xref: /freebsd/sys/kern/subr_bus.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1997,1998,2003 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_bus.h"
31 
32 #include <sys/param.h>
33 #include <sys/conf.h>
34 #include <sys/filio.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/kobj.h>
38 #include <sys/limits.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/poll.h>
43 #include <sys/proc.h>
44 #include <sys/condvar.h>
45 #include <sys/queue.h>
46 #include <machine/bus.h>
47 #include <sys/rman.h>
48 #include <sys/selinfo.h>
49 #include <sys/signalvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/bus.h>
54 #include <sys/interrupt.h>
55 
56 #include <machine/stdarg.h>
57 
58 #include <vm/uma.h>
59 
60 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61 SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62 
63 /*
64  * Used to attach drivers to devclasses.
65  */
66 typedef struct driverlink *driverlink_t;
67 struct driverlink {
68 	kobj_class_t	driver;
69 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70 	int		pass;
71 	TAILQ_ENTRY(driverlink) passlink;
72 };
73 
74 /*
75  * Forward declarations
76  */
77 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79 typedef TAILQ_HEAD(device_list, device) device_list_t;
80 
81 struct devclass {
82 	TAILQ_ENTRY(devclass) link;
83 	devclass_t	parent;		/* parent in devclass hierarchy */
84 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85 	char		*name;
86 	device_t	*devices;	/* array of devices indexed by unit */
87 	int		maxunit;	/* size of devices array */
88 	int		flags;
89 #define DC_HAS_CHILDREN		1
90 
91 	struct sysctl_ctx_list sysctl_ctx;
92 	struct sysctl_oid *sysctl_tree;
93 };
94 
95 /**
96  * @brief Implementation of device.
97  */
98 struct device {
99 	/*
100 	 * A device is a kernel object. The first field must be the
101 	 * current ops table for the object.
102 	 */
103 	KOBJ_FIELDS;
104 
105 	/*
106 	 * Device hierarchy.
107 	 */
108 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110 	device_t	parent;		/**< parent of this device  */
111 	device_list_t	children;	/**< list of child devices */
112 
113 	/*
114 	 * Details of this device.
115 	 */
116 	driver_t	*driver;	/**< current driver */
117 	devclass_t	devclass;	/**< current device class */
118 	int		unit;		/**< current unit number */
119 	char*		nameunit;	/**< name+unit e.g. foodev0 */
120 	char*		desc;		/**< driver specific description */
121 	int		busy;		/**< count of calls to device_busy() */
122 	device_state_t	state;		/**< current device state  */
123 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124 	u_int		flags;		/**< internal device flags  */
125 #define	DF_ENABLED	0x01		/* device should be probed/attached */
126 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
129 #define	DF_QUIET	0x10		/* don't print verbose attach message */
130 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132 #define	DF_REBID	0x80		/* Can rebid after attach */
133 	u_int	order;			/**< order from device_add_child_ordered() */
134 	void	*ivars;			/**< instance variables  */
135 	void	*softc;			/**< current driver's variables  */
136 
137 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139 };
140 
141 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143 
144 #ifdef BUS_DEBUG
145 
146 static int bus_debug = 1;
147 TUNABLE_INT("bus.debug", &bus_debug);
148 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149     "Debug bus code");
150 
151 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153 #define DRIVERNAME(d)	((d)? d->name : "no driver")
154 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
155 
156 /**
157  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158  * prevent syslog from deleting initial spaces
159  */
160 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161 
162 static void print_device_short(device_t dev, int indent);
163 static void print_device(device_t dev, int indent);
164 void print_device_tree_short(device_t dev, int indent);
165 void print_device_tree(device_t dev, int indent);
166 static void print_driver_short(driver_t *driver, int indent);
167 static void print_driver(driver_t *driver, int indent);
168 static void print_driver_list(driver_list_t drivers, int indent);
169 static void print_devclass_short(devclass_t dc, int indent);
170 static void print_devclass(devclass_t dc, int indent);
171 void print_devclass_list_short(void);
172 void print_devclass_list(void);
173 
174 #else
175 /* Make the compiler ignore the function calls */
176 #define PDEBUG(a)			/* nop */
177 #define DEVICENAME(d)			/* nop */
178 #define DRIVERNAME(d)			/* nop */
179 #define DEVCLANAME(d)			/* nop */
180 
181 #define print_device_short(d,i)		/* nop */
182 #define print_device(d,i)		/* nop */
183 #define print_device_tree_short(d,i)	/* nop */
184 #define print_device_tree(d,i)		/* nop */
185 #define print_driver_short(d,i)		/* nop */
186 #define print_driver(d,i)		/* nop */
187 #define print_driver_list(d,i)		/* nop */
188 #define print_devclass_short(d,i)	/* nop */
189 #define print_devclass(d,i)		/* nop */
190 #define print_devclass_list_short()	/* nop */
191 #define print_devclass_list()		/* nop */
192 #endif
193 
194 /*
195  * dev sysctl tree
196  */
197 
198 enum {
199 	DEVCLASS_SYSCTL_PARENT,
200 };
201 
202 static int
203 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204 {
205 	devclass_t dc = (devclass_t)arg1;
206 	const char *value;
207 
208 	switch (arg2) {
209 	case DEVCLASS_SYSCTL_PARENT:
210 		value = dc->parent ? dc->parent->name : "";
211 		break;
212 	default:
213 		return (EINVAL);
214 	}
215 	return (SYSCTL_OUT(req, value, strlen(value)));
216 }
217 
218 static void
219 devclass_sysctl_init(devclass_t dc)
220 {
221 
222 	if (dc->sysctl_tree != NULL)
223 		return;
224 	sysctl_ctx_init(&dc->sysctl_ctx);
225 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227 	    CTLFLAG_RD, NULL, "");
228 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231 	    "parent class");
232 }
233 
234 enum {
235 	DEVICE_SYSCTL_DESC,
236 	DEVICE_SYSCTL_DRIVER,
237 	DEVICE_SYSCTL_LOCATION,
238 	DEVICE_SYSCTL_PNPINFO,
239 	DEVICE_SYSCTL_PARENT,
240 };
241 
242 static int
243 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244 {
245 	device_t dev = (device_t)arg1;
246 	const char *value;
247 	char *buf;
248 	int error;
249 
250 	buf = NULL;
251 	switch (arg2) {
252 	case DEVICE_SYSCTL_DESC:
253 		value = dev->desc ? dev->desc : "";
254 		break;
255 	case DEVICE_SYSCTL_DRIVER:
256 		value = dev->driver ? dev->driver->name : "";
257 		break;
258 	case DEVICE_SYSCTL_LOCATION:
259 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260 		bus_child_location_str(dev, buf, 1024);
261 		break;
262 	case DEVICE_SYSCTL_PNPINFO:
263 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264 		bus_child_pnpinfo_str(dev, buf, 1024);
265 		break;
266 	case DEVICE_SYSCTL_PARENT:
267 		value = dev->parent ? dev->parent->nameunit : "";
268 		break;
269 	default:
270 		return (EINVAL);
271 	}
272 	error = SYSCTL_OUT(req, value, strlen(value));
273 	if (buf != NULL)
274 		free(buf, M_BUS);
275 	return (error);
276 }
277 
278 static void
279 device_sysctl_init(device_t dev)
280 {
281 	devclass_t dc = dev->devclass;
282 
283 	if (dev->sysctl_tree != NULL)
284 		return;
285 	devclass_sysctl_init(dc);
286 	sysctl_ctx_init(&dev->sysctl_ctx);
287 	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289 	    dev->nameunit + strlen(dc->name),
290 	    CTLFLAG_RD, NULL, "");
291 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294 	    "device description");
295 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296 	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298 	    "device driver name");
299 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300 	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302 	    "device location relative to parent");
303 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304 	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306 	    "device identification");
307 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308 	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310 	    "parent device");
311 }
312 
313 static void
314 device_sysctl_update(device_t dev)
315 {
316 	devclass_t dc = dev->devclass;
317 
318 	if (dev->sysctl_tree == NULL)
319 		return;
320 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321 }
322 
323 static void
324 device_sysctl_fini(device_t dev)
325 {
326 	if (dev->sysctl_tree == NULL)
327 		return;
328 	sysctl_ctx_free(&dev->sysctl_ctx);
329 	dev->sysctl_tree = NULL;
330 }
331 
332 /*
333  * /dev/devctl implementation
334  */
335 
336 /*
337  * This design allows only one reader for /dev/devctl.  This is not desirable
338  * in the long run, but will get a lot of hair out of this implementation.
339  * Maybe we should make this device a clonable device.
340  *
341  * Also note: we specifically do not attach a device to the device_t tree
342  * to avoid potential chicken and egg problems.  One could argue that all
343  * of this belongs to the root node.  One could also further argue that the
344  * sysctl interface that we have not might more properly be an ioctl
345  * interface, but at this stage of the game, I'm not inclined to rock that
346  * boat.
347  *
348  * I'm also not sure that the SIGIO support is done correctly or not, as
349  * I copied it from a driver that had SIGIO support that likely hasn't been
350  * tested since 3.4 or 2.2.8!
351  */
352 
353 /* Deprecated way to adjust queue length */
354 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355 /* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357     0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358 
359 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
360 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362 TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364     0, sysctl_devctl_queue, "I", "devctl queue length");
365 
366 static d_open_t		devopen;
367 static d_close_t	devclose;
368 static d_read_t		devread;
369 static d_ioctl_t	devioctl;
370 static d_poll_t		devpoll;
371 
372 static struct cdevsw dev_cdevsw = {
373 	.d_version =	D_VERSION,
374 	.d_flags =	D_NEEDGIANT,
375 	.d_open =	devopen,
376 	.d_close =	devclose,
377 	.d_read =	devread,
378 	.d_ioctl =	devioctl,
379 	.d_poll =	devpoll,
380 	.d_name =	"devctl",
381 };
382 
383 struct dev_event_info
384 {
385 	char *dei_data;
386 	TAILQ_ENTRY(dev_event_info) dei_link;
387 };
388 
389 TAILQ_HEAD(devq, dev_event_info);
390 
391 static struct dev_softc
392 {
393 	int	inuse;
394 	int	nonblock;
395 	int	queued;
396 	struct mtx mtx;
397 	struct cv cv;
398 	struct selinfo sel;
399 	struct devq devq;
400 	struct proc *async_proc;
401 } devsoftc;
402 
403 static struct cdev *devctl_dev;
404 
405 static void
406 devinit(void)
407 {
408 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411 	cv_init(&devsoftc.cv, "dev cv");
412 	TAILQ_INIT(&devsoftc.devq);
413 }
414 
415 static int
416 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417 {
418 	if (devsoftc.inuse)
419 		return (EBUSY);
420 	/* move to init */
421 	devsoftc.inuse = 1;
422 	devsoftc.nonblock = 0;
423 	devsoftc.async_proc = NULL;
424 	return (0);
425 }
426 
427 static int
428 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429 {
430 	devsoftc.inuse = 0;
431 	mtx_lock(&devsoftc.mtx);
432 	cv_broadcast(&devsoftc.cv);
433 	mtx_unlock(&devsoftc.mtx);
434 	devsoftc.async_proc = NULL;
435 	return (0);
436 }
437 
438 /*
439  * The read channel for this device is used to report changes to
440  * userland in realtime.  We are required to free the data as well as
441  * the n1 object because we allocate them separately.  Also note that
442  * we return one record at a time.  If you try to read this device a
443  * character at a time, you will lose the rest of the data.  Listening
444  * programs are expected to cope.
445  */
446 static int
447 devread(struct cdev *dev, struct uio *uio, int ioflag)
448 {
449 	struct dev_event_info *n1;
450 	int rv;
451 
452 	mtx_lock(&devsoftc.mtx);
453 	while (TAILQ_EMPTY(&devsoftc.devq)) {
454 		if (devsoftc.nonblock) {
455 			mtx_unlock(&devsoftc.mtx);
456 			return (EAGAIN);
457 		}
458 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459 		if (rv) {
460 			/*
461 			 * Need to translate ERESTART to EINTR here? -- jake
462 			 */
463 			mtx_unlock(&devsoftc.mtx);
464 			return (rv);
465 		}
466 	}
467 	n1 = TAILQ_FIRST(&devsoftc.devq);
468 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469 	devsoftc.queued--;
470 	mtx_unlock(&devsoftc.mtx);
471 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472 	free(n1->dei_data, M_BUS);
473 	free(n1, M_BUS);
474 	return (rv);
475 }
476 
477 static	int
478 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479 {
480 	switch (cmd) {
481 
482 	case FIONBIO:
483 		if (*(int*)data)
484 			devsoftc.nonblock = 1;
485 		else
486 			devsoftc.nonblock = 0;
487 		return (0);
488 	case FIOASYNC:
489 		if (*(int*)data)
490 			devsoftc.async_proc = td->td_proc;
491 		else
492 			devsoftc.async_proc = NULL;
493 		return (0);
494 
495 		/* (un)Support for other fcntl() calls. */
496 	case FIOCLEX:
497 	case FIONCLEX:
498 	case FIONREAD:
499 	case FIOSETOWN:
500 	case FIOGETOWN:
501 	default:
502 		break;
503 	}
504 	return (ENOTTY);
505 }
506 
507 static	int
508 devpoll(struct cdev *dev, int events, struct thread *td)
509 {
510 	int	revents = 0;
511 
512 	mtx_lock(&devsoftc.mtx);
513 	if (events & (POLLIN | POLLRDNORM)) {
514 		if (!TAILQ_EMPTY(&devsoftc.devq))
515 			revents = events & (POLLIN | POLLRDNORM);
516 		else
517 			selrecord(td, &devsoftc.sel);
518 	}
519 	mtx_unlock(&devsoftc.mtx);
520 
521 	return (revents);
522 }
523 
524 /**
525  * @brief Return whether the userland process is running
526  */
527 boolean_t
528 devctl_process_running(void)
529 {
530 	return (devsoftc.inuse == 1);
531 }
532 
533 /**
534  * @brief Queue data to be read from the devctl device
535  *
536  * Generic interface to queue data to the devctl device.  It is
537  * assumed that @p data is properly formatted.  It is further assumed
538  * that @p data is allocated using the M_BUS malloc type.
539  */
540 void
541 devctl_queue_data_f(char *data, int flags)
542 {
543 	struct dev_event_info *n1 = NULL, *n2 = NULL;
544 	struct proc *p;
545 
546 	if (strlen(data) == 0)
547 		goto out;
548 	if (devctl_queue_length == 0)
549 		goto out;
550 	n1 = malloc(sizeof(*n1), M_BUS, flags);
551 	if (n1 == NULL)
552 		goto out;
553 	n1->dei_data = data;
554 	mtx_lock(&devsoftc.mtx);
555 	if (devctl_queue_length == 0) {
556 		mtx_unlock(&devsoftc.mtx);
557 		free(n1->dei_data, M_BUS);
558 		free(n1, M_BUS);
559 		return;
560 	}
561 	/* Leave at least one spot in the queue... */
562 	while (devsoftc.queued > devctl_queue_length - 1) {
563 		n2 = TAILQ_FIRST(&devsoftc.devq);
564 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565 		free(n2->dei_data, M_BUS);
566 		free(n2, M_BUS);
567 		devsoftc.queued--;
568 	}
569 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570 	devsoftc.queued++;
571 	cv_broadcast(&devsoftc.cv);
572 	mtx_unlock(&devsoftc.mtx);
573 	selwakeup(&devsoftc.sel);
574 	p = devsoftc.async_proc;
575 	if (p != NULL) {
576 		PROC_LOCK(p);
577 		psignal(p, SIGIO);
578 		PROC_UNLOCK(p);
579 	}
580 	return;
581 out:
582 	/*
583 	 * We have to free data on all error paths since the caller
584 	 * assumes it will be free'd when this item is dequeued.
585 	 */
586 	free(data, M_BUS);
587 	return;
588 }
589 
590 void
591 devctl_queue_data(char *data)
592 {
593 
594 	devctl_queue_data_f(data, M_NOWAIT);
595 }
596 
597 /**
598  * @brief Send a 'notification' to userland, using standard ways
599  */
600 void
601 devctl_notify_f(const char *system, const char *subsystem, const char *type,
602     const char *data, int flags)
603 {
604 	int len = 0;
605 	char *msg;
606 
607 	if (system == NULL)
608 		return;		/* BOGUS!  Must specify system. */
609 	if (subsystem == NULL)
610 		return;		/* BOGUS!  Must specify subsystem. */
611 	if (type == NULL)
612 		return;		/* BOGUS!  Must specify type. */
613 	len += strlen(" system=") + strlen(system);
614 	len += strlen(" subsystem=") + strlen(subsystem);
615 	len += strlen(" type=") + strlen(type);
616 	/* add in the data message plus newline. */
617 	if (data != NULL)
618 		len += strlen(data);
619 	len += 3;	/* '!', '\n', and NUL */
620 	msg = malloc(len, M_BUS, flags);
621 	if (msg == NULL)
622 		return;		/* Drop it on the floor */
623 	if (data != NULL)
624 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625 		    system, subsystem, type, data);
626 	else
627 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628 		    system, subsystem, type);
629 	devctl_queue_data_f(msg, flags);
630 }
631 
632 void
633 devctl_notify(const char *system, const char *subsystem, const char *type,
634     const char *data)
635 {
636 
637 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638 }
639 
640 /*
641  * Common routine that tries to make sending messages as easy as possible.
642  * We allocate memory for the data, copy strings into that, but do not
643  * free it unless there's an error.  The dequeue part of the driver should
644  * free the data.  We don't send data when the device is disabled.  We do
645  * send data, even when we have no listeners, because we wish to avoid
646  * races relating to startup and restart of listening applications.
647  *
648  * devaddq is designed to string together the type of event, with the
649  * object of that event, plus the plug and play info and location info
650  * for that event.  This is likely most useful for devices, but less
651  * useful for other consumers of this interface.  Those should use
652  * the devctl_queue_data() interface instead.
653  */
654 static void
655 devaddq(const char *type, const char *what, device_t dev)
656 {
657 	char *data = NULL;
658 	char *loc = NULL;
659 	char *pnp = NULL;
660 	const char *parstr;
661 
662 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663 		return;
664 	data = malloc(1024, M_BUS, M_NOWAIT);
665 	if (data == NULL)
666 		goto bad;
667 
668 	/* get the bus specific location of this device */
669 	loc = malloc(1024, M_BUS, M_NOWAIT);
670 	if (loc == NULL)
671 		goto bad;
672 	*loc = '\0';
673 	bus_child_location_str(dev, loc, 1024);
674 
675 	/* Get the bus specific pnp info of this device */
676 	pnp = malloc(1024, M_BUS, M_NOWAIT);
677 	if (pnp == NULL)
678 		goto bad;
679 	*pnp = '\0';
680 	bus_child_pnpinfo_str(dev, pnp, 1024);
681 
682 	/* Get the parent of this device, or / if high enough in the tree. */
683 	if (device_get_parent(dev) == NULL)
684 		parstr = ".";	/* Or '/' ? */
685 	else
686 		parstr = device_get_nameunit(device_get_parent(dev));
687 	/* String it all together. */
688 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689 	  parstr);
690 	free(loc, M_BUS);
691 	free(pnp, M_BUS);
692 	devctl_queue_data(data);
693 	return;
694 bad:
695 	free(pnp, M_BUS);
696 	free(loc, M_BUS);
697 	free(data, M_BUS);
698 	return;
699 }
700 
701 /*
702  * A device was added to the tree.  We are called just after it successfully
703  * attaches (that is, probe and attach success for this device).  No call
704  * is made if a device is merely parented into the tree.  See devnomatch
705  * if probe fails.  If attach fails, no notification is sent (but maybe
706  * we should have a different message for this).
707  */
708 static void
709 devadded(device_t dev)
710 {
711 	devaddq("+", device_get_nameunit(dev), dev);
712 }
713 
714 /*
715  * A device was removed from the tree.  We are called just before this
716  * happens.
717  */
718 static void
719 devremoved(device_t dev)
720 {
721 	devaddq("-", device_get_nameunit(dev), dev);
722 }
723 
724 /*
725  * Called when there's no match for this device.  This is only called
726  * the first time that no match happens, so we don't keep getting this
727  * message.  Should that prove to be undesirable, we can change it.
728  * This is called when all drivers that can attach to a given bus
729  * decline to accept this device.  Other errors may not be detected.
730  */
731 static void
732 devnomatch(device_t dev)
733 {
734 	devaddq("?", "", dev);
735 }
736 
737 static int
738 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739 {
740 	struct dev_event_info *n1;
741 	int dis, error;
742 
743 	dis = devctl_queue_length == 0;
744 	error = sysctl_handle_int(oidp, &dis, 0, req);
745 	if (error || !req->newptr)
746 		return (error);
747 	mtx_lock(&devsoftc.mtx);
748 	if (dis) {
749 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750 			n1 = TAILQ_FIRST(&devsoftc.devq);
751 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752 			free(n1->dei_data, M_BUS);
753 			free(n1, M_BUS);
754 		}
755 		devsoftc.queued = 0;
756 		devctl_queue_length = 0;
757 	} else {
758 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759 	}
760 	mtx_unlock(&devsoftc.mtx);
761 	return (0);
762 }
763 
764 static int
765 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766 {
767 	struct dev_event_info *n1;
768 	int q, error;
769 
770 	q = devctl_queue_length;
771 	error = sysctl_handle_int(oidp, &q, 0, req);
772 	if (error || !req->newptr)
773 		return (error);
774 	if (q < 0)
775 		return (EINVAL);
776 	mtx_lock(&devsoftc.mtx);
777 	devctl_queue_length = q;
778 	while (devsoftc.queued > devctl_queue_length) {
779 		n1 = TAILQ_FIRST(&devsoftc.devq);
780 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781 		free(n1->dei_data, M_BUS);
782 		free(n1, M_BUS);
783 		devsoftc.queued--;
784 	}
785 	mtx_unlock(&devsoftc.mtx);
786 	return (0);
787 }
788 
789 /* End of /dev/devctl code */
790 
791 static TAILQ_HEAD(,device)	bus_data_devices;
792 static int bus_data_generation = 1;
793 
794 static kobj_method_t null_methods[] = {
795 	KOBJMETHOD_END
796 };
797 
798 DEFINE_CLASS(null, null_methods, 0);
799 
800 /*
801  * Bus pass implementation
802  */
803 
804 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805 int bus_current_pass = BUS_PASS_ROOT;
806 
807 /**
808  * @internal
809  * @brief Register the pass level of a new driver attachment
810  *
811  * Register a new driver attachment's pass level.  If no driver
812  * attachment with the same pass level has been added, then @p new
813  * will be added to the global passes list.
814  *
815  * @param new		the new driver attachment
816  */
817 static void
818 driver_register_pass(struct driverlink *new)
819 {
820 	struct driverlink *dl;
821 
822 	/* We only consider pass numbers during boot. */
823 	if (bus_current_pass == BUS_PASS_DEFAULT)
824 		return;
825 
826 	/*
827 	 * Walk the passes list.  If we already know about this pass
828 	 * then there is nothing to do.  If we don't, then insert this
829 	 * driver link into the list.
830 	 */
831 	TAILQ_FOREACH(dl, &passes, passlink) {
832 		if (dl->pass < new->pass)
833 			continue;
834 		if (dl->pass == new->pass)
835 			return;
836 		TAILQ_INSERT_BEFORE(dl, new, passlink);
837 		return;
838 	}
839 	TAILQ_INSERT_TAIL(&passes, new, passlink);
840 }
841 
842 /**
843  * @brief Raise the current bus pass
844  *
845  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846  * method on the root bus to kick off a new device tree scan for each
847  * new pass level that has at least one driver.
848  */
849 void
850 bus_set_pass(int pass)
851 {
852 	struct driverlink *dl;
853 
854 	if (bus_current_pass > pass)
855 		panic("Attempt to lower bus pass level");
856 
857 	TAILQ_FOREACH(dl, &passes, passlink) {
858 		/* Skip pass values below the current pass level. */
859 		if (dl->pass <= bus_current_pass)
860 			continue;
861 
862 		/*
863 		 * Bail once we hit a driver with a pass level that is
864 		 * too high.
865 		 */
866 		if (dl->pass > pass)
867 			break;
868 
869 		/*
870 		 * Raise the pass level to the next level and rescan
871 		 * the tree.
872 		 */
873 		bus_current_pass = dl->pass;
874 		BUS_NEW_PASS(root_bus);
875 	}
876 
877 	/*
878 	 * If there isn't a driver registered for the requested pass,
879 	 * then bus_current_pass might still be less than 'pass'.  Set
880 	 * it to 'pass' in that case.
881 	 */
882 	if (bus_current_pass < pass)
883 		bus_current_pass = pass;
884 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885 }
886 
887 /*
888  * Devclass implementation
889  */
890 
891 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892 
893 /**
894  * @internal
895  * @brief Find or create a device class
896  *
897  * If a device class with the name @p classname exists, return it,
898  * otherwise if @p create is non-zero create and return a new device
899  * class.
900  *
901  * If @p parentname is non-NULL, the parent of the devclass is set to
902  * the devclass of that name.
903  *
904  * @param classname	the devclass name to find or create
905  * @param parentname	the parent devclass name or @c NULL
906  * @param create	non-zero to create a devclass
907  */
908 static devclass_t
909 devclass_find_internal(const char *classname, const char *parentname,
910 		       int create)
911 {
912 	devclass_t dc;
913 
914 	PDEBUG(("looking for %s", classname));
915 	if (!classname)
916 		return (NULL);
917 
918 	TAILQ_FOREACH(dc, &devclasses, link) {
919 		if (!strcmp(dc->name, classname))
920 			break;
921 	}
922 
923 	if (create && !dc) {
924 		PDEBUG(("creating %s", classname));
925 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926 		    M_BUS, M_NOWAIT | M_ZERO);
927 		if (!dc)
928 			return (NULL);
929 		dc->parent = NULL;
930 		dc->name = (char*) (dc + 1);
931 		strcpy(dc->name, classname);
932 		TAILQ_INIT(&dc->drivers);
933 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934 
935 		bus_data_generation_update();
936 	}
937 
938 	/*
939 	 * If a parent class is specified, then set that as our parent so
940 	 * that this devclass will support drivers for the parent class as
941 	 * well.  If the parent class has the same name don't do this though
942 	 * as it creates a cycle that can trigger an infinite loop in
943 	 * device_probe_child() if a device exists for which there is no
944 	 * suitable driver.
945 	 */
946 	if (parentname && dc && !dc->parent &&
947 	    strcmp(classname, parentname) != 0) {
948 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949 		dc->parent->flags |= DC_HAS_CHILDREN;
950 	}
951 
952 	return (dc);
953 }
954 
955 /**
956  * @brief Create a device class
957  *
958  * If a device class with the name @p classname exists, return it,
959  * otherwise create and return a new device class.
960  *
961  * @param classname	the devclass name to find or create
962  */
963 devclass_t
964 devclass_create(const char *classname)
965 {
966 	return (devclass_find_internal(classname, NULL, TRUE));
967 }
968 
969 /**
970  * @brief Find a device class
971  *
972  * If a device class with the name @p classname exists, return it,
973  * otherwise return @c NULL.
974  *
975  * @param classname	the devclass name to find
976  */
977 devclass_t
978 devclass_find(const char *classname)
979 {
980 	return (devclass_find_internal(classname, NULL, FALSE));
981 }
982 
983 /**
984  * @brief Register that a device driver has been added to a devclass
985  *
986  * Register that a device driver has been added to a devclass.  This
987  * is called by devclass_add_driver to accomplish the recursive
988  * notification of all the children classes of dc, as well as dc.
989  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990  * the devclass.
991  *
992  * We do a full search here of the devclass list at each iteration
993  * level to save storing children-lists in the devclass structure.  If
994  * we ever move beyond a few dozen devices doing this, we may need to
995  * reevaluate...
996  *
997  * @param dc		the devclass to edit
998  * @param driver	the driver that was just added
999  */
1000 static void
1001 devclass_driver_added(devclass_t dc, driver_t *driver)
1002 {
1003 	devclass_t parent;
1004 	int i;
1005 
1006 	/*
1007 	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008 	 */
1009 	for (i = 0; i < dc->maxunit; i++)
1010 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012 
1013 	/*
1014 	 * Walk through the children classes.  Since we only keep a
1015 	 * single parent pointer around, we walk the entire list of
1016 	 * devclasses looking for children.  We set the
1017 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018 	 * the parent, so we only walk the list for those devclasses
1019 	 * that have children.
1020 	 */
1021 	if (!(dc->flags & DC_HAS_CHILDREN))
1022 		return;
1023 	parent = dc;
1024 	TAILQ_FOREACH(dc, &devclasses, link) {
1025 		if (dc->parent == parent)
1026 			devclass_driver_added(dc, driver);
1027 	}
1028 }
1029 
1030 /**
1031  * @brief Add a device driver to a device class
1032  *
1033  * Add a device driver to a devclass. This is normally called
1034  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035  * all devices in the devclass will be called to allow them to attempt
1036  * to re-probe any unmatched children.
1037  *
1038  * @param dc		the devclass to edit
1039  * @param driver	the driver to register
1040  */
1041 int
1042 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043 {
1044 	driverlink_t dl;
1045 	const char *parentname;
1046 
1047 	PDEBUG(("%s", DRIVERNAME(driver)));
1048 
1049 	/* Don't allow invalid pass values. */
1050 	if (pass <= BUS_PASS_ROOT)
1051 		return (EINVAL);
1052 
1053 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054 	if (!dl)
1055 		return (ENOMEM);
1056 
1057 	/*
1058 	 * Compile the driver's methods. Also increase the reference count
1059 	 * so that the class doesn't get freed when the last instance
1060 	 * goes. This means we can safely use static methods and avoids a
1061 	 * double-free in devclass_delete_driver.
1062 	 */
1063 	kobj_class_compile((kobj_class_t) driver);
1064 
1065 	/*
1066 	 * If the driver has any base classes, make the
1067 	 * devclass inherit from the devclass of the driver's
1068 	 * first base class. This will allow the system to
1069 	 * search for drivers in both devclasses for children
1070 	 * of a device using this driver.
1071 	 */
1072 	if (driver->baseclasses)
1073 		parentname = driver->baseclasses[0]->name;
1074 	else
1075 		parentname = NULL;
1076 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077 
1078 	dl->driver = driver;
1079 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080 	driver->refs++;		/* XXX: kobj_mtx */
1081 	dl->pass = pass;
1082 	driver_register_pass(dl);
1083 
1084 	devclass_driver_added(dc, driver);
1085 	bus_data_generation_update();
1086 	return (0);
1087 }
1088 
1089 /**
1090  * @brief Register that a device driver has been deleted from a devclass
1091  *
1092  * Register that a device driver has been removed from a devclass.
1093  * This is called by devclass_delete_driver to accomplish the
1094  * recursive notification of all the children classes of busclass, as
1095  * well as busclass.  Each layer will attempt to detach the driver
1096  * from any devices that are children of the bus's devclass.  The function
1097  * will return an error if a device fails to detach.
1098  *
1099  * We do a full search here of the devclass list at each iteration
1100  * level to save storing children-lists in the devclass structure.  If
1101  * we ever move beyond a few dozen devices doing this, we may need to
1102  * reevaluate...
1103  *
1104  * @param busclass	the devclass of the parent bus
1105  * @param dc		the devclass of the driver being deleted
1106  * @param driver	the driver being deleted
1107  */
1108 static int
1109 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110 {
1111 	devclass_t parent;
1112 	device_t dev;
1113 	int error, i;
1114 
1115 	/*
1116 	 * Disassociate from any devices.  We iterate through all the
1117 	 * devices in the devclass of the driver and detach any which are
1118 	 * using the driver and which have a parent in the devclass which
1119 	 * we are deleting from.
1120 	 *
1121 	 * Note that since a driver can be in multiple devclasses, we
1122 	 * should not detach devices which are not children of devices in
1123 	 * the affected devclass.
1124 	 */
1125 	for (i = 0; i < dc->maxunit; i++) {
1126 		if (dc->devices[i]) {
1127 			dev = dc->devices[i];
1128 			if (dev->driver == driver && dev->parent &&
1129 			    dev->parent->devclass == busclass) {
1130 				if ((error = device_detach(dev)) != 0)
1131 					return (error);
1132 				device_set_driver(dev, NULL);
1133 				BUS_PROBE_NOMATCH(dev->parent, dev);
1134 				devnomatch(dev);
1135 				dev->flags |= DF_DONENOMATCH;
1136 			}
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Walk through the children classes.  Since we only keep a
1142 	 * single parent pointer around, we walk the entire list of
1143 	 * devclasses looking for children.  We set the
1144 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1145 	 * the parent, so we only walk the list for those devclasses
1146 	 * that have children.
1147 	 */
1148 	if (!(busclass->flags & DC_HAS_CHILDREN))
1149 		return (0);
1150 	parent = busclass;
1151 	TAILQ_FOREACH(busclass, &devclasses, link) {
1152 		if (busclass->parent == parent) {
1153 			error = devclass_driver_deleted(busclass, dc, driver);
1154 			if (error)
1155 				return (error);
1156 		}
1157 	}
1158 	return (0);
1159 }
1160 
1161 /**
1162  * @brief Delete a device driver from a device class
1163  *
1164  * Delete a device driver from a devclass. This is normally called
1165  * automatically by DRIVER_MODULE().
1166  *
1167  * If the driver is currently attached to any devices,
1168  * devclass_delete_driver() will first attempt to detach from each
1169  * device. If one of the detach calls fails, the driver will not be
1170  * deleted.
1171  *
1172  * @param dc		the devclass to edit
1173  * @param driver	the driver to unregister
1174  */
1175 int
1176 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1177 {
1178 	devclass_t dc = devclass_find(driver->name);
1179 	driverlink_t dl;
1180 	int error;
1181 
1182 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1183 
1184 	if (!dc)
1185 		return (0);
1186 
1187 	/*
1188 	 * Find the link structure in the bus' list of drivers.
1189 	 */
1190 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1191 		if (dl->driver == driver)
1192 			break;
1193 	}
1194 
1195 	if (!dl) {
1196 		PDEBUG(("%s not found in %s list", driver->name,
1197 		    busclass->name));
1198 		return (ENOENT);
1199 	}
1200 
1201 	error = devclass_driver_deleted(busclass, dc, driver);
1202 	if (error != 0)
1203 		return (error);
1204 
1205 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1206 	free(dl, M_BUS);
1207 
1208 	/* XXX: kobj_mtx */
1209 	driver->refs--;
1210 	if (driver->refs == 0)
1211 		kobj_class_free((kobj_class_t) driver);
1212 
1213 	bus_data_generation_update();
1214 	return (0);
1215 }
1216 
1217 /**
1218  * @brief Quiesces a set of device drivers from a device class
1219  *
1220  * Quiesce a device driver from a devclass. This is normally called
1221  * automatically by DRIVER_MODULE().
1222  *
1223  * If the driver is currently attached to any devices,
1224  * devclass_quiesece_driver() will first attempt to quiesce each
1225  * device.
1226  *
1227  * @param dc		the devclass to edit
1228  * @param driver	the driver to unregister
1229  */
1230 static int
1231 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1232 {
1233 	devclass_t dc = devclass_find(driver->name);
1234 	driverlink_t dl;
1235 	device_t dev;
1236 	int i;
1237 	int error;
1238 
1239 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1240 
1241 	if (!dc)
1242 		return (0);
1243 
1244 	/*
1245 	 * Find the link structure in the bus' list of drivers.
1246 	 */
1247 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1248 		if (dl->driver == driver)
1249 			break;
1250 	}
1251 
1252 	if (!dl) {
1253 		PDEBUG(("%s not found in %s list", driver->name,
1254 		    busclass->name));
1255 		return (ENOENT);
1256 	}
1257 
1258 	/*
1259 	 * Quiesce all devices.  We iterate through all the devices in
1260 	 * the devclass of the driver and quiesce any which are using
1261 	 * the driver and which have a parent in the devclass which we
1262 	 * are quiescing.
1263 	 *
1264 	 * Note that since a driver can be in multiple devclasses, we
1265 	 * should not quiesce devices which are not children of
1266 	 * devices in the affected devclass.
1267 	 */
1268 	for (i = 0; i < dc->maxunit; i++) {
1269 		if (dc->devices[i]) {
1270 			dev = dc->devices[i];
1271 			if (dev->driver == driver && dev->parent &&
1272 			    dev->parent->devclass == busclass) {
1273 				if ((error = device_quiesce(dev)) != 0)
1274 					return (error);
1275 			}
1276 		}
1277 	}
1278 
1279 	return (0);
1280 }
1281 
1282 /**
1283  * @internal
1284  */
1285 static driverlink_t
1286 devclass_find_driver_internal(devclass_t dc, const char *classname)
1287 {
1288 	driverlink_t dl;
1289 
1290 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1291 
1292 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1293 		if (!strcmp(dl->driver->name, classname))
1294 			return (dl);
1295 	}
1296 
1297 	PDEBUG(("not found"));
1298 	return (NULL);
1299 }
1300 
1301 /**
1302  * @brief Return the name of the devclass
1303  */
1304 const char *
1305 devclass_get_name(devclass_t dc)
1306 {
1307 	return (dc->name);
1308 }
1309 
1310 /**
1311  * @brief Find a device given a unit number
1312  *
1313  * @param dc		the devclass to search
1314  * @param unit		the unit number to search for
1315  *
1316  * @returns		the device with the given unit number or @c
1317  *			NULL if there is no such device
1318  */
1319 device_t
1320 devclass_get_device(devclass_t dc, int unit)
1321 {
1322 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1323 		return (NULL);
1324 	return (dc->devices[unit]);
1325 }
1326 
1327 /**
1328  * @brief Find the softc field of a device given a unit number
1329  *
1330  * @param dc		the devclass to search
1331  * @param unit		the unit number to search for
1332  *
1333  * @returns		the softc field of the device with the given
1334  *			unit number or @c NULL if there is no such
1335  *			device
1336  */
1337 void *
1338 devclass_get_softc(devclass_t dc, int unit)
1339 {
1340 	device_t dev;
1341 
1342 	dev = devclass_get_device(dc, unit);
1343 	if (!dev)
1344 		return (NULL);
1345 
1346 	return (device_get_softc(dev));
1347 }
1348 
1349 /**
1350  * @brief Get a list of devices in the devclass
1351  *
1352  * An array containing a list of all the devices in the given devclass
1353  * is allocated and returned in @p *devlistp. The number of devices
1354  * in the array is returned in @p *devcountp. The caller should free
1355  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1356  *
1357  * @param dc		the devclass to examine
1358  * @param devlistp	points at location for array pointer return
1359  *			value
1360  * @param devcountp	points at location for array size return value
1361  *
1362  * @retval 0		success
1363  * @retval ENOMEM	the array allocation failed
1364  */
1365 int
1366 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1367 {
1368 	int count, i;
1369 	device_t *list;
1370 
1371 	count = devclass_get_count(dc);
1372 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1373 	if (!list)
1374 		return (ENOMEM);
1375 
1376 	count = 0;
1377 	for (i = 0; i < dc->maxunit; i++) {
1378 		if (dc->devices[i]) {
1379 			list[count] = dc->devices[i];
1380 			count++;
1381 		}
1382 	}
1383 
1384 	*devlistp = list;
1385 	*devcountp = count;
1386 
1387 	return (0);
1388 }
1389 
1390 /**
1391  * @brief Get a list of drivers in the devclass
1392  *
1393  * An array containing a list of pointers to all the drivers in the
1394  * given devclass is allocated and returned in @p *listp.  The number
1395  * of drivers in the array is returned in @p *countp. The caller should
1396  * free the array using @c free(p, M_TEMP).
1397  *
1398  * @param dc		the devclass to examine
1399  * @param listp		gives location for array pointer return value
1400  * @param countp	gives location for number of array elements
1401  *			return value
1402  *
1403  * @retval 0		success
1404  * @retval ENOMEM	the array allocation failed
1405  */
1406 int
1407 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1408 {
1409 	driverlink_t dl;
1410 	driver_t **list;
1411 	int count;
1412 
1413 	count = 0;
1414 	TAILQ_FOREACH(dl, &dc->drivers, link)
1415 		count++;
1416 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1417 	if (list == NULL)
1418 		return (ENOMEM);
1419 
1420 	count = 0;
1421 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1422 		list[count] = dl->driver;
1423 		count++;
1424 	}
1425 	*listp = list;
1426 	*countp = count;
1427 
1428 	return (0);
1429 }
1430 
1431 /**
1432  * @brief Get the number of devices in a devclass
1433  *
1434  * @param dc		the devclass to examine
1435  */
1436 int
1437 devclass_get_count(devclass_t dc)
1438 {
1439 	int count, i;
1440 
1441 	count = 0;
1442 	for (i = 0; i < dc->maxunit; i++)
1443 		if (dc->devices[i])
1444 			count++;
1445 	return (count);
1446 }
1447 
1448 /**
1449  * @brief Get the maximum unit number used in a devclass
1450  *
1451  * Note that this is one greater than the highest currently-allocated
1452  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1453  * that not even the devclass has been allocated yet.
1454  *
1455  * @param dc		the devclass to examine
1456  */
1457 int
1458 devclass_get_maxunit(devclass_t dc)
1459 {
1460 	if (dc == NULL)
1461 		return (-1);
1462 	return (dc->maxunit);
1463 }
1464 
1465 /**
1466  * @brief Find a free unit number in a devclass
1467  *
1468  * This function searches for the first unused unit number greater
1469  * that or equal to @p unit.
1470  *
1471  * @param dc		the devclass to examine
1472  * @param unit		the first unit number to check
1473  */
1474 int
1475 devclass_find_free_unit(devclass_t dc, int unit)
1476 {
1477 	if (dc == NULL)
1478 		return (unit);
1479 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1480 		unit++;
1481 	return (unit);
1482 }
1483 
1484 /**
1485  * @brief Set the parent of a devclass
1486  *
1487  * The parent class is normally initialised automatically by
1488  * DRIVER_MODULE().
1489  *
1490  * @param dc		the devclass to edit
1491  * @param pdc		the new parent devclass
1492  */
1493 void
1494 devclass_set_parent(devclass_t dc, devclass_t pdc)
1495 {
1496 	dc->parent = pdc;
1497 }
1498 
1499 /**
1500  * @brief Get the parent of a devclass
1501  *
1502  * @param dc		the devclass to examine
1503  */
1504 devclass_t
1505 devclass_get_parent(devclass_t dc)
1506 {
1507 	return (dc->parent);
1508 }
1509 
1510 struct sysctl_ctx_list *
1511 devclass_get_sysctl_ctx(devclass_t dc)
1512 {
1513 	return (&dc->sysctl_ctx);
1514 }
1515 
1516 struct sysctl_oid *
1517 devclass_get_sysctl_tree(devclass_t dc)
1518 {
1519 	return (dc->sysctl_tree);
1520 }
1521 
1522 /**
1523  * @internal
1524  * @brief Allocate a unit number
1525  *
1526  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1527  * will do). The allocated unit number is returned in @p *unitp.
1528 
1529  * @param dc		the devclass to allocate from
1530  * @param unitp		points at the location for the allocated unit
1531  *			number
1532  *
1533  * @retval 0		success
1534  * @retval EEXIST	the requested unit number is already allocated
1535  * @retval ENOMEM	memory allocation failure
1536  */
1537 static int
1538 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1539 {
1540 	const char *s;
1541 	int unit = *unitp;
1542 
1543 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1544 
1545 	/* Ask the parent bus if it wants to wire this device. */
1546 	if (unit == -1)
1547 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1548 		    &unit);
1549 
1550 	/* If we were given a wired unit number, check for existing device */
1551 	/* XXX imp XXX */
1552 	if (unit != -1) {
1553 		if (unit >= 0 && unit < dc->maxunit &&
1554 		    dc->devices[unit] != NULL) {
1555 			if (bootverbose)
1556 				printf("%s: %s%d already exists; skipping it\n",
1557 				    dc->name, dc->name, *unitp);
1558 			return (EEXIST);
1559 		}
1560 	} else {
1561 		/* Unwired device, find the next available slot for it */
1562 		unit = 0;
1563 		for (unit = 0;; unit++) {
1564 			/* If there is an "at" hint for a unit then skip it. */
1565 			if (resource_string_value(dc->name, unit, "at", &s) ==
1566 			    0)
1567 				continue;
1568 
1569 			/* If this device slot is already in use, skip it. */
1570 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1571 				continue;
1572 
1573 			break;
1574 		}
1575 	}
1576 
1577 	/*
1578 	 * We've selected a unit beyond the length of the table, so let's
1579 	 * extend the table to make room for all units up to and including
1580 	 * this one.
1581 	 */
1582 	if (unit >= dc->maxunit) {
1583 		device_t *newlist, *oldlist;
1584 		int newsize;
1585 
1586 		oldlist = dc->devices;
1587 		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1588 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1589 		if (!newlist)
1590 			return (ENOMEM);
1591 		if (oldlist != NULL)
1592 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1593 		bzero(newlist + dc->maxunit,
1594 		    sizeof(device_t) * (newsize - dc->maxunit));
1595 		dc->devices = newlist;
1596 		dc->maxunit = newsize;
1597 		if (oldlist != NULL)
1598 			free(oldlist, M_BUS);
1599 	}
1600 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1601 
1602 	*unitp = unit;
1603 	return (0);
1604 }
1605 
1606 /**
1607  * @internal
1608  * @brief Add a device to a devclass
1609  *
1610  * A unit number is allocated for the device (using the device's
1611  * preferred unit number if any) and the device is registered in the
1612  * devclass. This allows the device to be looked up by its unit
1613  * number, e.g. by decoding a dev_t minor number.
1614  *
1615  * @param dc		the devclass to add to
1616  * @param dev		the device to add
1617  *
1618  * @retval 0		success
1619  * @retval EEXIST	the requested unit number is already allocated
1620  * @retval ENOMEM	memory allocation failure
1621  */
1622 static int
1623 devclass_add_device(devclass_t dc, device_t dev)
1624 {
1625 	int buflen, error;
1626 
1627 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1628 
1629 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1630 	if (buflen < 0)
1631 		return (ENOMEM);
1632 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1633 	if (!dev->nameunit)
1634 		return (ENOMEM);
1635 
1636 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1637 		free(dev->nameunit, M_BUS);
1638 		dev->nameunit = NULL;
1639 		return (error);
1640 	}
1641 	dc->devices[dev->unit] = dev;
1642 	dev->devclass = dc;
1643 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1644 
1645 	return (0);
1646 }
1647 
1648 /**
1649  * @internal
1650  * @brief Delete a device from a devclass
1651  *
1652  * The device is removed from the devclass's device list and its unit
1653  * number is freed.
1654 
1655  * @param dc		the devclass to delete from
1656  * @param dev		the device to delete
1657  *
1658  * @retval 0		success
1659  */
1660 static int
1661 devclass_delete_device(devclass_t dc, device_t dev)
1662 {
1663 	if (!dc || !dev)
1664 		return (0);
1665 
1666 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1667 
1668 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1669 		panic("devclass_delete_device: inconsistent device class");
1670 	dc->devices[dev->unit] = NULL;
1671 	if (dev->flags & DF_WILDCARD)
1672 		dev->unit = -1;
1673 	dev->devclass = NULL;
1674 	free(dev->nameunit, M_BUS);
1675 	dev->nameunit = NULL;
1676 
1677 	return (0);
1678 }
1679 
1680 /**
1681  * @internal
1682  * @brief Make a new device and add it as a child of @p parent
1683  *
1684  * @param parent	the parent of the new device
1685  * @param name		the devclass name of the new device or @c NULL
1686  *			to leave the devclass unspecified
1687  * @parem unit		the unit number of the new device of @c -1 to
1688  *			leave the unit number unspecified
1689  *
1690  * @returns the new device
1691  */
1692 static device_t
1693 make_device(device_t parent, const char *name, int unit)
1694 {
1695 	device_t dev;
1696 	devclass_t dc;
1697 
1698 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1699 
1700 	if (name) {
1701 		dc = devclass_find_internal(name, NULL, TRUE);
1702 		if (!dc) {
1703 			printf("make_device: can't find device class %s\n",
1704 			    name);
1705 			return (NULL);
1706 		}
1707 	} else {
1708 		dc = NULL;
1709 	}
1710 
1711 	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1712 	if (!dev)
1713 		return (NULL);
1714 
1715 	dev->parent = parent;
1716 	TAILQ_INIT(&dev->children);
1717 	kobj_init((kobj_t) dev, &null_class);
1718 	dev->driver = NULL;
1719 	dev->devclass = NULL;
1720 	dev->unit = unit;
1721 	dev->nameunit = NULL;
1722 	dev->desc = NULL;
1723 	dev->busy = 0;
1724 	dev->devflags = 0;
1725 	dev->flags = DF_ENABLED;
1726 	dev->order = 0;
1727 	if (unit == -1)
1728 		dev->flags |= DF_WILDCARD;
1729 	if (name) {
1730 		dev->flags |= DF_FIXEDCLASS;
1731 		if (devclass_add_device(dc, dev)) {
1732 			kobj_delete((kobj_t) dev, M_BUS);
1733 			return (NULL);
1734 		}
1735 	}
1736 	dev->ivars = NULL;
1737 	dev->softc = NULL;
1738 
1739 	dev->state = DS_NOTPRESENT;
1740 
1741 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1742 	bus_data_generation_update();
1743 
1744 	return (dev);
1745 }
1746 
1747 /**
1748  * @internal
1749  * @brief Print a description of a device.
1750  */
1751 static int
1752 device_print_child(device_t dev, device_t child)
1753 {
1754 	int retval = 0;
1755 
1756 	if (device_is_alive(child))
1757 		retval += BUS_PRINT_CHILD(dev, child);
1758 	else
1759 		retval += device_printf(child, " not found\n");
1760 
1761 	return (retval);
1762 }
1763 
1764 /**
1765  * @brief Create a new device
1766  *
1767  * This creates a new device and adds it as a child of an existing
1768  * parent device. The new device will be added after the last existing
1769  * child with order zero.
1770  *
1771  * @param dev		the device which will be the parent of the
1772  *			new child device
1773  * @param name		devclass name for new device or @c NULL if not
1774  *			specified
1775  * @param unit		unit number for new device or @c -1 if not
1776  *			specified
1777  *
1778  * @returns		the new device
1779  */
1780 device_t
1781 device_add_child(device_t dev, const char *name, int unit)
1782 {
1783 	return (device_add_child_ordered(dev, 0, name, unit));
1784 }
1785 
1786 /**
1787  * @brief Create a new device
1788  *
1789  * This creates a new device and adds it as a child of an existing
1790  * parent device. The new device will be added after the last existing
1791  * child with the same order.
1792  *
1793  * @param dev		the device which will be the parent of the
1794  *			new child device
1795  * @param order		a value which is used to partially sort the
1796  *			children of @p dev - devices created using
1797  *			lower values of @p order appear first in @p
1798  *			dev's list of children
1799  * @param name		devclass name for new device or @c NULL if not
1800  *			specified
1801  * @param unit		unit number for new device or @c -1 if not
1802  *			specified
1803  *
1804  * @returns		the new device
1805  */
1806 device_t
1807 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1808 {
1809 	device_t child;
1810 	device_t place;
1811 
1812 	PDEBUG(("%s at %s with order %u as unit %d",
1813 	    name, DEVICENAME(dev), order, unit));
1814 
1815 	child = make_device(dev, name, unit);
1816 	if (child == NULL)
1817 		return (child);
1818 	child->order = order;
1819 
1820 	TAILQ_FOREACH(place, &dev->children, link) {
1821 		if (place->order > order)
1822 			break;
1823 	}
1824 
1825 	if (place) {
1826 		/*
1827 		 * The device 'place' is the first device whose order is
1828 		 * greater than the new child.
1829 		 */
1830 		TAILQ_INSERT_BEFORE(place, child, link);
1831 	} else {
1832 		/*
1833 		 * The new child's order is greater or equal to the order of
1834 		 * any existing device. Add the child to the tail of the list.
1835 		 */
1836 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1837 	}
1838 
1839 	bus_data_generation_update();
1840 	return (child);
1841 }
1842 
1843 /**
1844  * @brief Delete a device
1845  *
1846  * This function deletes a device along with all of its children. If
1847  * the device currently has a driver attached to it, the device is
1848  * detached first using device_detach().
1849  *
1850  * @param dev		the parent device
1851  * @param child		the device to delete
1852  *
1853  * @retval 0		success
1854  * @retval non-zero	a unit error code describing the error
1855  */
1856 int
1857 device_delete_child(device_t dev, device_t child)
1858 {
1859 	int error;
1860 	device_t grandchild;
1861 
1862 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1863 
1864 	/* remove children first */
1865 	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1866 		error = device_delete_child(child, grandchild);
1867 		if (error)
1868 			return (error);
1869 	}
1870 
1871 	if ((error = device_detach(child)) != 0)
1872 		return (error);
1873 	if (child->devclass)
1874 		devclass_delete_device(child->devclass, child);
1875 	TAILQ_REMOVE(&dev->children, child, link);
1876 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1877 	kobj_delete((kobj_t) child, M_BUS);
1878 
1879 	bus_data_generation_update();
1880 	return (0);
1881 }
1882 
1883 /**
1884  * @brief Find a device given a unit number
1885  *
1886  * This is similar to devclass_get_devices() but only searches for
1887  * devices which have @p dev as a parent.
1888  *
1889  * @param dev		the parent device to search
1890  * @param unit		the unit number to search for.  If the unit is -1,
1891  *			return the first child of @p dev which has name
1892  *			@p classname (that is, the one with the lowest unit.)
1893  *
1894  * @returns		the device with the given unit number or @c
1895  *			NULL if there is no such device
1896  */
1897 device_t
1898 device_find_child(device_t dev, const char *classname, int unit)
1899 {
1900 	devclass_t dc;
1901 	device_t child;
1902 
1903 	dc = devclass_find(classname);
1904 	if (!dc)
1905 		return (NULL);
1906 
1907 	if (unit != -1) {
1908 		child = devclass_get_device(dc, unit);
1909 		if (child && child->parent == dev)
1910 			return (child);
1911 	} else {
1912 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1913 			child = devclass_get_device(dc, unit);
1914 			if (child && child->parent == dev)
1915 				return (child);
1916 		}
1917 	}
1918 	return (NULL);
1919 }
1920 
1921 /**
1922  * @internal
1923  */
1924 static driverlink_t
1925 first_matching_driver(devclass_t dc, device_t dev)
1926 {
1927 	if (dev->devclass)
1928 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1929 	return (TAILQ_FIRST(&dc->drivers));
1930 }
1931 
1932 /**
1933  * @internal
1934  */
1935 static driverlink_t
1936 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1937 {
1938 	if (dev->devclass) {
1939 		driverlink_t dl;
1940 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1941 			if (!strcmp(dev->devclass->name, dl->driver->name))
1942 				return (dl);
1943 		return (NULL);
1944 	}
1945 	return (TAILQ_NEXT(last, link));
1946 }
1947 
1948 /**
1949  * @internal
1950  */
1951 int
1952 device_probe_child(device_t dev, device_t child)
1953 {
1954 	devclass_t dc;
1955 	driverlink_t best = NULL;
1956 	driverlink_t dl;
1957 	int result, pri = 0;
1958 	int hasclass = (child->devclass != NULL);
1959 
1960 	GIANT_REQUIRED;
1961 
1962 	dc = dev->devclass;
1963 	if (!dc)
1964 		panic("device_probe_child: parent device has no devclass");
1965 
1966 	/*
1967 	 * If the state is already probed, then return.  However, don't
1968 	 * return if we can rebid this object.
1969 	 */
1970 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1971 		return (0);
1972 
1973 	for (; dc; dc = dc->parent) {
1974 		for (dl = first_matching_driver(dc, child);
1975 		     dl;
1976 		     dl = next_matching_driver(dc, child, dl)) {
1977 
1978 			/* If this driver's pass is too high, then ignore it. */
1979 			if (dl->pass > bus_current_pass)
1980 				continue;
1981 
1982 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1983 			device_set_driver(child, dl->driver);
1984 			if (!hasclass) {
1985 				if (device_set_devclass(child, dl->driver->name)) {
1986 					printf("driver bug: Unable to set devclass (devname: %s)\n",
1987 					    (child ? device_get_name(child) :
1988 						"no device"));
1989 					device_set_driver(child, NULL);
1990 					continue;
1991 				}
1992 			}
1993 
1994 			/* Fetch any flags for the device before probing. */
1995 			resource_int_value(dl->driver->name, child->unit,
1996 			    "flags", &child->devflags);
1997 
1998 			result = DEVICE_PROBE(child);
1999 
2000 			/* Reset flags and devclass before the next probe. */
2001 			child->devflags = 0;
2002 			if (!hasclass)
2003 				device_set_devclass(child, NULL);
2004 
2005 			/*
2006 			 * If the driver returns SUCCESS, there can be
2007 			 * no higher match for this device.
2008 			 */
2009 			if (result == 0) {
2010 				best = dl;
2011 				pri = 0;
2012 				break;
2013 			}
2014 
2015 			/*
2016 			 * The driver returned an error so it
2017 			 * certainly doesn't match.
2018 			 */
2019 			if (result > 0) {
2020 				device_set_driver(child, NULL);
2021 				continue;
2022 			}
2023 
2024 			/*
2025 			 * A priority lower than SUCCESS, remember the
2026 			 * best matching driver. Initialise the value
2027 			 * of pri for the first match.
2028 			 */
2029 			if (best == NULL || result > pri) {
2030 				/*
2031 				 * Probes that return BUS_PROBE_NOWILDCARD
2032 				 * or lower only match when they are set
2033 				 * in stone by the parent bus.
2034 				 */
2035 				if (result <= BUS_PROBE_NOWILDCARD &&
2036 				    child->flags & DF_WILDCARD)
2037 					continue;
2038 				best = dl;
2039 				pri = result;
2040 				continue;
2041 			}
2042 		}
2043 		/*
2044 		 * If we have an unambiguous match in this devclass,
2045 		 * don't look in the parent.
2046 		 */
2047 		if (best && pri == 0)
2048 			break;
2049 	}
2050 
2051 	/*
2052 	 * If we found a driver, change state and initialise the devclass.
2053 	 */
2054 	/* XXX What happens if we rebid and got no best? */
2055 	if (best) {
2056 		/*
2057 		 * If this device was atached, and we were asked to
2058 		 * rescan, and it is a different driver, then we have
2059 		 * to detach the old driver and reattach this new one.
2060 		 * Note, we don't have to check for DF_REBID here
2061 		 * because if the state is > DS_ALIVE, we know it must
2062 		 * be.
2063 		 *
2064 		 * This assumes that all DF_REBID drivers can have
2065 		 * their probe routine called at any time and that
2066 		 * they are idempotent as well as completely benign in
2067 		 * normal operations.
2068 		 *
2069 		 * We also have to make sure that the detach
2070 		 * succeeded, otherwise we fail the operation (or
2071 		 * maybe it should just fail silently?  I'm torn).
2072 		 */
2073 		if (child->state > DS_ALIVE && best->driver != child->driver)
2074 			if ((result = device_detach(dev)) != 0)
2075 				return (result);
2076 
2077 		/* Set the winning driver, devclass, and flags. */
2078 		if (!child->devclass) {
2079 			result = device_set_devclass(child, best->driver->name);
2080 			if (result != 0)
2081 				return (result);
2082 		}
2083 		device_set_driver(child, best->driver);
2084 		resource_int_value(best->driver->name, child->unit,
2085 		    "flags", &child->devflags);
2086 
2087 		if (pri < 0) {
2088 			/*
2089 			 * A bit bogus. Call the probe method again to make
2090 			 * sure that we have the right description.
2091 			 */
2092 			DEVICE_PROBE(child);
2093 #if 0
2094 			child->flags |= DF_REBID;
2095 #endif
2096 		} else
2097 			child->flags &= ~DF_REBID;
2098 		child->state = DS_ALIVE;
2099 
2100 		bus_data_generation_update();
2101 		return (0);
2102 	}
2103 
2104 	return (ENXIO);
2105 }
2106 
2107 /**
2108  * @brief Return the parent of a device
2109  */
2110 device_t
2111 device_get_parent(device_t dev)
2112 {
2113 	return (dev->parent);
2114 }
2115 
2116 /**
2117  * @brief Get a list of children of a device
2118  *
2119  * An array containing a list of all the children of the given device
2120  * is allocated and returned in @p *devlistp. The number of devices
2121  * in the array is returned in @p *devcountp. The caller should free
2122  * the array using @c free(p, M_TEMP).
2123  *
2124  * @param dev		the device to examine
2125  * @param devlistp	points at location for array pointer return
2126  *			value
2127  * @param devcountp	points at location for array size return value
2128  *
2129  * @retval 0		success
2130  * @retval ENOMEM	the array allocation failed
2131  */
2132 int
2133 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2134 {
2135 	int count;
2136 	device_t child;
2137 	device_t *list;
2138 
2139 	count = 0;
2140 	TAILQ_FOREACH(child, &dev->children, link) {
2141 		count++;
2142 	}
2143 
2144 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2145 	if (!list)
2146 		return (ENOMEM);
2147 
2148 	count = 0;
2149 	TAILQ_FOREACH(child, &dev->children, link) {
2150 		list[count] = child;
2151 		count++;
2152 	}
2153 
2154 	*devlistp = list;
2155 	*devcountp = count;
2156 
2157 	return (0);
2158 }
2159 
2160 /**
2161  * @brief Return the current driver for the device or @c NULL if there
2162  * is no driver currently attached
2163  */
2164 driver_t *
2165 device_get_driver(device_t dev)
2166 {
2167 	return (dev->driver);
2168 }
2169 
2170 /**
2171  * @brief Return the current devclass for the device or @c NULL if
2172  * there is none.
2173  */
2174 devclass_t
2175 device_get_devclass(device_t dev)
2176 {
2177 	return (dev->devclass);
2178 }
2179 
2180 /**
2181  * @brief Return the name of the device's devclass or @c NULL if there
2182  * is none.
2183  */
2184 const char *
2185 device_get_name(device_t dev)
2186 {
2187 	if (dev != NULL && dev->devclass)
2188 		return (devclass_get_name(dev->devclass));
2189 	return (NULL);
2190 }
2191 
2192 /**
2193  * @brief Return a string containing the device's devclass name
2194  * followed by an ascii representation of the device's unit number
2195  * (e.g. @c "foo2").
2196  */
2197 const char *
2198 device_get_nameunit(device_t dev)
2199 {
2200 	return (dev->nameunit);
2201 }
2202 
2203 /**
2204  * @brief Return the device's unit number.
2205  */
2206 int
2207 device_get_unit(device_t dev)
2208 {
2209 	return (dev->unit);
2210 }
2211 
2212 /**
2213  * @brief Return the device's description string
2214  */
2215 const char *
2216 device_get_desc(device_t dev)
2217 {
2218 	return (dev->desc);
2219 }
2220 
2221 /**
2222  * @brief Return the device's flags
2223  */
2224 uint32_t
2225 device_get_flags(device_t dev)
2226 {
2227 	return (dev->devflags);
2228 }
2229 
2230 struct sysctl_ctx_list *
2231 device_get_sysctl_ctx(device_t dev)
2232 {
2233 	return (&dev->sysctl_ctx);
2234 }
2235 
2236 struct sysctl_oid *
2237 device_get_sysctl_tree(device_t dev)
2238 {
2239 	return (dev->sysctl_tree);
2240 }
2241 
2242 /**
2243  * @brief Print the name of the device followed by a colon and a space
2244  *
2245  * @returns the number of characters printed
2246  */
2247 int
2248 device_print_prettyname(device_t dev)
2249 {
2250 	const char *name = device_get_name(dev);
2251 
2252 	if (name == NULL)
2253 		return (printf("unknown: "));
2254 	return (printf("%s%d: ", name, device_get_unit(dev)));
2255 }
2256 
2257 /**
2258  * @brief Print the name of the device followed by a colon, a space
2259  * and the result of calling vprintf() with the value of @p fmt and
2260  * the following arguments.
2261  *
2262  * @returns the number of characters printed
2263  */
2264 int
2265 device_printf(device_t dev, const char * fmt, ...)
2266 {
2267 	va_list ap;
2268 	int retval;
2269 
2270 	retval = device_print_prettyname(dev);
2271 	va_start(ap, fmt);
2272 	retval += vprintf(fmt, ap);
2273 	va_end(ap);
2274 	return (retval);
2275 }
2276 
2277 /**
2278  * @internal
2279  */
2280 static void
2281 device_set_desc_internal(device_t dev, const char* desc, int copy)
2282 {
2283 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2284 		free(dev->desc, M_BUS);
2285 		dev->flags &= ~DF_DESCMALLOCED;
2286 		dev->desc = NULL;
2287 	}
2288 
2289 	if (copy && desc) {
2290 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2291 		if (dev->desc) {
2292 			strcpy(dev->desc, desc);
2293 			dev->flags |= DF_DESCMALLOCED;
2294 		}
2295 	} else {
2296 		/* Avoid a -Wcast-qual warning */
2297 		dev->desc = (char *)(uintptr_t) desc;
2298 	}
2299 
2300 	bus_data_generation_update();
2301 }
2302 
2303 /**
2304  * @brief Set the device's description
2305  *
2306  * The value of @c desc should be a string constant that will not
2307  * change (at least until the description is changed in a subsequent
2308  * call to device_set_desc() or device_set_desc_copy()).
2309  */
2310 void
2311 device_set_desc(device_t dev, const char* desc)
2312 {
2313 	device_set_desc_internal(dev, desc, FALSE);
2314 }
2315 
2316 /**
2317  * @brief Set the device's description
2318  *
2319  * The string pointed to by @c desc is copied. Use this function if
2320  * the device description is generated, (e.g. with sprintf()).
2321  */
2322 void
2323 device_set_desc_copy(device_t dev, const char* desc)
2324 {
2325 	device_set_desc_internal(dev, desc, TRUE);
2326 }
2327 
2328 /**
2329  * @brief Set the device's flags
2330  */
2331 void
2332 device_set_flags(device_t dev, uint32_t flags)
2333 {
2334 	dev->devflags = flags;
2335 }
2336 
2337 /**
2338  * @brief Return the device's softc field
2339  *
2340  * The softc is allocated and zeroed when a driver is attached, based
2341  * on the size field of the driver.
2342  */
2343 void *
2344 device_get_softc(device_t dev)
2345 {
2346 	return (dev->softc);
2347 }
2348 
2349 /**
2350  * @brief Set the device's softc field
2351  *
2352  * Most drivers do not need to use this since the softc is allocated
2353  * automatically when the driver is attached.
2354  */
2355 void
2356 device_set_softc(device_t dev, void *softc)
2357 {
2358 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2359 		free(dev->softc, M_BUS_SC);
2360 	dev->softc = softc;
2361 	if (dev->softc)
2362 		dev->flags |= DF_EXTERNALSOFTC;
2363 	else
2364 		dev->flags &= ~DF_EXTERNALSOFTC;
2365 }
2366 
2367 /**
2368  * @brief Get the device's ivars field
2369  *
2370  * The ivars field is used by the parent device to store per-device
2371  * state (e.g. the physical location of the device or a list of
2372  * resources).
2373  */
2374 void *
2375 device_get_ivars(device_t dev)
2376 {
2377 
2378 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2379 	return (dev->ivars);
2380 }
2381 
2382 /**
2383  * @brief Set the device's ivars field
2384  */
2385 void
2386 device_set_ivars(device_t dev, void * ivars)
2387 {
2388 
2389 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2390 	dev->ivars = ivars;
2391 }
2392 
2393 /**
2394  * @brief Return the device's state
2395  */
2396 device_state_t
2397 device_get_state(device_t dev)
2398 {
2399 	return (dev->state);
2400 }
2401 
2402 /**
2403  * @brief Set the DF_ENABLED flag for the device
2404  */
2405 void
2406 device_enable(device_t dev)
2407 {
2408 	dev->flags |= DF_ENABLED;
2409 }
2410 
2411 /**
2412  * @brief Clear the DF_ENABLED flag for the device
2413  */
2414 void
2415 device_disable(device_t dev)
2416 {
2417 	dev->flags &= ~DF_ENABLED;
2418 }
2419 
2420 /**
2421  * @brief Increment the busy counter for the device
2422  */
2423 void
2424 device_busy(device_t dev)
2425 {
2426 	if (dev->state < DS_ATTACHED)
2427 		panic("device_busy: called for unattached device");
2428 	if (dev->busy == 0 && dev->parent)
2429 		device_busy(dev->parent);
2430 	dev->busy++;
2431 	dev->state = DS_BUSY;
2432 }
2433 
2434 /**
2435  * @brief Decrement the busy counter for the device
2436  */
2437 void
2438 device_unbusy(device_t dev)
2439 {
2440 	if (dev->state != DS_BUSY)
2441 		panic("device_unbusy: called for non-busy device %s",
2442 		    device_get_nameunit(dev));
2443 	dev->busy--;
2444 	if (dev->busy == 0) {
2445 		if (dev->parent)
2446 			device_unbusy(dev->parent);
2447 		dev->state = DS_ATTACHED;
2448 	}
2449 }
2450 
2451 /**
2452  * @brief Set the DF_QUIET flag for the device
2453  */
2454 void
2455 device_quiet(device_t dev)
2456 {
2457 	dev->flags |= DF_QUIET;
2458 }
2459 
2460 /**
2461  * @brief Clear the DF_QUIET flag for the device
2462  */
2463 void
2464 device_verbose(device_t dev)
2465 {
2466 	dev->flags &= ~DF_QUIET;
2467 }
2468 
2469 /**
2470  * @brief Return non-zero if the DF_QUIET flag is set on the device
2471  */
2472 int
2473 device_is_quiet(device_t dev)
2474 {
2475 	return ((dev->flags & DF_QUIET) != 0);
2476 }
2477 
2478 /**
2479  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2480  */
2481 int
2482 device_is_enabled(device_t dev)
2483 {
2484 	return ((dev->flags & DF_ENABLED) != 0);
2485 }
2486 
2487 /**
2488  * @brief Return non-zero if the device was successfully probed
2489  */
2490 int
2491 device_is_alive(device_t dev)
2492 {
2493 	return (dev->state >= DS_ALIVE);
2494 }
2495 
2496 /**
2497  * @brief Return non-zero if the device currently has a driver
2498  * attached to it
2499  */
2500 int
2501 device_is_attached(device_t dev)
2502 {
2503 	return (dev->state >= DS_ATTACHED);
2504 }
2505 
2506 /**
2507  * @brief Set the devclass of a device
2508  * @see devclass_add_device().
2509  */
2510 int
2511 device_set_devclass(device_t dev, const char *classname)
2512 {
2513 	devclass_t dc;
2514 	int error;
2515 
2516 	if (!classname) {
2517 		if (dev->devclass)
2518 			devclass_delete_device(dev->devclass, dev);
2519 		return (0);
2520 	}
2521 
2522 	if (dev->devclass) {
2523 		printf("device_set_devclass: device class already set\n");
2524 		return (EINVAL);
2525 	}
2526 
2527 	dc = devclass_find_internal(classname, NULL, TRUE);
2528 	if (!dc)
2529 		return (ENOMEM);
2530 
2531 	error = devclass_add_device(dc, dev);
2532 
2533 	bus_data_generation_update();
2534 	return (error);
2535 }
2536 
2537 /**
2538  * @brief Set the driver of a device
2539  *
2540  * @retval 0		success
2541  * @retval EBUSY	the device already has a driver attached
2542  * @retval ENOMEM	a memory allocation failure occurred
2543  */
2544 int
2545 device_set_driver(device_t dev, driver_t *driver)
2546 {
2547 	if (dev->state >= DS_ATTACHED)
2548 		return (EBUSY);
2549 
2550 	if (dev->driver == driver)
2551 		return (0);
2552 
2553 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2554 		free(dev->softc, M_BUS_SC);
2555 		dev->softc = NULL;
2556 	}
2557 	kobj_delete((kobj_t) dev, NULL);
2558 	dev->driver = driver;
2559 	if (driver) {
2560 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2561 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2562 			dev->softc = malloc(driver->size, M_BUS_SC,
2563 			    M_NOWAIT | M_ZERO);
2564 			if (!dev->softc) {
2565 				kobj_delete((kobj_t) dev, NULL);
2566 				kobj_init((kobj_t) dev, &null_class);
2567 				dev->driver = NULL;
2568 				return (ENOMEM);
2569 			}
2570 		}
2571 	} else {
2572 		kobj_init((kobj_t) dev, &null_class);
2573 	}
2574 
2575 	bus_data_generation_update();
2576 	return (0);
2577 }
2578 
2579 /**
2580  * @brief Probe a device, and return this status.
2581  *
2582  * This function is the core of the device autoconfiguration
2583  * system. Its purpose is to select a suitable driver for a device and
2584  * then call that driver to initialise the hardware appropriately. The
2585  * driver is selected by calling the DEVICE_PROBE() method of a set of
2586  * candidate drivers and then choosing the driver which returned the
2587  * best value. This driver is then attached to the device using
2588  * device_attach().
2589  *
2590  * The set of suitable drivers is taken from the list of drivers in
2591  * the parent device's devclass. If the device was originally created
2592  * with a specific class name (see device_add_child()), only drivers
2593  * with that name are probed, otherwise all drivers in the devclass
2594  * are probed. If no drivers return successful probe values in the
2595  * parent devclass, the search continues in the parent of that
2596  * devclass (see devclass_get_parent()) if any.
2597  *
2598  * @param dev		the device to initialise
2599  *
2600  * @retval 0		success
2601  * @retval ENXIO	no driver was found
2602  * @retval ENOMEM	memory allocation failure
2603  * @retval non-zero	some other unix error code
2604  * @retval -1		Device already attached
2605  */
2606 int
2607 device_probe(device_t dev)
2608 {
2609 	int error;
2610 
2611 	GIANT_REQUIRED;
2612 
2613 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2614 		return (-1);
2615 
2616 	if (!(dev->flags & DF_ENABLED)) {
2617 		if (bootverbose && device_get_name(dev) != NULL) {
2618 			device_print_prettyname(dev);
2619 			printf("not probed (disabled)\n");
2620 		}
2621 		return (-1);
2622 	}
2623 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2624 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2625 		    !(dev->flags & DF_DONENOMATCH)) {
2626 			BUS_PROBE_NOMATCH(dev->parent, dev);
2627 			devnomatch(dev);
2628 			dev->flags |= DF_DONENOMATCH;
2629 		}
2630 		return (error);
2631 	}
2632 	return (0);
2633 }
2634 
2635 /**
2636  * @brief Probe a device and attach a driver if possible
2637  *
2638  * calls device_probe() and attaches if that was successful.
2639  */
2640 int
2641 device_probe_and_attach(device_t dev)
2642 {
2643 	int error;
2644 
2645 	GIANT_REQUIRED;
2646 
2647 	error = device_probe(dev);
2648 	if (error == -1)
2649 		return (0);
2650 	else if (error != 0)
2651 		return (error);
2652 	return (device_attach(dev));
2653 }
2654 
2655 /**
2656  * @brief Attach a device driver to a device
2657  *
2658  * This function is a wrapper around the DEVICE_ATTACH() driver
2659  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2660  * device's sysctl tree, optionally prints a description of the device
2661  * and queues a notification event for user-based device management
2662  * services.
2663  *
2664  * Normally this function is only called internally from
2665  * device_probe_and_attach().
2666  *
2667  * @param dev		the device to initialise
2668  *
2669  * @retval 0		success
2670  * @retval ENXIO	no driver was found
2671  * @retval ENOMEM	memory allocation failure
2672  * @retval non-zero	some other unix error code
2673  */
2674 int
2675 device_attach(device_t dev)
2676 {
2677 	int error;
2678 
2679 	device_sysctl_init(dev);
2680 	if (!device_is_quiet(dev))
2681 		device_print_child(dev->parent, dev);
2682 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2683 		printf("device_attach: %s%d attach returned %d\n",
2684 		    dev->driver->name, dev->unit, error);
2685 		/* Unset the class; set in device_probe_child */
2686 		if (dev->devclass == NULL)
2687 			device_set_devclass(dev, NULL);
2688 		device_set_driver(dev, NULL);
2689 		device_sysctl_fini(dev);
2690 		dev->state = DS_NOTPRESENT;
2691 		return (error);
2692 	}
2693 	device_sysctl_update(dev);
2694 	dev->state = DS_ATTACHED;
2695 	dev->flags &= ~DF_DONENOMATCH;
2696 	devadded(dev);
2697 	return (0);
2698 }
2699 
2700 /**
2701  * @brief Detach a driver from a device
2702  *
2703  * This function is a wrapper around the DEVICE_DETACH() driver
2704  * method. If the call to DEVICE_DETACH() succeeds, it calls
2705  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2706  * notification event for user-based device management services and
2707  * cleans up the device's sysctl tree.
2708  *
2709  * @param dev		the device to un-initialise
2710  *
2711  * @retval 0		success
2712  * @retval ENXIO	no driver was found
2713  * @retval ENOMEM	memory allocation failure
2714  * @retval non-zero	some other unix error code
2715  */
2716 int
2717 device_detach(device_t dev)
2718 {
2719 	int error;
2720 
2721 	GIANT_REQUIRED;
2722 
2723 	PDEBUG(("%s", DEVICENAME(dev)));
2724 	if (dev->state == DS_BUSY)
2725 		return (EBUSY);
2726 	if (dev->state != DS_ATTACHED)
2727 		return (0);
2728 
2729 	if ((error = DEVICE_DETACH(dev)) != 0)
2730 		return (error);
2731 	devremoved(dev);
2732 	if (!device_is_quiet(dev))
2733 		device_printf(dev, "detached\n");
2734 	if (dev->parent)
2735 		BUS_CHILD_DETACHED(dev->parent, dev);
2736 
2737 	if (!(dev->flags & DF_FIXEDCLASS))
2738 		devclass_delete_device(dev->devclass, dev);
2739 
2740 	dev->state = DS_NOTPRESENT;
2741 	device_set_driver(dev, NULL);
2742 	device_set_desc(dev, NULL);
2743 	device_sysctl_fini(dev);
2744 
2745 	return (0);
2746 }
2747 
2748 /**
2749  * @brief Tells a driver to quiesce itself.
2750  *
2751  * This function is a wrapper around the DEVICE_QUIESCE() driver
2752  * method. If the call to DEVICE_QUIESCE() succeeds.
2753  *
2754  * @param dev		the device to quiesce
2755  *
2756  * @retval 0		success
2757  * @retval ENXIO	no driver was found
2758  * @retval ENOMEM	memory allocation failure
2759  * @retval non-zero	some other unix error code
2760  */
2761 int
2762 device_quiesce(device_t dev)
2763 {
2764 
2765 	PDEBUG(("%s", DEVICENAME(dev)));
2766 	if (dev->state == DS_BUSY)
2767 		return (EBUSY);
2768 	if (dev->state != DS_ATTACHED)
2769 		return (0);
2770 
2771 	return (DEVICE_QUIESCE(dev));
2772 }
2773 
2774 /**
2775  * @brief Notify a device of system shutdown
2776  *
2777  * This function calls the DEVICE_SHUTDOWN() driver method if the
2778  * device currently has an attached driver.
2779  *
2780  * @returns the value returned by DEVICE_SHUTDOWN()
2781  */
2782 int
2783 device_shutdown(device_t dev)
2784 {
2785 	if (dev->state < DS_ATTACHED)
2786 		return (0);
2787 	return (DEVICE_SHUTDOWN(dev));
2788 }
2789 
2790 /**
2791  * @brief Set the unit number of a device
2792  *
2793  * This function can be used to override the unit number used for a
2794  * device (e.g. to wire a device to a pre-configured unit number).
2795  */
2796 int
2797 device_set_unit(device_t dev, int unit)
2798 {
2799 	devclass_t dc;
2800 	int err;
2801 
2802 	dc = device_get_devclass(dev);
2803 	if (unit < dc->maxunit && dc->devices[unit])
2804 		return (EBUSY);
2805 	err = devclass_delete_device(dc, dev);
2806 	if (err)
2807 		return (err);
2808 	dev->unit = unit;
2809 	err = devclass_add_device(dc, dev);
2810 	if (err)
2811 		return (err);
2812 
2813 	bus_data_generation_update();
2814 	return (0);
2815 }
2816 
2817 /*======================================*/
2818 /*
2819  * Some useful method implementations to make life easier for bus drivers.
2820  */
2821 
2822 /**
2823  * @brief Initialise a resource list.
2824  *
2825  * @param rl		the resource list to initialise
2826  */
2827 void
2828 resource_list_init(struct resource_list *rl)
2829 {
2830 	STAILQ_INIT(rl);
2831 }
2832 
2833 /**
2834  * @brief Reclaim memory used by a resource list.
2835  *
2836  * This function frees the memory for all resource entries on the list
2837  * (if any).
2838  *
2839  * @param rl		the resource list to free
2840  */
2841 void
2842 resource_list_free(struct resource_list *rl)
2843 {
2844 	struct resource_list_entry *rle;
2845 
2846 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2847 		if (rle->res)
2848 			panic("resource_list_free: resource entry is busy");
2849 		STAILQ_REMOVE_HEAD(rl, link);
2850 		free(rle, M_BUS);
2851 	}
2852 }
2853 
2854 /**
2855  * @brief Add a resource entry.
2856  *
2857  * This function adds a resource entry using the given @p type, @p
2858  * start, @p end and @p count values. A rid value is chosen by
2859  * searching sequentially for the first unused rid starting at zero.
2860  *
2861  * @param rl		the resource list to edit
2862  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2863  * @param start		the start address of the resource
2864  * @param end		the end address of the resource
2865  * @param count		XXX end-start+1
2866  */
2867 int
2868 resource_list_add_next(struct resource_list *rl, int type, u_long start,
2869     u_long end, u_long count)
2870 {
2871 	int rid;
2872 
2873 	rid = 0;
2874 	while (resource_list_find(rl, type, rid) != NULL)
2875 		rid++;
2876 	resource_list_add(rl, type, rid, start, end, count);
2877 	return (rid);
2878 }
2879 
2880 /**
2881  * @brief Add or modify a resource entry.
2882  *
2883  * If an existing entry exists with the same type and rid, it will be
2884  * modified using the given values of @p start, @p end and @p
2885  * count. If no entry exists, a new one will be created using the
2886  * given values.  The resource list entry that matches is then returned.
2887  *
2888  * @param rl		the resource list to edit
2889  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2890  * @param rid		the resource identifier
2891  * @param start		the start address of the resource
2892  * @param end		the end address of the resource
2893  * @param count		XXX end-start+1
2894  */
2895 struct resource_list_entry *
2896 resource_list_add(struct resource_list *rl, int type, int rid,
2897     u_long start, u_long end, u_long count)
2898 {
2899 	struct resource_list_entry *rle;
2900 
2901 	rle = resource_list_find(rl, type, rid);
2902 	if (!rle) {
2903 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2904 		    M_NOWAIT);
2905 		if (!rle)
2906 			panic("resource_list_add: can't record entry");
2907 		STAILQ_INSERT_TAIL(rl, rle, link);
2908 		rle->type = type;
2909 		rle->rid = rid;
2910 		rle->res = NULL;
2911 		rle->flags = 0;
2912 	}
2913 
2914 	if (rle->res)
2915 		panic("resource_list_add: resource entry is busy");
2916 
2917 	rle->start = start;
2918 	rle->end = end;
2919 	rle->count = count;
2920 	return (rle);
2921 }
2922 
2923 /**
2924  * @brief Determine if a resource entry is busy.
2925  *
2926  * Returns true if a resource entry is busy meaning that it has an
2927  * associated resource that is not an unallocated "reserved" resource.
2928  *
2929  * @param rl		the resource list to search
2930  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2931  * @param rid		the resource identifier
2932  *
2933  * @returns Non-zero if the entry is busy, zero otherwise.
2934  */
2935 int
2936 resource_list_busy(struct resource_list *rl, int type, int rid)
2937 {
2938 	struct resource_list_entry *rle;
2939 
2940 	rle = resource_list_find(rl, type, rid);
2941 	if (rle == NULL || rle->res == NULL)
2942 		return (0);
2943 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2944 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2945 		    ("reserved resource is active"));
2946 		return (0);
2947 	}
2948 	return (1);
2949 }
2950 
2951 /**
2952  * @brief Determine if a resource entry is reserved.
2953  *
2954  * Returns true if a resource entry is reserved meaning that it has an
2955  * associated "reserved" resource.  The resource can either be
2956  * allocated or unallocated.
2957  *
2958  * @param rl		the resource list to search
2959  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2960  * @param rid		the resource identifier
2961  *
2962  * @returns Non-zero if the entry is reserved, zero otherwise.
2963  */
2964 int
2965 resource_list_reserved(struct resource_list *rl, int type, int rid)
2966 {
2967 	struct resource_list_entry *rle;
2968 
2969 	rle = resource_list_find(rl, type, rid);
2970 	if (rle != NULL && rle->flags & RLE_RESERVED)
2971 		return (1);
2972 	return (0);
2973 }
2974 
2975 /**
2976  * @brief Find a resource entry by type and rid.
2977  *
2978  * @param rl		the resource list to search
2979  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2980  * @param rid		the resource identifier
2981  *
2982  * @returns the resource entry pointer or NULL if there is no such
2983  * entry.
2984  */
2985 struct resource_list_entry *
2986 resource_list_find(struct resource_list *rl, int type, int rid)
2987 {
2988 	struct resource_list_entry *rle;
2989 
2990 	STAILQ_FOREACH(rle, rl, link) {
2991 		if (rle->type == type && rle->rid == rid)
2992 			return (rle);
2993 	}
2994 	return (NULL);
2995 }
2996 
2997 /**
2998  * @brief Delete a resource entry.
2999  *
3000  * @param rl		the resource list to edit
3001  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3002  * @param rid		the resource identifier
3003  */
3004 void
3005 resource_list_delete(struct resource_list *rl, int type, int rid)
3006 {
3007 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3008 
3009 	if (rle) {
3010 		if (rle->res != NULL)
3011 			panic("resource_list_delete: resource has not been released");
3012 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3013 		free(rle, M_BUS);
3014 	}
3015 }
3016 
3017 /**
3018  * @brief Allocate a reserved resource
3019  *
3020  * This can be used by busses to force the allocation of resources
3021  * that are always active in the system even if they are not allocated
3022  * by a driver (e.g. PCI BARs).  This function is usually called when
3023  * adding a new child to the bus.  The resource is allocated from the
3024  * parent bus when it is reserved.  The resource list entry is marked
3025  * with RLE_RESERVED to note that it is a reserved resource.
3026  *
3027  * Subsequent attempts to allocate the resource with
3028  * resource_list_alloc() will succeed the first time and will set
3029  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3030  * resource that has been allocated is released with
3031  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3032  * the actual resource remains allocated.  The resource can be released to
3033  * the parent bus by calling resource_list_unreserve().
3034  *
3035  * @param rl		the resource list to allocate from
3036  * @param bus		the parent device of @p child
3037  * @param child		the device for which the resource is being reserved
3038  * @param type		the type of resource to allocate
3039  * @param rid		a pointer to the resource identifier
3040  * @param start		hint at the start of the resource range - pass
3041  *			@c 0UL for any start address
3042  * @param end		hint at the end of the resource range - pass
3043  *			@c ~0UL for any end address
3044  * @param count		hint at the size of range required - pass @c 1
3045  *			for any size
3046  * @param flags		any extra flags to control the resource
3047  *			allocation - see @c RF_XXX flags in
3048  *			<sys/rman.h> for details
3049  *
3050  * @returns		the resource which was allocated or @c NULL if no
3051  *			resource could be allocated
3052  */
3053 struct resource *
3054 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3055     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3056 {
3057 	struct resource_list_entry *rle = NULL;
3058 	int passthrough = (device_get_parent(child) != bus);
3059 	struct resource *r;
3060 
3061 	if (passthrough)
3062 		panic(
3063     "resource_list_reserve() should only be called for direct children");
3064 	if (flags & RF_ACTIVE)
3065 		panic(
3066     "resource_list_reserve() should only reserve inactive resources");
3067 
3068 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3069 	    flags);
3070 	if (r != NULL) {
3071 		rle = resource_list_find(rl, type, *rid);
3072 		rle->flags |= RLE_RESERVED;
3073 	}
3074 	return (r);
3075 }
3076 
3077 /**
3078  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3079  *
3080  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3081  * and passing the allocation up to the parent of @p bus. This assumes
3082  * that the first entry of @c device_get_ivars(child) is a struct
3083  * resource_list. This also handles 'passthrough' allocations where a
3084  * child is a remote descendant of bus by passing the allocation up to
3085  * the parent of bus.
3086  *
3087  * Typically, a bus driver would store a list of child resources
3088  * somewhere in the child device's ivars (see device_get_ivars()) and
3089  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3090  * then call resource_list_alloc() to perform the allocation.
3091  *
3092  * @param rl		the resource list to allocate from
3093  * @param bus		the parent device of @p child
3094  * @param child		the device which is requesting an allocation
3095  * @param type		the type of resource to allocate
3096  * @param rid		a pointer to the resource identifier
3097  * @param start		hint at the start of the resource range - pass
3098  *			@c 0UL for any start address
3099  * @param end		hint at the end of the resource range - pass
3100  *			@c ~0UL for any end address
3101  * @param count		hint at the size of range required - pass @c 1
3102  *			for any size
3103  * @param flags		any extra flags to control the resource
3104  *			allocation - see @c RF_XXX flags in
3105  *			<sys/rman.h> for details
3106  *
3107  * @returns		the resource which was allocated or @c NULL if no
3108  *			resource could be allocated
3109  */
3110 struct resource *
3111 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3112     int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3113 {
3114 	struct resource_list_entry *rle = NULL;
3115 	int passthrough = (device_get_parent(child) != bus);
3116 	int isdefault = (start == 0UL && end == ~0UL);
3117 
3118 	if (passthrough) {
3119 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3120 		    type, rid, start, end, count, flags));
3121 	}
3122 
3123 	rle = resource_list_find(rl, type, *rid);
3124 
3125 	if (!rle)
3126 		return (NULL);		/* no resource of that type/rid */
3127 
3128 	if (rle->res) {
3129 		if (rle->flags & RLE_RESERVED) {
3130 			if (rle->flags & RLE_ALLOCATED)
3131 				return (NULL);
3132 			if ((flags & RF_ACTIVE) &&
3133 			    bus_activate_resource(child, type, *rid,
3134 			    rle->res) != 0)
3135 				return (NULL);
3136 			rle->flags |= RLE_ALLOCATED;
3137 			return (rle->res);
3138 		}
3139 		panic("resource_list_alloc: resource entry is busy");
3140 	}
3141 
3142 	if (isdefault) {
3143 		start = rle->start;
3144 		count = ulmax(count, rle->count);
3145 		end = ulmax(rle->end, start + count - 1);
3146 	}
3147 
3148 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3149 	    type, rid, start, end, count, flags);
3150 
3151 	/*
3152 	 * Record the new range.
3153 	 */
3154 	if (rle->res) {
3155 		rle->start = rman_get_start(rle->res);
3156 		rle->end = rman_get_end(rle->res);
3157 		rle->count = count;
3158 	}
3159 
3160 	return (rle->res);
3161 }
3162 
3163 /**
3164  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3165  *
3166  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3167  * used with resource_list_alloc().
3168  *
3169  * @param rl		the resource list which was allocated from
3170  * @param bus		the parent device of @p child
3171  * @param child		the device which is requesting a release
3172  * @param type		the type of resource to release
3173  * @param rid		the resource identifier
3174  * @param res		the resource to release
3175  *
3176  * @retval 0		success
3177  * @retval non-zero	a standard unix error code indicating what
3178  *			error condition prevented the operation
3179  */
3180 int
3181 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3182     int type, int rid, struct resource *res)
3183 {
3184 	struct resource_list_entry *rle = NULL;
3185 	int passthrough = (device_get_parent(child) != bus);
3186 	int error;
3187 
3188 	if (passthrough) {
3189 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3190 		    type, rid, res));
3191 	}
3192 
3193 	rle = resource_list_find(rl, type, rid);
3194 
3195 	if (!rle)
3196 		panic("resource_list_release: can't find resource");
3197 	if (!rle->res)
3198 		panic("resource_list_release: resource entry is not busy");
3199 	if (rle->flags & RLE_RESERVED) {
3200 		if (rle->flags & RLE_ALLOCATED) {
3201 			if (rman_get_flags(res) & RF_ACTIVE) {
3202 				error = bus_deactivate_resource(child, type,
3203 				    rid, res);
3204 				if (error)
3205 					return (error);
3206 			}
3207 			rle->flags &= ~RLE_ALLOCATED;
3208 			return (0);
3209 		}
3210 		return (EINVAL);
3211 	}
3212 
3213 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3214 	    type, rid, res);
3215 	if (error)
3216 		return (error);
3217 
3218 	rle->res = NULL;
3219 	return (0);
3220 }
3221 
3222 /**
3223  * @brief Fully release a reserved resource
3224  *
3225  * Fully releases a resouce reserved via resource_list_reserve().
3226  *
3227  * @param rl		the resource list which was allocated from
3228  * @param bus		the parent device of @p child
3229  * @param child		the device whose reserved resource is being released
3230  * @param type		the type of resource to release
3231  * @param rid		the resource identifier
3232  * @param res		the resource to release
3233  *
3234  * @retval 0		success
3235  * @retval non-zero	a standard unix error code indicating what
3236  *			error condition prevented the operation
3237  */
3238 int
3239 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3240     int type, int rid)
3241 {
3242 	struct resource_list_entry *rle = NULL;
3243 	int passthrough = (device_get_parent(child) != bus);
3244 
3245 	if (passthrough)
3246 		panic(
3247     "resource_list_unreserve() should only be called for direct children");
3248 
3249 	rle = resource_list_find(rl, type, rid);
3250 
3251 	if (!rle)
3252 		panic("resource_list_unreserve: can't find resource");
3253 	if (!(rle->flags & RLE_RESERVED))
3254 		return (EINVAL);
3255 	if (rle->flags & RLE_ALLOCATED)
3256 		return (EBUSY);
3257 	rle->flags &= ~RLE_RESERVED;
3258 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3259 }
3260 
3261 /**
3262  * @brief Print a description of resources in a resource list
3263  *
3264  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3265  * The name is printed if at least one resource of the given type is available.
3266  * The format is used to print resource start and end.
3267  *
3268  * @param rl		the resource list to print
3269  * @param name		the name of @p type, e.g. @c "memory"
3270  * @param type		type type of resource entry to print
3271  * @param format	printf(9) format string to print resource
3272  *			start and end values
3273  *
3274  * @returns		the number of characters printed
3275  */
3276 int
3277 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3278     const char *format)
3279 {
3280 	struct resource_list_entry *rle;
3281 	int printed, retval;
3282 
3283 	printed = 0;
3284 	retval = 0;
3285 	/* Yes, this is kinda cheating */
3286 	STAILQ_FOREACH(rle, rl, link) {
3287 		if (rle->type == type) {
3288 			if (printed == 0)
3289 				retval += printf(" %s ", name);
3290 			else
3291 				retval += printf(",");
3292 			printed++;
3293 			retval += printf(format, rle->start);
3294 			if (rle->count > 1) {
3295 				retval += printf("-");
3296 				retval += printf(format, rle->start +
3297 						 rle->count - 1);
3298 			}
3299 		}
3300 	}
3301 	return (retval);
3302 }
3303 
3304 /**
3305  * @brief Releases all the resources in a list.
3306  *
3307  * @param rl		The resource list to purge.
3308  *
3309  * @returns		nothing
3310  */
3311 void
3312 resource_list_purge(struct resource_list *rl)
3313 {
3314 	struct resource_list_entry *rle;
3315 
3316 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3317 		if (rle->res)
3318 			bus_release_resource(rman_get_device(rle->res),
3319 			    rle->type, rle->rid, rle->res);
3320 		STAILQ_REMOVE_HEAD(rl, link);
3321 		free(rle, M_BUS);
3322 	}
3323 }
3324 
3325 device_t
3326 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3327 {
3328 
3329 	return (device_add_child_ordered(dev, order, name, unit));
3330 }
3331 
3332 /**
3333  * @brief Helper function for implementing DEVICE_PROBE()
3334  *
3335  * This function can be used to help implement the DEVICE_PROBE() for
3336  * a bus (i.e. a device which has other devices attached to it). It
3337  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3338  * devclass.
3339  */
3340 int
3341 bus_generic_probe(device_t dev)
3342 {
3343 	devclass_t dc = dev->devclass;
3344 	driverlink_t dl;
3345 
3346 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3347 		/*
3348 		 * If this driver's pass is too high, then ignore it.
3349 		 * For most drivers in the default pass, this will
3350 		 * never be true.  For early-pass drivers they will
3351 		 * only call the identify routines of eligible drivers
3352 		 * when this routine is called.  Drivers for later
3353 		 * passes should have their identify routines called
3354 		 * on early-pass busses during BUS_NEW_PASS().
3355 		 */
3356 		if (dl->pass > bus_current_pass)
3357 			continue;
3358 		DEVICE_IDENTIFY(dl->driver, dev);
3359 	}
3360 
3361 	return (0);
3362 }
3363 
3364 /**
3365  * @brief Helper function for implementing DEVICE_ATTACH()
3366  *
3367  * This function can be used to help implement the DEVICE_ATTACH() for
3368  * a bus. It calls device_probe_and_attach() for each of the device's
3369  * children.
3370  */
3371 int
3372 bus_generic_attach(device_t dev)
3373 {
3374 	device_t child;
3375 
3376 	TAILQ_FOREACH(child, &dev->children, link) {
3377 		device_probe_and_attach(child);
3378 	}
3379 
3380 	return (0);
3381 }
3382 
3383 /**
3384  * @brief Helper function for implementing DEVICE_DETACH()
3385  *
3386  * This function can be used to help implement the DEVICE_DETACH() for
3387  * a bus. It calls device_detach() for each of the device's
3388  * children.
3389  */
3390 int
3391 bus_generic_detach(device_t dev)
3392 {
3393 	device_t child;
3394 	int error;
3395 
3396 	if (dev->state != DS_ATTACHED)
3397 		return (EBUSY);
3398 
3399 	TAILQ_FOREACH(child, &dev->children, link) {
3400 		if ((error = device_detach(child)) != 0)
3401 			return (error);
3402 	}
3403 
3404 	return (0);
3405 }
3406 
3407 /**
3408  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3409  *
3410  * This function can be used to help implement the DEVICE_SHUTDOWN()
3411  * for a bus. It calls device_shutdown() for each of the device's
3412  * children.
3413  */
3414 int
3415 bus_generic_shutdown(device_t dev)
3416 {
3417 	device_t child;
3418 
3419 	TAILQ_FOREACH(child, &dev->children, link) {
3420 		device_shutdown(child);
3421 	}
3422 
3423 	return (0);
3424 }
3425 
3426 /**
3427  * @brief Helper function for implementing DEVICE_SUSPEND()
3428  *
3429  * This function can be used to help implement the DEVICE_SUSPEND()
3430  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3431  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3432  * operation is aborted and any devices which were suspended are
3433  * resumed immediately by calling their DEVICE_RESUME() methods.
3434  */
3435 int
3436 bus_generic_suspend(device_t dev)
3437 {
3438 	int		error;
3439 	device_t	child, child2;
3440 
3441 	TAILQ_FOREACH(child, &dev->children, link) {
3442 		error = DEVICE_SUSPEND(child);
3443 		if (error) {
3444 			for (child2 = TAILQ_FIRST(&dev->children);
3445 			     child2 && child2 != child;
3446 			     child2 = TAILQ_NEXT(child2, link))
3447 				DEVICE_RESUME(child2);
3448 			return (error);
3449 		}
3450 	}
3451 	return (0);
3452 }
3453 
3454 /**
3455  * @brief Helper function for implementing DEVICE_RESUME()
3456  *
3457  * This function can be used to help implement the DEVICE_RESUME() for
3458  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3459  */
3460 int
3461 bus_generic_resume(device_t dev)
3462 {
3463 	device_t	child;
3464 
3465 	TAILQ_FOREACH(child, &dev->children, link) {
3466 		DEVICE_RESUME(child);
3467 		/* if resume fails, there's nothing we can usefully do... */
3468 	}
3469 	return (0);
3470 }
3471 
3472 /**
3473  * @brief Helper function for implementing BUS_PRINT_CHILD().
3474  *
3475  * This function prints the first part of the ascii representation of
3476  * @p child, including its name, unit and description (if any - see
3477  * device_set_desc()).
3478  *
3479  * @returns the number of characters printed
3480  */
3481 int
3482 bus_print_child_header(device_t dev, device_t child)
3483 {
3484 	int	retval = 0;
3485 
3486 	if (device_get_desc(child)) {
3487 		retval += device_printf(child, "<%s>", device_get_desc(child));
3488 	} else {
3489 		retval += printf("%s", device_get_nameunit(child));
3490 	}
3491 
3492 	return (retval);
3493 }
3494 
3495 /**
3496  * @brief Helper function for implementing BUS_PRINT_CHILD().
3497  *
3498  * This function prints the last part of the ascii representation of
3499  * @p child, which consists of the string @c " on " followed by the
3500  * name and unit of the @p dev.
3501  *
3502  * @returns the number of characters printed
3503  */
3504 int
3505 bus_print_child_footer(device_t dev, device_t child)
3506 {
3507 	return (printf(" on %s\n", device_get_nameunit(dev)));
3508 }
3509 
3510 /**
3511  * @brief Helper function for implementing BUS_PRINT_CHILD().
3512  *
3513  * This function simply calls bus_print_child_header() followed by
3514  * bus_print_child_footer().
3515  *
3516  * @returns the number of characters printed
3517  */
3518 int
3519 bus_generic_print_child(device_t dev, device_t child)
3520 {
3521 	int	retval = 0;
3522 
3523 	retval += bus_print_child_header(dev, child);
3524 	retval += bus_print_child_footer(dev, child);
3525 
3526 	return (retval);
3527 }
3528 
3529 /**
3530  * @brief Stub function for implementing BUS_READ_IVAR().
3531  *
3532  * @returns ENOENT
3533  */
3534 int
3535 bus_generic_read_ivar(device_t dev, device_t child, int index,
3536     uintptr_t * result)
3537 {
3538 	return (ENOENT);
3539 }
3540 
3541 /**
3542  * @brief Stub function for implementing BUS_WRITE_IVAR().
3543  *
3544  * @returns ENOENT
3545  */
3546 int
3547 bus_generic_write_ivar(device_t dev, device_t child, int index,
3548     uintptr_t value)
3549 {
3550 	return (ENOENT);
3551 }
3552 
3553 /**
3554  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3555  *
3556  * @returns NULL
3557  */
3558 struct resource_list *
3559 bus_generic_get_resource_list(device_t dev, device_t child)
3560 {
3561 	return (NULL);
3562 }
3563 
3564 /**
3565  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3566  *
3567  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3568  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3569  * and then calls device_probe_and_attach() for each unattached child.
3570  */
3571 void
3572 bus_generic_driver_added(device_t dev, driver_t *driver)
3573 {
3574 	device_t child;
3575 
3576 	DEVICE_IDENTIFY(driver, dev);
3577 	TAILQ_FOREACH(child, &dev->children, link) {
3578 		if (child->state == DS_NOTPRESENT ||
3579 		    (child->flags & DF_REBID))
3580 			device_probe_and_attach(child);
3581 	}
3582 }
3583 
3584 /**
3585  * @brief Helper function for implementing BUS_NEW_PASS().
3586  *
3587  * This implementing of BUS_NEW_PASS() first calls the identify
3588  * routines for any drivers that probe at the current pass.  Then it
3589  * walks the list of devices for this bus.  If a device is already
3590  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3591  * device is not already attached, it attempts to attach a driver to
3592  * it.
3593  */
3594 void
3595 bus_generic_new_pass(device_t dev)
3596 {
3597 	driverlink_t dl;
3598 	devclass_t dc;
3599 	device_t child;
3600 
3601 	dc = dev->devclass;
3602 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3603 		if (dl->pass == bus_current_pass)
3604 			DEVICE_IDENTIFY(dl->driver, dev);
3605 	}
3606 	TAILQ_FOREACH(child, &dev->children, link) {
3607 		if (child->state >= DS_ATTACHED)
3608 			BUS_NEW_PASS(child);
3609 		else if (child->state == DS_NOTPRESENT)
3610 			device_probe_and_attach(child);
3611 	}
3612 }
3613 
3614 /**
3615  * @brief Helper function for implementing BUS_SETUP_INTR().
3616  *
3617  * This simple implementation of BUS_SETUP_INTR() simply calls the
3618  * BUS_SETUP_INTR() method of the parent of @p dev.
3619  */
3620 int
3621 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3622     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3623     void **cookiep)
3624 {
3625 	/* Propagate up the bus hierarchy until someone handles it. */
3626 	if (dev->parent)
3627 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3628 		    filter, intr, arg, cookiep));
3629 	return (EINVAL);
3630 }
3631 
3632 /**
3633  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3634  *
3635  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3636  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3637  */
3638 int
3639 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3640     void *cookie)
3641 {
3642 	/* Propagate up the bus hierarchy until someone handles it. */
3643 	if (dev->parent)
3644 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3645 	return (EINVAL);
3646 }
3647 
3648 /**
3649  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3650  *
3651  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3652  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3653  */
3654 struct resource *
3655 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3656     u_long start, u_long end, u_long count, u_int flags)
3657 {
3658 	/* Propagate up the bus hierarchy until someone handles it. */
3659 	if (dev->parent)
3660 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3661 		    start, end, count, flags));
3662 	return (NULL);
3663 }
3664 
3665 /**
3666  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3667  *
3668  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3669  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3670  */
3671 int
3672 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3673     struct resource *r)
3674 {
3675 	/* Propagate up the bus hierarchy until someone handles it. */
3676 	if (dev->parent)
3677 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3678 		    r));
3679 	return (EINVAL);
3680 }
3681 
3682 /**
3683  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3684  *
3685  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3686  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3687  */
3688 int
3689 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3690     struct resource *r)
3691 {
3692 	/* Propagate up the bus hierarchy until someone handles it. */
3693 	if (dev->parent)
3694 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3695 		    r));
3696 	return (EINVAL);
3697 }
3698 
3699 /**
3700  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3701  *
3702  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3703  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3704  */
3705 int
3706 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3707     int rid, struct resource *r)
3708 {
3709 	/* Propagate up the bus hierarchy until someone handles it. */
3710 	if (dev->parent)
3711 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3712 		    r));
3713 	return (EINVAL);
3714 }
3715 
3716 /**
3717  * @brief Helper function for implementing BUS_BIND_INTR().
3718  *
3719  * This simple implementation of BUS_BIND_INTR() simply calls the
3720  * BUS_BIND_INTR() method of the parent of @p dev.
3721  */
3722 int
3723 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3724     int cpu)
3725 {
3726 
3727 	/* Propagate up the bus hierarchy until someone handles it. */
3728 	if (dev->parent)
3729 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3730 	return (EINVAL);
3731 }
3732 
3733 /**
3734  * @brief Helper function for implementing BUS_CONFIG_INTR().
3735  *
3736  * This simple implementation of BUS_CONFIG_INTR() simply calls the
3737  * BUS_CONFIG_INTR() method of the parent of @p dev.
3738  */
3739 int
3740 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3741     enum intr_polarity pol)
3742 {
3743 
3744 	/* Propagate up the bus hierarchy until someone handles it. */
3745 	if (dev->parent)
3746 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3747 	return (EINVAL);
3748 }
3749 
3750 /**
3751  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3752  *
3753  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3754  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3755  */
3756 int
3757 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3758     void *cookie, const char *descr)
3759 {
3760 
3761 	/* Propagate up the bus hierarchy until someone handles it. */
3762 	if (dev->parent)
3763 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3764 		    descr));
3765 	return (EINVAL);
3766 }
3767 
3768 /**
3769  * @brief Helper function for implementing BUS_GET_DMA_TAG().
3770  *
3771  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3772  * BUS_GET_DMA_TAG() method of the parent of @p dev.
3773  */
3774 bus_dma_tag_t
3775 bus_generic_get_dma_tag(device_t dev, device_t child)
3776 {
3777 
3778 	/* Propagate up the bus hierarchy until someone handles it. */
3779 	if (dev->parent != NULL)
3780 		return (BUS_GET_DMA_TAG(dev->parent, child));
3781 	return (NULL);
3782 }
3783 
3784 /**
3785  * @brief Helper function for implementing BUS_GET_RESOURCE().
3786  *
3787  * This implementation of BUS_GET_RESOURCE() uses the
3788  * resource_list_find() function to do most of the work. It calls
3789  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3790  * search.
3791  */
3792 int
3793 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3794     u_long *startp, u_long *countp)
3795 {
3796 	struct resource_list *		rl = NULL;
3797 	struct resource_list_entry *	rle = NULL;
3798 
3799 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3800 	if (!rl)
3801 		return (EINVAL);
3802 
3803 	rle = resource_list_find(rl, type, rid);
3804 	if (!rle)
3805 		return (ENOENT);
3806 
3807 	if (startp)
3808 		*startp = rle->start;
3809 	if (countp)
3810 		*countp = rle->count;
3811 
3812 	return (0);
3813 }
3814 
3815 /**
3816  * @brief Helper function for implementing BUS_SET_RESOURCE().
3817  *
3818  * This implementation of BUS_SET_RESOURCE() uses the
3819  * resource_list_add() function to do most of the work. It calls
3820  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3821  * edit.
3822  */
3823 int
3824 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3825     u_long start, u_long count)
3826 {
3827 	struct resource_list *		rl = NULL;
3828 
3829 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3830 	if (!rl)
3831 		return (EINVAL);
3832 
3833 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3834 
3835 	return (0);
3836 }
3837 
3838 /**
3839  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3840  *
3841  * This implementation of BUS_DELETE_RESOURCE() uses the
3842  * resource_list_delete() function to do most of the work. It calls
3843  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3844  * edit.
3845  */
3846 void
3847 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3848 {
3849 	struct resource_list *		rl = NULL;
3850 
3851 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3852 	if (!rl)
3853 		return;
3854 
3855 	resource_list_delete(rl, type, rid);
3856 
3857 	return;
3858 }
3859 
3860 /**
3861  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3862  *
3863  * This implementation of BUS_RELEASE_RESOURCE() uses the
3864  * resource_list_release() function to do most of the work. It calls
3865  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3866  */
3867 int
3868 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3869     int rid, struct resource *r)
3870 {
3871 	struct resource_list *		rl = NULL;
3872 
3873 	if (device_get_parent(child) != dev)
3874 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3875 		    type, rid, r));
3876 
3877 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3878 	if (!rl)
3879 		return (EINVAL);
3880 
3881 	return (resource_list_release(rl, dev, child, type, rid, r));
3882 }
3883 
3884 /**
3885  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3886  *
3887  * This implementation of BUS_ALLOC_RESOURCE() uses the
3888  * resource_list_alloc() function to do most of the work. It calls
3889  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3890  */
3891 struct resource *
3892 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3893     int *rid, u_long start, u_long end, u_long count, u_int flags)
3894 {
3895 	struct resource_list *		rl = NULL;
3896 
3897 	if (device_get_parent(child) != dev)
3898 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3899 		    type, rid, start, end, count, flags));
3900 
3901 	rl = BUS_GET_RESOURCE_LIST(dev, child);
3902 	if (!rl)
3903 		return (NULL);
3904 
3905 	return (resource_list_alloc(rl, dev, child, type, rid,
3906 	    start, end, count, flags));
3907 }
3908 
3909 /**
3910  * @brief Helper function for implementing BUS_CHILD_PRESENT().
3911  *
3912  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3913  * BUS_CHILD_PRESENT() method of the parent of @p dev.
3914  */
3915 int
3916 bus_generic_child_present(device_t dev, device_t child)
3917 {
3918 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3919 }
3920 
3921 /*
3922  * Some convenience functions to make it easier for drivers to use the
3923  * resource-management functions.  All these really do is hide the
3924  * indirection through the parent's method table, making for slightly
3925  * less-wordy code.  In the future, it might make sense for this code
3926  * to maintain some sort of a list of resources allocated by each device.
3927  */
3928 
3929 int
3930 bus_alloc_resources(device_t dev, struct resource_spec *rs,
3931     struct resource **res)
3932 {
3933 	int i;
3934 
3935 	for (i = 0; rs[i].type != -1; i++)
3936 		res[i] = NULL;
3937 	for (i = 0; rs[i].type != -1; i++) {
3938 		res[i] = bus_alloc_resource_any(dev,
3939 		    rs[i].type, &rs[i].rid, rs[i].flags);
3940 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3941 			bus_release_resources(dev, rs, res);
3942 			return (ENXIO);
3943 		}
3944 	}
3945 	return (0);
3946 }
3947 
3948 void
3949 bus_release_resources(device_t dev, const struct resource_spec *rs,
3950     struct resource **res)
3951 {
3952 	int i;
3953 
3954 	for (i = 0; rs[i].type != -1; i++)
3955 		if (res[i] != NULL) {
3956 			bus_release_resource(
3957 			    dev, rs[i].type, rs[i].rid, res[i]);
3958 			res[i] = NULL;
3959 		}
3960 }
3961 
3962 /**
3963  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3964  *
3965  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3966  * parent of @p dev.
3967  */
3968 struct resource *
3969 bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3970     u_long count, u_int flags)
3971 {
3972 	if (dev->parent == NULL)
3973 		return (NULL);
3974 	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3975 	    count, flags));
3976 }
3977 
3978 /**
3979  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3980  *
3981  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3982  * parent of @p dev.
3983  */
3984 int
3985 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3986 {
3987 	if (dev->parent == NULL)
3988 		return (EINVAL);
3989 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3990 }
3991 
3992 /**
3993  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3994  *
3995  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3996  * parent of @p dev.
3997  */
3998 int
3999 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4000 {
4001 	if (dev->parent == NULL)
4002 		return (EINVAL);
4003 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4004 }
4005 
4006 /**
4007  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4008  *
4009  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4010  * parent of @p dev.
4011  */
4012 int
4013 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4014 {
4015 	if (dev->parent == NULL)
4016 		return (EINVAL);
4017 	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4018 }
4019 
4020 /**
4021  * @brief Wrapper function for BUS_SETUP_INTR().
4022  *
4023  * This function simply calls the BUS_SETUP_INTR() method of the
4024  * parent of @p dev.
4025  */
4026 int
4027 bus_setup_intr(device_t dev, struct resource *r, int flags,
4028     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4029 {
4030 	int error;
4031 
4032 	if (dev->parent == NULL)
4033 		return (EINVAL);
4034 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4035 	    arg, cookiep);
4036 	if (error != 0)
4037 		return (error);
4038 	if (handler != NULL && !(flags & INTR_MPSAFE))
4039 		device_printf(dev, "[GIANT-LOCKED]\n");
4040 	return (0);
4041 }
4042 
4043 /**
4044  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4045  *
4046  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4047  * parent of @p dev.
4048  */
4049 int
4050 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4051 {
4052 	if (dev->parent == NULL)
4053 		return (EINVAL);
4054 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4055 }
4056 
4057 /**
4058  * @brief Wrapper function for BUS_BIND_INTR().
4059  *
4060  * This function simply calls the BUS_BIND_INTR() method of the
4061  * parent of @p dev.
4062  */
4063 int
4064 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4065 {
4066 	if (dev->parent == NULL)
4067 		return (EINVAL);
4068 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4069 }
4070 
4071 /**
4072  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4073  *
4074  * This function first formats the requested description into a
4075  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4076  * the parent of @p dev.
4077  */
4078 int
4079 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4080     const char *fmt, ...)
4081 {
4082 	va_list ap;
4083 	char descr[MAXCOMLEN + 1];
4084 
4085 	if (dev->parent == NULL)
4086 		return (EINVAL);
4087 	va_start(ap, fmt);
4088 	vsnprintf(descr, sizeof(descr), fmt, ap);
4089 	va_end(ap);
4090 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4091 }
4092 
4093 /**
4094  * @brief Wrapper function for BUS_SET_RESOURCE().
4095  *
4096  * This function simply calls the BUS_SET_RESOURCE() method of the
4097  * parent of @p dev.
4098  */
4099 int
4100 bus_set_resource(device_t dev, int type, int rid,
4101     u_long start, u_long count)
4102 {
4103 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4104 	    start, count));
4105 }
4106 
4107 /**
4108  * @brief Wrapper function for BUS_GET_RESOURCE().
4109  *
4110  * This function simply calls the BUS_GET_RESOURCE() method of the
4111  * parent of @p dev.
4112  */
4113 int
4114 bus_get_resource(device_t dev, int type, int rid,
4115     u_long *startp, u_long *countp)
4116 {
4117 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4118 	    startp, countp));
4119 }
4120 
4121 /**
4122  * @brief Wrapper function for BUS_GET_RESOURCE().
4123  *
4124  * This function simply calls the BUS_GET_RESOURCE() method of the
4125  * parent of @p dev and returns the start value.
4126  */
4127 u_long
4128 bus_get_resource_start(device_t dev, int type, int rid)
4129 {
4130 	u_long start, count;
4131 	int error;
4132 
4133 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4134 	    &start, &count);
4135 	if (error)
4136 		return (0);
4137 	return (start);
4138 }
4139 
4140 /**
4141  * @brief Wrapper function for BUS_GET_RESOURCE().
4142  *
4143  * This function simply calls the BUS_GET_RESOURCE() method of the
4144  * parent of @p dev and returns the count value.
4145  */
4146 u_long
4147 bus_get_resource_count(device_t dev, int type, int rid)
4148 {
4149 	u_long start, count;
4150 	int error;
4151 
4152 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4153 	    &start, &count);
4154 	if (error)
4155 		return (0);
4156 	return (count);
4157 }
4158 
4159 /**
4160  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4161  *
4162  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4163  * parent of @p dev.
4164  */
4165 void
4166 bus_delete_resource(device_t dev, int type, int rid)
4167 {
4168 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4169 }
4170 
4171 /**
4172  * @brief Wrapper function for BUS_CHILD_PRESENT().
4173  *
4174  * This function simply calls the BUS_CHILD_PRESENT() method of the
4175  * parent of @p dev.
4176  */
4177 int
4178 bus_child_present(device_t child)
4179 {
4180 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4181 }
4182 
4183 /**
4184  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4185  *
4186  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4187  * parent of @p dev.
4188  */
4189 int
4190 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4191 {
4192 	device_t parent;
4193 
4194 	parent = device_get_parent(child);
4195 	if (parent == NULL) {
4196 		*buf = '\0';
4197 		return (0);
4198 	}
4199 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4200 }
4201 
4202 /**
4203  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4204  *
4205  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4206  * parent of @p dev.
4207  */
4208 int
4209 bus_child_location_str(device_t child, char *buf, size_t buflen)
4210 {
4211 	device_t parent;
4212 
4213 	parent = device_get_parent(child);
4214 	if (parent == NULL) {
4215 		*buf = '\0';
4216 		return (0);
4217 	}
4218 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4219 }
4220 
4221 /**
4222  * @brief Wrapper function for BUS_GET_DMA_TAG().
4223  *
4224  * This function simply calls the BUS_GET_DMA_TAG() method of the
4225  * parent of @p dev.
4226  */
4227 bus_dma_tag_t
4228 bus_get_dma_tag(device_t dev)
4229 {
4230 	device_t parent;
4231 
4232 	parent = device_get_parent(dev);
4233 	if (parent == NULL)
4234 		return (NULL);
4235 	return (BUS_GET_DMA_TAG(parent, dev));
4236 }
4237 
4238 /* Resume all devices and then notify userland that we're up again. */
4239 static int
4240 root_resume(device_t dev)
4241 {
4242 	int error;
4243 
4244 	error = bus_generic_resume(dev);
4245 	if (error == 0)
4246 		devctl_notify("kern", "power", "resume", NULL);
4247 	return (error);
4248 }
4249 
4250 static int
4251 root_print_child(device_t dev, device_t child)
4252 {
4253 	int	retval = 0;
4254 
4255 	retval += bus_print_child_header(dev, child);
4256 	retval += printf("\n");
4257 
4258 	return (retval);
4259 }
4260 
4261 static int
4262 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4263     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4264 {
4265 	/*
4266 	 * If an interrupt mapping gets to here something bad has happened.
4267 	 */
4268 	panic("root_setup_intr");
4269 }
4270 
4271 /*
4272  * If we get here, assume that the device is permanant and really is
4273  * present in the system.  Removable bus drivers are expected to intercept
4274  * this call long before it gets here.  We return -1 so that drivers that
4275  * really care can check vs -1 or some ERRNO returned higher in the food
4276  * chain.
4277  */
4278 static int
4279 root_child_present(device_t dev, device_t child)
4280 {
4281 	return (-1);
4282 }
4283 
4284 static kobj_method_t root_methods[] = {
4285 	/* Device interface */
4286 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4287 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4288 	KOBJMETHOD(device_resume,	root_resume),
4289 
4290 	/* Bus interface */
4291 	KOBJMETHOD(bus_print_child,	root_print_child),
4292 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4293 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4294 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4295 	KOBJMETHOD(bus_child_present,	root_child_present),
4296 
4297 	KOBJMETHOD_END
4298 };
4299 
4300 static driver_t root_driver = {
4301 	"root",
4302 	root_methods,
4303 	1,			/* no softc */
4304 };
4305 
4306 device_t	root_bus;
4307 devclass_t	root_devclass;
4308 
4309 static int
4310 root_bus_module_handler(module_t mod, int what, void* arg)
4311 {
4312 	switch (what) {
4313 	case MOD_LOAD:
4314 		TAILQ_INIT(&bus_data_devices);
4315 		kobj_class_compile((kobj_class_t) &root_driver);
4316 		root_bus = make_device(NULL, "root", 0);
4317 		root_bus->desc = "System root bus";
4318 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4319 		root_bus->driver = &root_driver;
4320 		root_bus->state = DS_ATTACHED;
4321 		root_devclass = devclass_find_internal("root", NULL, FALSE);
4322 		devinit();
4323 		return (0);
4324 
4325 	case MOD_SHUTDOWN:
4326 		device_shutdown(root_bus);
4327 		return (0);
4328 	default:
4329 		return (EOPNOTSUPP);
4330 	}
4331 
4332 	return (0);
4333 }
4334 
4335 static moduledata_t root_bus_mod = {
4336 	"rootbus",
4337 	root_bus_module_handler,
4338 	NULL
4339 };
4340 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4341 
4342 /**
4343  * @brief Automatically configure devices
4344  *
4345  * This function begins the autoconfiguration process by calling
4346  * device_probe_and_attach() for each child of the @c root0 device.
4347  */
4348 void
4349 root_bus_configure(void)
4350 {
4351 
4352 	PDEBUG(("."));
4353 
4354 	/* Eventually this will be split up, but this is sufficient for now. */
4355 	bus_set_pass(BUS_PASS_DEFAULT);
4356 }
4357 
4358 /**
4359  * @brief Module handler for registering device drivers
4360  *
4361  * This module handler is used to automatically register device
4362  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4363  * devclass_add_driver() for the driver described by the
4364  * driver_module_data structure pointed to by @p arg
4365  */
4366 int
4367 driver_module_handler(module_t mod, int what, void *arg)
4368 {
4369 	struct driver_module_data *dmd;
4370 	devclass_t bus_devclass;
4371 	kobj_class_t driver;
4372 	int error, pass;
4373 
4374 	dmd = (struct driver_module_data *)arg;
4375 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4376 	error = 0;
4377 
4378 	switch (what) {
4379 	case MOD_LOAD:
4380 		if (dmd->dmd_chainevh)
4381 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4382 
4383 		pass = dmd->dmd_pass;
4384 		driver = dmd->dmd_driver;
4385 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4386 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4387 		error = devclass_add_driver(bus_devclass, driver, pass,
4388 		    dmd->dmd_devclass);
4389 		break;
4390 
4391 	case MOD_UNLOAD:
4392 		PDEBUG(("Unloading module: driver %s from bus %s",
4393 		    DRIVERNAME(dmd->dmd_driver),
4394 		    dmd->dmd_busname));
4395 		error = devclass_delete_driver(bus_devclass,
4396 		    dmd->dmd_driver);
4397 
4398 		if (!error && dmd->dmd_chainevh)
4399 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4400 		break;
4401 	case MOD_QUIESCE:
4402 		PDEBUG(("Quiesce module: driver %s from bus %s",
4403 		    DRIVERNAME(dmd->dmd_driver),
4404 		    dmd->dmd_busname));
4405 		error = devclass_quiesce_driver(bus_devclass,
4406 		    dmd->dmd_driver);
4407 
4408 		if (!error && dmd->dmd_chainevh)
4409 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4410 		break;
4411 	default:
4412 		error = EOPNOTSUPP;
4413 		break;
4414 	}
4415 
4416 	return (error);
4417 }
4418 
4419 /**
4420  * @brief Enumerate all hinted devices for this bus.
4421  *
4422  * Walks through the hints for this bus and calls the bus_hinted_child
4423  * routine for each one it fines.  It searches first for the specific
4424  * bus that's being probed for hinted children (eg isa0), and then for
4425  * generic children (eg isa).
4426  *
4427  * @param	dev	bus device to enumerate
4428  */
4429 void
4430 bus_enumerate_hinted_children(device_t bus)
4431 {
4432 	int i;
4433 	const char *dname, *busname;
4434 	int dunit;
4435 
4436 	/*
4437 	 * enumerate all devices on the specific bus
4438 	 */
4439 	busname = device_get_nameunit(bus);
4440 	i = 0;
4441 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4442 		BUS_HINTED_CHILD(bus, dname, dunit);
4443 
4444 	/*
4445 	 * and all the generic ones.
4446 	 */
4447 	busname = device_get_name(bus);
4448 	i = 0;
4449 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4450 		BUS_HINTED_CHILD(bus, dname, dunit);
4451 }
4452 
4453 #ifdef BUS_DEBUG
4454 
4455 /* the _short versions avoid iteration by not calling anything that prints
4456  * more than oneliners. I love oneliners.
4457  */
4458 
4459 static void
4460 print_device_short(device_t dev, int indent)
4461 {
4462 	if (!dev)
4463 		return;
4464 
4465 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4466 	    dev->unit, dev->desc,
4467 	    (dev->parent? "":"no "),
4468 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4469 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4470 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4471 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4472 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4473 	    (dev->flags&DF_REBID? "rebiddable,":""),
4474 	    (dev->ivars? "":"no "),
4475 	    (dev->softc? "":"no "),
4476 	    dev->busy));
4477 }
4478 
4479 static void
4480 print_device(device_t dev, int indent)
4481 {
4482 	if (!dev)
4483 		return;
4484 
4485 	print_device_short(dev, indent);
4486 
4487 	indentprintf(("Parent:\n"));
4488 	print_device_short(dev->parent, indent+1);
4489 	indentprintf(("Driver:\n"));
4490 	print_driver_short(dev->driver, indent+1);
4491 	indentprintf(("Devclass:\n"));
4492 	print_devclass_short(dev->devclass, indent+1);
4493 }
4494 
4495 void
4496 print_device_tree_short(device_t dev, int indent)
4497 /* print the device and all its children (indented) */
4498 {
4499 	device_t child;
4500 
4501 	if (!dev)
4502 		return;
4503 
4504 	print_device_short(dev, indent);
4505 
4506 	TAILQ_FOREACH(child, &dev->children, link) {
4507 		print_device_tree_short(child, indent+1);
4508 	}
4509 }
4510 
4511 void
4512 print_device_tree(device_t dev, int indent)
4513 /* print the device and all its children (indented) */
4514 {
4515 	device_t child;
4516 
4517 	if (!dev)
4518 		return;
4519 
4520 	print_device(dev, indent);
4521 
4522 	TAILQ_FOREACH(child, &dev->children, link) {
4523 		print_device_tree(child, indent+1);
4524 	}
4525 }
4526 
4527 static void
4528 print_driver_short(driver_t *driver, int indent)
4529 {
4530 	if (!driver)
4531 		return;
4532 
4533 	indentprintf(("driver %s: softc size = %zd\n",
4534 	    driver->name, driver->size));
4535 }
4536 
4537 static void
4538 print_driver(driver_t *driver, int indent)
4539 {
4540 	if (!driver)
4541 		return;
4542 
4543 	print_driver_short(driver, indent);
4544 }
4545 
4546 
4547 static void
4548 print_driver_list(driver_list_t drivers, int indent)
4549 {
4550 	driverlink_t driver;
4551 
4552 	TAILQ_FOREACH(driver, &drivers, link) {
4553 		print_driver(driver->driver, indent);
4554 	}
4555 }
4556 
4557 static void
4558 print_devclass_short(devclass_t dc, int indent)
4559 {
4560 	if ( !dc )
4561 		return;
4562 
4563 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4564 }
4565 
4566 static void
4567 print_devclass(devclass_t dc, int indent)
4568 {
4569 	int i;
4570 
4571 	if ( !dc )
4572 		return;
4573 
4574 	print_devclass_short(dc, indent);
4575 	indentprintf(("Drivers:\n"));
4576 	print_driver_list(dc->drivers, indent+1);
4577 
4578 	indentprintf(("Devices:\n"));
4579 	for (i = 0; i < dc->maxunit; i++)
4580 		if (dc->devices[i])
4581 			print_device(dc->devices[i], indent+1);
4582 }
4583 
4584 void
4585 print_devclass_list_short(void)
4586 {
4587 	devclass_t dc;
4588 
4589 	printf("Short listing of devclasses, drivers & devices:\n");
4590 	TAILQ_FOREACH(dc, &devclasses, link) {
4591 		print_devclass_short(dc, 0);
4592 	}
4593 }
4594 
4595 void
4596 print_devclass_list(void)
4597 {
4598 	devclass_t dc;
4599 
4600 	printf("Full listing of devclasses, drivers & devices:\n");
4601 	TAILQ_FOREACH(dc, &devclasses, link) {
4602 		print_devclass(dc, 0);
4603 	}
4604 }
4605 
4606 #endif
4607 
4608 /*
4609  * User-space access to the device tree.
4610  *
4611  * We implement a small set of nodes:
4612  *
4613  * hw.bus			Single integer read method to obtain the
4614  *				current generation count.
4615  * hw.bus.devices		Reads the entire device tree in flat space.
4616  * hw.bus.rman			Resource manager interface
4617  *
4618  * We might like to add the ability to scan devclasses and/or drivers to
4619  * determine what else is currently loaded/available.
4620  */
4621 
4622 static int
4623 sysctl_bus(SYSCTL_HANDLER_ARGS)
4624 {
4625 	struct u_businfo	ubus;
4626 
4627 	ubus.ub_version = BUS_USER_VERSION;
4628 	ubus.ub_generation = bus_data_generation;
4629 
4630 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4631 }
4632 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4633     "bus-related data");
4634 
4635 static int
4636 sysctl_devices(SYSCTL_HANDLER_ARGS)
4637 {
4638 	int			*name = (int *)arg1;
4639 	u_int			namelen = arg2;
4640 	int			index;
4641 	struct device		*dev;
4642 	struct u_device		udev;	/* XXX this is a bit big */
4643 	int			error;
4644 
4645 	if (namelen != 2)
4646 		return (EINVAL);
4647 
4648 	if (bus_data_generation_check(name[0]))
4649 		return (EINVAL);
4650 
4651 	index = name[1];
4652 
4653 	/*
4654 	 * Scan the list of devices, looking for the requested index.
4655 	 */
4656 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4657 		if (index-- == 0)
4658 			break;
4659 	}
4660 	if (dev == NULL)
4661 		return (ENOENT);
4662 
4663 	/*
4664 	 * Populate the return array.
4665 	 */
4666 	bzero(&udev, sizeof(udev));
4667 	udev.dv_handle = (uintptr_t)dev;
4668 	udev.dv_parent = (uintptr_t)dev->parent;
4669 	if (dev->nameunit != NULL)
4670 		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4671 	if (dev->desc != NULL)
4672 		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4673 	if (dev->driver != NULL && dev->driver->name != NULL)
4674 		strlcpy(udev.dv_drivername, dev->driver->name,
4675 		    sizeof(udev.dv_drivername));
4676 	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4677 	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4678 	udev.dv_devflags = dev->devflags;
4679 	udev.dv_flags = dev->flags;
4680 	udev.dv_state = dev->state;
4681 	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4682 	return (error);
4683 }
4684 
4685 SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4686     "system device tree");
4687 
4688 int
4689 bus_data_generation_check(int generation)
4690 {
4691 	if (generation != bus_data_generation)
4692 		return (1);
4693 
4694 	/* XXX generate optimised lists here? */
4695 	return (0);
4696 }
4697 
4698 void
4699 bus_data_generation_update(void)
4700 {
4701 	bus_data_generation++;
4702 }
4703 
4704 int
4705 bus_free_resource(device_t dev, int type, struct resource *r)
4706 {
4707 	if (r == NULL)
4708 		return (0);
4709 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4710 }
4711