xref: /freebsd/sys/kern/kern_umtx.c (revision 7caa2911)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2015, 2016 The FreeBSD Foundation
5  * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice unmodified, this list of conditions, and the following
17  *    disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_umtx_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/fcntl.h>
42 #include <sys/file.h>
43 #include <sys/filedesc.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/resource.h>
52 #include <sys/resourcevar.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/systm.h>
60 #include <sys/sysproto.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/taskqueue.h>
63 #include <sys/time.h>
64 #include <sys/eventhandler.h>
65 #include <sys/umtx.h>
66 #include <sys/umtxvar.h>
67 
68 #include <security/mac/mac_framework.h>
69 
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75 
76 #include <machine/atomic.h>
77 #include <machine/cpu.h>
78 
79 #include <compat/freebsd32/freebsd32.h>
80 #ifdef COMPAT_FREEBSD32
81 #include <compat/freebsd32/freebsd32_proto.h>
82 #endif
83 
84 #define _UMUTEX_TRY		1
85 #define _UMUTEX_WAIT		2
86 
87 #ifdef UMTX_PROFILING
88 #define	UPROF_PERC_BIGGER(w, f, sw, sf)					\
89 	(((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
90 #endif
91 
92 #define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
93 
94 /*
95  * Don't propagate time-sharing priority, there is a security reason,
96  * a user can simply introduce PI-mutex, let thread A lock the mutex,
97  * and let another thread B block on the mutex, because B is
98  * sleeping, its priority will be boosted, this causes A's priority to
99  * be boosted via priority propagating too and will never be lowered even
100  * if it is using 100%CPU, this is unfair to other processes.
101  */
102 
103 #define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
104 			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
105 			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
106 
107 #define	GOLDEN_RATIO_PRIME	2654404609U
108 #ifndef	UMTX_CHAINS
109 #define	UMTX_CHAINS		512
110 #endif
111 #define	UMTX_SHIFTS		(__WORD_BIT - 9)
112 
113 #define	GET_SHARE(flags)	\
114     (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
115 
116 #define BUSY_SPINS		200
117 
118 struct umtx_copyops {
119 	int	(*copyin_timeout)(const void *uaddr, struct timespec *tsp);
120 	int	(*copyin_umtx_time)(const void *uaddr, size_t size,
121 	    struct _umtx_time *tp);
122 	int	(*copyin_robust_lists)(const void *uaddr, size_t size,
123 	    struct umtx_robust_lists_params *rbp);
124 	int	(*copyout_timeout)(void *uaddr, size_t size,
125 	    struct timespec *tsp);
126 	const size_t	timespec_sz;
127 	const size_t	umtx_time_sz;
128 	const bool	compat32;
129 };
130 
131 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
132 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
133     __offsetof(struct umutex32, m_spare[0]), "m_spare32");
134 
135 int umtx_shm_vnobj_persistent = 0;
136 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
137     &umtx_shm_vnobj_persistent, 0,
138     "False forces destruction of umtx attached to file, on last close");
139 static int umtx_max_rb = 1000;
140 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
141     &umtx_max_rb, 0,
142     "Maximum number of robust mutexes allowed for each thread");
143 
144 static uma_zone_t		umtx_pi_zone;
145 static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
146 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
147 static int			umtx_pi_allocated;
148 
149 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
150     "umtx debug");
151 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
152     &umtx_pi_allocated, 0, "Allocated umtx_pi");
153 static int umtx_verbose_rb = 1;
154 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
155     &umtx_verbose_rb, 0,
156     "");
157 
158 #ifdef UMTX_PROFILING
159 static long max_length;
160 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
161 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
162     "umtx chain stats");
163 #endif
164 
165 static inline void umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
166     const struct _umtx_time *umtxtime);
167 static int umtx_abs_timeout_gethz(struct umtx_abs_timeout *timo);
168 static inline void umtx_abs_timeout_update(struct umtx_abs_timeout *timo);
169 
170 static void umtx_shm_init(void);
171 static void umtxq_sysinit(void *);
172 static void umtxq_hash(struct umtx_key *key);
173 static struct umtx_pi *umtx_pi_alloc(int);
174 static void umtx_pi_free(struct umtx_pi *pi);
175 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
176     bool rb);
177 static void umtx_thread_cleanup(struct thread *td);
178 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
179 
180 #define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
181 
182 static struct mtx umtx_lock;
183 
184 #ifdef UMTX_PROFILING
185 static void
186 umtx_init_profiling(void)
187 {
188 	struct sysctl_oid *chain_oid;
189 	char chain_name[10];
190 	int i;
191 
192 	for (i = 0; i < UMTX_CHAINS; ++i) {
193 		snprintf(chain_name, sizeof(chain_name), "%d", i);
194 		chain_oid = SYSCTL_ADD_NODE(NULL,
195 		    SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
196 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
197 		    "umtx hash stats");
198 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
199 		    "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
200 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
201 		    "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
202 	}
203 }
204 
205 static int
206 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
207 {
208 	char buf[512];
209 	struct sbuf sb;
210 	struct umtxq_chain *uc;
211 	u_int fract, i, j, tot, whole;
212 	u_int sf0, sf1, sf2, sf3, sf4;
213 	u_int si0, si1, si2, si3, si4;
214 	u_int sw0, sw1, sw2, sw3, sw4;
215 
216 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
217 	for (i = 0; i < 2; i++) {
218 		tot = 0;
219 		for (j = 0; j < UMTX_CHAINS; ++j) {
220 			uc = &umtxq_chains[i][j];
221 			mtx_lock(&uc->uc_lock);
222 			tot += uc->max_length;
223 			mtx_unlock(&uc->uc_lock);
224 		}
225 		if (tot == 0)
226 			sbuf_printf(&sb, "%u) Empty ", i);
227 		else {
228 			sf0 = sf1 = sf2 = sf3 = sf4 = 0;
229 			si0 = si1 = si2 = si3 = si4 = 0;
230 			sw0 = sw1 = sw2 = sw3 = sw4 = 0;
231 			for (j = 0; j < UMTX_CHAINS; j++) {
232 				uc = &umtxq_chains[i][j];
233 				mtx_lock(&uc->uc_lock);
234 				whole = uc->max_length * 100;
235 				mtx_unlock(&uc->uc_lock);
236 				fract = (whole % tot) * 100;
237 				if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
238 					sf0 = fract;
239 					si0 = j;
240 					sw0 = whole;
241 				} else if (UPROF_PERC_BIGGER(whole, fract, sw1,
242 				    sf1)) {
243 					sf1 = fract;
244 					si1 = j;
245 					sw1 = whole;
246 				} else if (UPROF_PERC_BIGGER(whole, fract, sw2,
247 				    sf2)) {
248 					sf2 = fract;
249 					si2 = j;
250 					sw2 = whole;
251 				} else if (UPROF_PERC_BIGGER(whole, fract, sw3,
252 				    sf3)) {
253 					sf3 = fract;
254 					si3 = j;
255 					sw3 = whole;
256 				} else if (UPROF_PERC_BIGGER(whole, fract, sw4,
257 				    sf4)) {
258 					sf4 = fract;
259 					si4 = j;
260 					sw4 = whole;
261 				}
262 			}
263 			sbuf_printf(&sb, "queue %u:\n", i);
264 			sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
265 			    sf0 / tot, si0);
266 			sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
267 			    sf1 / tot, si1);
268 			sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
269 			    sf2 / tot, si2);
270 			sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
271 			    sf3 / tot, si3);
272 			sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
273 			    sf4 / tot, si4);
274 		}
275 	}
276 	sbuf_trim(&sb);
277 	sbuf_finish(&sb);
278 	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
279 	sbuf_delete(&sb);
280 	return (0);
281 }
282 
283 static int
284 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
285 {
286 	struct umtxq_chain *uc;
287 	u_int i, j;
288 	int clear, error;
289 
290 	clear = 0;
291 	error = sysctl_handle_int(oidp, &clear, 0, req);
292 	if (error != 0 || req->newptr == NULL)
293 		return (error);
294 
295 	if (clear != 0) {
296 		for (i = 0; i < 2; ++i) {
297 			for (j = 0; j < UMTX_CHAINS; ++j) {
298 				uc = &umtxq_chains[i][j];
299 				mtx_lock(&uc->uc_lock);
300 				uc->length = 0;
301 				uc->max_length = 0;
302 				mtx_unlock(&uc->uc_lock);
303 			}
304 		}
305 	}
306 	return (0);
307 }
308 
309 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
310     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
311     sysctl_debug_umtx_chains_clear, "I",
312     "Clear umtx chains statistics");
313 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
314     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
315     sysctl_debug_umtx_chains_peaks, "A",
316     "Highest peaks in chains max length");
317 #endif
318 
319 static void
320 umtxq_sysinit(void *arg __unused)
321 {
322 	int i, j;
323 
324 	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
325 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
326 	for (i = 0; i < 2; ++i) {
327 		for (j = 0; j < UMTX_CHAINS; ++j) {
328 			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
329 				 MTX_DEF | MTX_DUPOK);
330 			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
331 			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
332 			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
333 			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
334 			umtxq_chains[i][j].uc_busy = 0;
335 			umtxq_chains[i][j].uc_waiters = 0;
336 #ifdef UMTX_PROFILING
337 			umtxq_chains[i][j].length = 0;
338 			umtxq_chains[i][j].max_length = 0;
339 #endif
340 		}
341 	}
342 #ifdef UMTX_PROFILING
343 	umtx_init_profiling();
344 #endif
345 	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
346 	umtx_shm_init();
347 }
348 
349 struct umtx_q *
350 umtxq_alloc(void)
351 {
352 	struct umtx_q *uq;
353 
354 	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
355 	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
356 	    M_WAITOK | M_ZERO);
357 	TAILQ_INIT(&uq->uq_spare_queue->head);
358 	TAILQ_INIT(&uq->uq_pi_contested);
359 	uq->uq_inherited_pri = PRI_MAX;
360 	return (uq);
361 }
362 
363 void
364 umtxq_free(struct umtx_q *uq)
365 {
366 
367 	MPASS(uq->uq_spare_queue != NULL);
368 	free(uq->uq_spare_queue, M_UMTX);
369 	free(uq, M_UMTX);
370 }
371 
372 static inline void
373 umtxq_hash(struct umtx_key *key)
374 {
375 	unsigned n;
376 
377 	n = (uintptr_t)key->info.both.a + key->info.both.b;
378 	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
379 }
380 
381 struct umtxq_chain *
382 umtxq_getchain(struct umtx_key *key)
383 {
384 
385 	if (key->type <= TYPE_SEM)
386 		return (&umtxq_chains[1][key->hash]);
387 	return (&umtxq_chains[0][key->hash]);
388 }
389 
390 /*
391  * Set chain to busy state when following operation
392  * may be blocked (kernel mutex can not be used).
393  */
394 void
395 umtxq_busy(struct umtx_key *key)
396 {
397 	struct umtxq_chain *uc;
398 
399 	uc = umtxq_getchain(key);
400 	mtx_assert(&uc->uc_lock, MA_OWNED);
401 	if (uc->uc_busy) {
402 #ifdef SMP
403 		if (smp_cpus > 1) {
404 			int count = BUSY_SPINS;
405 			if (count > 0) {
406 				umtxq_unlock(key);
407 				while (uc->uc_busy && --count > 0)
408 					cpu_spinwait();
409 				umtxq_lock(key);
410 			}
411 		}
412 #endif
413 		while (uc->uc_busy) {
414 			uc->uc_waiters++;
415 			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
416 			uc->uc_waiters--;
417 		}
418 	}
419 	uc->uc_busy = 1;
420 }
421 
422 /*
423  * Unbusy a chain.
424  */
425 void
426 umtxq_unbusy(struct umtx_key *key)
427 {
428 	struct umtxq_chain *uc;
429 
430 	uc = umtxq_getchain(key);
431 	mtx_assert(&uc->uc_lock, MA_OWNED);
432 	KASSERT(uc->uc_busy != 0, ("not busy"));
433 	uc->uc_busy = 0;
434 	if (uc->uc_waiters)
435 		wakeup_one(uc);
436 }
437 
438 static inline void
439 umtxq_unbusy_unlocked(struct umtx_key *key)
440 {
441 
442 	umtxq_lock(key);
443 	umtxq_unbusy(key);
444 	umtxq_unlock(key);
445 }
446 
447 static struct umtxq_queue *
448 umtxq_queue_lookup(struct umtx_key *key, int q)
449 {
450 	struct umtxq_queue *uh;
451 	struct umtxq_chain *uc;
452 
453 	uc = umtxq_getchain(key);
454 	UMTXQ_LOCKED_ASSERT(uc);
455 	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
456 		if (umtx_key_match(&uh->key, key))
457 			return (uh);
458 	}
459 
460 	return (NULL);
461 }
462 
463 void
464 umtxq_insert_queue(struct umtx_q *uq, int q)
465 {
466 	struct umtxq_queue *uh;
467 	struct umtxq_chain *uc;
468 
469 	uc = umtxq_getchain(&uq->uq_key);
470 	UMTXQ_LOCKED_ASSERT(uc);
471 	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
472 	uh = umtxq_queue_lookup(&uq->uq_key, q);
473 	if (uh != NULL) {
474 		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
475 	} else {
476 		uh = uq->uq_spare_queue;
477 		uh->key = uq->uq_key;
478 		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
479 #ifdef UMTX_PROFILING
480 		uc->length++;
481 		if (uc->length > uc->max_length) {
482 			uc->max_length = uc->length;
483 			if (uc->max_length > max_length)
484 				max_length = uc->max_length;
485 		}
486 #endif
487 	}
488 	uq->uq_spare_queue = NULL;
489 
490 	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
491 	uh->length++;
492 	uq->uq_flags |= UQF_UMTXQ;
493 	uq->uq_cur_queue = uh;
494 	return;
495 }
496 
497 void
498 umtxq_remove_queue(struct umtx_q *uq, int q)
499 {
500 	struct umtxq_chain *uc;
501 	struct umtxq_queue *uh;
502 
503 	uc = umtxq_getchain(&uq->uq_key);
504 	UMTXQ_LOCKED_ASSERT(uc);
505 	if (uq->uq_flags & UQF_UMTXQ) {
506 		uh = uq->uq_cur_queue;
507 		TAILQ_REMOVE(&uh->head, uq, uq_link);
508 		uh->length--;
509 		uq->uq_flags &= ~UQF_UMTXQ;
510 		if (TAILQ_EMPTY(&uh->head)) {
511 			KASSERT(uh->length == 0,
512 			    ("inconsistent umtxq_queue length"));
513 #ifdef UMTX_PROFILING
514 			uc->length--;
515 #endif
516 			LIST_REMOVE(uh, link);
517 		} else {
518 			uh = LIST_FIRST(&uc->uc_spare_queue);
519 			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
520 			LIST_REMOVE(uh, link);
521 		}
522 		uq->uq_spare_queue = uh;
523 		uq->uq_cur_queue = NULL;
524 	}
525 }
526 
527 /*
528  * Check if there are multiple waiters
529  */
530 int
531 umtxq_count(struct umtx_key *key)
532 {
533 	struct umtxq_queue *uh;
534 
535 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
536 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
537 	if (uh != NULL)
538 		return (uh->length);
539 	return (0);
540 }
541 
542 /*
543  * Check if there are multiple PI waiters and returns first
544  * waiter.
545  */
546 static int
547 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
548 {
549 	struct umtxq_queue *uh;
550 
551 	*first = NULL;
552 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
553 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
554 	if (uh != NULL) {
555 		*first = TAILQ_FIRST(&uh->head);
556 		return (uh->length);
557 	}
558 	return (0);
559 }
560 
561 /*
562  * Wake up threads waiting on an userland object by a bit mask.
563  */
564 int
565 umtxq_signal_mask(struct umtx_key *key, int n_wake, u_int bitset)
566 {
567 	struct umtxq_queue *uh;
568 	struct umtx_q *uq, *uq_temp;
569 	int ret;
570 
571 	ret = 0;
572 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
573 	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
574 	if (uh == NULL)
575 		return (0);
576 	TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
577 		if ((uq->uq_bitset & bitset) == 0)
578 			continue;
579 		umtxq_remove_queue(uq, UMTX_SHARED_QUEUE);
580 		wakeup_one(uq);
581 		if (++ret >= n_wake)
582 			break;
583 	}
584 	return (ret);
585 }
586 
587 /*
588  * Wake up threads waiting on an userland object.
589  */
590 
591 static int
592 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
593 {
594 	struct umtxq_queue *uh;
595 	struct umtx_q *uq;
596 	int ret;
597 
598 	ret = 0;
599 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
600 	uh = umtxq_queue_lookup(key, q);
601 	if (uh != NULL) {
602 		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
603 			umtxq_remove_queue(uq, q);
604 			wakeup(uq);
605 			if (++ret >= n_wake)
606 				return (ret);
607 		}
608 	}
609 	return (ret);
610 }
611 
612 /*
613  * Wake up specified thread.
614  */
615 static inline void
616 umtxq_signal_thread(struct umtx_q *uq)
617 {
618 
619 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
620 	umtxq_remove(uq);
621 	wakeup(uq);
622 }
623 
624 static inline int
625 tstohz(const struct timespec *tsp)
626 {
627 	struct timeval tv;
628 
629 	TIMESPEC_TO_TIMEVAL(&tv, tsp);
630 	return tvtohz(&tv);
631 }
632 
633 void
634 umtx_abs_timeout_init(struct umtx_abs_timeout *timo, int clockid,
635     int absolute, const struct timespec *timeout)
636 {
637 
638 	timo->clockid = clockid;
639 	if (!absolute) {
640 		timo->is_abs_real = false;
641 		umtx_abs_timeout_update(timo);
642 		timespecadd(&timo->cur, timeout, &timo->end);
643 	} else {
644 		timo->end = *timeout;
645 		timo->is_abs_real = clockid == CLOCK_REALTIME ||
646 		    clockid == CLOCK_REALTIME_FAST ||
647 		    clockid == CLOCK_REALTIME_PRECISE;
648 		/*
649 		 * If is_abs_real, umtxq_sleep will read the clock
650 		 * after setting td_rtcgen; otherwise, read it here.
651 		 */
652 		if (!timo->is_abs_real) {
653 			umtx_abs_timeout_update(timo);
654 		}
655 	}
656 }
657 
658 static void
659 umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
660     const struct _umtx_time *umtxtime)
661 {
662 
663 	umtx_abs_timeout_init(timo, umtxtime->_clockid,
664 	    (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
665 }
666 
667 static void
668 umtx_abs_timeout_update(struct umtx_abs_timeout *timo)
669 {
670 
671 	kern_clock_gettime(curthread, timo->clockid, &timo->cur);
672 }
673 
674 static int
675 umtx_abs_timeout_gethz(struct umtx_abs_timeout *timo)
676 {
677 	struct timespec tts;
678 
679 	if (timespeccmp(&timo->end, &timo->cur, <=))
680 		return (-1);
681 	timespecsub(&timo->end, &timo->cur, &tts);
682 	return (tstohz(&tts));
683 }
684 
685 static uint32_t
686 umtx_unlock_val(uint32_t flags, bool rb)
687 {
688 
689 	if (rb)
690 		return (UMUTEX_RB_OWNERDEAD);
691 	else if ((flags & UMUTEX_NONCONSISTENT) != 0)
692 		return (UMUTEX_RB_NOTRECOV);
693 	else
694 		return (UMUTEX_UNOWNED);
695 
696 }
697 
698 /*
699  * Put thread into sleep state, before sleeping, check if
700  * thread was removed from umtx queue.
701  */
702 int
703 umtxq_sleep(struct umtx_q *uq, const char *wmesg,
704     struct umtx_abs_timeout *abstime)
705 {
706 	struct umtxq_chain *uc;
707 	int error, timo;
708 
709 	if (abstime != NULL && abstime->is_abs_real) {
710 		curthread->td_rtcgen = atomic_load_acq_int(&rtc_generation);
711 		umtx_abs_timeout_update(abstime);
712 	}
713 
714 	uc = umtxq_getchain(&uq->uq_key);
715 	UMTXQ_LOCKED_ASSERT(uc);
716 	for (;;) {
717 		if (!(uq->uq_flags & UQF_UMTXQ)) {
718 			error = 0;
719 			break;
720 		}
721 		if (abstime != NULL) {
722 			timo = umtx_abs_timeout_gethz(abstime);
723 			if (timo < 0) {
724 				error = ETIMEDOUT;
725 				break;
726 			}
727 		} else
728 			timo = 0;
729 		error = msleep(uq, &uc->uc_lock, PCATCH | PDROP, wmesg, timo);
730 		if (error == EINTR || error == ERESTART) {
731 			umtxq_lock(&uq->uq_key);
732 			break;
733 		}
734 		if (abstime != NULL) {
735 			if (abstime->is_abs_real)
736 				curthread->td_rtcgen =
737 				    atomic_load_acq_int(&rtc_generation);
738 			umtx_abs_timeout_update(abstime);
739 		}
740 		umtxq_lock(&uq->uq_key);
741 	}
742 
743 	curthread->td_rtcgen = 0;
744 	return (error);
745 }
746 
747 /*
748  * Convert userspace address into unique logical address.
749  */
750 int
751 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
752 {
753 	struct thread *td = curthread;
754 	vm_map_t map;
755 	vm_map_entry_t entry;
756 	vm_pindex_t pindex;
757 	vm_prot_t prot;
758 	boolean_t wired;
759 
760 	key->type = type;
761 	if (share == THREAD_SHARE) {
762 		key->shared = 0;
763 		key->info.private.vs = td->td_proc->p_vmspace;
764 		key->info.private.addr = (uintptr_t)addr;
765 	} else {
766 		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
767 		map = &td->td_proc->p_vmspace->vm_map;
768 		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
769 		    &entry, &key->info.shared.object, &pindex, &prot,
770 		    &wired) != KERN_SUCCESS) {
771 			return (EFAULT);
772 		}
773 
774 		if ((share == PROCESS_SHARE) ||
775 		    (share == AUTO_SHARE &&
776 		     VM_INHERIT_SHARE == entry->inheritance)) {
777 			key->shared = 1;
778 			key->info.shared.offset = (vm_offset_t)addr -
779 			    entry->start + entry->offset;
780 			vm_object_reference(key->info.shared.object);
781 		} else {
782 			key->shared = 0;
783 			key->info.private.vs = td->td_proc->p_vmspace;
784 			key->info.private.addr = (uintptr_t)addr;
785 		}
786 		vm_map_lookup_done(map, entry);
787 	}
788 
789 	umtxq_hash(key);
790 	return (0);
791 }
792 
793 /*
794  * Release key.
795  */
796 void
797 umtx_key_release(struct umtx_key *key)
798 {
799 	if (key->shared)
800 		vm_object_deallocate(key->info.shared.object);
801 }
802 
803 #ifdef COMPAT_FREEBSD10
804 /*
805  * Lock a umtx object.
806  */
807 static int
808 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
809     const struct timespec *timeout)
810 {
811 	struct umtx_abs_timeout timo;
812 	struct umtx_q *uq;
813 	u_long owner;
814 	u_long old;
815 	int error = 0;
816 
817 	uq = td->td_umtxq;
818 	if (timeout != NULL)
819 		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
820 
821 	/*
822 	 * Care must be exercised when dealing with umtx structure. It
823 	 * can fault on any access.
824 	 */
825 	for (;;) {
826 		/*
827 		 * Try the uncontested case.  This should be done in userland.
828 		 */
829 		owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
830 
831 		/* The acquire succeeded. */
832 		if (owner == UMTX_UNOWNED)
833 			return (0);
834 
835 		/* The address was invalid. */
836 		if (owner == -1)
837 			return (EFAULT);
838 
839 		/* If no one owns it but it is contested try to acquire it. */
840 		if (owner == UMTX_CONTESTED) {
841 			owner = casuword(&umtx->u_owner,
842 			    UMTX_CONTESTED, id | UMTX_CONTESTED);
843 
844 			if (owner == UMTX_CONTESTED)
845 				return (0);
846 
847 			/* The address was invalid. */
848 			if (owner == -1)
849 				return (EFAULT);
850 
851 			error = thread_check_susp(td, false);
852 			if (error != 0)
853 				break;
854 
855 			/* If this failed the lock has changed, restart. */
856 			continue;
857 		}
858 
859 		/*
860 		 * If we caught a signal, we have retried and now
861 		 * exit immediately.
862 		 */
863 		if (error != 0)
864 			break;
865 
866 		if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
867 			AUTO_SHARE, &uq->uq_key)) != 0)
868 			return (error);
869 
870 		umtxq_lock(&uq->uq_key);
871 		umtxq_busy(&uq->uq_key);
872 		umtxq_insert(uq);
873 		umtxq_unbusy(&uq->uq_key);
874 		umtxq_unlock(&uq->uq_key);
875 
876 		/*
877 		 * Set the contested bit so that a release in user space
878 		 * knows to use the system call for unlock.  If this fails
879 		 * either some one else has acquired the lock or it has been
880 		 * released.
881 		 */
882 		old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
883 
884 		/* The address was invalid. */
885 		if (old == -1) {
886 			umtxq_lock(&uq->uq_key);
887 			umtxq_remove(uq);
888 			umtxq_unlock(&uq->uq_key);
889 			umtx_key_release(&uq->uq_key);
890 			return (EFAULT);
891 		}
892 
893 		/*
894 		 * We set the contested bit, sleep. Otherwise the lock changed
895 		 * and we need to retry or we lost a race to the thread
896 		 * unlocking the umtx.
897 		 */
898 		umtxq_lock(&uq->uq_key);
899 		if (old == owner)
900 			error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
901 			    &timo);
902 		umtxq_remove(uq);
903 		umtxq_unlock(&uq->uq_key);
904 		umtx_key_release(&uq->uq_key);
905 
906 		if (error == 0)
907 			error = thread_check_susp(td, false);
908 	}
909 
910 	if (timeout == NULL) {
911 		/* Mutex locking is restarted if it is interrupted. */
912 		if (error == EINTR)
913 			error = ERESTART;
914 	} else {
915 		/* Timed-locking is not restarted. */
916 		if (error == ERESTART)
917 			error = EINTR;
918 	}
919 	return (error);
920 }
921 
922 /*
923  * Unlock a umtx object.
924  */
925 static int
926 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
927 {
928 	struct umtx_key key;
929 	u_long owner;
930 	u_long old;
931 	int error;
932 	int count;
933 
934 	/*
935 	 * Make sure we own this mtx.
936 	 */
937 	owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
938 	if (owner == -1)
939 		return (EFAULT);
940 
941 	if ((owner & ~UMTX_CONTESTED) != id)
942 		return (EPERM);
943 
944 	/* This should be done in userland */
945 	if ((owner & UMTX_CONTESTED) == 0) {
946 		old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
947 		if (old == -1)
948 			return (EFAULT);
949 		if (old == owner)
950 			return (0);
951 		owner = old;
952 	}
953 
954 	/* We should only ever be in here for contested locks */
955 	if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
956 	    &key)) != 0)
957 		return (error);
958 
959 	umtxq_lock(&key);
960 	umtxq_busy(&key);
961 	count = umtxq_count(&key);
962 	umtxq_unlock(&key);
963 
964 	/*
965 	 * When unlocking the umtx, it must be marked as unowned if
966 	 * there is zero or one thread only waiting for it.
967 	 * Otherwise, it must be marked as contested.
968 	 */
969 	old = casuword(&umtx->u_owner, owner,
970 	    count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
971 	umtxq_lock(&key);
972 	umtxq_signal(&key,1);
973 	umtxq_unbusy(&key);
974 	umtxq_unlock(&key);
975 	umtx_key_release(&key);
976 	if (old == -1)
977 		return (EFAULT);
978 	if (old != owner)
979 		return (EINVAL);
980 	return (0);
981 }
982 
983 #ifdef COMPAT_FREEBSD32
984 
985 /*
986  * Lock a umtx object.
987  */
988 static int
989 do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
990 	const struct timespec *timeout)
991 {
992 	struct umtx_abs_timeout timo;
993 	struct umtx_q *uq;
994 	uint32_t owner;
995 	uint32_t old;
996 	int error = 0;
997 
998 	uq = td->td_umtxq;
999 
1000 	if (timeout != NULL)
1001 		umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1002 
1003 	/*
1004 	 * Care must be exercised when dealing with umtx structure. It
1005 	 * can fault on any access.
1006 	 */
1007 	for (;;) {
1008 		/*
1009 		 * Try the uncontested case.  This should be done in userland.
1010 		 */
1011 		owner = casuword32(m, UMUTEX_UNOWNED, id);
1012 
1013 		/* The acquire succeeded. */
1014 		if (owner == UMUTEX_UNOWNED)
1015 			return (0);
1016 
1017 		/* The address was invalid. */
1018 		if (owner == -1)
1019 			return (EFAULT);
1020 
1021 		/* If no one owns it but it is contested try to acquire it. */
1022 		if (owner == UMUTEX_CONTESTED) {
1023 			owner = casuword32(m,
1024 			    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1025 			if (owner == UMUTEX_CONTESTED)
1026 				return (0);
1027 
1028 			/* The address was invalid. */
1029 			if (owner == -1)
1030 				return (EFAULT);
1031 
1032 			error = thread_check_susp(td, false);
1033 			if (error != 0)
1034 				break;
1035 
1036 			/* If this failed the lock has changed, restart. */
1037 			continue;
1038 		}
1039 
1040 		/*
1041 		 * If we caught a signal, we have retried and now
1042 		 * exit immediately.
1043 		 */
1044 		if (error != 0)
1045 			return (error);
1046 
1047 		if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1048 			AUTO_SHARE, &uq->uq_key)) != 0)
1049 			return (error);
1050 
1051 		umtxq_lock(&uq->uq_key);
1052 		umtxq_busy(&uq->uq_key);
1053 		umtxq_insert(uq);
1054 		umtxq_unbusy(&uq->uq_key);
1055 		umtxq_unlock(&uq->uq_key);
1056 
1057 		/*
1058 		 * Set the contested bit so that a release in user space
1059 		 * knows to use the system call for unlock.  If this fails
1060 		 * either some one else has acquired the lock or it has been
1061 		 * released.
1062 		 */
1063 		old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1064 
1065 		/* The address was invalid. */
1066 		if (old == -1) {
1067 			umtxq_lock(&uq->uq_key);
1068 			umtxq_remove(uq);
1069 			umtxq_unlock(&uq->uq_key);
1070 			umtx_key_release(&uq->uq_key);
1071 			return (EFAULT);
1072 		}
1073 
1074 		/*
1075 		 * We set the contested bit, sleep. Otherwise the lock changed
1076 		 * and we need to retry or we lost a race to the thread
1077 		 * unlocking the umtx.
1078 		 */
1079 		umtxq_lock(&uq->uq_key);
1080 		if (old == owner)
1081 			error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1082 			    NULL : &timo);
1083 		umtxq_remove(uq);
1084 		umtxq_unlock(&uq->uq_key);
1085 		umtx_key_release(&uq->uq_key);
1086 
1087 		if (error == 0)
1088 			error = thread_check_susp(td, false);
1089 	}
1090 
1091 	if (timeout == NULL) {
1092 		/* Mutex locking is restarted if it is interrupted. */
1093 		if (error == EINTR)
1094 			error = ERESTART;
1095 	} else {
1096 		/* Timed-locking is not restarted. */
1097 		if (error == ERESTART)
1098 			error = EINTR;
1099 	}
1100 	return (error);
1101 }
1102 
1103 /*
1104  * Unlock a umtx object.
1105  */
1106 static int
1107 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1108 {
1109 	struct umtx_key key;
1110 	uint32_t owner;
1111 	uint32_t old;
1112 	int error;
1113 	int count;
1114 
1115 	/*
1116 	 * Make sure we own this mtx.
1117 	 */
1118 	owner = fuword32(m);
1119 	if (owner == -1)
1120 		return (EFAULT);
1121 
1122 	if ((owner & ~UMUTEX_CONTESTED) != id)
1123 		return (EPERM);
1124 
1125 	/* This should be done in userland */
1126 	if ((owner & UMUTEX_CONTESTED) == 0) {
1127 		old = casuword32(m, owner, UMUTEX_UNOWNED);
1128 		if (old == -1)
1129 			return (EFAULT);
1130 		if (old == owner)
1131 			return (0);
1132 		owner = old;
1133 	}
1134 
1135 	/* We should only ever be in here for contested locks */
1136 	if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1137 		&key)) != 0)
1138 		return (error);
1139 
1140 	umtxq_lock(&key);
1141 	umtxq_busy(&key);
1142 	count = umtxq_count(&key);
1143 	umtxq_unlock(&key);
1144 
1145 	/*
1146 	 * When unlocking the umtx, it must be marked as unowned if
1147 	 * there is zero or one thread only waiting for it.
1148 	 * Otherwise, it must be marked as contested.
1149 	 */
1150 	old = casuword32(m, owner,
1151 		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1152 	umtxq_lock(&key);
1153 	umtxq_signal(&key,1);
1154 	umtxq_unbusy(&key);
1155 	umtxq_unlock(&key);
1156 	umtx_key_release(&key);
1157 	if (old == -1)
1158 		return (EFAULT);
1159 	if (old != owner)
1160 		return (EINVAL);
1161 	return (0);
1162 }
1163 #endif	/* COMPAT_FREEBSD32 */
1164 #endif	/* COMPAT_FREEBSD10 */
1165 
1166 /*
1167  * Fetch and compare value, sleep on the address if value is not changed.
1168  */
1169 static int
1170 do_wait(struct thread *td, void *addr, u_long id,
1171     struct _umtx_time *timeout, int compat32, int is_private)
1172 {
1173 	struct umtx_abs_timeout timo;
1174 	struct umtx_q *uq;
1175 	u_long tmp;
1176 	uint32_t tmp32;
1177 	int error = 0;
1178 
1179 	uq = td->td_umtxq;
1180 	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1181 		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1182 		return (error);
1183 
1184 	if (timeout != NULL)
1185 		umtx_abs_timeout_init2(&timo, timeout);
1186 
1187 	umtxq_lock(&uq->uq_key);
1188 	umtxq_insert(uq);
1189 	umtxq_unlock(&uq->uq_key);
1190 	if (compat32 == 0) {
1191 		error = fueword(addr, &tmp);
1192 		if (error != 0)
1193 			error = EFAULT;
1194 	} else {
1195 		error = fueword32(addr, &tmp32);
1196 		if (error == 0)
1197 			tmp = tmp32;
1198 		else
1199 			error = EFAULT;
1200 	}
1201 	umtxq_lock(&uq->uq_key);
1202 	if (error == 0) {
1203 		if (tmp == id)
1204 			error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1205 			    NULL : &timo);
1206 		if ((uq->uq_flags & UQF_UMTXQ) == 0)
1207 			error = 0;
1208 		else
1209 			umtxq_remove(uq);
1210 	} else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1211 		umtxq_remove(uq);
1212 	}
1213 	umtxq_unlock(&uq->uq_key);
1214 	umtx_key_release(&uq->uq_key);
1215 	if (error == ERESTART)
1216 		error = EINTR;
1217 	return (error);
1218 }
1219 
1220 /*
1221  * Wake up threads sleeping on the specified address.
1222  */
1223 int
1224 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1225 {
1226 	struct umtx_key key;
1227 	int ret;
1228 
1229 	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1230 	    is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1231 		return (ret);
1232 	umtxq_lock(&key);
1233 	umtxq_signal(&key, n_wake);
1234 	umtxq_unlock(&key);
1235 	umtx_key_release(&key);
1236 	return (0);
1237 }
1238 
1239 /*
1240  * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1241  */
1242 static int
1243 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1244     struct _umtx_time *timeout, int mode)
1245 {
1246 	struct umtx_abs_timeout timo;
1247 	struct umtx_q *uq;
1248 	uint32_t owner, old, id;
1249 	int error, rv;
1250 
1251 	id = td->td_tid;
1252 	uq = td->td_umtxq;
1253 	error = 0;
1254 	if (timeout != NULL)
1255 		umtx_abs_timeout_init2(&timo, timeout);
1256 
1257 	/*
1258 	 * Care must be exercised when dealing with umtx structure. It
1259 	 * can fault on any access.
1260 	 */
1261 	for (;;) {
1262 		rv = fueword32(&m->m_owner, &owner);
1263 		if (rv == -1)
1264 			return (EFAULT);
1265 		if (mode == _UMUTEX_WAIT) {
1266 			if (owner == UMUTEX_UNOWNED ||
1267 			    owner == UMUTEX_CONTESTED ||
1268 			    owner == UMUTEX_RB_OWNERDEAD ||
1269 			    owner == UMUTEX_RB_NOTRECOV)
1270 				return (0);
1271 		} else {
1272 			/*
1273 			 * Robust mutex terminated.  Kernel duty is to
1274 			 * return EOWNERDEAD to the userspace.  The
1275 			 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1276 			 * by the common userspace code.
1277 			 */
1278 			if (owner == UMUTEX_RB_OWNERDEAD) {
1279 				rv = casueword32(&m->m_owner,
1280 				    UMUTEX_RB_OWNERDEAD, &owner,
1281 				    id | UMUTEX_CONTESTED);
1282 				if (rv == -1)
1283 					return (EFAULT);
1284 				if (rv == 0) {
1285 					MPASS(owner == UMUTEX_RB_OWNERDEAD);
1286 					return (EOWNERDEAD); /* success */
1287 				}
1288 				MPASS(rv == 1);
1289 				rv = thread_check_susp(td, false);
1290 				if (rv != 0)
1291 					return (rv);
1292 				continue;
1293 			}
1294 			if (owner == UMUTEX_RB_NOTRECOV)
1295 				return (ENOTRECOVERABLE);
1296 
1297 			/*
1298 			 * Try the uncontested case.  This should be
1299 			 * done in userland.
1300 			 */
1301 			rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1302 			    &owner, id);
1303 			/* The address was invalid. */
1304 			if (rv == -1)
1305 				return (EFAULT);
1306 
1307 			/* The acquire succeeded. */
1308 			if (rv == 0) {
1309 				MPASS(owner == UMUTEX_UNOWNED);
1310 				return (0);
1311 			}
1312 
1313 			/*
1314 			 * If no one owns it but it is contested try
1315 			 * to acquire it.
1316 			 */
1317 			MPASS(rv == 1);
1318 			if (owner == UMUTEX_CONTESTED) {
1319 				rv = casueword32(&m->m_owner,
1320 				    UMUTEX_CONTESTED, &owner,
1321 				    id | UMUTEX_CONTESTED);
1322 				/* The address was invalid. */
1323 				if (rv == -1)
1324 					return (EFAULT);
1325 				if (rv == 0) {
1326 					MPASS(owner == UMUTEX_CONTESTED);
1327 					return (0);
1328 				}
1329 				if (rv == 1) {
1330 					rv = thread_check_susp(td, false);
1331 					if (rv != 0)
1332 						return (rv);
1333 				}
1334 
1335 				/*
1336 				 * If this failed the lock has
1337 				 * changed, restart.
1338 				 */
1339 				continue;
1340 			}
1341 
1342 			/* rv == 1 but not contested, likely store failure */
1343 			rv = thread_check_susp(td, false);
1344 			if (rv != 0)
1345 				return (rv);
1346 		}
1347 
1348 		if (mode == _UMUTEX_TRY)
1349 			return (EBUSY);
1350 
1351 		/*
1352 		 * If we caught a signal, we have retried and now
1353 		 * exit immediately.
1354 		 */
1355 		if (error != 0)
1356 			return (error);
1357 
1358 		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1359 		    GET_SHARE(flags), &uq->uq_key)) != 0)
1360 			return (error);
1361 
1362 		umtxq_lock(&uq->uq_key);
1363 		umtxq_busy(&uq->uq_key);
1364 		umtxq_insert(uq);
1365 		umtxq_unlock(&uq->uq_key);
1366 
1367 		/*
1368 		 * Set the contested bit so that a release in user space
1369 		 * knows to use the system call for unlock.  If this fails
1370 		 * either some one else has acquired the lock or it has been
1371 		 * released.
1372 		 */
1373 		rv = casueword32(&m->m_owner, owner, &old,
1374 		    owner | UMUTEX_CONTESTED);
1375 
1376 		/* The address was invalid or casueword failed to store. */
1377 		if (rv == -1 || rv == 1) {
1378 			umtxq_lock(&uq->uq_key);
1379 			umtxq_remove(uq);
1380 			umtxq_unbusy(&uq->uq_key);
1381 			umtxq_unlock(&uq->uq_key);
1382 			umtx_key_release(&uq->uq_key);
1383 			if (rv == -1)
1384 				return (EFAULT);
1385 			if (rv == 1) {
1386 				rv = thread_check_susp(td, false);
1387 				if (rv != 0)
1388 					return (rv);
1389 			}
1390 			continue;
1391 		}
1392 
1393 		/*
1394 		 * We set the contested bit, sleep. Otherwise the lock changed
1395 		 * and we need to retry or we lost a race to the thread
1396 		 * unlocking the umtx.
1397 		 */
1398 		umtxq_lock(&uq->uq_key);
1399 		umtxq_unbusy(&uq->uq_key);
1400 		MPASS(old == owner);
1401 		error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1402 		    NULL : &timo);
1403 		umtxq_remove(uq);
1404 		umtxq_unlock(&uq->uq_key);
1405 		umtx_key_release(&uq->uq_key);
1406 
1407 		if (error == 0)
1408 			error = thread_check_susp(td, false);
1409 	}
1410 
1411 	return (0);
1412 }
1413 
1414 /*
1415  * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1416  */
1417 static int
1418 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1419 {
1420 	struct umtx_key key;
1421 	uint32_t owner, old, id, newlock;
1422 	int error, count;
1423 
1424 	id = td->td_tid;
1425 
1426 again:
1427 	/*
1428 	 * Make sure we own this mtx.
1429 	 */
1430 	error = fueword32(&m->m_owner, &owner);
1431 	if (error == -1)
1432 		return (EFAULT);
1433 
1434 	if ((owner & ~UMUTEX_CONTESTED) != id)
1435 		return (EPERM);
1436 
1437 	newlock = umtx_unlock_val(flags, rb);
1438 	if ((owner & UMUTEX_CONTESTED) == 0) {
1439 		error = casueword32(&m->m_owner, owner, &old, newlock);
1440 		if (error == -1)
1441 			return (EFAULT);
1442 		if (error == 1) {
1443 			error = thread_check_susp(td, false);
1444 			if (error != 0)
1445 				return (error);
1446 			goto again;
1447 		}
1448 		MPASS(old == owner);
1449 		return (0);
1450 	}
1451 
1452 	/* We should only ever be in here for contested locks */
1453 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1454 	    &key)) != 0)
1455 		return (error);
1456 
1457 	umtxq_lock(&key);
1458 	umtxq_busy(&key);
1459 	count = umtxq_count(&key);
1460 	umtxq_unlock(&key);
1461 
1462 	/*
1463 	 * When unlocking the umtx, it must be marked as unowned if
1464 	 * there is zero or one thread only waiting for it.
1465 	 * Otherwise, it must be marked as contested.
1466 	 */
1467 	if (count > 1)
1468 		newlock |= UMUTEX_CONTESTED;
1469 	error = casueword32(&m->m_owner, owner, &old, newlock);
1470 	umtxq_lock(&key);
1471 	umtxq_signal(&key, 1);
1472 	umtxq_unbusy(&key);
1473 	umtxq_unlock(&key);
1474 	umtx_key_release(&key);
1475 	if (error == -1)
1476 		return (EFAULT);
1477 	if (error == 1) {
1478 		if (old != owner)
1479 			return (EINVAL);
1480 		error = thread_check_susp(td, false);
1481 		if (error != 0)
1482 			return (error);
1483 		goto again;
1484 	}
1485 	return (0);
1486 }
1487 
1488 /*
1489  * Check if the mutex is available and wake up a waiter,
1490  * only for simple mutex.
1491  */
1492 static int
1493 do_wake_umutex(struct thread *td, struct umutex *m)
1494 {
1495 	struct umtx_key key;
1496 	uint32_t owner;
1497 	uint32_t flags;
1498 	int error;
1499 	int count;
1500 
1501 again:
1502 	error = fueword32(&m->m_owner, &owner);
1503 	if (error == -1)
1504 		return (EFAULT);
1505 
1506 	if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1507 	    owner != UMUTEX_RB_NOTRECOV)
1508 		return (0);
1509 
1510 	error = fueword32(&m->m_flags, &flags);
1511 	if (error == -1)
1512 		return (EFAULT);
1513 
1514 	/* We should only ever be in here for contested locks */
1515 	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1516 	    &key)) != 0)
1517 		return (error);
1518 
1519 	umtxq_lock(&key);
1520 	umtxq_busy(&key);
1521 	count = umtxq_count(&key);
1522 	umtxq_unlock(&key);
1523 
1524 	if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1525 	    owner != UMUTEX_RB_NOTRECOV) {
1526 		error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1527 		    UMUTEX_UNOWNED);
1528 		if (error == -1) {
1529 			error = EFAULT;
1530 		} else if (error == 1) {
1531 			umtxq_lock(&key);
1532 			umtxq_unbusy(&key);
1533 			umtxq_unlock(&key);
1534 			umtx_key_release(&key);
1535 			error = thread_check_susp(td, false);
1536 			if (error != 0)
1537 				return (error);
1538 			goto again;
1539 		}
1540 	}
1541 
1542 	umtxq_lock(&key);
1543 	if (error == 0 && count != 0) {
1544 		MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1545 		    owner == UMUTEX_RB_OWNERDEAD ||
1546 		    owner == UMUTEX_RB_NOTRECOV);
1547 		umtxq_signal(&key, 1);
1548 	}
1549 	umtxq_unbusy(&key);
1550 	umtxq_unlock(&key);
1551 	umtx_key_release(&key);
1552 	return (error);
1553 }
1554 
1555 /*
1556  * Check if the mutex has waiters and tries to fix contention bit.
1557  */
1558 static int
1559 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1560 {
1561 	struct umtx_key key;
1562 	uint32_t owner, old;
1563 	int type;
1564 	int error;
1565 	int count;
1566 
1567 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1568 	    UMUTEX_ROBUST)) {
1569 	case 0:
1570 	case UMUTEX_ROBUST:
1571 		type = TYPE_NORMAL_UMUTEX;
1572 		break;
1573 	case UMUTEX_PRIO_INHERIT:
1574 		type = TYPE_PI_UMUTEX;
1575 		break;
1576 	case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1577 		type = TYPE_PI_ROBUST_UMUTEX;
1578 		break;
1579 	case UMUTEX_PRIO_PROTECT:
1580 		type = TYPE_PP_UMUTEX;
1581 		break;
1582 	case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1583 		type = TYPE_PP_ROBUST_UMUTEX;
1584 		break;
1585 	default:
1586 		return (EINVAL);
1587 	}
1588 	if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1589 		return (error);
1590 
1591 	owner = 0;
1592 	umtxq_lock(&key);
1593 	umtxq_busy(&key);
1594 	count = umtxq_count(&key);
1595 	umtxq_unlock(&key);
1596 
1597 	error = fueword32(&m->m_owner, &owner);
1598 	if (error == -1)
1599 		error = EFAULT;
1600 
1601 	/*
1602 	 * Only repair contention bit if there is a waiter, this means
1603 	 * the mutex is still being referenced by userland code,
1604 	 * otherwise don't update any memory.
1605 	 */
1606 	while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1607 	    (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1608 		error = casueword32(&m->m_owner, owner, &old,
1609 		    owner | UMUTEX_CONTESTED);
1610 		if (error == -1) {
1611 			error = EFAULT;
1612 			break;
1613 		}
1614 		if (error == 0) {
1615 			MPASS(old == owner);
1616 			break;
1617 		}
1618 		owner = old;
1619 		error = thread_check_susp(td, false);
1620 	}
1621 
1622 	umtxq_lock(&key);
1623 	if (error == EFAULT) {
1624 		umtxq_signal(&key, INT_MAX);
1625 	} else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1626 	    owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1627 		umtxq_signal(&key, 1);
1628 	umtxq_unbusy(&key);
1629 	umtxq_unlock(&key);
1630 	umtx_key_release(&key);
1631 	return (error);
1632 }
1633 
1634 static inline struct umtx_pi *
1635 umtx_pi_alloc(int flags)
1636 {
1637 	struct umtx_pi *pi;
1638 
1639 	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1640 	TAILQ_INIT(&pi->pi_blocked);
1641 	atomic_add_int(&umtx_pi_allocated, 1);
1642 	return (pi);
1643 }
1644 
1645 static inline void
1646 umtx_pi_free(struct umtx_pi *pi)
1647 {
1648 	uma_zfree(umtx_pi_zone, pi);
1649 	atomic_add_int(&umtx_pi_allocated, -1);
1650 }
1651 
1652 /*
1653  * Adjust the thread's position on a pi_state after its priority has been
1654  * changed.
1655  */
1656 static int
1657 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1658 {
1659 	struct umtx_q *uq, *uq1, *uq2;
1660 	struct thread *td1;
1661 
1662 	mtx_assert(&umtx_lock, MA_OWNED);
1663 	if (pi == NULL)
1664 		return (0);
1665 
1666 	uq = td->td_umtxq;
1667 
1668 	/*
1669 	 * Check if the thread needs to be moved on the blocked chain.
1670 	 * It needs to be moved if either its priority is lower than
1671 	 * the previous thread or higher than the next thread.
1672 	 */
1673 	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1674 	uq2 = TAILQ_NEXT(uq, uq_lockq);
1675 	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1676 	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1677 		/*
1678 		 * Remove thread from blocked chain and determine where
1679 		 * it should be moved to.
1680 		 */
1681 		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1682 		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1683 			td1 = uq1->uq_thread;
1684 			MPASS(td1->td_proc->p_magic == P_MAGIC);
1685 			if (UPRI(td1) > UPRI(td))
1686 				break;
1687 		}
1688 
1689 		if (uq1 == NULL)
1690 			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1691 		else
1692 			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1693 	}
1694 	return (1);
1695 }
1696 
1697 static struct umtx_pi *
1698 umtx_pi_next(struct umtx_pi *pi)
1699 {
1700 	struct umtx_q *uq_owner;
1701 
1702 	if (pi->pi_owner == NULL)
1703 		return (NULL);
1704 	uq_owner = pi->pi_owner->td_umtxq;
1705 	if (uq_owner == NULL)
1706 		return (NULL);
1707 	return (uq_owner->uq_pi_blocked);
1708 }
1709 
1710 /*
1711  * Floyd's Cycle-Finding Algorithm.
1712  */
1713 static bool
1714 umtx_pi_check_loop(struct umtx_pi *pi)
1715 {
1716 	struct umtx_pi *pi1;	/* fast iterator */
1717 
1718 	mtx_assert(&umtx_lock, MA_OWNED);
1719 	if (pi == NULL)
1720 		return (false);
1721 	pi1 = pi;
1722 	for (;;) {
1723 		pi = umtx_pi_next(pi);
1724 		if (pi == NULL)
1725 			break;
1726 		pi1 = umtx_pi_next(pi1);
1727 		if (pi1 == NULL)
1728 			break;
1729 		pi1 = umtx_pi_next(pi1);
1730 		if (pi1 == NULL)
1731 			break;
1732 		if (pi == pi1)
1733 			return (true);
1734 	}
1735 	return (false);
1736 }
1737 
1738 /*
1739  * Propagate priority when a thread is blocked on POSIX
1740  * PI mutex.
1741  */
1742 static void
1743 umtx_propagate_priority(struct thread *td)
1744 {
1745 	struct umtx_q *uq;
1746 	struct umtx_pi *pi;
1747 	int pri;
1748 
1749 	mtx_assert(&umtx_lock, MA_OWNED);
1750 	pri = UPRI(td);
1751 	uq = td->td_umtxq;
1752 	pi = uq->uq_pi_blocked;
1753 	if (pi == NULL)
1754 		return;
1755 	if (umtx_pi_check_loop(pi))
1756 		return;
1757 
1758 	for (;;) {
1759 		td = pi->pi_owner;
1760 		if (td == NULL || td == curthread)
1761 			return;
1762 
1763 		MPASS(td->td_proc != NULL);
1764 		MPASS(td->td_proc->p_magic == P_MAGIC);
1765 
1766 		thread_lock(td);
1767 		if (td->td_lend_user_pri > pri)
1768 			sched_lend_user_prio(td, pri);
1769 		else {
1770 			thread_unlock(td);
1771 			break;
1772 		}
1773 		thread_unlock(td);
1774 
1775 		/*
1776 		 * Pick up the lock that td is blocked on.
1777 		 */
1778 		uq = td->td_umtxq;
1779 		pi = uq->uq_pi_blocked;
1780 		if (pi == NULL)
1781 			break;
1782 		/* Resort td on the list if needed. */
1783 		umtx_pi_adjust_thread(pi, td);
1784 	}
1785 }
1786 
1787 /*
1788  * Unpropagate priority for a PI mutex when a thread blocked on
1789  * it is interrupted by signal or resumed by others.
1790  */
1791 static void
1792 umtx_repropagate_priority(struct umtx_pi *pi)
1793 {
1794 	struct umtx_q *uq, *uq_owner;
1795 	struct umtx_pi *pi2;
1796 	int pri;
1797 
1798 	mtx_assert(&umtx_lock, MA_OWNED);
1799 
1800 	if (umtx_pi_check_loop(pi))
1801 		return;
1802 	while (pi != NULL && pi->pi_owner != NULL) {
1803 		pri = PRI_MAX;
1804 		uq_owner = pi->pi_owner->td_umtxq;
1805 
1806 		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1807 			uq = TAILQ_FIRST(&pi2->pi_blocked);
1808 			if (uq != NULL) {
1809 				if (pri > UPRI(uq->uq_thread))
1810 					pri = UPRI(uq->uq_thread);
1811 			}
1812 		}
1813 
1814 		if (pri > uq_owner->uq_inherited_pri)
1815 			pri = uq_owner->uq_inherited_pri;
1816 		thread_lock(pi->pi_owner);
1817 		sched_lend_user_prio(pi->pi_owner, pri);
1818 		thread_unlock(pi->pi_owner);
1819 		if ((pi = uq_owner->uq_pi_blocked) != NULL)
1820 			umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1821 	}
1822 }
1823 
1824 /*
1825  * Insert a PI mutex into owned list.
1826  */
1827 static void
1828 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1829 {
1830 	struct umtx_q *uq_owner;
1831 
1832 	uq_owner = owner->td_umtxq;
1833 	mtx_assert(&umtx_lock, MA_OWNED);
1834 	MPASS(pi->pi_owner == NULL);
1835 	pi->pi_owner = owner;
1836 	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1837 }
1838 
1839 /*
1840  * Disown a PI mutex, and remove it from the owned list.
1841  */
1842 static void
1843 umtx_pi_disown(struct umtx_pi *pi)
1844 {
1845 
1846 	mtx_assert(&umtx_lock, MA_OWNED);
1847 	TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1848 	pi->pi_owner = NULL;
1849 }
1850 
1851 /*
1852  * Claim ownership of a PI mutex.
1853  */
1854 static int
1855 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1856 {
1857 	struct umtx_q *uq;
1858 	int pri;
1859 
1860 	mtx_lock(&umtx_lock);
1861 	if (pi->pi_owner == owner) {
1862 		mtx_unlock(&umtx_lock);
1863 		return (0);
1864 	}
1865 
1866 	if (pi->pi_owner != NULL) {
1867 		/*
1868 		 * userland may have already messed the mutex, sigh.
1869 		 */
1870 		mtx_unlock(&umtx_lock);
1871 		return (EPERM);
1872 	}
1873 	umtx_pi_setowner(pi, owner);
1874 	uq = TAILQ_FIRST(&pi->pi_blocked);
1875 	if (uq != NULL) {
1876 		pri = UPRI(uq->uq_thread);
1877 		thread_lock(owner);
1878 		if (pri < UPRI(owner))
1879 			sched_lend_user_prio(owner, pri);
1880 		thread_unlock(owner);
1881 	}
1882 	mtx_unlock(&umtx_lock);
1883 	return (0);
1884 }
1885 
1886 /*
1887  * Adjust a thread's order position in its blocked PI mutex,
1888  * this may result new priority propagating process.
1889  */
1890 void
1891 umtx_pi_adjust(struct thread *td, u_char oldpri)
1892 {
1893 	struct umtx_q *uq;
1894 	struct umtx_pi *pi;
1895 
1896 	uq = td->td_umtxq;
1897 	mtx_lock(&umtx_lock);
1898 	/*
1899 	 * Pick up the lock that td is blocked on.
1900 	 */
1901 	pi = uq->uq_pi_blocked;
1902 	if (pi != NULL) {
1903 		umtx_pi_adjust_thread(pi, td);
1904 		umtx_repropagate_priority(pi);
1905 	}
1906 	mtx_unlock(&umtx_lock);
1907 }
1908 
1909 /*
1910  * Sleep on a PI mutex.
1911  */
1912 static int
1913 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
1914     const char *wmesg, struct umtx_abs_timeout *timo, bool shared)
1915 {
1916 	struct thread *td, *td1;
1917 	struct umtx_q *uq1;
1918 	int error, pri;
1919 #ifdef INVARIANTS
1920 	struct umtxq_chain *uc;
1921 
1922 	uc = umtxq_getchain(&pi->pi_key);
1923 #endif
1924 	error = 0;
1925 	td = uq->uq_thread;
1926 	KASSERT(td == curthread, ("inconsistent uq_thread"));
1927 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
1928 	KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
1929 	umtxq_insert(uq);
1930 	mtx_lock(&umtx_lock);
1931 	if (pi->pi_owner == NULL) {
1932 		mtx_unlock(&umtx_lock);
1933 		td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
1934 		mtx_lock(&umtx_lock);
1935 		if (td1 != NULL) {
1936 			if (pi->pi_owner == NULL)
1937 				umtx_pi_setowner(pi, td1);
1938 			PROC_UNLOCK(td1->td_proc);
1939 		}
1940 	}
1941 
1942 	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1943 		pri = UPRI(uq1->uq_thread);
1944 		if (pri > UPRI(td))
1945 			break;
1946 	}
1947 
1948 	if (uq1 != NULL)
1949 		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1950 	else
1951 		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1952 
1953 	uq->uq_pi_blocked = pi;
1954 	thread_lock(td);
1955 	td->td_flags |= TDF_UPIBLOCKED;
1956 	thread_unlock(td);
1957 	umtx_propagate_priority(td);
1958 	mtx_unlock(&umtx_lock);
1959 	umtxq_unbusy(&uq->uq_key);
1960 
1961 	error = umtxq_sleep(uq, wmesg, timo);
1962 	umtxq_remove(uq);
1963 
1964 	mtx_lock(&umtx_lock);
1965 	uq->uq_pi_blocked = NULL;
1966 	thread_lock(td);
1967 	td->td_flags &= ~TDF_UPIBLOCKED;
1968 	thread_unlock(td);
1969 	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1970 	umtx_repropagate_priority(pi);
1971 	mtx_unlock(&umtx_lock);
1972 	umtxq_unlock(&uq->uq_key);
1973 
1974 	return (error);
1975 }
1976 
1977 /*
1978  * Add reference count for a PI mutex.
1979  */
1980 static void
1981 umtx_pi_ref(struct umtx_pi *pi)
1982 {
1983 
1984 	UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
1985 	pi->pi_refcount++;
1986 }
1987 
1988 /*
1989  * Decrease reference count for a PI mutex, if the counter
1990  * is decreased to zero, its memory space is freed.
1991  */
1992 static void
1993 umtx_pi_unref(struct umtx_pi *pi)
1994 {
1995 	struct umtxq_chain *uc;
1996 
1997 	uc = umtxq_getchain(&pi->pi_key);
1998 	UMTXQ_LOCKED_ASSERT(uc);
1999 	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2000 	if (--pi->pi_refcount == 0) {
2001 		mtx_lock(&umtx_lock);
2002 		if (pi->pi_owner != NULL)
2003 			umtx_pi_disown(pi);
2004 		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2005 			("blocked queue not empty"));
2006 		mtx_unlock(&umtx_lock);
2007 		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2008 		umtx_pi_free(pi);
2009 	}
2010 }
2011 
2012 /*
2013  * Find a PI mutex in hash table.
2014  */
2015 static struct umtx_pi *
2016 umtx_pi_lookup(struct umtx_key *key)
2017 {
2018 	struct umtxq_chain *uc;
2019 	struct umtx_pi *pi;
2020 
2021 	uc = umtxq_getchain(key);
2022 	UMTXQ_LOCKED_ASSERT(uc);
2023 
2024 	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2025 		if (umtx_key_match(&pi->pi_key, key)) {
2026 			return (pi);
2027 		}
2028 	}
2029 	return (NULL);
2030 }
2031 
2032 /*
2033  * Insert a PI mutex into hash table.
2034  */
2035 static inline void
2036 umtx_pi_insert(struct umtx_pi *pi)
2037 {
2038 	struct umtxq_chain *uc;
2039 
2040 	uc = umtxq_getchain(&pi->pi_key);
2041 	UMTXQ_LOCKED_ASSERT(uc);
2042 	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2043 }
2044 
2045 /*
2046  * Lock a PI mutex.
2047  */
2048 static int
2049 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2050     struct _umtx_time *timeout, int try)
2051 {
2052 	struct umtx_abs_timeout timo;
2053 	struct umtx_q *uq;
2054 	struct umtx_pi *pi, *new_pi;
2055 	uint32_t id, old_owner, owner, old;
2056 	int error, rv;
2057 
2058 	id = td->td_tid;
2059 	uq = td->td_umtxq;
2060 
2061 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2062 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2063 	    &uq->uq_key)) != 0)
2064 		return (error);
2065 
2066 	if (timeout != NULL)
2067 		umtx_abs_timeout_init2(&timo, timeout);
2068 
2069 	umtxq_lock(&uq->uq_key);
2070 	pi = umtx_pi_lookup(&uq->uq_key);
2071 	if (pi == NULL) {
2072 		new_pi = umtx_pi_alloc(M_NOWAIT);
2073 		if (new_pi == NULL) {
2074 			umtxq_unlock(&uq->uq_key);
2075 			new_pi = umtx_pi_alloc(M_WAITOK);
2076 			umtxq_lock(&uq->uq_key);
2077 			pi = umtx_pi_lookup(&uq->uq_key);
2078 			if (pi != NULL) {
2079 				umtx_pi_free(new_pi);
2080 				new_pi = NULL;
2081 			}
2082 		}
2083 		if (new_pi != NULL) {
2084 			new_pi->pi_key = uq->uq_key;
2085 			umtx_pi_insert(new_pi);
2086 			pi = new_pi;
2087 		}
2088 	}
2089 	umtx_pi_ref(pi);
2090 	umtxq_unlock(&uq->uq_key);
2091 
2092 	/*
2093 	 * Care must be exercised when dealing with umtx structure.  It
2094 	 * can fault on any access.
2095 	 */
2096 	for (;;) {
2097 		/*
2098 		 * Try the uncontested case.  This should be done in userland.
2099 		 */
2100 		rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2101 		/* The address was invalid. */
2102 		if (rv == -1) {
2103 			error = EFAULT;
2104 			break;
2105 		}
2106 		/* The acquire succeeded. */
2107 		if (rv == 0) {
2108 			MPASS(owner == UMUTEX_UNOWNED);
2109 			error = 0;
2110 			break;
2111 		}
2112 
2113 		if (owner == UMUTEX_RB_NOTRECOV) {
2114 			error = ENOTRECOVERABLE;
2115 			break;
2116 		}
2117 
2118 		/*
2119 		 * Avoid overwriting a possible error from sleep due
2120 		 * to the pending signal with suspension check result.
2121 		 */
2122 		if (error == 0) {
2123 			error = thread_check_susp(td, true);
2124 			if (error != 0)
2125 				break;
2126 		}
2127 
2128 		/* If no one owns it but it is contested try to acquire it. */
2129 		if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2130 			old_owner = owner;
2131 			rv = casueword32(&m->m_owner, owner, &owner,
2132 			    id | UMUTEX_CONTESTED);
2133 			/* The address was invalid. */
2134 			if (rv == -1) {
2135 				error = EFAULT;
2136 				break;
2137 			}
2138 			if (rv == 1) {
2139 				if (error == 0) {
2140 					error = thread_check_susp(td, true);
2141 					if (error != 0)
2142 						break;
2143 				}
2144 
2145 				/*
2146 				 * If this failed the lock could
2147 				 * changed, restart.
2148 				 */
2149 				continue;
2150 			}
2151 
2152 			MPASS(rv == 0);
2153 			MPASS(owner == old_owner);
2154 			umtxq_lock(&uq->uq_key);
2155 			umtxq_busy(&uq->uq_key);
2156 			error = umtx_pi_claim(pi, td);
2157 			umtxq_unbusy(&uq->uq_key);
2158 			umtxq_unlock(&uq->uq_key);
2159 			if (error != 0) {
2160 				/*
2161 				 * Since we're going to return an
2162 				 * error, restore the m_owner to its
2163 				 * previous, unowned state to avoid
2164 				 * compounding the problem.
2165 				 */
2166 				(void)casuword32(&m->m_owner,
2167 				    id | UMUTEX_CONTESTED, old_owner);
2168 			}
2169 			if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2170 				error = EOWNERDEAD;
2171 			break;
2172 		}
2173 
2174 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2175 			error = EDEADLK;
2176 			break;
2177 		}
2178 
2179 		if (try != 0) {
2180 			error = EBUSY;
2181 			break;
2182 		}
2183 
2184 		/*
2185 		 * If we caught a signal, we have retried and now
2186 		 * exit immediately.
2187 		 */
2188 		if (error != 0)
2189 			break;
2190 
2191 		umtxq_lock(&uq->uq_key);
2192 		umtxq_busy(&uq->uq_key);
2193 		umtxq_unlock(&uq->uq_key);
2194 
2195 		/*
2196 		 * Set the contested bit so that a release in user space
2197 		 * knows to use the system call for unlock.  If this fails
2198 		 * either some one else has acquired the lock or it has been
2199 		 * released.
2200 		 */
2201 		rv = casueword32(&m->m_owner, owner, &old, owner |
2202 		    UMUTEX_CONTESTED);
2203 
2204 		/* The address was invalid. */
2205 		if (rv == -1) {
2206 			umtxq_unbusy_unlocked(&uq->uq_key);
2207 			error = EFAULT;
2208 			break;
2209 		}
2210 		if (rv == 1) {
2211 			umtxq_unbusy_unlocked(&uq->uq_key);
2212 			error = thread_check_susp(td, true);
2213 			if (error != 0)
2214 				break;
2215 
2216 			/*
2217 			 * The lock changed and we need to retry or we
2218 			 * lost a race to the thread unlocking the
2219 			 * umtx.  Note that the UMUTEX_RB_OWNERDEAD
2220 			 * value for owner is impossible there.
2221 			 */
2222 			continue;
2223 		}
2224 
2225 		umtxq_lock(&uq->uq_key);
2226 
2227 		/* We set the contested bit, sleep. */
2228 		MPASS(old == owner);
2229 		error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2230 		    "umtxpi", timeout == NULL ? NULL : &timo,
2231 		    (flags & USYNC_PROCESS_SHARED) != 0);
2232 		if (error != 0)
2233 			continue;
2234 
2235 		error = thread_check_susp(td, false);
2236 		if (error != 0)
2237 			break;
2238 	}
2239 
2240 	umtxq_lock(&uq->uq_key);
2241 	umtx_pi_unref(pi);
2242 	umtxq_unlock(&uq->uq_key);
2243 
2244 	umtx_key_release(&uq->uq_key);
2245 	return (error);
2246 }
2247 
2248 /*
2249  * Unlock a PI mutex.
2250  */
2251 static int
2252 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2253 {
2254 	struct umtx_key key;
2255 	struct umtx_q *uq_first, *uq_first2, *uq_me;
2256 	struct umtx_pi *pi, *pi2;
2257 	uint32_t id, new_owner, old, owner;
2258 	int count, error, pri;
2259 
2260 	id = td->td_tid;
2261 
2262 usrloop:
2263 	/*
2264 	 * Make sure we own this mtx.
2265 	 */
2266 	error = fueword32(&m->m_owner, &owner);
2267 	if (error == -1)
2268 		return (EFAULT);
2269 
2270 	if ((owner & ~UMUTEX_CONTESTED) != id)
2271 		return (EPERM);
2272 
2273 	new_owner = umtx_unlock_val(flags, rb);
2274 
2275 	/* This should be done in userland */
2276 	if ((owner & UMUTEX_CONTESTED) == 0) {
2277 		error = casueword32(&m->m_owner, owner, &old, new_owner);
2278 		if (error == -1)
2279 			return (EFAULT);
2280 		if (error == 1) {
2281 			error = thread_check_susp(td, true);
2282 			if (error != 0)
2283 				return (error);
2284 			goto usrloop;
2285 		}
2286 		if (old == owner)
2287 			return (0);
2288 		owner = old;
2289 	}
2290 
2291 	/* We should only ever be in here for contested locks */
2292 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2293 	    TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2294 	    &key)) != 0)
2295 		return (error);
2296 
2297 	umtxq_lock(&key);
2298 	umtxq_busy(&key);
2299 	count = umtxq_count_pi(&key, &uq_first);
2300 	if (uq_first != NULL) {
2301 		mtx_lock(&umtx_lock);
2302 		pi = uq_first->uq_pi_blocked;
2303 		KASSERT(pi != NULL, ("pi == NULL?"));
2304 		if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2305 			mtx_unlock(&umtx_lock);
2306 			umtxq_unbusy(&key);
2307 			umtxq_unlock(&key);
2308 			umtx_key_release(&key);
2309 			/* userland messed the mutex */
2310 			return (EPERM);
2311 		}
2312 		uq_me = td->td_umtxq;
2313 		if (pi->pi_owner == td)
2314 			umtx_pi_disown(pi);
2315 		/* get highest priority thread which is still sleeping. */
2316 		uq_first = TAILQ_FIRST(&pi->pi_blocked);
2317 		while (uq_first != NULL &&
2318 		    (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2319 			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2320 		}
2321 		pri = PRI_MAX;
2322 		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2323 			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2324 			if (uq_first2 != NULL) {
2325 				if (pri > UPRI(uq_first2->uq_thread))
2326 					pri = UPRI(uq_first2->uq_thread);
2327 			}
2328 		}
2329 		thread_lock(td);
2330 		sched_lend_user_prio(td, pri);
2331 		thread_unlock(td);
2332 		mtx_unlock(&umtx_lock);
2333 		if (uq_first)
2334 			umtxq_signal_thread(uq_first);
2335 	} else {
2336 		pi = umtx_pi_lookup(&key);
2337 		/*
2338 		 * A umtx_pi can exist if a signal or timeout removed the
2339 		 * last waiter from the umtxq, but there is still
2340 		 * a thread in do_lock_pi() holding the umtx_pi.
2341 		 */
2342 		if (pi != NULL) {
2343 			/*
2344 			 * The umtx_pi can be unowned, such as when a thread
2345 			 * has just entered do_lock_pi(), allocated the
2346 			 * umtx_pi, and unlocked the umtxq.
2347 			 * If the current thread owns it, it must disown it.
2348 			 */
2349 			mtx_lock(&umtx_lock);
2350 			if (pi->pi_owner == td)
2351 				umtx_pi_disown(pi);
2352 			mtx_unlock(&umtx_lock);
2353 		}
2354 	}
2355 	umtxq_unlock(&key);
2356 
2357 	/*
2358 	 * When unlocking the umtx, it must be marked as unowned if
2359 	 * there is zero or one thread only waiting for it.
2360 	 * Otherwise, it must be marked as contested.
2361 	 */
2362 
2363 	if (count > 1)
2364 		new_owner |= UMUTEX_CONTESTED;
2365 again:
2366 	error = casueword32(&m->m_owner, owner, &old, new_owner);
2367 	if (error == 1) {
2368 		error = thread_check_susp(td, false);
2369 		if (error == 0)
2370 			goto again;
2371 	}
2372 	umtxq_unbusy_unlocked(&key);
2373 	umtx_key_release(&key);
2374 	if (error == -1)
2375 		return (EFAULT);
2376 	if (error == 0 && old != owner)
2377 		return (EINVAL);
2378 	return (error);
2379 }
2380 
2381 /*
2382  * Lock a PP mutex.
2383  */
2384 static int
2385 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2386     struct _umtx_time *timeout, int try)
2387 {
2388 	struct umtx_abs_timeout timo;
2389 	struct umtx_q *uq, *uq2;
2390 	struct umtx_pi *pi;
2391 	uint32_t ceiling;
2392 	uint32_t owner, id;
2393 	int error, pri, old_inherited_pri, su, rv;
2394 
2395 	id = td->td_tid;
2396 	uq = td->td_umtxq;
2397 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2398 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2399 	    &uq->uq_key)) != 0)
2400 		return (error);
2401 
2402 	if (timeout != NULL)
2403 		umtx_abs_timeout_init2(&timo, timeout);
2404 
2405 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2406 	for (;;) {
2407 		old_inherited_pri = uq->uq_inherited_pri;
2408 		umtxq_lock(&uq->uq_key);
2409 		umtxq_busy(&uq->uq_key);
2410 		umtxq_unlock(&uq->uq_key);
2411 
2412 		rv = fueword32(&m->m_ceilings[0], &ceiling);
2413 		if (rv == -1) {
2414 			error = EFAULT;
2415 			goto out;
2416 		}
2417 		ceiling = RTP_PRIO_MAX - ceiling;
2418 		if (ceiling > RTP_PRIO_MAX) {
2419 			error = EINVAL;
2420 			goto out;
2421 		}
2422 
2423 		mtx_lock(&umtx_lock);
2424 		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2425 			mtx_unlock(&umtx_lock);
2426 			error = EINVAL;
2427 			goto out;
2428 		}
2429 		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2430 			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2431 			thread_lock(td);
2432 			if (uq->uq_inherited_pri < UPRI(td))
2433 				sched_lend_user_prio(td, uq->uq_inherited_pri);
2434 			thread_unlock(td);
2435 		}
2436 		mtx_unlock(&umtx_lock);
2437 
2438 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2439 		    id | UMUTEX_CONTESTED);
2440 		/* The address was invalid. */
2441 		if (rv == -1) {
2442 			error = EFAULT;
2443 			break;
2444 		}
2445 		if (rv == 0) {
2446 			MPASS(owner == UMUTEX_CONTESTED);
2447 			error = 0;
2448 			break;
2449 		}
2450 		/* rv == 1 */
2451 		if (owner == UMUTEX_RB_OWNERDEAD) {
2452 			rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2453 			    &owner, id | UMUTEX_CONTESTED);
2454 			if (rv == -1) {
2455 				error = EFAULT;
2456 				break;
2457 			}
2458 			if (rv == 0) {
2459 				MPASS(owner == UMUTEX_RB_OWNERDEAD);
2460 				error = EOWNERDEAD; /* success */
2461 				break;
2462 			}
2463 
2464 			/*
2465 			 *  rv == 1, only check for suspension if we
2466 			 *  did not already catched a signal.  If we
2467 			 *  get an error from the check, the same
2468 			 *  condition is checked by the umtxq_sleep()
2469 			 *  call below, so we should obliterate the
2470 			 *  error to not skip the last loop iteration.
2471 			 */
2472 			if (error == 0) {
2473 				error = thread_check_susp(td, false);
2474 				if (error == 0) {
2475 					if (try != 0)
2476 						error = EBUSY;
2477 					else
2478 						continue;
2479 				}
2480 				error = 0;
2481 			}
2482 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2483 			error = ENOTRECOVERABLE;
2484 		}
2485 
2486 		if (try != 0)
2487 			error = EBUSY;
2488 
2489 		/*
2490 		 * If we caught a signal, we have retried and now
2491 		 * exit immediately.
2492 		 */
2493 		if (error != 0)
2494 			break;
2495 
2496 		umtxq_lock(&uq->uq_key);
2497 		umtxq_insert(uq);
2498 		umtxq_unbusy(&uq->uq_key);
2499 		error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2500 		    NULL : &timo);
2501 		umtxq_remove(uq);
2502 		umtxq_unlock(&uq->uq_key);
2503 
2504 		mtx_lock(&umtx_lock);
2505 		uq->uq_inherited_pri = old_inherited_pri;
2506 		pri = PRI_MAX;
2507 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2508 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2509 			if (uq2 != NULL) {
2510 				if (pri > UPRI(uq2->uq_thread))
2511 					pri = UPRI(uq2->uq_thread);
2512 			}
2513 		}
2514 		if (pri > uq->uq_inherited_pri)
2515 			pri = uq->uq_inherited_pri;
2516 		thread_lock(td);
2517 		sched_lend_user_prio(td, pri);
2518 		thread_unlock(td);
2519 		mtx_unlock(&umtx_lock);
2520 	}
2521 
2522 	if (error != 0 && error != EOWNERDEAD) {
2523 		mtx_lock(&umtx_lock);
2524 		uq->uq_inherited_pri = old_inherited_pri;
2525 		pri = PRI_MAX;
2526 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2527 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2528 			if (uq2 != NULL) {
2529 				if (pri > UPRI(uq2->uq_thread))
2530 					pri = UPRI(uq2->uq_thread);
2531 			}
2532 		}
2533 		if (pri > uq->uq_inherited_pri)
2534 			pri = uq->uq_inherited_pri;
2535 		thread_lock(td);
2536 		sched_lend_user_prio(td, pri);
2537 		thread_unlock(td);
2538 		mtx_unlock(&umtx_lock);
2539 	}
2540 
2541 out:
2542 	umtxq_unbusy_unlocked(&uq->uq_key);
2543 	umtx_key_release(&uq->uq_key);
2544 	return (error);
2545 }
2546 
2547 /*
2548  * Unlock a PP mutex.
2549  */
2550 static int
2551 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2552 {
2553 	struct umtx_key key;
2554 	struct umtx_q *uq, *uq2;
2555 	struct umtx_pi *pi;
2556 	uint32_t id, owner, rceiling;
2557 	int error, pri, new_inherited_pri, su;
2558 
2559 	id = td->td_tid;
2560 	uq = td->td_umtxq;
2561 	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2562 
2563 	/*
2564 	 * Make sure we own this mtx.
2565 	 */
2566 	error = fueword32(&m->m_owner, &owner);
2567 	if (error == -1)
2568 		return (EFAULT);
2569 
2570 	if ((owner & ~UMUTEX_CONTESTED) != id)
2571 		return (EPERM);
2572 
2573 	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2574 	if (error != 0)
2575 		return (error);
2576 
2577 	if (rceiling == -1)
2578 		new_inherited_pri = PRI_MAX;
2579 	else {
2580 		rceiling = RTP_PRIO_MAX - rceiling;
2581 		if (rceiling > RTP_PRIO_MAX)
2582 			return (EINVAL);
2583 		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2584 	}
2585 
2586 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2587 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2588 	    &key)) != 0)
2589 		return (error);
2590 	umtxq_lock(&key);
2591 	umtxq_busy(&key);
2592 	umtxq_unlock(&key);
2593 	/*
2594 	 * For priority protected mutex, always set unlocked state
2595 	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2596 	 * to lock the mutex, it is necessary because thread priority
2597 	 * has to be adjusted for such mutex.
2598 	 */
2599 	error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2600 	    UMUTEX_CONTESTED);
2601 
2602 	umtxq_lock(&key);
2603 	if (error == 0)
2604 		umtxq_signal(&key, 1);
2605 	umtxq_unbusy(&key);
2606 	umtxq_unlock(&key);
2607 
2608 	if (error == -1)
2609 		error = EFAULT;
2610 	else {
2611 		mtx_lock(&umtx_lock);
2612 		if (su != 0)
2613 			uq->uq_inherited_pri = new_inherited_pri;
2614 		pri = PRI_MAX;
2615 		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2616 			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2617 			if (uq2 != NULL) {
2618 				if (pri > UPRI(uq2->uq_thread))
2619 					pri = UPRI(uq2->uq_thread);
2620 			}
2621 		}
2622 		if (pri > uq->uq_inherited_pri)
2623 			pri = uq->uq_inherited_pri;
2624 		thread_lock(td);
2625 		sched_lend_user_prio(td, pri);
2626 		thread_unlock(td);
2627 		mtx_unlock(&umtx_lock);
2628 	}
2629 	umtx_key_release(&key);
2630 	return (error);
2631 }
2632 
2633 static int
2634 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2635     uint32_t *old_ceiling)
2636 {
2637 	struct umtx_q *uq;
2638 	uint32_t flags, id, owner, save_ceiling;
2639 	int error, rv, rv1;
2640 
2641 	error = fueword32(&m->m_flags, &flags);
2642 	if (error == -1)
2643 		return (EFAULT);
2644 	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2645 		return (EINVAL);
2646 	if (ceiling > RTP_PRIO_MAX)
2647 		return (EINVAL);
2648 	id = td->td_tid;
2649 	uq = td->td_umtxq;
2650 	if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2651 	    TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2652 	    &uq->uq_key)) != 0)
2653 		return (error);
2654 	for (;;) {
2655 		umtxq_lock(&uq->uq_key);
2656 		umtxq_busy(&uq->uq_key);
2657 		umtxq_unlock(&uq->uq_key);
2658 
2659 		rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2660 		if (rv == -1) {
2661 			error = EFAULT;
2662 			break;
2663 		}
2664 
2665 		rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2666 		    id | UMUTEX_CONTESTED);
2667 		if (rv == -1) {
2668 			error = EFAULT;
2669 			break;
2670 		}
2671 
2672 		if (rv == 0) {
2673 			MPASS(owner == UMUTEX_CONTESTED);
2674 			rv = suword32(&m->m_ceilings[0], ceiling);
2675 			rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2676 			error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2677 			break;
2678 		}
2679 
2680 		if ((owner & ~UMUTEX_CONTESTED) == id) {
2681 			rv = suword32(&m->m_ceilings[0], ceiling);
2682 			error = rv == 0 ? 0 : EFAULT;
2683 			break;
2684 		}
2685 
2686 		if (owner == UMUTEX_RB_OWNERDEAD) {
2687 			error = EOWNERDEAD;
2688 			break;
2689 		} else if (owner == UMUTEX_RB_NOTRECOV) {
2690 			error = ENOTRECOVERABLE;
2691 			break;
2692 		}
2693 
2694 		/*
2695 		 * If we caught a signal, we have retried and now
2696 		 * exit immediately.
2697 		 */
2698 		if (error != 0)
2699 			break;
2700 
2701 		/*
2702 		 * We set the contested bit, sleep. Otherwise the lock changed
2703 		 * and we need to retry or we lost a race to the thread
2704 		 * unlocking the umtx.
2705 		 */
2706 		umtxq_lock(&uq->uq_key);
2707 		umtxq_insert(uq);
2708 		umtxq_unbusy(&uq->uq_key);
2709 		error = umtxq_sleep(uq, "umtxpp", NULL);
2710 		umtxq_remove(uq);
2711 		umtxq_unlock(&uq->uq_key);
2712 	}
2713 	umtxq_lock(&uq->uq_key);
2714 	if (error == 0)
2715 		umtxq_signal(&uq->uq_key, INT_MAX);
2716 	umtxq_unbusy(&uq->uq_key);
2717 	umtxq_unlock(&uq->uq_key);
2718 	umtx_key_release(&uq->uq_key);
2719 	if (error == 0 && old_ceiling != NULL) {
2720 		rv = suword32(old_ceiling, save_ceiling);
2721 		error = rv == 0 ? 0 : EFAULT;
2722 	}
2723 	return (error);
2724 }
2725 
2726 /*
2727  * Lock a userland POSIX mutex.
2728  */
2729 static int
2730 do_lock_umutex(struct thread *td, struct umutex *m,
2731     struct _umtx_time *timeout, int mode)
2732 {
2733 	uint32_t flags;
2734 	int error;
2735 
2736 	error = fueword32(&m->m_flags, &flags);
2737 	if (error == -1)
2738 		return (EFAULT);
2739 
2740 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2741 	case 0:
2742 		error = do_lock_normal(td, m, flags, timeout, mode);
2743 		break;
2744 	case UMUTEX_PRIO_INHERIT:
2745 		error = do_lock_pi(td, m, flags, timeout, mode);
2746 		break;
2747 	case UMUTEX_PRIO_PROTECT:
2748 		error = do_lock_pp(td, m, flags, timeout, mode);
2749 		break;
2750 	default:
2751 		return (EINVAL);
2752 	}
2753 	if (timeout == NULL) {
2754 		if (error == EINTR && mode != _UMUTEX_WAIT)
2755 			error = ERESTART;
2756 	} else {
2757 		/* Timed-locking is not restarted. */
2758 		if (error == ERESTART)
2759 			error = EINTR;
2760 	}
2761 	return (error);
2762 }
2763 
2764 /*
2765  * Unlock a userland POSIX mutex.
2766  */
2767 static int
2768 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2769 {
2770 	uint32_t flags;
2771 	int error;
2772 
2773 	error = fueword32(&m->m_flags, &flags);
2774 	if (error == -1)
2775 		return (EFAULT);
2776 
2777 	switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2778 	case 0:
2779 		return (do_unlock_normal(td, m, flags, rb));
2780 	case UMUTEX_PRIO_INHERIT:
2781 		return (do_unlock_pi(td, m, flags, rb));
2782 	case UMUTEX_PRIO_PROTECT:
2783 		return (do_unlock_pp(td, m, flags, rb));
2784 	}
2785 
2786 	return (EINVAL);
2787 }
2788 
2789 static int
2790 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2791     struct timespec *timeout, u_long wflags)
2792 {
2793 	struct umtx_abs_timeout timo;
2794 	struct umtx_q *uq;
2795 	uint32_t flags, clockid, hasw;
2796 	int error;
2797 
2798 	uq = td->td_umtxq;
2799 	error = fueword32(&cv->c_flags, &flags);
2800 	if (error == -1)
2801 		return (EFAULT);
2802 	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2803 	if (error != 0)
2804 		return (error);
2805 
2806 	if ((wflags & CVWAIT_CLOCKID) != 0) {
2807 		error = fueword32(&cv->c_clockid, &clockid);
2808 		if (error == -1) {
2809 			umtx_key_release(&uq->uq_key);
2810 			return (EFAULT);
2811 		}
2812 		if (clockid < CLOCK_REALTIME ||
2813 		    clockid >= CLOCK_THREAD_CPUTIME_ID) {
2814 			/* hmm, only HW clock id will work. */
2815 			umtx_key_release(&uq->uq_key);
2816 			return (EINVAL);
2817 		}
2818 	} else {
2819 		clockid = CLOCK_REALTIME;
2820 	}
2821 
2822 	umtxq_lock(&uq->uq_key);
2823 	umtxq_busy(&uq->uq_key);
2824 	umtxq_insert(uq);
2825 	umtxq_unlock(&uq->uq_key);
2826 
2827 	/*
2828 	 * Set c_has_waiters to 1 before releasing user mutex, also
2829 	 * don't modify cache line when unnecessary.
2830 	 */
2831 	error = fueword32(&cv->c_has_waiters, &hasw);
2832 	if (error == 0 && hasw == 0)
2833 		suword32(&cv->c_has_waiters, 1);
2834 
2835 	umtxq_unbusy_unlocked(&uq->uq_key);
2836 
2837 	error = do_unlock_umutex(td, m, false);
2838 
2839 	if (timeout != NULL)
2840 		umtx_abs_timeout_init(&timo, clockid,
2841 		    (wflags & CVWAIT_ABSTIME) != 0, timeout);
2842 
2843 	umtxq_lock(&uq->uq_key);
2844 	if (error == 0) {
2845 		error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2846 		    NULL : &timo);
2847 	}
2848 
2849 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
2850 		error = 0;
2851 	else {
2852 		/*
2853 		 * This must be timeout,interrupted by signal or
2854 		 * surprious wakeup, clear c_has_waiter flag when
2855 		 * necessary.
2856 		 */
2857 		umtxq_busy(&uq->uq_key);
2858 		if ((uq->uq_flags & UQF_UMTXQ) != 0) {
2859 			int oldlen = uq->uq_cur_queue->length;
2860 			umtxq_remove(uq);
2861 			if (oldlen == 1) {
2862 				umtxq_unlock(&uq->uq_key);
2863 				suword32(&cv->c_has_waiters, 0);
2864 				umtxq_lock(&uq->uq_key);
2865 			}
2866 		}
2867 		umtxq_unbusy(&uq->uq_key);
2868 		if (error == ERESTART)
2869 			error = EINTR;
2870 	}
2871 
2872 	umtxq_unlock(&uq->uq_key);
2873 	umtx_key_release(&uq->uq_key);
2874 	return (error);
2875 }
2876 
2877 /*
2878  * Signal a userland condition variable.
2879  */
2880 static int
2881 do_cv_signal(struct thread *td, struct ucond *cv)
2882 {
2883 	struct umtx_key key;
2884 	int error, cnt, nwake;
2885 	uint32_t flags;
2886 
2887 	error = fueword32(&cv->c_flags, &flags);
2888 	if (error == -1)
2889 		return (EFAULT);
2890 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2891 		return (error);
2892 	umtxq_lock(&key);
2893 	umtxq_busy(&key);
2894 	cnt = umtxq_count(&key);
2895 	nwake = umtxq_signal(&key, 1);
2896 	if (cnt <= nwake) {
2897 		umtxq_unlock(&key);
2898 		error = suword32(&cv->c_has_waiters, 0);
2899 		if (error == -1)
2900 			error = EFAULT;
2901 		umtxq_lock(&key);
2902 	}
2903 	umtxq_unbusy(&key);
2904 	umtxq_unlock(&key);
2905 	umtx_key_release(&key);
2906 	return (error);
2907 }
2908 
2909 static int
2910 do_cv_broadcast(struct thread *td, struct ucond *cv)
2911 {
2912 	struct umtx_key key;
2913 	int error;
2914 	uint32_t flags;
2915 
2916 	error = fueword32(&cv->c_flags, &flags);
2917 	if (error == -1)
2918 		return (EFAULT);
2919 	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2920 		return (error);
2921 
2922 	umtxq_lock(&key);
2923 	umtxq_busy(&key);
2924 	umtxq_signal(&key, INT_MAX);
2925 	umtxq_unlock(&key);
2926 
2927 	error = suword32(&cv->c_has_waiters, 0);
2928 	if (error == -1)
2929 		error = EFAULT;
2930 
2931 	umtxq_unbusy_unlocked(&key);
2932 
2933 	umtx_key_release(&key);
2934 	return (error);
2935 }
2936 
2937 static int
2938 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
2939     struct _umtx_time *timeout)
2940 {
2941 	struct umtx_abs_timeout timo;
2942 	struct umtx_q *uq;
2943 	uint32_t flags, wrflags;
2944 	int32_t state, oldstate;
2945 	int32_t blocked_readers;
2946 	int error, error1, rv;
2947 
2948 	uq = td->td_umtxq;
2949 	error = fueword32(&rwlock->rw_flags, &flags);
2950 	if (error == -1)
2951 		return (EFAULT);
2952 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2953 	if (error != 0)
2954 		return (error);
2955 
2956 	if (timeout != NULL)
2957 		umtx_abs_timeout_init2(&timo, timeout);
2958 
2959 	wrflags = URWLOCK_WRITE_OWNER;
2960 	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
2961 		wrflags |= URWLOCK_WRITE_WAITERS;
2962 
2963 	for (;;) {
2964 		rv = fueword32(&rwlock->rw_state, &state);
2965 		if (rv == -1) {
2966 			umtx_key_release(&uq->uq_key);
2967 			return (EFAULT);
2968 		}
2969 
2970 		/* try to lock it */
2971 		while (!(state & wrflags)) {
2972 			if (__predict_false(URWLOCK_READER_COUNT(state) ==
2973 			    URWLOCK_MAX_READERS)) {
2974 				umtx_key_release(&uq->uq_key);
2975 				return (EAGAIN);
2976 			}
2977 			rv = casueword32(&rwlock->rw_state, state,
2978 			    &oldstate, state + 1);
2979 			if (rv == -1) {
2980 				umtx_key_release(&uq->uq_key);
2981 				return (EFAULT);
2982 			}
2983 			if (rv == 0) {
2984 				MPASS(oldstate == state);
2985 				umtx_key_release(&uq->uq_key);
2986 				return (0);
2987 			}
2988 			error = thread_check_susp(td, true);
2989 			if (error != 0)
2990 				break;
2991 			state = oldstate;
2992 		}
2993 
2994 		if (error)
2995 			break;
2996 
2997 		/* grab monitor lock */
2998 		umtxq_lock(&uq->uq_key);
2999 		umtxq_busy(&uq->uq_key);
3000 		umtxq_unlock(&uq->uq_key);
3001 
3002 		/*
3003 		 * re-read the state, in case it changed between the try-lock above
3004 		 * and the check below
3005 		 */
3006 		rv = fueword32(&rwlock->rw_state, &state);
3007 		if (rv == -1)
3008 			error = EFAULT;
3009 
3010 		/* set read contention bit */
3011 		while (error == 0 && (state & wrflags) &&
3012 		    !(state & URWLOCK_READ_WAITERS)) {
3013 			rv = casueword32(&rwlock->rw_state, state,
3014 			    &oldstate, state | URWLOCK_READ_WAITERS);
3015 			if (rv == -1) {
3016 				error = EFAULT;
3017 				break;
3018 			}
3019 			if (rv == 0) {
3020 				MPASS(oldstate == state);
3021 				goto sleep;
3022 			}
3023 			state = oldstate;
3024 			error = thread_check_susp(td, false);
3025 			if (error != 0)
3026 				break;
3027 		}
3028 		if (error != 0) {
3029 			umtxq_unbusy_unlocked(&uq->uq_key);
3030 			break;
3031 		}
3032 
3033 		/* state is changed while setting flags, restart */
3034 		if (!(state & wrflags)) {
3035 			umtxq_unbusy_unlocked(&uq->uq_key);
3036 			error = thread_check_susp(td, true);
3037 			if (error != 0)
3038 				break;
3039 			continue;
3040 		}
3041 
3042 sleep:
3043 		/*
3044 		 * Contention bit is set, before sleeping, increase
3045 		 * read waiter count.
3046 		 */
3047 		rv = fueword32(&rwlock->rw_blocked_readers,
3048 		    &blocked_readers);
3049 		if (rv == -1) {
3050 			umtxq_unbusy_unlocked(&uq->uq_key);
3051 			error = EFAULT;
3052 			break;
3053 		}
3054 		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
3055 
3056 		while (state & wrflags) {
3057 			umtxq_lock(&uq->uq_key);
3058 			umtxq_insert(uq);
3059 			umtxq_unbusy(&uq->uq_key);
3060 
3061 			error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3062 			    NULL : &timo);
3063 
3064 			umtxq_busy(&uq->uq_key);
3065 			umtxq_remove(uq);
3066 			umtxq_unlock(&uq->uq_key);
3067 			if (error)
3068 				break;
3069 			rv = fueword32(&rwlock->rw_state, &state);
3070 			if (rv == -1) {
3071 				error = EFAULT;
3072 				break;
3073 			}
3074 		}
3075 
3076 		/* decrease read waiter count, and may clear read contention bit */
3077 		rv = fueword32(&rwlock->rw_blocked_readers,
3078 		    &blocked_readers);
3079 		if (rv == -1) {
3080 			umtxq_unbusy_unlocked(&uq->uq_key);
3081 			error = EFAULT;
3082 			break;
3083 		}
3084 		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
3085 		if (blocked_readers == 1) {
3086 			rv = fueword32(&rwlock->rw_state, &state);
3087 			if (rv == -1) {
3088 				umtxq_unbusy_unlocked(&uq->uq_key);
3089 				error = EFAULT;
3090 				break;
3091 			}
3092 			for (;;) {
3093 				rv = casueword32(&rwlock->rw_state, state,
3094 				    &oldstate, state & ~URWLOCK_READ_WAITERS);
3095 				if (rv == -1) {
3096 					error = EFAULT;
3097 					break;
3098 				}
3099 				if (rv == 0) {
3100 					MPASS(oldstate == state);
3101 					break;
3102 				}
3103 				state = oldstate;
3104 				error1 = thread_check_susp(td, false);
3105 				if (error1 != 0) {
3106 					if (error == 0)
3107 						error = error1;
3108 					break;
3109 				}
3110 			}
3111 		}
3112 
3113 		umtxq_unbusy_unlocked(&uq->uq_key);
3114 		if (error != 0)
3115 			break;
3116 	}
3117 	umtx_key_release(&uq->uq_key);
3118 	if (error == ERESTART)
3119 		error = EINTR;
3120 	return (error);
3121 }
3122 
3123 static int
3124 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3125 {
3126 	struct umtx_abs_timeout timo;
3127 	struct umtx_q *uq;
3128 	uint32_t flags;
3129 	int32_t state, oldstate;
3130 	int32_t blocked_writers;
3131 	int32_t blocked_readers;
3132 	int error, error1, rv;
3133 
3134 	uq = td->td_umtxq;
3135 	error = fueword32(&rwlock->rw_flags, &flags);
3136 	if (error == -1)
3137 		return (EFAULT);
3138 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3139 	if (error != 0)
3140 		return (error);
3141 
3142 	if (timeout != NULL)
3143 		umtx_abs_timeout_init2(&timo, timeout);
3144 
3145 	blocked_readers = 0;
3146 	for (;;) {
3147 		rv = fueword32(&rwlock->rw_state, &state);
3148 		if (rv == -1) {
3149 			umtx_key_release(&uq->uq_key);
3150 			return (EFAULT);
3151 		}
3152 		while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3153 		    URWLOCK_READER_COUNT(state) == 0) {
3154 			rv = casueword32(&rwlock->rw_state, state,
3155 			    &oldstate, state | URWLOCK_WRITE_OWNER);
3156 			if (rv == -1) {
3157 				umtx_key_release(&uq->uq_key);
3158 				return (EFAULT);
3159 			}
3160 			if (rv == 0) {
3161 				MPASS(oldstate == state);
3162 				umtx_key_release(&uq->uq_key);
3163 				return (0);
3164 			}
3165 			state = oldstate;
3166 			error = thread_check_susp(td, true);
3167 			if (error != 0)
3168 				break;
3169 		}
3170 
3171 		if (error) {
3172 			if ((state & (URWLOCK_WRITE_OWNER |
3173 			    URWLOCK_WRITE_WAITERS)) == 0 &&
3174 			    blocked_readers != 0) {
3175 				umtxq_lock(&uq->uq_key);
3176 				umtxq_busy(&uq->uq_key);
3177 				umtxq_signal_queue(&uq->uq_key, INT_MAX,
3178 				    UMTX_SHARED_QUEUE);
3179 				umtxq_unbusy(&uq->uq_key);
3180 				umtxq_unlock(&uq->uq_key);
3181 			}
3182 
3183 			break;
3184 		}
3185 
3186 		/* grab monitor lock */
3187 		umtxq_lock(&uq->uq_key);
3188 		umtxq_busy(&uq->uq_key);
3189 		umtxq_unlock(&uq->uq_key);
3190 
3191 		/*
3192 		 * Re-read the state, in case it changed between the
3193 		 * try-lock above and the check below.
3194 		 */
3195 		rv = fueword32(&rwlock->rw_state, &state);
3196 		if (rv == -1)
3197 			error = EFAULT;
3198 
3199 		while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3200 		    URWLOCK_READER_COUNT(state) != 0) &&
3201 		    (state & URWLOCK_WRITE_WAITERS) == 0) {
3202 			rv = casueword32(&rwlock->rw_state, state,
3203 			    &oldstate, state | URWLOCK_WRITE_WAITERS);
3204 			if (rv == -1) {
3205 				error = EFAULT;
3206 				break;
3207 			}
3208 			if (rv == 0) {
3209 				MPASS(oldstate == state);
3210 				goto sleep;
3211 			}
3212 			state = oldstate;
3213 			error = thread_check_susp(td, false);
3214 			if (error != 0)
3215 				break;
3216 		}
3217 		if (error != 0) {
3218 			umtxq_unbusy_unlocked(&uq->uq_key);
3219 			break;
3220 		}
3221 
3222 		if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3223 		    URWLOCK_READER_COUNT(state) == 0) {
3224 			umtxq_unbusy_unlocked(&uq->uq_key);
3225 			error = thread_check_susp(td, false);
3226 			if (error != 0)
3227 				break;
3228 			continue;
3229 		}
3230 sleep:
3231 		rv = fueword32(&rwlock->rw_blocked_writers,
3232 		    &blocked_writers);
3233 		if (rv == -1) {
3234 			umtxq_unbusy_unlocked(&uq->uq_key);
3235 			error = EFAULT;
3236 			break;
3237 		}
3238 		suword32(&rwlock->rw_blocked_writers, blocked_writers + 1);
3239 
3240 		while ((state & URWLOCK_WRITE_OWNER) ||
3241 		    URWLOCK_READER_COUNT(state) != 0) {
3242 			umtxq_lock(&uq->uq_key);
3243 			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3244 			umtxq_unbusy(&uq->uq_key);
3245 
3246 			error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3247 			    NULL : &timo);
3248 
3249 			umtxq_busy(&uq->uq_key);
3250 			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3251 			umtxq_unlock(&uq->uq_key);
3252 			if (error)
3253 				break;
3254 			rv = fueword32(&rwlock->rw_state, &state);
3255 			if (rv == -1) {
3256 				error = EFAULT;
3257 				break;
3258 			}
3259 		}
3260 
3261 		rv = fueword32(&rwlock->rw_blocked_writers,
3262 		    &blocked_writers);
3263 		if (rv == -1) {
3264 			umtxq_unbusy_unlocked(&uq->uq_key);
3265 			error = EFAULT;
3266 			break;
3267 		}
3268 		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
3269 		if (blocked_writers == 1) {
3270 			rv = fueword32(&rwlock->rw_state, &state);
3271 			if (rv == -1) {
3272 				umtxq_unbusy_unlocked(&uq->uq_key);
3273 				error = EFAULT;
3274 				break;
3275 			}
3276 			for (;;) {
3277 				rv = casueword32(&rwlock->rw_state, state,
3278 				    &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3279 				if (rv == -1) {
3280 					error = EFAULT;
3281 					break;
3282 				}
3283 				if (rv == 0) {
3284 					MPASS(oldstate == state);
3285 					break;
3286 				}
3287 				state = oldstate;
3288 				error1 = thread_check_susp(td, false);
3289 				/*
3290 				 * We are leaving the URWLOCK_WRITE_WAITERS
3291 				 * behind, but this should not harm the
3292 				 * correctness.
3293 				 */
3294 				if (error1 != 0) {
3295 					if (error == 0)
3296 						error = error1;
3297 					break;
3298 				}
3299 			}
3300 			rv = fueword32(&rwlock->rw_blocked_readers,
3301 			    &blocked_readers);
3302 			if (rv == -1) {
3303 				umtxq_unbusy_unlocked(&uq->uq_key);
3304 				error = EFAULT;
3305 				break;
3306 			}
3307 		} else
3308 			blocked_readers = 0;
3309 
3310 		umtxq_unbusy_unlocked(&uq->uq_key);
3311 	}
3312 
3313 	umtx_key_release(&uq->uq_key);
3314 	if (error == ERESTART)
3315 		error = EINTR;
3316 	return (error);
3317 }
3318 
3319 static int
3320 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3321 {
3322 	struct umtx_q *uq;
3323 	uint32_t flags;
3324 	int32_t state, oldstate;
3325 	int error, rv, q, count;
3326 
3327 	uq = td->td_umtxq;
3328 	error = fueword32(&rwlock->rw_flags, &flags);
3329 	if (error == -1)
3330 		return (EFAULT);
3331 	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3332 	if (error != 0)
3333 		return (error);
3334 
3335 	error = fueword32(&rwlock->rw_state, &state);
3336 	if (error == -1) {
3337 		error = EFAULT;
3338 		goto out;
3339 	}
3340 	if (state & URWLOCK_WRITE_OWNER) {
3341 		for (;;) {
3342 			rv = casueword32(&rwlock->rw_state, state,
3343 			    &oldstate, state & ~URWLOCK_WRITE_OWNER);
3344 			if (rv == -1) {
3345 				error = EFAULT;
3346 				goto out;
3347 			}
3348 			if (rv == 1) {
3349 				state = oldstate;
3350 				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3351 					error = EPERM;
3352 					goto out;
3353 				}
3354 				error = thread_check_susp(td, true);
3355 				if (error != 0)
3356 					goto out;
3357 			} else
3358 				break;
3359 		}
3360 	} else if (URWLOCK_READER_COUNT(state) != 0) {
3361 		for (;;) {
3362 			rv = casueword32(&rwlock->rw_state, state,
3363 			    &oldstate, state - 1);
3364 			if (rv == -1) {
3365 				error = EFAULT;
3366 				goto out;
3367 			}
3368 			if (rv == 1) {
3369 				state = oldstate;
3370 				if (URWLOCK_READER_COUNT(oldstate) == 0) {
3371 					error = EPERM;
3372 					goto out;
3373 				}
3374 				error = thread_check_susp(td, true);
3375 				if (error != 0)
3376 					goto out;
3377 			} else
3378 				break;
3379 		}
3380 	} else {
3381 		error = EPERM;
3382 		goto out;
3383 	}
3384 
3385 	count = 0;
3386 
3387 	if (!(flags & URWLOCK_PREFER_READER)) {
3388 		if (state & URWLOCK_WRITE_WAITERS) {
3389 			count = 1;
3390 			q = UMTX_EXCLUSIVE_QUEUE;
3391 		} else if (state & URWLOCK_READ_WAITERS) {
3392 			count = INT_MAX;
3393 			q = UMTX_SHARED_QUEUE;
3394 		}
3395 	} else {
3396 		if (state & URWLOCK_READ_WAITERS) {
3397 			count = INT_MAX;
3398 			q = UMTX_SHARED_QUEUE;
3399 		} else if (state & URWLOCK_WRITE_WAITERS) {
3400 			count = 1;
3401 			q = UMTX_EXCLUSIVE_QUEUE;
3402 		}
3403 	}
3404 
3405 	if (count) {
3406 		umtxq_lock(&uq->uq_key);
3407 		umtxq_busy(&uq->uq_key);
3408 		umtxq_signal_queue(&uq->uq_key, count, q);
3409 		umtxq_unbusy(&uq->uq_key);
3410 		umtxq_unlock(&uq->uq_key);
3411 	}
3412 out:
3413 	umtx_key_release(&uq->uq_key);
3414 	return (error);
3415 }
3416 
3417 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3418 static int
3419 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3420 {
3421 	struct umtx_abs_timeout timo;
3422 	struct umtx_q *uq;
3423 	uint32_t flags, count, count1;
3424 	int error, rv, rv1;
3425 
3426 	uq = td->td_umtxq;
3427 	error = fueword32(&sem->_flags, &flags);
3428 	if (error == -1)
3429 		return (EFAULT);
3430 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3431 	if (error != 0)
3432 		return (error);
3433 
3434 	if (timeout != NULL)
3435 		umtx_abs_timeout_init2(&timo, timeout);
3436 
3437 again:
3438 	umtxq_lock(&uq->uq_key);
3439 	umtxq_busy(&uq->uq_key);
3440 	umtxq_insert(uq);
3441 	umtxq_unlock(&uq->uq_key);
3442 	rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3443 	if (rv == 0)
3444 		rv1 = fueword32(&sem->_count, &count);
3445 	if (rv == -1 || (rv == 0 && (rv1 == -1 || count != 0)) ||
3446 	    (rv == 1 && count1 == 0)) {
3447 		umtxq_lock(&uq->uq_key);
3448 		umtxq_unbusy(&uq->uq_key);
3449 		umtxq_remove(uq);
3450 		umtxq_unlock(&uq->uq_key);
3451 		if (rv == 1) {
3452 			rv = thread_check_susp(td, true);
3453 			if (rv == 0)
3454 				goto again;
3455 			error = rv;
3456 			goto out;
3457 		}
3458 		if (rv == 0)
3459 			rv = rv1;
3460 		error = rv == -1 ? EFAULT : 0;
3461 		goto out;
3462 	}
3463 	umtxq_lock(&uq->uq_key);
3464 	umtxq_unbusy(&uq->uq_key);
3465 
3466 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3467 
3468 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3469 		error = 0;
3470 	else {
3471 		umtxq_remove(uq);
3472 		/* A relative timeout cannot be restarted. */
3473 		if (error == ERESTART && timeout != NULL &&
3474 		    (timeout->_flags & UMTX_ABSTIME) == 0)
3475 			error = EINTR;
3476 	}
3477 	umtxq_unlock(&uq->uq_key);
3478 out:
3479 	umtx_key_release(&uq->uq_key);
3480 	return (error);
3481 }
3482 
3483 /*
3484  * Signal a userland semaphore.
3485  */
3486 static int
3487 do_sem_wake(struct thread *td, struct _usem *sem)
3488 {
3489 	struct umtx_key key;
3490 	int error, cnt;
3491 	uint32_t flags;
3492 
3493 	error = fueword32(&sem->_flags, &flags);
3494 	if (error == -1)
3495 		return (EFAULT);
3496 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3497 		return (error);
3498 	umtxq_lock(&key);
3499 	umtxq_busy(&key);
3500 	cnt = umtxq_count(&key);
3501 	if (cnt > 0) {
3502 		/*
3503 		 * Check if count is greater than 0, this means the memory is
3504 		 * still being referenced by user code, so we can safely
3505 		 * update _has_waiters flag.
3506 		 */
3507 		if (cnt == 1) {
3508 			umtxq_unlock(&key);
3509 			error = suword32(&sem->_has_waiters, 0);
3510 			umtxq_lock(&key);
3511 			if (error == -1)
3512 				error = EFAULT;
3513 		}
3514 		umtxq_signal(&key, 1);
3515 	}
3516 	umtxq_unbusy(&key);
3517 	umtxq_unlock(&key);
3518 	umtx_key_release(&key);
3519 	return (error);
3520 }
3521 #endif
3522 
3523 static int
3524 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3525 {
3526 	struct umtx_abs_timeout timo;
3527 	struct umtx_q *uq;
3528 	uint32_t count, flags;
3529 	int error, rv;
3530 
3531 	uq = td->td_umtxq;
3532 	flags = fuword32(&sem->_flags);
3533 	if (timeout != NULL)
3534 		umtx_abs_timeout_init2(&timo, timeout);
3535 
3536 again:
3537 	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3538 	if (error != 0)
3539 		return (error);
3540 	umtxq_lock(&uq->uq_key);
3541 	umtxq_busy(&uq->uq_key);
3542 	umtxq_insert(uq);
3543 	umtxq_unlock(&uq->uq_key);
3544 	rv = fueword32(&sem->_count, &count);
3545 	if (rv == -1) {
3546 		umtxq_lock(&uq->uq_key);
3547 		umtxq_unbusy(&uq->uq_key);
3548 		umtxq_remove(uq);
3549 		umtxq_unlock(&uq->uq_key);
3550 		umtx_key_release(&uq->uq_key);
3551 		return (EFAULT);
3552 	}
3553 	for (;;) {
3554 		if (USEM_COUNT(count) != 0) {
3555 			umtxq_lock(&uq->uq_key);
3556 			umtxq_unbusy(&uq->uq_key);
3557 			umtxq_remove(uq);
3558 			umtxq_unlock(&uq->uq_key);
3559 			umtx_key_release(&uq->uq_key);
3560 			return (0);
3561 		}
3562 		if (count == USEM_HAS_WAITERS)
3563 			break;
3564 		rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3565 		if (rv == 0)
3566 			break;
3567 		umtxq_lock(&uq->uq_key);
3568 		umtxq_unbusy(&uq->uq_key);
3569 		umtxq_remove(uq);
3570 		umtxq_unlock(&uq->uq_key);
3571 		umtx_key_release(&uq->uq_key);
3572 		if (rv == -1)
3573 			return (EFAULT);
3574 		rv = thread_check_susp(td, true);
3575 		if (rv != 0)
3576 			return (rv);
3577 		goto again;
3578 	}
3579 	umtxq_lock(&uq->uq_key);
3580 	umtxq_unbusy(&uq->uq_key);
3581 
3582 	error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3583 
3584 	if ((uq->uq_flags & UQF_UMTXQ) == 0)
3585 		error = 0;
3586 	else {
3587 		umtxq_remove(uq);
3588 		if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3589 			/* A relative timeout cannot be restarted. */
3590 			if (error == ERESTART)
3591 				error = EINTR;
3592 			if (error == EINTR) {
3593 				umtx_abs_timeout_update(&timo);
3594 				timespecsub(&timo.end, &timo.cur,
3595 				    &timeout->_timeout);
3596 			}
3597 		}
3598 	}
3599 	umtxq_unlock(&uq->uq_key);
3600 	umtx_key_release(&uq->uq_key);
3601 	return (error);
3602 }
3603 
3604 /*
3605  * Signal a userland semaphore.
3606  */
3607 static int
3608 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3609 {
3610 	struct umtx_key key;
3611 	int error, cnt, rv;
3612 	uint32_t count, flags;
3613 
3614 	rv = fueword32(&sem->_flags, &flags);
3615 	if (rv == -1)
3616 		return (EFAULT);
3617 	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3618 		return (error);
3619 	umtxq_lock(&key);
3620 	umtxq_busy(&key);
3621 	cnt = umtxq_count(&key);
3622 	if (cnt > 0) {
3623 		/*
3624 		 * If this was the last sleeping thread, clear the waiters
3625 		 * flag in _count.
3626 		 */
3627 		if (cnt == 1) {
3628 			umtxq_unlock(&key);
3629 			rv = fueword32(&sem->_count, &count);
3630 			while (rv != -1 && count & USEM_HAS_WAITERS) {
3631 				rv = casueword32(&sem->_count, count, &count,
3632 				    count & ~USEM_HAS_WAITERS);
3633 				if (rv == 1) {
3634 					rv = thread_check_susp(td, true);
3635 					if (rv != 0)
3636 						break;
3637 				}
3638 			}
3639 			if (rv == -1)
3640 				error = EFAULT;
3641 			else if (rv > 0) {
3642 				error = rv;
3643 			}
3644 			umtxq_lock(&key);
3645 		}
3646 
3647 		umtxq_signal(&key, 1);
3648 	}
3649 	umtxq_unbusy(&key);
3650 	umtxq_unlock(&key);
3651 	umtx_key_release(&key);
3652 	return (error);
3653 }
3654 
3655 #ifdef COMPAT_FREEBSD10
3656 int
3657 freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3658 {
3659 	return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3660 }
3661 
3662 int
3663 freebsd10__umtx_unlock(struct thread *td,
3664     struct freebsd10__umtx_unlock_args *uap)
3665 {
3666 	return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3667 }
3668 #endif
3669 
3670 inline int
3671 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3672 {
3673 	int error;
3674 
3675 	error = copyin(uaddr, tsp, sizeof(*tsp));
3676 	if (error == 0) {
3677 		if (tsp->tv_sec < 0 ||
3678 		    tsp->tv_nsec >= 1000000000 ||
3679 		    tsp->tv_nsec < 0)
3680 			error = EINVAL;
3681 	}
3682 	return (error);
3683 }
3684 
3685 static inline int
3686 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3687 {
3688 	int error;
3689 
3690 	if (size <= sizeof(tp->_timeout)) {
3691 		tp->_clockid = CLOCK_REALTIME;
3692 		tp->_flags = 0;
3693 		error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3694 	} else
3695 		error = copyin(uaddr, tp, sizeof(*tp));
3696 	if (error != 0)
3697 		return (error);
3698 	if (tp->_timeout.tv_sec < 0 ||
3699 	    tp->_timeout.tv_nsec >= 1000000000 || tp->_timeout.tv_nsec < 0)
3700 		return (EINVAL);
3701 	return (0);
3702 }
3703 
3704 static int
3705 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3706     struct umtx_robust_lists_params *rb)
3707 {
3708 
3709 	if (size > sizeof(*rb))
3710 		return (EINVAL);
3711 	return (copyin(uaddr, rb, size));
3712 }
3713 
3714 static int
3715 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3716 {
3717 
3718 	/*
3719 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3720 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
3721 	 * copyops.
3722 	 */
3723 	KASSERT(sz >= sizeof(*tsp),
3724 	    ("umtx_copyops specifies incorrect sizes"));
3725 
3726 	return (copyout(tsp, uaddr, sizeof(*tsp)));
3727 }
3728 
3729 #ifdef COMPAT_FREEBSD10
3730 static int
3731 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3732     const struct umtx_copyops *ops)
3733 {
3734 	struct timespec *ts, timeout;
3735 	int error;
3736 
3737 	/* Allow a null timespec (wait forever). */
3738 	if (uap->uaddr2 == NULL)
3739 		ts = NULL;
3740 	else {
3741 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
3742 		if (error != 0)
3743 			return (error);
3744 		ts = &timeout;
3745 	}
3746 #ifdef COMPAT_FREEBSD32
3747 	if (ops->compat32)
3748 		return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3749 #endif
3750 	return (do_lock_umtx(td, uap->obj, uap->val, ts));
3751 }
3752 
3753 static int
3754 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3755     const struct umtx_copyops *ops)
3756 {
3757 #ifdef COMPAT_FREEBSD32
3758 	if (ops->compat32)
3759 		return (do_unlock_umtx32(td, uap->obj, uap->val));
3760 #endif
3761 	return (do_unlock_umtx(td, uap->obj, uap->val));
3762 }
3763 #endif	/* COMPAT_FREEBSD10 */
3764 
3765 #if !defined(COMPAT_FREEBSD10)
3766 static int
3767 __umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3768     const struct umtx_copyops *ops __unused)
3769 {
3770 	return (EOPNOTSUPP);
3771 }
3772 #endif	/* COMPAT_FREEBSD10 */
3773 
3774 static int
3775 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3776     const struct umtx_copyops *ops)
3777 {
3778 	struct _umtx_time timeout, *tm_p;
3779 	int error;
3780 
3781 	if (uap->uaddr2 == NULL)
3782 		tm_p = NULL;
3783 	else {
3784 		error = ops->copyin_umtx_time(
3785 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3786 		if (error != 0)
3787 			return (error);
3788 		tm_p = &timeout;
3789 	}
3790 	return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3791 }
3792 
3793 static int
3794 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3795     const struct umtx_copyops *ops)
3796 {
3797 	struct _umtx_time timeout, *tm_p;
3798 	int error;
3799 
3800 	if (uap->uaddr2 == NULL)
3801 		tm_p = NULL;
3802 	else {
3803 		error = ops->copyin_umtx_time(
3804 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3805 		if (error != 0)
3806 			return (error);
3807 		tm_p = &timeout;
3808 	}
3809 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3810 }
3811 
3812 static int
3813 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3814     const struct umtx_copyops *ops)
3815 {
3816 	struct _umtx_time *tm_p, timeout;
3817 	int error;
3818 
3819 	if (uap->uaddr2 == NULL)
3820 		tm_p = NULL;
3821 	else {
3822 		error = ops->copyin_umtx_time(
3823 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3824 		if (error != 0)
3825 			return (error);
3826 		tm_p = &timeout;
3827 	}
3828 	return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3829 }
3830 
3831 static int
3832 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3833     const struct umtx_copyops *ops __unused)
3834 {
3835 
3836 	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3837 }
3838 
3839 #define BATCH_SIZE	128
3840 static int
3841 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
3842 {
3843 	char *uaddrs[BATCH_SIZE], **upp;
3844 	int count, error, i, pos, tocopy;
3845 
3846 	upp = (char **)uap->obj;
3847 	error = 0;
3848 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3849 	    pos += tocopy) {
3850 		tocopy = MIN(count, BATCH_SIZE);
3851 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
3852 		if (error != 0)
3853 			break;
3854 		for (i = 0; i < tocopy; ++i) {
3855 			kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
3856 		}
3857 		maybe_yield();
3858 	}
3859 	return (error);
3860 }
3861 
3862 static int
3863 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
3864 {
3865 	uint32_t uaddrs[BATCH_SIZE], *upp;
3866 	int count, error, i, pos, tocopy;
3867 
3868 	upp = (uint32_t *)uap->obj;
3869 	error = 0;
3870 	for (count = uap->val, pos = 0; count > 0; count -= tocopy,
3871 	    pos += tocopy) {
3872 		tocopy = MIN(count, BATCH_SIZE);
3873 		error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
3874 		if (error != 0)
3875 			break;
3876 		for (i = 0; i < tocopy; ++i) {
3877 			kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
3878 			    INT_MAX, 1);
3879 		}
3880 		maybe_yield();
3881 	}
3882 	return (error);
3883 }
3884 
3885 static int
3886 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
3887     const struct umtx_copyops *ops)
3888 {
3889 
3890 	if (ops->compat32)
3891 		return (__umtx_op_nwake_private_compat32(td, uap));
3892 	return (__umtx_op_nwake_private_native(td, uap));
3893 }
3894 
3895 static int
3896 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
3897     const struct umtx_copyops *ops __unused)
3898 {
3899 
3900 	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
3901 }
3902 
3903 static int
3904 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
3905    const struct umtx_copyops *ops)
3906 {
3907 	struct _umtx_time *tm_p, timeout;
3908 	int error;
3909 
3910 	/* Allow a null timespec (wait forever). */
3911 	if (uap->uaddr2 == NULL)
3912 		tm_p = NULL;
3913 	else {
3914 		error = ops->copyin_umtx_time(
3915 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3916 		if (error != 0)
3917 			return (error);
3918 		tm_p = &timeout;
3919 	}
3920 	return (do_lock_umutex(td, uap->obj, tm_p, 0));
3921 }
3922 
3923 static int
3924 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
3925     const struct umtx_copyops *ops __unused)
3926 {
3927 
3928 	return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
3929 }
3930 
3931 static int
3932 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
3933     const struct umtx_copyops *ops)
3934 {
3935 	struct _umtx_time *tm_p, timeout;
3936 	int error;
3937 
3938 	/* Allow a null timespec (wait forever). */
3939 	if (uap->uaddr2 == NULL)
3940 		tm_p = NULL;
3941 	else {
3942 		error = ops->copyin_umtx_time(
3943 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3944 		if (error != 0)
3945 			return (error);
3946 		tm_p = &timeout;
3947 	}
3948 	return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
3949 }
3950 
3951 static int
3952 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
3953     const struct umtx_copyops *ops __unused)
3954 {
3955 
3956 	return (do_wake_umutex(td, uap->obj));
3957 }
3958 
3959 static int
3960 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
3961     const struct umtx_copyops *ops __unused)
3962 {
3963 
3964 	return (do_unlock_umutex(td, uap->obj, false));
3965 }
3966 
3967 static int
3968 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
3969     const struct umtx_copyops *ops __unused)
3970 {
3971 
3972 	return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
3973 }
3974 
3975 static int
3976 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
3977     const struct umtx_copyops *ops)
3978 {
3979 	struct timespec *ts, timeout;
3980 	int error;
3981 
3982 	/* Allow a null timespec (wait forever). */
3983 	if (uap->uaddr2 == NULL)
3984 		ts = NULL;
3985 	else {
3986 		error = ops->copyin_timeout(uap->uaddr2, &timeout);
3987 		if (error != 0)
3988 			return (error);
3989 		ts = &timeout;
3990 	}
3991 	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3992 }
3993 
3994 static int
3995 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
3996     const struct umtx_copyops *ops __unused)
3997 {
3998 
3999 	return (do_cv_signal(td, uap->obj));
4000 }
4001 
4002 static int
4003 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4004     const struct umtx_copyops *ops __unused)
4005 {
4006 
4007 	return (do_cv_broadcast(td, uap->obj));
4008 }
4009 
4010 static int
4011 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4012     const struct umtx_copyops *ops)
4013 {
4014 	struct _umtx_time timeout;
4015 	int error;
4016 
4017 	/* Allow a null timespec (wait forever). */
4018 	if (uap->uaddr2 == NULL) {
4019 		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4020 	} else {
4021 		error = ops->copyin_umtx_time(uap->uaddr2,
4022 		   (size_t)uap->uaddr1, &timeout);
4023 		if (error != 0)
4024 			return (error);
4025 		error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4026 	}
4027 	return (error);
4028 }
4029 
4030 static int
4031 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4032     const struct umtx_copyops *ops)
4033 {
4034 	struct _umtx_time timeout;
4035 	int error;
4036 
4037 	/* Allow a null timespec (wait forever). */
4038 	if (uap->uaddr2 == NULL) {
4039 		error = do_rw_wrlock(td, uap->obj, 0);
4040 	} else {
4041 		error = ops->copyin_umtx_time(uap->uaddr2,
4042 		   (size_t)uap->uaddr1, &timeout);
4043 		if (error != 0)
4044 			return (error);
4045 
4046 		error = do_rw_wrlock(td, uap->obj, &timeout);
4047 	}
4048 	return (error);
4049 }
4050 
4051 static int
4052 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4053     const struct umtx_copyops *ops __unused)
4054 {
4055 
4056 	return (do_rw_unlock(td, uap->obj));
4057 }
4058 
4059 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4060 static int
4061 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4062     const struct umtx_copyops *ops)
4063 {
4064 	struct _umtx_time *tm_p, timeout;
4065 	int error;
4066 
4067 	/* Allow a null timespec (wait forever). */
4068 	if (uap->uaddr2 == NULL)
4069 		tm_p = NULL;
4070 	else {
4071 		error = ops->copyin_umtx_time(
4072 		    uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4073 		if (error != 0)
4074 			return (error);
4075 		tm_p = &timeout;
4076 	}
4077 	return (do_sem_wait(td, uap->obj, tm_p));
4078 }
4079 
4080 static int
4081 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4082     const struct umtx_copyops *ops __unused)
4083 {
4084 
4085 	return (do_sem_wake(td, uap->obj));
4086 }
4087 #endif
4088 
4089 static int
4090 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4091     const struct umtx_copyops *ops __unused)
4092 {
4093 
4094 	return (do_wake2_umutex(td, uap->obj, uap->val));
4095 }
4096 
4097 static int
4098 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4099     const struct umtx_copyops *ops)
4100 {
4101 	struct _umtx_time *tm_p, timeout;
4102 	size_t uasize;
4103 	int error;
4104 
4105 	/* Allow a null timespec (wait forever). */
4106 	if (uap->uaddr2 == NULL) {
4107 		uasize = 0;
4108 		tm_p = NULL;
4109 	} else {
4110 		uasize = (size_t)uap->uaddr1;
4111 		error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4112 		if (error != 0)
4113 			return (error);
4114 		tm_p = &timeout;
4115 	}
4116 	error = do_sem2_wait(td, uap->obj, tm_p);
4117 	if (error == EINTR && uap->uaddr2 != NULL &&
4118 	    (timeout._flags & UMTX_ABSTIME) == 0 &&
4119 	    uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4120 		error = ops->copyout_timeout(
4121 		    (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4122 		    uasize - ops->umtx_time_sz, &timeout._timeout);
4123 		if (error == 0) {
4124 			error = EINTR;
4125 		}
4126 	}
4127 
4128 	return (error);
4129 }
4130 
4131 static int
4132 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4133     const struct umtx_copyops *ops __unused)
4134 {
4135 
4136 	return (do_sem2_wake(td, uap->obj));
4137 }
4138 
4139 #define	USHM_OBJ_UMTX(o)						\
4140     ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4141 
4142 #define	USHMF_REG_LINKED	0x0001
4143 #define	USHMF_OBJ_LINKED	0x0002
4144 struct umtx_shm_reg {
4145 	TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4146 	LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4147 	struct umtx_key		ushm_key;
4148 	struct ucred		*ushm_cred;
4149 	struct shmfd		*ushm_obj;
4150 	u_int			ushm_refcnt;
4151 	u_int			ushm_flags;
4152 };
4153 
4154 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4155 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4156 
4157 static uma_zone_t umtx_shm_reg_zone;
4158 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4159 static struct mtx umtx_shm_lock;
4160 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4161     TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4162 
4163 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4164 
4165 static void
4166 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4167 {
4168 	struct umtx_shm_reg_head d;
4169 	struct umtx_shm_reg *reg, *reg1;
4170 
4171 	TAILQ_INIT(&d);
4172 	mtx_lock(&umtx_shm_lock);
4173 	TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4174 	mtx_unlock(&umtx_shm_lock);
4175 	TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4176 		TAILQ_REMOVE(&d, reg, ushm_reg_link);
4177 		umtx_shm_free_reg(reg);
4178 	}
4179 }
4180 
4181 static struct task umtx_shm_reg_delfree_task =
4182     TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4183 
4184 static struct umtx_shm_reg *
4185 umtx_shm_find_reg_locked(const struct umtx_key *key)
4186 {
4187 	struct umtx_shm_reg *reg;
4188 	struct umtx_shm_reg_head *reg_head;
4189 
4190 	KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4191 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4192 	reg_head = &umtx_shm_registry[key->hash];
4193 	TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4194 		KASSERT(reg->ushm_key.shared,
4195 		    ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4196 		if (reg->ushm_key.info.shared.object ==
4197 		    key->info.shared.object &&
4198 		    reg->ushm_key.info.shared.offset ==
4199 		    key->info.shared.offset) {
4200 			KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4201 			KASSERT(reg->ushm_refcnt > 0,
4202 			    ("reg %p refcnt 0 onlist", reg));
4203 			KASSERT((reg->ushm_flags & USHMF_REG_LINKED) != 0,
4204 			    ("reg %p not linked", reg));
4205 			reg->ushm_refcnt++;
4206 			return (reg);
4207 		}
4208 	}
4209 	return (NULL);
4210 }
4211 
4212 static struct umtx_shm_reg *
4213 umtx_shm_find_reg(const struct umtx_key *key)
4214 {
4215 	struct umtx_shm_reg *reg;
4216 
4217 	mtx_lock(&umtx_shm_lock);
4218 	reg = umtx_shm_find_reg_locked(key);
4219 	mtx_unlock(&umtx_shm_lock);
4220 	return (reg);
4221 }
4222 
4223 static void
4224 umtx_shm_free_reg(struct umtx_shm_reg *reg)
4225 {
4226 
4227 	chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4228 	crfree(reg->ushm_cred);
4229 	shm_drop(reg->ushm_obj);
4230 	uma_zfree(umtx_shm_reg_zone, reg);
4231 }
4232 
4233 static bool
4234 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool force)
4235 {
4236 	bool res;
4237 
4238 	mtx_assert(&umtx_shm_lock, MA_OWNED);
4239 	KASSERT(reg->ushm_refcnt > 0, ("ushm_reg %p refcnt 0", reg));
4240 	reg->ushm_refcnt--;
4241 	res = reg->ushm_refcnt == 0;
4242 	if (res || force) {
4243 		if ((reg->ushm_flags & USHMF_REG_LINKED) != 0) {
4244 			TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash],
4245 			    reg, ushm_reg_link);
4246 			reg->ushm_flags &= ~USHMF_REG_LINKED;
4247 		}
4248 		if ((reg->ushm_flags & USHMF_OBJ_LINKED) != 0) {
4249 			LIST_REMOVE(reg, ushm_obj_link);
4250 			reg->ushm_flags &= ~USHMF_OBJ_LINKED;
4251 		}
4252 	}
4253 	return (res);
4254 }
4255 
4256 static void
4257 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool force)
4258 {
4259 	vm_object_t object;
4260 	bool dofree;
4261 
4262 	if (force) {
4263 		object = reg->ushm_obj->shm_object;
4264 		VM_OBJECT_WLOCK(object);
4265 		object->flags |= OBJ_UMTXDEAD;
4266 		VM_OBJECT_WUNLOCK(object);
4267 	}
4268 	mtx_lock(&umtx_shm_lock);
4269 	dofree = umtx_shm_unref_reg_locked(reg, force);
4270 	mtx_unlock(&umtx_shm_lock);
4271 	if (dofree)
4272 		umtx_shm_free_reg(reg);
4273 }
4274 
4275 void
4276 umtx_shm_object_init(vm_object_t object)
4277 {
4278 
4279 	LIST_INIT(USHM_OBJ_UMTX(object));
4280 }
4281 
4282 void
4283 umtx_shm_object_terminated(vm_object_t object)
4284 {
4285 	struct umtx_shm_reg *reg, *reg1;
4286 	bool dofree;
4287 
4288 	if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4289 		return;
4290 
4291 	dofree = false;
4292 	mtx_lock(&umtx_shm_lock);
4293 	LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4294 		if (umtx_shm_unref_reg_locked(reg, true)) {
4295 			TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4296 			    ushm_reg_link);
4297 			dofree = true;
4298 		}
4299 	}
4300 	mtx_unlock(&umtx_shm_lock);
4301 	if (dofree)
4302 		taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4303 }
4304 
4305 static int
4306 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4307     struct umtx_shm_reg **res)
4308 {
4309 	struct umtx_shm_reg *reg, *reg1;
4310 	struct ucred *cred;
4311 	int error;
4312 
4313 	reg = umtx_shm_find_reg(key);
4314 	if (reg != NULL) {
4315 		*res = reg;
4316 		return (0);
4317 	}
4318 	cred = td->td_ucred;
4319 	if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4320 		return (ENOMEM);
4321 	reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4322 	reg->ushm_refcnt = 1;
4323 	bcopy(key, &reg->ushm_key, sizeof(*key));
4324 	reg->ushm_obj = shm_alloc(td->td_ucred, O_RDWR, false);
4325 	reg->ushm_cred = crhold(cred);
4326 	error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4327 	if (error != 0) {
4328 		umtx_shm_free_reg(reg);
4329 		return (error);
4330 	}
4331 	mtx_lock(&umtx_shm_lock);
4332 	reg1 = umtx_shm_find_reg_locked(key);
4333 	if (reg1 != NULL) {
4334 		mtx_unlock(&umtx_shm_lock);
4335 		umtx_shm_free_reg(reg);
4336 		*res = reg1;
4337 		return (0);
4338 	}
4339 	reg->ushm_refcnt++;
4340 	TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4341 	LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4342 	    ushm_obj_link);
4343 	reg->ushm_flags = USHMF_REG_LINKED | USHMF_OBJ_LINKED;
4344 	mtx_unlock(&umtx_shm_lock);
4345 	*res = reg;
4346 	return (0);
4347 }
4348 
4349 static int
4350 umtx_shm_alive(struct thread *td, void *addr)
4351 {
4352 	vm_map_t map;
4353 	vm_map_entry_t entry;
4354 	vm_object_t object;
4355 	vm_pindex_t pindex;
4356 	vm_prot_t prot;
4357 	int res, ret;
4358 	boolean_t wired;
4359 
4360 	map = &td->td_proc->p_vmspace->vm_map;
4361 	res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4362 	    &object, &pindex, &prot, &wired);
4363 	if (res != KERN_SUCCESS)
4364 		return (EFAULT);
4365 	if (object == NULL)
4366 		ret = EINVAL;
4367 	else
4368 		ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4369 	vm_map_lookup_done(map, entry);
4370 	return (ret);
4371 }
4372 
4373 static void
4374 umtx_shm_init(void)
4375 {
4376 	int i;
4377 
4378 	umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4379 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4380 	mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4381 	for (i = 0; i < nitems(umtx_shm_registry); i++)
4382 		TAILQ_INIT(&umtx_shm_registry[i]);
4383 }
4384 
4385 static int
4386 umtx_shm(struct thread *td, void *addr, u_int flags)
4387 {
4388 	struct umtx_key key;
4389 	struct umtx_shm_reg *reg;
4390 	struct file *fp;
4391 	int error, fd;
4392 
4393 	if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4394 	    UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4395 		return (EINVAL);
4396 	if ((flags & UMTX_SHM_ALIVE) != 0)
4397 		return (umtx_shm_alive(td, addr));
4398 	error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4399 	if (error != 0)
4400 		return (error);
4401 	KASSERT(key.shared == 1, ("non-shared key"));
4402 	if ((flags & UMTX_SHM_CREAT) != 0) {
4403 		error = umtx_shm_create_reg(td, &key, &reg);
4404 	} else {
4405 		reg = umtx_shm_find_reg(&key);
4406 		if (reg == NULL)
4407 			error = ESRCH;
4408 	}
4409 	umtx_key_release(&key);
4410 	if (error != 0)
4411 		return (error);
4412 	KASSERT(reg != NULL, ("no reg"));
4413 	if ((flags & UMTX_SHM_DESTROY) != 0) {
4414 		umtx_shm_unref_reg(reg, true);
4415 	} else {
4416 #if 0
4417 #ifdef MAC
4418 		error = mac_posixshm_check_open(td->td_ucred,
4419 		    reg->ushm_obj, FFLAGS(O_RDWR));
4420 		if (error == 0)
4421 #endif
4422 			error = shm_access(reg->ushm_obj, td->td_ucred,
4423 			    FFLAGS(O_RDWR));
4424 		if (error == 0)
4425 #endif
4426 			error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4427 		if (error == 0) {
4428 			shm_hold(reg->ushm_obj);
4429 			finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4430 			    &shm_ops);
4431 			td->td_retval[0] = fd;
4432 			fdrop(fp, td);
4433 		}
4434 	}
4435 	umtx_shm_unref_reg(reg, false);
4436 	return (error);
4437 }
4438 
4439 static int
4440 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4441     const struct umtx_copyops *ops __unused)
4442 {
4443 
4444 	return (umtx_shm(td, uap->uaddr1, uap->val));
4445 }
4446 
4447 static int
4448 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4449     const struct umtx_copyops *ops)
4450 {
4451 	struct umtx_robust_lists_params rb;
4452 	int error;
4453 
4454 	if (ops->compat32) {
4455 		if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4456 		    (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4457 		    td->td_rb_inact != 0))
4458 			return (EBUSY);
4459 	} else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4460 		return (EBUSY);
4461 	}
4462 
4463 	bzero(&rb, sizeof(rb));
4464 	error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4465 	if (error != 0)
4466 		return (error);
4467 
4468 	if (ops->compat32)
4469 		td->td_pflags2 |= TDP2_COMPAT32RB;
4470 
4471 	td->td_rb_list = rb.robust_list_offset;
4472 	td->td_rbp_list = rb.robust_priv_list_offset;
4473 	td->td_rb_inact = rb.robust_inact_offset;
4474 	return (0);
4475 }
4476 
4477 #if defined(__i386__) || defined(__amd64__)
4478 /*
4479  * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4480  * 32-bit time_t there.  Other architectures just need the i386 definitions
4481  * along with their standard compat32.
4482  */
4483 struct timespecx32 {
4484 	int64_t			tv_sec;
4485 	int32_t			tv_nsec;
4486 };
4487 
4488 struct umtx_timex32 {
4489 	struct	timespecx32	_timeout;
4490 	uint32_t		_flags;
4491 	uint32_t		_clockid;
4492 };
4493 
4494 #ifndef __i386__
4495 #define	timespeci386	timespec32
4496 #define	umtx_timei386	umtx_time32
4497 #endif
4498 #else /* !__i386__ && !__amd64__ */
4499 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
4500 struct timespeci386 {
4501 	int32_t			tv_sec;
4502 	int32_t			tv_nsec;
4503 };
4504 
4505 struct umtx_timei386 {
4506 	struct	timespeci386	_timeout;
4507 	uint32_t		_flags;
4508 	uint32_t		_clockid;
4509 };
4510 
4511 #if defined(__LP64__)
4512 #define	timespecx32	timespec32
4513 #define	umtx_timex32	umtx_time32
4514 #endif
4515 #endif
4516 
4517 static int
4518 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4519     struct umtx_robust_lists_params *rbp)
4520 {
4521 	struct umtx_robust_lists_params_compat32 rb32;
4522 	int error;
4523 
4524 	if (size > sizeof(rb32))
4525 		return (EINVAL);
4526 	bzero(&rb32, sizeof(rb32));
4527 	error = copyin(uaddr, &rb32, size);
4528 	if (error != 0)
4529 		return (error);
4530 	CP(rb32, *rbp, robust_list_offset);
4531 	CP(rb32, *rbp, robust_priv_list_offset);
4532 	CP(rb32, *rbp, robust_inact_offset);
4533 	return (0);
4534 }
4535 
4536 #ifndef __i386__
4537 static inline int
4538 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4539 {
4540 	struct timespeci386 ts32;
4541 	int error;
4542 
4543 	error = copyin(uaddr, &ts32, sizeof(ts32));
4544 	if (error == 0) {
4545 		if (ts32.tv_sec < 0 ||
4546 		    ts32.tv_nsec >= 1000000000 ||
4547 		    ts32.tv_nsec < 0)
4548 			error = EINVAL;
4549 		else {
4550 			CP(ts32, *tsp, tv_sec);
4551 			CP(ts32, *tsp, tv_nsec);
4552 		}
4553 	}
4554 	return (error);
4555 }
4556 
4557 static inline int
4558 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4559 {
4560 	struct umtx_timei386 t32;
4561 	int error;
4562 
4563 	t32._clockid = CLOCK_REALTIME;
4564 	t32._flags   = 0;
4565 	if (size <= sizeof(t32._timeout))
4566 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4567 	else
4568 		error = copyin(uaddr, &t32, sizeof(t32));
4569 	if (error != 0)
4570 		return (error);
4571 	if (t32._timeout.tv_sec < 0 ||
4572 	    t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
4573 		return (EINVAL);
4574 	TS_CP(t32, *tp, _timeout);
4575 	CP(t32, *tp, _flags);
4576 	CP(t32, *tp, _clockid);
4577 	return (0);
4578 }
4579 
4580 static int
4581 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4582 {
4583 	struct timespeci386 remain32 = {
4584 		.tv_sec = tsp->tv_sec,
4585 		.tv_nsec = tsp->tv_nsec,
4586 	};
4587 
4588 	/*
4589 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4590 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4591 	 * copyops.
4592 	 */
4593 	KASSERT(sz >= sizeof(remain32),
4594 	    ("umtx_copyops specifies incorrect sizes"));
4595 
4596 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4597 }
4598 #endif /* !__i386__ */
4599 
4600 #if defined(__i386__) || defined(__LP64__)
4601 static inline int
4602 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4603 {
4604 	struct timespecx32 ts32;
4605 	int error;
4606 
4607 	error = copyin(uaddr, &ts32, sizeof(ts32));
4608 	if (error == 0) {
4609 		if (ts32.tv_sec < 0 ||
4610 		    ts32.tv_nsec >= 1000000000 ||
4611 		    ts32.tv_nsec < 0)
4612 			error = EINVAL;
4613 		else {
4614 			CP(ts32, *tsp, tv_sec);
4615 			CP(ts32, *tsp, tv_nsec);
4616 		}
4617 	}
4618 	return (error);
4619 }
4620 
4621 static inline int
4622 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4623 {
4624 	struct umtx_timex32 t32;
4625 	int error;
4626 
4627 	t32._clockid = CLOCK_REALTIME;
4628 	t32._flags   = 0;
4629 	if (size <= sizeof(t32._timeout))
4630 		error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4631 	else
4632 		error = copyin(uaddr, &t32, sizeof(t32));
4633 	if (error != 0)
4634 		return (error);
4635 	if (t32._timeout.tv_sec < 0 ||
4636 	    t32._timeout.tv_nsec >= 1000000000 || t32._timeout.tv_nsec < 0)
4637 		return (EINVAL);
4638 	TS_CP(t32, *tp, _timeout);
4639 	CP(t32, *tp, _flags);
4640 	CP(t32, *tp, _clockid);
4641 	return (0);
4642 }
4643 
4644 static int
4645 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4646 {
4647 	struct timespecx32 remain32 = {
4648 		.tv_sec = tsp->tv_sec,
4649 		.tv_nsec = tsp->tv_nsec,
4650 	};
4651 
4652 	/*
4653 	 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4654 	 * and we're only called if sz >= sizeof(timespec) as supplied in the
4655 	 * copyops.
4656 	 */
4657 	KASSERT(sz >= sizeof(remain32),
4658 	    ("umtx_copyops specifies incorrect sizes"));
4659 
4660 	return (copyout(&remain32, uaddr, sizeof(remain32)));
4661 }
4662 #endif /* __i386__ || __LP64__ */
4663 
4664 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4665     const struct umtx_copyops *umtx_ops);
4666 
4667 static const _umtx_op_func op_table[] = {
4668 #ifdef COMPAT_FREEBSD10
4669 	[UMTX_OP_LOCK]		= __umtx_op_lock_umtx,
4670 	[UMTX_OP_UNLOCK]	= __umtx_op_unlock_umtx,
4671 #else
4672 	[UMTX_OP_LOCK]		= __umtx_op_unimpl,
4673 	[UMTX_OP_UNLOCK]	= __umtx_op_unimpl,
4674 #endif
4675 	[UMTX_OP_WAIT]		= __umtx_op_wait,
4676 	[UMTX_OP_WAKE]		= __umtx_op_wake,
4677 	[UMTX_OP_MUTEX_TRYLOCK]	= __umtx_op_trylock_umutex,
4678 	[UMTX_OP_MUTEX_LOCK]	= __umtx_op_lock_umutex,
4679 	[UMTX_OP_MUTEX_UNLOCK]	= __umtx_op_unlock_umutex,
4680 	[UMTX_OP_SET_CEILING]	= __umtx_op_set_ceiling,
4681 	[UMTX_OP_CV_WAIT]	= __umtx_op_cv_wait,
4682 	[UMTX_OP_CV_SIGNAL]	= __umtx_op_cv_signal,
4683 	[UMTX_OP_CV_BROADCAST]	= __umtx_op_cv_broadcast,
4684 	[UMTX_OP_WAIT_UINT]	= __umtx_op_wait_uint,
4685 	[UMTX_OP_RW_RDLOCK]	= __umtx_op_rw_rdlock,
4686 	[UMTX_OP_RW_WRLOCK]	= __umtx_op_rw_wrlock,
4687 	[UMTX_OP_RW_UNLOCK]	= __umtx_op_rw_unlock,
4688 	[UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4689 	[UMTX_OP_WAKE_PRIVATE]	= __umtx_op_wake_private,
4690 	[UMTX_OP_MUTEX_WAIT]	= __umtx_op_wait_umutex,
4691 	[UMTX_OP_MUTEX_WAKE]	= __umtx_op_wake_umutex,
4692 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4693 	[UMTX_OP_SEM_WAIT]	= __umtx_op_sem_wait,
4694 	[UMTX_OP_SEM_WAKE]	= __umtx_op_sem_wake,
4695 #else
4696 	[UMTX_OP_SEM_WAIT]	= __umtx_op_unimpl,
4697 	[UMTX_OP_SEM_WAKE]	= __umtx_op_unimpl,
4698 #endif
4699 	[UMTX_OP_NWAKE_PRIVATE]	= __umtx_op_nwake_private,
4700 	[UMTX_OP_MUTEX_WAKE2]	= __umtx_op_wake2_umutex,
4701 	[UMTX_OP_SEM2_WAIT]	= __umtx_op_sem2_wait,
4702 	[UMTX_OP_SEM2_WAKE]	= __umtx_op_sem2_wake,
4703 	[UMTX_OP_SHM]		= __umtx_op_shm,
4704 	[UMTX_OP_ROBUST_LISTS]	= __umtx_op_robust_lists,
4705 };
4706 
4707 static const struct umtx_copyops umtx_native_ops = {
4708 	.copyin_timeout = umtx_copyin_timeout,
4709 	.copyin_umtx_time = umtx_copyin_umtx_time,
4710 	.copyin_robust_lists = umtx_copyin_robust_lists,
4711 	.copyout_timeout = umtx_copyout_timeout,
4712 	.timespec_sz = sizeof(struct timespec),
4713 	.umtx_time_sz = sizeof(struct _umtx_time),
4714 };
4715 
4716 #ifndef __i386__
4717 static const struct umtx_copyops umtx_native_opsi386 = {
4718 	.copyin_timeout = umtx_copyin_timeouti386,
4719 	.copyin_umtx_time = umtx_copyin_umtx_timei386,
4720 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4721 	.copyout_timeout = umtx_copyout_timeouti386,
4722 	.timespec_sz = sizeof(struct timespeci386),
4723 	.umtx_time_sz = sizeof(struct umtx_timei386),
4724 	.compat32 = true,
4725 };
4726 #endif
4727 
4728 #if defined(__i386__) || defined(__LP64__)
4729 /* i386 can emulate other 32-bit archs, too! */
4730 static const struct umtx_copyops umtx_native_opsx32 = {
4731 	.copyin_timeout = umtx_copyin_timeoutx32,
4732 	.copyin_umtx_time = umtx_copyin_umtx_timex32,
4733 	.copyin_robust_lists = umtx_copyin_robust_lists32,
4734 	.copyout_timeout = umtx_copyout_timeoutx32,
4735 	.timespec_sz = sizeof(struct timespecx32),
4736 	.umtx_time_sz = sizeof(struct umtx_timex32),
4737 	.compat32 = true,
4738 };
4739 
4740 #ifdef COMPAT_FREEBSD32
4741 #ifdef __amd64__
4742 #define	umtx_native_ops32	umtx_native_opsi386
4743 #else
4744 #define	umtx_native_ops32	umtx_native_opsx32
4745 #endif
4746 #endif /* COMPAT_FREEBSD32 */
4747 #endif /* __i386__ || __LP64__ */
4748 
4749 #define	UMTX_OP__FLAGS	(UMTX_OP__32BIT | UMTX_OP__I386)
4750 
4751 static int
4752 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4753     void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4754 {
4755 	struct _umtx_op_args uap = {
4756 		.obj = obj,
4757 		.op = op & ~UMTX_OP__FLAGS,
4758 		.val = val,
4759 		.uaddr1 = uaddr1,
4760 		.uaddr2 = uaddr2
4761 	};
4762 
4763 	if ((uap.op >= nitems(op_table)))
4764 		return (EINVAL);
4765 	return ((*op_table[uap.op])(td, &uap, ops));
4766 }
4767 
4768 int
4769 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
4770 {
4771 	static const struct umtx_copyops *umtx_ops;
4772 
4773 	umtx_ops = &umtx_native_ops;
4774 #ifdef __LP64__
4775 	if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
4776 		if ((uap->op & UMTX_OP__I386) != 0)
4777 			umtx_ops = &umtx_native_opsi386;
4778 		else
4779 			umtx_ops = &umtx_native_opsx32;
4780 	}
4781 #elif !defined(__i386__)
4782 	/* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
4783 	if ((uap->op & UMTX_OP__I386) != 0)
4784 		umtx_ops = &umtx_native_opsi386;
4785 #else
4786 	/* Likewise, UMTX_OP__I386 is a nop on i386. */
4787 	if ((uap->op & UMTX_OP__32BIT) != 0)
4788 		umtx_ops = &umtx_native_opsx32;
4789 #endif
4790 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
4791 	    uap->uaddr2, umtx_ops));
4792 }
4793 
4794 #ifdef COMPAT_FREEBSD32
4795 #ifdef COMPAT_FREEBSD10
4796 int
4797 freebsd10_freebsd32_umtx_lock(struct thread *td,
4798     struct freebsd10_freebsd32_umtx_lock_args *uap)
4799 {
4800 	return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
4801 }
4802 
4803 int
4804 freebsd10_freebsd32_umtx_unlock(struct thread *td,
4805     struct freebsd10_freebsd32_umtx_unlock_args *uap)
4806 {
4807 	return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
4808 }
4809 #endif /* COMPAT_FREEBSD10 */
4810 
4811 int
4812 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
4813 {
4814 
4815 	return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr,
4816 	    uap->uaddr2, &umtx_native_ops32));
4817 }
4818 #endif /* COMPAT_FREEBSD32 */
4819 
4820 void
4821 umtx_thread_init(struct thread *td)
4822 {
4823 
4824 	td->td_umtxq = umtxq_alloc();
4825 	td->td_umtxq->uq_thread = td;
4826 }
4827 
4828 void
4829 umtx_thread_fini(struct thread *td)
4830 {
4831 
4832 	umtxq_free(td->td_umtxq);
4833 }
4834 
4835 /*
4836  * It will be called when new thread is created, e.g fork().
4837  */
4838 void
4839 umtx_thread_alloc(struct thread *td)
4840 {
4841 	struct umtx_q *uq;
4842 
4843 	uq = td->td_umtxq;
4844 	uq->uq_inherited_pri = PRI_MAX;
4845 
4846 	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
4847 	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
4848 	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
4849 	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
4850 }
4851 
4852 /*
4853  * exec() hook.
4854  *
4855  * Clear robust lists for all process' threads, not delaying the
4856  * cleanup to thread exit, since the relevant address space is
4857  * destroyed right now.
4858  */
4859 void
4860 umtx_exec(struct proc *p)
4861 {
4862 	struct thread *td;
4863 
4864 	KASSERT(p == curproc, ("need curproc"));
4865 	KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
4866 	    (p->p_flag & P_STOPPED_SINGLE) != 0,
4867 	    ("curproc must be single-threaded"));
4868 	/*
4869 	 * There is no need to lock the list as only this thread can be
4870 	 * running.
4871 	 */
4872 	FOREACH_THREAD_IN_PROC(p, td) {
4873 		KASSERT(td == curthread ||
4874 		    ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
4875 		    ("running thread %p %p", p, td));
4876 		umtx_thread_cleanup(td);
4877 		td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
4878 	}
4879 }
4880 
4881 /*
4882  * thread exit hook.
4883  */
4884 void
4885 umtx_thread_exit(struct thread *td)
4886 {
4887 
4888 	umtx_thread_cleanup(td);
4889 }
4890 
4891 static int
4892 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
4893 {
4894 	u_long res1;
4895 	uint32_t res32;
4896 	int error;
4897 
4898 	if (compat32) {
4899 		error = fueword32((void *)ptr, &res32);
4900 		if (error == 0)
4901 			res1 = res32;
4902 	} else {
4903 		error = fueword((void *)ptr, &res1);
4904 	}
4905 	if (error == 0)
4906 		*res = res1;
4907 	else
4908 		error = EFAULT;
4909 	return (error);
4910 }
4911 
4912 static void
4913 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
4914     bool compat32)
4915 {
4916 	struct umutex32 m32;
4917 
4918 	if (compat32) {
4919 		memcpy(&m32, m, sizeof(m32));
4920 		*rb_list = m32.m_rb_lnk;
4921 	} else {
4922 		*rb_list = m->m_rb_lnk;
4923 	}
4924 }
4925 
4926 static int
4927 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
4928     bool compat32)
4929 {
4930 	struct umutex m;
4931 	int error;
4932 
4933 	KASSERT(td->td_proc == curproc, ("need current vmspace"));
4934 	error = copyin((void *)rbp, &m, sizeof(m));
4935 	if (error != 0)
4936 		return (error);
4937 	if (rb_list != NULL)
4938 		umtx_read_rb_list(td, &m, rb_list, compat32);
4939 	if ((m.m_flags & UMUTEX_ROBUST) == 0)
4940 		return (EINVAL);
4941 	if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
4942 		/* inact is cleared after unlock, allow the inconsistency */
4943 		return (inact ? 0 : EINVAL);
4944 	return (do_unlock_umutex(td, (struct umutex *)rbp, true));
4945 }
4946 
4947 static void
4948 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
4949     const char *name, bool compat32)
4950 {
4951 	int error, i;
4952 	uintptr_t rbp;
4953 	bool inact;
4954 
4955 	if (rb_list == 0)
4956 		return;
4957 	error = umtx_read_uptr(td, rb_list, &rbp, compat32);
4958 	for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
4959 		if (rbp == *rb_inact) {
4960 			inact = true;
4961 			*rb_inact = 0;
4962 		} else
4963 			inact = false;
4964 		error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
4965 	}
4966 	if (i == umtx_max_rb && umtx_verbose_rb) {
4967 		uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
4968 		    td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
4969 	}
4970 	if (error != 0 && umtx_verbose_rb) {
4971 		uprintf("comm %s pid %d: handling %srb error %d\n",
4972 		    td->td_proc->p_comm, td->td_proc->p_pid, name, error);
4973 	}
4974 }
4975 
4976 /*
4977  * Clean up umtx data.
4978  */
4979 static void
4980 umtx_thread_cleanup(struct thread *td)
4981 {
4982 	struct umtx_q *uq;
4983 	struct umtx_pi *pi;
4984 	uintptr_t rb_inact;
4985 	bool compat32;
4986 
4987 	/*
4988 	 * Disown pi mutexes.
4989 	 */
4990 	uq = td->td_umtxq;
4991 	if (uq != NULL) {
4992 		if (uq->uq_inherited_pri != PRI_MAX ||
4993 		    !TAILQ_EMPTY(&uq->uq_pi_contested)) {
4994 			mtx_lock(&umtx_lock);
4995 			uq->uq_inherited_pri = PRI_MAX;
4996 			while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
4997 				pi->pi_owner = NULL;
4998 				TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
4999 			}
5000 			mtx_unlock(&umtx_lock);
5001 		}
5002 		sched_lend_user_prio_cond(td, PRI_MAX);
5003 	}
5004 
5005 	compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5006 	td->td_pflags2 &= ~TDP2_COMPAT32RB;
5007 
5008 	if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5009 		return;
5010 
5011 	/*
5012 	 * Handle terminated robust mutexes.  Must be done after
5013 	 * robust pi disown, otherwise unlock could see unowned
5014 	 * entries.
5015 	 */
5016 	rb_inact = td->td_rb_inact;
5017 	if (rb_inact != 0)
5018 		(void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5019 	umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5020 	umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5021 	if (rb_inact != 0)
5022 		(void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5023 }
5024