xref: /freebsd/sys/kern/subr_blist.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions
5  * are met:
6  * 1. Redistributions of source code must retain the above copyright
7  *    notice, this list of conditions and the following disclaimer.
8  * 2. Redistributions in binary form must reproduce the above copyright
9  *    notice, this list of conditions and the following disclaimer in the
10  *    documentation and/or other materials provided with the distribution.
11  * 4. Neither the name of the University nor the names of its contributors
12  *    may be used to endorse or promote products derived from this software
13  *    without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 /*
28  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
29  *
30  *	This module implements a general bitmap allocator/deallocator.  The
31  *	allocator eats around 2 bits per 'block'.  The module does not
32  *	try to interpret the meaning of a 'block' other then to return
33  *	SWAPBLK_NONE on an allocation failure.
34  *
35  *	A radix tree is used to maintain the bitmap.  Two radix constants are
36  *	involved:  One for the bitmaps contained in the leaf nodes (typically
37  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
38  *	nodes have a hint field.  This field gives us a hint as to the largest
39  *	free contiguous range of blocks under the node.  It may contain a
40  *	value that is too high, but will never contain a value that is too
41  *	low.  When the radix tree is searched, allocation failures in subtrees
42  *	update the hint.
43  *
44  *	The radix tree also implements two collapsed states for meta nodes:
45  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
46  *	in either of these two states, all information contained underneath
47  *	the node is considered stale.  These states are used to optimize
48  *	allocation and freeing operations.
49  *
50  * 	The hinting greatly increases code efficiency for allocations while
51  *	the general radix structure optimizes both allocations and frees.  The
52  *	radix tree should be able to operate well no matter how much
53  *	fragmentation there is and no matter how large a bitmap is used.
54  *
55  *	Unlike the rlist code, the blist code wires all necessary memory at
56  *	creation time.  Neither allocations nor frees require interaction with
57  *	the memory subsystem.  In contrast, the rlist code may allocate memory
58  *	on an rlist_free() call.  The non-blocking features of the blist code
59  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
60  *	rlist code uses a little less overall memory then the blist code (but
61  *	due to swap interleaving not all that much less), but the blist code
62  *	scales much, much better.
63  *
64  *	LAYOUT: The radix tree is layed out recursively using a
65  *	linear array.  Each meta node is immediately followed (layed out
66  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
67  *	is a recursive structure but one that can be easily scanned through
68  *	a very simple 'skip' calculation.  In order to support large radixes,
69  *	portions of the tree may reside outside our memory allocation.  We
70  *	handle this with an early-termination optimization (when bighint is
71  *	set to -1) on the scan.  The memory allocation is only large enough
72  *	to cover the number of blocks requested at creation time even if it
73  *	must be encompassed in larger root-node radix.
74  *
75  *	NOTE: the allocator cannot currently allocate more then
76  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
77  *	large' if you try.  This is an area that could use improvement.  The
78  *	radix is large enough that this restriction does not effect the swap
79  *	system, though.  Currently only the allocation code is effected by
80  *	this algorithmic unfeature.  The freeing code can handle arbitrary
81  *	ranges.
82  *
83  *	This code can be compiled stand-alone for debugging.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 #ifdef _KERNEL
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/lock.h>
94 #include <sys/kernel.h>
95 #include <sys/blist.h>
96 #include <sys/malloc.h>
97 #include <sys/proc.h>
98 #include <sys/mutex.h>
99 
100 #else
101 
102 #ifndef BLIST_NO_DEBUG
103 #define BLIST_DEBUG
104 #endif
105 
106 #define SWAPBLK_NONE ((daddr_t)-1)
107 
108 #include <sys/types.h>
109 #include <stdio.h>
110 #include <string.h>
111 #include <stdlib.h>
112 #include <stdarg.h>
113 
114 #define malloc(a,b,c)	calloc(a, 1)
115 #define free(a,b)	free(a)
116 
117 typedef unsigned int u_daddr_t;
118 
119 #include <sys/blist.h>
120 
121 void panic(const char *ctl, ...);
122 
123 #endif
124 
125 /*
126  * static support functions
127  */
128 
129 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
130 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
131 				daddr_t count, daddr_t radix, int skip);
132 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
133 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
134 					daddr_t radix, int skip, daddr_t blk);
135 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
136 				daddr_t skip, blist_t dest, daddr_t count);
137 static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
138 static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
139 				daddr_t radix, int skip, daddr_t blk);
140 static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
141 						int skip, daddr_t count);
142 #ifndef _KERNEL
143 static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
144 					daddr_t radix, int skip, int tab);
145 #endif
146 
147 #ifdef _KERNEL
148 static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
149 #endif
150 
151 /*
152  * blist_create() - create a blist capable of handling up to the specified
153  *		    number of blocks
154  *
155  *	blocks - must be greater then 0
156  * 	flags  - malloc flags
157  *
158  *	The smallest blist consists of a single leaf node capable of
159  *	managing BLIST_BMAP_RADIX blocks.
160  */
161 
162 blist_t
163 blist_create(daddr_t blocks, int flags)
164 {
165 	blist_t bl;
166 	int radix;
167 	int skip = 0;
168 
169 	/*
170 	 * Calculate radix and skip field used for scanning.
171 	 */
172 	radix = BLIST_BMAP_RADIX;
173 
174 	while (radix < blocks) {
175 		radix *= BLIST_META_RADIX;
176 		skip = (skip + 1) * BLIST_META_RADIX;
177 	}
178 
179 	bl = malloc(sizeof(struct blist), M_SWAP, flags | M_ZERO);
180 
181 	bl->bl_blocks = blocks;
182 	bl->bl_radix = radix;
183 	bl->bl_skip = skip;
184 	bl->bl_rootblks = 1 +
185 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
186 	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, flags);
187 
188 #if defined(BLIST_DEBUG)
189 	printf(
190 		"BLIST representing %lld blocks (%lld MB of swap)"
191 		", requiring %lldK of ram\n",
192 		(long long)bl->bl_blocks,
193 		(long long)bl->bl_blocks * 4 / 1024,
194 		(long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
195 	);
196 	printf("BLIST raw radix tree contains %lld records\n",
197 	    (long long)bl->bl_rootblks);
198 #endif
199 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
200 
201 	return(bl);
202 }
203 
204 void
205 blist_destroy(blist_t bl)
206 {
207 	free(bl->bl_root, M_SWAP);
208 	free(bl, M_SWAP);
209 }
210 
211 /*
212  * blist_alloc() - reserve space in the block bitmap.  Return the base
213  *		     of a contiguous region or SWAPBLK_NONE if space could
214  *		     not be allocated.
215  */
216 
217 daddr_t
218 blist_alloc(blist_t bl, daddr_t count)
219 {
220 	daddr_t blk = SWAPBLK_NONE;
221 
222 	if (bl) {
223 		if (bl->bl_radix == BLIST_BMAP_RADIX)
224 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
225 		else
226 			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
227 		if (blk != SWAPBLK_NONE)
228 			bl->bl_free -= count;
229 	}
230 	return(blk);
231 }
232 
233 /*
234  * blist_free() -	free up space in the block bitmap.  Return the base
235  *		     	of a contiguous region.  Panic if an inconsistancy is
236  *			found.
237  */
238 
239 void
240 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
241 {
242 	if (bl) {
243 		if (bl->bl_radix == BLIST_BMAP_RADIX)
244 			blst_leaf_free(bl->bl_root, blkno, count);
245 		else
246 			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
247 		bl->bl_free += count;
248 	}
249 }
250 
251 /*
252  * blist_fill() -	mark a region in the block bitmap as off-limits
253  *			to the allocator (i.e. allocate it), ignoring any
254  *			existing allocations.  Return the number of blocks
255  *			actually filled that were free before the call.
256  */
257 
258 int
259 blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
260 {
261 	int filled;
262 
263 	if (bl) {
264 		if (bl->bl_radix == BLIST_BMAP_RADIX)
265 			filled = blst_leaf_fill(bl->bl_root, blkno, count);
266 		else
267 			filled = blst_meta_fill(bl->bl_root, blkno, count,
268 			    bl->bl_radix, bl->bl_skip, 0);
269 		bl->bl_free -= filled;
270 		return filled;
271 	} else
272 		return 0;
273 }
274 
275 /*
276  * blist_resize() -	resize an existing radix tree to handle the
277  *			specified number of blocks.  This will reallocate
278  *			the tree and transfer the previous bitmap to the new
279  *			one.  When extending the tree you can specify whether
280  *			the new blocks are to left allocated or freed.
281  */
282 
283 void
284 blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
285 {
286     blist_t newbl = blist_create(count, flags);
287     blist_t save = *pbl;
288 
289     *pbl = newbl;
290     if (count > save->bl_blocks)
291 	    count = save->bl_blocks;
292     blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
293 
294     /*
295      * If resizing upwards, should we free the new space or not?
296      */
297     if (freenew && count < newbl->bl_blocks) {
298 	    blist_free(newbl, count, newbl->bl_blocks - count);
299     }
300     blist_destroy(save);
301 }
302 
303 #ifdef BLIST_DEBUG
304 
305 /*
306  * blist_print()    - dump radix tree
307  */
308 
309 void
310 blist_print(blist_t bl)
311 {
312 	printf("BLIST {\n");
313 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
314 	printf("}\n");
315 }
316 
317 #endif
318 
319 /************************************************************************
320  *			  ALLOCATION SUPPORT FUNCTIONS			*
321  ************************************************************************
322  *
323  *	These support functions do all the actual work.  They may seem
324  *	rather longish, but that's because I've commented them up.  The
325  *	actual code is straight forward.
326  *
327  */
328 
329 /*
330  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
331  *
332  *	This is the core of the allocator and is optimized for the 1 block
333  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
334  *	somewhat slower.  The 1 block allocation case is log2 and extremely
335  *	quick.
336  */
337 
338 static daddr_t
339 blst_leaf_alloc(
340 	blmeta_t *scan,
341 	daddr_t blk,
342 	int count
343 ) {
344 	u_daddr_t orig = scan->u.bmu_bitmap;
345 
346 	if (orig == 0) {
347 		/*
348 		 * Optimize bitmap all-allocated case.  Also, count = 1
349 		 * case assumes at least 1 bit is free in the bitmap, so
350 		 * we have to take care of this case here.
351 		 */
352 		scan->bm_bighint = 0;
353 		return(SWAPBLK_NONE);
354 	}
355 	if (count == 1) {
356 		/*
357 		 * Optimized code to allocate one bit out of the bitmap
358 		 */
359 		u_daddr_t mask;
360 		int j = BLIST_BMAP_RADIX/2;
361 		int r = 0;
362 
363 		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
364 
365 		while (j) {
366 			if ((orig & mask) == 0) {
367 			    r += j;
368 			    orig >>= j;
369 			}
370 			j >>= 1;
371 			mask >>= j;
372 		}
373 		scan->u.bmu_bitmap &= ~(1 << r);
374 		return(blk + r);
375 	}
376 	if (count <= BLIST_BMAP_RADIX) {
377 		/*
378 		 * non-optimized code to allocate N bits out of the bitmap.
379 		 * The more bits, the faster the code runs.  It will run
380 		 * the slowest allocating 2 bits, but since there aren't any
381 		 * memory ops in the core loop (or shouldn't be, anyway),
382 		 * you probably won't notice the difference.
383 		 */
384 		int j;
385 		int n = BLIST_BMAP_RADIX - count;
386 		u_daddr_t mask;
387 
388 		mask = (u_daddr_t)-1 >> n;
389 
390 		for (j = 0; j <= n; ++j) {
391 			if ((orig & mask) == mask) {
392 				scan->u.bmu_bitmap &= ~mask;
393 				return(blk + j);
394 			}
395 			mask = (mask << 1);
396 		}
397 	}
398 	/*
399 	 * We couldn't allocate count in this subtree, update bighint.
400 	 */
401 	scan->bm_bighint = count - 1;
402 	return(SWAPBLK_NONE);
403 }
404 
405 /*
406  * blist_meta_alloc() -	allocate at a meta in the radix tree.
407  *
408  *	Attempt to allocate at a meta node.  If we can't, we update
409  *	bighint and return a failure.  Updating bighint optimize future
410  *	calls that hit this node.  We have to check for our collapse cases
411  *	and we have a few optimizations strewn in as well.
412  */
413 
414 static daddr_t
415 blst_meta_alloc(
416 	blmeta_t *scan,
417 	daddr_t blk,
418 	daddr_t count,
419 	daddr_t radix,
420 	int skip
421 ) {
422 	int i;
423 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
424 
425 	if (scan->u.bmu_avail == 0)  {
426 		/*
427 		 * ALL-ALLOCATED special case
428 		 */
429 		scan->bm_bighint = count;
430 		return(SWAPBLK_NONE);
431 	}
432 
433 	if (scan->u.bmu_avail == radix) {
434 		radix /= BLIST_META_RADIX;
435 
436 		/*
437 		 * ALL-FREE special case, initialize uninitialize
438 		 * sublevel.
439 		 */
440 		for (i = 1; i <= skip; i += next_skip) {
441 			if (scan[i].bm_bighint == (daddr_t)-1)
442 				break;
443 			if (next_skip == 1) {
444 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
445 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
446 			} else {
447 				scan[i].bm_bighint = radix;
448 				scan[i].u.bmu_avail = radix;
449 			}
450 		}
451 	} else {
452 		radix /= BLIST_META_RADIX;
453 	}
454 
455 	for (i = 1; i <= skip; i += next_skip) {
456 		if (count <= scan[i].bm_bighint) {
457 			/*
458 			 * count fits in object
459 			 */
460 			daddr_t r;
461 			if (next_skip == 1) {
462 				r = blst_leaf_alloc(&scan[i], blk, count);
463 			} else {
464 				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
465 			}
466 			if (r != SWAPBLK_NONE) {
467 				scan->u.bmu_avail -= count;
468 				if (scan->bm_bighint > scan->u.bmu_avail)
469 					scan->bm_bighint = scan->u.bmu_avail;
470 				return(r);
471 			}
472 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
473 			/*
474 			 * Terminator
475 			 */
476 			break;
477 		} else if (count > radix) {
478 			/*
479 			 * count does not fit in object even if it were
480 			 * complete free.
481 			 */
482 			panic("blist_meta_alloc: allocation too large");
483 		}
484 		blk += radix;
485 	}
486 
487 	/*
488 	 * We couldn't allocate count in this subtree, update bighint.
489 	 */
490 	if (scan->bm_bighint >= count)
491 		scan->bm_bighint = count - 1;
492 	return(SWAPBLK_NONE);
493 }
494 
495 /*
496  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
497  *
498  */
499 
500 static void
501 blst_leaf_free(
502 	blmeta_t *scan,
503 	daddr_t blk,
504 	int count
505 ) {
506 	/*
507 	 * free some data in this bitmap
508 	 *
509 	 * e.g.
510 	 *	0000111111111110000
511 	 *          \_________/\__/
512 	 *		v        n
513 	 */
514 	int n = blk & (BLIST_BMAP_RADIX - 1);
515 	u_daddr_t mask;
516 
517 	mask = ((u_daddr_t)-1 << n) &
518 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
519 
520 	if (scan->u.bmu_bitmap & mask)
521 		panic("blst_radix_free: freeing free block");
522 	scan->u.bmu_bitmap |= mask;
523 
524 	/*
525 	 * We could probably do a better job here.  We are required to make
526 	 * bighint at least as large as the biggest contiguous block of
527 	 * data.  If we just shoehorn it, a little extra overhead will
528 	 * be incured on the next allocation (but only that one typically).
529 	 */
530 	scan->bm_bighint = BLIST_BMAP_RADIX;
531 }
532 
533 /*
534  * BLST_META_FREE() - free allocated blocks from radix tree meta info
535  *
536  *	This support routine frees a range of blocks from the bitmap.
537  *	The range must be entirely enclosed by this radix node.  If a
538  *	meta node, we break the range down recursively to free blocks
539  *	in subnodes (which means that this code can free an arbitrary
540  *	range whereas the allocation code cannot allocate an arbitrary
541  *	range).
542  */
543 
544 static void
545 blst_meta_free(
546 	blmeta_t *scan,
547 	daddr_t freeBlk,
548 	daddr_t count,
549 	daddr_t radix,
550 	int skip,
551 	daddr_t blk
552 ) {
553 	int i;
554 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
555 
556 #if 0
557 	printf("free (%llx,%lld) FROM (%llx,%lld)\n",
558 	    (long long)freeBlk, (long long)count,
559 	    (long long)blk, (long long)radix
560 	);
561 #endif
562 
563 	if (scan->u.bmu_avail == 0) {
564 		/*
565 		 * ALL-ALLOCATED special case, with possible
566 		 * shortcut to ALL-FREE special case.
567 		 */
568 		scan->u.bmu_avail = count;
569 		scan->bm_bighint = count;
570 
571 		if (count != radix)  {
572 			for (i = 1; i <= skip; i += next_skip) {
573 				if (scan[i].bm_bighint == (daddr_t)-1)
574 					break;
575 				scan[i].bm_bighint = 0;
576 				if (next_skip == 1) {
577 					scan[i].u.bmu_bitmap = 0;
578 				} else {
579 					scan[i].u.bmu_avail = 0;
580 				}
581 			}
582 			/* fall through */
583 		}
584 	} else {
585 		scan->u.bmu_avail += count;
586 		/* scan->bm_bighint = radix; */
587 	}
588 
589 	/*
590 	 * ALL-FREE special case.
591 	 */
592 
593 	if (scan->u.bmu_avail == radix)
594 		return;
595 	if (scan->u.bmu_avail > radix)
596 		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
597 		    (long long)count, (long long)scan->u.bmu_avail,
598 		    (long long)radix);
599 
600 	/*
601 	 * Break the free down into its components
602 	 */
603 
604 	radix /= BLIST_META_RADIX;
605 
606 	i = (freeBlk - blk) / radix;
607 	blk += i * radix;
608 	i = i * next_skip + 1;
609 
610 	while (i <= skip && blk < freeBlk + count) {
611 		daddr_t v;
612 
613 		v = blk + radix - freeBlk;
614 		if (v > count)
615 			v = count;
616 
617 		if (scan->bm_bighint == (daddr_t)-1)
618 			panic("blst_meta_free: freeing unexpected range");
619 
620 		if (next_skip == 1) {
621 			blst_leaf_free(&scan[i], freeBlk, v);
622 		} else {
623 			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
624 		}
625 		if (scan->bm_bighint < scan[i].bm_bighint)
626 		    scan->bm_bighint = scan[i].bm_bighint;
627 		count -= v;
628 		freeBlk += v;
629 		blk += radix;
630 		i += next_skip;
631 	}
632 }
633 
634 /*
635  * BLIST_RADIX_COPY() - copy one radix tree to another
636  *
637  *	Locates free space in the source tree and frees it in the destination
638  *	tree.  The space may not already be free in the destination.
639  */
640 
641 static void blst_copy(
642 	blmeta_t *scan,
643 	daddr_t blk,
644 	daddr_t radix,
645 	daddr_t skip,
646 	blist_t dest,
647 	daddr_t count
648 ) {
649 	int next_skip;
650 	int i;
651 
652 	/*
653 	 * Leaf node
654 	 */
655 
656 	if (radix == BLIST_BMAP_RADIX) {
657 		u_daddr_t v = scan->u.bmu_bitmap;
658 
659 		if (v == (u_daddr_t)-1) {
660 			blist_free(dest, blk, count);
661 		} else if (v != 0) {
662 			int i;
663 
664 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
665 				if (v & (1 << i))
666 					blist_free(dest, blk + i, 1);
667 			}
668 		}
669 		return;
670 	}
671 
672 	/*
673 	 * Meta node
674 	 */
675 
676 	if (scan->u.bmu_avail == 0) {
677 		/*
678 		 * Source all allocated, leave dest allocated
679 		 */
680 		return;
681 	}
682 	if (scan->u.bmu_avail == radix) {
683 		/*
684 		 * Source all free, free entire dest
685 		 */
686 		if (count < radix)
687 			blist_free(dest, blk, count);
688 		else
689 			blist_free(dest, blk, radix);
690 		return;
691 	}
692 
693 
694 	radix /= BLIST_META_RADIX;
695 	next_skip = ((u_int)skip / BLIST_META_RADIX);
696 
697 	for (i = 1; count && i <= skip; i += next_skip) {
698 		if (scan[i].bm_bighint == (daddr_t)-1)
699 			break;
700 
701 		if (count >= radix) {
702 			blst_copy(
703 			    &scan[i],
704 			    blk,
705 			    radix,
706 			    next_skip - 1,
707 			    dest,
708 			    radix
709 			);
710 			count -= radix;
711 		} else {
712 			if (count) {
713 				blst_copy(
714 				    &scan[i],
715 				    blk,
716 				    radix,
717 				    next_skip - 1,
718 				    dest,
719 				    count
720 				);
721 			}
722 			count = 0;
723 		}
724 		blk += radix;
725 	}
726 }
727 
728 /*
729  * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
730  *
731  *	This routine allocates all blocks in the specified range
732  *	regardless of any existing allocations in that range.  Returns
733  *	the number of blocks allocated by the call.
734  */
735 
736 static int
737 blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
738 {
739 	int n = blk & (BLIST_BMAP_RADIX - 1);
740 	int nblks;
741 	u_daddr_t mask, bitmap;
742 
743 	mask = ((u_daddr_t)-1 << n) &
744 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
745 
746 	/* Count the number of blocks we're about to allocate */
747 	bitmap = scan->u.bmu_bitmap & mask;
748 	for (nblks = 0; bitmap != 0; nblks++)
749 		bitmap &= bitmap - 1;
750 
751 	scan->u.bmu_bitmap &= ~mask;
752 	return nblks;
753 }
754 
755 /*
756  * BLIST_META_FILL() -	allocate specific blocks at a meta node
757  *
758  *	This routine allocates the specified range of blocks,
759  *	regardless of any existing allocations in the range.  The
760  *	range must be within the extent of this node.  Returns the
761  *	number of blocks allocated by the call.
762  */
763 static int
764 blst_meta_fill(
765 	blmeta_t *scan,
766 	daddr_t allocBlk,
767 	daddr_t count,
768 	daddr_t radix,
769 	int skip,
770 	daddr_t blk
771 ) {
772 	int i;
773 	int next_skip = ((u_int)skip / BLIST_META_RADIX);
774 	int nblks = 0;
775 
776 	if (count == radix || scan->u.bmu_avail == 0)  {
777 		/*
778 		 * ALL-ALLOCATED special case
779 		 */
780 		nblks = scan->u.bmu_avail;
781 		scan->u.bmu_avail = 0;
782 		scan->bm_bighint = count;
783 		return nblks;
784 	}
785 
786 	if (scan->u.bmu_avail == radix) {
787 		radix /= BLIST_META_RADIX;
788 
789 		/*
790 		 * ALL-FREE special case, initialize sublevel
791 		 */
792 		for (i = 1; i <= skip; i += next_skip) {
793 			if (scan[i].bm_bighint == (daddr_t)-1)
794 				break;
795 			if (next_skip == 1) {
796 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
797 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
798 			} else {
799 				scan[i].bm_bighint = radix;
800 				scan[i].u.bmu_avail = radix;
801 			}
802 		}
803 	} else {
804 		radix /= BLIST_META_RADIX;
805 	}
806 
807 	if (count > radix)
808 		panic("blist_meta_fill: allocation too large");
809 
810 	i = (allocBlk - blk) / radix;
811 	blk += i * radix;
812 	i = i * next_skip + 1;
813 
814 	while (i <= skip && blk < allocBlk + count) {
815 		daddr_t v;
816 
817 		v = blk + radix - allocBlk;
818 		if (v > count)
819 			v = count;
820 
821 		if (scan->bm_bighint == (daddr_t)-1)
822 			panic("blst_meta_fill: filling unexpected range");
823 
824 		if (next_skip == 1) {
825 			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
826 		} else {
827 			nblks += blst_meta_fill(&scan[i], allocBlk, v,
828 			    radix, next_skip - 1, blk);
829 		}
830 		count -= v;
831 		allocBlk += v;
832 		blk += radix;
833 		i += next_skip;
834 	}
835 	scan->u.bmu_avail -= nblks;
836 	return nblks;
837 }
838 
839 /*
840  * BLST_RADIX_INIT() - initialize radix tree
841  *
842  *	Initialize our meta structures and bitmaps and calculate the exact
843  *	amount of space required to manage 'count' blocks - this space may
844  *	be considerably less then the calculated radix due to the large
845  *	RADIX values we use.
846  */
847 
848 static daddr_t
849 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
850 {
851 	int i;
852 	int next_skip;
853 	daddr_t memindex = 0;
854 
855 	/*
856 	 * Leaf node
857 	 */
858 
859 	if (radix == BLIST_BMAP_RADIX) {
860 		if (scan) {
861 			scan->bm_bighint = 0;
862 			scan->u.bmu_bitmap = 0;
863 		}
864 		return(memindex);
865 	}
866 
867 	/*
868 	 * Meta node.  If allocating the entire object we can special
869 	 * case it.  However, we need to figure out how much memory
870 	 * is required to manage 'count' blocks, so we continue on anyway.
871 	 */
872 
873 	if (scan) {
874 		scan->bm_bighint = 0;
875 		scan->u.bmu_avail = 0;
876 	}
877 
878 	radix /= BLIST_META_RADIX;
879 	next_skip = ((u_int)skip / BLIST_META_RADIX);
880 
881 	for (i = 1; i <= skip; i += next_skip) {
882 		if (count >= radix) {
883 			/*
884 			 * Allocate the entire object
885 			 */
886 			memindex = i + blst_radix_init(
887 			    ((scan) ? &scan[i] : NULL),
888 			    radix,
889 			    next_skip - 1,
890 			    radix
891 			);
892 			count -= radix;
893 		} else if (count > 0) {
894 			/*
895 			 * Allocate a partial object
896 			 */
897 			memindex = i + blst_radix_init(
898 			    ((scan) ? &scan[i] : NULL),
899 			    radix,
900 			    next_skip - 1,
901 			    count
902 			);
903 			count = 0;
904 		} else {
905 			/*
906 			 * Add terminator and break out
907 			 */
908 			if (scan)
909 				scan[i].bm_bighint = (daddr_t)-1;
910 			break;
911 		}
912 	}
913 	if (memindex < i)
914 		memindex = i;
915 	return(memindex);
916 }
917 
918 #ifdef BLIST_DEBUG
919 
920 static void
921 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
922 {
923 	int i;
924 	int next_skip;
925 	int lastState = 0;
926 
927 	if (radix == BLIST_BMAP_RADIX) {
928 		printf(
929 		    "%*.*s(%08llx,%lld): bitmap %08llx big=%lld\n",
930 		    tab, tab, "",
931 		    (long long)blk, (long long)radix,
932 		    (long long)scan->u.bmu_bitmap,
933 		    (long long)scan->bm_bighint
934 		);
935 		return;
936 	}
937 
938 	if (scan->u.bmu_avail == 0) {
939 		printf(
940 		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
941 		    tab, tab, "",
942 		    (long long)blk,
943 		    (long long)radix
944 		);
945 		return;
946 	}
947 	if (scan->u.bmu_avail == radix) {
948 		printf(
949 		    "%*.*s(%08llx,%lld) ALL FREE\n",
950 		    tab, tab, "",
951 		    (long long)blk,
952 		    (long long)radix
953 		);
954 		return;
955 	}
956 
957 	printf(
958 	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
959 	    tab, tab, "",
960 	    (long long)blk, (long long)radix,
961 	    (long long)scan->u.bmu_avail,
962 	    (long long)radix,
963 	    (long long)scan->bm_bighint
964 	);
965 
966 	radix /= BLIST_META_RADIX;
967 	next_skip = ((u_int)skip / BLIST_META_RADIX);
968 	tab += 4;
969 
970 	for (i = 1; i <= skip; i += next_skip) {
971 		if (scan[i].bm_bighint == (daddr_t)-1) {
972 			printf(
973 			    "%*.*s(%08llx,%lld): Terminator\n",
974 			    tab, tab, "",
975 			    (long long)blk, (long long)radix
976 			);
977 			lastState = 0;
978 			break;
979 		}
980 		blst_radix_print(
981 		    &scan[i],
982 		    blk,
983 		    radix,
984 		    next_skip - 1,
985 		    tab
986 		);
987 		blk += radix;
988 	}
989 	tab -= 4;
990 
991 	printf(
992 	    "%*.*s}\n",
993 	    tab, tab, ""
994 	);
995 }
996 
997 #endif
998 
999 #ifdef BLIST_DEBUG
1000 
1001 int
1002 main(int ac, char **av)
1003 {
1004 	int size = 1024;
1005 	int i;
1006 	blist_t bl;
1007 
1008 	for (i = 1; i < ac; ++i) {
1009 		const char *ptr = av[i];
1010 		if (*ptr != '-') {
1011 			size = strtol(ptr, NULL, 0);
1012 			continue;
1013 		}
1014 		ptr += 2;
1015 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1016 		exit(1);
1017 	}
1018 	bl = blist_create(size, M_WAITOK);
1019 	blist_free(bl, 0, size);
1020 
1021 	for (;;) {
1022 		char buf[1024];
1023 		daddr_t da = 0;
1024 		daddr_t count = 0;
1025 
1026 
1027 		printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
1028 		    (long long)size, (long long)bl->bl_radix);
1029 		fflush(stdout);
1030 		if (fgets(buf, sizeof(buf), stdin) == NULL)
1031 			break;
1032 		switch(buf[0]) {
1033 		case 'r':
1034 			if (sscanf(buf + 1, "%lld", &count) == 1) {
1035 				blist_resize(&bl, count, 1);
1036 			} else {
1037 				printf("?\n");
1038 			}
1039 		case 'p':
1040 			blist_print(bl);
1041 			break;
1042 		case 'a':
1043 			if (sscanf(buf + 1, "%lld", &count) == 1) {
1044 				daddr_t blk = blist_alloc(bl, count);
1045 				printf("    R=%08llx\n", (long long)blk);
1046 			} else {
1047 				printf("?\n");
1048 			}
1049 			break;
1050 		case 'f':
1051 			if (sscanf(buf + 1, "%llx %lld",
1052 			    (long long *)&da, (long long *)&count) == 2) {
1053 				blist_free(bl, da, count);
1054 			} else {
1055 				printf("?\n");
1056 			}
1057 			break;
1058 		case 'l':
1059 			if (sscanf(buf + 1, "%llx %lld",
1060 			    (long long *)&da, (long long *)&count) == 2) {
1061 				printf("    n=%d\n",
1062 				    blist_fill(bl, da, count));
1063 			} else {
1064 				printf("?\n");
1065 			}
1066 			break;
1067 		case '?':
1068 		case 'h':
1069 			puts(
1070 			    "p          -print\n"
1071 			    "a %d       -allocate\n"
1072 			    "f %x %d    -free\n"
1073 			    "l %x %d    -fill\n"
1074 			    "r %d       -resize\n"
1075 			    "h/?        -help"
1076 			);
1077 			break;
1078 		default:
1079 			printf("?\n");
1080 			break;
1081 		}
1082 	}
1083 	return(0);
1084 }
1085 
1086 void
1087 panic(const char *ctl, ...)
1088 {
1089 	va_list va;
1090 
1091 	va_start(va, ctl);
1092 	vfprintf(stderr, ctl, va);
1093 	fprintf(stderr, "\n");
1094 	va_end(va);
1095 	exit(1);
1096 }
1097 
1098 #endif
1099 
1100