xref: /freebsd/sys/kern/kern_thread.c (revision b00ab754)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/rangelock.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sdt.h>
46 #include <sys/smp.h>
47 #include <sys/sched.h>
48 #include <sys/sleepqueue.h>
49 #include <sys/selinfo.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/sysent.h>
52 #include <sys/turnstile.h>
53 #include <sys/ktr.h>
54 #include <sys/rwlock.h>
55 #include <sys/umtx.h>
56 #include <sys/vmmeter.h>
57 #include <sys/cpuset.h>
58 #ifdef	HWPMC_HOOKS
59 #include <sys/pmckern.h>
60 #endif
61 
62 #include <security/audit/audit.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 #include <vm/uma.h>
67 #include <sys/eventhandler.h>
68 
69 /*
70  * Asserts below verify the stability of struct thread and struct proc
71  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
72  * to drift, change to the structures must be accompanied by the
73  * assert update.
74  *
75  * On the stable branches after KBI freeze, conditions must not be
76  * violated.  Typically new fields are moved to the end of the
77  * structures.
78  */
79 #ifdef __amd64__
80 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
81     "struct thread KBI td_flags");
82 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
83     "struct thread KBI td_pflags");
84 _Static_assert(offsetof(struct thread, td_frame) == 0x470,
85     "struct thread KBI td_frame");
86 _Static_assert(offsetof(struct thread, td_emuldata) == 0x518,
87     "struct thread KBI td_emuldata");
88 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
89     "struct proc KBI p_flag");
90 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
91     "struct proc KBI p_pid");
92 _Static_assert(offsetof(struct proc, p_filemon) == 0x3d0,
93     "struct proc KBI p_filemon");
94 _Static_assert(offsetof(struct proc, p_comm) == 0x3e4,
95     "struct proc KBI p_comm");
96 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
97     "struct proc KBI p_emuldata");
98 #endif
99 #ifdef __i386__
100 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
101     "struct thread KBI td_flags");
102 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
103     "struct thread KBI td_pflags");
104 _Static_assert(offsetof(struct thread, td_frame) == 0x2e8,
105     "struct thread KBI td_frame");
106 _Static_assert(offsetof(struct thread, td_emuldata) == 0x334,
107     "struct thread KBI td_emuldata");
108 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
109     "struct proc KBI p_flag");
110 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
111     "struct proc KBI p_pid");
112 _Static_assert(offsetof(struct proc, p_filemon) == 0x27c,
113     "struct proc KBI p_filemon");
114 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
115     "struct proc KBI p_comm");
116 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
117     "struct proc KBI p_emuldata");
118 #endif
119 
120 SDT_PROVIDER_DECLARE(proc);
121 SDT_PROBE_DEFINE(proc, , , lwp__exit);
122 
123 /*
124  * thread related storage.
125  */
126 static uma_zone_t thread_zone;
127 
128 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
129 static struct mtx zombie_lock;
130 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
131 
132 static void thread_zombie(struct thread *);
133 static int thread_unsuspend_one(struct thread *td, struct proc *p,
134     bool boundary);
135 
136 #define TID_BUFFER_SIZE	1024
137 
138 struct mtx tid_lock;
139 static struct unrhdr *tid_unrhdr;
140 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
141 static int tid_head, tid_tail;
142 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
143 
144 struct	tidhashhead *tidhashtbl;
145 u_long	tidhash;
146 struct	rwlock tidhash_lock;
147 
148 EVENTHANDLER_LIST_DEFINE(thread_ctor);
149 EVENTHANDLER_LIST_DEFINE(thread_dtor);
150 EVENTHANDLER_LIST_DEFINE(thread_init);
151 EVENTHANDLER_LIST_DEFINE(thread_fini);
152 
153 static lwpid_t
154 tid_alloc(void)
155 {
156 	lwpid_t	tid;
157 
158 	tid = alloc_unr(tid_unrhdr);
159 	if (tid != -1)
160 		return (tid);
161 	mtx_lock(&tid_lock);
162 	if (tid_head == tid_tail) {
163 		mtx_unlock(&tid_lock);
164 		return (-1);
165 	}
166 	tid = tid_buffer[tid_head];
167 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
168 	mtx_unlock(&tid_lock);
169 	return (tid);
170 }
171 
172 static void
173 tid_free(lwpid_t tid)
174 {
175 	lwpid_t tmp_tid = -1;
176 
177 	mtx_lock(&tid_lock);
178 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
179 		tmp_tid = tid_buffer[tid_head];
180 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
181 	}
182 	tid_buffer[tid_tail] = tid;
183 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
184 	mtx_unlock(&tid_lock);
185 	if (tmp_tid != -1)
186 		free_unr(tid_unrhdr, tmp_tid);
187 }
188 
189 /*
190  * Prepare a thread for use.
191  */
192 static int
193 thread_ctor(void *mem, int size, void *arg, int flags)
194 {
195 	struct thread	*td;
196 
197 	td = (struct thread *)mem;
198 	td->td_state = TDS_INACTIVE;
199 	td->td_oncpu = NOCPU;
200 
201 	td->td_tid = tid_alloc();
202 
203 	/*
204 	 * Note that td_critnest begins life as 1 because the thread is not
205 	 * running and is thereby implicitly waiting to be on the receiving
206 	 * end of a context switch.
207 	 */
208 	td->td_critnest = 1;
209 	td->td_lend_user_pri = PRI_MAX;
210 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
211 #ifdef AUDIT
212 	audit_thread_alloc(td);
213 #endif
214 	umtx_thread_alloc(td);
215 	return (0);
216 }
217 
218 /*
219  * Reclaim a thread after use.
220  */
221 static void
222 thread_dtor(void *mem, int size, void *arg)
223 {
224 	struct thread *td;
225 
226 	td = (struct thread *)mem;
227 
228 #ifdef INVARIANTS
229 	/* Verify that this thread is in a safe state to free. */
230 	switch (td->td_state) {
231 	case TDS_INHIBITED:
232 	case TDS_RUNNING:
233 	case TDS_CAN_RUN:
234 	case TDS_RUNQ:
235 		/*
236 		 * We must never unlink a thread that is in one of
237 		 * these states, because it is currently active.
238 		 */
239 		panic("bad state for thread unlinking");
240 		/* NOTREACHED */
241 	case TDS_INACTIVE:
242 		break;
243 	default:
244 		panic("bad thread state");
245 		/* NOTREACHED */
246 	}
247 #endif
248 #ifdef AUDIT
249 	audit_thread_free(td);
250 #endif
251 	/* Free all OSD associated to this thread. */
252 	osd_thread_exit(td);
253 	td_softdep_cleanup(td);
254 	MPASS(td->td_su == NULL);
255 
256 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
257 	tid_free(td->td_tid);
258 }
259 
260 /*
261  * Initialize type-stable parts of a thread (when newly created).
262  */
263 static int
264 thread_init(void *mem, int size, int flags)
265 {
266 	struct thread *td;
267 
268 	td = (struct thread *)mem;
269 
270 	td->td_sleepqueue = sleepq_alloc();
271 	td->td_turnstile = turnstile_alloc();
272 	td->td_rlqe = NULL;
273 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
274 	umtx_thread_init(td);
275 	td->td_kstack = 0;
276 	td->td_sel = NULL;
277 	return (0);
278 }
279 
280 /*
281  * Tear down type-stable parts of a thread (just before being discarded).
282  */
283 static void
284 thread_fini(void *mem, int size)
285 {
286 	struct thread *td;
287 
288 	td = (struct thread *)mem;
289 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
290 	rlqentry_free(td->td_rlqe);
291 	turnstile_free(td->td_turnstile);
292 	sleepq_free(td->td_sleepqueue);
293 	umtx_thread_fini(td);
294 	seltdfini(td);
295 }
296 
297 /*
298  * For a newly created process,
299  * link up all the structures and its initial threads etc.
300  * called from:
301  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
302  * proc_dtor() (should go away)
303  * proc_init()
304  */
305 void
306 proc_linkup0(struct proc *p, struct thread *td)
307 {
308 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
309 	proc_linkup(p, td);
310 }
311 
312 void
313 proc_linkup(struct proc *p, struct thread *td)
314 {
315 
316 	sigqueue_init(&p->p_sigqueue, p);
317 	p->p_ksi = ksiginfo_alloc(1);
318 	if (p->p_ksi != NULL) {
319 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
320 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
321 	}
322 	LIST_INIT(&p->p_mqnotifier);
323 	p->p_numthreads = 0;
324 	thread_link(td, p);
325 }
326 
327 /*
328  * Initialize global thread allocation resources.
329  */
330 void
331 threadinit(void)
332 {
333 
334 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
335 
336 	/*
337 	 * pid_max cannot be greater than PID_MAX.
338 	 * leave one number for thread0.
339 	 */
340 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
341 
342 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
343 	    thread_ctor, thread_dtor, thread_init, thread_fini,
344 	    32 - 1, UMA_ZONE_NOFREE);
345 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
346 	rw_init(&tidhash_lock, "tidhash");
347 }
348 
349 /*
350  * Place an unused thread on the zombie list.
351  * Use the slpq as that must be unused by now.
352  */
353 void
354 thread_zombie(struct thread *td)
355 {
356 	mtx_lock_spin(&zombie_lock);
357 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
358 	mtx_unlock_spin(&zombie_lock);
359 }
360 
361 /*
362  * Release a thread that has exited after cpu_throw().
363  */
364 void
365 thread_stash(struct thread *td)
366 {
367 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
368 	thread_zombie(td);
369 }
370 
371 /*
372  * Reap zombie resources.
373  */
374 void
375 thread_reap(void)
376 {
377 	struct thread *td_first, *td_next;
378 
379 	/*
380 	 * Don't even bother to lock if none at this instant,
381 	 * we really don't care about the next instant.
382 	 */
383 	if (!TAILQ_EMPTY(&zombie_threads)) {
384 		mtx_lock_spin(&zombie_lock);
385 		td_first = TAILQ_FIRST(&zombie_threads);
386 		if (td_first)
387 			TAILQ_INIT(&zombie_threads);
388 		mtx_unlock_spin(&zombie_lock);
389 		while (td_first) {
390 			td_next = TAILQ_NEXT(td_first, td_slpq);
391 			thread_cow_free(td_first);
392 			thread_free(td_first);
393 			td_first = td_next;
394 		}
395 	}
396 }
397 
398 /*
399  * Allocate a thread.
400  */
401 struct thread *
402 thread_alloc(int pages)
403 {
404 	struct thread *td;
405 
406 	thread_reap(); /* check if any zombies to get */
407 
408 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
409 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
410 	if (!vm_thread_new(td, pages)) {
411 		uma_zfree(thread_zone, td);
412 		return (NULL);
413 	}
414 	cpu_thread_alloc(td);
415 	return (td);
416 }
417 
418 int
419 thread_alloc_stack(struct thread *td, int pages)
420 {
421 
422 	KASSERT(td->td_kstack == 0,
423 	    ("thread_alloc_stack called on a thread with kstack"));
424 	if (!vm_thread_new(td, pages))
425 		return (0);
426 	cpu_thread_alloc(td);
427 	return (1);
428 }
429 
430 /*
431  * Deallocate a thread.
432  */
433 void
434 thread_free(struct thread *td)
435 {
436 
437 	lock_profile_thread_exit(td);
438 	if (td->td_cpuset)
439 		cpuset_rel(td->td_cpuset);
440 	td->td_cpuset = NULL;
441 	cpu_thread_free(td);
442 	if (td->td_kstack != 0)
443 		vm_thread_dispose(td);
444 	callout_drain(&td->td_slpcallout);
445 	uma_zfree(thread_zone, td);
446 }
447 
448 void
449 thread_cow_get_proc(struct thread *newtd, struct proc *p)
450 {
451 
452 	PROC_LOCK_ASSERT(p, MA_OWNED);
453 	newtd->td_ucred = crhold(p->p_ucred);
454 	newtd->td_limit = lim_hold(p->p_limit);
455 	newtd->td_cowgen = p->p_cowgen;
456 }
457 
458 void
459 thread_cow_get(struct thread *newtd, struct thread *td)
460 {
461 
462 	newtd->td_ucred = crhold(td->td_ucred);
463 	newtd->td_limit = lim_hold(td->td_limit);
464 	newtd->td_cowgen = td->td_cowgen;
465 }
466 
467 void
468 thread_cow_free(struct thread *td)
469 {
470 
471 	if (td->td_ucred != NULL)
472 		crfree(td->td_ucred);
473 	if (td->td_limit != NULL)
474 		lim_free(td->td_limit);
475 }
476 
477 void
478 thread_cow_update(struct thread *td)
479 {
480 	struct proc *p;
481 	struct ucred *oldcred;
482 	struct plimit *oldlimit;
483 
484 	p = td->td_proc;
485 	oldcred = NULL;
486 	oldlimit = NULL;
487 	PROC_LOCK(p);
488 	if (td->td_ucred != p->p_ucred) {
489 		oldcred = td->td_ucred;
490 		td->td_ucred = crhold(p->p_ucred);
491 	}
492 	if (td->td_limit != p->p_limit) {
493 		oldlimit = td->td_limit;
494 		td->td_limit = lim_hold(p->p_limit);
495 	}
496 	td->td_cowgen = p->p_cowgen;
497 	PROC_UNLOCK(p);
498 	if (oldcred != NULL)
499 		crfree(oldcred);
500 	if (oldlimit != NULL)
501 		lim_free(oldlimit);
502 }
503 
504 /*
505  * Discard the current thread and exit from its context.
506  * Always called with scheduler locked.
507  *
508  * Because we can't free a thread while we're operating under its context,
509  * push the current thread into our CPU's deadthread holder. This means
510  * we needn't worry about someone else grabbing our context before we
511  * do a cpu_throw().
512  */
513 void
514 thread_exit(void)
515 {
516 	uint64_t runtime, new_switchtime;
517 	struct thread *td;
518 	struct thread *td2;
519 	struct proc *p;
520 	int wakeup_swapper;
521 
522 	td = curthread;
523 	p = td->td_proc;
524 
525 	PROC_SLOCK_ASSERT(p, MA_OWNED);
526 	mtx_assert(&Giant, MA_NOTOWNED);
527 
528 	PROC_LOCK_ASSERT(p, MA_OWNED);
529 	KASSERT(p != NULL, ("thread exiting without a process"));
530 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
531 	    (long)p->p_pid, td->td_name);
532 	SDT_PROBE0(proc, , , lwp__exit);
533 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
534 
535 #ifdef AUDIT
536 	AUDIT_SYSCALL_EXIT(0, td);
537 #endif
538 	/*
539 	 * drop FPU & debug register state storage, or any other
540 	 * architecture specific resources that
541 	 * would not be on a new untouched process.
542 	 */
543 	cpu_thread_exit(td);
544 
545 	/*
546 	 * The last thread is left attached to the process
547 	 * So that the whole bundle gets recycled. Skip
548 	 * all this stuff if we never had threads.
549 	 * EXIT clears all sign of other threads when
550 	 * it goes to single threading, so the last thread always
551 	 * takes the short path.
552 	 */
553 	if (p->p_flag & P_HADTHREADS) {
554 		if (p->p_numthreads > 1) {
555 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
556 			thread_unlink(td);
557 			td2 = FIRST_THREAD_IN_PROC(p);
558 			sched_exit_thread(td2, td);
559 
560 			/*
561 			 * The test below is NOT true if we are the
562 			 * sole exiting thread. P_STOPPED_SINGLE is unset
563 			 * in exit1() after it is the only survivor.
564 			 */
565 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
566 				if (p->p_numthreads == p->p_suspcount) {
567 					thread_lock(p->p_singlethread);
568 					wakeup_swapper = thread_unsuspend_one(
569 						p->p_singlethread, p, false);
570 					thread_unlock(p->p_singlethread);
571 					if (wakeup_swapper)
572 						kick_proc0();
573 				}
574 			}
575 
576 			PCPU_SET(deadthread, td);
577 		} else {
578 			/*
579 			 * The last thread is exiting.. but not through exit()
580 			 */
581 			panic ("thread_exit: Last thread exiting on its own");
582 		}
583 	}
584 #ifdef	HWPMC_HOOKS
585 	/*
586 	 * If this thread is part of a process that is being tracked by hwpmc(4),
587 	 * inform the module of the thread's impending exit.
588 	 */
589 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
590 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
591 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
592 	}
593 #endif
594 	PROC_UNLOCK(p);
595 	PROC_STATLOCK(p);
596 	thread_lock(td);
597 	PROC_SUNLOCK(p);
598 
599 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
600 	new_switchtime = cpu_ticks();
601 	runtime = new_switchtime - PCPU_GET(switchtime);
602 	td->td_runtime += runtime;
603 	td->td_incruntime += runtime;
604 	PCPU_SET(switchtime, new_switchtime);
605 	PCPU_SET(switchticks, ticks);
606 	VM_CNT_INC(v_swtch);
607 
608 	/* Save our resource usage in our process. */
609 	td->td_ru.ru_nvcsw++;
610 	ruxagg(p, td);
611 	rucollect(&p->p_ru, &td->td_ru);
612 	PROC_STATUNLOCK(p);
613 
614 	td->td_state = TDS_INACTIVE;
615 #ifdef WITNESS
616 	witness_thread_exit(td);
617 #endif
618 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
619 	sched_throw(td);
620 	panic("I'm a teapot!");
621 	/* NOTREACHED */
622 }
623 
624 /*
625  * Do any thread specific cleanups that may be needed in wait()
626  * called with Giant, proc and schedlock not held.
627  */
628 void
629 thread_wait(struct proc *p)
630 {
631 	struct thread *td;
632 
633 	mtx_assert(&Giant, MA_NOTOWNED);
634 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
635 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
636 	td = FIRST_THREAD_IN_PROC(p);
637 	/* Lock the last thread so we spin until it exits cpu_throw(). */
638 	thread_lock(td);
639 	thread_unlock(td);
640 	lock_profile_thread_exit(td);
641 	cpuset_rel(td->td_cpuset);
642 	td->td_cpuset = NULL;
643 	cpu_thread_clean(td);
644 	thread_cow_free(td);
645 	callout_drain(&td->td_slpcallout);
646 	thread_reap();	/* check for zombie threads etc. */
647 }
648 
649 /*
650  * Link a thread to a process.
651  * set up anything that needs to be initialized for it to
652  * be used by the process.
653  */
654 void
655 thread_link(struct thread *td, struct proc *p)
656 {
657 
658 	/*
659 	 * XXX This can't be enabled because it's called for proc0 before
660 	 * its lock has been created.
661 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
662 	 */
663 	td->td_state    = TDS_INACTIVE;
664 	td->td_proc     = p;
665 	td->td_flags    = TDF_INMEM;
666 
667 	LIST_INIT(&td->td_contested);
668 	LIST_INIT(&td->td_lprof[0]);
669 	LIST_INIT(&td->td_lprof[1]);
670 	sigqueue_init(&td->td_sigqueue, p);
671 	callout_init(&td->td_slpcallout, 1);
672 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
673 	p->p_numthreads++;
674 }
675 
676 /*
677  * Called from:
678  *  thread_exit()
679  */
680 void
681 thread_unlink(struct thread *td)
682 {
683 	struct proc *p = td->td_proc;
684 
685 	PROC_LOCK_ASSERT(p, MA_OWNED);
686 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
687 	p->p_numthreads--;
688 	/* could clear a few other things here */
689 	/* Must  NOT clear links to proc! */
690 }
691 
692 static int
693 calc_remaining(struct proc *p, int mode)
694 {
695 	int remaining;
696 
697 	PROC_LOCK_ASSERT(p, MA_OWNED);
698 	PROC_SLOCK_ASSERT(p, MA_OWNED);
699 	if (mode == SINGLE_EXIT)
700 		remaining = p->p_numthreads;
701 	else if (mode == SINGLE_BOUNDARY)
702 		remaining = p->p_numthreads - p->p_boundary_count;
703 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
704 		remaining = p->p_numthreads - p->p_suspcount;
705 	else
706 		panic("calc_remaining: wrong mode %d", mode);
707 	return (remaining);
708 }
709 
710 static int
711 remain_for_mode(int mode)
712 {
713 
714 	return (mode == SINGLE_ALLPROC ? 0 : 1);
715 }
716 
717 static int
718 weed_inhib(int mode, struct thread *td2, struct proc *p)
719 {
720 	int wakeup_swapper;
721 
722 	PROC_LOCK_ASSERT(p, MA_OWNED);
723 	PROC_SLOCK_ASSERT(p, MA_OWNED);
724 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
725 
726 	wakeup_swapper = 0;
727 	switch (mode) {
728 	case SINGLE_EXIT:
729 		if (TD_IS_SUSPENDED(td2))
730 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
731 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
732 			wakeup_swapper |= sleepq_abort(td2, EINTR);
733 		break;
734 	case SINGLE_BOUNDARY:
735 	case SINGLE_NO_EXIT:
736 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
737 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
738 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
739 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
740 		break;
741 	case SINGLE_ALLPROC:
742 		/*
743 		 * ALLPROC suspend tries to avoid spurious EINTR for
744 		 * threads sleeping interruptable, by suspending the
745 		 * thread directly, similarly to sig_suspend_threads().
746 		 * Since such sleep is not performed at the user
747 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
748 		 * is used to avoid immediate un-suspend.
749 		 */
750 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
751 		    TDF_ALLPROCSUSP)) == 0)
752 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
753 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
754 			if ((td2->td_flags & TDF_SBDRY) == 0) {
755 				thread_suspend_one(td2);
756 				td2->td_flags |= TDF_ALLPROCSUSP;
757 			} else {
758 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
759 			}
760 		}
761 		break;
762 	}
763 	return (wakeup_swapper);
764 }
765 
766 /*
767  * Enforce single-threading.
768  *
769  * Returns 1 if the caller must abort (another thread is waiting to
770  * exit the process or similar). Process is locked!
771  * Returns 0 when you are successfully the only thread running.
772  * A process has successfully single threaded in the suspend mode when
773  * There are no threads in user mode. Threads in the kernel must be
774  * allowed to continue until they get to the user boundary. They may even
775  * copy out their return values and data before suspending. They may however be
776  * accelerated in reaching the user boundary as we will wake up
777  * any sleeping threads that are interruptable. (PCATCH).
778  */
779 int
780 thread_single(struct proc *p, int mode)
781 {
782 	struct thread *td;
783 	struct thread *td2;
784 	int remaining, wakeup_swapper;
785 
786 	td = curthread;
787 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
788 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
789 	    ("invalid mode %d", mode));
790 	/*
791 	 * If allowing non-ALLPROC singlethreading for non-curproc
792 	 * callers, calc_remaining() and remain_for_mode() should be
793 	 * adjusted to also account for td->td_proc != p.  For now
794 	 * this is not implemented because it is not used.
795 	 */
796 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
797 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
798 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
799 	mtx_assert(&Giant, MA_NOTOWNED);
800 	PROC_LOCK_ASSERT(p, MA_OWNED);
801 
802 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
803 		return (0);
804 
805 	/* Is someone already single threading? */
806 	if (p->p_singlethread != NULL && p->p_singlethread != td)
807 		return (1);
808 
809 	if (mode == SINGLE_EXIT) {
810 		p->p_flag |= P_SINGLE_EXIT;
811 		p->p_flag &= ~P_SINGLE_BOUNDARY;
812 	} else {
813 		p->p_flag &= ~P_SINGLE_EXIT;
814 		if (mode == SINGLE_BOUNDARY)
815 			p->p_flag |= P_SINGLE_BOUNDARY;
816 		else
817 			p->p_flag &= ~P_SINGLE_BOUNDARY;
818 	}
819 	if (mode == SINGLE_ALLPROC)
820 		p->p_flag |= P_TOTAL_STOP;
821 	p->p_flag |= P_STOPPED_SINGLE;
822 	PROC_SLOCK(p);
823 	p->p_singlethread = td;
824 	remaining = calc_remaining(p, mode);
825 	while (remaining != remain_for_mode(mode)) {
826 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
827 			goto stopme;
828 		wakeup_swapper = 0;
829 		FOREACH_THREAD_IN_PROC(p, td2) {
830 			if (td2 == td)
831 				continue;
832 			thread_lock(td2);
833 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
834 			if (TD_IS_INHIBITED(td2)) {
835 				wakeup_swapper |= weed_inhib(mode, td2, p);
836 #ifdef SMP
837 			} else if (TD_IS_RUNNING(td2) && td != td2) {
838 				forward_signal(td2);
839 #endif
840 			}
841 			thread_unlock(td2);
842 		}
843 		if (wakeup_swapper)
844 			kick_proc0();
845 		remaining = calc_remaining(p, mode);
846 
847 		/*
848 		 * Maybe we suspended some threads.. was it enough?
849 		 */
850 		if (remaining == remain_for_mode(mode))
851 			break;
852 
853 stopme:
854 		/*
855 		 * Wake us up when everyone else has suspended.
856 		 * In the mean time we suspend as well.
857 		 */
858 		thread_suspend_switch(td, p);
859 		remaining = calc_remaining(p, mode);
860 	}
861 	if (mode == SINGLE_EXIT) {
862 		/*
863 		 * Convert the process to an unthreaded process.  The
864 		 * SINGLE_EXIT is called by exit1() or execve(), in
865 		 * both cases other threads must be retired.
866 		 */
867 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
868 		p->p_singlethread = NULL;
869 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
870 
871 		/*
872 		 * Wait for any remaining threads to exit cpu_throw().
873 		 */
874 		while (p->p_exitthreads != 0) {
875 			PROC_SUNLOCK(p);
876 			PROC_UNLOCK(p);
877 			sched_relinquish(td);
878 			PROC_LOCK(p);
879 			PROC_SLOCK(p);
880 		}
881 	} else if (mode == SINGLE_BOUNDARY) {
882 		/*
883 		 * Wait until all suspended threads are removed from
884 		 * the processors.  The thread_suspend_check()
885 		 * increments p_boundary_count while it is still
886 		 * running, which makes it possible for the execve()
887 		 * to destroy vmspace while our other threads are
888 		 * still using the address space.
889 		 *
890 		 * We lock the thread, which is only allowed to
891 		 * succeed after context switch code finished using
892 		 * the address space.
893 		 */
894 		FOREACH_THREAD_IN_PROC(p, td2) {
895 			if (td2 == td)
896 				continue;
897 			thread_lock(td2);
898 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
899 			    ("td %p not on boundary", td2));
900 			KASSERT(TD_IS_SUSPENDED(td2),
901 			    ("td %p is not suspended", td2));
902 			thread_unlock(td2);
903 		}
904 	}
905 	PROC_SUNLOCK(p);
906 	return (0);
907 }
908 
909 bool
910 thread_suspend_check_needed(void)
911 {
912 	struct proc *p;
913 	struct thread *td;
914 
915 	td = curthread;
916 	p = td->td_proc;
917 	PROC_LOCK_ASSERT(p, MA_OWNED);
918 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
919 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
920 }
921 
922 /*
923  * Called in from locations that can safely check to see
924  * whether we have to suspend or at least throttle for a
925  * single-thread event (e.g. fork).
926  *
927  * Such locations include userret().
928  * If the "return_instead" argument is non zero, the thread must be able to
929  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
930  *
931  * The 'return_instead' argument tells the function if it may do a
932  * thread_exit() or suspend, or whether the caller must abort and back
933  * out instead.
934  *
935  * If the thread that set the single_threading request has set the
936  * P_SINGLE_EXIT bit in the process flags then this call will never return
937  * if 'return_instead' is false, but will exit.
938  *
939  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
940  *---------------+--------------------+---------------------
941  *       0       | returns 0          |   returns 0 or 1
942  *               | when ST ends       |   immediately
943  *---------------+--------------------+---------------------
944  *       1       | thread exits       |   returns 1
945  *               |                    |  immediately
946  * 0 = thread_exit() or suspension ok,
947  * other = return error instead of stopping the thread.
948  *
949  * While a full suspension is under effect, even a single threading
950  * thread would be suspended if it made this call (but it shouldn't).
951  * This call should only be made from places where
952  * thread_exit() would be safe as that may be the outcome unless
953  * return_instead is set.
954  */
955 int
956 thread_suspend_check(int return_instead)
957 {
958 	struct thread *td;
959 	struct proc *p;
960 	int wakeup_swapper;
961 
962 	td = curthread;
963 	p = td->td_proc;
964 	mtx_assert(&Giant, MA_NOTOWNED);
965 	PROC_LOCK_ASSERT(p, MA_OWNED);
966 	while (thread_suspend_check_needed()) {
967 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
968 			KASSERT(p->p_singlethread != NULL,
969 			    ("singlethread not set"));
970 			/*
971 			 * The only suspension in action is a
972 			 * single-threading. Single threader need not stop.
973 			 * It is safe to access p->p_singlethread unlocked
974 			 * because it can only be set to our address by us.
975 			 */
976 			if (p->p_singlethread == td)
977 				return (0);	/* Exempt from stopping. */
978 		}
979 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
980 			return (EINTR);
981 
982 		/* Should we goto user boundary if we didn't come from there? */
983 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
984 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
985 			return (ERESTART);
986 
987 		/*
988 		 * Ignore suspend requests if they are deferred.
989 		 */
990 		if ((td->td_flags & TDF_SBDRY) != 0) {
991 			KASSERT(return_instead,
992 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
993 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
994 			    (TDF_SEINTR | TDF_SERESTART),
995 			    ("both TDF_SEINTR and TDF_SERESTART"));
996 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
997 		}
998 
999 		/*
1000 		 * If the process is waiting for us to exit,
1001 		 * this thread should just suicide.
1002 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1003 		 */
1004 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1005 			PROC_UNLOCK(p);
1006 
1007 			/*
1008 			 * Allow Linux emulation layer to do some work
1009 			 * before thread suicide.
1010 			 */
1011 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1012 				(p->p_sysent->sv_thread_detach)(td);
1013 			umtx_thread_exit(td);
1014 			kern_thr_exit(td);
1015 			panic("stopped thread did not exit");
1016 		}
1017 
1018 		PROC_SLOCK(p);
1019 		thread_stopped(p);
1020 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1021 			if (p->p_numthreads == p->p_suspcount + 1) {
1022 				thread_lock(p->p_singlethread);
1023 				wakeup_swapper = thread_unsuspend_one(
1024 				    p->p_singlethread, p, false);
1025 				thread_unlock(p->p_singlethread);
1026 				if (wakeup_swapper)
1027 					kick_proc0();
1028 			}
1029 		}
1030 		PROC_UNLOCK(p);
1031 		thread_lock(td);
1032 		/*
1033 		 * When a thread suspends, it just
1034 		 * gets taken off all queues.
1035 		 */
1036 		thread_suspend_one(td);
1037 		if (return_instead == 0) {
1038 			p->p_boundary_count++;
1039 			td->td_flags |= TDF_BOUNDARY;
1040 		}
1041 		PROC_SUNLOCK(p);
1042 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1043 		thread_unlock(td);
1044 		PROC_LOCK(p);
1045 	}
1046 	return (0);
1047 }
1048 
1049 void
1050 thread_suspend_switch(struct thread *td, struct proc *p)
1051 {
1052 
1053 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1054 	PROC_LOCK_ASSERT(p, MA_OWNED);
1055 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1056 	/*
1057 	 * We implement thread_suspend_one in stages here to avoid
1058 	 * dropping the proc lock while the thread lock is owned.
1059 	 */
1060 	if (p == td->td_proc) {
1061 		thread_stopped(p);
1062 		p->p_suspcount++;
1063 	}
1064 	PROC_UNLOCK(p);
1065 	thread_lock(td);
1066 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1067 	TD_SET_SUSPENDED(td);
1068 	sched_sleep(td, 0);
1069 	PROC_SUNLOCK(p);
1070 	DROP_GIANT();
1071 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1072 	thread_unlock(td);
1073 	PICKUP_GIANT();
1074 	PROC_LOCK(p);
1075 	PROC_SLOCK(p);
1076 }
1077 
1078 void
1079 thread_suspend_one(struct thread *td)
1080 {
1081 	struct proc *p;
1082 
1083 	p = td->td_proc;
1084 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1085 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1086 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1087 	p->p_suspcount++;
1088 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1089 	TD_SET_SUSPENDED(td);
1090 	sched_sleep(td, 0);
1091 }
1092 
1093 static int
1094 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1095 {
1096 
1097 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1098 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1099 	TD_CLR_SUSPENDED(td);
1100 	td->td_flags &= ~TDF_ALLPROCSUSP;
1101 	if (td->td_proc == p) {
1102 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1103 		p->p_suspcount--;
1104 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1105 			td->td_flags &= ~TDF_BOUNDARY;
1106 			p->p_boundary_count--;
1107 		}
1108 	}
1109 	return (setrunnable(td));
1110 }
1111 
1112 /*
1113  * Allow all threads blocked by single threading to continue running.
1114  */
1115 void
1116 thread_unsuspend(struct proc *p)
1117 {
1118 	struct thread *td;
1119 	int wakeup_swapper;
1120 
1121 	PROC_LOCK_ASSERT(p, MA_OWNED);
1122 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1123 	wakeup_swapper = 0;
1124 	if (!P_SHOULDSTOP(p)) {
1125                 FOREACH_THREAD_IN_PROC(p, td) {
1126 			thread_lock(td);
1127 			if (TD_IS_SUSPENDED(td)) {
1128 				wakeup_swapper |= thread_unsuspend_one(td, p,
1129 				    true);
1130 			}
1131 			thread_unlock(td);
1132 		}
1133 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1134 	    p->p_numthreads == p->p_suspcount) {
1135 		/*
1136 		 * Stopping everything also did the job for the single
1137 		 * threading request. Now we've downgraded to single-threaded,
1138 		 * let it continue.
1139 		 */
1140 		if (p->p_singlethread->td_proc == p) {
1141 			thread_lock(p->p_singlethread);
1142 			wakeup_swapper = thread_unsuspend_one(
1143 			    p->p_singlethread, p, false);
1144 			thread_unlock(p->p_singlethread);
1145 		}
1146 	}
1147 	if (wakeup_swapper)
1148 		kick_proc0();
1149 }
1150 
1151 /*
1152  * End the single threading mode..
1153  */
1154 void
1155 thread_single_end(struct proc *p, int mode)
1156 {
1157 	struct thread *td;
1158 	int wakeup_swapper;
1159 
1160 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1161 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1162 	    ("invalid mode %d", mode));
1163 	PROC_LOCK_ASSERT(p, MA_OWNED);
1164 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1165 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1166 	    ("mode %d does not match P_TOTAL_STOP", mode));
1167 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1168 	    ("thread_single_end from other thread %p %p",
1169 	    curthread, p->p_singlethread));
1170 	KASSERT(mode != SINGLE_BOUNDARY ||
1171 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1172 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1173 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1174 	    P_TOTAL_STOP);
1175 	PROC_SLOCK(p);
1176 	p->p_singlethread = NULL;
1177 	wakeup_swapper = 0;
1178 	/*
1179 	 * If there are other threads they may now run,
1180 	 * unless of course there is a blanket 'stop order'
1181 	 * on the process. The single threader must be allowed
1182 	 * to continue however as this is a bad place to stop.
1183 	 */
1184 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1185                 FOREACH_THREAD_IN_PROC(p, td) {
1186 			thread_lock(td);
1187 			if (TD_IS_SUSPENDED(td)) {
1188 				wakeup_swapper |= thread_unsuspend_one(td, p,
1189 				    mode == SINGLE_BOUNDARY);
1190 			}
1191 			thread_unlock(td);
1192 		}
1193 	}
1194 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1195 	    ("inconsistent boundary count %d", p->p_boundary_count));
1196 	PROC_SUNLOCK(p);
1197 	if (wakeup_swapper)
1198 		kick_proc0();
1199 }
1200 
1201 struct thread *
1202 thread_find(struct proc *p, lwpid_t tid)
1203 {
1204 	struct thread *td;
1205 
1206 	PROC_LOCK_ASSERT(p, MA_OWNED);
1207 	FOREACH_THREAD_IN_PROC(p, td) {
1208 		if (td->td_tid == tid)
1209 			break;
1210 	}
1211 	return (td);
1212 }
1213 
1214 /* Locate a thread by number; return with proc lock held. */
1215 struct thread *
1216 tdfind(lwpid_t tid, pid_t pid)
1217 {
1218 #define RUN_THRESH	16
1219 	struct thread *td;
1220 	int run = 0;
1221 
1222 	rw_rlock(&tidhash_lock);
1223 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1224 		if (td->td_tid == tid) {
1225 			if (pid != -1 && td->td_proc->p_pid != pid) {
1226 				td = NULL;
1227 				break;
1228 			}
1229 			PROC_LOCK(td->td_proc);
1230 			if (td->td_proc->p_state == PRS_NEW) {
1231 				PROC_UNLOCK(td->td_proc);
1232 				td = NULL;
1233 				break;
1234 			}
1235 			if (run > RUN_THRESH) {
1236 				if (rw_try_upgrade(&tidhash_lock)) {
1237 					LIST_REMOVE(td, td_hash);
1238 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1239 						td, td_hash);
1240 					rw_wunlock(&tidhash_lock);
1241 					return (td);
1242 				}
1243 			}
1244 			break;
1245 		}
1246 		run++;
1247 	}
1248 	rw_runlock(&tidhash_lock);
1249 	return (td);
1250 }
1251 
1252 void
1253 tidhash_add(struct thread *td)
1254 {
1255 	rw_wlock(&tidhash_lock);
1256 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1257 	rw_wunlock(&tidhash_lock);
1258 }
1259 
1260 void
1261 tidhash_remove(struct thread *td)
1262 {
1263 	rw_wlock(&tidhash_lock);
1264 	LIST_REMOVE(td, td_hash);
1265 	rw_wunlock(&tidhash_lock);
1266 }
1267