xref: /freebsd/sys/kern/sched_4bsd.c (revision 7bd6fde3)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_hwpmc_hooks.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/ktr.h>
44 #include <sys/lock.h>
45 #include <sys/kthread.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/sysctl.h>
52 #include <sys/sx.h>
53 #include <sys/turnstile.h>
54 #include <sys/umtx.h>
55 #include <machine/pcb.h>
56 #include <machine/smp.h>
57 
58 #ifdef HWPMC_HOOKS
59 #include <sys/pmckern.h>
60 #endif
61 
62 /*
63  * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
64  * the range 100-256 Hz (approximately).
65  */
66 #define	ESTCPULIM(e) \
67     min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
68     RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
69 #ifdef SMP
70 #define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
71 #else
72 #define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
73 #endif
74 #define	NICE_WEIGHT		1	/* Priorities per nice level. */
75 
76 /*
77  * The schedulable entity that runs a context.
78  * This is  an extension to the thread structure and is tailored to
79  * the requirements of this scheduler
80  */
81 struct td_sched {
82 	TAILQ_ENTRY(td_sched) ts_procq;	/* (j/z) Run queue. */
83 	struct thread	*ts_thread;	/* (*) Active associated thread. */
84 	fixpt_t		ts_pctcpu;	/* (j) %cpu during p_swtime. */
85 	u_char		ts_rqindex;	/* (j) Run queue index. */
86 	int		ts_cpticks;	/* (j) Ticks of cpu time. */
87 	struct runq	*ts_runq;	/* runq the thread is currently on */
88 };
89 
90 /* flags kept in td_flags */
91 #define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
92 #define TDF_EXIT	TDF_SCHED1	/* thread is being killed. */
93 #define TDF_BOUND	TDF_SCHED2
94 
95 #define ts_flags	ts_thread->td_flags
96 #define TSF_DIDRUN	TDF_DIDRUN /* thread actually ran. */
97 #define TSF_EXIT	TDF_EXIT /* thread is being killed. */
98 #define TSF_BOUND	TDF_BOUND /* stuck to one CPU */
99 
100 #define SKE_RUNQ_PCPU(ts)						\
101     ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
102 
103 static struct td_sched td_sched0;
104 
105 static int	sched_tdcnt;	/* Total runnable threads in the system. */
106 static int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
107 #define	SCHED_QUANTUM	(hz / 10)	/* Default sched quantum */
108 
109 static struct callout roundrobin_callout;
110 
111 static void	setup_runqs(void);
112 static void	roundrobin(void *arg);
113 static void	schedcpu(void);
114 static void	schedcpu_thread(void);
115 static void	sched_priority(struct thread *td, u_char prio);
116 static void	sched_setup(void *dummy);
117 static void	maybe_resched(struct thread *td);
118 static void	updatepri(struct thread *td);
119 static void	resetpriority(struct thread *td);
120 static void	resetpriority_thread(struct thread *td);
121 #ifdef SMP
122 static int	forward_wakeup(int  cpunum);
123 #endif
124 
125 static struct kproc_desc sched_kp = {
126         "schedcpu",
127         schedcpu_thread,
128         NULL
129 };
130 SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start, &sched_kp)
131 SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
132 
133 /*
134  * Global run queue.
135  */
136 static struct runq runq;
137 
138 #ifdef SMP
139 /*
140  * Per-CPU run queues
141  */
142 static struct runq runq_pcpu[MAXCPU];
143 #endif
144 
145 static void
146 setup_runqs(void)
147 {
148 #ifdef SMP
149 	int i;
150 
151 	for (i = 0; i < MAXCPU; ++i)
152 		runq_init(&runq_pcpu[i]);
153 #endif
154 
155 	runq_init(&runq);
156 }
157 
158 static int
159 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
160 {
161 	int error, new_val;
162 
163 	new_val = sched_quantum * tick;
164 	error = sysctl_handle_int(oidp, &new_val, 0, req);
165         if (error != 0 || req->newptr == NULL)
166 		return (error);
167 	if (new_val < tick)
168 		return (EINVAL);
169 	sched_quantum = new_val / tick;
170 	hogticks = 2 * sched_quantum;
171 	return (0);
172 }
173 
174 SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
175 
176 SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
177     "Scheduler name");
178 
179 SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
180     0, sizeof sched_quantum, sysctl_kern_quantum, "I",
181     "Roundrobin scheduling quantum in microseconds");
182 
183 #ifdef SMP
184 /* Enable forwarding of wakeups to all other cpus */
185 SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL, "Kernel SMP");
186 
187 static int forward_wakeup_enabled = 1;
188 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
189 	   &forward_wakeup_enabled, 0,
190 	   "Forwarding of wakeup to idle CPUs");
191 
192 static int forward_wakeups_requested = 0;
193 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
194 	   &forward_wakeups_requested, 0,
195 	   "Requests for Forwarding of wakeup to idle CPUs");
196 
197 static int forward_wakeups_delivered = 0;
198 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
199 	   &forward_wakeups_delivered, 0,
200 	   "Completed Forwarding of wakeup to idle CPUs");
201 
202 static int forward_wakeup_use_mask = 1;
203 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
204 	   &forward_wakeup_use_mask, 0,
205 	   "Use the mask of idle cpus");
206 
207 static int forward_wakeup_use_loop = 0;
208 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
209 	   &forward_wakeup_use_loop, 0,
210 	   "Use a loop to find idle cpus");
211 
212 static int forward_wakeup_use_single = 0;
213 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, onecpu, CTLFLAG_RW,
214 	   &forward_wakeup_use_single, 0,
215 	   "Only signal one idle cpu");
216 
217 static int forward_wakeup_use_htt = 0;
218 SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, htt2, CTLFLAG_RW,
219 	   &forward_wakeup_use_htt, 0,
220 	   "account for htt");
221 
222 #endif
223 #if 0
224 static int sched_followon = 0;
225 SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
226 	   &sched_followon, 0,
227 	   "allow threads to share a quantum");
228 #endif
229 
230 static __inline void
231 sched_load_add(void)
232 {
233 	sched_tdcnt++;
234 	CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
235 }
236 
237 static __inline void
238 sched_load_rem(void)
239 {
240 	sched_tdcnt--;
241 	CTR1(KTR_SCHED, "global load: %d", sched_tdcnt);
242 }
243 /*
244  * Arrange to reschedule if necessary, taking the priorities and
245  * schedulers into account.
246  */
247 static void
248 maybe_resched(struct thread *td)
249 {
250 
251 	mtx_assert(&sched_lock, MA_OWNED);
252 	if (td->td_priority < curthread->td_priority)
253 		curthread->td_flags |= TDF_NEEDRESCHED;
254 }
255 
256 /*
257  * Force switch among equal priority processes every 100ms.
258  * We don't actually need to force a context switch of the current process.
259  * The act of firing the event triggers a context switch to softclock() and
260  * then switching back out again which is equivalent to a preemption, thus
261  * no further work is needed on the local CPU.
262  */
263 /* ARGSUSED */
264 static void
265 roundrobin(void *arg)
266 {
267 
268 #ifdef SMP
269 	mtx_lock_spin(&sched_lock);
270 	forward_roundrobin();
271 	mtx_unlock_spin(&sched_lock);
272 #endif
273 
274 	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
275 }
276 
277 /*
278  * Constants for digital decay and forget:
279  *	90% of (td_estcpu) usage in 5 * loadav time
280  *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
281  *          Note that, as ps(1) mentions, this can let percentages
282  *          total over 100% (I've seen 137.9% for 3 processes).
283  *
284  * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
285  *
286  * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
287  * That is, the system wants to compute a value of decay such
288  * that the following for loop:
289  * 	for (i = 0; i < (5 * loadavg); i++)
290  * 		td_estcpu *= decay;
291  * will compute
292  * 	td_estcpu *= 0.1;
293  * for all values of loadavg:
294  *
295  * Mathematically this loop can be expressed by saying:
296  * 	decay ** (5 * loadavg) ~= .1
297  *
298  * The system computes decay as:
299  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
300  *
301  * We wish to prove that the system's computation of decay
302  * will always fulfill the equation:
303  * 	decay ** (5 * loadavg) ~= .1
304  *
305  * If we compute b as:
306  * 	b = 2 * loadavg
307  * then
308  * 	decay = b / (b + 1)
309  *
310  * We now need to prove two things:
311  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
312  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
313  *
314  * Facts:
315  *         For x close to zero, exp(x) =~ 1 + x, since
316  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
317  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
318  *         For x close to zero, ln(1+x) =~ x, since
319  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
320  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
321  *         ln(.1) =~ -2.30
322  *
323  * Proof of (1):
324  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
325  *	solving for factor,
326  *      ln(factor) =~ (-2.30/5*loadav), or
327  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
328  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
329  *
330  * Proof of (2):
331  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
332  *	solving for power,
333  *      power*ln(b/(b+1)) =~ -2.30, or
334  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
335  *
336  * Actual power values for the implemented algorithm are as follows:
337  *      loadav: 1       2       3       4
338  *      power:  5.68    10.32   14.94   19.55
339  */
340 
341 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
342 #define	loadfactor(loadav)	(2 * (loadav))
343 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
344 
345 /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
346 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
347 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
348 
349 /*
350  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
351  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
352  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
353  *
354  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
355  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
356  *
357  * If you don't want to bother with the faster/more-accurate formula, you
358  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
359  * (more general) method of calculating the %age of CPU used by a process.
360  */
361 #define	CCPU_SHIFT	11
362 
363 /*
364  * Recompute process priorities, every hz ticks.
365  * MP-safe, called without the Giant mutex.
366  */
367 /* ARGSUSED */
368 static void
369 schedcpu(void)
370 {
371 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
372 	struct thread *td;
373 	struct proc *p;
374 	struct td_sched *ts;
375 	int awake, realstathz;
376 
377 	realstathz = stathz ? stathz : hz;
378 	sx_slock(&allproc_lock);
379 	FOREACH_PROC_IN_SYSTEM(p) {
380 		/*
381 		 * Prevent state changes and protect run queue.
382 		 */
383 		mtx_lock_spin(&sched_lock);
384 		/*
385 		 * Increment time in/out of memory.  We ignore overflow; with
386 		 * 16-bit int's (remember them?) overflow takes 45 days.
387 		 */
388 		p->p_swtime++;
389 		FOREACH_THREAD_IN_PROC(p, td) {
390 			awake = 0;
391 			ts = td->td_sched;
392 			/*
393 			 * Increment sleep time (if sleeping).  We
394 			 * ignore overflow, as above.
395 			 */
396 			/*
397 			 * The td_sched slptimes are not touched in wakeup
398 			 * because the thread may not HAVE everything in
399 			 * memory? XXX I think this is out of date.
400 			 */
401 			if (TD_ON_RUNQ(td)) {
402 				awake = 1;
403 				ts->ts_flags &= ~TSF_DIDRUN;
404 			} else if (TD_IS_RUNNING(td)) {
405 				awake = 1;
406 				/* Do not clear TSF_DIDRUN */
407 			} else if (ts->ts_flags & TSF_DIDRUN) {
408 				awake = 1;
409 				ts->ts_flags &= ~TSF_DIDRUN;
410 			}
411 
412 			/*
413 			 * ts_pctcpu is only for ps and ttyinfo().
414 			 * Do it per td_sched, and add them up at the end?
415 			 * XXXKSE
416 			 */
417 			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
418 			/*
419 			 * If the td_sched has been idle the entire second,
420 			 * stop recalculating its priority until
421 			 * it wakes up.
422 			 */
423 			if (ts->ts_cpticks != 0) {
424 #if	(FSHIFT >= CCPU_SHIFT)
425 				ts->ts_pctcpu += (realstathz == 100)
426 				    ? ((fixpt_t) ts->ts_cpticks) <<
427 				    (FSHIFT - CCPU_SHIFT) :
428 				    100 * (((fixpt_t) ts->ts_cpticks)
429 				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
430 #else
431 				ts->ts_pctcpu += ((FSCALE - ccpu) *
432 				    (ts->ts_cpticks *
433 				    FSCALE / realstathz)) >> FSHIFT;
434 #endif
435 				ts->ts_cpticks = 0;
436 			}
437 			/*
438 			 * If there are ANY running threads in this process,
439 			 * then don't count it as sleeping.
440 XXX  this is broken
441 
442 			 */
443 			if (awake) {
444 				if (td->td_slptime > 1) {
445 					/*
446 					 * In an ideal world, this should not
447 					 * happen, because whoever woke us
448 					 * up from the long sleep should have
449 					 * unwound the slptime and reset our
450 					 * priority before we run at the stale
451 					 * priority.  Should KASSERT at some
452 					 * point when all the cases are fixed.
453 					 */
454 					updatepri(td);
455 				}
456 				td->td_slptime = 0;
457 			} else
458 				td->td_slptime++;
459 			if (td->td_slptime > 1)
460 				continue;
461 			td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
462 		      	resetpriority(td);
463 			resetpriority_thread(td);
464 		} /* end of thread loop */
465 		mtx_unlock_spin(&sched_lock);
466 	} /* end of process loop */
467 	sx_sunlock(&allproc_lock);
468 }
469 
470 /*
471  * Main loop for a kthread that executes schedcpu once a second.
472  */
473 static void
474 schedcpu_thread(void)
475 {
476 
477 	for (;;) {
478 		schedcpu();
479 		pause("-", hz);
480 	}
481 }
482 
483 /*
484  * Recalculate the priority of a process after it has slept for a while.
485  * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
486  * least six times the loadfactor will decay td_estcpu to zero.
487  */
488 static void
489 updatepri(struct thread *td)
490 {
491 	register fixpt_t loadfac;
492 	register unsigned int newcpu;
493 
494 	loadfac = loadfactor(averunnable.ldavg[0]);
495 	if (td->td_slptime > 5 * loadfac)
496 		td->td_estcpu = 0;
497 	else {
498 		newcpu = td->td_estcpu;
499 		td->td_slptime--;	/* was incremented in schedcpu() */
500 		while (newcpu && --td->td_slptime)
501 			newcpu = decay_cpu(loadfac, newcpu);
502 		td->td_estcpu = newcpu;
503 	}
504 }
505 
506 /*
507  * Compute the priority of a process when running in user mode.
508  * Arrange to reschedule if the resulting priority is better
509  * than that of the current process.
510  */
511 static void
512 resetpriority(struct thread *td)
513 {
514 	register unsigned int newpriority;
515 
516 	if (td->td_pri_class == PRI_TIMESHARE) {
517 		newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
518 		    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
519 		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
520 		    PRI_MAX_TIMESHARE);
521 		sched_user_prio(td, newpriority);
522 	}
523 }
524 
525 /*
526  * Update the thread's priority when the associated process's user
527  * priority changes.
528  */
529 static void
530 resetpriority_thread(struct thread *td)
531 {
532 
533 	/* Only change threads with a time sharing user priority. */
534 	if (td->td_priority < PRI_MIN_TIMESHARE ||
535 	    td->td_priority > PRI_MAX_TIMESHARE)
536 		return;
537 
538 	/* XXX the whole needresched thing is broken, but not silly. */
539 	maybe_resched(td);
540 
541 	sched_prio(td, td->td_user_pri);
542 }
543 
544 /* ARGSUSED */
545 static void
546 sched_setup(void *dummy)
547 {
548 	setup_runqs();
549 
550 	if (sched_quantum == 0)
551 		sched_quantum = SCHED_QUANTUM;
552 	hogticks = 2 * sched_quantum;
553 
554 	callout_init(&roundrobin_callout, CALLOUT_MPSAFE);
555 
556 	/* Kick off timeout driven events by calling first time. */
557 	roundrobin(NULL);
558 
559 	/* Account for thread0. */
560 	sched_load_add();
561 }
562 
563 /* External interfaces start here */
564 /*
565  * Very early in the boot some setup of scheduler-specific
566  * parts of proc0 and of some scheduler resources needs to be done.
567  * Called from:
568  *  proc0_init()
569  */
570 void
571 schedinit(void)
572 {
573 	/*
574 	 * Set up the scheduler specific parts of proc0.
575 	 */
576 	proc0.p_sched = NULL; /* XXX */
577 	thread0.td_sched = &td_sched0;
578 	td_sched0.ts_thread = &thread0;
579 }
580 
581 int
582 sched_runnable(void)
583 {
584 #ifdef SMP
585 	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
586 #else
587 	return runq_check(&runq);
588 #endif
589 }
590 
591 int
592 sched_rr_interval(void)
593 {
594 	if (sched_quantum == 0)
595 		sched_quantum = SCHED_QUANTUM;
596 	return (sched_quantum);
597 }
598 
599 /*
600  * We adjust the priority of the current process.  The priority of
601  * a process gets worse as it accumulates CPU time.  The cpu usage
602  * estimator (td_estcpu) is increased here.  resetpriority() will
603  * compute a different priority each time td_estcpu increases by
604  * INVERSE_ESTCPU_WEIGHT
605  * (until MAXPRI is reached).  The cpu usage estimator ramps up
606  * quite quickly when the process is running (linearly), and decays
607  * away exponentially, at a rate which is proportionally slower when
608  * the system is busy.  The basic principle is that the system will
609  * 90% forget that the process used a lot of CPU time in 5 * loadav
610  * seconds.  This causes the system to favor processes which haven't
611  * run much recently, and to round-robin among other processes.
612  */
613 void
614 sched_clock(struct thread *td)
615 {
616 	struct td_sched *ts;
617 
618 	mtx_assert(&sched_lock, MA_OWNED);
619 	ts = td->td_sched;
620 
621 	ts->ts_cpticks++;
622 	td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
623 	if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
624 		resetpriority(td);
625 		resetpriority_thread(td);
626 	}
627 }
628 
629 /*
630  * charge childs scheduling cpu usage to parent.
631  */
632 void
633 sched_exit(struct proc *p, struct thread *td)
634 {
635 
636 	CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d",
637 	    td, td->td_proc->p_comm, td->td_priority);
638 
639 	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
640 }
641 
642 void
643 sched_exit_thread(struct thread *td, struct thread *child)
644 {
645 	struct proc *childproc = child->td_proc;
646 
647 	CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d",
648 	    child, childproc->p_comm, child->td_priority);
649 	td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
650 	childproc->p_estcpu = ESTCPULIM(childproc->p_estcpu +
651 		child->td_estcpu);
652 	if ((child->td_proc->p_flag & P_NOLOAD) == 0)
653 		sched_load_rem();
654 }
655 
656 void
657 sched_fork(struct thread *td, struct thread *childtd)
658 {
659 	sched_fork_thread(td, childtd);
660 }
661 
662 void
663 sched_fork_thread(struct thread *td, struct thread *childtd)
664 {
665 	childtd->td_estcpu = td->td_estcpu;
666 	sched_newthread(childtd);
667 }
668 
669 void
670 sched_nice(struct proc *p, int nice)
671 {
672 	struct thread *td;
673 
674 	PROC_LOCK_ASSERT(p, MA_OWNED);
675 	mtx_assert(&sched_lock, MA_OWNED);
676 	p->p_nice = nice;
677 	FOREACH_THREAD_IN_PROC(p, td) {
678 		resetpriority(td);
679 		resetpriority_thread(td);
680 	}
681 }
682 
683 void
684 sched_class(struct thread *td, int class)
685 {
686 	mtx_assert(&sched_lock, MA_OWNED);
687 	td->td_pri_class = class;
688 }
689 
690 /*
691  * Adjust the priority of a thread.
692  */
693 static void
694 sched_priority(struct thread *td, u_char prio)
695 {
696 	CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)",
697 	    td, td->td_proc->p_comm, td->td_priority, prio, curthread,
698 	    curthread->td_proc->p_comm);
699 
700 	mtx_assert(&sched_lock, MA_OWNED);
701 	if (td->td_priority == prio)
702 		return;
703 	td->td_priority = prio;
704 	if (TD_ON_RUNQ(td) &&
705 	    td->td_sched->ts_rqindex != (prio / RQ_PPQ)) {
706 		sched_rem(td);
707 		sched_add(td, SRQ_BORING);
708 	}
709 }
710 
711 /*
712  * Update a thread's priority when it is lent another thread's
713  * priority.
714  */
715 void
716 sched_lend_prio(struct thread *td, u_char prio)
717 {
718 
719 	td->td_flags |= TDF_BORROWING;
720 	sched_priority(td, prio);
721 }
722 
723 /*
724  * Restore a thread's priority when priority propagation is
725  * over.  The prio argument is the minimum priority the thread
726  * needs to have to satisfy other possible priority lending
727  * requests.  If the thread's regulary priority is less
728  * important than prio the thread will keep a priority boost
729  * of prio.
730  */
731 void
732 sched_unlend_prio(struct thread *td, u_char prio)
733 {
734 	u_char base_pri;
735 
736 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
737 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
738 		base_pri = td->td_user_pri;
739 	else
740 		base_pri = td->td_base_pri;
741 	if (prio >= base_pri) {
742 		td->td_flags &= ~TDF_BORROWING;
743 		sched_prio(td, base_pri);
744 	} else
745 		sched_lend_prio(td, prio);
746 }
747 
748 void
749 sched_prio(struct thread *td, u_char prio)
750 {
751 	u_char oldprio;
752 
753 	/* First, update the base priority. */
754 	td->td_base_pri = prio;
755 
756 	/*
757 	 * If the thread is borrowing another thread's priority, don't ever
758 	 * lower the priority.
759 	 */
760 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
761 		return;
762 
763 	/* Change the real priority. */
764 	oldprio = td->td_priority;
765 	sched_priority(td, prio);
766 
767 	/*
768 	 * If the thread is on a turnstile, then let the turnstile update
769 	 * its state.
770 	 */
771 	if (TD_ON_LOCK(td) && oldprio != prio)
772 		turnstile_adjust(td, oldprio);
773 }
774 
775 void
776 sched_user_prio(struct thread *td, u_char prio)
777 {
778 	u_char oldprio;
779 
780 	td->td_base_user_pri = prio;
781 	if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio)
782 		return;
783 	oldprio = td->td_user_pri;
784 	td->td_user_pri = prio;
785 
786 	if (TD_ON_UPILOCK(td) && oldprio != prio)
787 		umtx_pi_adjust(td, oldprio);
788 }
789 
790 void
791 sched_lend_user_prio(struct thread *td, u_char prio)
792 {
793 	u_char oldprio;
794 
795 	td->td_flags |= TDF_UBORROWING;
796 
797 	oldprio = td->td_user_pri;
798 	td->td_user_pri = prio;
799 
800 	if (TD_ON_UPILOCK(td) && oldprio != prio)
801 		umtx_pi_adjust(td, oldprio);
802 }
803 
804 void
805 sched_unlend_user_prio(struct thread *td, u_char prio)
806 {
807 	u_char base_pri;
808 
809 	base_pri = td->td_base_user_pri;
810 	if (prio >= base_pri) {
811 		td->td_flags &= ~TDF_UBORROWING;
812 		sched_user_prio(td, base_pri);
813 	} else
814 		sched_lend_user_prio(td, prio);
815 }
816 
817 void
818 sched_sleep(struct thread *td)
819 {
820 
821 	mtx_assert(&sched_lock, MA_OWNED);
822 	td->td_slptime = 0;
823 }
824 
825 void
826 sched_switch(struct thread *td, struct thread *newtd, int flags)
827 {
828 	struct td_sched *ts;
829 	struct proc *p;
830 
831 	ts = td->td_sched;
832 	p = td->td_proc;
833 
834 	mtx_assert(&sched_lock, MA_OWNED);
835 
836 	if ((p->p_flag & P_NOLOAD) == 0)
837 		sched_load_rem();
838 #if 0
839 	/*
840 	 * We are volunteering to switch out so we get to nominate
841 	 * a successor for the rest of our quantum
842 	 * First try another thread in our process
843 	 *
844 	 * this is too expensive to do without per process run queues
845 	 * so skip it for now.
846 	 * XXX keep this comment as a marker.
847 	 */
848 	if (sched_followon &&
849 	    (p->p_flag & P_HADTHREADS) &&
850 	    (flags & SW_VOL) &&
851 	    newtd == NULL)
852 		newtd = mumble();
853 #endif
854 
855 	if (newtd)
856 		newtd->td_flags |= (td->td_flags & TDF_NEEDRESCHED);
857 
858 	td->td_lastcpu = td->td_oncpu;
859 	td->td_flags &= ~TDF_NEEDRESCHED;
860 	td->td_owepreempt = 0;
861 	td->td_oncpu = NOCPU;
862 	/*
863 	 * At the last moment, if this thread is still marked RUNNING,
864 	 * then put it back on the run queue as it has not been suspended
865 	 * or stopped or any thing else similar.  We never put the idle
866 	 * threads on the run queue, however.
867 	 */
868 	if (td->td_flags & TDF_IDLETD) {
869 		TD_SET_CAN_RUN(td);
870 #ifdef SMP
871 		idle_cpus_mask &= ~PCPU_GET(cpumask);
872 #endif
873 	} else {
874 		if (TD_IS_RUNNING(td)) {
875 			/* Put us back on the run queue. */
876 			sched_add(td, (flags & SW_PREEMPT) ?
877 			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
878 			    SRQ_OURSELF|SRQ_YIELDING);
879 		}
880 	}
881 	if (newtd) {
882 		/*
883 		 * The thread we are about to run needs to be counted
884 		 * as if it had been added to the run queue and selected.
885 		 * It came from:
886 		 * * A preemption
887 		 * * An upcall
888 		 * * A followon
889 		 */
890 		KASSERT((newtd->td_inhibitors == 0),
891 			("trying to run inhibited thread"));
892 		newtd->td_sched->ts_flags |= TSF_DIDRUN;
893         	TD_SET_RUNNING(newtd);
894 		if ((newtd->td_proc->p_flag & P_NOLOAD) == 0)
895 			sched_load_add();
896 	} else {
897 		newtd = choosethread();
898 	}
899 
900 	if (td != newtd) {
901 #ifdef	HWPMC_HOOKS
902 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
903 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
904 #endif
905 
906                 /* I feel sleepy */
907 		cpu_switch(td, newtd);
908 		/*
909 		 * Where am I?  What year is it?
910 		 * We are in the same thread that went to sleep above,
911 		 * but any amount of time may have passed. All out context
912 		 * will still be available as will local variables.
913 		 * PCPU values however may have changed as we may have
914 		 * changed CPU so don't trust cached values of them.
915 		 * New threads will go to fork_exit() instead of here
916 		 * so if you change things here you may need to change
917 		 * things there too.
918 		 * If the thread above was exiting it will never wake
919 		 * up again here, so either it has saved everything it
920 		 * needed to, or the thread_wait() or wait() will
921 		 * need to reap it.
922 		 */
923 #ifdef	HWPMC_HOOKS
924 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
925 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
926 #endif
927 	}
928 
929 #ifdef SMP
930 	if (td->td_flags & TDF_IDLETD)
931 		idle_cpus_mask |= PCPU_GET(cpumask);
932 #endif
933 	sched_lock.mtx_lock = (uintptr_t)td;
934 	td->td_oncpu = PCPU_GET(cpuid);
935 }
936 
937 void
938 sched_wakeup(struct thread *td)
939 {
940 	mtx_assert(&sched_lock, MA_OWNED);
941 	if (td->td_slptime > 1) {
942 		updatepri(td);
943 		resetpriority(td);
944 	}
945 	td->td_slptime = 0;
946 	sched_add(td, SRQ_BORING);
947 }
948 
949 #ifdef SMP
950 /* enable HTT_2 if you have a 2-way HTT cpu.*/
951 static int
952 forward_wakeup(int  cpunum)
953 {
954 	cpumask_t map, me, dontuse;
955 	cpumask_t map2;
956 	struct pcpu *pc;
957 	cpumask_t id, map3;
958 
959 	mtx_assert(&sched_lock, MA_OWNED);
960 
961 	CTR0(KTR_RUNQ, "forward_wakeup()");
962 
963 	if ((!forward_wakeup_enabled) ||
964 	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
965 		return (0);
966 	if (!smp_started || cold || panicstr)
967 		return (0);
968 
969 	forward_wakeups_requested++;
970 
971 /*
972  * check the idle mask we received against what we calculated before
973  * in the old version.
974  */
975 	me = PCPU_GET(cpumask);
976 	/*
977 	 * don't bother if we should be doing it ourself..
978 	 */
979 	if ((me & idle_cpus_mask) && (cpunum == NOCPU || me == (1 << cpunum)))
980 		return (0);
981 
982 	dontuse = me | stopped_cpus | hlt_cpus_mask;
983 	map3 = 0;
984 	if (forward_wakeup_use_loop) {
985 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
986 			id = pc->pc_cpumask;
987 			if ( (id & dontuse) == 0 &&
988 			    pc->pc_curthread == pc->pc_idlethread) {
989 				map3 |= id;
990 			}
991 		}
992 	}
993 
994 	if (forward_wakeup_use_mask) {
995 		map = 0;
996 		map = idle_cpus_mask & ~dontuse;
997 
998 		/* If they are both on, compare and use loop if different */
999 		if (forward_wakeup_use_loop) {
1000 			if (map != map3) {
1001 				printf("map (%02X) != map3 (%02X)\n",
1002 						map, map3);
1003 				map = map3;
1004 			}
1005 		}
1006 	} else {
1007 		map = map3;
1008 	}
1009 	/* If we only allow a specific CPU, then mask off all the others */
1010 	if (cpunum != NOCPU) {
1011 		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1012 		map &= (1 << cpunum);
1013 	} else {
1014 		/* Try choose an idle die. */
1015 		if (forward_wakeup_use_htt) {
1016 			map2 =  (map & (map >> 1)) & 0x5555;
1017 			if (map2) {
1018 				map = map2;
1019 			}
1020 		}
1021 
1022 		/* set only one bit */
1023 		if (forward_wakeup_use_single) {
1024 			map = map & ((~map) + 1);
1025 		}
1026 	}
1027 	if (map) {
1028 		forward_wakeups_delivered++;
1029 		ipi_selected(map, IPI_AST);
1030 		return (1);
1031 	}
1032 	if (cpunum == NOCPU)
1033 		printf("forward_wakeup: Idle processor not found\n");
1034 	return (0);
1035 }
1036 #endif
1037 
1038 #ifdef SMP
1039 static void kick_other_cpu(int pri,int cpuid);
1040 
1041 static void
1042 kick_other_cpu(int pri,int cpuid)
1043 {
1044 	struct pcpu * pcpu = pcpu_find(cpuid);
1045 	int cpri = pcpu->pc_curthread->td_priority;
1046 
1047 	if (idle_cpus_mask & pcpu->pc_cpumask) {
1048 		forward_wakeups_delivered++;
1049 		ipi_selected(pcpu->pc_cpumask, IPI_AST);
1050 		return;
1051 	}
1052 
1053 	if (pri >= cpri)
1054 		return;
1055 
1056 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1057 #if !defined(FULL_PREEMPTION)
1058 	if (pri <= PRI_MAX_ITHD)
1059 #endif /* ! FULL_PREEMPTION */
1060 	{
1061 		ipi_selected(pcpu->pc_cpumask, IPI_PREEMPT);
1062 		return;
1063 	}
1064 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1065 
1066 	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1067 	ipi_selected( pcpu->pc_cpumask , IPI_AST);
1068 	return;
1069 }
1070 #endif /* SMP */
1071 
1072 void
1073 sched_add(struct thread *td, int flags)
1074 #ifdef SMP
1075 {
1076 	struct td_sched *ts;
1077 	int forwarded = 0;
1078 	int cpu;
1079 	int single_cpu = 0;
1080 
1081 	ts = td->td_sched;
1082 	mtx_assert(&sched_lock, MA_OWNED);
1083 	KASSERT((td->td_inhibitors == 0),
1084 	    ("sched_add: trying to run inhibited thread"));
1085 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1086 	    ("sched_add: bad thread state"));
1087 	KASSERT(td->td_proc->p_sflag & PS_INMEM,
1088 	    ("sched_add: process swapped out"));
1089 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1090 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1091 	    curthread->td_proc->p_comm);
1092 	TD_SET_RUNQ(td);
1093 
1094 	if (td->td_pinned != 0) {
1095 		cpu = td->td_lastcpu;
1096 		ts->ts_runq = &runq_pcpu[cpu];
1097 		single_cpu = 1;
1098 		CTR3(KTR_RUNQ,
1099 		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu);
1100 	} else if ((ts)->ts_flags & TSF_BOUND) {
1101 		/* Find CPU from bound runq */
1102 		KASSERT(SKE_RUNQ_PCPU(ts),("sched_add: bound td_sched not on cpu runq"));
1103 		cpu = ts->ts_runq - &runq_pcpu[0];
1104 		single_cpu = 1;
1105 		CTR3(KTR_RUNQ,
1106 		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu);
1107 	} else {
1108 		CTR2(KTR_RUNQ,
1109 		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts, td);
1110 		cpu = NOCPU;
1111 		ts->ts_runq = &runq;
1112 	}
1113 
1114 	if (single_cpu && (cpu != PCPU_GET(cpuid))) {
1115 	        kick_other_cpu(td->td_priority,cpu);
1116 	} else {
1117 
1118 		if (!single_cpu) {
1119 			cpumask_t me = PCPU_GET(cpumask);
1120 			int idle = idle_cpus_mask & me;
1121 
1122 			if (!idle && ((flags & SRQ_INTR) == 0) &&
1123 			    (idle_cpus_mask & ~(hlt_cpus_mask | me)))
1124 				forwarded = forward_wakeup(cpu);
1125 		}
1126 
1127 		if (!forwarded) {
1128 			if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
1129 				return;
1130 			else
1131 				maybe_resched(td);
1132 		}
1133 	}
1134 
1135 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1136 		sched_load_add();
1137 	runq_add(ts->ts_runq, ts, flags);
1138 }
1139 #else /* SMP */
1140 {
1141 	struct td_sched *ts;
1142 	ts = td->td_sched;
1143 	mtx_assert(&sched_lock, MA_OWNED);
1144 	KASSERT((td->td_inhibitors == 0),
1145 	    ("sched_add: trying to run inhibited thread"));
1146 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1147 	    ("sched_add: bad thread state"));
1148 	KASSERT(td->td_proc->p_sflag & PS_INMEM,
1149 	    ("sched_add: process swapped out"));
1150 	CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)",
1151 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1152 	    curthread->td_proc->p_comm);
1153 	TD_SET_RUNQ(td);
1154 	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1155 	ts->ts_runq = &runq;
1156 
1157 	/*
1158 	 * If we are yielding (on the way out anyhow)
1159 	 * or the thread being saved is US,
1160 	 * then don't try be smart about preemption
1161 	 * or kicking off another CPU
1162 	 * as it won't help and may hinder.
1163 	 * In the YIEDLING case, we are about to run whoever is
1164 	 * being put in the queue anyhow, and in the
1165 	 * OURSELF case, we are puting ourself on the run queue
1166 	 * which also only happens when we are about to yield.
1167 	 */
1168 	if((flags & SRQ_YIELDING) == 0) {
1169 		if (maybe_preempt(td))
1170 			return;
1171 	}
1172 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1173 		sched_load_add();
1174 	runq_add(ts->ts_runq, ts, flags);
1175 	maybe_resched(td);
1176 }
1177 #endif /* SMP */
1178 
1179 void
1180 sched_rem(struct thread *td)
1181 {
1182 	struct td_sched *ts;
1183 
1184 	ts = td->td_sched;
1185 	KASSERT(td->td_proc->p_sflag & PS_INMEM,
1186 	    ("sched_rem: process swapped out"));
1187 	KASSERT(TD_ON_RUNQ(td),
1188 	    ("sched_rem: thread not on run queue"));
1189 	mtx_assert(&sched_lock, MA_OWNED);
1190 	CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)",
1191 	    td, td->td_proc->p_comm, td->td_priority, curthread,
1192 	    curthread->td_proc->p_comm);
1193 
1194 	if ((td->td_proc->p_flag & P_NOLOAD) == 0)
1195 		sched_load_rem();
1196 	runq_remove(ts->ts_runq, ts);
1197 	TD_SET_CAN_RUN(td);
1198 }
1199 
1200 /*
1201  * Select threads to run.
1202  * Notice that the running threads still consume a slot.
1203  */
1204 struct thread *
1205 sched_choose(void)
1206 {
1207 	struct td_sched *ts;
1208 	struct runq *rq;
1209 
1210 #ifdef SMP
1211 	struct td_sched *kecpu;
1212 
1213 	rq = &runq;
1214 	ts = runq_choose(&runq);
1215 	kecpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1216 
1217 	if (ts == NULL ||
1218 	    (kecpu != NULL &&
1219 	     kecpu->ts_thread->td_priority < ts->ts_thread->td_priority)) {
1220 		CTR2(KTR_RUNQ, "choosing td_sched %p from pcpu runq %d", kecpu,
1221 		     PCPU_GET(cpuid));
1222 		ts = kecpu;
1223 		rq = &runq_pcpu[PCPU_GET(cpuid)];
1224 	} else {
1225 		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", ts);
1226 	}
1227 
1228 #else
1229 	rq = &runq;
1230 	ts = runq_choose(&runq);
1231 #endif
1232 
1233 	if (ts) {
1234 		runq_remove(rq, ts);
1235 		ts->ts_flags |= TSF_DIDRUN;
1236 
1237 		KASSERT(ts->ts_thread->td_proc->p_sflag & PS_INMEM,
1238 		    ("sched_choose: process swapped out"));
1239 		return (ts->ts_thread);
1240 	}
1241 	return (PCPU_GET(idlethread));
1242 }
1243 
1244 void
1245 sched_userret(struct thread *td)
1246 {
1247 	/*
1248 	 * XXX we cheat slightly on the locking here to avoid locking in
1249 	 * the usual case.  Setting td_priority here is essentially an
1250 	 * incomplete workaround for not setting it properly elsewhere.
1251 	 * Now that some interrupt handlers are threads, not setting it
1252 	 * properly elsewhere can clobber it in the window between setting
1253 	 * it here and returning to user mode, so don't waste time setting
1254 	 * it perfectly here.
1255 	 */
1256 	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1257 	    ("thread with borrowed priority returning to userland"));
1258 	if (td->td_priority != td->td_user_pri) {
1259 		mtx_lock_spin(&sched_lock);
1260 		td->td_priority = td->td_user_pri;
1261 		td->td_base_pri = td->td_user_pri;
1262 		mtx_unlock_spin(&sched_lock);
1263 	}
1264 }
1265 
1266 void
1267 sched_bind(struct thread *td, int cpu)
1268 {
1269 	struct td_sched *ts;
1270 
1271 	mtx_assert(&sched_lock, MA_OWNED);
1272 	KASSERT(TD_IS_RUNNING(td),
1273 	    ("sched_bind: cannot bind non-running thread"));
1274 
1275 	ts = td->td_sched;
1276 
1277 	ts->ts_flags |= TSF_BOUND;
1278 #ifdef SMP
1279 	ts->ts_runq = &runq_pcpu[cpu];
1280 	if (PCPU_GET(cpuid) == cpu)
1281 		return;
1282 
1283 	mi_switch(SW_VOL, NULL);
1284 #endif
1285 }
1286 
1287 void
1288 sched_unbind(struct thread* td)
1289 {
1290 	mtx_assert(&sched_lock, MA_OWNED);
1291 	td->td_sched->ts_flags &= ~TSF_BOUND;
1292 }
1293 
1294 int
1295 sched_is_bound(struct thread *td)
1296 {
1297 	mtx_assert(&sched_lock, MA_OWNED);
1298 	return (td->td_sched->ts_flags & TSF_BOUND);
1299 }
1300 
1301 void
1302 sched_relinquish(struct thread *td)
1303 {
1304 	mtx_lock_spin(&sched_lock);
1305 	if (td->td_pri_class == PRI_TIMESHARE)
1306 		sched_prio(td, PRI_MAX_TIMESHARE);
1307 	mi_switch(SW_VOL, NULL);
1308 	mtx_unlock_spin(&sched_lock);
1309 }
1310 
1311 int
1312 sched_load(void)
1313 {
1314 	return (sched_tdcnt);
1315 }
1316 
1317 int
1318 sched_sizeof_proc(void)
1319 {
1320 	return (sizeof(struct proc));
1321 }
1322 
1323 int
1324 sched_sizeof_thread(void)
1325 {
1326 	return (sizeof(struct thread) + sizeof(struct td_sched));
1327 }
1328 
1329 fixpt_t
1330 sched_pctcpu(struct thread *td)
1331 {
1332 	struct td_sched *ts;
1333 
1334 	ts = td->td_sched;
1335 	return (ts->ts_pctcpu);
1336 }
1337 
1338 void
1339 sched_tick(void)
1340 {
1341 }
1342 
1343 /*
1344  * The actual idle process.
1345  */
1346 void
1347 sched_idletd(void *dummy)
1348 {
1349 	struct proc *p;
1350 	struct thread *td;
1351 
1352 	td = curthread;
1353 	p = td->td_proc;
1354 	for (;;) {
1355 		mtx_assert(&Giant, MA_NOTOWNED);
1356 
1357 		while (sched_runnable() == 0)
1358 			cpu_idle();
1359 
1360 		mtx_lock_spin(&sched_lock);
1361 		mi_switch(SW_VOL, NULL);
1362 		mtx_unlock_spin(&sched_lock);
1363 	}
1364 }
1365 
1366 #define KERN_SWITCH_INCLUDE 1
1367 #include "kern/kern_switch.c"
1368