xref: /freebsd/sys/kern/subr_bus.c (revision 4bc52338)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/eventhandler.h>
38 #include <sys/filio.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/kobj.h>
42 #include <sys/limits.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/poll.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/condvar.h>
50 #include <sys/queue.h>
51 #include <machine/bus.h>
52 #include <sys/random.h>
53 #include <sys/rman.h>
54 #include <sys/sbuf.h>
55 #include <sys/selinfo.h>
56 #include <sys/signalvar.h>
57 #include <sys/smp.h>
58 #include <sys/sysctl.h>
59 #include <sys/systm.h>
60 #include <sys/uio.h>
61 #include <sys/bus.h>
62 #include <sys/cpuset.h>
63 
64 #include <net/vnet.h>
65 
66 #include <machine/cpu.h>
67 #include <machine/stdarg.h>
68 
69 #include <vm/uma.h>
70 #include <vm/vm.h>
71 
72 #include <ddb/ddb.h>
73 
74 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
76 
77 /*
78  * Used to attach drivers to devclasses.
79  */
80 typedef struct driverlink *driverlink_t;
81 struct driverlink {
82 	kobj_class_t	driver;
83 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
84 	int		pass;
85 	int		flags;
86 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
87 	TAILQ_ENTRY(driverlink) passlink;
88 };
89 
90 /*
91  * Forward declarations
92  */
93 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
94 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
95 typedef TAILQ_HEAD(device_list, device) device_list_t;
96 
97 struct devclass {
98 	TAILQ_ENTRY(devclass) link;
99 	devclass_t	parent;		/* parent in devclass hierarchy */
100 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
101 	char		*name;
102 	device_t	*devices;	/* array of devices indexed by unit */
103 	int		maxunit;	/* size of devices array */
104 	int		flags;
105 #define DC_HAS_CHILDREN		1
106 
107 	struct sysctl_ctx_list sysctl_ctx;
108 	struct sysctl_oid *sysctl_tree;
109 };
110 
111 /**
112  * @brief Implementation of device.
113  */
114 struct device {
115 	/*
116 	 * A device is a kernel object. The first field must be the
117 	 * current ops table for the object.
118 	 */
119 	KOBJ_FIELDS;
120 
121 	/*
122 	 * Device hierarchy.
123 	 */
124 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
125 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
126 	device_t	parent;		/**< parent of this device  */
127 	device_list_t	children;	/**< list of child devices */
128 
129 	/*
130 	 * Details of this device.
131 	 */
132 	driver_t	*driver;	/**< current driver */
133 	devclass_t	devclass;	/**< current device class */
134 	int		unit;		/**< current unit number */
135 	char*		nameunit;	/**< name+unit e.g. foodev0 */
136 	char*		desc;		/**< driver specific description */
137 	int		busy;		/**< count of calls to device_busy() */
138 	device_state_t	state;		/**< current device state  */
139 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
140 	u_int		flags;		/**< internal device flags  */
141 	u_int	order;			/**< order from device_add_child_ordered() */
142 	void	*ivars;			/**< instance variables  */
143 	void	*softc;			/**< current driver's variables  */
144 
145 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
146 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
147 };
148 
149 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
150 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
151 
152 EVENTHANDLER_LIST_DEFINE(device_attach);
153 EVENTHANDLER_LIST_DEFINE(device_detach);
154 EVENTHANDLER_LIST_DEFINE(dev_lookup);
155 
156 static void devctl2_init(void);
157 static bool device_frozen;
158 
159 #define DRIVERNAME(d)	((d)? d->name : "no driver")
160 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
161 
162 #ifdef BUS_DEBUG
163 
164 static int bus_debug = 1;
165 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
166     "Bus debug level");
167 
168 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
169 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
170 
171 /**
172  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
173  * prevent syslog from deleting initial spaces
174  */
175 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
176 
177 static void print_device_short(device_t dev, int indent);
178 static void print_device(device_t dev, int indent);
179 void print_device_tree_short(device_t dev, int indent);
180 void print_device_tree(device_t dev, int indent);
181 static void print_driver_short(driver_t *driver, int indent);
182 static void print_driver(driver_t *driver, int indent);
183 static void print_driver_list(driver_list_t drivers, int indent);
184 static void print_devclass_short(devclass_t dc, int indent);
185 static void print_devclass(devclass_t dc, int indent);
186 void print_devclass_list_short(void);
187 void print_devclass_list(void);
188 
189 #else
190 /* Make the compiler ignore the function calls */
191 #define PDEBUG(a)			/* nop */
192 #define DEVICENAME(d)			/* nop */
193 
194 #define print_device_short(d,i)		/* nop */
195 #define print_device(d,i)		/* nop */
196 #define print_device_tree_short(d,i)	/* nop */
197 #define print_device_tree(d,i)		/* nop */
198 #define print_driver_short(d,i)		/* nop */
199 #define print_driver(d,i)		/* nop */
200 #define print_driver_list(d,i)		/* nop */
201 #define print_devclass_short(d,i)	/* nop */
202 #define print_devclass(d,i)		/* nop */
203 #define print_devclass_list_short()	/* nop */
204 #define print_devclass_list()		/* nop */
205 #endif
206 
207 /*
208  * dev sysctl tree
209  */
210 
211 enum {
212 	DEVCLASS_SYSCTL_PARENT,
213 };
214 
215 static int
216 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
217 {
218 	devclass_t dc = (devclass_t)arg1;
219 	const char *value;
220 
221 	switch (arg2) {
222 	case DEVCLASS_SYSCTL_PARENT:
223 		value = dc->parent ? dc->parent->name : "";
224 		break;
225 	default:
226 		return (EINVAL);
227 	}
228 	return (SYSCTL_OUT_STR(req, value));
229 }
230 
231 static void
232 devclass_sysctl_init(devclass_t dc)
233 {
234 
235 	if (dc->sysctl_tree != NULL)
236 		return;
237 	sysctl_ctx_init(&dc->sysctl_ctx);
238 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
239 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
240 	    CTLFLAG_RD, NULL, "");
241 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
242 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
243 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
244 	    "parent class");
245 }
246 
247 enum {
248 	DEVICE_SYSCTL_DESC,
249 	DEVICE_SYSCTL_DRIVER,
250 	DEVICE_SYSCTL_LOCATION,
251 	DEVICE_SYSCTL_PNPINFO,
252 	DEVICE_SYSCTL_PARENT,
253 };
254 
255 static int
256 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
257 {
258 	device_t dev = (device_t)arg1;
259 	const char *value;
260 	char *buf;
261 	int error;
262 
263 	buf = NULL;
264 	switch (arg2) {
265 	case DEVICE_SYSCTL_DESC:
266 		value = dev->desc ? dev->desc : "";
267 		break;
268 	case DEVICE_SYSCTL_DRIVER:
269 		value = dev->driver ? dev->driver->name : "";
270 		break;
271 	case DEVICE_SYSCTL_LOCATION:
272 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
273 		bus_child_location_str(dev, buf, 1024);
274 		break;
275 	case DEVICE_SYSCTL_PNPINFO:
276 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
277 		bus_child_pnpinfo_str(dev, buf, 1024);
278 		break;
279 	case DEVICE_SYSCTL_PARENT:
280 		value = dev->parent ? dev->parent->nameunit : "";
281 		break;
282 	default:
283 		return (EINVAL);
284 	}
285 	error = SYSCTL_OUT_STR(req, value);
286 	if (buf != NULL)
287 		free(buf, M_BUS);
288 	return (error);
289 }
290 
291 static void
292 device_sysctl_init(device_t dev)
293 {
294 	devclass_t dc = dev->devclass;
295 	int domain;
296 
297 	if (dev->sysctl_tree != NULL)
298 		return;
299 	devclass_sysctl_init(dc);
300 	sysctl_ctx_init(&dev->sysctl_ctx);
301 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
302 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
303 	    dev->nameunit + strlen(dc->name),
304 	    CTLFLAG_RD, NULL, "", "device_index");
305 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
307 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
308 	    "device description");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
311 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
312 	    "device driver name");
313 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
314 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
315 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
316 	    "device location relative to parent");
317 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
318 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
319 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
320 	    "device identification");
321 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
322 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
323 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
324 	    "parent device");
325 	if (bus_get_domain(dev, &domain) == 0)
326 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
327 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
328 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
329 }
330 
331 static void
332 device_sysctl_update(device_t dev)
333 {
334 	devclass_t dc = dev->devclass;
335 
336 	if (dev->sysctl_tree == NULL)
337 		return;
338 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
339 }
340 
341 static void
342 device_sysctl_fini(device_t dev)
343 {
344 	if (dev->sysctl_tree == NULL)
345 		return;
346 	sysctl_ctx_free(&dev->sysctl_ctx);
347 	dev->sysctl_tree = NULL;
348 }
349 
350 /*
351  * /dev/devctl implementation
352  */
353 
354 /*
355  * This design allows only one reader for /dev/devctl.  This is not desirable
356  * in the long run, but will get a lot of hair out of this implementation.
357  * Maybe we should make this device a clonable device.
358  *
359  * Also note: we specifically do not attach a device to the device_t tree
360  * to avoid potential chicken and egg problems.  One could argue that all
361  * of this belongs to the root node.  One could also further argue that the
362  * sysctl interface that we have not might more properly be an ioctl
363  * interface, but at this stage of the game, I'm not inclined to rock that
364  * boat.
365  *
366  * I'm also not sure that the SIGIO support is done correctly or not, as
367  * I copied it from a driver that had SIGIO support that likely hasn't been
368  * tested since 3.4 or 2.2.8!
369  */
370 
371 /* Deprecated way to adjust queue length */
372 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
373 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
374     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
375     "devctl disable -- deprecated");
376 
377 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
378 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
379 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
380 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
381     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
382 
383 static d_open_t		devopen;
384 static d_close_t	devclose;
385 static d_read_t		devread;
386 static d_ioctl_t	devioctl;
387 static d_poll_t		devpoll;
388 static d_kqfilter_t	devkqfilter;
389 
390 static struct cdevsw dev_cdevsw = {
391 	.d_version =	D_VERSION,
392 	.d_open =	devopen,
393 	.d_close =	devclose,
394 	.d_read =	devread,
395 	.d_ioctl =	devioctl,
396 	.d_poll =	devpoll,
397 	.d_kqfilter =	devkqfilter,
398 	.d_name =	"devctl",
399 };
400 
401 struct dev_event_info
402 {
403 	char *dei_data;
404 	TAILQ_ENTRY(dev_event_info) dei_link;
405 };
406 
407 TAILQ_HEAD(devq, dev_event_info);
408 
409 static struct dev_softc
410 {
411 	int	inuse;
412 	int	nonblock;
413 	int	queued;
414 	int	async;
415 	struct mtx mtx;
416 	struct cv cv;
417 	struct selinfo sel;
418 	struct devq devq;
419 	struct sigio *sigio;
420 } devsoftc;
421 
422 static void	filt_devctl_detach(struct knote *kn);
423 static int	filt_devctl_read(struct knote *kn, long hint);
424 
425 struct filterops devctl_rfiltops = {
426 	.f_isfd = 1,
427 	.f_detach = filt_devctl_detach,
428 	.f_event = filt_devctl_read,
429 };
430 
431 static struct cdev *devctl_dev;
432 
433 static void
434 devinit(void)
435 {
436 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
437 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
438 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
439 	cv_init(&devsoftc.cv, "dev cv");
440 	TAILQ_INIT(&devsoftc.devq);
441 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
442 	devctl2_init();
443 }
444 
445 static int
446 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
447 {
448 
449 	mtx_lock(&devsoftc.mtx);
450 	if (devsoftc.inuse) {
451 		mtx_unlock(&devsoftc.mtx);
452 		return (EBUSY);
453 	}
454 	/* move to init */
455 	devsoftc.inuse = 1;
456 	mtx_unlock(&devsoftc.mtx);
457 	return (0);
458 }
459 
460 static int
461 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
462 {
463 
464 	mtx_lock(&devsoftc.mtx);
465 	devsoftc.inuse = 0;
466 	devsoftc.nonblock = 0;
467 	devsoftc.async = 0;
468 	cv_broadcast(&devsoftc.cv);
469 	funsetown(&devsoftc.sigio);
470 	mtx_unlock(&devsoftc.mtx);
471 	return (0);
472 }
473 
474 /*
475  * The read channel for this device is used to report changes to
476  * userland in realtime.  We are required to free the data as well as
477  * the n1 object because we allocate them separately.  Also note that
478  * we return one record at a time.  If you try to read this device a
479  * character at a time, you will lose the rest of the data.  Listening
480  * programs are expected to cope.
481  */
482 static int
483 devread(struct cdev *dev, struct uio *uio, int ioflag)
484 {
485 	struct dev_event_info *n1;
486 	int rv;
487 
488 	mtx_lock(&devsoftc.mtx);
489 	while (TAILQ_EMPTY(&devsoftc.devq)) {
490 		if (devsoftc.nonblock) {
491 			mtx_unlock(&devsoftc.mtx);
492 			return (EAGAIN);
493 		}
494 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
495 		if (rv) {
496 			/*
497 			 * Need to translate ERESTART to EINTR here? -- jake
498 			 */
499 			mtx_unlock(&devsoftc.mtx);
500 			return (rv);
501 		}
502 	}
503 	n1 = TAILQ_FIRST(&devsoftc.devq);
504 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
505 	devsoftc.queued--;
506 	mtx_unlock(&devsoftc.mtx);
507 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
508 	free(n1->dei_data, M_BUS);
509 	free(n1, M_BUS);
510 	return (rv);
511 }
512 
513 static	int
514 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
515 {
516 	switch (cmd) {
517 
518 	case FIONBIO:
519 		if (*(int*)data)
520 			devsoftc.nonblock = 1;
521 		else
522 			devsoftc.nonblock = 0;
523 		return (0);
524 	case FIOASYNC:
525 		if (*(int*)data)
526 			devsoftc.async = 1;
527 		else
528 			devsoftc.async = 0;
529 		return (0);
530 	case FIOSETOWN:
531 		return fsetown(*(int *)data, &devsoftc.sigio);
532 	case FIOGETOWN:
533 		*(int *)data = fgetown(&devsoftc.sigio);
534 		return (0);
535 
536 		/* (un)Support for other fcntl() calls. */
537 	case FIOCLEX:
538 	case FIONCLEX:
539 	case FIONREAD:
540 	default:
541 		break;
542 	}
543 	return (ENOTTY);
544 }
545 
546 static	int
547 devpoll(struct cdev *dev, int events, struct thread *td)
548 {
549 	int	revents = 0;
550 
551 	mtx_lock(&devsoftc.mtx);
552 	if (events & (POLLIN | POLLRDNORM)) {
553 		if (!TAILQ_EMPTY(&devsoftc.devq))
554 			revents = events & (POLLIN | POLLRDNORM);
555 		else
556 			selrecord(td, &devsoftc.sel);
557 	}
558 	mtx_unlock(&devsoftc.mtx);
559 
560 	return (revents);
561 }
562 
563 static int
564 devkqfilter(struct cdev *dev, struct knote *kn)
565 {
566 	int error;
567 
568 	if (kn->kn_filter == EVFILT_READ) {
569 		kn->kn_fop = &devctl_rfiltops;
570 		knlist_add(&devsoftc.sel.si_note, kn, 0);
571 		error = 0;
572 	} else
573 		error = EINVAL;
574 	return (error);
575 }
576 
577 static void
578 filt_devctl_detach(struct knote *kn)
579 {
580 
581 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
582 }
583 
584 static int
585 filt_devctl_read(struct knote *kn, long hint)
586 {
587 	kn->kn_data = devsoftc.queued;
588 	return (kn->kn_data != 0);
589 }
590 
591 /**
592  * @brief Return whether the userland process is running
593  */
594 boolean_t
595 devctl_process_running(void)
596 {
597 	return (devsoftc.inuse == 1);
598 }
599 
600 /**
601  * @brief Queue data to be read from the devctl device
602  *
603  * Generic interface to queue data to the devctl device.  It is
604  * assumed that @p data is properly formatted.  It is further assumed
605  * that @p data is allocated using the M_BUS malloc type.
606  */
607 void
608 devctl_queue_data_f(char *data, int flags)
609 {
610 	struct dev_event_info *n1 = NULL, *n2 = NULL;
611 
612 	if (strlen(data) == 0)
613 		goto out;
614 	if (devctl_queue_length == 0)
615 		goto out;
616 	n1 = malloc(sizeof(*n1), M_BUS, flags);
617 	if (n1 == NULL)
618 		goto out;
619 	n1->dei_data = data;
620 	mtx_lock(&devsoftc.mtx);
621 	if (devctl_queue_length == 0) {
622 		mtx_unlock(&devsoftc.mtx);
623 		free(n1->dei_data, M_BUS);
624 		free(n1, M_BUS);
625 		return;
626 	}
627 	/* Leave at least one spot in the queue... */
628 	while (devsoftc.queued > devctl_queue_length - 1) {
629 		n2 = TAILQ_FIRST(&devsoftc.devq);
630 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
631 		free(n2->dei_data, M_BUS);
632 		free(n2, M_BUS);
633 		devsoftc.queued--;
634 	}
635 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
636 	devsoftc.queued++;
637 	cv_broadcast(&devsoftc.cv);
638 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
639 	mtx_unlock(&devsoftc.mtx);
640 	selwakeup(&devsoftc.sel);
641 	if (devsoftc.async && devsoftc.sigio != NULL)
642 		pgsigio(&devsoftc.sigio, SIGIO, 0);
643 	return;
644 out:
645 	/*
646 	 * We have to free data on all error paths since the caller
647 	 * assumes it will be free'd when this item is dequeued.
648 	 */
649 	free(data, M_BUS);
650 	return;
651 }
652 
653 void
654 devctl_queue_data(char *data)
655 {
656 
657 	devctl_queue_data_f(data, M_NOWAIT);
658 }
659 
660 /**
661  * @brief Send a 'notification' to userland, using standard ways
662  */
663 void
664 devctl_notify_f(const char *system, const char *subsystem, const char *type,
665     const char *data, int flags)
666 {
667 	int len = 0;
668 	char *msg;
669 
670 	if (system == NULL)
671 		return;		/* BOGUS!  Must specify system. */
672 	if (subsystem == NULL)
673 		return;		/* BOGUS!  Must specify subsystem. */
674 	if (type == NULL)
675 		return;		/* BOGUS!  Must specify type. */
676 	len += strlen(" system=") + strlen(system);
677 	len += strlen(" subsystem=") + strlen(subsystem);
678 	len += strlen(" type=") + strlen(type);
679 	/* add in the data message plus newline. */
680 	if (data != NULL)
681 		len += strlen(data);
682 	len += 3;	/* '!', '\n', and NUL */
683 	msg = malloc(len, M_BUS, flags);
684 	if (msg == NULL)
685 		return;		/* Drop it on the floor */
686 	if (data != NULL)
687 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
688 		    system, subsystem, type, data);
689 	else
690 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
691 		    system, subsystem, type);
692 	devctl_queue_data_f(msg, flags);
693 }
694 
695 void
696 devctl_notify(const char *system, const char *subsystem, const char *type,
697     const char *data)
698 {
699 
700 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
701 }
702 
703 /*
704  * Common routine that tries to make sending messages as easy as possible.
705  * We allocate memory for the data, copy strings into that, but do not
706  * free it unless there's an error.  The dequeue part of the driver should
707  * free the data.  We don't send data when the device is disabled.  We do
708  * send data, even when we have no listeners, because we wish to avoid
709  * races relating to startup and restart of listening applications.
710  *
711  * devaddq is designed to string together the type of event, with the
712  * object of that event, plus the plug and play info and location info
713  * for that event.  This is likely most useful for devices, but less
714  * useful for other consumers of this interface.  Those should use
715  * the devctl_queue_data() interface instead.
716  */
717 static void
718 devaddq(const char *type, const char *what, device_t dev)
719 {
720 	char *data = NULL;
721 	char *loc = NULL;
722 	char *pnp = NULL;
723 	const char *parstr;
724 
725 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
726 		return;
727 	data = malloc(1024, M_BUS, M_NOWAIT);
728 	if (data == NULL)
729 		goto bad;
730 
731 	/* get the bus specific location of this device */
732 	loc = malloc(1024, M_BUS, M_NOWAIT);
733 	if (loc == NULL)
734 		goto bad;
735 	*loc = '\0';
736 	bus_child_location_str(dev, loc, 1024);
737 
738 	/* Get the bus specific pnp info of this device */
739 	pnp = malloc(1024, M_BUS, M_NOWAIT);
740 	if (pnp == NULL)
741 		goto bad;
742 	*pnp = '\0';
743 	bus_child_pnpinfo_str(dev, pnp, 1024);
744 
745 	/* Get the parent of this device, or / if high enough in the tree. */
746 	if (device_get_parent(dev) == NULL)
747 		parstr = ".";	/* Or '/' ? */
748 	else
749 		parstr = device_get_nameunit(device_get_parent(dev));
750 	/* String it all together. */
751 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
752 	  parstr);
753 	free(loc, M_BUS);
754 	free(pnp, M_BUS);
755 	devctl_queue_data(data);
756 	return;
757 bad:
758 	free(pnp, M_BUS);
759 	free(loc, M_BUS);
760 	free(data, M_BUS);
761 	return;
762 }
763 
764 /*
765  * A device was added to the tree.  We are called just after it successfully
766  * attaches (that is, probe and attach success for this device).  No call
767  * is made if a device is merely parented into the tree.  See devnomatch
768  * if probe fails.  If attach fails, no notification is sent (but maybe
769  * we should have a different message for this).
770  */
771 static void
772 devadded(device_t dev)
773 {
774 	devaddq("+", device_get_nameunit(dev), dev);
775 }
776 
777 /*
778  * A device was removed from the tree.  We are called just before this
779  * happens.
780  */
781 static void
782 devremoved(device_t dev)
783 {
784 	devaddq("-", device_get_nameunit(dev), dev);
785 }
786 
787 /*
788  * Called when there's no match for this device.  This is only called
789  * the first time that no match happens, so we don't keep getting this
790  * message.  Should that prove to be undesirable, we can change it.
791  * This is called when all drivers that can attach to a given bus
792  * decline to accept this device.  Other errors may not be detected.
793  */
794 static void
795 devnomatch(device_t dev)
796 {
797 	devaddq("?", "", dev);
798 }
799 
800 static int
801 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
802 {
803 	struct dev_event_info *n1;
804 	int dis, error;
805 
806 	dis = (devctl_queue_length == 0);
807 	error = sysctl_handle_int(oidp, &dis, 0, req);
808 	if (error || !req->newptr)
809 		return (error);
810 	if (mtx_initialized(&devsoftc.mtx))
811 		mtx_lock(&devsoftc.mtx);
812 	if (dis) {
813 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
814 			n1 = TAILQ_FIRST(&devsoftc.devq);
815 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
816 			free(n1->dei_data, M_BUS);
817 			free(n1, M_BUS);
818 		}
819 		devsoftc.queued = 0;
820 		devctl_queue_length = 0;
821 	} else {
822 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
823 	}
824 	if (mtx_initialized(&devsoftc.mtx))
825 		mtx_unlock(&devsoftc.mtx);
826 	return (0);
827 }
828 
829 static int
830 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
831 {
832 	struct dev_event_info *n1;
833 	int q, error;
834 
835 	q = devctl_queue_length;
836 	error = sysctl_handle_int(oidp, &q, 0, req);
837 	if (error || !req->newptr)
838 		return (error);
839 	if (q < 0)
840 		return (EINVAL);
841 	if (mtx_initialized(&devsoftc.mtx))
842 		mtx_lock(&devsoftc.mtx);
843 	devctl_queue_length = q;
844 	while (devsoftc.queued > devctl_queue_length) {
845 		n1 = TAILQ_FIRST(&devsoftc.devq);
846 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
847 		free(n1->dei_data, M_BUS);
848 		free(n1, M_BUS);
849 		devsoftc.queued--;
850 	}
851 	if (mtx_initialized(&devsoftc.mtx))
852 		mtx_unlock(&devsoftc.mtx);
853 	return (0);
854 }
855 
856 /**
857  * @brief safely quotes strings that might have double quotes in them.
858  *
859  * The devctl protocol relies on quoted strings having matching quotes.
860  * This routine quotes any internal quotes so the resulting string
861  * is safe to pass to snprintf to construct, for example pnp info strings.
862  * Strings are always terminated with a NUL, but may be truncated if longer
863  * than @p len bytes after quotes.
864  *
865  * @param sb	sbuf to place the characters into
866  * @param src	Original buffer.
867  */
868 void
869 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
870 {
871 
872 	while (*src != '\0') {
873 		if (*src == '"' || *src == '\\')
874 			sbuf_putc(sb, '\\');
875 		sbuf_putc(sb, *src++);
876 	}
877 }
878 
879 /* End of /dev/devctl code */
880 
881 static TAILQ_HEAD(,device)	bus_data_devices;
882 static int bus_data_generation = 1;
883 
884 static kobj_method_t null_methods[] = {
885 	KOBJMETHOD_END
886 };
887 
888 DEFINE_CLASS(null, null_methods, 0);
889 
890 /*
891  * Bus pass implementation
892  */
893 
894 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
895 int bus_current_pass = BUS_PASS_ROOT;
896 
897 /**
898  * @internal
899  * @brief Register the pass level of a new driver attachment
900  *
901  * Register a new driver attachment's pass level.  If no driver
902  * attachment with the same pass level has been added, then @p new
903  * will be added to the global passes list.
904  *
905  * @param new		the new driver attachment
906  */
907 static void
908 driver_register_pass(struct driverlink *new)
909 {
910 	struct driverlink *dl;
911 
912 	/* We only consider pass numbers during boot. */
913 	if (bus_current_pass == BUS_PASS_DEFAULT)
914 		return;
915 
916 	/*
917 	 * Walk the passes list.  If we already know about this pass
918 	 * then there is nothing to do.  If we don't, then insert this
919 	 * driver link into the list.
920 	 */
921 	TAILQ_FOREACH(dl, &passes, passlink) {
922 		if (dl->pass < new->pass)
923 			continue;
924 		if (dl->pass == new->pass)
925 			return;
926 		TAILQ_INSERT_BEFORE(dl, new, passlink);
927 		return;
928 	}
929 	TAILQ_INSERT_TAIL(&passes, new, passlink);
930 }
931 
932 /**
933  * @brief Raise the current bus pass
934  *
935  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
936  * method on the root bus to kick off a new device tree scan for each
937  * new pass level that has at least one driver.
938  */
939 void
940 bus_set_pass(int pass)
941 {
942 	struct driverlink *dl;
943 
944 	if (bus_current_pass > pass)
945 		panic("Attempt to lower bus pass level");
946 
947 	TAILQ_FOREACH(dl, &passes, passlink) {
948 		/* Skip pass values below the current pass level. */
949 		if (dl->pass <= bus_current_pass)
950 			continue;
951 
952 		/*
953 		 * Bail once we hit a driver with a pass level that is
954 		 * too high.
955 		 */
956 		if (dl->pass > pass)
957 			break;
958 
959 		/*
960 		 * Raise the pass level to the next level and rescan
961 		 * the tree.
962 		 */
963 		bus_current_pass = dl->pass;
964 		BUS_NEW_PASS(root_bus);
965 	}
966 
967 	/*
968 	 * If there isn't a driver registered for the requested pass,
969 	 * then bus_current_pass might still be less than 'pass'.  Set
970 	 * it to 'pass' in that case.
971 	 */
972 	if (bus_current_pass < pass)
973 		bus_current_pass = pass;
974 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
975 }
976 
977 /*
978  * Devclass implementation
979  */
980 
981 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
982 
983 /**
984  * @internal
985  * @brief Find or create a device class
986  *
987  * If a device class with the name @p classname exists, return it,
988  * otherwise if @p create is non-zero create and return a new device
989  * class.
990  *
991  * If @p parentname is non-NULL, the parent of the devclass is set to
992  * the devclass of that name.
993  *
994  * @param classname	the devclass name to find or create
995  * @param parentname	the parent devclass name or @c NULL
996  * @param create	non-zero to create a devclass
997  */
998 static devclass_t
999 devclass_find_internal(const char *classname, const char *parentname,
1000 		       int create)
1001 {
1002 	devclass_t dc;
1003 
1004 	PDEBUG(("looking for %s", classname));
1005 	if (!classname)
1006 		return (NULL);
1007 
1008 	TAILQ_FOREACH(dc, &devclasses, link) {
1009 		if (!strcmp(dc->name, classname))
1010 			break;
1011 	}
1012 
1013 	if (create && !dc) {
1014 		PDEBUG(("creating %s", classname));
1015 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1016 		    M_BUS, M_NOWAIT | M_ZERO);
1017 		if (!dc)
1018 			return (NULL);
1019 		dc->parent = NULL;
1020 		dc->name = (char*) (dc + 1);
1021 		strcpy(dc->name, classname);
1022 		TAILQ_INIT(&dc->drivers);
1023 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1024 
1025 		bus_data_generation_update();
1026 	}
1027 
1028 	/*
1029 	 * If a parent class is specified, then set that as our parent so
1030 	 * that this devclass will support drivers for the parent class as
1031 	 * well.  If the parent class has the same name don't do this though
1032 	 * as it creates a cycle that can trigger an infinite loop in
1033 	 * device_probe_child() if a device exists for which there is no
1034 	 * suitable driver.
1035 	 */
1036 	if (parentname && dc && !dc->parent &&
1037 	    strcmp(classname, parentname) != 0) {
1038 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1039 		dc->parent->flags |= DC_HAS_CHILDREN;
1040 	}
1041 
1042 	return (dc);
1043 }
1044 
1045 /**
1046  * @brief Create a device class
1047  *
1048  * If a device class with the name @p classname exists, return it,
1049  * otherwise create and return a new device class.
1050  *
1051  * @param classname	the devclass name to find or create
1052  */
1053 devclass_t
1054 devclass_create(const char *classname)
1055 {
1056 	return (devclass_find_internal(classname, NULL, TRUE));
1057 }
1058 
1059 /**
1060  * @brief Find a device class
1061  *
1062  * If a device class with the name @p classname exists, return it,
1063  * otherwise return @c NULL.
1064  *
1065  * @param classname	the devclass name to find
1066  */
1067 devclass_t
1068 devclass_find(const char *classname)
1069 {
1070 	return (devclass_find_internal(classname, NULL, FALSE));
1071 }
1072 
1073 /**
1074  * @brief Register that a device driver has been added to a devclass
1075  *
1076  * Register that a device driver has been added to a devclass.  This
1077  * is called by devclass_add_driver to accomplish the recursive
1078  * notification of all the children classes of dc, as well as dc.
1079  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1080  * the devclass.
1081  *
1082  * We do a full search here of the devclass list at each iteration
1083  * level to save storing children-lists in the devclass structure.  If
1084  * we ever move beyond a few dozen devices doing this, we may need to
1085  * reevaluate...
1086  *
1087  * @param dc		the devclass to edit
1088  * @param driver	the driver that was just added
1089  */
1090 static void
1091 devclass_driver_added(devclass_t dc, driver_t *driver)
1092 {
1093 	devclass_t parent;
1094 	int i;
1095 
1096 	/*
1097 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1098 	 */
1099 	for (i = 0; i < dc->maxunit; i++)
1100 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1101 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1102 
1103 	/*
1104 	 * Walk through the children classes.  Since we only keep a
1105 	 * single parent pointer around, we walk the entire list of
1106 	 * devclasses looking for children.  We set the
1107 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1108 	 * the parent, so we only walk the list for those devclasses
1109 	 * that have children.
1110 	 */
1111 	if (!(dc->flags & DC_HAS_CHILDREN))
1112 		return;
1113 	parent = dc;
1114 	TAILQ_FOREACH(dc, &devclasses, link) {
1115 		if (dc->parent == parent)
1116 			devclass_driver_added(dc, driver);
1117 	}
1118 }
1119 
1120 /**
1121  * @brief Add a device driver to a device class
1122  *
1123  * Add a device driver to a devclass. This is normally called
1124  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1125  * all devices in the devclass will be called to allow them to attempt
1126  * to re-probe any unmatched children.
1127  *
1128  * @param dc		the devclass to edit
1129  * @param driver	the driver to register
1130  */
1131 int
1132 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1133 {
1134 	driverlink_t dl;
1135 	const char *parentname;
1136 
1137 	PDEBUG(("%s", DRIVERNAME(driver)));
1138 
1139 	/* Don't allow invalid pass values. */
1140 	if (pass <= BUS_PASS_ROOT)
1141 		return (EINVAL);
1142 
1143 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1144 	if (!dl)
1145 		return (ENOMEM);
1146 
1147 	/*
1148 	 * Compile the driver's methods. Also increase the reference count
1149 	 * so that the class doesn't get freed when the last instance
1150 	 * goes. This means we can safely use static methods and avoids a
1151 	 * double-free in devclass_delete_driver.
1152 	 */
1153 	kobj_class_compile((kobj_class_t) driver);
1154 
1155 	/*
1156 	 * If the driver has any base classes, make the
1157 	 * devclass inherit from the devclass of the driver's
1158 	 * first base class. This will allow the system to
1159 	 * search for drivers in both devclasses for children
1160 	 * of a device using this driver.
1161 	 */
1162 	if (driver->baseclasses)
1163 		parentname = driver->baseclasses[0]->name;
1164 	else
1165 		parentname = NULL;
1166 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1167 
1168 	dl->driver = driver;
1169 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1170 	driver->refs++;		/* XXX: kobj_mtx */
1171 	dl->pass = pass;
1172 	driver_register_pass(dl);
1173 
1174 	if (device_frozen) {
1175 		dl->flags |= DL_DEFERRED_PROBE;
1176 	} else {
1177 		devclass_driver_added(dc, driver);
1178 	}
1179 	bus_data_generation_update();
1180 	return (0);
1181 }
1182 
1183 /**
1184  * @brief Register that a device driver has been deleted from a devclass
1185  *
1186  * Register that a device driver has been removed from a devclass.
1187  * This is called by devclass_delete_driver to accomplish the
1188  * recursive notification of all the children classes of busclass, as
1189  * well as busclass.  Each layer will attempt to detach the driver
1190  * from any devices that are children of the bus's devclass.  The function
1191  * will return an error if a device fails to detach.
1192  *
1193  * We do a full search here of the devclass list at each iteration
1194  * level to save storing children-lists in the devclass structure.  If
1195  * we ever move beyond a few dozen devices doing this, we may need to
1196  * reevaluate...
1197  *
1198  * @param busclass	the devclass of the parent bus
1199  * @param dc		the devclass of the driver being deleted
1200  * @param driver	the driver being deleted
1201  */
1202 static int
1203 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1204 {
1205 	devclass_t parent;
1206 	device_t dev;
1207 	int error, i;
1208 
1209 	/*
1210 	 * Disassociate from any devices.  We iterate through all the
1211 	 * devices in the devclass of the driver and detach any which are
1212 	 * using the driver and which have a parent in the devclass which
1213 	 * we are deleting from.
1214 	 *
1215 	 * Note that since a driver can be in multiple devclasses, we
1216 	 * should not detach devices which are not children of devices in
1217 	 * the affected devclass.
1218 	 *
1219 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1220 	 * generate later.
1221 	 */
1222 	for (i = 0; i < dc->maxunit; i++) {
1223 		if (dc->devices[i]) {
1224 			dev = dc->devices[i];
1225 			if (dev->driver == driver && dev->parent &&
1226 			    dev->parent->devclass == busclass) {
1227 				if ((error = device_detach(dev)) != 0)
1228 					return (error);
1229 				if (device_frozen) {
1230 					dev->flags &= ~DF_DONENOMATCH;
1231 					dev->flags |= DF_NEEDNOMATCH;
1232 				} else {
1233 					BUS_PROBE_NOMATCH(dev->parent, dev);
1234 					devnomatch(dev);
1235 					dev->flags |= DF_DONENOMATCH;
1236 				}
1237 			}
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Walk through the children classes.  Since we only keep a
1243 	 * single parent pointer around, we walk the entire list of
1244 	 * devclasses looking for children.  We set the
1245 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1246 	 * the parent, so we only walk the list for those devclasses
1247 	 * that have children.
1248 	 */
1249 	if (!(busclass->flags & DC_HAS_CHILDREN))
1250 		return (0);
1251 	parent = busclass;
1252 	TAILQ_FOREACH(busclass, &devclasses, link) {
1253 		if (busclass->parent == parent) {
1254 			error = devclass_driver_deleted(busclass, dc, driver);
1255 			if (error)
1256 				return (error);
1257 		}
1258 	}
1259 	return (0);
1260 }
1261 
1262 /**
1263  * @brief Delete a device driver from a device class
1264  *
1265  * Delete a device driver from a devclass. This is normally called
1266  * automatically by DRIVER_MODULE().
1267  *
1268  * If the driver is currently attached to any devices,
1269  * devclass_delete_driver() will first attempt to detach from each
1270  * device. If one of the detach calls fails, the driver will not be
1271  * deleted.
1272  *
1273  * @param dc		the devclass to edit
1274  * @param driver	the driver to unregister
1275  */
1276 int
1277 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1278 {
1279 	devclass_t dc = devclass_find(driver->name);
1280 	driverlink_t dl;
1281 	int error;
1282 
1283 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1284 
1285 	if (!dc)
1286 		return (0);
1287 
1288 	/*
1289 	 * Find the link structure in the bus' list of drivers.
1290 	 */
1291 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1292 		if (dl->driver == driver)
1293 			break;
1294 	}
1295 
1296 	if (!dl) {
1297 		PDEBUG(("%s not found in %s list", driver->name,
1298 		    busclass->name));
1299 		return (ENOENT);
1300 	}
1301 
1302 	error = devclass_driver_deleted(busclass, dc, driver);
1303 	if (error != 0)
1304 		return (error);
1305 
1306 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1307 	free(dl, M_BUS);
1308 
1309 	/* XXX: kobj_mtx */
1310 	driver->refs--;
1311 	if (driver->refs == 0)
1312 		kobj_class_free((kobj_class_t) driver);
1313 
1314 	bus_data_generation_update();
1315 	return (0);
1316 }
1317 
1318 /**
1319  * @brief Quiesces a set of device drivers from a device class
1320  *
1321  * Quiesce a device driver from a devclass. This is normally called
1322  * automatically by DRIVER_MODULE().
1323  *
1324  * If the driver is currently attached to any devices,
1325  * devclass_quiesece_driver() will first attempt to quiesce each
1326  * device.
1327  *
1328  * @param dc		the devclass to edit
1329  * @param driver	the driver to unregister
1330  */
1331 static int
1332 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1333 {
1334 	devclass_t dc = devclass_find(driver->name);
1335 	driverlink_t dl;
1336 	device_t dev;
1337 	int i;
1338 	int error;
1339 
1340 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1341 
1342 	if (!dc)
1343 		return (0);
1344 
1345 	/*
1346 	 * Find the link structure in the bus' list of drivers.
1347 	 */
1348 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1349 		if (dl->driver == driver)
1350 			break;
1351 	}
1352 
1353 	if (!dl) {
1354 		PDEBUG(("%s not found in %s list", driver->name,
1355 		    busclass->name));
1356 		return (ENOENT);
1357 	}
1358 
1359 	/*
1360 	 * Quiesce all devices.  We iterate through all the devices in
1361 	 * the devclass of the driver and quiesce any which are using
1362 	 * the driver and which have a parent in the devclass which we
1363 	 * are quiescing.
1364 	 *
1365 	 * Note that since a driver can be in multiple devclasses, we
1366 	 * should not quiesce devices which are not children of
1367 	 * devices in the affected devclass.
1368 	 */
1369 	for (i = 0; i < dc->maxunit; i++) {
1370 		if (dc->devices[i]) {
1371 			dev = dc->devices[i];
1372 			if (dev->driver == driver && dev->parent &&
1373 			    dev->parent->devclass == busclass) {
1374 				if ((error = device_quiesce(dev)) != 0)
1375 					return (error);
1376 			}
1377 		}
1378 	}
1379 
1380 	return (0);
1381 }
1382 
1383 /**
1384  * @internal
1385  */
1386 static driverlink_t
1387 devclass_find_driver_internal(devclass_t dc, const char *classname)
1388 {
1389 	driverlink_t dl;
1390 
1391 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1392 
1393 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1394 		if (!strcmp(dl->driver->name, classname))
1395 			return (dl);
1396 	}
1397 
1398 	PDEBUG(("not found"));
1399 	return (NULL);
1400 }
1401 
1402 /**
1403  * @brief Return the name of the devclass
1404  */
1405 const char *
1406 devclass_get_name(devclass_t dc)
1407 {
1408 	return (dc->name);
1409 }
1410 
1411 /**
1412  * @brief Find a device given a unit number
1413  *
1414  * @param dc		the devclass to search
1415  * @param unit		the unit number to search for
1416  *
1417  * @returns		the device with the given unit number or @c
1418  *			NULL if there is no such device
1419  */
1420 device_t
1421 devclass_get_device(devclass_t dc, int unit)
1422 {
1423 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1424 		return (NULL);
1425 	return (dc->devices[unit]);
1426 }
1427 
1428 /**
1429  * @brief Find the softc field of a device given a unit number
1430  *
1431  * @param dc		the devclass to search
1432  * @param unit		the unit number to search for
1433  *
1434  * @returns		the softc field of the device with the given
1435  *			unit number or @c NULL if there is no such
1436  *			device
1437  */
1438 void *
1439 devclass_get_softc(devclass_t dc, int unit)
1440 {
1441 	device_t dev;
1442 
1443 	dev = devclass_get_device(dc, unit);
1444 	if (!dev)
1445 		return (NULL);
1446 
1447 	return (device_get_softc(dev));
1448 }
1449 
1450 /**
1451  * @brief Get a list of devices in the devclass
1452  *
1453  * An array containing a list of all the devices in the given devclass
1454  * is allocated and returned in @p *devlistp. The number of devices
1455  * in the array is returned in @p *devcountp. The caller should free
1456  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1457  *
1458  * @param dc		the devclass to examine
1459  * @param devlistp	points at location for array pointer return
1460  *			value
1461  * @param devcountp	points at location for array size return value
1462  *
1463  * @retval 0		success
1464  * @retval ENOMEM	the array allocation failed
1465  */
1466 int
1467 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1468 {
1469 	int count, i;
1470 	device_t *list;
1471 
1472 	count = devclass_get_count(dc);
1473 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1474 	if (!list)
1475 		return (ENOMEM);
1476 
1477 	count = 0;
1478 	for (i = 0; i < dc->maxunit; i++) {
1479 		if (dc->devices[i]) {
1480 			list[count] = dc->devices[i];
1481 			count++;
1482 		}
1483 	}
1484 
1485 	*devlistp = list;
1486 	*devcountp = count;
1487 
1488 	return (0);
1489 }
1490 
1491 /**
1492  * @brief Get a list of drivers in the devclass
1493  *
1494  * An array containing a list of pointers to all the drivers in the
1495  * given devclass is allocated and returned in @p *listp.  The number
1496  * of drivers in the array is returned in @p *countp. The caller should
1497  * free the array using @c free(p, M_TEMP).
1498  *
1499  * @param dc		the devclass to examine
1500  * @param listp		gives location for array pointer return value
1501  * @param countp	gives location for number of array elements
1502  *			return value
1503  *
1504  * @retval 0		success
1505  * @retval ENOMEM	the array allocation failed
1506  */
1507 int
1508 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1509 {
1510 	driverlink_t dl;
1511 	driver_t **list;
1512 	int count;
1513 
1514 	count = 0;
1515 	TAILQ_FOREACH(dl, &dc->drivers, link)
1516 		count++;
1517 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1518 	if (list == NULL)
1519 		return (ENOMEM);
1520 
1521 	count = 0;
1522 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1523 		list[count] = dl->driver;
1524 		count++;
1525 	}
1526 	*listp = list;
1527 	*countp = count;
1528 
1529 	return (0);
1530 }
1531 
1532 /**
1533  * @brief Get the number of devices in a devclass
1534  *
1535  * @param dc		the devclass to examine
1536  */
1537 int
1538 devclass_get_count(devclass_t dc)
1539 {
1540 	int count, i;
1541 
1542 	count = 0;
1543 	for (i = 0; i < dc->maxunit; i++)
1544 		if (dc->devices[i])
1545 			count++;
1546 	return (count);
1547 }
1548 
1549 /**
1550  * @brief Get the maximum unit number used in a devclass
1551  *
1552  * Note that this is one greater than the highest currently-allocated
1553  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1554  * that not even the devclass has been allocated yet.
1555  *
1556  * @param dc		the devclass to examine
1557  */
1558 int
1559 devclass_get_maxunit(devclass_t dc)
1560 {
1561 	if (dc == NULL)
1562 		return (-1);
1563 	return (dc->maxunit);
1564 }
1565 
1566 /**
1567  * @brief Find a free unit number in a devclass
1568  *
1569  * This function searches for the first unused unit number greater
1570  * that or equal to @p unit.
1571  *
1572  * @param dc		the devclass to examine
1573  * @param unit		the first unit number to check
1574  */
1575 int
1576 devclass_find_free_unit(devclass_t dc, int unit)
1577 {
1578 	if (dc == NULL)
1579 		return (unit);
1580 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1581 		unit++;
1582 	return (unit);
1583 }
1584 
1585 /**
1586  * @brief Set the parent of a devclass
1587  *
1588  * The parent class is normally initialised automatically by
1589  * DRIVER_MODULE().
1590  *
1591  * @param dc		the devclass to edit
1592  * @param pdc		the new parent devclass
1593  */
1594 void
1595 devclass_set_parent(devclass_t dc, devclass_t pdc)
1596 {
1597 	dc->parent = pdc;
1598 }
1599 
1600 /**
1601  * @brief Get the parent of a devclass
1602  *
1603  * @param dc		the devclass to examine
1604  */
1605 devclass_t
1606 devclass_get_parent(devclass_t dc)
1607 {
1608 	return (dc->parent);
1609 }
1610 
1611 struct sysctl_ctx_list *
1612 devclass_get_sysctl_ctx(devclass_t dc)
1613 {
1614 	return (&dc->sysctl_ctx);
1615 }
1616 
1617 struct sysctl_oid *
1618 devclass_get_sysctl_tree(devclass_t dc)
1619 {
1620 	return (dc->sysctl_tree);
1621 }
1622 
1623 /**
1624  * @internal
1625  * @brief Allocate a unit number
1626  *
1627  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1628  * will do). The allocated unit number is returned in @p *unitp.
1629 
1630  * @param dc		the devclass to allocate from
1631  * @param unitp		points at the location for the allocated unit
1632  *			number
1633  *
1634  * @retval 0		success
1635  * @retval EEXIST	the requested unit number is already allocated
1636  * @retval ENOMEM	memory allocation failure
1637  */
1638 static int
1639 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1640 {
1641 	const char *s;
1642 	int unit = *unitp;
1643 
1644 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1645 
1646 	/* Ask the parent bus if it wants to wire this device. */
1647 	if (unit == -1)
1648 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1649 		    &unit);
1650 
1651 	/* If we were given a wired unit number, check for existing device */
1652 	/* XXX imp XXX */
1653 	if (unit != -1) {
1654 		if (unit >= 0 && unit < dc->maxunit &&
1655 		    dc->devices[unit] != NULL) {
1656 			if (bootverbose)
1657 				printf("%s: %s%d already exists; skipping it\n",
1658 				    dc->name, dc->name, *unitp);
1659 			return (EEXIST);
1660 		}
1661 	} else {
1662 		/* Unwired device, find the next available slot for it */
1663 		unit = 0;
1664 		for (unit = 0;; unit++) {
1665 			/* If there is an "at" hint for a unit then skip it. */
1666 			if (resource_string_value(dc->name, unit, "at", &s) ==
1667 			    0)
1668 				continue;
1669 
1670 			/* If this device slot is already in use, skip it. */
1671 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1672 				continue;
1673 
1674 			break;
1675 		}
1676 	}
1677 
1678 	/*
1679 	 * We've selected a unit beyond the length of the table, so let's
1680 	 * extend the table to make room for all units up to and including
1681 	 * this one.
1682 	 */
1683 	if (unit >= dc->maxunit) {
1684 		device_t *newlist, *oldlist;
1685 		int newsize;
1686 
1687 		oldlist = dc->devices;
1688 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1689 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1690 		if (!newlist)
1691 			return (ENOMEM);
1692 		if (oldlist != NULL)
1693 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1694 		bzero(newlist + dc->maxunit,
1695 		    sizeof(device_t) * (newsize - dc->maxunit));
1696 		dc->devices = newlist;
1697 		dc->maxunit = newsize;
1698 		if (oldlist != NULL)
1699 			free(oldlist, M_BUS);
1700 	}
1701 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1702 
1703 	*unitp = unit;
1704 	return (0);
1705 }
1706 
1707 /**
1708  * @internal
1709  * @brief Add a device to a devclass
1710  *
1711  * A unit number is allocated for the device (using the device's
1712  * preferred unit number if any) and the device is registered in the
1713  * devclass. This allows the device to be looked up by its unit
1714  * number, e.g. by decoding a dev_t minor number.
1715  *
1716  * @param dc		the devclass to add to
1717  * @param dev		the device to add
1718  *
1719  * @retval 0		success
1720  * @retval EEXIST	the requested unit number is already allocated
1721  * @retval ENOMEM	memory allocation failure
1722  */
1723 static int
1724 devclass_add_device(devclass_t dc, device_t dev)
1725 {
1726 	int buflen, error;
1727 
1728 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1729 
1730 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1731 	if (buflen < 0)
1732 		return (ENOMEM);
1733 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1734 	if (!dev->nameunit)
1735 		return (ENOMEM);
1736 
1737 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1738 		free(dev->nameunit, M_BUS);
1739 		dev->nameunit = NULL;
1740 		return (error);
1741 	}
1742 	dc->devices[dev->unit] = dev;
1743 	dev->devclass = dc;
1744 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1745 
1746 	return (0);
1747 }
1748 
1749 /**
1750  * @internal
1751  * @brief Delete a device from a devclass
1752  *
1753  * The device is removed from the devclass's device list and its unit
1754  * number is freed.
1755 
1756  * @param dc		the devclass to delete from
1757  * @param dev		the device to delete
1758  *
1759  * @retval 0		success
1760  */
1761 static int
1762 devclass_delete_device(devclass_t dc, device_t dev)
1763 {
1764 	if (!dc || !dev)
1765 		return (0);
1766 
1767 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1768 
1769 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1770 		panic("devclass_delete_device: inconsistent device class");
1771 	dc->devices[dev->unit] = NULL;
1772 	if (dev->flags & DF_WILDCARD)
1773 		dev->unit = -1;
1774 	dev->devclass = NULL;
1775 	free(dev->nameunit, M_BUS);
1776 	dev->nameunit = NULL;
1777 
1778 	return (0);
1779 }
1780 
1781 /**
1782  * @internal
1783  * @brief Make a new device and add it as a child of @p parent
1784  *
1785  * @param parent	the parent of the new device
1786  * @param name		the devclass name of the new device or @c NULL
1787  *			to leave the devclass unspecified
1788  * @parem unit		the unit number of the new device of @c -1 to
1789  *			leave the unit number unspecified
1790  *
1791  * @returns the new device
1792  */
1793 static device_t
1794 make_device(device_t parent, const char *name, int unit)
1795 {
1796 	device_t dev;
1797 	devclass_t dc;
1798 
1799 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1800 
1801 	if (name) {
1802 		dc = devclass_find_internal(name, NULL, TRUE);
1803 		if (!dc) {
1804 			printf("make_device: can't find device class %s\n",
1805 			    name);
1806 			return (NULL);
1807 		}
1808 	} else {
1809 		dc = NULL;
1810 	}
1811 
1812 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1813 	if (!dev)
1814 		return (NULL);
1815 
1816 	dev->parent = parent;
1817 	TAILQ_INIT(&dev->children);
1818 	kobj_init((kobj_t) dev, &null_class);
1819 	dev->driver = NULL;
1820 	dev->devclass = NULL;
1821 	dev->unit = unit;
1822 	dev->nameunit = NULL;
1823 	dev->desc = NULL;
1824 	dev->busy = 0;
1825 	dev->devflags = 0;
1826 	dev->flags = DF_ENABLED;
1827 	dev->order = 0;
1828 	if (unit == -1)
1829 		dev->flags |= DF_WILDCARD;
1830 	if (name) {
1831 		dev->flags |= DF_FIXEDCLASS;
1832 		if (devclass_add_device(dc, dev)) {
1833 			kobj_delete((kobj_t) dev, M_BUS);
1834 			return (NULL);
1835 		}
1836 	}
1837 	if (parent != NULL && device_has_quiet_children(parent))
1838 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1839 	dev->ivars = NULL;
1840 	dev->softc = NULL;
1841 
1842 	dev->state = DS_NOTPRESENT;
1843 
1844 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1845 	bus_data_generation_update();
1846 
1847 	return (dev);
1848 }
1849 
1850 /**
1851  * @internal
1852  * @brief Print a description of a device.
1853  */
1854 static int
1855 device_print_child(device_t dev, device_t child)
1856 {
1857 	int retval = 0;
1858 
1859 	if (device_is_alive(child))
1860 		retval += BUS_PRINT_CHILD(dev, child);
1861 	else
1862 		retval += device_printf(child, " not found\n");
1863 
1864 	return (retval);
1865 }
1866 
1867 /**
1868  * @brief Create a new device
1869  *
1870  * This creates a new device and adds it as a child of an existing
1871  * parent device. The new device will be added after the last existing
1872  * child with order zero.
1873  *
1874  * @param dev		the device which will be the parent of the
1875  *			new child device
1876  * @param name		devclass name for new device or @c NULL if not
1877  *			specified
1878  * @param unit		unit number for new device or @c -1 if not
1879  *			specified
1880  *
1881  * @returns		the new device
1882  */
1883 device_t
1884 device_add_child(device_t dev, const char *name, int unit)
1885 {
1886 	return (device_add_child_ordered(dev, 0, name, unit));
1887 }
1888 
1889 /**
1890  * @brief Create a new device
1891  *
1892  * This creates a new device and adds it as a child of an existing
1893  * parent device. The new device will be added after the last existing
1894  * child with the same order.
1895  *
1896  * @param dev		the device which will be the parent of the
1897  *			new child device
1898  * @param order		a value which is used to partially sort the
1899  *			children of @p dev - devices created using
1900  *			lower values of @p order appear first in @p
1901  *			dev's list of children
1902  * @param name		devclass name for new device or @c NULL if not
1903  *			specified
1904  * @param unit		unit number for new device or @c -1 if not
1905  *			specified
1906  *
1907  * @returns		the new device
1908  */
1909 device_t
1910 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1911 {
1912 	device_t child;
1913 	device_t place;
1914 
1915 	PDEBUG(("%s at %s with order %u as unit %d",
1916 	    name, DEVICENAME(dev), order, unit));
1917 	KASSERT(name != NULL || unit == -1,
1918 	    ("child device with wildcard name and specific unit number"));
1919 
1920 	child = make_device(dev, name, unit);
1921 	if (child == NULL)
1922 		return (child);
1923 	child->order = order;
1924 
1925 	TAILQ_FOREACH(place, &dev->children, link) {
1926 		if (place->order > order)
1927 			break;
1928 	}
1929 
1930 	if (place) {
1931 		/*
1932 		 * The device 'place' is the first device whose order is
1933 		 * greater than the new child.
1934 		 */
1935 		TAILQ_INSERT_BEFORE(place, child, link);
1936 	} else {
1937 		/*
1938 		 * The new child's order is greater or equal to the order of
1939 		 * any existing device. Add the child to the tail of the list.
1940 		 */
1941 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1942 	}
1943 
1944 	bus_data_generation_update();
1945 	return (child);
1946 }
1947 
1948 /**
1949  * @brief Delete a device
1950  *
1951  * This function deletes a device along with all of its children. If
1952  * the device currently has a driver attached to it, the device is
1953  * detached first using device_detach().
1954  *
1955  * @param dev		the parent device
1956  * @param child		the device to delete
1957  *
1958  * @retval 0		success
1959  * @retval non-zero	a unit error code describing the error
1960  */
1961 int
1962 device_delete_child(device_t dev, device_t child)
1963 {
1964 	int error;
1965 	device_t grandchild;
1966 
1967 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1968 
1969 	/* detach parent before deleting children, if any */
1970 	if ((error = device_detach(child)) != 0)
1971 		return (error);
1972 
1973 	/* remove children second */
1974 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1975 		error = device_delete_child(child, grandchild);
1976 		if (error)
1977 			return (error);
1978 	}
1979 
1980 	if (child->devclass)
1981 		devclass_delete_device(child->devclass, child);
1982 	if (child->parent)
1983 		BUS_CHILD_DELETED(dev, child);
1984 	TAILQ_REMOVE(&dev->children, child, link);
1985 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1986 	kobj_delete((kobj_t) child, M_BUS);
1987 
1988 	bus_data_generation_update();
1989 	return (0);
1990 }
1991 
1992 /**
1993  * @brief Delete all children devices of the given device, if any.
1994  *
1995  * This function deletes all children devices of the given device, if
1996  * any, using the device_delete_child() function for each device it
1997  * finds. If a child device cannot be deleted, this function will
1998  * return an error code.
1999  *
2000  * @param dev		the parent device
2001  *
2002  * @retval 0		success
2003  * @retval non-zero	a device would not detach
2004  */
2005 int
2006 device_delete_children(device_t dev)
2007 {
2008 	device_t child;
2009 	int error;
2010 
2011 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
2012 
2013 	error = 0;
2014 
2015 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
2016 		error = device_delete_child(dev, child);
2017 		if (error) {
2018 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2019 			break;
2020 		}
2021 	}
2022 	return (error);
2023 }
2024 
2025 /**
2026  * @brief Find a device given a unit number
2027  *
2028  * This is similar to devclass_get_devices() but only searches for
2029  * devices which have @p dev as a parent.
2030  *
2031  * @param dev		the parent device to search
2032  * @param unit		the unit number to search for.  If the unit is -1,
2033  *			return the first child of @p dev which has name
2034  *			@p classname (that is, the one with the lowest unit.)
2035  *
2036  * @returns		the device with the given unit number or @c
2037  *			NULL if there is no such device
2038  */
2039 device_t
2040 device_find_child(device_t dev, const char *classname, int unit)
2041 {
2042 	devclass_t dc;
2043 	device_t child;
2044 
2045 	dc = devclass_find(classname);
2046 	if (!dc)
2047 		return (NULL);
2048 
2049 	if (unit != -1) {
2050 		child = devclass_get_device(dc, unit);
2051 		if (child && child->parent == dev)
2052 			return (child);
2053 	} else {
2054 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2055 			child = devclass_get_device(dc, unit);
2056 			if (child && child->parent == dev)
2057 				return (child);
2058 		}
2059 	}
2060 	return (NULL);
2061 }
2062 
2063 /**
2064  * @internal
2065  */
2066 static driverlink_t
2067 first_matching_driver(devclass_t dc, device_t dev)
2068 {
2069 	if (dev->devclass)
2070 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2071 	return (TAILQ_FIRST(&dc->drivers));
2072 }
2073 
2074 /**
2075  * @internal
2076  */
2077 static driverlink_t
2078 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2079 {
2080 	if (dev->devclass) {
2081 		driverlink_t dl;
2082 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2083 			if (!strcmp(dev->devclass->name, dl->driver->name))
2084 				return (dl);
2085 		return (NULL);
2086 	}
2087 	return (TAILQ_NEXT(last, link));
2088 }
2089 
2090 /**
2091  * @internal
2092  */
2093 int
2094 device_probe_child(device_t dev, device_t child)
2095 {
2096 	devclass_t dc;
2097 	driverlink_t best = NULL;
2098 	driverlink_t dl;
2099 	int result, pri = 0;
2100 	int hasclass = (child->devclass != NULL);
2101 
2102 	GIANT_REQUIRED;
2103 
2104 	dc = dev->devclass;
2105 	if (!dc)
2106 		panic("device_probe_child: parent device has no devclass");
2107 
2108 	/*
2109 	 * If the state is already probed, then return.  However, don't
2110 	 * return if we can rebid this object.
2111 	 */
2112 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2113 		return (0);
2114 
2115 	for (; dc; dc = dc->parent) {
2116 		for (dl = first_matching_driver(dc, child);
2117 		     dl;
2118 		     dl = next_matching_driver(dc, child, dl)) {
2119 			/* If this driver's pass is too high, then ignore it. */
2120 			if (dl->pass > bus_current_pass)
2121 				continue;
2122 
2123 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2124 			result = device_set_driver(child, dl->driver);
2125 			if (result == ENOMEM)
2126 				return (result);
2127 			else if (result != 0)
2128 				continue;
2129 			if (!hasclass) {
2130 				if (device_set_devclass(child,
2131 				    dl->driver->name) != 0) {
2132 					char const * devname =
2133 					    device_get_name(child);
2134 					if (devname == NULL)
2135 						devname = "(unknown)";
2136 					printf("driver bug: Unable to set "
2137 					    "devclass (class: %s "
2138 					    "devname: %s)\n",
2139 					    dl->driver->name,
2140 					    devname);
2141 					(void)device_set_driver(child, NULL);
2142 					continue;
2143 				}
2144 			}
2145 
2146 			/* Fetch any flags for the device before probing. */
2147 			resource_int_value(dl->driver->name, child->unit,
2148 			    "flags", &child->devflags);
2149 
2150 			result = DEVICE_PROBE(child);
2151 
2152 			/* Reset flags and devclass before the next probe. */
2153 			child->devflags = 0;
2154 			if (!hasclass)
2155 				(void)device_set_devclass(child, NULL);
2156 
2157 			/*
2158 			 * If the driver returns SUCCESS, there can be
2159 			 * no higher match for this device.
2160 			 */
2161 			if (result == 0) {
2162 				best = dl;
2163 				pri = 0;
2164 				break;
2165 			}
2166 
2167 			/*
2168 			 * Reset DF_QUIET in case this driver doesn't
2169 			 * end up as the best driver.
2170 			 */
2171 			device_verbose(child);
2172 
2173 			/*
2174 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2175 			 * only match on devices whose driver was explicitly
2176 			 * specified.
2177 			 */
2178 			if (result <= BUS_PROBE_NOWILDCARD &&
2179 			    !(child->flags & DF_FIXEDCLASS)) {
2180 				result = ENXIO;
2181 			}
2182 
2183 			/*
2184 			 * The driver returned an error so it
2185 			 * certainly doesn't match.
2186 			 */
2187 			if (result > 0) {
2188 				(void)device_set_driver(child, NULL);
2189 				continue;
2190 			}
2191 
2192 			/*
2193 			 * A priority lower than SUCCESS, remember the
2194 			 * best matching driver. Initialise the value
2195 			 * of pri for the first match.
2196 			 */
2197 			if (best == NULL || result > pri) {
2198 				best = dl;
2199 				pri = result;
2200 				continue;
2201 			}
2202 		}
2203 		/*
2204 		 * If we have an unambiguous match in this devclass,
2205 		 * don't look in the parent.
2206 		 */
2207 		if (best && pri == 0)
2208 			break;
2209 	}
2210 
2211 	/*
2212 	 * If we found a driver, change state and initialise the devclass.
2213 	 */
2214 	/* XXX What happens if we rebid and got no best? */
2215 	if (best) {
2216 		/*
2217 		 * If this device was attached, and we were asked to
2218 		 * rescan, and it is a different driver, then we have
2219 		 * to detach the old driver and reattach this new one.
2220 		 * Note, we don't have to check for DF_REBID here
2221 		 * because if the state is > DS_ALIVE, we know it must
2222 		 * be.
2223 		 *
2224 		 * This assumes that all DF_REBID drivers can have
2225 		 * their probe routine called at any time and that
2226 		 * they are idempotent as well as completely benign in
2227 		 * normal operations.
2228 		 *
2229 		 * We also have to make sure that the detach
2230 		 * succeeded, otherwise we fail the operation (or
2231 		 * maybe it should just fail silently?  I'm torn).
2232 		 */
2233 		if (child->state > DS_ALIVE && best->driver != child->driver)
2234 			if ((result = device_detach(dev)) != 0)
2235 				return (result);
2236 
2237 		/* Set the winning driver, devclass, and flags. */
2238 		if (!child->devclass) {
2239 			result = device_set_devclass(child, best->driver->name);
2240 			if (result != 0)
2241 				return (result);
2242 		}
2243 		result = device_set_driver(child, best->driver);
2244 		if (result != 0)
2245 			return (result);
2246 		resource_int_value(best->driver->name, child->unit,
2247 		    "flags", &child->devflags);
2248 
2249 		if (pri < 0) {
2250 			/*
2251 			 * A bit bogus. Call the probe method again to make
2252 			 * sure that we have the right description.
2253 			 */
2254 			DEVICE_PROBE(child);
2255 #if 0
2256 			child->flags |= DF_REBID;
2257 #endif
2258 		} else
2259 			child->flags &= ~DF_REBID;
2260 		child->state = DS_ALIVE;
2261 
2262 		bus_data_generation_update();
2263 		return (0);
2264 	}
2265 
2266 	return (ENXIO);
2267 }
2268 
2269 /**
2270  * @brief Return the parent of a device
2271  */
2272 device_t
2273 device_get_parent(device_t dev)
2274 {
2275 	return (dev->parent);
2276 }
2277 
2278 /**
2279  * @brief Get a list of children of a device
2280  *
2281  * An array containing a list of all the children of the given device
2282  * is allocated and returned in @p *devlistp. The number of devices
2283  * in the array is returned in @p *devcountp. The caller should free
2284  * the array using @c free(p, M_TEMP).
2285  *
2286  * @param dev		the device to examine
2287  * @param devlistp	points at location for array pointer return
2288  *			value
2289  * @param devcountp	points at location for array size return value
2290  *
2291  * @retval 0		success
2292  * @retval ENOMEM	the array allocation failed
2293  */
2294 int
2295 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2296 {
2297 	int count;
2298 	device_t child;
2299 	device_t *list;
2300 
2301 	count = 0;
2302 	TAILQ_FOREACH(child, &dev->children, link) {
2303 		count++;
2304 	}
2305 	if (count == 0) {
2306 		*devlistp = NULL;
2307 		*devcountp = 0;
2308 		return (0);
2309 	}
2310 
2311 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2312 	if (!list)
2313 		return (ENOMEM);
2314 
2315 	count = 0;
2316 	TAILQ_FOREACH(child, &dev->children, link) {
2317 		list[count] = child;
2318 		count++;
2319 	}
2320 
2321 	*devlistp = list;
2322 	*devcountp = count;
2323 
2324 	return (0);
2325 }
2326 
2327 /**
2328  * @brief Return the current driver for the device or @c NULL if there
2329  * is no driver currently attached
2330  */
2331 driver_t *
2332 device_get_driver(device_t dev)
2333 {
2334 	return (dev->driver);
2335 }
2336 
2337 /**
2338  * @brief Return the current devclass for the device or @c NULL if
2339  * there is none.
2340  */
2341 devclass_t
2342 device_get_devclass(device_t dev)
2343 {
2344 	return (dev->devclass);
2345 }
2346 
2347 /**
2348  * @brief Return the name of the device's devclass or @c NULL if there
2349  * is none.
2350  */
2351 const char *
2352 device_get_name(device_t dev)
2353 {
2354 	if (dev != NULL && dev->devclass)
2355 		return (devclass_get_name(dev->devclass));
2356 	return (NULL);
2357 }
2358 
2359 /**
2360  * @brief Return a string containing the device's devclass name
2361  * followed by an ascii representation of the device's unit number
2362  * (e.g. @c "foo2").
2363  */
2364 const char *
2365 device_get_nameunit(device_t dev)
2366 {
2367 	return (dev->nameunit);
2368 }
2369 
2370 /**
2371  * @brief Return the device's unit number.
2372  */
2373 int
2374 device_get_unit(device_t dev)
2375 {
2376 	return (dev->unit);
2377 }
2378 
2379 /**
2380  * @brief Return the device's description string
2381  */
2382 const char *
2383 device_get_desc(device_t dev)
2384 {
2385 	return (dev->desc);
2386 }
2387 
2388 /**
2389  * @brief Return the device's flags
2390  */
2391 uint32_t
2392 device_get_flags(device_t dev)
2393 {
2394 	return (dev->devflags);
2395 }
2396 
2397 struct sysctl_ctx_list *
2398 device_get_sysctl_ctx(device_t dev)
2399 {
2400 	return (&dev->sysctl_ctx);
2401 }
2402 
2403 struct sysctl_oid *
2404 device_get_sysctl_tree(device_t dev)
2405 {
2406 	return (dev->sysctl_tree);
2407 }
2408 
2409 /**
2410  * @brief Print the name of the device followed by a colon and a space
2411  *
2412  * @returns the number of characters printed
2413  */
2414 int
2415 device_print_prettyname(device_t dev)
2416 {
2417 	const char *name = device_get_name(dev);
2418 
2419 	if (name == NULL)
2420 		return (printf("unknown: "));
2421 	return (printf("%s%d: ", name, device_get_unit(dev)));
2422 }
2423 
2424 /**
2425  * @brief Print the name of the device followed by a colon, a space
2426  * and the result of calling vprintf() with the value of @p fmt and
2427  * the following arguments.
2428  *
2429  * @returns the number of characters printed
2430  */
2431 int
2432 device_printf(device_t dev, const char * fmt, ...)
2433 {
2434 	va_list ap;
2435 	int retval;
2436 
2437 	retval = device_print_prettyname(dev);
2438 	va_start(ap, fmt);
2439 	retval += vprintf(fmt, ap);
2440 	va_end(ap);
2441 	return (retval);
2442 }
2443 
2444 /**
2445  * @internal
2446  */
2447 static void
2448 device_set_desc_internal(device_t dev, const char* desc, int copy)
2449 {
2450 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2451 		free(dev->desc, M_BUS);
2452 		dev->flags &= ~DF_DESCMALLOCED;
2453 		dev->desc = NULL;
2454 	}
2455 
2456 	if (copy && desc) {
2457 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2458 		if (dev->desc) {
2459 			strcpy(dev->desc, desc);
2460 			dev->flags |= DF_DESCMALLOCED;
2461 		}
2462 	} else {
2463 		/* Avoid a -Wcast-qual warning */
2464 		dev->desc = (char *)(uintptr_t) desc;
2465 	}
2466 
2467 	bus_data_generation_update();
2468 }
2469 
2470 /**
2471  * @brief Set the device's description
2472  *
2473  * The value of @c desc should be a string constant that will not
2474  * change (at least until the description is changed in a subsequent
2475  * call to device_set_desc() or device_set_desc_copy()).
2476  */
2477 void
2478 device_set_desc(device_t dev, const char* desc)
2479 {
2480 	device_set_desc_internal(dev, desc, FALSE);
2481 }
2482 
2483 /**
2484  * @brief Set the device's description
2485  *
2486  * The string pointed to by @c desc is copied. Use this function if
2487  * the device description is generated, (e.g. with sprintf()).
2488  */
2489 void
2490 device_set_desc_copy(device_t dev, const char* desc)
2491 {
2492 	device_set_desc_internal(dev, desc, TRUE);
2493 }
2494 
2495 /**
2496  * @brief Set the device's flags
2497  */
2498 void
2499 device_set_flags(device_t dev, uint32_t flags)
2500 {
2501 	dev->devflags = flags;
2502 }
2503 
2504 /**
2505  * @brief Return the device's softc field
2506  *
2507  * The softc is allocated and zeroed when a driver is attached, based
2508  * on the size field of the driver.
2509  */
2510 void *
2511 device_get_softc(device_t dev)
2512 {
2513 	return (dev->softc);
2514 }
2515 
2516 /**
2517  * @brief Set the device's softc field
2518  *
2519  * Most drivers do not need to use this since the softc is allocated
2520  * automatically when the driver is attached.
2521  */
2522 void
2523 device_set_softc(device_t dev, void *softc)
2524 {
2525 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2526 		free(dev->softc, M_BUS_SC);
2527 	dev->softc = softc;
2528 	if (dev->softc)
2529 		dev->flags |= DF_EXTERNALSOFTC;
2530 	else
2531 		dev->flags &= ~DF_EXTERNALSOFTC;
2532 }
2533 
2534 /**
2535  * @brief Free claimed softc
2536  *
2537  * Most drivers do not need to use this since the softc is freed
2538  * automatically when the driver is detached.
2539  */
2540 void
2541 device_free_softc(void *softc)
2542 {
2543 	free(softc, M_BUS_SC);
2544 }
2545 
2546 /**
2547  * @brief Claim softc
2548  *
2549  * This function can be used to let the driver free the automatically
2550  * allocated softc using "device_free_softc()". This function is
2551  * useful when the driver is refcounting the softc and the softc
2552  * cannot be freed when the "device_detach" method is called.
2553  */
2554 void
2555 device_claim_softc(device_t dev)
2556 {
2557 	if (dev->softc)
2558 		dev->flags |= DF_EXTERNALSOFTC;
2559 	else
2560 		dev->flags &= ~DF_EXTERNALSOFTC;
2561 }
2562 
2563 /**
2564  * @brief Get the device's ivars field
2565  *
2566  * The ivars field is used by the parent device to store per-device
2567  * state (e.g. the physical location of the device or a list of
2568  * resources).
2569  */
2570 void *
2571 device_get_ivars(device_t dev)
2572 {
2573 
2574 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2575 	return (dev->ivars);
2576 }
2577 
2578 /**
2579  * @brief Set the device's ivars field
2580  */
2581 void
2582 device_set_ivars(device_t dev, void * ivars)
2583 {
2584 
2585 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2586 	dev->ivars = ivars;
2587 }
2588 
2589 /**
2590  * @brief Return the device's state
2591  */
2592 device_state_t
2593 device_get_state(device_t dev)
2594 {
2595 	return (dev->state);
2596 }
2597 
2598 /**
2599  * @brief Set the DF_ENABLED flag for the device
2600  */
2601 void
2602 device_enable(device_t dev)
2603 {
2604 	dev->flags |= DF_ENABLED;
2605 }
2606 
2607 /**
2608  * @brief Clear the DF_ENABLED flag for the device
2609  */
2610 void
2611 device_disable(device_t dev)
2612 {
2613 	dev->flags &= ~DF_ENABLED;
2614 }
2615 
2616 /**
2617  * @brief Increment the busy counter for the device
2618  */
2619 void
2620 device_busy(device_t dev)
2621 {
2622 	if (dev->state < DS_ATTACHING)
2623 		panic("device_busy: called for unattached device");
2624 	if (dev->busy == 0 && dev->parent)
2625 		device_busy(dev->parent);
2626 	dev->busy++;
2627 	if (dev->state == DS_ATTACHED)
2628 		dev->state = DS_BUSY;
2629 }
2630 
2631 /**
2632  * @brief Decrement the busy counter for the device
2633  */
2634 void
2635 device_unbusy(device_t dev)
2636 {
2637 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2638 	    dev->state != DS_ATTACHING)
2639 		panic("device_unbusy: called for non-busy device %s",
2640 		    device_get_nameunit(dev));
2641 	dev->busy--;
2642 	if (dev->busy == 0) {
2643 		if (dev->parent)
2644 			device_unbusy(dev->parent);
2645 		if (dev->state == DS_BUSY)
2646 			dev->state = DS_ATTACHED;
2647 	}
2648 }
2649 
2650 /**
2651  * @brief Set the DF_QUIET flag for the device
2652  */
2653 void
2654 device_quiet(device_t dev)
2655 {
2656 	dev->flags |= DF_QUIET;
2657 }
2658 
2659 /**
2660  * @brief Set the DF_QUIET_CHILDREN flag for the device
2661  */
2662 void
2663 device_quiet_children(device_t dev)
2664 {
2665 	dev->flags |= DF_QUIET_CHILDREN;
2666 }
2667 
2668 /**
2669  * @brief Clear the DF_QUIET flag for the device
2670  */
2671 void
2672 device_verbose(device_t dev)
2673 {
2674 	dev->flags &= ~DF_QUIET;
2675 }
2676 
2677 /**
2678  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2679  */
2680 int
2681 device_has_quiet_children(device_t dev)
2682 {
2683 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2684 }
2685 
2686 /**
2687  * @brief Return non-zero if the DF_QUIET flag is set on the device
2688  */
2689 int
2690 device_is_quiet(device_t dev)
2691 {
2692 	return ((dev->flags & DF_QUIET) != 0);
2693 }
2694 
2695 /**
2696  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2697  */
2698 int
2699 device_is_enabled(device_t dev)
2700 {
2701 	return ((dev->flags & DF_ENABLED) != 0);
2702 }
2703 
2704 /**
2705  * @brief Return non-zero if the device was successfully probed
2706  */
2707 int
2708 device_is_alive(device_t dev)
2709 {
2710 	return (dev->state >= DS_ALIVE);
2711 }
2712 
2713 /**
2714  * @brief Return non-zero if the device currently has a driver
2715  * attached to it
2716  */
2717 int
2718 device_is_attached(device_t dev)
2719 {
2720 	return (dev->state >= DS_ATTACHED);
2721 }
2722 
2723 /**
2724  * @brief Return non-zero if the device is currently suspended.
2725  */
2726 int
2727 device_is_suspended(device_t dev)
2728 {
2729 	return ((dev->flags & DF_SUSPENDED) != 0);
2730 }
2731 
2732 /**
2733  * @brief Set the devclass of a device
2734  * @see devclass_add_device().
2735  */
2736 int
2737 device_set_devclass(device_t dev, const char *classname)
2738 {
2739 	devclass_t dc;
2740 	int error;
2741 
2742 	if (!classname) {
2743 		if (dev->devclass)
2744 			devclass_delete_device(dev->devclass, dev);
2745 		return (0);
2746 	}
2747 
2748 	if (dev->devclass) {
2749 		printf("device_set_devclass: device class already set\n");
2750 		return (EINVAL);
2751 	}
2752 
2753 	dc = devclass_find_internal(classname, NULL, TRUE);
2754 	if (!dc)
2755 		return (ENOMEM);
2756 
2757 	error = devclass_add_device(dc, dev);
2758 
2759 	bus_data_generation_update();
2760 	return (error);
2761 }
2762 
2763 /**
2764  * @brief Set the devclass of a device and mark the devclass fixed.
2765  * @see device_set_devclass()
2766  */
2767 int
2768 device_set_devclass_fixed(device_t dev, const char *classname)
2769 {
2770 	int error;
2771 
2772 	if (classname == NULL)
2773 		return (EINVAL);
2774 
2775 	error = device_set_devclass(dev, classname);
2776 	if (error)
2777 		return (error);
2778 	dev->flags |= DF_FIXEDCLASS;
2779 	return (0);
2780 }
2781 
2782 /**
2783  * @brief Query the device to determine if it's of a fixed devclass
2784  * @see device_set_devclass_fixed()
2785  */
2786 bool
2787 device_is_devclass_fixed(device_t dev)
2788 {
2789 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2790 }
2791 
2792 /**
2793  * @brief Set the driver of a device
2794  *
2795  * @retval 0		success
2796  * @retval EBUSY	the device already has a driver attached
2797  * @retval ENOMEM	a memory allocation failure occurred
2798  */
2799 int
2800 device_set_driver(device_t dev, driver_t *driver)
2801 {
2802 	if (dev->state >= DS_ATTACHED)
2803 		return (EBUSY);
2804 
2805 	if (dev->driver == driver)
2806 		return (0);
2807 
2808 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2809 		free(dev->softc, M_BUS_SC);
2810 		dev->softc = NULL;
2811 	}
2812 	device_set_desc(dev, NULL);
2813 	kobj_delete((kobj_t) dev, NULL);
2814 	dev->driver = driver;
2815 	if (driver) {
2816 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2817 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2818 			dev->softc = malloc(driver->size, M_BUS_SC,
2819 			    M_NOWAIT | M_ZERO);
2820 			if (!dev->softc) {
2821 				kobj_delete((kobj_t) dev, NULL);
2822 				kobj_init((kobj_t) dev, &null_class);
2823 				dev->driver = NULL;
2824 				return (ENOMEM);
2825 			}
2826 		}
2827 	} else {
2828 		kobj_init((kobj_t) dev, &null_class);
2829 	}
2830 
2831 	bus_data_generation_update();
2832 	return (0);
2833 }
2834 
2835 /**
2836  * @brief Probe a device, and return this status.
2837  *
2838  * This function is the core of the device autoconfiguration
2839  * system. Its purpose is to select a suitable driver for a device and
2840  * then call that driver to initialise the hardware appropriately. The
2841  * driver is selected by calling the DEVICE_PROBE() method of a set of
2842  * candidate drivers and then choosing the driver which returned the
2843  * best value. This driver is then attached to the device using
2844  * device_attach().
2845  *
2846  * The set of suitable drivers is taken from the list of drivers in
2847  * the parent device's devclass. If the device was originally created
2848  * with a specific class name (see device_add_child()), only drivers
2849  * with that name are probed, otherwise all drivers in the devclass
2850  * are probed. If no drivers return successful probe values in the
2851  * parent devclass, the search continues in the parent of that
2852  * devclass (see devclass_get_parent()) if any.
2853  *
2854  * @param dev		the device to initialise
2855  *
2856  * @retval 0		success
2857  * @retval ENXIO	no driver was found
2858  * @retval ENOMEM	memory allocation failure
2859  * @retval non-zero	some other unix error code
2860  * @retval -1		Device already attached
2861  */
2862 int
2863 device_probe(device_t dev)
2864 {
2865 	int error;
2866 
2867 	GIANT_REQUIRED;
2868 
2869 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2870 		return (-1);
2871 
2872 	if (!(dev->flags & DF_ENABLED)) {
2873 		if (bootverbose && device_get_name(dev) != NULL) {
2874 			device_print_prettyname(dev);
2875 			printf("not probed (disabled)\n");
2876 		}
2877 		return (-1);
2878 	}
2879 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2880 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2881 		    !(dev->flags & DF_DONENOMATCH)) {
2882 			BUS_PROBE_NOMATCH(dev->parent, dev);
2883 			devnomatch(dev);
2884 			dev->flags |= DF_DONENOMATCH;
2885 		}
2886 		return (error);
2887 	}
2888 	return (0);
2889 }
2890 
2891 /**
2892  * @brief Probe a device and attach a driver if possible
2893  *
2894  * calls device_probe() and attaches if that was successful.
2895  */
2896 int
2897 device_probe_and_attach(device_t dev)
2898 {
2899 	int error;
2900 
2901 	GIANT_REQUIRED;
2902 
2903 	error = device_probe(dev);
2904 	if (error == -1)
2905 		return (0);
2906 	else if (error != 0)
2907 		return (error);
2908 
2909 	CURVNET_SET_QUIET(vnet0);
2910 	error = device_attach(dev);
2911 	CURVNET_RESTORE();
2912 	return error;
2913 }
2914 
2915 /**
2916  * @brief Attach a device driver to a device
2917  *
2918  * This function is a wrapper around the DEVICE_ATTACH() driver
2919  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2920  * device's sysctl tree, optionally prints a description of the device
2921  * and queues a notification event for user-based device management
2922  * services.
2923  *
2924  * Normally this function is only called internally from
2925  * device_probe_and_attach().
2926  *
2927  * @param dev		the device to initialise
2928  *
2929  * @retval 0		success
2930  * @retval ENXIO	no driver was found
2931  * @retval ENOMEM	memory allocation failure
2932  * @retval non-zero	some other unix error code
2933  */
2934 int
2935 device_attach(device_t dev)
2936 {
2937 	uint64_t attachtime;
2938 	uint16_t attachentropy;
2939 	int error;
2940 
2941 	if (resource_disabled(dev->driver->name, dev->unit)) {
2942 		device_disable(dev);
2943 		if (bootverbose)
2944 			 device_printf(dev, "disabled via hints entry\n");
2945 		return (ENXIO);
2946 	}
2947 
2948 	device_sysctl_init(dev);
2949 	if (!device_is_quiet(dev))
2950 		device_print_child(dev->parent, dev);
2951 	attachtime = get_cyclecount();
2952 	dev->state = DS_ATTACHING;
2953 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2954 		printf("device_attach: %s%d attach returned %d\n",
2955 		    dev->driver->name, dev->unit, error);
2956 		if (!(dev->flags & DF_FIXEDCLASS))
2957 			devclass_delete_device(dev->devclass, dev);
2958 		(void)device_set_driver(dev, NULL);
2959 		device_sysctl_fini(dev);
2960 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2961 		dev->state = DS_NOTPRESENT;
2962 		return (error);
2963 	}
2964 	dev->flags |= DF_ATTACHED_ONCE;
2965 	/* We only need the low bits of this time, but ranges from tens to thousands
2966 	 * have been seen, so keep 2 bytes' worth.
2967 	 */
2968 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2969 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2970 	device_sysctl_update(dev);
2971 	if (dev->busy)
2972 		dev->state = DS_BUSY;
2973 	else
2974 		dev->state = DS_ATTACHED;
2975 	dev->flags &= ~DF_DONENOMATCH;
2976 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2977 	devadded(dev);
2978 	return (0);
2979 }
2980 
2981 /**
2982  * @brief Detach a driver from a device
2983  *
2984  * This function is a wrapper around the DEVICE_DETACH() driver
2985  * method. If the call to DEVICE_DETACH() succeeds, it calls
2986  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2987  * notification event for user-based device management services and
2988  * cleans up the device's sysctl tree.
2989  *
2990  * @param dev		the device to un-initialise
2991  *
2992  * @retval 0		success
2993  * @retval ENXIO	no driver was found
2994  * @retval ENOMEM	memory allocation failure
2995  * @retval non-zero	some other unix error code
2996  */
2997 int
2998 device_detach(device_t dev)
2999 {
3000 	int error;
3001 
3002 	GIANT_REQUIRED;
3003 
3004 	PDEBUG(("%s", DEVICENAME(dev)));
3005 	if (dev->state == DS_BUSY)
3006 		return (EBUSY);
3007 	if (dev->state == DS_ATTACHING) {
3008 		device_printf(dev, "device in attaching state! Deferring detach.\n");
3009 		return (EBUSY);
3010 	}
3011 	if (dev->state != DS_ATTACHED)
3012 		return (0);
3013 
3014 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
3015 	if ((error = DEVICE_DETACH(dev)) != 0) {
3016 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3017 		    EVHDEV_DETACH_FAILED);
3018 		return (error);
3019 	} else {
3020 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3021 		    EVHDEV_DETACH_COMPLETE);
3022 	}
3023 	devremoved(dev);
3024 	if (!device_is_quiet(dev))
3025 		device_printf(dev, "detached\n");
3026 	if (dev->parent)
3027 		BUS_CHILD_DETACHED(dev->parent, dev);
3028 
3029 	if (!(dev->flags & DF_FIXEDCLASS))
3030 		devclass_delete_device(dev->devclass, dev);
3031 
3032 	device_verbose(dev);
3033 	dev->state = DS_NOTPRESENT;
3034 	(void)device_set_driver(dev, NULL);
3035 	device_sysctl_fini(dev);
3036 
3037 	return (0);
3038 }
3039 
3040 /**
3041  * @brief Tells a driver to quiesce itself.
3042  *
3043  * This function is a wrapper around the DEVICE_QUIESCE() driver
3044  * method. If the call to DEVICE_QUIESCE() succeeds.
3045  *
3046  * @param dev		the device to quiesce
3047  *
3048  * @retval 0		success
3049  * @retval ENXIO	no driver was found
3050  * @retval ENOMEM	memory allocation failure
3051  * @retval non-zero	some other unix error code
3052  */
3053 int
3054 device_quiesce(device_t dev)
3055 {
3056 
3057 	PDEBUG(("%s", DEVICENAME(dev)));
3058 	if (dev->state == DS_BUSY)
3059 		return (EBUSY);
3060 	if (dev->state != DS_ATTACHED)
3061 		return (0);
3062 
3063 	return (DEVICE_QUIESCE(dev));
3064 }
3065 
3066 /**
3067  * @brief Notify a device of system shutdown
3068  *
3069  * This function calls the DEVICE_SHUTDOWN() driver method if the
3070  * device currently has an attached driver.
3071  *
3072  * @returns the value returned by DEVICE_SHUTDOWN()
3073  */
3074 int
3075 device_shutdown(device_t dev)
3076 {
3077 	if (dev->state < DS_ATTACHED)
3078 		return (0);
3079 	return (DEVICE_SHUTDOWN(dev));
3080 }
3081 
3082 /**
3083  * @brief Set the unit number of a device
3084  *
3085  * This function can be used to override the unit number used for a
3086  * device (e.g. to wire a device to a pre-configured unit number).
3087  */
3088 int
3089 device_set_unit(device_t dev, int unit)
3090 {
3091 	devclass_t dc;
3092 	int err;
3093 
3094 	dc = device_get_devclass(dev);
3095 	if (unit < dc->maxunit && dc->devices[unit])
3096 		return (EBUSY);
3097 	err = devclass_delete_device(dc, dev);
3098 	if (err)
3099 		return (err);
3100 	dev->unit = unit;
3101 	err = devclass_add_device(dc, dev);
3102 	if (err)
3103 		return (err);
3104 
3105 	bus_data_generation_update();
3106 	return (0);
3107 }
3108 
3109 /*======================================*/
3110 /*
3111  * Some useful method implementations to make life easier for bus drivers.
3112  */
3113 
3114 void
3115 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3116 {
3117 
3118 	bzero(args, sz);
3119 	args->size = sz;
3120 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3121 }
3122 
3123 /**
3124  * @brief Initialise a resource list.
3125  *
3126  * @param rl		the resource list to initialise
3127  */
3128 void
3129 resource_list_init(struct resource_list *rl)
3130 {
3131 	STAILQ_INIT(rl);
3132 }
3133 
3134 /**
3135  * @brief Reclaim memory used by a resource list.
3136  *
3137  * This function frees the memory for all resource entries on the list
3138  * (if any).
3139  *
3140  * @param rl		the resource list to free
3141  */
3142 void
3143 resource_list_free(struct resource_list *rl)
3144 {
3145 	struct resource_list_entry *rle;
3146 
3147 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3148 		if (rle->res)
3149 			panic("resource_list_free: resource entry is busy");
3150 		STAILQ_REMOVE_HEAD(rl, link);
3151 		free(rle, M_BUS);
3152 	}
3153 }
3154 
3155 /**
3156  * @brief Add a resource entry.
3157  *
3158  * This function adds a resource entry using the given @p type, @p
3159  * start, @p end and @p count values. A rid value is chosen by
3160  * searching sequentially for the first unused rid starting at zero.
3161  *
3162  * @param rl		the resource list to edit
3163  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3164  * @param start		the start address of the resource
3165  * @param end		the end address of the resource
3166  * @param count		XXX end-start+1
3167  */
3168 int
3169 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3170     rman_res_t end, rman_res_t count)
3171 {
3172 	int rid;
3173 
3174 	rid = 0;
3175 	while (resource_list_find(rl, type, rid) != NULL)
3176 		rid++;
3177 	resource_list_add(rl, type, rid, start, end, count);
3178 	return (rid);
3179 }
3180 
3181 /**
3182  * @brief Add or modify a resource entry.
3183  *
3184  * If an existing entry exists with the same type and rid, it will be
3185  * modified using the given values of @p start, @p end and @p
3186  * count. If no entry exists, a new one will be created using the
3187  * given values.  The resource list entry that matches is then returned.
3188  *
3189  * @param rl		the resource list to edit
3190  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3191  * @param rid		the resource identifier
3192  * @param start		the start address of the resource
3193  * @param end		the end address of the resource
3194  * @param count		XXX end-start+1
3195  */
3196 struct resource_list_entry *
3197 resource_list_add(struct resource_list *rl, int type, int rid,
3198     rman_res_t start, rman_res_t end, rman_res_t count)
3199 {
3200 	struct resource_list_entry *rle;
3201 
3202 	rle = resource_list_find(rl, type, rid);
3203 	if (!rle) {
3204 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3205 		    M_NOWAIT);
3206 		if (!rle)
3207 			panic("resource_list_add: can't record entry");
3208 		STAILQ_INSERT_TAIL(rl, rle, link);
3209 		rle->type = type;
3210 		rle->rid = rid;
3211 		rle->res = NULL;
3212 		rle->flags = 0;
3213 	}
3214 
3215 	if (rle->res)
3216 		panic("resource_list_add: resource entry is busy");
3217 
3218 	rle->start = start;
3219 	rle->end = end;
3220 	rle->count = count;
3221 	return (rle);
3222 }
3223 
3224 /**
3225  * @brief Determine if a resource entry is busy.
3226  *
3227  * Returns true if a resource entry is busy meaning that it has an
3228  * associated resource that is not an unallocated "reserved" resource.
3229  *
3230  * @param rl		the resource list to search
3231  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3232  * @param rid		the resource identifier
3233  *
3234  * @returns Non-zero if the entry is busy, zero otherwise.
3235  */
3236 int
3237 resource_list_busy(struct resource_list *rl, int type, int rid)
3238 {
3239 	struct resource_list_entry *rle;
3240 
3241 	rle = resource_list_find(rl, type, rid);
3242 	if (rle == NULL || rle->res == NULL)
3243 		return (0);
3244 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3245 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3246 		    ("reserved resource is active"));
3247 		return (0);
3248 	}
3249 	return (1);
3250 }
3251 
3252 /**
3253  * @brief Determine if a resource entry is reserved.
3254  *
3255  * Returns true if a resource entry is reserved meaning that it has an
3256  * associated "reserved" resource.  The resource can either be
3257  * allocated or unallocated.
3258  *
3259  * @param rl		the resource list to search
3260  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3261  * @param rid		the resource identifier
3262  *
3263  * @returns Non-zero if the entry is reserved, zero otherwise.
3264  */
3265 int
3266 resource_list_reserved(struct resource_list *rl, int type, int rid)
3267 {
3268 	struct resource_list_entry *rle;
3269 
3270 	rle = resource_list_find(rl, type, rid);
3271 	if (rle != NULL && rle->flags & RLE_RESERVED)
3272 		return (1);
3273 	return (0);
3274 }
3275 
3276 /**
3277  * @brief Find a resource entry by type and rid.
3278  *
3279  * @param rl		the resource list to search
3280  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3281  * @param rid		the resource identifier
3282  *
3283  * @returns the resource entry pointer or NULL if there is no such
3284  * entry.
3285  */
3286 struct resource_list_entry *
3287 resource_list_find(struct resource_list *rl, int type, int rid)
3288 {
3289 	struct resource_list_entry *rle;
3290 
3291 	STAILQ_FOREACH(rle, rl, link) {
3292 		if (rle->type == type && rle->rid == rid)
3293 			return (rle);
3294 	}
3295 	return (NULL);
3296 }
3297 
3298 /**
3299  * @brief Delete a resource entry.
3300  *
3301  * @param rl		the resource list to edit
3302  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3303  * @param rid		the resource identifier
3304  */
3305 void
3306 resource_list_delete(struct resource_list *rl, int type, int rid)
3307 {
3308 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3309 
3310 	if (rle) {
3311 		if (rle->res != NULL)
3312 			panic("resource_list_delete: resource has not been released");
3313 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3314 		free(rle, M_BUS);
3315 	}
3316 }
3317 
3318 /**
3319  * @brief Allocate a reserved resource
3320  *
3321  * This can be used by buses to force the allocation of resources
3322  * that are always active in the system even if they are not allocated
3323  * by a driver (e.g. PCI BARs).  This function is usually called when
3324  * adding a new child to the bus.  The resource is allocated from the
3325  * parent bus when it is reserved.  The resource list entry is marked
3326  * with RLE_RESERVED to note that it is a reserved resource.
3327  *
3328  * Subsequent attempts to allocate the resource with
3329  * resource_list_alloc() will succeed the first time and will set
3330  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3331  * resource that has been allocated is released with
3332  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3333  * the actual resource remains allocated.  The resource can be released to
3334  * the parent bus by calling resource_list_unreserve().
3335  *
3336  * @param rl		the resource list to allocate from
3337  * @param bus		the parent device of @p child
3338  * @param child		the device for which the resource is being reserved
3339  * @param type		the type of resource to allocate
3340  * @param rid		a pointer to the resource identifier
3341  * @param start		hint at the start of the resource range - pass
3342  *			@c 0 for any start address
3343  * @param end		hint at the end of the resource range - pass
3344  *			@c ~0 for any end address
3345  * @param count		hint at the size of range required - pass @c 1
3346  *			for any size
3347  * @param flags		any extra flags to control the resource
3348  *			allocation - see @c RF_XXX flags in
3349  *			<sys/rman.h> for details
3350  *
3351  * @returns		the resource which was allocated or @c NULL if no
3352  *			resource could be allocated
3353  */
3354 struct resource *
3355 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3356     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3357 {
3358 	struct resource_list_entry *rle = NULL;
3359 	int passthrough = (device_get_parent(child) != bus);
3360 	struct resource *r;
3361 
3362 	if (passthrough)
3363 		panic(
3364     "resource_list_reserve() should only be called for direct children");
3365 	if (flags & RF_ACTIVE)
3366 		panic(
3367     "resource_list_reserve() should only reserve inactive resources");
3368 
3369 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3370 	    flags);
3371 	if (r != NULL) {
3372 		rle = resource_list_find(rl, type, *rid);
3373 		rle->flags |= RLE_RESERVED;
3374 	}
3375 	return (r);
3376 }
3377 
3378 /**
3379  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3380  *
3381  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3382  * and passing the allocation up to the parent of @p bus. This assumes
3383  * that the first entry of @c device_get_ivars(child) is a struct
3384  * resource_list. This also handles 'passthrough' allocations where a
3385  * child is a remote descendant of bus by passing the allocation up to
3386  * the parent of bus.
3387  *
3388  * Typically, a bus driver would store a list of child resources
3389  * somewhere in the child device's ivars (see device_get_ivars()) and
3390  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3391  * then call resource_list_alloc() to perform the allocation.
3392  *
3393  * @param rl		the resource list to allocate from
3394  * @param bus		the parent device of @p child
3395  * @param child		the device which is requesting an allocation
3396  * @param type		the type of resource to allocate
3397  * @param rid		a pointer to the resource identifier
3398  * @param start		hint at the start of the resource range - pass
3399  *			@c 0 for any start address
3400  * @param end		hint at the end of the resource range - pass
3401  *			@c ~0 for any end address
3402  * @param count		hint at the size of range required - pass @c 1
3403  *			for any size
3404  * @param flags		any extra flags to control the resource
3405  *			allocation - see @c RF_XXX flags in
3406  *			<sys/rman.h> for details
3407  *
3408  * @returns		the resource which was allocated or @c NULL if no
3409  *			resource could be allocated
3410  */
3411 struct resource *
3412 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3413     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3414 {
3415 	struct resource_list_entry *rle = NULL;
3416 	int passthrough = (device_get_parent(child) != bus);
3417 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3418 
3419 	if (passthrough) {
3420 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3421 		    type, rid, start, end, count, flags));
3422 	}
3423 
3424 	rle = resource_list_find(rl, type, *rid);
3425 
3426 	if (!rle)
3427 		return (NULL);		/* no resource of that type/rid */
3428 
3429 	if (rle->res) {
3430 		if (rle->flags & RLE_RESERVED) {
3431 			if (rle->flags & RLE_ALLOCATED)
3432 				return (NULL);
3433 			if ((flags & RF_ACTIVE) &&
3434 			    bus_activate_resource(child, type, *rid,
3435 			    rle->res) != 0)
3436 				return (NULL);
3437 			rle->flags |= RLE_ALLOCATED;
3438 			return (rle->res);
3439 		}
3440 		device_printf(bus,
3441 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3442 		    type, device_get_nameunit(child));
3443 		return (NULL);
3444 	}
3445 
3446 	if (isdefault) {
3447 		start = rle->start;
3448 		count = ulmax(count, rle->count);
3449 		end = ulmax(rle->end, start + count - 1);
3450 	}
3451 
3452 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3453 	    type, rid, start, end, count, flags);
3454 
3455 	/*
3456 	 * Record the new range.
3457 	 */
3458 	if (rle->res) {
3459 		rle->start = rman_get_start(rle->res);
3460 		rle->end = rman_get_end(rle->res);
3461 		rle->count = count;
3462 	}
3463 
3464 	return (rle->res);
3465 }
3466 
3467 /**
3468  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3469  *
3470  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3471  * used with resource_list_alloc().
3472  *
3473  * @param rl		the resource list which was allocated from
3474  * @param bus		the parent device of @p child
3475  * @param child		the device which is requesting a release
3476  * @param type		the type of resource to release
3477  * @param rid		the resource identifier
3478  * @param res		the resource to release
3479  *
3480  * @retval 0		success
3481  * @retval non-zero	a standard unix error code indicating what
3482  *			error condition prevented the operation
3483  */
3484 int
3485 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3486     int type, int rid, struct resource *res)
3487 {
3488 	struct resource_list_entry *rle = NULL;
3489 	int passthrough = (device_get_parent(child) != bus);
3490 	int error;
3491 
3492 	if (passthrough) {
3493 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3494 		    type, rid, res));
3495 	}
3496 
3497 	rle = resource_list_find(rl, type, rid);
3498 
3499 	if (!rle)
3500 		panic("resource_list_release: can't find resource");
3501 	if (!rle->res)
3502 		panic("resource_list_release: resource entry is not busy");
3503 	if (rle->flags & RLE_RESERVED) {
3504 		if (rle->flags & RLE_ALLOCATED) {
3505 			if (rman_get_flags(res) & RF_ACTIVE) {
3506 				error = bus_deactivate_resource(child, type,
3507 				    rid, res);
3508 				if (error)
3509 					return (error);
3510 			}
3511 			rle->flags &= ~RLE_ALLOCATED;
3512 			return (0);
3513 		}
3514 		return (EINVAL);
3515 	}
3516 
3517 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3518 	    type, rid, res);
3519 	if (error)
3520 		return (error);
3521 
3522 	rle->res = NULL;
3523 	return (0);
3524 }
3525 
3526 /**
3527  * @brief Release all active resources of a given type
3528  *
3529  * Release all active resources of a specified type.  This is intended
3530  * to be used to cleanup resources leaked by a driver after detach or
3531  * a failed attach.
3532  *
3533  * @param rl		the resource list which was allocated from
3534  * @param bus		the parent device of @p child
3535  * @param child		the device whose active resources are being released
3536  * @param type		the type of resources to release
3537  *
3538  * @retval 0		success
3539  * @retval EBUSY	at least one resource was active
3540  */
3541 int
3542 resource_list_release_active(struct resource_list *rl, device_t bus,
3543     device_t child, int type)
3544 {
3545 	struct resource_list_entry *rle;
3546 	int error, retval;
3547 
3548 	retval = 0;
3549 	STAILQ_FOREACH(rle, rl, link) {
3550 		if (rle->type != type)
3551 			continue;
3552 		if (rle->res == NULL)
3553 			continue;
3554 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3555 		    RLE_RESERVED)
3556 			continue;
3557 		retval = EBUSY;
3558 		error = resource_list_release(rl, bus, child, type,
3559 		    rman_get_rid(rle->res), rle->res);
3560 		if (error != 0)
3561 			device_printf(bus,
3562 			    "Failed to release active resource: %d\n", error);
3563 	}
3564 	return (retval);
3565 }
3566 
3567 
3568 /**
3569  * @brief Fully release a reserved resource
3570  *
3571  * Fully releases a resource reserved via resource_list_reserve().
3572  *
3573  * @param rl		the resource list which was allocated from
3574  * @param bus		the parent device of @p child
3575  * @param child		the device whose reserved resource is being released
3576  * @param type		the type of resource to release
3577  * @param rid		the resource identifier
3578  * @param res		the resource to release
3579  *
3580  * @retval 0		success
3581  * @retval non-zero	a standard unix error code indicating what
3582  *			error condition prevented the operation
3583  */
3584 int
3585 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3586     int type, int rid)
3587 {
3588 	struct resource_list_entry *rle = NULL;
3589 	int passthrough = (device_get_parent(child) != bus);
3590 
3591 	if (passthrough)
3592 		panic(
3593     "resource_list_unreserve() should only be called for direct children");
3594 
3595 	rle = resource_list_find(rl, type, rid);
3596 
3597 	if (!rle)
3598 		panic("resource_list_unreserve: can't find resource");
3599 	if (!(rle->flags & RLE_RESERVED))
3600 		return (EINVAL);
3601 	if (rle->flags & RLE_ALLOCATED)
3602 		return (EBUSY);
3603 	rle->flags &= ~RLE_RESERVED;
3604 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3605 }
3606 
3607 /**
3608  * @brief Print a description of resources in a resource list
3609  *
3610  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3611  * The name is printed if at least one resource of the given type is available.
3612  * The format is used to print resource start and end.
3613  *
3614  * @param rl		the resource list to print
3615  * @param name		the name of @p type, e.g. @c "memory"
3616  * @param type		type type of resource entry to print
3617  * @param format	printf(9) format string to print resource
3618  *			start and end values
3619  *
3620  * @returns		the number of characters printed
3621  */
3622 int
3623 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3624     const char *format)
3625 {
3626 	struct resource_list_entry *rle;
3627 	int printed, retval;
3628 
3629 	printed = 0;
3630 	retval = 0;
3631 	/* Yes, this is kinda cheating */
3632 	STAILQ_FOREACH(rle, rl, link) {
3633 		if (rle->type == type) {
3634 			if (printed == 0)
3635 				retval += printf(" %s ", name);
3636 			else
3637 				retval += printf(",");
3638 			printed++;
3639 			retval += printf(format, rle->start);
3640 			if (rle->count > 1) {
3641 				retval += printf("-");
3642 				retval += printf(format, rle->start +
3643 						 rle->count - 1);
3644 			}
3645 		}
3646 	}
3647 	return (retval);
3648 }
3649 
3650 /**
3651  * @brief Releases all the resources in a list.
3652  *
3653  * @param rl		The resource list to purge.
3654  *
3655  * @returns		nothing
3656  */
3657 void
3658 resource_list_purge(struct resource_list *rl)
3659 {
3660 	struct resource_list_entry *rle;
3661 
3662 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3663 		if (rle->res)
3664 			bus_release_resource(rman_get_device(rle->res),
3665 			    rle->type, rle->rid, rle->res);
3666 		STAILQ_REMOVE_HEAD(rl, link);
3667 		free(rle, M_BUS);
3668 	}
3669 }
3670 
3671 device_t
3672 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3673 {
3674 
3675 	return (device_add_child_ordered(dev, order, name, unit));
3676 }
3677 
3678 /**
3679  * @brief Helper function for implementing DEVICE_PROBE()
3680  *
3681  * This function can be used to help implement the DEVICE_PROBE() for
3682  * a bus (i.e. a device which has other devices attached to it). It
3683  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3684  * devclass.
3685  */
3686 int
3687 bus_generic_probe(device_t dev)
3688 {
3689 	devclass_t dc = dev->devclass;
3690 	driverlink_t dl;
3691 
3692 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3693 		/*
3694 		 * If this driver's pass is too high, then ignore it.
3695 		 * For most drivers in the default pass, this will
3696 		 * never be true.  For early-pass drivers they will
3697 		 * only call the identify routines of eligible drivers
3698 		 * when this routine is called.  Drivers for later
3699 		 * passes should have their identify routines called
3700 		 * on early-pass buses during BUS_NEW_PASS().
3701 		 */
3702 		if (dl->pass > bus_current_pass)
3703 			continue;
3704 		DEVICE_IDENTIFY(dl->driver, dev);
3705 	}
3706 
3707 	return (0);
3708 }
3709 
3710 /**
3711  * @brief Helper function for implementing DEVICE_ATTACH()
3712  *
3713  * This function can be used to help implement the DEVICE_ATTACH() for
3714  * a bus. It calls device_probe_and_attach() for each of the device's
3715  * children.
3716  */
3717 int
3718 bus_generic_attach(device_t dev)
3719 {
3720 	device_t child;
3721 
3722 	TAILQ_FOREACH(child, &dev->children, link) {
3723 		device_probe_and_attach(child);
3724 	}
3725 
3726 	return (0);
3727 }
3728 
3729 /**
3730  * @brief Helper function for implementing DEVICE_DETACH()
3731  *
3732  * This function can be used to help implement the DEVICE_DETACH() for
3733  * a bus. It calls device_detach() for each of the device's
3734  * children.
3735  */
3736 int
3737 bus_generic_detach(device_t dev)
3738 {
3739 	device_t child;
3740 	int error;
3741 
3742 	if (dev->state != DS_ATTACHED)
3743 		return (EBUSY);
3744 
3745 	/*
3746 	 * Detach children in the reverse order.
3747 	 * See bus_generic_suspend for details.
3748 	 */
3749 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3750 		if ((error = device_detach(child)) != 0)
3751 			return (error);
3752 	}
3753 
3754 	return (0);
3755 }
3756 
3757 /**
3758  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3759  *
3760  * This function can be used to help implement the DEVICE_SHUTDOWN()
3761  * for a bus. It calls device_shutdown() for each of the device's
3762  * children.
3763  */
3764 int
3765 bus_generic_shutdown(device_t dev)
3766 {
3767 	device_t child;
3768 
3769 	/*
3770 	 * Shut down children in the reverse order.
3771 	 * See bus_generic_suspend for details.
3772 	 */
3773 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3774 		device_shutdown(child);
3775 	}
3776 
3777 	return (0);
3778 }
3779 
3780 /**
3781  * @brief Default function for suspending a child device.
3782  *
3783  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3784  */
3785 int
3786 bus_generic_suspend_child(device_t dev, device_t child)
3787 {
3788 	int	error;
3789 
3790 	error = DEVICE_SUSPEND(child);
3791 
3792 	if (error == 0)
3793 		child->flags |= DF_SUSPENDED;
3794 
3795 	return (error);
3796 }
3797 
3798 /**
3799  * @brief Default function for resuming a child device.
3800  *
3801  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3802  */
3803 int
3804 bus_generic_resume_child(device_t dev, device_t child)
3805 {
3806 
3807 	DEVICE_RESUME(child);
3808 	child->flags &= ~DF_SUSPENDED;
3809 
3810 	return (0);
3811 }
3812 
3813 /**
3814  * @brief Helper function for implementing DEVICE_SUSPEND()
3815  *
3816  * This function can be used to help implement the DEVICE_SUSPEND()
3817  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3818  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3819  * operation is aborted and any devices which were suspended are
3820  * resumed immediately by calling their DEVICE_RESUME() methods.
3821  */
3822 int
3823 bus_generic_suspend(device_t dev)
3824 {
3825 	int		error;
3826 	device_t	child;
3827 
3828 	/*
3829 	 * Suspend children in the reverse order.
3830 	 * For most buses all children are equal, so the order does not matter.
3831 	 * Other buses, such as acpi, carefully order their child devices to
3832 	 * express implicit dependencies between them.  For such buses it is
3833 	 * safer to bring down devices in the reverse order.
3834 	 */
3835 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3836 		error = BUS_SUSPEND_CHILD(dev, child);
3837 		if (error != 0) {
3838 			child = TAILQ_NEXT(child, link);
3839 			if (child != NULL) {
3840 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3841 					BUS_RESUME_CHILD(dev, child);
3842 			}
3843 			return (error);
3844 		}
3845 	}
3846 	return (0);
3847 }
3848 
3849 /**
3850  * @brief Helper function for implementing DEVICE_RESUME()
3851  *
3852  * This function can be used to help implement the DEVICE_RESUME() for
3853  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3854  */
3855 int
3856 bus_generic_resume(device_t dev)
3857 {
3858 	device_t	child;
3859 
3860 	TAILQ_FOREACH(child, &dev->children, link) {
3861 		BUS_RESUME_CHILD(dev, child);
3862 		/* if resume fails, there's nothing we can usefully do... */
3863 	}
3864 	return (0);
3865 }
3866 
3867 
3868 /**
3869  * @brief Helper function for implementing BUS_RESET_POST
3870  *
3871  * Bus can use this function to implement common operations of
3872  * re-attaching or resuming the children after the bus itself was
3873  * reset, and after restoring bus-unique state of children.
3874  *
3875  * @param dev	The bus
3876  * #param flags	DEVF_RESET_*
3877  */
3878 int
3879 bus_helper_reset_post(device_t dev, int flags)
3880 {
3881 	device_t child;
3882 	int error, error1;
3883 
3884 	error = 0;
3885 	TAILQ_FOREACH(child, &dev->children,link) {
3886 		BUS_RESET_POST(dev, child);
3887 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3888 		    device_probe_and_attach(child) :
3889 		    BUS_RESUME_CHILD(dev, child);
3890 		if (error == 0 && error1 != 0)
3891 			error = error1;
3892 	}
3893 	return (error);
3894 }
3895 
3896 static void
3897 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3898 {
3899 
3900 	child = TAILQ_NEXT(child, link);
3901 	if (child == NULL)
3902 		return;
3903 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3904 		BUS_RESET_POST(dev, child);
3905 		if ((flags & DEVF_RESET_DETACH) != 0)
3906 			device_probe_and_attach(child);
3907 		else
3908 			BUS_RESUME_CHILD(dev, child);
3909 	}
3910 }
3911 
3912 /**
3913  * @brief Helper function for implementing BUS_RESET_PREPARE
3914  *
3915  * Bus can use this function to implement common operations of
3916  * detaching or suspending the children before the bus itself is
3917  * reset, and then save bus-unique state of children that must
3918  * persists around reset.
3919  *
3920  * @param dev	The bus
3921  * #param flags	DEVF_RESET_*
3922  */
3923 int
3924 bus_helper_reset_prepare(device_t dev, int flags)
3925 {
3926 	device_t child;
3927 	int error;
3928 
3929 	if (dev->state != DS_ATTACHED)
3930 		return (EBUSY);
3931 
3932 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3933 		if ((flags & DEVF_RESET_DETACH) != 0) {
3934 			error = device_get_state(child) == DS_ATTACHED ?
3935 			    device_detach(child) : 0;
3936 		} else {
3937 			error = BUS_SUSPEND_CHILD(dev, child);
3938 		}
3939 		if (error == 0) {
3940 			error = BUS_RESET_PREPARE(dev, child);
3941 			if (error != 0) {
3942 				if ((flags & DEVF_RESET_DETACH) != 0)
3943 					device_probe_and_attach(child);
3944 				else
3945 					BUS_RESUME_CHILD(dev, child);
3946 			}
3947 		}
3948 		if (error != 0) {
3949 			bus_helper_reset_prepare_rollback(dev, child, flags);
3950 			return (error);
3951 		}
3952 	}
3953 	return (0);
3954 }
3955 
3956 
3957 /**
3958  * @brief Helper function for implementing BUS_PRINT_CHILD().
3959  *
3960  * This function prints the first part of the ascii representation of
3961  * @p child, including its name, unit and description (if any - see
3962  * device_set_desc()).
3963  *
3964  * @returns the number of characters printed
3965  */
3966 int
3967 bus_print_child_header(device_t dev, device_t child)
3968 {
3969 	int	retval = 0;
3970 
3971 	if (device_get_desc(child)) {
3972 		retval += device_printf(child, "<%s>", device_get_desc(child));
3973 	} else {
3974 		retval += printf("%s", device_get_nameunit(child));
3975 	}
3976 
3977 	return (retval);
3978 }
3979 
3980 /**
3981  * @brief Helper function for implementing BUS_PRINT_CHILD().
3982  *
3983  * This function prints the last part of the ascii representation of
3984  * @p child, which consists of the string @c " on " followed by the
3985  * name and unit of the @p dev.
3986  *
3987  * @returns the number of characters printed
3988  */
3989 int
3990 bus_print_child_footer(device_t dev, device_t child)
3991 {
3992 	return (printf(" on %s\n", device_get_nameunit(dev)));
3993 }
3994 
3995 /**
3996  * @brief Helper function for implementing BUS_PRINT_CHILD().
3997  *
3998  * This function prints out the VM domain for the given device.
3999  *
4000  * @returns the number of characters printed
4001  */
4002 int
4003 bus_print_child_domain(device_t dev, device_t child)
4004 {
4005 	int domain;
4006 
4007 	/* No domain? Don't print anything */
4008 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
4009 		return (0);
4010 
4011 	return (printf(" numa-domain %d", domain));
4012 }
4013 
4014 /**
4015  * @brief Helper function for implementing BUS_PRINT_CHILD().
4016  *
4017  * This function simply calls bus_print_child_header() followed by
4018  * bus_print_child_footer().
4019  *
4020  * @returns the number of characters printed
4021  */
4022 int
4023 bus_generic_print_child(device_t dev, device_t child)
4024 {
4025 	int	retval = 0;
4026 
4027 	retval += bus_print_child_header(dev, child);
4028 	retval += bus_print_child_domain(dev, child);
4029 	retval += bus_print_child_footer(dev, child);
4030 
4031 	return (retval);
4032 }
4033 
4034 /**
4035  * @brief Stub function for implementing BUS_READ_IVAR().
4036  *
4037  * @returns ENOENT
4038  */
4039 int
4040 bus_generic_read_ivar(device_t dev, device_t child, int index,
4041     uintptr_t * result)
4042 {
4043 	return (ENOENT);
4044 }
4045 
4046 /**
4047  * @brief Stub function for implementing BUS_WRITE_IVAR().
4048  *
4049  * @returns ENOENT
4050  */
4051 int
4052 bus_generic_write_ivar(device_t dev, device_t child, int index,
4053     uintptr_t value)
4054 {
4055 	return (ENOENT);
4056 }
4057 
4058 /**
4059  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4060  *
4061  * @returns NULL
4062  */
4063 struct resource_list *
4064 bus_generic_get_resource_list(device_t dev, device_t child)
4065 {
4066 	return (NULL);
4067 }
4068 
4069 /**
4070  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4071  *
4072  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4073  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4074  * and then calls device_probe_and_attach() for each unattached child.
4075  */
4076 void
4077 bus_generic_driver_added(device_t dev, driver_t *driver)
4078 {
4079 	device_t child;
4080 
4081 	DEVICE_IDENTIFY(driver, dev);
4082 	TAILQ_FOREACH(child, &dev->children, link) {
4083 		if (child->state == DS_NOTPRESENT ||
4084 		    (child->flags & DF_REBID))
4085 			device_probe_and_attach(child);
4086 	}
4087 }
4088 
4089 /**
4090  * @brief Helper function for implementing BUS_NEW_PASS().
4091  *
4092  * This implementing of BUS_NEW_PASS() first calls the identify
4093  * routines for any drivers that probe at the current pass.  Then it
4094  * walks the list of devices for this bus.  If a device is already
4095  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4096  * device is not already attached, it attempts to attach a driver to
4097  * it.
4098  */
4099 void
4100 bus_generic_new_pass(device_t dev)
4101 {
4102 	driverlink_t dl;
4103 	devclass_t dc;
4104 	device_t child;
4105 
4106 	dc = dev->devclass;
4107 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4108 		if (dl->pass == bus_current_pass)
4109 			DEVICE_IDENTIFY(dl->driver, dev);
4110 	}
4111 	TAILQ_FOREACH(child, &dev->children, link) {
4112 		if (child->state >= DS_ATTACHED)
4113 			BUS_NEW_PASS(child);
4114 		else if (child->state == DS_NOTPRESENT)
4115 			device_probe_and_attach(child);
4116 	}
4117 }
4118 
4119 /**
4120  * @brief Helper function for implementing BUS_SETUP_INTR().
4121  *
4122  * This simple implementation of BUS_SETUP_INTR() simply calls the
4123  * BUS_SETUP_INTR() method of the parent of @p dev.
4124  */
4125 int
4126 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4127     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4128     void **cookiep)
4129 {
4130 	/* Propagate up the bus hierarchy until someone handles it. */
4131 	if (dev->parent)
4132 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4133 		    filter, intr, arg, cookiep));
4134 	return (EINVAL);
4135 }
4136 
4137 /**
4138  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4139  *
4140  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4141  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4142  */
4143 int
4144 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4145     void *cookie)
4146 {
4147 	/* Propagate up the bus hierarchy until someone handles it. */
4148 	if (dev->parent)
4149 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4150 	return (EINVAL);
4151 }
4152 
4153 /**
4154  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4155  *
4156  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4157  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4158  */
4159 int
4160 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4161 {
4162 	/* Propagate up the bus hierarchy until someone handles it. */
4163 	if (dev->parent)
4164 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4165 	return (EINVAL);
4166 }
4167 
4168 /**
4169  * @brief Helper function for implementing BUS_RESUME_INTR().
4170  *
4171  * This simple implementation of BUS_RESUME_INTR() simply calls the
4172  * BUS_RESUME_INTR() method of the parent of @p dev.
4173  */
4174 int
4175 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4176 {
4177 	/* Propagate up the bus hierarchy until someone handles it. */
4178 	if (dev->parent)
4179 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4180 	return (EINVAL);
4181 }
4182 
4183 /**
4184  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4185  *
4186  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4187  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4188  */
4189 int
4190 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4191     struct resource *r, rman_res_t start, rman_res_t end)
4192 {
4193 	/* Propagate up the bus hierarchy until someone handles it. */
4194 	if (dev->parent)
4195 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4196 		    end));
4197 	return (EINVAL);
4198 }
4199 
4200 /**
4201  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4202  *
4203  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4204  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4205  */
4206 struct resource *
4207 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4208     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4209 {
4210 	/* Propagate up the bus hierarchy until someone handles it. */
4211 	if (dev->parent)
4212 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4213 		    start, end, count, flags));
4214 	return (NULL);
4215 }
4216 
4217 /**
4218  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4219  *
4220  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4221  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4222  */
4223 int
4224 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4225     struct resource *r)
4226 {
4227 	/* Propagate up the bus hierarchy until someone handles it. */
4228 	if (dev->parent)
4229 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4230 		    r));
4231 	return (EINVAL);
4232 }
4233 
4234 /**
4235  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4236  *
4237  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4238  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4239  */
4240 int
4241 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4242     struct resource *r)
4243 {
4244 	/* Propagate up the bus hierarchy until someone handles it. */
4245 	if (dev->parent)
4246 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4247 		    r));
4248 	return (EINVAL);
4249 }
4250 
4251 /**
4252  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4253  *
4254  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4255  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4256  */
4257 int
4258 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4259     int rid, struct resource *r)
4260 {
4261 	/* Propagate up the bus hierarchy until someone handles it. */
4262 	if (dev->parent)
4263 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4264 		    r));
4265 	return (EINVAL);
4266 }
4267 
4268 /**
4269  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4270  *
4271  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4272  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4273  */
4274 int
4275 bus_generic_map_resource(device_t dev, device_t child, int type,
4276     struct resource *r, struct resource_map_request *args,
4277     struct resource_map *map)
4278 {
4279 	/* Propagate up the bus hierarchy until someone handles it. */
4280 	if (dev->parent)
4281 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4282 		    map));
4283 	return (EINVAL);
4284 }
4285 
4286 /**
4287  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4288  *
4289  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4290  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4291  */
4292 int
4293 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4294     struct resource *r, struct resource_map *map)
4295 {
4296 	/* Propagate up the bus hierarchy until someone handles it. */
4297 	if (dev->parent)
4298 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4299 	return (EINVAL);
4300 }
4301 
4302 /**
4303  * @brief Helper function for implementing BUS_BIND_INTR().
4304  *
4305  * This simple implementation of BUS_BIND_INTR() simply calls the
4306  * BUS_BIND_INTR() method of the parent of @p dev.
4307  */
4308 int
4309 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4310     int cpu)
4311 {
4312 
4313 	/* Propagate up the bus hierarchy until someone handles it. */
4314 	if (dev->parent)
4315 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4316 	return (EINVAL);
4317 }
4318 
4319 /**
4320  * @brief Helper function for implementing BUS_CONFIG_INTR().
4321  *
4322  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4323  * BUS_CONFIG_INTR() method of the parent of @p dev.
4324  */
4325 int
4326 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4327     enum intr_polarity pol)
4328 {
4329 
4330 	/* Propagate up the bus hierarchy until someone handles it. */
4331 	if (dev->parent)
4332 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4333 	return (EINVAL);
4334 }
4335 
4336 /**
4337  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4338  *
4339  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4340  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4341  */
4342 int
4343 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4344     void *cookie, const char *descr)
4345 {
4346 
4347 	/* Propagate up the bus hierarchy until someone handles it. */
4348 	if (dev->parent)
4349 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4350 		    descr));
4351 	return (EINVAL);
4352 }
4353 
4354 /**
4355  * @brief Helper function for implementing BUS_GET_CPUS().
4356  *
4357  * This simple implementation of BUS_GET_CPUS() simply calls the
4358  * BUS_GET_CPUS() method of the parent of @p dev.
4359  */
4360 int
4361 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4362     size_t setsize, cpuset_t *cpuset)
4363 {
4364 
4365 	/* Propagate up the bus hierarchy until someone handles it. */
4366 	if (dev->parent != NULL)
4367 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4368 	return (EINVAL);
4369 }
4370 
4371 /**
4372  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4373  *
4374  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4375  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4376  */
4377 bus_dma_tag_t
4378 bus_generic_get_dma_tag(device_t dev, device_t child)
4379 {
4380 
4381 	/* Propagate up the bus hierarchy until someone handles it. */
4382 	if (dev->parent != NULL)
4383 		return (BUS_GET_DMA_TAG(dev->parent, child));
4384 	return (NULL);
4385 }
4386 
4387 /**
4388  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4389  *
4390  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4391  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4392  */
4393 bus_space_tag_t
4394 bus_generic_get_bus_tag(device_t dev, device_t child)
4395 {
4396 
4397 	/* Propagate up the bus hierarchy until someone handles it. */
4398 	if (dev->parent != NULL)
4399 		return (BUS_GET_BUS_TAG(dev->parent, child));
4400 	return ((bus_space_tag_t)0);
4401 }
4402 
4403 /**
4404  * @brief Helper function for implementing BUS_GET_RESOURCE().
4405  *
4406  * This implementation of BUS_GET_RESOURCE() uses the
4407  * resource_list_find() function to do most of the work. It calls
4408  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4409  * search.
4410  */
4411 int
4412 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4413     rman_res_t *startp, rman_res_t *countp)
4414 {
4415 	struct resource_list *		rl = NULL;
4416 	struct resource_list_entry *	rle = NULL;
4417 
4418 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4419 	if (!rl)
4420 		return (EINVAL);
4421 
4422 	rle = resource_list_find(rl, type, rid);
4423 	if (!rle)
4424 		return (ENOENT);
4425 
4426 	if (startp)
4427 		*startp = rle->start;
4428 	if (countp)
4429 		*countp = rle->count;
4430 
4431 	return (0);
4432 }
4433 
4434 /**
4435  * @brief Helper function for implementing BUS_SET_RESOURCE().
4436  *
4437  * This implementation of BUS_SET_RESOURCE() uses the
4438  * resource_list_add() function to do most of the work. It calls
4439  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4440  * edit.
4441  */
4442 int
4443 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4444     rman_res_t start, rman_res_t count)
4445 {
4446 	struct resource_list *		rl = NULL;
4447 
4448 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4449 	if (!rl)
4450 		return (EINVAL);
4451 
4452 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4453 
4454 	return (0);
4455 }
4456 
4457 /**
4458  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4459  *
4460  * This implementation of BUS_DELETE_RESOURCE() uses the
4461  * resource_list_delete() function to do most of the work. It calls
4462  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4463  * edit.
4464  */
4465 void
4466 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4467 {
4468 	struct resource_list *		rl = NULL;
4469 
4470 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4471 	if (!rl)
4472 		return;
4473 
4474 	resource_list_delete(rl, type, rid);
4475 
4476 	return;
4477 }
4478 
4479 /**
4480  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4481  *
4482  * This implementation of BUS_RELEASE_RESOURCE() uses the
4483  * resource_list_release() function to do most of the work. It calls
4484  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4485  */
4486 int
4487 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4488     int rid, struct resource *r)
4489 {
4490 	struct resource_list *		rl = NULL;
4491 
4492 	if (device_get_parent(child) != dev)
4493 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4494 		    type, rid, r));
4495 
4496 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4497 	if (!rl)
4498 		return (EINVAL);
4499 
4500 	return (resource_list_release(rl, dev, child, type, rid, r));
4501 }
4502 
4503 /**
4504  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4505  *
4506  * This implementation of BUS_ALLOC_RESOURCE() uses the
4507  * resource_list_alloc() function to do most of the work. It calls
4508  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4509  */
4510 struct resource *
4511 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4512     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4513 {
4514 	struct resource_list *		rl = NULL;
4515 
4516 	if (device_get_parent(child) != dev)
4517 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4518 		    type, rid, start, end, count, flags));
4519 
4520 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4521 	if (!rl)
4522 		return (NULL);
4523 
4524 	return (resource_list_alloc(rl, dev, child, type, rid,
4525 	    start, end, count, flags));
4526 }
4527 
4528 /**
4529  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4530  *
4531  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4532  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4533  */
4534 int
4535 bus_generic_child_present(device_t dev, device_t child)
4536 {
4537 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4538 }
4539 
4540 int
4541 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4542 {
4543 
4544 	if (dev->parent)
4545 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4546 
4547 	return (ENOENT);
4548 }
4549 
4550 /**
4551  * @brief Helper function for implementing BUS_RESCAN().
4552  *
4553  * This null implementation of BUS_RESCAN() always fails to indicate
4554  * the bus does not support rescanning.
4555  */
4556 int
4557 bus_null_rescan(device_t dev)
4558 {
4559 
4560 	return (ENXIO);
4561 }
4562 
4563 /*
4564  * Some convenience functions to make it easier for drivers to use the
4565  * resource-management functions.  All these really do is hide the
4566  * indirection through the parent's method table, making for slightly
4567  * less-wordy code.  In the future, it might make sense for this code
4568  * to maintain some sort of a list of resources allocated by each device.
4569  */
4570 
4571 int
4572 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4573     struct resource **res)
4574 {
4575 	int i;
4576 
4577 	for (i = 0; rs[i].type != -1; i++)
4578 		res[i] = NULL;
4579 	for (i = 0; rs[i].type != -1; i++) {
4580 		res[i] = bus_alloc_resource_any(dev,
4581 		    rs[i].type, &rs[i].rid, rs[i].flags);
4582 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4583 			bus_release_resources(dev, rs, res);
4584 			return (ENXIO);
4585 		}
4586 	}
4587 	return (0);
4588 }
4589 
4590 void
4591 bus_release_resources(device_t dev, const struct resource_spec *rs,
4592     struct resource **res)
4593 {
4594 	int i;
4595 
4596 	for (i = 0; rs[i].type != -1; i++)
4597 		if (res[i] != NULL) {
4598 			bus_release_resource(
4599 			    dev, rs[i].type, rs[i].rid, res[i]);
4600 			res[i] = NULL;
4601 		}
4602 }
4603 
4604 /**
4605  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4606  *
4607  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4608  * parent of @p dev.
4609  */
4610 struct resource *
4611 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4612     rman_res_t end, rman_res_t count, u_int flags)
4613 {
4614 	struct resource *res;
4615 
4616 	if (dev->parent == NULL)
4617 		return (NULL);
4618 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4619 	    count, flags);
4620 	return (res);
4621 }
4622 
4623 /**
4624  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4625  *
4626  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4627  * parent of @p dev.
4628  */
4629 int
4630 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4631     rman_res_t end)
4632 {
4633 	if (dev->parent == NULL)
4634 		return (EINVAL);
4635 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4636 }
4637 
4638 /**
4639  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4640  *
4641  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4642  * parent of @p dev.
4643  */
4644 int
4645 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4646 {
4647 	if (dev->parent == NULL)
4648 		return (EINVAL);
4649 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4650 }
4651 
4652 /**
4653  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4654  *
4655  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4656  * parent of @p dev.
4657  */
4658 int
4659 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4660 {
4661 	if (dev->parent == NULL)
4662 		return (EINVAL);
4663 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4664 }
4665 
4666 /**
4667  * @brief Wrapper function for BUS_MAP_RESOURCE().
4668  *
4669  * This function simply calls the BUS_MAP_RESOURCE() method of the
4670  * parent of @p dev.
4671  */
4672 int
4673 bus_map_resource(device_t dev, int type, struct resource *r,
4674     struct resource_map_request *args, struct resource_map *map)
4675 {
4676 	if (dev->parent == NULL)
4677 		return (EINVAL);
4678 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4679 }
4680 
4681 /**
4682  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4683  *
4684  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4685  * parent of @p dev.
4686  */
4687 int
4688 bus_unmap_resource(device_t dev, int type, struct resource *r,
4689     struct resource_map *map)
4690 {
4691 	if (dev->parent == NULL)
4692 		return (EINVAL);
4693 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4694 }
4695 
4696 /**
4697  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4698  *
4699  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4700  * parent of @p dev.
4701  */
4702 int
4703 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4704 {
4705 	int rv;
4706 
4707 	if (dev->parent == NULL)
4708 		return (EINVAL);
4709 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4710 	return (rv);
4711 }
4712 
4713 /**
4714  * @brief Wrapper function for BUS_SETUP_INTR().
4715  *
4716  * This function simply calls the BUS_SETUP_INTR() method of the
4717  * parent of @p dev.
4718  */
4719 int
4720 bus_setup_intr(device_t dev, struct resource *r, int flags,
4721     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4722 {
4723 	int error;
4724 
4725 	if (dev->parent == NULL)
4726 		return (EINVAL);
4727 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4728 	    arg, cookiep);
4729 	if (error != 0)
4730 		return (error);
4731 	if (handler != NULL && !(flags & INTR_MPSAFE))
4732 		device_printf(dev, "[GIANT-LOCKED]\n");
4733 	return (0);
4734 }
4735 
4736 /**
4737  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4738  *
4739  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4740  * parent of @p dev.
4741  */
4742 int
4743 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4744 {
4745 	if (dev->parent == NULL)
4746 		return (EINVAL);
4747 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4748 }
4749 
4750 /**
4751  * @brief Wrapper function for BUS_SUSPEND_INTR().
4752  *
4753  * This function simply calls the BUS_SUSPEND_INTR() method of the
4754  * parent of @p dev.
4755  */
4756 int
4757 bus_suspend_intr(device_t dev, struct resource *r)
4758 {
4759 	if (dev->parent == NULL)
4760 		return (EINVAL);
4761 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4762 }
4763 
4764 /**
4765  * @brief Wrapper function for BUS_RESUME_INTR().
4766  *
4767  * This function simply calls the BUS_RESUME_INTR() method of the
4768  * parent of @p dev.
4769  */
4770 int
4771 bus_resume_intr(device_t dev, struct resource *r)
4772 {
4773 	if (dev->parent == NULL)
4774 		return (EINVAL);
4775 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4776 }
4777 
4778 /**
4779  * @brief Wrapper function for BUS_BIND_INTR().
4780  *
4781  * This function simply calls the BUS_BIND_INTR() method of the
4782  * parent of @p dev.
4783  */
4784 int
4785 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4786 {
4787 	if (dev->parent == NULL)
4788 		return (EINVAL);
4789 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4790 }
4791 
4792 /**
4793  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4794  *
4795  * This function first formats the requested description into a
4796  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4797  * the parent of @p dev.
4798  */
4799 int
4800 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4801     const char *fmt, ...)
4802 {
4803 	va_list ap;
4804 	char descr[MAXCOMLEN + 1];
4805 
4806 	if (dev->parent == NULL)
4807 		return (EINVAL);
4808 	va_start(ap, fmt);
4809 	vsnprintf(descr, sizeof(descr), fmt, ap);
4810 	va_end(ap);
4811 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4812 }
4813 
4814 /**
4815  * @brief Wrapper function for BUS_SET_RESOURCE().
4816  *
4817  * This function simply calls the BUS_SET_RESOURCE() method of the
4818  * parent of @p dev.
4819  */
4820 int
4821 bus_set_resource(device_t dev, int type, int rid,
4822     rman_res_t start, rman_res_t count)
4823 {
4824 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4825 	    start, count));
4826 }
4827 
4828 /**
4829  * @brief Wrapper function for BUS_GET_RESOURCE().
4830  *
4831  * This function simply calls the BUS_GET_RESOURCE() method of the
4832  * parent of @p dev.
4833  */
4834 int
4835 bus_get_resource(device_t dev, int type, int rid,
4836     rman_res_t *startp, rman_res_t *countp)
4837 {
4838 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4839 	    startp, countp));
4840 }
4841 
4842 /**
4843  * @brief Wrapper function for BUS_GET_RESOURCE().
4844  *
4845  * This function simply calls the BUS_GET_RESOURCE() method of the
4846  * parent of @p dev and returns the start value.
4847  */
4848 rman_res_t
4849 bus_get_resource_start(device_t dev, int type, int rid)
4850 {
4851 	rman_res_t start;
4852 	rman_res_t count;
4853 	int error;
4854 
4855 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4856 	    &start, &count);
4857 	if (error)
4858 		return (0);
4859 	return (start);
4860 }
4861 
4862 /**
4863  * @brief Wrapper function for BUS_GET_RESOURCE().
4864  *
4865  * This function simply calls the BUS_GET_RESOURCE() method of the
4866  * parent of @p dev and returns the count value.
4867  */
4868 rman_res_t
4869 bus_get_resource_count(device_t dev, int type, int rid)
4870 {
4871 	rman_res_t start;
4872 	rman_res_t count;
4873 	int error;
4874 
4875 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4876 	    &start, &count);
4877 	if (error)
4878 		return (0);
4879 	return (count);
4880 }
4881 
4882 /**
4883  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4884  *
4885  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4886  * parent of @p dev.
4887  */
4888 void
4889 bus_delete_resource(device_t dev, int type, int rid)
4890 {
4891 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4892 }
4893 
4894 /**
4895  * @brief Wrapper function for BUS_CHILD_PRESENT().
4896  *
4897  * This function simply calls the BUS_CHILD_PRESENT() method of the
4898  * parent of @p dev.
4899  */
4900 int
4901 bus_child_present(device_t child)
4902 {
4903 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4904 }
4905 
4906 /**
4907  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4908  *
4909  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4910  * parent of @p dev.
4911  */
4912 int
4913 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4914 {
4915 	device_t parent;
4916 
4917 	parent = device_get_parent(child);
4918 	if (parent == NULL) {
4919 		*buf = '\0';
4920 		return (0);
4921 	}
4922 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4923 }
4924 
4925 /**
4926  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4927  *
4928  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4929  * parent of @p dev.
4930  */
4931 int
4932 bus_child_location_str(device_t child, char *buf, size_t buflen)
4933 {
4934 	device_t parent;
4935 
4936 	parent = device_get_parent(child);
4937 	if (parent == NULL) {
4938 		*buf = '\0';
4939 		return (0);
4940 	}
4941 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4942 }
4943 
4944 /**
4945  * @brief Wrapper function for BUS_GET_CPUS().
4946  *
4947  * This function simply calls the BUS_GET_CPUS() method of the
4948  * parent of @p dev.
4949  */
4950 int
4951 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4952 {
4953 	device_t parent;
4954 
4955 	parent = device_get_parent(dev);
4956 	if (parent == NULL)
4957 		return (EINVAL);
4958 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4959 }
4960 
4961 /**
4962  * @brief Wrapper function for BUS_GET_DMA_TAG().
4963  *
4964  * This function simply calls the BUS_GET_DMA_TAG() method of the
4965  * parent of @p dev.
4966  */
4967 bus_dma_tag_t
4968 bus_get_dma_tag(device_t dev)
4969 {
4970 	device_t parent;
4971 
4972 	parent = device_get_parent(dev);
4973 	if (parent == NULL)
4974 		return (NULL);
4975 	return (BUS_GET_DMA_TAG(parent, dev));
4976 }
4977 
4978 /**
4979  * @brief Wrapper function for BUS_GET_BUS_TAG().
4980  *
4981  * This function simply calls the BUS_GET_BUS_TAG() method of the
4982  * parent of @p dev.
4983  */
4984 bus_space_tag_t
4985 bus_get_bus_tag(device_t dev)
4986 {
4987 	device_t parent;
4988 
4989 	parent = device_get_parent(dev);
4990 	if (parent == NULL)
4991 		return ((bus_space_tag_t)0);
4992 	return (BUS_GET_BUS_TAG(parent, dev));
4993 }
4994 
4995 /**
4996  * @brief Wrapper function for BUS_GET_DOMAIN().
4997  *
4998  * This function simply calls the BUS_GET_DOMAIN() method of the
4999  * parent of @p dev.
5000  */
5001 int
5002 bus_get_domain(device_t dev, int *domain)
5003 {
5004 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5005 }
5006 
5007 /* Resume all devices and then notify userland that we're up again. */
5008 static int
5009 root_resume(device_t dev)
5010 {
5011 	int error;
5012 
5013 	error = bus_generic_resume(dev);
5014 	if (error == 0)
5015 		devctl_notify("kern", "power", "resume", NULL);
5016 	return (error);
5017 }
5018 
5019 static int
5020 root_print_child(device_t dev, device_t child)
5021 {
5022 	int	retval = 0;
5023 
5024 	retval += bus_print_child_header(dev, child);
5025 	retval += printf("\n");
5026 
5027 	return (retval);
5028 }
5029 
5030 static int
5031 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5032     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5033 {
5034 	/*
5035 	 * If an interrupt mapping gets to here something bad has happened.
5036 	 */
5037 	panic("root_setup_intr");
5038 }
5039 
5040 /*
5041  * If we get here, assume that the device is permanent and really is
5042  * present in the system.  Removable bus drivers are expected to intercept
5043  * this call long before it gets here.  We return -1 so that drivers that
5044  * really care can check vs -1 or some ERRNO returned higher in the food
5045  * chain.
5046  */
5047 static int
5048 root_child_present(device_t dev, device_t child)
5049 {
5050 	return (-1);
5051 }
5052 
5053 static int
5054 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5055     cpuset_t *cpuset)
5056 {
5057 
5058 	switch (op) {
5059 	case INTR_CPUS:
5060 		/* Default to returning the set of all CPUs. */
5061 		if (setsize != sizeof(cpuset_t))
5062 			return (EINVAL);
5063 		*cpuset = all_cpus;
5064 		return (0);
5065 	default:
5066 		return (EINVAL);
5067 	}
5068 }
5069 
5070 static kobj_method_t root_methods[] = {
5071 	/* Device interface */
5072 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5073 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5074 	KOBJMETHOD(device_resume,	root_resume),
5075 
5076 	/* Bus interface */
5077 	KOBJMETHOD(bus_print_child,	root_print_child),
5078 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5079 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5080 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5081 	KOBJMETHOD(bus_child_present,	root_child_present),
5082 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5083 
5084 	KOBJMETHOD_END
5085 };
5086 
5087 static driver_t root_driver = {
5088 	"root",
5089 	root_methods,
5090 	1,			/* no softc */
5091 };
5092 
5093 device_t	root_bus;
5094 devclass_t	root_devclass;
5095 
5096 static int
5097 root_bus_module_handler(module_t mod, int what, void* arg)
5098 {
5099 	switch (what) {
5100 	case MOD_LOAD:
5101 		TAILQ_INIT(&bus_data_devices);
5102 		kobj_class_compile((kobj_class_t) &root_driver);
5103 		root_bus = make_device(NULL, "root", 0);
5104 		root_bus->desc = "System root bus";
5105 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5106 		root_bus->driver = &root_driver;
5107 		root_bus->state = DS_ATTACHED;
5108 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5109 		devinit();
5110 		return (0);
5111 
5112 	case MOD_SHUTDOWN:
5113 		device_shutdown(root_bus);
5114 		return (0);
5115 	default:
5116 		return (EOPNOTSUPP);
5117 	}
5118 
5119 	return (0);
5120 }
5121 
5122 static moduledata_t root_bus_mod = {
5123 	"rootbus",
5124 	root_bus_module_handler,
5125 	NULL
5126 };
5127 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5128 
5129 /**
5130  * @brief Automatically configure devices
5131  *
5132  * This function begins the autoconfiguration process by calling
5133  * device_probe_and_attach() for each child of the @c root0 device.
5134  */
5135 void
5136 root_bus_configure(void)
5137 {
5138 
5139 	PDEBUG(("."));
5140 
5141 	/* Eventually this will be split up, but this is sufficient for now. */
5142 	bus_set_pass(BUS_PASS_DEFAULT);
5143 }
5144 
5145 /**
5146  * @brief Module handler for registering device drivers
5147  *
5148  * This module handler is used to automatically register device
5149  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5150  * devclass_add_driver() for the driver described by the
5151  * driver_module_data structure pointed to by @p arg
5152  */
5153 int
5154 driver_module_handler(module_t mod, int what, void *arg)
5155 {
5156 	struct driver_module_data *dmd;
5157 	devclass_t bus_devclass;
5158 	kobj_class_t driver;
5159 	int error, pass;
5160 
5161 	dmd = (struct driver_module_data *)arg;
5162 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5163 	error = 0;
5164 
5165 	switch (what) {
5166 	case MOD_LOAD:
5167 		if (dmd->dmd_chainevh)
5168 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5169 
5170 		pass = dmd->dmd_pass;
5171 		driver = dmd->dmd_driver;
5172 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5173 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5174 		error = devclass_add_driver(bus_devclass, driver, pass,
5175 		    dmd->dmd_devclass);
5176 		break;
5177 
5178 	case MOD_UNLOAD:
5179 		PDEBUG(("Unloading module: driver %s from bus %s",
5180 		    DRIVERNAME(dmd->dmd_driver),
5181 		    dmd->dmd_busname));
5182 		error = devclass_delete_driver(bus_devclass,
5183 		    dmd->dmd_driver);
5184 
5185 		if (!error && dmd->dmd_chainevh)
5186 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5187 		break;
5188 	case MOD_QUIESCE:
5189 		PDEBUG(("Quiesce module: driver %s from bus %s",
5190 		    DRIVERNAME(dmd->dmd_driver),
5191 		    dmd->dmd_busname));
5192 		error = devclass_quiesce_driver(bus_devclass,
5193 		    dmd->dmd_driver);
5194 
5195 		if (!error && dmd->dmd_chainevh)
5196 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5197 		break;
5198 	default:
5199 		error = EOPNOTSUPP;
5200 		break;
5201 	}
5202 
5203 	return (error);
5204 }
5205 
5206 /**
5207  * @brief Enumerate all hinted devices for this bus.
5208  *
5209  * Walks through the hints for this bus and calls the bus_hinted_child
5210  * routine for each one it fines.  It searches first for the specific
5211  * bus that's being probed for hinted children (eg isa0), and then for
5212  * generic children (eg isa).
5213  *
5214  * @param	dev	bus device to enumerate
5215  */
5216 void
5217 bus_enumerate_hinted_children(device_t bus)
5218 {
5219 	int i;
5220 	const char *dname, *busname;
5221 	int dunit;
5222 
5223 	/*
5224 	 * enumerate all devices on the specific bus
5225 	 */
5226 	busname = device_get_nameunit(bus);
5227 	i = 0;
5228 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5229 		BUS_HINTED_CHILD(bus, dname, dunit);
5230 
5231 	/*
5232 	 * and all the generic ones.
5233 	 */
5234 	busname = device_get_name(bus);
5235 	i = 0;
5236 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5237 		BUS_HINTED_CHILD(bus, dname, dunit);
5238 }
5239 
5240 #ifdef BUS_DEBUG
5241 
5242 /* the _short versions avoid iteration by not calling anything that prints
5243  * more than oneliners. I love oneliners.
5244  */
5245 
5246 static void
5247 print_device_short(device_t dev, int indent)
5248 {
5249 	if (!dev)
5250 		return;
5251 
5252 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5253 	    dev->unit, dev->desc,
5254 	    (dev->parent? "":"no "),
5255 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5256 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5257 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5258 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5259 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5260 	    (dev->flags&DF_REBID? "rebiddable,":""),
5261 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5262 	    (dev->ivars? "":"no "),
5263 	    (dev->softc? "":"no "),
5264 	    dev->busy));
5265 }
5266 
5267 static void
5268 print_device(device_t dev, int indent)
5269 {
5270 	if (!dev)
5271 		return;
5272 
5273 	print_device_short(dev, indent);
5274 
5275 	indentprintf(("Parent:\n"));
5276 	print_device_short(dev->parent, indent+1);
5277 	indentprintf(("Driver:\n"));
5278 	print_driver_short(dev->driver, indent+1);
5279 	indentprintf(("Devclass:\n"));
5280 	print_devclass_short(dev->devclass, indent+1);
5281 }
5282 
5283 void
5284 print_device_tree_short(device_t dev, int indent)
5285 /* print the device and all its children (indented) */
5286 {
5287 	device_t child;
5288 
5289 	if (!dev)
5290 		return;
5291 
5292 	print_device_short(dev, indent);
5293 
5294 	TAILQ_FOREACH(child, &dev->children, link) {
5295 		print_device_tree_short(child, indent+1);
5296 	}
5297 }
5298 
5299 void
5300 print_device_tree(device_t dev, int indent)
5301 /* print the device and all its children (indented) */
5302 {
5303 	device_t child;
5304 
5305 	if (!dev)
5306 		return;
5307 
5308 	print_device(dev, indent);
5309 
5310 	TAILQ_FOREACH(child, &dev->children, link) {
5311 		print_device_tree(child, indent+1);
5312 	}
5313 }
5314 
5315 static void
5316 print_driver_short(driver_t *driver, int indent)
5317 {
5318 	if (!driver)
5319 		return;
5320 
5321 	indentprintf(("driver %s: softc size = %zd\n",
5322 	    driver->name, driver->size));
5323 }
5324 
5325 static void
5326 print_driver(driver_t *driver, int indent)
5327 {
5328 	if (!driver)
5329 		return;
5330 
5331 	print_driver_short(driver, indent);
5332 }
5333 
5334 static void
5335 print_driver_list(driver_list_t drivers, int indent)
5336 {
5337 	driverlink_t driver;
5338 
5339 	TAILQ_FOREACH(driver, &drivers, link) {
5340 		print_driver(driver->driver, indent);
5341 	}
5342 }
5343 
5344 static void
5345 print_devclass_short(devclass_t dc, int indent)
5346 {
5347 	if ( !dc )
5348 		return;
5349 
5350 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5351 }
5352 
5353 static void
5354 print_devclass(devclass_t dc, int indent)
5355 {
5356 	int i;
5357 
5358 	if ( !dc )
5359 		return;
5360 
5361 	print_devclass_short(dc, indent);
5362 	indentprintf(("Drivers:\n"));
5363 	print_driver_list(dc->drivers, indent+1);
5364 
5365 	indentprintf(("Devices:\n"));
5366 	for (i = 0; i < dc->maxunit; i++)
5367 		if (dc->devices[i])
5368 			print_device(dc->devices[i], indent+1);
5369 }
5370 
5371 void
5372 print_devclass_list_short(void)
5373 {
5374 	devclass_t dc;
5375 
5376 	printf("Short listing of devclasses, drivers & devices:\n");
5377 	TAILQ_FOREACH(dc, &devclasses, link) {
5378 		print_devclass_short(dc, 0);
5379 	}
5380 }
5381 
5382 void
5383 print_devclass_list(void)
5384 {
5385 	devclass_t dc;
5386 
5387 	printf("Full listing of devclasses, drivers & devices:\n");
5388 	TAILQ_FOREACH(dc, &devclasses, link) {
5389 		print_devclass(dc, 0);
5390 	}
5391 }
5392 
5393 #endif
5394 
5395 /*
5396  * User-space access to the device tree.
5397  *
5398  * We implement a small set of nodes:
5399  *
5400  * hw.bus			Single integer read method to obtain the
5401  *				current generation count.
5402  * hw.bus.devices		Reads the entire device tree in flat space.
5403  * hw.bus.rman			Resource manager interface
5404  *
5405  * We might like to add the ability to scan devclasses and/or drivers to
5406  * determine what else is currently loaded/available.
5407  */
5408 
5409 static int
5410 sysctl_bus(SYSCTL_HANDLER_ARGS)
5411 {
5412 	struct u_businfo	ubus;
5413 
5414 	ubus.ub_version = BUS_USER_VERSION;
5415 	ubus.ub_generation = bus_data_generation;
5416 
5417 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5418 }
5419 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5420     "bus-related data");
5421 
5422 static int
5423 sysctl_devices(SYSCTL_HANDLER_ARGS)
5424 {
5425 	int			*name = (int *)arg1;
5426 	u_int			namelen = arg2;
5427 	int			index;
5428 	device_t		dev;
5429 	struct u_device		*udev;
5430 	int			error;
5431 	char			*walker, *ep;
5432 
5433 	if (namelen != 2)
5434 		return (EINVAL);
5435 
5436 	if (bus_data_generation_check(name[0]))
5437 		return (EINVAL);
5438 
5439 	index = name[1];
5440 
5441 	/*
5442 	 * Scan the list of devices, looking for the requested index.
5443 	 */
5444 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5445 		if (index-- == 0)
5446 			break;
5447 	}
5448 	if (dev == NULL)
5449 		return (ENOENT);
5450 
5451 	/*
5452 	 * Populate the return item, careful not to overflow the buffer.
5453 	 */
5454 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5455 	if (udev == NULL)
5456 		return (ENOMEM);
5457 	udev->dv_handle = (uintptr_t)dev;
5458 	udev->dv_parent = (uintptr_t)dev->parent;
5459 	udev->dv_devflags = dev->devflags;
5460 	udev->dv_flags = dev->flags;
5461 	udev->dv_state = dev->state;
5462 	walker = udev->dv_fields;
5463 	ep = walker + sizeof(udev->dv_fields);
5464 #define CP(src)						\
5465 	if ((src) == NULL)				\
5466 		*walker++ = '\0';			\
5467 	else {						\
5468 		strlcpy(walker, (src), ep - walker);	\
5469 		walker += strlen(walker) + 1;		\
5470 	}						\
5471 	if (walker >= ep)				\
5472 		break;
5473 
5474 	do {
5475 		CP(dev->nameunit);
5476 		CP(dev->desc);
5477 		CP(dev->driver != NULL ? dev->driver->name : NULL);
5478 		bus_child_pnpinfo_str(dev, walker, ep - walker);
5479 		walker += strlen(walker) + 1;
5480 		if (walker >= ep)
5481 			break;
5482 		bus_child_location_str(dev, walker, ep - walker);
5483 		walker += strlen(walker) + 1;
5484 		if (walker >= ep)
5485 			break;
5486 		*walker++ = '\0';
5487 	} while (0);
5488 #undef CP
5489 	error = SYSCTL_OUT(req, udev, sizeof(*udev));
5490 	free(udev, M_BUS);
5491 	return (error);
5492 }
5493 
5494 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5495     "system device tree");
5496 
5497 int
5498 bus_data_generation_check(int generation)
5499 {
5500 	if (generation != bus_data_generation)
5501 		return (1);
5502 
5503 	/* XXX generate optimised lists here? */
5504 	return (0);
5505 }
5506 
5507 void
5508 bus_data_generation_update(void)
5509 {
5510 	bus_data_generation++;
5511 }
5512 
5513 int
5514 bus_free_resource(device_t dev, int type, struct resource *r)
5515 {
5516 	if (r == NULL)
5517 		return (0);
5518 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5519 }
5520 
5521 device_t
5522 device_lookup_by_name(const char *name)
5523 {
5524 	device_t dev;
5525 
5526 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5527 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5528 			return (dev);
5529 	}
5530 	return (NULL);
5531 }
5532 
5533 /*
5534  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5535  * implicit semantics on open, so it could not be reused for this.
5536  * Another option would be to call this /dev/bus?
5537  */
5538 static int
5539 find_device(struct devreq *req, device_t *devp)
5540 {
5541 	device_t dev;
5542 
5543 	/*
5544 	 * First, ensure that the name is nul terminated.
5545 	 */
5546 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5547 		return (EINVAL);
5548 
5549 	/*
5550 	 * Second, try to find an attached device whose name matches
5551 	 * 'name'.
5552 	 */
5553 	dev = device_lookup_by_name(req->dr_name);
5554 	if (dev != NULL) {
5555 		*devp = dev;
5556 		return (0);
5557 	}
5558 
5559 	/* Finally, give device enumerators a chance. */
5560 	dev = NULL;
5561 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5562 	if (dev == NULL)
5563 		return (ENOENT);
5564 	*devp = dev;
5565 	return (0);
5566 }
5567 
5568 static bool
5569 driver_exists(device_t bus, const char *driver)
5570 {
5571 	devclass_t dc;
5572 
5573 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5574 		if (devclass_find_driver_internal(dc, driver) != NULL)
5575 			return (true);
5576 	}
5577 	return (false);
5578 }
5579 
5580 static void
5581 device_gen_nomatch(device_t dev)
5582 {
5583 	device_t child;
5584 
5585 	if (dev->flags & DF_NEEDNOMATCH &&
5586 	    dev->state == DS_NOTPRESENT) {
5587 		BUS_PROBE_NOMATCH(dev->parent, dev);
5588 		devnomatch(dev);
5589 		dev->flags |= DF_DONENOMATCH;
5590 	}
5591 	dev->flags &= ~DF_NEEDNOMATCH;
5592 	TAILQ_FOREACH(child, &dev->children, link) {
5593 		device_gen_nomatch(child);
5594 	}
5595 }
5596 
5597 static void
5598 device_do_deferred_actions(void)
5599 {
5600 	devclass_t dc;
5601 	driverlink_t dl;
5602 
5603 	/*
5604 	 * Walk through the devclasses to find all the drivers we've tagged as
5605 	 * deferred during the freeze and call the driver added routines. They
5606 	 * have already been added to the lists in the background, so the driver
5607 	 * added routines that trigger a probe will have all the right bidders
5608 	 * for the probe auction.
5609 	 */
5610 	TAILQ_FOREACH(dc, &devclasses, link) {
5611 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5612 			if (dl->flags & DL_DEFERRED_PROBE) {
5613 				devclass_driver_added(dc, dl->driver);
5614 				dl->flags &= ~DL_DEFERRED_PROBE;
5615 			}
5616 		}
5617 	}
5618 
5619 	/*
5620 	 * We also defer no-match events during a freeze. Walk the tree and
5621 	 * generate all the pent-up events that are still relevant.
5622 	 */
5623 	device_gen_nomatch(root_bus);
5624 	bus_data_generation_update();
5625 }
5626 
5627 static int
5628 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5629     struct thread *td)
5630 {
5631 	struct devreq *req;
5632 	device_t dev;
5633 	int error, old;
5634 
5635 	/* Locate the device to control. */
5636 	mtx_lock(&Giant);
5637 	req = (struct devreq *)data;
5638 	switch (cmd) {
5639 	case DEV_ATTACH:
5640 	case DEV_DETACH:
5641 	case DEV_ENABLE:
5642 	case DEV_DISABLE:
5643 	case DEV_SUSPEND:
5644 	case DEV_RESUME:
5645 	case DEV_SET_DRIVER:
5646 	case DEV_CLEAR_DRIVER:
5647 	case DEV_RESCAN:
5648 	case DEV_DELETE:
5649 	case DEV_RESET:
5650 		error = priv_check(td, PRIV_DRIVER);
5651 		if (error == 0)
5652 			error = find_device(req, &dev);
5653 		break;
5654 	case DEV_FREEZE:
5655 	case DEV_THAW:
5656 		error = priv_check(td, PRIV_DRIVER);
5657 		break;
5658 	default:
5659 		error = ENOTTY;
5660 		break;
5661 	}
5662 	if (error) {
5663 		mtx_unlock(&Giant);
5664 		return (error);
5665 	}
5666 
5667 	/* Perform the requested operation. */
5668 	switch (cmd) {
5669 	case DEV_ATTACH:
5670 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5671 			error = EBUSY;
5672 		else if (!device_is_enabled(dev))
5673 			error = ENXIO;
5674 		else
5675 			error = device_probe_and_attach(dev);
5676 		break;
5677 	case DEV_DETACH:
5678 		if (!device_is_attached(dev)) {
5679 			error = ENXIO;
5680 			break;
5681 		}
5682 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5683 			error = device_quiesce(dev);
5684 			if (error)
5685 				break;
5686 		}
5687 		error = device_detach(dev);
5688 		break;
5689 	case DEV_ENABLE:
5690 		if (device_is_enabled(dev)) {
5691 			error = EBUSY;
5692 			break;
5693 		}
5694 
5695 		/*
5696 		 * If the device has been probed but not attached (e.g.
5697 		 * when it has been disabled by a loader hint), just
5698 		 * attach the device rather than doing a full probe.
5699 		 */
5700 		device_enable(dev);
5701 		if (device_is_alive(dev)) {
5702 			/*
5703 			 * If the device was disabled via a hint, clear
5704 			 * the hint.
5705 			 */
5706 			if (resource_disabled(dev->driver->name, dev->unit))
5707 				resource_unset_value(dev->driver->name,
5708 				    dev->unit, "disabled");
5709 			error = device_attach(dev);
5710 		} else
5711 			error = device_probe_and_attach(dev);
5712 		break;
5713 	case DEV_DISABLE:
5714 		if (!device_is_enabled(dev)) {
5715 			error = ENXIO;
5716 			break;
5717 		}
5718 
5719 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5720 			error = device_quiesce(dev);
5721 			if (error)
5722 				break;
5723 		}
5724 
5725 		/*
5726 		 * Force DF_FIXEDCLASS on around detach to preserve
5727 		 * the existing name.
5728 		 */
5729 		old = dev->flags;
5730 		dev->flags |= DF_FIXEDCLASS;
5731 		error = device_detach(dev);
5732 		if (!(old & DF_FIXEDCLASS))
5733 			dev->flags &= ~DF_FIXEDCLASS;
5734 		if (error == 0)
5735 			device_disable(dev);
5736 		break;
5737 	case DEV_SUSPEND:
5738 		if (device_is_suspended(dev)) {
5739 			error = EBUSY;
5740 			break;
5741 		}
5742 		if (device_get_parent(dev) == NULL) {
5743 			error = EINVAL;
5744 			break;
5745 		}
5746 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5747 		break;
5748 	case DEV_RESUME:
5749 		if (!device_is_suspended(dev)) {
5750 			error = EINVAL;
5751 			break;
5752 		}
5753 		if (device_get_parent(dev) == NULL) {
5754 			error = EINVAL;
5755 			break;
5756 		}
5757 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5758 		break;
5759 	case DEV_SET_DRIVER: {
5760 		devclass_t dc;
5761 		char driver[128];
5762 
5763 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5764 		if (error)
5765 			break;
5766 		if (driver[0] == '\0') {
5767 			error = EINVAL;
5768 			break;
5769 		}
5770 		if (dev->devclass != NULL &&
5771 		    strcmp(driver, dev->devclass->name) == 0)
5772 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5773 			break;
5774 
5775 		/*
5776 		 * Scan drivers for this device's bus looking for at
5777 		 * least one matching driver.
5778 		 */
5779 		if (dev->parent == NULL) {
5780 			error = EINVAL;
5781 			break;
5782 		}
5783 		if (!driver_exists(dev->parent, driver)) {
5784 			error = ENOENT;
5785 			break;
5786 		}
5787 		dc = devclass_create(driver);
5788 		if (dc == NULL) {
5789 			error = ENOMEM;
5790 			break;
5791 		}
5792 
5793 		/* Detach device if necessary. */
5794 		if (device_is_attached(dev)) {
5795 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5796 				error = device_detach(dev);
5797 			else
5798 				error = EBUSY;
5799 			if (error)
5800 				break;
5801 		}
5802 
5803 		/* Clear any previously-fixed device class and unit. */
5804 		if (dev->flags & DF_FIXEDCLASS)
5805 			devclass_delete_device(dev->devclass, dev);
5806 		dev->flags |= DF_WILDCARD;
5807 		dev->unit = -1;
5808 
5809 		/* Force the new device class. */
5810 		error = devclass_add_device(dc, dev);
5811 		if (error)
5812 			break;
5813 		dev->flags |= DF_FIXEDCLASS;
5814 		error = device_probe_and_attach(dev);
5815 		break;
5816 	}
5817 	case DEV_CLEAR_DRIVER:
5818 		if (!(dev->flags & DF_FIXEDCLASS)) {
5819 			error = 0;
5820 			break;
5821 		}
5822 		if (device_is_attached(dev)) {
5823 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5824 				error = device_detach(dev);
5825 			else
5826 				error = EBUSY;
5827 			if (error)
5828 				break;
5829 		}
5830 
5831 		dev->flags &= ~DF_FIXEDCLASS;
5832 		dev->flags |= DF_WILDCARD;
5833 		devclass_delete_device(dev->devclass, dev);
5834 		error = device_probe_and_attach(dev);
5835 		break;
5836 	case DEV_RESCAN:
5837 		if (!device_is_attached(dev)) {
5838 			error = ENXIO;
5839 			break;
5840 		}
5841 		error = BUS_RESCAN(dev);
5842 		break;
5843 	case DEV_DELETE: {
5844 		device_t parent;
5845 
5846 		parent = device_get_parent(dev);
5847 		if (parent == NULL) {
5848 			error = EINVAL;
5849 			break;
5850 		}
5851 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5852 			if (bus_child_present(dev) != 0) {
5853 				error = EBUSY;
5854 				break;
5855 			}
5856 		}
5857 
5858 		error = device_delete_child(parent, dev);
5859 		break;
5860 	}
5861 	case DEV_FREEZE:
5862 		if (device_frozen)
5863 			error = EBUSY;
5864 		else
5865 			device_frozen = true;
5866 		break;
5867 	case DEV_THAW:
5868 		if (!device_frozen)
5869 			error = EBUSY;
5870 		else {
5871 			device_do_deferred_actions();
5872 			device_frozen = false;
5873 		}
5874 		break;
5875 	case DEV_RESET:
5876 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5877 			error = EINVAL;
5878 			break;
5879 		}
5880 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5881 		    req->dr_flags);
5882 		break;
5883 	}
5884 	mtx_unlock(&Giant);
5885 	return (error);
5886 }
5887 
5888 static struct cdevsw devctl2_cdevsw = {
5889 	.d_version =	D_VERSION,
5890 	.d_ioctl =	devctl2_ioctl,
5891 	.d_name =	"devctl2",
5892 };
5893 
5894 static void
5895 devctl2_init(void)
5896 {
5897 
5898 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5899 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5900 }
5901 
5902 /*
5903  * APIs to manage deprecation and obsolescence.
5904  */
5905 static int obsolete_panic = 0;
5906 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5907     "Bus debug level");
5908 /* 0 - don't panic, 1 - panic if already obsolete, 2 - panic if deprecated */
5909 static void
5910 gone_panic(int major, int running, const char *msg)
5911 {
5912 
5913 	switch (obsolete_panic)
5914 	{
5915 	case 0:
5916 		return;
5917 	case 1:
5918 		if (running < major)
5919 			return;
5920 		/* FALLTHROUGH */
5921 	default:
5922 		panic("%s", msg);
5923 	}
5924 }
5925 
5926 void
5927 _gone_in(int major, const char *msg)
5928 {
5929 
5930 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5931 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5932 		printf("Obsolete code will removed soon: %s\n", msg);
5933 	else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major)
5934 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5935 		    major, msg);
5936 }
5937 
5938 void
5939 _gone_in_dev(device_t dev, int major, const char *msg)
5940 {
5941 
5942 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5943 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5944 		device_printf(dev,
5945 		    "Obsolete code will removed soon: %s\n", msg);
5946 	else if (P_OSREL_MAJOR(__FreeBSD_version) + 1 == major)
5947 		device_printf(dev,
5948 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5949 		    major, msg);
5950 }
5951 
5952 #ifdef DDB
5953 DB_SHOW_COMMAND(device, db_show_device)
5954 {
5955 	device_t dev;
5956 
5957 	if (!have_addr)
5958 		return;
5959 
5960 	dev = (device_t)addr;
5961 
5962 	db_printf("name:    %s\n", device_get_nameunit(dev));
5963 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
5964 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
5965 	db_printf("  addr:    %p\n", dev);
5966 	db_printf("  parent:  %p\n", dev->parent);
5967 	db_printf("  softc:   %p\n", dev->softc);
5968 	db_printf("  ivars:   %p\n", dev->ivars);
5969 }
5970 
5971 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
5972 {
5973 	device_t dev;
5974 
5975 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5976 		db_show_device((db_expr_t)dev, true, count, modif);
5977 	}
5978 }
5979 #endif
5980