 		else
818 			p->p_flag &= ~P_SINGLE_BOUNDARY;
819 	}
820 	if (mode == SINGLE_ALLPROC)
821 		p->p_flag |= P_TOTAL_STOP;
822 	p->p_flag |= P_STOPPED_SINGLE;
823 	PROC_SLOCK(p);
824 	p->p_singlethread = td;
825 	remaining = calc_remaining(p, mode);
826 	while (remaining != remain_for_mode(mode)) {
827 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
828 			goto stopme;
829 		wakeup_swapper = 0;
830 		FOREACH_THREAD_IN_PROC(p, td2) {
831 			if (td2 == td)
832 				continue;
833 			thread_lock(td2);
834 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
835 			if (TD_IS_INHIBITED(td2)) {
836 				wakeup_swapper |= weed_inhib(mode, td2, p);
837 #ifdef SMP
838 			} else if (TD_IS_RUNNING(td2) && td != td2) {
839 				forward_signal(td2);
840 #endif
841 			}
842 			thread_unlock(td2);
843 		}
844 		if (wakeup_swapper)
845 			kick_proc0();
846 		remaining = calc_remaining(p, mode);
847 
848 		/*
849 		 * Maybe we suspended some threads.. was it enough?
850 		 */
851 		if (remaining == remain_for_mode(mode))
852 			break;
853 
854 stopme:
855 		/*
856 		 * Wake us up when everyone else has suspended.
857 		 * In the mean time we suspend as well.
858 		 */
859 		thread_suspend_switch(td, p);
860 		remaining = calc_remaining(p, mode);
861 	}
862 	if (mode == SINGLE_EXIT) {
863 		/*
864 		 * Convert the process to an unthreaded process.  The
865 		 * SINGLE_EXIT is called by exit1() or execve(), in
866 		 * both cases other threads must be retired.
867 		 */
868 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
869 		p->p_singlethread = NULL;
870 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
871 
872 		/*
873 		 * Wait for any remaining threads to exit cpu_throw().
874 		 */
875 		while (p->p_exitthreads != 0) {
876 			PROC_SUNLOCK(p);
877 			PROC_UNLOCK(p);
878 			sched_relinquish(td);
879 			PROC_LOCK(p);
880 			PROC_SLOCK(p);
881 		}
882 	} else if (mode == SINGLE_BOUNDARY) {
883 		/*
884 		 * Wait until all suspended threads are removed from
885 		 * the processors.  The thread_suspend_check()
886 		 * increments p_boundary_count while it is still
887 		 * running, which makes it possible for the execve()
888 		 * to destroy vmspace while our other threads are
889 		 * still using the address space.
890 		 *
891 		 * We lock the thread, which is only allowed to
892 		 * succeed after context switch code finished using
893 		 * the address space.
894 		 */
895 		FOREACH_THREAD_IN_PROC(p, td2) {
896 			if (td2 == td)
897 				continue;
898 			thread_lock(td2);
899 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
900 			    ("td %p not on boundary", td2));
901 			KASSERT(TD_IS_SUSPENDED(td2),
902 			    ("td %p is not suspended", td2));
903 			thread_unlock(td2);
904 		}
905 	}
906 	PROC_SUNLOCK(p);
907 	return (0);
908 }
909 
910 bool
911 thread_suspend_check_needed(void)
912 {
913 	struct proc *p;
914 	struct thread *td;
915 
916 	td = curthread;
917 	p = td->td_proc;
918 	PROC_LOCK_ASSERT(p, MA_OWNED);
919 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
920 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
921 }
922 
923 /*
924  * Called in from locations that can safely check to see
925  * whether we have to suspend or at least throttle for a
926  * single-thread event (e.g. fork).
927  *
928  * Such locations include userret().
929  * If the "return_instead" argument is non zero, the thread must be able to
930  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
931  *
932  * The 'return_instead' argument tells the function if it may do a
933  * thread_exit() or suspend, or whether the caller must abort and back
934  * out instead.
935  *
936  * If the thread that set the single_threading request has set the
937  * P_SINGLE_EXIT bit in the process flags then this call will never return
938  * if 'return_instead' is false, but will exit.
939  *
940  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
941  *---------------+--------------------+---------------------
942  *       0       | returns 0          |   returns 0 or 1
943  *               | when ST ends       |   immediately
944  *---------------+--------------------+---------------------
945  *       1       | thread exits       |   returns 1
946  *               |                    |  immediately
947  * 0 = thread_exit() or suspension ok,
948  * other = return error instead of stopping the thread.
949  *
950  * While a full suspension is under effect, even a single threading
951  * thread would be suspended if it made this call (but it shouldn't).
952  * This call should only be made from places where
953  * thread_exit() would be safe as that may be the outcome unless
954  * return_instead is set.
955  */
956 int
957 thread_suspend_check(int return_instead)
958 {
959 	struct thread *td;
960 	struct proc *p;
961 	int wakeup_swapper;
962 
963 	td = curthread;
964 	p = td->td_proc;
965 	mtx_assert(&Giant, MA_NOTOWNED);
966 	PROC_LOCK_ASSERT(p, MA_OWNED);
967 	while (thread_suspend_check_needed()) {
968 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
969 			KASSERT(p->p_singlethread != NULL,
970 			    ("singlethread not set"));
971 			/*
972 			 * The only suspension in action is a
973 			 * single-threading. Single threader need not stop.
974 			 * It is safe to access p->p_singlethread unlocked
975 			 * because it can only be set to our address by us.
976 			 */
977 			if (p->p_singlethread == td)
978 				return (0);	/* Exempt from stopping. */
979 		}
980 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
981 			return (EINTR);
982 
983 		/* Should we goto user boundary if we didn't come from there? */
984 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
985 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
986 			return (ERESTART);
987 
988 		/*
989 		 * Ignore suspend requests if they are deferred.
990 		 */
991 		if ((td->td_flags & TDF_SBDRY) != 0) {
992 			KASSERT(return_instead,
993 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
994 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
995 			    (TDF_SEINTR | TDF_SERESTART),
996 			    ("both TDF_SEINTR and TDF_SERESTART"));
997 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
998 		}
999 
1000 		/*
1001 		 * If the process is waiting for us to exit,
1002 		 * this thread should just suicide.
1003 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1004 		 */
1005 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1006 			PROC_UNLOCK(p);
1007 
1008 			/*
1009 			 * Allow Linux emulation layer to do some work
1010 			 * before thread suicide.
1011 			 */
1012 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1013 				(p->p_sysent->sv_thread_detach)(td);
1014 			umtx_thread_exit(td);
1015 			kern_thr_exit(td);
1016 			panic("stopped thread did not exit");
1017 		}
1018 
1019 		PROC_SLOCK(p);
1020 		thread_stopped(p);
1021 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1022 			if (p->p_numthreads == p->p_suspcount + 1) {
1023 				thread_lock(p->p_singlethread);
1024 				wakeup_swapper = thread_unsuspend_one(
1025 				    p->p_singlethread, p, false);
1026 				thread_unlock(p->p_singlethread);
1027 				if (wakeup_swapper)
1028 					kick_proc0();
1029 			}
1030 		}
1031 		PROC_UNLOCK(p);
1032 		thread_lock(td);
1033 		/*
1034 		 * When a thread suspends, it just
1035 		 * gets taken off all queues.
1036 		 */
1037 		thread_suspend_one(td);
1038 		if (return_instead == 0) {
1039 			p->p_boundary_count++;
1040 			td->td_flags |= TDF_BOUNDARY;
1041 		}
1042 		PROC_SUNLOCK(p);
1043 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1044 		thread_unlock(td);
1045 		PROC_LOCK(p);
1046 	}
1047 	return (0);
1048 }
1049 
1050 void
1051 thread_suspend_switch(struct thread *td, struct proc *p)
1052 {
1053 
1054 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1055 	PROC_LOCK_ASSERT(p, MA_OWNED);
1056 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1057 	/*
1058 	 * We implement thread_suspend_one in stages here to avoid
1059 	 * dropping the proc lock while the thread lock is owned.
1060 	 */
1061 	if (p == td->td_proc) {
1062 		thread_stopped(p);
1063 		p->p_suspcount++;
1064 	}
1065 	PROC_UNLOCK(p);
1066 	thread_lock(td);
1067 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1068 	TD_SET_SUSPENDED(td);
1069 	sched_sleep(td, 0);
1070 	PROC_SUNLOCK(p);
1071 	DROP_GIANT();
1072 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1073 	thread_unlock(td);
1074 	PICKUP_GIANT();
1075 	PROC_LOCK(p);
1076 	PROC_SLOCK(p);
1077 }
1078 
1079 void
1080 thread_suspend_one(struct thread *td)
1081 {
1082 	struct proc *p;
1083 
1084 	p = td->td_proc;
1085 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1086 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1087 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1088 	p->p_suspcount++;
1089 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1090 	TD_SET_SUSPENDED(td);
1091 	sched_sleep(td, 0);
1092 }
1093 
1094 static int
1095 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1096 {
1097 
1098 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1099 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1100 	TD_CLR_SUSPENDED(td);
1101 	td->td_flags &= ~TDF_ALLPROCSUSP;
1102 	if (td->td_proc == p) {
1103 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1104 		p->p_suspcount--;
1105 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1106 			td->td_flags &= ~TDF_BOUNDARY;
1107 			p->p_boundary_count--;
1108 		}
1109 	}
1110 	return (setrunnable(td));
1111 }
1112 
1113 /*
1114  * Allow all threads blocked by single threading to continue running.
1115  */
1116 void
1117 thread_unsuspend(struct proc *p)
1118 {
1119 	struct thread *td;
1120 	int wakeup_swapper;
1121 
1122 	PROC_LOCK_ASSERT(p, MA_OWNED);
1123 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1124 	wakeup_swapper = 0;
1125 	if (!P_SHOULDSTOP(p)) {
1126                 FOREACH_THREAD_IN_PROC(p, td) {
1127 			thread_lock(td);
1128 			if (TD_IS_SUSPENDED(td)) {
1129 				wakeup_swapper |= thread_unsuspend_one(td, p,
1130 				    true);
1131 			}
1132 			thread_unlock(td);
1133 		}
1134 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1135 	    p->p_numthreads == p->p_suspcount) {
1136 		/*
1137 		 * Stopping everything also did the job for the single
1138 		 * threading request. Now we've downgraded to single-threaded,
1139 		 * let it continue.
1140 		 */
1141 		if (p->p_singlethread->td_proc == p) {
1142 			thread_lock(p->p_singlethread);
1143 			wakeup_swapper = thread_unsuspend_one(
1144 			    p->p_singlethread, p, false);
1145 			thread_unlock(p->p_singlethread);
1146 		}
1147 	}
1148 	if (wakeup_swapper)
1149 		kick_proc0();
1150 }
1151 
1152 /*
1153  * End the single threading mode..
1154  */
1155 void
1156 thread_single_end(struct proc *p, int mode)
1157 {
1158 	struct thread *td;
1159 	int wakeup_swapper;
1160 
1161 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1162 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1163 	    ("invalid mode %d", mode));
1164 	PROC_LOCK_ASSERT(p, MA_OWNED);
1165 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1166 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1167 	    ("mode %d does not match P_TOTAL_STOP", mode));
1168 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1169 	    ("thread_single_end from other thread %p %p",
1170 	    curthread, p->p_singlethread));
1171 	KASSERT(mode != SINGLE_BOUNDARY ||
1172 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1173 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1174 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1175 	    P_TOTAL_STOP);
1176 	PROC_SLOCK(p);
1177 	p->p_singlethread = NULL;
1178 	wakeup_swapper = 0;
1179 	/*
1180 	 * If there are other threads they may now run,
1181 	 * unless of course there is a blanket 'stop order'
1182 	 * on the process. The single threader must be allowed
1183 	 * to continue however as this is a bad place to stop.
1184 	 */
1185 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1186                 FOREACH_THREAD_IN_PROC(p, td) {
1187 			thread_lock(td);
1188 			if (TD_IS_SUSPENDED(td)) {
1189 				wakeup_swapper |= thread_unsuspend_one(td, p,
1190 				    mode == SINGLE_BOUNDARY);
1191 			}
1192 			thread_unlock(td);
1193 		}
1194 	}
1195 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1196 	    ("inconsistent boundary count %d", p->p_boundary_count));
1197 	PROC_SUNLOCK(p);
1198 	if (wakeup_swapper)
1199 		kick_proc0();
1200 }
1201 
1202 struct thread *
1203 thread_find(struct proc *p, lwpid_t tid)
1204 {
1205 	struct thread *td;
1206 
1207 	PROC_LOCK_ASSERT(p, MA_OWNED);
1208 	FOREACH_THREAD_IN_PROC(p, td) {
1209 		if (td->td_tid == tid)
1210 			break;
1211 	}
1212 	return (td);
1213 }
1214 
1215 /* Locate a thread by number; return with proc lock held. */
1216 struct thread *
1217 tdfind(lwpid_t tid, pid_t pid)
1218 {
1219 #define RUN_THRESH	16
1220 	struct thread *td;
1221 	int run = 0;
1222 
1223 	rw_rlock(&tidhash_lock);
1224 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1225 		if (td->td_tid == tid) {
1226 			if (pid != -1 && td->td_proc->p_pid != pid) {
1227 				td = NULL;
1228 				break;
1229 			}
1230 			PROC_LOCK(td->td_proc);
1231 			if (td->td_proc->p_state == PRS_NEW) {
1232 				PROC_UNLOCK(td->td_proc);
1233 				td = NULL;
1234 				break;
1235 			}
1236 			if (run > RUN_THRESH) {
1237 				if (rw_try_upgrade(&tidhash_lock)) {
1238 					LIST_REMOVE(td, td_hash);
1239 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1240 						td, td_hash);
1241 					rw_wunlock(&tidhash_lock);
1242 					return (td);
1243 				}
1244 			}
1245 			break;
1246 		}
1247 		run++;
1248 	}
1249 	rw_runlock(&tidhash_lock);
1250 	return (td);
1251 }
1252 
1253 void
1254 tidhash_add(struct thread *td)
1255 {
1256 	rw_wlock(&tidhash_lock);
1257 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1258 	rw_wunlock(&tidhash_lock);
1259 }
1260 
1261 void
1262 tidhash_remove(struct thread *td)
1263 {
1264 	rw_wlock(&tidhash_lock);
1265 	LIST_REMOVE(td, td_hash);
1266 	rw_wunlock(&tidhash_lock);
1267 }
1268