xref: /freebsd/sys/kern/subr_bus.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_bus.h"
33 #include "opt_ddb.h"
34 
35 #include <sys/param.h>
36 #include <sys/conf.h>
37 #include <sys/domainset.h>
38 #include <sys/eventhandler.h>
39 #include <sys/filio.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/kobj.h>
43 #include <sys/limits.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/poll.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/condvar.h>
51 #include <sys/queue.h>
52 #include <machine/bus.h>
53 #include <sys/random.h>
54 #include <sys/rman.h>
55 #include <sys/sbuf.h>
56 #include <sys/selinfo.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/uio.h>
62 #include <sys/bus.h>
63 #include <sys/cpuset.h>
64 
65 #include <net/vnet.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/stdarg.h>
69 
70 #include <vm/uma.h>
71 #include <vm/vm.h>
72 
73 #include <ddb/ddb.h>
74 
75 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
78     NULL);
79 
80 /*
81  * Used to attach drivers to devclasses.
82  */
83 typedef struct driverlink *driverlink_t;
84 struct driverlink {
85 	kobj_class_t	driver;
86 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
87 	int		pass;
88 	int		flags;
89 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
90 	TAILQ_ENTRY(driverlink) passlink;
91 };
92 
93 /*
94  * Forward declarations
95  */
96 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
97 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
98 typedef TAILQ_HEAD(device_list, device) device_list_t;
99 
100 struct devclass {
101 	TAILQ_ENTRY(devclass) link;
102 	devclass_t	parent;		/* parent in devclass hierarchy */
103 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
104 	char		*name;
105 	device_t	*devices;	/* array of devices indexed by unit */
106 	int		maxunit;	/* size of devices array */
107 	int		flags;
108 #define DC_HAS_CHILDREN		1
109 
110 	struct sysctl_ctx_list sysctl_ctx;
111 	struct sysctl_oid *sysctl_tree;
112 };
113 
114 /**
115  * @brief Implementation of device.
116  */
117 struct device {
118 	/*
119 	 * A device is a kernel object. The first field must be the
120 	 * current ops table for the object.
121 	 */
122 	KOBJ_FIELDS;
123 
124 	/*
125 	 * Device hierarchy.
126 	 */
127 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
128 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
129 	device_t	parent;		/**< parent of this device  */
130 	device_list_t	children;	/**< list of child devices */
131 
132 	/*
133 	 * Details of this device.
134 	 */
135 	driver_t	*driver;	/**< current driver */
136 	devclass_t	devclass;	/**< current device class */
137 	int		unit;		/**< current unit number */
138 	char*		nameunit;	/**< name+unit e.g. foodev0 */
139 	char*		desc;		/**< driver specific description */
140 	int		busy;		/**< count of calls to device_busy() */
141 	device_state_t	state;		/**< current device state  */
142 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
143 	u_int		flags;		/**< internal device flags  */
144 	u_int	order;			/**< order from device_add_child_ordered() */
145 	void	*ivars;			/**< instance variables  */
146 	void	*softc;			/**< current driver's variables  */
147 
148 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
149 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
150 };
151 
152 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
153 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
154 
155 EVENTHANDLER_LIST_DEFINE(device_attach);
156 EVENTHANDLER_LIST_DEFINE(device_detach);
157 EVENTHANDLER_LIST_DEFINE(dev_lookup);
158 
159 static void devctl2_init(void);
160 static bool device_frozen;
161 
162 #define DRIVERNAME(d)	((d)? d->name : "no driver")
163 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
164 
165 #ifdef BUS_DEBUG
166 
167 static int bus_debug = 1;
168 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
169     "Bus debug level");
170 
171 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
172 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
173 
174 /**
175  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
176  * prevent syslog from deleting initial spaces
177  */
178 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
179 
180 static void print_device_short(device_t dev, int indent);
181 static void print_device(device_t dev, int indent);
182 void print_device_tree_short(device_t dev, int indent);
183 void print_device_tree(device_t dev, int indent);
184 static void print_driver_short(driver_t *driver, int indent);
185 static void print_driver(driver_t *driver, int indent);
186 static void print_driver_list(driver_list_t drivers, int indent);
187 static void print_devclass_short(devclass_t dc, int indent);
188 static void print_devclass(devclass_t dc, int indent);
189 void print_devclass_list_short(void);
190 void print_devclass_list(void);
191 
192 #else
193 /* Make the compiler ignore the function calls */
194 #define PDEBUG(a)			/* nop */
195 #define DEVICENAME(d)			/* nop */
196 
197 #define print_device_short(d,i)		/* nop */
198 #define print_device(d,i)		/* nop */
199 #define print_device_tree_short(d,i)	/* nop */
200 #define print_device_tree(d,i)		/* nop */
201 #define print_driver_short(d,i)		/* nop */
202 #define print_driver(d,i)		/* nop */
203 #define print_driver_list(d,i)		/* nop */
204 #define print_devclass_short(d,i)	/* nop */
205 #define print_devclass(d,i)		/* nop */
206 #define print_devclass_list_short()	/* nop */
207 #define print_devclass_list()		/* nop */
208 #endif
209 
210 /*
211  * dev sysctl tree
212  */
213 
214 enum {
215 	DEVCLASS_SYSCTL_PARENT,
216 };
217 
218 static int
219 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
220 {
221 	devclass_t dc = (devclass_t)arg1;
222 	const char *value;
223 
224 	switch (arg2) {
225 	case DEVCLASS_SYSCTL_PARENT:
226 		value = dc->parent ? dc->parent->name : "";
227 		break;
228 	default:
229 		return (EINVAL);
230 	}
231 	return (SYSCTL_OUT_STR(req, value));
232 }
233 
234 static void
235 devclass_sysctl_init(devclass_t dc)
236 {
237 
238 	if (dc->sysctl_tree != NULL)
239 		return;
240 	sysctl_ctx_init(&dc->sysctl_ctx);
241 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
242 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
243 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
244 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
245 	    OID_AUTO, "%parent",
246 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
247 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
248 	    "parent class");
249 }
250 
251 enum {
252 	DEVICE_SYSCTL_DESC,
253 	DEVICE_SYSCTL_DRIVER,
254 	DEVICE_SYSCTL_LOCATION,
255 	DEVICE_SYSCTL_PNPINFO,
256 	DEVICE_SYSCTL_PARENT,
257 };
258 
259 static int
260 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
261 {
262 	device_t dev = (device_t)arg1;
263 	const char *value;
264 	char *buf;
265 	int error;
266 
267 	buf = NULL;
268 	switch (arg2) {
269 	case DEVICE_SYSCTL_DESC:
270 		value = dev->desc ? dev->desc : "";
271 		break;
272 	case DEVICE_SYSCTL_DRIVER:
273 		value = dev->driver ? dev->driver->name : "";
274 		break;
275 	case DEVICE_SYSCTL_LOCATION:
276 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
277 		bus_child_location_str(dev, buf, 1024);
278 		break;
279 	case DEVICE_SYSCTL_PNPINFO:
280 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
281 		bus_child_pnpinfo_str(dev, buf, 1024);
282 		break;
283 	case DEVICE_SYSCTL_PARENT:
284 		value = dev->parent ? dev->parent->nameunit : "";
285 		break;
286 	default:
287 		return (EINVAL);
288 	}
289 	error = SYSCTL_OUT_STR(req, value);
290 	if (buf != NULL)
291 		free(buf, M_BUS);
292 	return (error);
293 }
294 
295 static void
296 device_sysctl_init(device_t dev)
297 {
298 	devclass_t dc = dev->devclass;
299 	int domain;
300 
301 	if (dev->sysctl_tree != NULL)
302 		return;
303 	devclass_sysctl_init(dc);
304 	sysctl_ctx_init(&dev->sysctl_ctx);
305 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
306 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
307 	    dev->nameunit + strlen(dc->name),
308 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
309 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
311 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
312 	    "device description");
313 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
314 	    OID_AUTO, "%driver",
315 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
316 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
317 	    "device driver name");
318 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
319 	    OID_AUTO, "%location",
320 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
321 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
322 	    "device location relative to parent");
323 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
324 	    OID_AUTO, "%pnpinfo",
325 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
326 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
327 	    "device identification");
328 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
329 	    OID_AUTO, "%parent",
330 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
331 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
332 	    "parent device");
333 	if (bus_get_domain(dev, &domain) == 0)
334 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
335 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
336 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
337 }
338 
339 static void
340 device_sysctl_update(device_t dev)
341 {
342 	devclass_t dc = dev->devclass;
343 
344 	if (dev->sysctl_tree == NULL)
345 		return;
346 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
347 }
348 
349 static void
350 device_sysctl_fini(device_t dev)
351 {
352 	if (dev->sysctl_tree == NULL)
353 		return;
354 	sysctl_ctx_free(&dev->sysctl_ctx);
355 	dev->sysctl_tree = NULL;
356 }
357 
358 /*
359  * /dev/devctl implementation
360  */
361 
362 /*
363  * This design allows only one reader for /dev/devctl.  This is not desirable
364  * in the long run, but will get a lot of hair out of this implementation.
365  * Maybe we should make this device a clonable device.
366  *
367  * Also note: we specifically do not attach a device to the device_t tree
368  * to avoid potential chicken and egg problems.  One could argue that all
369  * of this belongs to the root node.  One could also further argue that the
370  * sysctl interface that we have not might more properly be an ioctl
371  * interface, but at this stage of the game, I'm not inclined to rock that
372  * boat.
373  *
374  * I'm also not sure that the SIGIO support is done correctly or not, as
375  * I copied it from a driver that had SIGIO support that likely hasn't been
376  * tested since 3.4 or 2.2.8!
377  */
378 
379 /* Deprecated way to adjust queue length */
380 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
381 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
382     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
383     "devctl disable -- deprecated");
384 
385 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
386 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
387 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
388 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
389     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
390 
391 static d_open_t		devopen;
392 static d_close_t	devclose;
393 static d_read_t		devread;
394 static d_ioctl_t	devioctl;
395 static d_poll_t		devpoll;
396 static d_kqfilter_t	devkqfilter;
397 
398 static struct cdevsw dev_cdevsw = {
399 	.d_version =	D_VERSION,
400 	.d_open =	devopen,
401 	.d_close =	devclose,
402 	.d_read =	devread,
403 	.d_ioctl =	devioctl,
404 	.d_poll =	devpoll,
405 	.d_kqfilter =	devkqfilter,
406 	.d_name =	"devctl",
407 };
408 
409 struct dev_event_info
410 {
411 	char *dei_data;
412 	TAILQ_ENTRY(dev_event_info) dei_link;
413 };
414 
415 TAILQ_HEAD(devq, dev_event_info);
416 
417 static struct dev_softc
418 {
419 	int	inuse;
420 	int	nonblock;
421 	int	queued;
422 	int	async;
423 	struct mtx mtx;
424 	struct cv cv;
425 	struct selinfo sel;
426 	struct devq devq;
427 	struct sigio *sigio;
428 } devsoftc;
429 
430 static void	filt_devctl_detach(struct knote *kn);
431 static int	filt_devctl_read(struct knote *kn, long hint);
432 
433 struct filterops devctl_rfiltops = {
434 	.f_isfd = 1,
435 	.f_detach = filt_devctl_detach,
436 	.f_event = filt_devctl_read,
437 };
438 
439 static struct cdev *devctl_dev;
440 
441 static void
442 devinit(void)
443 {
444 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
445 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
446 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
447 	cv_init(&devsoftc.cv, "dev cv");
448 	TAILQ_INIT(&devsoftc.devq);
449 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
450 	devctl2_init();
451 }
452 
453 static int
454 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
455 {
456 
457 	mtx_lock(&devsoftc.mtx);
458 	if (devsoftc.inuse) {
459 		mtx_unlock(&devsoftc.mtx);
460 		return (EBUSY);
461 	}
462 	/* move to init */
463 	devsoftc.inuse = 1;
464 	mtx_unlock(&devsoftc.mtx);
465 	return (0);
466 }
467 
468 static int
469 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
470 {
471 
472 	mtx_lock(&devsoftc.mtx);
473 	devsoftc.inuse = 0;
474 	devsoftc.nonblock = 0;
475 	devsoftc.async = 0;
476 	cv_broadcast(&devsoftc.cv);
477 	funsetown(&devsoftc.sigio);
478 	mtx_unlock(&devsoftc.mtx);
479 	return (0);
480 }
481 
482 /*
483  * The read channel for this device is used to report changes to
484  * userland in realtime.  We are required to free the data as well as
485  * the n1 object because we allocate them separately.  Also note that
486  * we return one record at a time.  If you try to read this device a
487  * character at a time, you will lose the rest of the data.  Listening
488  * programs are expected to cope.
489  */
490 static int
491 devread(struct cdev *dev, struct uio *uio, int ioflag)
492 {
493 	struct dev_event_info *n1;
494 	int rv;
495 
496 	mtx_lock(&devsoftc.mtx);
497 	while (TAILQ_EMPTY(&devsoftc.devq)) {
498 		if (devsoftc.nonblock) {
499 			mtx_unlock(&devsoftc.mtx);
500 			return (EAGAIN);
501 		}
502 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
503 		if (rv) {
504 			/*
505 			 * Need to translate ERESTART to EINTR here? -- jake
506 			 */
507 			mtx_unlock(&devsoftc.mtx);
508 			return (rv);
509 		}
510 	}
511 	n1 = TAILQ_FIRST(&devsoftc.devq);
512 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
513 	devsoftc.queued--;
514 	mtx_unlock(&devsoftc.mtx);
515 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
516 	free(n1->dei_data, M_BUS);
517 	free(n1, M_BUS);
518 	return (rv);
519 }
520 
521 static	int
522 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
523 {
524 	switch (cmd) {
525 
526 	case FIONBIO:
527 		if (*(int*)data)
528 			devsoftc.nonblock = 1;
529 		else
530 			devsoftc.nonblock = 0;
531 		return (0);
532 	case FIOASYNC:
533 		if (*(int*)data)
534 			devsoftc.async = 1;
535 		else
536 			devsoftc.async = 0;
537 		return (0);
538 	case FIOSETOWN:
539 		return fsetown(*(int *)data, &devsoftc.sigio);
540 	case FIOGETOWN:
541 		*(int *)data = fgetown(&devsoftc.sigio);
542 		return (0);
543 
544 		/* (un)Support for other fcntl() calls. */
545 	case FIOCLEX:
546 	case FIONCLEX:
547 	case FIONREAD:
548 	default:
549 		break;
550 	}
551 	return (ENOTTY);
552 }
553 
554 static	int
555 devpoll(struct cdev *dev, int events, struct thread *td)
556 {
557 	int	revents = 0;
558 
559 	mtx_lock(&devsoftc.mtx);
560 	if (events & (POLLIN | POLLRDNORM)) {
561 		if (!TAILQ_EMPTY(&devsoftc.devq))
562 			revents = events & (POLLIN | POLLRDNORM);
563 		else
564 			selrecord(td, &devsoftc.sel);
565 	}
566 	mtx_unlock(&devsoftc.mtx);
567 
568 	return (revents);
569 }
570 
571 static int
572 devkqfilter(struct cdev *dev, struct knote *kn)
573 {
574 	int error;
575 
576 	if (kn->kn_filter == EVFILT_READ) {
577 		kn->kn_fop = &devctl_rfiltops;
578 		knlist_add(&devsoftc.sel.si_note, kn, 0);
579 		error = 0;
580 	} else
581 		error = EINVAL;
582 	return (error);
583 }
584 
585 static void
586 filt_devctl_detach(struct knote *kn)
587 {
588 
589 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
590 }
591 
592 static int
593 filt_devctl_read(struct knote *kn, long hint)
594 {
595 	kn->kn_data = devsoftc.queued;
596 	return (kn->kn_data != 0);
597 }
598 
599 /**
600  * @brief Return whether the userland process is running
601  */
602 boolean_t
603 devctl_process_running(void)
604 {
605 	return (devsoftc.inuse == 1);
606 }
607 
608 /**
609  * @brief Queue data to be read from the devctl device
610  *
611  * Generic interface to queue data to the devctl device.  It is
612  * assumed that @p data is properly formatted.  It is further assumed
613  * that @p data is allocated using the M_BUS malloc type.
614  */
615 void
616 devctl_queue_data_f(char *data, int flags)
617 {
618 	struct dev_event_info *n1 = NULL, *n2 = NULL;
619 
620 	if (strlen(data) == 0)
621 		goto out;
622 	if (devctl_queue_length == 0)
623 		goto out;
624 	n1 = malloc(sizeof(*n1), M_BUS, flags);
625 	if (n1 == NULL)
626 		goto out;
627 	n1->dei_data = data;
628 	mtx_lock(&devsoftc.mtx);
629 	if (devctl_queue_length == 0) {
630 		mtx_unlock(&devsoftc.mtx);
631 		free(n1->dei_data, M_BUS);
632 		free(n1, M_BUS);
633 		return;
634 	}
635 	/* Leave at least one spot in the queue... */
636 	while (devsoftc.queued > devctl_queue_length - 1) {
637 		n2 = TAILQ_FIRST(&devsoftc.devq);
638 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
639 		free(n2->dei_data, M_BUS);
640 		free(n2, M_BUS);
641 		devsoftc.queued--;
642 	}
643 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
644 	devsoftc.queued++;
645 	cv_broadcast(&devsoftc.cv);
646 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
647 	mtx_unlock(&devsoftc.mtx);
648 	selwakeup(&devsoftc.sel);
649 	if (devsoftc.async && devsoftc.sigio != NULL)
650 		pgsigio(&devsoftc.sigio, SIGIO, 0);
651 	return;
652 out:
653 	/*
654 	 * We have to free data on all error paths since the caller
655 	 * assumes it will be free'd when this item is dequeued.
656 	 */
657 	free(data, M_BUS);
658 	return;
659 }
660 
661 void
662 devctl_queue_data(char *data)
663 {
664 
665 	devctl_queue_data_f(data, M_NOWAIT);
666 }
667 
668 /**
669  * @brief Send a 'notification' to userland, using standard ways
670  */
671 void
672 devctl_notify_f(const char *system, const char *subsystem, const char *type,
673     const char *data, int flags)
674 {
675 	int len = 0;
676 	char *msg;
677 
678 	if (system == NULL)
679 		return;		/* BOGUS!  Must specify system. */
680 	if (subsystem == NULL)
681 		return;		/* BOGUS!  Must specify subsystem. */
682 	if (type == NULL)
683 		return;		/* BOGUS!  Must specify type. */
684 	len += strlen(" system=") + strlen(system);
685 	len += strlen(" subsystem=") + strlen(subsystem);
686 	len += strlen(" type=") + strlen(type);
687 	/* add in the data message plus newline. */
688 	if (data != NULL)
689 		len += strlen(data);
690 	len += 3;	/* '!', '\n', and NUL */
691 	msg = malloc(len, M_BUS, flags);
692 	if (msg == NULL)
693 		return;		/* Drop it on the floor */
694 	if (data != NULL)
695 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
696 		    system, subsystem, type, data);
697 	else
698 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
699 		    system, subsystem, type);
700 	devctl_queue_data_f(msg, flags);
701 }
702 
703 void
704 devctl_notify(const char *system, const char *subsystem, const char *type,
705     const char *data)
706 {
707 
708 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
709 }
710 
711 /*
712  * Common routine that tries to make sending messages as easy as possible.
713  * We allocate memory for the data, copy strings into that, but do not
714  * free it unless there's an error.  The dequeue part of the driver should
715  * free the data.  We don't send data when the device is disabled.  We do
716  * send data, even when we have no listeners, because we wish to avoid
717  * races relating to startup and restart of listening applications.
718  *
719  * devaddq is designed to string together the type of event, with the
720  * object of that event, plus the plug and play info and location info
721  * for that event.  This is likely most useful for devices, but less
722  * useful for other consumers of this interface.  Those should use
723  * the devctl_queue_data() interface instead.
724  */
725 static void
726 devaddq(const char *type, const char *what, device_t dev)
727 {
728 	char *data = NULL;
729 	char *loc = NULL;
730 	char *pnp = NULL;
731 	const char *parstr;
732 
733 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
734 		return;
735 	data = malloc(1024, M_BUS, M_NOWAIT);
736 	if (data == NULL)
737 		goto bad;
738 
739 	/* get the bus specific location of this device */
740 	loc = malloc(1024, M_BUS, M_NOWAIT);
741 	if (loc == NULL)
742 		goto bad;
743 	*loc = '\0';
744 	bus_child_location_str(dev, loc, 1024);
745 
746 	/* Get the bus specific pnp info of this device */
747 	pnp = malloc(1024, M_BUS, M_NOWAIT);
748 	if (pnp == NULL)
749 		goto bad;
750 	*pnp = '\0';
751 	bus_child_pnpinfo_str(dev, pnp, 1024);
752 
753 	/* Get the parent of this device, or / if high enough in the tree. */
754 	if (device_get_parent(dev) == NULL)
755 		parstr = ".";	/* Or '/' ? */
756 	else
757 		parstr = device_get_nameunit(device_get_parent(dev));
758 	/* String it all together. */
759 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
760 	  parstr);
761 	free(loc, M_BUS);
762 	free(pnp, M_BUS);
763 	devctl_queue_data(data);
764 	return;
765 bad:
766 	free(pnp, M_BUS);
767 	free(loc, M_BUS);
768 	free(data, M_BUS);
769 	return;
770 }
771 
772 /*
773  * A device was added to the tree.  We are called just after it successfully
774  * attaches (that is, probe and attach success for this device).  No call
775  * is made if a device is merely parented into the tree.  See devnomatch
776  * if probe fails.  If attach fails, no notification is sent (but maybe
777  * we should have a different message for this).
778  */
779 static void
780 devadded(device_t dev)
781 {
782 	devaddq("+", device_get_nameunit(dev), dev);
783 }
784 
785 /*
786  * A device was removed from the tree.  We are called just before this
787  * happens.
788  */
789 static void
790 devremoved(device_t dev)
791 {
792 	devaddq("-", device_get_nameunit(dev), dev);
793 }
794 
795 /*
796  * Called when there's no match for this device.  This is only called
797  * the first time that no match happens, so we don't keep getting this
798  * message.  Should that prove to be undesirable, we can change it.
799  * This is called when all drivers that can attach to a given bus
800  * decline to accept this device.  Other errors may not be detected.
801  */
802 static void
803 devnomatch(device_t dev)
804 {
805 	devaddq("?", "", dev);
806 }
807 
808 static int
809 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
810 {
811 	struct dev_event_info *n1;
812 	int dis, error;
813 
814 	dis = (devctl_queue_length == 0);
815 	error = sysctl_handle_int(oidp, &dis, 0, req);
816 	if (error || !req->newptr)
817 		return (error);
818 	if (mtx_initialized(&devsoftc.mtx))
819 		mtx_lock(&devsoftc.mtx);
820 	if (dis) {
821 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
822 			n1 = TAILQ_FIRST(&devsoftc.devq);
823 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
824 			free(n1->dei_data, M_BUS);
825 			free(n1, M_BUS);
826 		}
827 		devsoftc.queued = 0;
828 		devctl_queue_length = 0;
829 	} else {
830 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
831 	}
832 	if (mtx_initialized(&devsoftc.mtx))
833 		mtx_unlock(&devsoftc.mtx);
834 	return (0);
835 }
836 
837 static int
838 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
839 {
840 	struct dev_event_info *n1;
841 	int q, error;
842 
843 	q = devctl_queue_length;
844 	error = sysctl_handle_int(oidp, &q, 0, req);
845 	if (error || !req->newptr)
846 		return (error);
847 	if (q < 0)
848 		return (EINVAL);
849 	if (mtx_initialized(&devsoftc.mtx))
850 		mtx_lock(&devsoftc.mtx);
851 	devctl_queue_length = q;
852 	while (devsoftc.queued > devctl_queue_length) {
853 		n1 = TAILQ_FIRST(&devsoftc.devq);
854 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
855 		free(n1->dei_data, M_BUS);
856 		free(n1, M_BUS);
857 		devsoftc.queued--;
858 	}
859 	if (mtx_initialized(&devsoftc.mtx))
860 		mtx_unlock(&devsoftc.mtx);
861 	return (0);
862 }
863 
864 /**
865  * @brief safely quotes strings that might have double quotes in them.
866  *
867  * The devctl protocol relies on quoted strings having matching quotes.
868  * This routine quotes any internal quotes so the resulting string
869  * is safe to pass to snprintf to construct, for example pnp info strings.
870  * Strings are always terminated with a NUL, but may be truncated if longer
871  * than @p len bytes after quotes.
872  *
873  * @param sb	sbuf to place the characters into
874  * @param src	Original buffer.
875  */
876 void
877 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
878 {
879 
880 	while (*src != '\0') {
881 		if (*src == '"' || *src == '\\')
882 			sbuf_putc(sb, '\\');
883 		sbuf_putc(sb, *src++);
884 	}
885 }
886 
887 /* End of /dev/devctl code */
888 
889 static TAILQ_HEAD(,device)	bus_data_devices;
890 static int bus_data_generation = 1;
891 
892 static kobj_method_t null_methods[] = {
893 	KOBJMETHOD_END
894 };
895 
896 DEFINE_CLASS(null, null_methods, 0);
897 
898 /*
899  * Bus pass implementation
900  */
901 
902 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
903 int bus_current_pass = BUS_PASS_ROOT;
904 
905 /**
906  * @internal
907  * @brief Register the pass level of a new driver attachment
908  *
909  * Register a new driver attachment's pass level.  If no driver
910  * attachment with the same pass level has been added, then @p new
911  * will be added to the global passes list.
912  *
913  * @param new		the new driver attachment
914  */
915 static void
916 driver_register_pass(struct driverlink *new)
917 {
918 	struct driverlink *dl;
919 
920 	/* We only consider pass numbers during boot. */
921 	if (bus_current_pass == BUS_PASS_DEFAULT)
922 		return;
923 
924 	/*
925 	 * Walk the passes list.  If we already know about this pass
926 	 * then there is nothing to do.  If we don't, then insert this
927 	 * driver link into the list.
928 	 */
929 	TAILQ_FOREACH(dl, &passes, passlink) {
930 		if (dl->pass < new->pass)
931 			continue;
932 		if (dl->pass == new->pass)
933 			return;
934 		TAILQ_INSERT_BEFORE(dl, new, passlink);
935 		return;
936 	}
937 	TAILQ_INSERT_TAIL(&passes, new, passlink);
938 }
939 
940 /**
941  * @brief Raise the current bus pass
942  *
943  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
944  * method on the root bus to kick off a new device tree scan for each
945  * new pass level that has at least one driver.
946  */
947 void
948 bus_set_pass(int pass)
949 {
950 	struct driverlink *dl;
951 
952 	if (bus_current_pass > pass)
953 		panic("Attempt to lower bus pass level");
954 
955 	TAILQ_FOREACH(dl, &passes, passlink) {
956 		/* Skip pass values below the current pass level. */
957 		if (dl->pass <= bus_current_pass)
958 			continue;
959 
960 		/*
961 		 * Bail once we hit a driver with a pass level that is
962 		 * too high.
963 		 */
964 		if (dl->pass > pass)
965 			break;
966 
967 		/*
968 		 * Raise the pass level to the next level and rescan
969 		 * the tree.
970 		 */
971 		bus_current_pass = dl->pass;
972 		BUS_NEW_PASS(root_bus);
973 	}
974 
975 	/*
976 	 * If there isn't a driver registered for the requested pass,
977 	 * then bus_current_pass might still be less than 'pass'.  Set
978 	 * it to 'pass' in that case.
979 	 */
980 	if (bus_current_pass < pass)
981 		bus_current_pass = pass;
982 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
983 }
984 
985 /*
986  * Devclass implementation
987  */
988 
989 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
990 
991 /**
992  * @internal
993  * @brief Find or create a device class
994  *
995  * If a device class with the name @p classname exists, return it,
996  * otherwise if @p create is non-zero create and return a new device
997  * class.
998  *
999  * If @p parentname is non-NULL, the parent of the devclass is set to
1000  * the devclass of that name.
1001  *
1002  * @param classname	the devclass name to find or create
1003  * @param parentname	the parent devclass name or @c NULL
1004  * @param create	non-zero to create a devclass
1005  */
1006 static devclass_t
1007 devclass_find_internal(const char *classname, const char *parentname,
1008 		       int create)
1009 {
1010 	devclass_t dc;
1011 
1012 	PDEBUG(("looking for %s", classname));
1013 	if (!classname)
1014 		return (NULL);
1015 
1016 	TAILQ_FOREACH(dc, &devclasses, link) {
1017 		if (!strcmp(dc->name, classname))
1018 			break;
1019 	}
1020 
1021 	if (create && !dc) {
1022 		PDEBUG(("creating %s", classname));
1023 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1024 		    M_BUS, M_NOWAIT | M_ZERO);
1025 		if (!dc)
1026 			return (NULL);
1027 		dc->parent = NULL;
1028 		dc->name = (char*) (dc + 1);
1029 		strcpy(dc->name, classname);
1030 		TAILQ_INIT(&dc->drivers);
1031 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1032 
1033 		bus_data_generation_update();
1034 	}
1035 
1036 	/*
1037 	 * If a parent class is specified, then set that as our parent so
1038 	 * that this devclass will support drivers for the parent class as
1039 	 * well.  If the parent class has the same name don't do this though
1040 	 * as it creates a cycle that can trigger an infinite loop in
1041 	 * device_probe_child() if a device exists for which there is no
1042 	 * suitable driver.
1043 	 */
1044 	if (parentname && dc && !dc->parent &&
1045 	    strcmp(classname, parentname) != 0) {
1046 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1047 		dc->parent->flags |= DC_HAS_CHILDREN;
1048 	}
1049 
1050 	return (dc);
1051 }
1052 
1053 /**
1054  * @brief Create a device class
1055  *
1056  * If a device class with the name @p classname exists, return it,
1057  * otherwise create and return a new device class.
1058  *
1059  * @param classname	the devclass name to find or create
1060  */
1061 devclass_t
1062 devclass_create(const char *classname)
1063 {
1064 	return (devclass_find_internal(classname, NULL, TRUE));
1065 }
1066 
1067 /**
1068  * @brief Find a device class
1069  *
1070  * If a device class with the name @p classname exists, return it,
1071  * otherwise return @c NULL.
1072  *
1073  * @param classname	the devclass name to find
1074  */
1075 devclass_t
1076 devclass_find(const char *classname)
1077 {
1078 	return (devclass_find_internal(classname, NULL, FALSE));
1079 }
1080 
1081 /**
1082  * @brief Register that a device driver has been added to a devclass
1083  *
1084  * Register that a device driver has been added to a devclass.  This
1085  * is called by devclass_add_driver to accomplish the recursive
1086  * notification of all the children classes of dc, as well as dc.
1087  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1088  * the devclass.
1089  *
1090  * We do a full search here of the devclass list at each iteration
1091  * level to save storing children-lists in the devclass structure.  If
1092  * we ever move beyond a few dozen devices doing this, we may need to
1093  * reevaluate...
1094  *
1095  * @param dc		the devclass to edit
1096  * @param driver	the driver that was just added
1097  */
1098 static void
1099 devclass_driver_added(devclass_t dc, driver_t *driver)
1100 {
1101 	devclass_t parent;
1102 	int i;
1103 
1104 	/*
1105 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
1106 	 */
1107 	for (i = 0; i < dc->maxunit; i++)
1108 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1109 			BUS_DRIVER_ADDED(dc->devices[i], driver);
1110 
1111 	/*
1112 	 * Walk through the children classes.  Since we only keep a
1113 	 * single parent pointer around, we walk the entire list of
1114 	 * devclasses looking for children.  We set the
1115 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1116 	 * the parent, so we only walk the list for those devclasses
1117 	 * that have children.
1118 	 */
1119 	if (!(dc->flags & DC_HAS_CHILDREN))
1120 		return;
1121 	parent = dc;
1122 	TAILQ_FOREACH(dc, &devclasses, link) {
1123 		if (dc->parent == parent)
1124 			devclass_driver_added(dc, driver);
1125 	}
1126 }
1127 
1128 /**
1129  * @brief Add a device driver to a device class
1130  *
1131  * Add a device driver to a devclass. This is normally called
1132  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1133  * all devices in the devclass will be called to allow them to attempt
1134  * to re-probe any unmatched children.
1135  *
1136  * @param dc		the devclass to edit
1137  * @param driver	the driver to register
1138  */
1139 int
1140 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1141 {
1142 	driverlink_t dl;
1143 	const char *parentname;
1144 
1145 	PDEBUG(("%s", DRIVERNAME(driver)));
1146 
1147 	/* Don't allow invalid pass values. */
1148 	if (pass <= BUS_PASS_ROOT)
1149 		return (EINVAL);
1150 
1151 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1152 	if (!dl)
1153 		return (ENOMEM);
1154 
1155 	/*
1156 	 * Compile the driver's methods. Also increase the reference count
1157 	 * so that the class doesn't get freed when the last instance
1158 	 * goes. This means we can safely use static methods and avoids a
1159 	 * double-free in devclass_delete_driver.
1160 	 */
1161 	kobj_class_compile((kobj_class_t) driver);
1162 
1163 	/*
1164 	 * If the driver has any base classes, make the
1165 	 * devclass inherit from the devclass of the driver's
1166 	 * first base class. This will allow the system to
1167 	 * search for drivers in both devclasses for children
1168 	 * of a device using this driver.
1169 	 */
1170 	if (driver->baseclasses)
1171 		parentname = driver->baseclasses[0]->name;
1172 	else
1173 		parentname = NULL;
1174 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1175 
1176 	dl->driver = driver;
1177 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1178 	driver->refs++;		/* XXX: kobj_mtx */
1179 	dl->pass = pass;
1180 	driver_register_pass(dl);
1181 
1182 	if (device_frozen) {
1183 		dl->flags |= DL_DEFERRED_PROBE;
1184 	} else {
1185 		devclass_driver_added(dc, driver);
1186 	}
1187 	bus_data_generation_update();
1188 	return (0);
1189 }
1190 
1191 /**
1192  * @brief Register that a device driver has been deleted from a devclass
1193  *
1194  * Register that a device driver has been removed from a devclass.
1195  * This is called by devclass_delete_driver to accomplish the
1196  * recursive notification of all the children classes of busclass, as
1197  * well as busclass.  Each layer will attempt to detach the driver
1198  * from any devices that are children of the bus's devclass.  The function
1199  * will return an error if a device fails to detach.
1200  *
1201  * We do a full search here of the devclass list at each iteration
1202  * level to save storing children-lists in the devclass structure.  If
1203  * we ever move beyond a few dozen devices doing this, we may need to
1204  * reevaluate...
1205  *
1206  * @param busclass	the devclass of the parent bus
1207  * @param dc		the devclass of the driver being deleted
1208  * @param driver	the driver being deleted
1209  */
1210 static int
1211 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1212 {
1213 	devclass_t parent;
1214 	device_t dev;
1215 	int error, i;
1216 
1217 	/*
1218 	 * Disassociate from any devices.  We iterate through all the
1219 	 * devices in the devclass of the driver and detach any which are
1220 	 * using the driver and which have a parent in the devclass which
1221 	 * we are deleting from.
1222 	 *
1223 	 * Note that since a driver can be in multiple devclasses, we
1224 	 * should not detach devices which are not children of devices in
1225 	 * the affected devclass.
1226 	 *
1227 	 * If we're frozen, we don't generate NOMATCH events. Mark to
1228 	 * generate later.
1229 	 */
1230 	for (i = 0; i < dc->maxunit; i++) {
1231 		if (dc->devices[i]) {
1232 			dev = dc->devices[i];
1233 			if (dev->driver == driver && dev->parent &&
1234 			    dev->parent->devclass == busclass) {
1235 				if ((error = device_detach(dev)) != 0)
1236 					return (error);
1237 				if (device_frozen) {
1238 					dev->flags &= ~DF_DONENOMATCH;
1239 					dev->flags |= DF_NEEDNOMATCH;
1240 				} else {
1241 					BUS_PROBE_NOMATCH(dev->parent, dev);
1242 					devnomatch(dev);
1243 					dev->flags |= DF_DONENOMATCH;
1244 				}
1245 			}
1246 		}
1247 	}
1248 
1249 	/*
1250 	 * Walk through the children classes.  Since we only keep a
1251 	 * single parent pointer around, we walk the entire list of
1252 	 * devclasses looking for children.  We set the
1253 	 * DC_HAS_CHILDREN flag when a child devclass is created on
1254 	 * the parent, so we only walk the list for those devclasses
1255 	 * that have children.
1256 	 */
1257 	if (!(busclass->flags & DC_HAS_CHILDREN))
1258 		return (0);
1259 	parent = busclass;
1260 	TAILQ_FOREACH(busclass, &devclasses, link) {
1261 		if (busclass->parent == parent) {
1262 			error = devclass_driver_deleted(busclass, dc, driver);
1263 			if (error)
1264 				return (error);
1265 		}
1266 	}
1267 	return (0);
1268 }
1269 
1270 /**
1271  * @brief Delete a device driver from a device class
1272  *
1273  * Delete a device driver from a devclass. This is normally called
1274  * automatically by DRIVER_MODULE().
1275  *
1276  * If the driver is currently attached to any devices,
1277  * devclass_delete_driver() will first attempt to detach from each
1278  * device. If one of the detach calls fails, the driver will not be
1279  * deleted.
1280  *
1281  * @param dc		the devclass to edit
1282  * @param driver	the driver to unregister
1283  */
1284 int
1285 devclass_delete_driver(devclass_t busclass, driver_t *driver)
1286 {
1287 	devclass_t dc = devclass_find(driver->name);
1288 	driverlink_t dl;
1289 	int error;
1290 
1291 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1292 
1293 	if (!dc)
1294 		return (0);
1295 
1296 	/*
1297 	 * Find the link structure in the bus' list of drivers.
1298 	 */
1299 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1300 		if (dl->driver == driver)
1301 			break;
1302 	}
1303 
1304 	if (!dl) {
1305 		PDEBUG(("%s not found in %s list", driver->name,
1306 		    busclass->name));
1307 		return (ENOENT);
1308 	}
1309 
1310 	error = devclass_driver_deleted(busclass, dc, driver);
1311 	if (error != 0)
1312 		return (error);
1313 
1314 	TAILQ_REMOVE(&busclass->drivers, dl, link);
1315 	free(dl, M_BUS);
1316 
1317 	/* XXX: kobj_mtx */
1318 	driver->refs--;
1319 	if (driver->refs == 0)
1320 		kobj_class_free((kobj_class_t) driver);
1321 
1322 	bus_data_generation_update();
1323 	return (0);
1324 }
1325 
1326 /**
1327  * @brief Quiesces a set of device drivers from a device class
1328  *
1329  * Quiesce a device driver from a devclass. This is normally called
1330  * automatically by DRIVER_MODULE().
1331  *
1332  * If the driver is currently attached to any devices,
1333  * devclass_quiesece_driver() will first attempt to quiesce each
1334  * device.
1335  *
1336  * @param dc		the devclass to edit
1337  * @param driver	the driver to unregister
1338  */
1339 static int
1340 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1341 {
1342 	devclass_t dc = devclass_find(driver->name);
1343 	driverlink_t dl;
1344 	device_t dev;
1345 	int i;
1346 	int error;
1347 
1348 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1349 
1350 	if (!dc)
1351 		return (0);
1352 
1353 	/*
1354 	 * Find the link structure in the bus' list of drivers.
1355 	 */
1356 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1357 		if (dl->driver == driver)
1358 			break;
1359 	}
1360 
1361 	if (!dl) {
1362 		PDEBUG(("%s not found in %s list", driver->name,
1363 		    busclass->name));
1364 		return (ENOENT);
1365 	}
1366 
1367 	/*
1368 	 * Quiesce all devices.  We iterate through all the devices in
1369 	 * the devclass of the driver and quiesce any which are using
1370 	 * the driver and which have a parent in the devclass which we
1371 	 * are quiescing.
1372 	 *
1373 	 * Note that since a driver can be in multiple devclasses, we
1374 	 * should not quiesce devices which are not children of
1375 	 * devices in the affected devclass.
1376 	 */
1377 	for (i = 0; i < dc->maxunit; i++) {
1378 		if (dc->devices[i]) {
1379 			dev = dc->devices[i];
1380 			if (dev->driver == driver && dev->parent &&
1381 			    dev->parent->devclass == busclass) {
1382 				if ((error = device_quiesce(dev)) != 0)
1383 					return (error);
1384 			}
1385 		}
1386 	}
1387 
1388 	return (0);
1389 }
1390 
1391 /**
1392  * @internal
1393  */
1394 static driverlink_t
1395 devclass_find_driver_internal(devclass_t dc, const char *classname)
1396 {
1397 	driverlink_t dl;
1398 
1399 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1400 
1401 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1402 		if (!strcmp(dl->driver->name, classname))
1403 			return (dl);
1404 	}
1405 
1406 	PDEBUG(("not found"));
1407 	return (NULL);
1408 }
1409 
1410 /**
1411  * @brief Return the name of the devclass
1412  */
1413 const char *
1414 devclass_get_name(devclass_t dc)
1415 {
1416 	return (dc->name);
1417 }
1418 
1419 /**
1420  * @brief Find a device given a unit number
1421  *
1422  * @param dc		the devclass to search
1423  * @param unit		the unit number to search for
1424  *
1425  * @returns		the device with the given unit number or @c
1426  *			NULL if there is no such device
1427  */
1428 device_t
1429 devclass_get_device(devclass_t dc, int unit)
1430 {
1431 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1432 		return (NULL);
1433 	return (dc->devices[unit]);
1434 }
1435 
1436 /**
1437  * @brief Find the softc field of a device given a unit number
1438  *
1439  * @param dc		the devclass to search
1440  * @param unit		the unit number to search for
1441  *
1442  * @returns		the softc field of the device with the given
1443  *			unit number or @c NULL if there is no such
1444  *			device
1445  */
1446 void *
1447 devclass_get_softc(devclass_t dc, int unit)
1448 {
1449 	device_t dev;
1450 
1451 	dev = devclass_get_device(dc, unit);
1452 	if (!dev)
1453 		return (NULL);
1454 
1455 	return (device_get_softc(dev));
1456 }
1457 
1458 /**
1459  * @brief Get a list of devices in the devclass
1460  *
1461  * An array containing a list of all the devices in the given devclass
1462  * is allocated and returned in @p *devlistp. The number of devices
1463  * in the array is returned in @p *devcountp. The caller should free
1464  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1465  *
1466  * @param dc		the devclass to examine
1467  * @param devlistp	points at location for array pointer return
1468  *			value
1469  * @param devcountp	points at location for array size return value
1470  *
1471  * @retval 0		success
1472  * @retval ENOMEM	the array allocation failed
1473  */
1474 int
1475 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1476 {
1477 	int count, i;
1478 	device_t *list;
1479 
1480 	count = devclass_get_count(dc);
1481 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1482 	if (!list)
1483 		return (ENOMEM);
1484 
1485 	count = 0;
1486 	for (i = 0; i < dc->maxunit; i++) {
1487 		if (dc->devices[i]) {
1488 			list[count] = dc->devices[i];
1489 			count++;
1490 		}
1491 	}
1492 
1493 	*devlistp = list;
1494 	*devcountp = count;
1495 
1496 	return (0);
1497 }
1498 
1499 /**
1500  * @brief Get a list of drivers in the devclass
1501  *
1502  * An array containing a list of pointers to all the drivers in the
1503  * given devclass is allocated and returned in @p *listp.  The number
1504  * of drivers in the array is returned in @p *countp. The caller should
1505  * free the array using @c free(p, M_TEMP).
1506  *
1507  * @param dc		the devclass to examine
1508  * @param listp		gives location for array pointer return value
1509  * @param countp	gives location for number of array elements
1510  *			return value
1511  *
1512  * @retval 0		success
1513  * @retval ENOMEM	the array allocation failed
1514  */
1515 int
1516 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1517 {
1518 	driverlink_t dl;
1519 	driver_t **list;
1520 	int count;
1521 
1522 	count = 0;
1523 	TAILQ_FOREACH(dl, &dc->drivers, link)
1524 		count++;
1525 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1526 	if (list == NULL)
1527 		return (ENOMEM);
1528 
1529 	count = 0;
1530 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1531 		list[count] = dl->driver;
1532 		count++;
1533 	}
1534 	*listp = list;
1535 	*countp = count;
1536 
1537 	return (0);
1538 }
1539 
1540 /**
1541  * @brief Get the number of devices in a devclass
1542  *
1543  * @param dc		the devclass to examine
1544  */
1545 int
1546 devclass_get_count(devclass_t dc)
1547 {
1548 	int count, i;
1549 
1550 	count = 0;
1551 	for (i = 0; i < dc->maxunit; i++)
1552 		if (dc->devices[i])
1553 			count++;
1554 	return (count);
1555 }
1556 
1557 /**
1558  * @brief Get the maximum unit number used in a devclass
1559  *
1560  * Note that this is one greater than the highest currently-allocated
1561  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1562  * that not even the devclass has been allocated yet.
1563  *
1564  * @param dc		the devclass to examine
1565  */
1566 int
1567 devclass_get_maxunit(devclass_t dc)
1568 {
1569 	if (dc == NULL)
1570 		return (-1);
1571 	return (dc->maxunit);
1572 }
1573 
1574 /**
1575  * @brief Find a free unit number in a devclass
1576  *
1577  * This function searches for the first unused unit number greater
1578  * that or equal to @p unit.
1579  *
1580  * @param dc		the devclass to examine
1581  * @param unit		the first unit number to check
1582  */
1583 int
1584 devclass_find_free_unit(devclass_t dc, int unit)
1585 {
1586 	if (dc == NULL)
1587 		return (unit);
1588 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1589 		unit++;
1590 	return (unit);
1591 }
1592 
1593 /**
1594  * @brief Set the parent of a devclass
1595  *
1596  * The parent class is normally initialised automatically by
1597  * DRIVER_MODULE().
1598  *
1599  * @param dc		the devclass to edit
1600  * @param pdc		the new parent devclass
1601  */
1602 void
1603 devclass_set_parent(devclass_t dc, devclass_t pdc)
1604 {
1605 	dc->parent = pdc;
1606 }
1607 
1608 /**
1609  * @brief Get the parent of a devclass
1610  *
1611  * @param dc		the devclass to examine
1612  */
1613 devclass_t
1614 devclass_get_parent(devclass_t dc)
1615 {
1616 	return (dc->parent);
1617 }
1618 
1619 struct sysctl_ctx_list *
1620 devclass_get_sysctl_ctx(devclass_t dc)
1621 {
1622 	return (&dc->sysctl_ctx);
1623 }
1624 
1625 struct sysctl_oid *
1626 devclass_get_sysctl_tree(devclass_t dc)
1627 {
1628 	return (dc->sysctl_tree);
1629 }
1630 
1631 /**
1632  * @internal
1633  * @brief Allocate a unit number
1634  *
1635  * On entry, @p *unitp is the desired unit number (or @c -1 if any
1636  * will do). The allocated unit number is returned in @p *unitp.
1637 
1638  * @param dc		the devclass to allocate from
1639  * @param unitp		points at the location for the allocated unit
1640  *			number
1641  *
1642  * @retval 0		success
1643  * @retval EEXIST	the requested unit number is already allocated
1644  * @retval ENOMEM	memory allocation failure
1645  */
1646 static int
1647 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1648 {
1649 	const char *s;
1650 	int unit = *unitp;
1651 
1652 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1653 
1654 	/* Ask the parent bus if it wants to wire this device. */
1655 	if (unit == -1)
1656 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1657 		    &unit);
1658 
1659 	/* If we were given a wired unit number, check for existing device */
1660 	/* XXX imp XXX */
1661 	if (unit != -1) {
1662 		if (unit >= 0 && unit < dc->maxunit &&
1663 		    dc->devices[unit] != NULL) {
1664 			if (bootverbose)
1665 				printf("%s: %s%d already exists; skipping it\n",
1666 				    dc->name, dc->name, *unitp);
1667 			return (EEXIST);
1668 		}
1669 	} else {
1670 		/* Unwired device, find the next available slot for it */
1671 		unit = 0;
1672 		for (unit = 0;; unit++) {
1673 			/* If there is an "at" hint for a unit then skip it. */
1674 			if (resource_string_value(dc->name, unit, "at", &s) ==
1675 			    0)
1676 				continue;
1677 
1678 			/* If this device slot is already in use, skip it. */
1679 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1680 				continue;
1681 
1682 			break;
1683 		}
1684 	}
1685 
1686 	/*
1687 	 * We've selected a unit beyond the length of the table, so let's
1688 	 * extend the table to make room for all units up to and including
1689 	 * this one.
1690 	 */
1691 	if (unit >= dc->maxunit) {
1692 		device_t *newlist, *oldlist;
1693 		int newsize;
1694 
1695 		oldlist = dc->devices;
1696 		newsize = roundup((unit + 1),
1697 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1698 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1699 		if (!newlist)
1700 			return (ENOMEM);
1701 		if (oldlist != NULL)
1702 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1703 		bzero(newlist + dc->maxunit,
1704 		    sizeof(device_t) * (newsize - dc->maxunit));
1705 		dc->devices = newlist;
1706 		dc->maxunit = newsize;
1707 		if (oldlist != NULL)
1708 			free(oldlist, M_BUS);
1709 	}
1710 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1711 
1712 	*unitp = unit;
1713 	return (0);
1714 }
1715 
1716 /**
1717  * @internal
1718  * @brief Add a device to a devclass
1719  *
1720  * A unit number is allocated for the device (using the device's
1721  * preferred unit number if any) and the device is registered in the
1722  * devclass. This allows the device to be looked up by its unit
1723  * number, e.g. by decoding a dev_t minor number.
1724  *
1725  * @param dc		the devclass to add to
1726  * @param dev		the device to add
1727  *
1728  * @retval 0		success
1729  * @retval EEXIST	the requested unit number is already allocated
1730  * @retval ENOMEM	memory allocation failure
1731  */
1732 static int
1733 devclass_add_device(devclass_t dc, device_t dev)
1734 {
1735 	int buflen, error;
1736 
1737 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1738 
1739 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1740 	if (buflen < 0)
1741 		return (ENOMEM);
1742 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1743 	if (!dev->nameunit)
1744 		return (ENOMEM);
1745 
1746 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1747 		free(dev->nameunit, M_BUS);
1748 		dev->nameunit = NULL;
1749 		return (error);
1750 	}
1751 	dc->devices[dev->unit] = dev;
1752 	dev->devclass = dc;
1753 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1754 
1755 	return (0);
1756 }
1757 
1758 /**
1759  * @internal
1760  * @brief Delete a device from a devclass
1761  *
1762  * The device is removed from the devclass's device list and its unit
1763  * number is freed.
1764 
1765  * @param dc		the devclass to delete from
1766  * @param dev		the device to delete
1767  *
1768  * @retval 0		success
1769  */
1770 static int
1771 devclass_delete_device(devclass_t dc, device_t dev)
1772 {
1773 	if (!dc || !dev)
1774 		return (0);
1775 
1776 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1777 
1778 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1779 		panic("devclass_delete_device: inconsistent device class");
1780 	dc->devices[dev->unit] = NULL;
1781 	if (dev->flags & DF_WILDCARD)
1782 		dev->unit = -1;
1783 	dev->devclass = NULL;
1784 	free(dev->nameunit, M_BUS);
1785 	dev->nameunit = NULL;
1786 
1787 	return (0);
1788 }
1789 
1790 /**
1791  * @internal
1792  * @brief Make a new device and add it as a child of @p parent
1793  *
1794  * @param parent	the parent of the new device
1795  * @param name		the devclass name of the new device or @c NULL
1796  *			to leave the devclass unspecified
1797  * @parem unit		the unit number of the new device of @c -1 to
1798  *			leave the unit number unspecified
1799  *
1800  * @returns the new device
1801  */
1802 static device_t
1803 make_device(device_t parent, const char *name, int unit)
1804 {
1805 	device_t dev;
1806 	devclass_t dc;
1807 
1808 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1809 
1810 	if (name) {
1811 		dc = devclass_find_internal(name, NULL, TRUE);
1812 		if (!dc) {
1813 			printf("make_device: can't find device class %s\n",
1814 			    name);
1815 			return (NULL);
1816 		}
1817 	} else {
1818 		dc = NULL;
1819 	}
1820 
1821 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1822 	if (!dev)
1823 		return (NULL);
1824 
1825 	dev->parent = parent;
1826 	TAILQ_INIT(&dev->children);
1827 	kobj_init((kobj_t) dev, &null_class);
1828 	dev->driver = NULL;
1829 	dev->devclass = NULL;
1830 	dev->unit = unit;
1831 	dev->nameunit = NULL;
1832 	dev->desc = NULL;
1833 	dev->busy = 0;
1834 	dev->devflags = 0;
1835 	dev->flags = DF_ENABLED;
1836 	dev->order = 0;
1837 	if (unit == -1)
1838 		dev->flags |= DF_WILDCARD;
1839 	if (name) {
1840 		dev->flags |= DF_FIXEDCLASS;
1841 		if (devclass_add_device(dc, dev)) {
1842 			kobj_delete((kobj_t) dev, M_BUS);
1843 			return (NULL);
1844 		}
1845 	}
1846 	if (parent != NULL && device_has_quiet_children(parent))
1847 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1848 	dev->ivars = NULL;
1849 	dev->softc = NULL;
1850 
1851 	dev->state = DS_NOTPRESENT;
1852 
1853 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1854 	bus_data_generation_update();
1855 
1856 	return (dev);
1857 }
1858 
1859 /**
1860  * @internal
1861  * @brief Print a description of a device.
1862  */
1863 static int
1864 device_print_child(device_t dev, device_t child)
1865 {
1866 	int retval = 0;
1867 
1868 	if (device_is_alive(child))
1869 		retval += BUS_PRINT_CHILD(dev, child);
1870 	else
1871 		retval += device_printf(child, " not found\n");
1872 
1873 	return (retval);
1874 }
1875 
1876 /**
1877  * @brief Create a new device
1878  *
1879  * This creates a new device and adds it as a child of an existing
1880  * parent device. The new device will be added after the last existing
1881  * child with order zero.
1882  *
1883  * @param dev		the device which will be the parent of the
1884  *			new child device
1885  * @param name		devclass name for new device or @c NULL if not
1886  *			specified
1887  * @param unit		unit number for new device or @c -1 if not
1888  *			specified
1889  *
1890  * @returns		the new device
1891  */
1892 device_t
1893 device_add_child(device_t dev, const char *name, int unit)
1894 {
1895 	return (device_add_child_ordered(dev, 0, name, unit));
1896 }
1897 
1898 /**
1899  * @brief Create a new device
1900  *
1901  * This creates a new device and adds it as a child of an existing
1902  * parent device. The new device will be added after the last existing
1903  * child with the same order.
1904  *
1905  * @param dev		the device which will be the parent of the
1906  *			new child device
1907  * @param order		a value which is used to partially sort the
1908  *			children of @p dev - devices created using
1909  *			lower values of @p order appear first in @p
1910  *			dev's list of children
1911  * @param name		devclass name for new device or @c NULL if not
1912  *			specified
1913  * @param unit		unit number for new device or @c -1 if not
1914  *			specified
1915  *
1916  * @returns		the new device
1917  */
1918 device_t
1919 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1920 {
1921 	device_t child;
1922 	device_t place;
1923 
1924 	PDEBUG(("%s at %s with order %u as unit %d",
1925 	    name, DEVICENAME(dev), order, unit));
1926 	KASSERT(name != NULL || unit == -1,
1927 	    ("child device with wildcard name and specific unit number"));
1928 
1929 	child = make_device(dev, name, unit);
1930 	if (child == NULL)
1931 		return (child);
1932 	child->order = order;
1933 
1934 	TAILQ_FOREACH(place, &dev->children, link) {
1935 		if (place->order > order)
1936 			break;
1937 	}
1938 
1939 	if (place) {
1940 		/*
1941 		 * The device 'place' is the first device whose order is
1942 		 * greater than the new child.
1943 		 */
1944 		TAILQ_INSERT_BEFORE(place, child, link);
1945 	} else {
1946 		/*
1947 		 * The new child's order is greater or equal to the order of
1948 		 * any existing device. Add the child to the tail of the list.
1949 		 */
1950 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1951 	}
1952 
1953 	bus_data_generation_update();
1954 	return (child);
1955 }
1956 
1957 /**
1958  * @brief Delete a device
1959  *
1960  * This function deletes a device along with all of its children. If
1961  * the device currently has a driver attached to it, the device is
1962  * detached first using device_detach().
1963  *
1964  * @param dev		the parent device
1965  * @param child		the device to delete
1966  *
1967  * @retval 0		success
1968  * @retval non-zero	a unit error code describing the error
1969  */
1970 int
1971 device_delete_child(device_t dev, device_t child)
1972 {
1973 	int error;
1974 	device_t grandchild;
1975 
1976 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1977 
1978 	/* detach parent before deleting children, if any */
1979 	if ((error = device_detach(child)) != 0)
1980 		return (error);
1981 
1982 	/* remove children second */
1983 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1984 		error = device_delete_child(child, grandchild);
1985 		if (error)
1986 			return (error);
1987 	}
1988 
1989 	if (child->devclass)
1990 		devclass_delete_device(child->devclass, child);
1991 	if (child->parent)
1992 		BUS_CHILD_DELETED(dev, child);
1993 	TAILQ_REMOVE(&dev->children, child, link);
1994 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1995 	kobj_delete((kobj_t) child, M_BUS);
1996 
1997 	bus_data_generation_update();
1998 	return (0);
1999 }
2000 
2001 /**
2002  * @brief Delete all children devices of the given device, if any.
2003  *
2004  * This function deletes all children devices of the given device, if
2005  * any, using the device_delete_child() function for each device it
2006  * finds. If a child device cannot be deleted, this function will
2007  * return an error code.
2008  *
2009  * @param dev		the parent device
2010  *
2011  * @retval 0		success
2012  * @retval non-zero	a device would not detach
2013  */
2014 int
2015 device_delete_children(device_t dev)
2016 {
2017 	device_t child;
2018 	int error;
2019 
2020 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
2021 
2022 	error = 0;
2023 
2024 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
2025 		error = device_delete_child(dev, child);
2026 		if (error) {
2027 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2028 			break;
2029 		}
2030 	}
2031 	return (error);
2032 }
2033 
2034 /**
2035  * @brief Find a device given a unit number
2036  *
2037  * This is similar to devclass_get_devices() but only searches for
2038  * devices which have @p dev as a parent.
2039  *
2040  * @param dev		the parent device to search
2041  * @param unit		the unit number to search for.  If the unit is -1,
2042  *			return the first child of @p dev which has name
2043  *			@p classname (that is, the one with the lowest unit.)
2044  *
2045  * @returns		the device with the given unit number or @c
2046  *			NULL if there is no such device
2047  */
2048 device_t
2049 device_find_child(device_t dev, const char *classname, int unit)
2050 {
2051 	devclass_t dc;
2052 	device_t child;
2053 
2054 	dc = devclass_find(classname);
2055 	if (!dc)
2056 		return (NULL);
2057 
2058 	if (unit != -1) {
2059 		child = devclass_get_device(dc, unit);
2060 		if (child && child->parent == dev)
2061 			return (child);
2062 	} else {
2063 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2064 			child = devclass_get_device(dc, unit);
2065 			if (child && child->parent == dev)
2066 				return (child);
2067 		}
2068 	}
2069 	return (NULL);
2070 }
2071 
2072 /**
2073  * @internal
2074  */
2075 static driverlink_t
2076 first_matching_driver(devclass_t dc, device_t dev)
2077 {
2078 	if (dev->devclass)
2079 		return (devclass_find_driver_internal(dc, dev->devclass->name));
2080 	return (TAILQ_FIRST(&dc->drivers));
2081 }
2082 
2083 /**
2084  * @internal
2085  */
2086 static driverlink_t
2087 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2088 {
2089 	if (dev->devclass) {
2090 		driverlink_t dl;
2091 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2092 			if (!strcmp(dev->devclass->name, dl->driver->name))
2093 				return (dl);
2094 		return (NULL);
2095 	}
2096 	return (TAILQ_NEXT(last, link));
2097 }
2098 
2099 /**
2100  * @internal
2101  */
2102 int
2103 device_probe_child(device_t dev, device_t child)
2104 {
2105 	devclass_t dc;
2106 	driverlink_t best = NULL;
2107 	driverlink_t dl;
2108 	int result, pri = 0;
2109 	int hasclass = (child->devclass != NULL);
2110 
2111 	GIANT_REQUIRED;
2112 
2113 	dc = dev->devclass;
2114 	if (!dc)
2115 		panic("device_probe_child: parent device has no devclass");
2116 
2117 	/*
2118 	 * If the state is already probed, then return.  However, don't
2119 	 * return if we can rebid this object.
2120 	 */
2121 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2122 		return (0);
2123 
2124 	for (; dc; dc = dc->parent) {
2125 		for (dl = first_matching_driver(dc, child);
2126 		     dl;
2127 		     dl = next_matching_driver(dc, child, dl)) {
2128 			/* If this driver's pass is too high, then ignore it. */
2129 			if (dl->pass > bus_current_pass)
2130 				continue;
2131 
2132 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2133 			result = device_set_driver(child, dl->driver);
2134 			if (result == ENOMEM)
2135 				return (result);
2136 			else if (result != 0)
2137 				continue;
2138 			if (!hasclass) {
2139 				if (device_set_devclass(child,
2140 				    dl->driver->name) != 0) {
2141 					char const * devname =
2142 					    device_get_name(child);
2143 					if (devname == NULL)
2144 						devname = "(unknown)";
2145 					printf("driver bug: Unable to set "
2146 					    "devclass (class: %s "
2147 					    "devname: %s)\n",
2148 					    dl->driver->name,
2149 					    devname);
2150 					(void)device_set_driver(child, NULL);
2151 					continue;
2152 				}
2153 			}
2154 
2155 			/* Fetch any flags for the device before probing. */
2156 			resource_int_value(dl->driver->name, child->unit,
2157 			    "flags", &child->devflags);
2158 
2159 			result = DEVICE_PROBE(child);
2160 
2161 			/* Reset flags and devclass before the next probe. */
2162 			child->devflags = 0;
2163 			if (!hasclass)
2164 				(void)device_set_devclass(child, NULL);
2165 
2166 			/*
2167 			 * If the driver returns SUCCESS, there can be
2168 			 * no higher match for this device.
2169 			 */
2170 			if (result == 0) {
2171 				best = dl;
2172 				pri = 0;
2173 				break;
2174 			}
2175 
2176 			/*
2177 			 * Reset DF_QUIET in case this driver doesn't
2178 			 * end up as the best driver.
2179 			 */
2180 			device_verbose(child);
2181 
2182 			/*
2183 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2184 			 * only match on devices whose driver was explicitly
2185 			 * specified.
2186 			 */
2187 			if (result <= BUS_PROBE_NOWILDCARD &&
2188 			    !(child->flags & DF_FIXEDCLASS)) {
2189 				result = ENXIO;
2190 			}
2191 
2192 			/*
2193 			 * The driver returned an error so it
2194 			 * certainly doesn't match.
2195 			 */
2196 			if (result > 0) {
2197 				(void)device_set_driver(child, NULL);
2198 				continue;
2199 			}
2200 
2201 			/*
2202 			 * A priority lower than SUCCESS, remember the
2203 			 * best matching driver. Initialise the value
2204 			 * of pri for the first match.
2205 			 */
2206 			if (best == NULL || result > pri) {
2207 				best = dl;
2208 				pri = result;
2209 				continue;
2210 			}
2211 		}
2212 		/*
2213 		 * If we have an unambiguous match in this devclass,
2214 		 * don't look in the parent.
2215 		 */
2216 		if (best && pri == 0)
2217 			break;
2218 	}
2219 
2220 	/*
2221 	 * If we found a driver, change state and initialise the devclass.
2222 	 */
2223 	/* XXX What happens if we rebid and got no best? */
2224 	if (best) {
2225 		/*
2226 		 * If this device was attached, and we were asked to
2227 		 * rescan, and it is a different driver, then we have
2228 		 * to detach the old driver and reattach this new one.
2229 		 * Note, we don't have to check for DF_REBID here
2230 		 * because if the state is > DS_ALIVE, we know it must
2231 		 * be.
2232 		 *
2233 		 * This assumes that all DF_REBID drivers can have
2234 		 * their probe routine called at any time and that
2235 		 * they are idempotent as well as completely benign in
2236 		 * normal operations.
2237 		 *
2238 		 * We also have to make sure that the detach
2239 		 * succeeded, otherwise we fail the operation (or
2240 		 * maybe it should just fail silently?  I'm torn).
2241 		 */
2242 		if (child->state > DS_ALIVE && best->driver != child->driver)
2243 			if ((result = device_detach(dev)) != 0)
2244 				return (result);
2245 
2246 		/* Set the winning driver, devclass, and flags. */
2247 		if (!child->devclass) {
2248 			result = device_set_devclass(child, best->driver->name);
2249 			if (result != 0)
2250 				return (result);
2251 		}
2252 		result = device_set_driver(child, best->driver);
2253 		if (result != 0)
2254 			return (result);
2255 		resource_int_value(best->driver->name, child->unit,
2256 		    "flags", &child->devflags);
2257 
2258 		if (pri < 0) {
2259 			/*
2260 			 * A bit bogus. Call the probe method again to make
2261 			 * sure that we have the right description.
2262 			 */
2263 			DEVICE_PROBE(child);
2264 #if 0
2265 			child->flags |= DF_REBID;
2266 #endif
2267 		} else
2268 			child->flags &= ~DF_REBID;
2269 		child->state = DS_ALIVE;
2270 
2271 		bus_data_generation_update();
2272 		return (0);
2273 	}
2274 
2275 	return (ENXIO);
2276 }
2277 
2278 /**
2279  * @brief Return the parent of a device
2280  */
2281 device_t
2282 device_get_parent(device_t dev)
2283 {
2284 	return (dev->parent);
2285 }
2286 
2287 /**
2288  * @brief Get a list of children of a device
2289  *
2290  * An array containing a list of all the children of the given device
2291  * is allocated and returned in @p *devlistp. The number of devices
2292  * in the array is returned in @p *devcountp. The caller should free
2293  * the array using @c free(p, M_TEMP).
2294  *
2295  * @param dev		the device to examine
2296  * @param devlistp	points at location for array pointer return
2297  *			value
2298  * @param devcountp	points at location for array size return value
2299  *
2300  * @retval 0		success
2301  * @retval ENOMEM	the array allocation failed
2302  */
2303 int
2304 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2305 {
2306 	int count;
2307 	device_t child;
2308 	device_t *list;
2309 
2310 	count = 0;
2311 	TAILQ_FOREACH(child, &dev->children, link) {
2312 		count++;
2313 	}
2314 	if (count == 0) {
2315 		*devlistp = NULL;
2316 		*devcountp = 0;
2317 		return (0);
2318 	}
2319 
2320 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2321 	if (!list)
2322 		return (ENOMEM);
2323 
2324 	count = 0;
2325 	TAILQ_FOREACH(child, &dev->children, link) {
2326 		list[count] = child;
2327 		count++;
2328 	}
2329 
2330 	*devlistp = list;
2331 	*devcountp = count;
2332 
2333 	return (0);
2334 }
2335 
2336 /**
2337  * @brief Return the current driver for the device or @c NULL if there
2338  * is no driver currently attached
2339  */
2340 driver_t *
2341 device_get_driver(device_t dev)
2342 {
2343 	return (dev->driver);
2344 }
2345 
2346 /**
2347  * @brief Return the current devclass for the device or @c NULL if
2348  * there is none.
2349  */
2350 devclass_t
2351 device_get_devclass(device_t dev)
2352 {
2353 	return (dev->devclass);
2354 }
2355 
2356 /**
2357  * @brief Return the name of the device's devclass or @c NULL if there
2358  * is none.
2359  */
2360 const char *
2361 device_get_name(device_t dev)
2362 {
2363 	if (dev != NULL && dev->devclass)
2364 		return (devclass_get_name(dev->devclass));
2365 	return (NULL);
2366 }
2367 
2368 /**
2369  * @brief Return a string containing the device's devclass name
2370  * followed by an ascii representation of the device's unit number
2371  * (e.g. @c "foo2").
2372  */
2373 const char *
2374 device_get_nameunit(device_t dev)
2375 {
2376 	return (dev->nameunit);
2377 }
2378 
2379 /**
2380  * @brief Return the device's unit number.
2381  */
2382 int
2383 device_get_unit(device_t dev)
2384 {
2385 	return (dev->unit);
2386 }
2387 
2388 /**
2389  * @brief Return the device's description string
2390  */
2391 const char *
2392 device_get_desc(device_t dev)
2393 {
2394 	return (dev->desc);
2395 }
2396 
2397 /**
2398  * @brief Return the device's flags
2399  */
2400 uint32_t
2401 device_get_flags(device_t dev)
2402 {
2403 	return (dev->devflags);
2404 }
2405 
2406 struct sysctl_ctx_list *
2407 device_get_sysctl_ctx(device_t dev)
2408 {
2409 	return (&dev->sysctl_ctx);
2410 }
2411 
2412 struct sysctl_oid *
2413 device_get_sysctl_tree(device_t dev)
2414 {
2415 	return (dev->sysctl_tree);
2416 }
2417 
2418 /**
2419  * @brief Print the name of the device followed by a colon and a space
2420  *
2421  * @returns the number of characters printed
2422  */
2423 int
2424 device_print_prettyname(device_t dev)
2425 {
2426 	const char *name = device_get_name(dev);
2427 
2428 	if (name == NULL)
2429 		return (printf("unknown: "));
2430 	return (printf("%s%d: ", name, device_get_unit(dev)));
2431 }
2432 
2433 /**
2434  * @brief Print the name of the device followed by a colon, a space
2435  * and the result of calling vprintf() with the value of @p fmt and
2436  * the following arguments.
2437  *
2438  * @returns the number of characters printed
2439  */
2440 int
2441 device_printf(device_t dev, const char * fmt, ...)
2442 {
2443 	char buf[128];
2444 	struct sbuf sb;
2445 	const char *name;
2446 	va_list ap;
2447 	size_t retval;
2448 
2449 	retval = 0;
2450 
2451 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2452 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2453 
2454 	name = device_get_name(dev);
2455 
2456 	if (name == NULL)
2457 		sbuf_cat(&sb, "unknown: ");
2458 	else
2459 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2460 
2461 	va_start(ap, fmt);
2462 	sbuf_vprintf(&sb, fmt, ap);
2463 	va_end(ap);
2464 
2465 	sbuf_finish(&sb);
2466 	sbuf_delete(&sb);
2467 
2468 	return (retval);
2469 }
2470 
2471 /**
2472  * @internal
2473  */
2474 static void
2475 device_set_desc_internal(device_t dev, const char* desc, int copy)
2476 {
2477 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2478 		free(dev->desc, M_BUS);
2479 		dev->flags &= ~DF_DESCMALLOCED;
2480 		dev->desc = NULL;
2481 	}
2482 
2483 	if (copy && desc) {
2484 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2485 		if (dev->desc) {
2486 			strcpy(dev->desc, desc);
2487 			dev->flags |= DF_DESCMALLOCED;
2488 		}
2489 	} else {
2490 		/* Avoid a -Wcast-qual warning */
2491 		dev->desc = (char *)(uintptr_t) desc;
2492 	}
2493 
2494 	bus_data_generation_update();
2495 }
2496 
2497 /**
2498  * @brief Set the device's description
2499  *
2500  * The value of @c desc should be a string constant that will not
2501  * change (at least until the description is changed in a subsequent
2502  * call to device_set_desc() or device_set_desc_copy()).
2503  */
2504 void
2505 device_set_desc(device_t dev, const char* desc)
2506 {
2507 	device_set_desc_internal(dev, desc, FALSE);
2508 }
2509 
2510 /**
2511  * @brief Set the device's description
2512  *
2513  * The string pointed to by @c desc is copied. Use this function if
2514  * the device description is generated, (e.g. with sprintf()).
2515  */
2516 void
2517 device_set_desc_copy(device_t dev, const char* desc)
2518 {
2519 	device_set_desc_internal(dev, desc, TRUE);
2520 }
2521 
2522 /**
2523  * @brief Set the device's flags
2524  */
2525 void
2526 device_set_flags(device_t dev, uint32_t flags)
2527 {
2528 	dev->devflags = flags;
2529 }
2530 
2531 /**
2532  * @brief Return the device's softc field
2533  *
2534  * The softc is allocated and zeroed when a driver is attached, based
2535  * on the size field of the driver.
2536  */
2537 void *
2538 device_get_softc(device_t dev)
2539 {
2540 	return (dev->softc);
2541 }
2542 
2543 /**
2544  * @brief Set the device's softc field
2545  *
2546  * Most drivers do not need to use this since the softc is allocated
2547  * automatically when the driver is attached.
2548  */
2549 void
2550 device_set_softc(device_t dev, void *softc)
2551 {
2552 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2553 		free_domain(dev->softc, M_BUS_SC);
2554 	dev->softc = softc;
2555 	if (dev->softc)
2556 		dev->flags |= DF_EXTERNALSOFTC;
2557 	else
2558 		dev->flags &= ~DF_EXTERNALSOFTC;
2559 }
2560 
2561 /**
2562  * @brief Free claimed softc
2563  *
2564  * Most drivers do not need to use this since the softc is freed
2565  * automatically when the driver is detached.
2566  */
2567 void
2568 device_free_softc(void *softc)
2569 {
2570 	free_domain(softc, M_BUS_SC);
2571 }
2572 
2573 /**
2574  * @brief Claim softc
2575  *
2576  * This function can be used to let the driver free the automatically
2577  * allocated softc using "device_free_softc()". This function is
2578  * useful when the driver is refcounting the softc and the softc
2579  * cannot be freed when the "device_detach" method is called.
2580  */
2581 void
2582 device_claim_softc(device_t dev)
2583 {
2584 	if (dev->softc)
2585 		dev->flags |= DF_EXTERNALSOFTC;
2586 	else
2587 		dev->flags &= ~DF_EXTERNALSOFTC;
2588 }
2589 
2590 /**
2591  * @brief Get the device's ivars field
2592  *
2593  * The ivars field is used by the parent device to store per-device
2594  * state (e.g. the physical location of the device or a list of
2595  * resources).
2596  */
2597 void *
2598 device_get_ivars(device_t dev)
2599 {
2600 
2601 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2602 	return (dev->ivars);
2603 }
2604 
2605 /**
2606  * @brief Set the device's ivars field
2607  */
2608 void
2609 device_set_ivars(device_t dev, void * ivars)
2610 {
2611 
2612 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2613 	dev->ivars = ivars;
2614 }
2615 
2616 /**
2617  * @brief Return the device's state
2618  */
2619 device_state_t
2620 device_get_state(device_t dev)
2621 {
2622 	return (dev->state);
2623 }
2624 
2625 /**
2626  * @brief Set the DF_ENABLED flag for the device
2627  */
2628 void
2629 device_enable(device_t dev)
2630 {
2631 	dev->flags |= DF_ENABLED;
2632 }
2633 
2634 /**
2635  * @brief Clear the DF_ENABLED flag for the device
2636  */
2637 void
2638 device_disable(device_t dev)
2639 {
2640 	dev->flags &= ~DF_ENABLED;
2641 }
2642 
2643 /**
2644  * @brief Increment the busy counter for the device
2645  */
2646 void
2647 device_busy(device_t dev)
2648 {
2649 	if (dev->state < DS_ATTACHING)
2650 		panic("device_busy: called for unattached device");
2651 	if (dev->busy == 0 && dev->parent)
2652 		device_busy(dev->parent);
2653 	dev->busy++;
2654 	if (dev->state == DS_ATTACHED)
2655 		dev->state = DS_BUSY;
2656 }
2657 
2658 /**
2659  * @brief Decrement the busy counter for the device
2660  */
2661 void
2662 device_unbusy(device_t dev)
2663 {
2664 	if (dev->busy != 0 && dev->state != DS_BUSY &&
2665 	    dev->state != DS_ATTACHING)
2666 		panic("device_unbusy: called for non-busy device %s",
2667 		    device_get_nameunit(dev));
2668 	dev->busy--;
2669 	if (dev->busy == 0) {
2670 		if (dev->parent)
2671 			device_unbusy(dev->parent);
2672 		if (dev->state == DS_BUSY)
2673 			dev->state = DS_ATTACHED;
2674 	}
2675 }
2676 
2677 /**
2678  * @brief Set the DF_QUIET flag for the device
2679  */
2680 void
2681 device_quiet(device_t dev)
2682 {
2683 	dev->flags |= DF_QUIET;
2684 }
2685 
2686 /**
2687  * @brief Set the DF_QUIET_CHILDREN flag for the device
2688  */
2689 void
2690 device_quiet_children(device_t dev)
2691 {
2692 	dev->flags |= DF_QUIET_CHILDREN;
2693 }
2694 
2695 /**
2696  * @brief Clear the DF_QUIET flag for the device
2697  */
2698 void
2699 device_verbose(device_t dev)
2700 {
2701 	dev->flags &= ~DF_QUIET;
2702 }
2703 
2704 /**
2705  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2706  */
2707 int
2708 device_has_quiet_children(device_t dev)
2709 {
2710 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2711 }
2712 
2713 /**
2714  * @brief Return non-zero if the DF_QUIET flag is set on the device
2715  */
2716 int
2717 device_is_quiet(device_t dev)
2718 {
2719 	return ((dev->flags & DF_QUIET) != 0);
2720 }
2721 
2722 /**
2723  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2724  */
2725 int
2726 device_is_enabled(device_t dev)
2727 {
2728 	return ((dev->flags & DF_ENABLED) != 0);
2729 }
2730 
2731 /**
2732  * @brief Return non-zero if the device was successfully probed
2733  */
2734 int
2735 device_is_alive(device_t dev)
2736 {
2737 	return (dev->state >= DS_ALIVE);
2738 }
2739 
2740 /**
2741  * @brief Return non-zero if the device currently has a driver
2742  * attached to it
2743  */
2744 int
2745 device_is_attached(device_t dev)
2746 {
2747 	return (dev->state >= DS_ATTACHED);
2748 }
2749 
2750 /**
2751  * @brief Return non-zero if the device is currently suspended.
2752  */
2753 int
2754 device_is_suspended(device_t dev)
2755 {
2756 	return ((dev->flags & DF_SUSPENDED) != 0);
2757 }
2758 
2759 /**
2760  * @brief Set the devclass of a device
2761  * @see devclass_add_device().
2762  */
2763 int
2764 device_set_devclass(device_t dev, const char *classname)
2765 {
2766 	devclass_t dc;
2767 	int error;
2768 
2769 	if (!classname) {
2770 		if (dev->devclass)
2771 			devclass_delete_device(dev->devclass, dev);
2772 		return (0);
2773 	}
2774 
2775 	if (dev->devclass) {
2776 		printf("device_set_devclass: device class already set\n");
2777 		return (EINVAL);
2778 	}
2779 
2780 	dc = devclass_find_internal(classname, NULL, TRUE);
2781 	if (!dc)
2782 		return (ENOMEM);
2783 
2784 	error = devclass_add_device(dc, dev);
2785 
2786 	bus_data_generation_update();
2787 	return (error);
2788 }
2789 
2790 /**
2791  * @brief Set the devclass of a device and mark the devclass fixed.
2792  * @see device_set_devclass()
2793  */
2794 int
2795 device_set_devclass_fixed(device_t dev, const char *classname)
2796 {
2797 	int error;
2798 
2799 	if (classname == NULL)
2800 		return (EINVAL);
2801 
2802 	error = device_set_devclass(dev, classname);
2803 	if (error)
2804 		return (error);
2805 	dev->flags |= DF_FIXEDCLASS;
2806 	return (0);
2807 }
2808 
2809 /**
2810  * @brief Query the device to determine if it's of a fixed devclass
2811  * @see device_set_devclass_fixed()
2812  */
2813 bool
2814 device_is_devclass_fixed(device_t dev)
2815 {
2816 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2817 }
2818 
2819 /**
2820  * @brief Set the driver of a device
2821  *
2822  * @retval 0		success
2823  * @retval EBUSY	the device already has a driver attached
2824  * @retval ENOMEM	a memory allocation failure occurred
2825  */
2826 int
2827 device_set_driver(device_t dev, driver_t *driver)
2828 {
2829 	int domain;
2830 	struct domainset *policy;
2831 
2832 	if (dev->state >= DS_ATTACHED)
2833 		return (EBUSY);
2834 
2835 	if (dev->driver == driver)
2836 		return (0);
2837 
2838 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2839 		free_domain(dev->softc, M_BUS_SC);
2840 		dev->softc = NULL;
2841 	}
2842 	device_set_desc(dev, NULL);
2843 	kobj_delete((kobj_t) dev, NULL);
2844 	dev->driver = driver;
2845 	if (driver) {
2846 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2847 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2848 			if (bus_get_domain(dev, &domain) == 0)
2849 				policy = DOMAINSET_PREF(domain);
2850 			else
2851 				policy = DOMAINSET_RR();
2852 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2853 			    policy, M_NOWAIT | M_ZERO);
2854 			if (!dev->softc) {
2855 				kobj_delete((kobj_t) dev, NULL);
2856 				kobj_init((kobj_t) dev, &null_class);
2857 				dev->driver = NULL;
2858 				return (ENOMEM);
2859 			}
2860 		}
2861 	} else {
2862 		kobj_init((kobj_t) dev, &null_class);
2863 	}
2864 
2865 	bus_data_generation_update();
2866 	return (0);
2867 }
2868 
2869 /**
2870  * @brief Probe a device, and return this status.
2871  *
2872  * This function is the core of the device autoconfiguration
2873  * system. Its purpose is to select a suitable driver for a device and
2874  * then call that driver to initialise the hardware appropriately. The
2875  * driver is selected by calling the DEVICE_PROBE() method of a set of
2876  * candidate drivers and then choosing the driver which returned the
2877  * best value. This driver is then attached to the device using
2878  * device_attach().
2879  *
2880  * The set of suitable drivers is taken from the list of drivers in
2881  * the parent device's devclass. If the device was originally created
2882  * with a specific class name (see device_add_child()), only drivers
2883  * with that name are probed, otherwise all drivers in the devclass
2884  * are probed. If no drivers return successful probe values in the
2885  * parent devclass, the search continues in the parent of that
2886  * devclass (see devclass_get_parent()) if any.
2887  *
2888  * @param dev		the device to initialise
2889  *
2890  * @retval 0		success
2891  * @retval ENXIO	no driver was found
2892  * @retval ENOMEM	memory allocation failure
2893  * @retval non-zero	some other unix error code
2894  * @retval -1		Device already attached
2895  */
2896 int
2897 device_probe(device_t dev)
2898 {
2899 	int error;
2900 
2901 	GIANT_REQUIRED;
2902 
2903 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2904 		return (-1);
2905 
2906 	if (!(dev->flags & DF_ENABLED)) {
2907 		if (bootverbose && device_get_name(dev) != NULL) {
2908 			device_print_prettyname(dev);
2909 			printf("not probed (disabled)\n");
2910 		}
2911 		return (-1);
2912 	}
2913 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2914 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2915 		    !(dev->flags & DF_DONENOMATCH)) {
2916 			BUS_PROBE_NOMATCH(dev->parent, dev);
2917 			devnomatch(dev);
2918 			dev->flags |= DF_DONENOMATCH;
2919 		}
2920 		return (error);
2921 	}
2922 	return (0);
2923 }
2924 
2925 /**
2926  * @brief Probe a device and attach a driver if possible
2927  *
2928  * calls device_probe() and attaches if that was successful.
2929  */
2930 int
2931 device_probe_and_attach(device_t dev)
2932 {
2933 	int error;
2934 
2935 	GIANT_REQUIRED;
2936 
2937 	error = device_probe(dev);
2938 	if (error == -1)
2939 		return (0);
2940 	else if (error != 0)
2941 		return (error);
2942 
2943 	CURVNET_SET_QUIET(vnet0);
2944 	error = device_attach(dev);
2945 	CURVNET_RESTORE();
2946 	return error;
2947 }
2948 
2949 /**
2950  * @brief Attach a device driver to a device
2951  *
2952  * This function is a wrapper around the DEVICE_ATTACH() driver
2953  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2954  * device's sysctl tree, optionally prints a description of the device
2955  * and queues a notification event for user-based device management
2956  * services.
2957  *
2958  * Normally this function is only called internally from
2959  * device_probe_and_attach().
2960  *
2961  * @param dev		the device to initialise
2962  *
2963  * @retval 0		success
2964  * @retval ENXIO	no driver was found
2965  * @retval ENOMEM	memory allocation failure
2966  * @retval non-zero	some other unix error code
2967  */
2968 int
2969 device_attach(device_t dev)
2970 {
2971 	uint64_t attachtime;
2972 	uint16_t attachentropy;
2973 	int error;
2974 
2975 	if (resource_disabled(dev->driver->name, dev->unit)) {
2976 		device_disable(dev);
2977 		if (bootverbose)
2978 			 device_printf(dev, "disabled via hints entry\n");
2979 		return (ENXIO);
2980 	}
2981 
2982 	device_sysctl_init(dev);
2983 	if (!device_is_quiet(dev))
2984 		device_print_child(dev->parent, dev);
2985 	attachtime = get_cyclecount();
2986 	dev->state = DS_ATTACHING;
2987 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2988 		printf("device_attach: %s%d attach returned %d\n",
2989 		    dev->driver->name, dev->unit, error);
2990 		if (!(dev->flags & DF_FIXEDCLASS))
2991 			devclass_delete_device(dev->devclass, dev);
2992 		(void)device_set_driver(dev, NULL);
2993 		device_sysctl_fini(dev);
2994 		KASSERT(dev->busy == 0, ("attach failed but busy"));
2995 		dev->state = DS_NOTPRESENT;
2996 		return (error);
2997 	}
2998 	dev->flags |= DF_ATTACHED_ONCE;
2999 	/* We only need the low bits of this time, but ranges from tens to thousands
3000 	 * have been seen, so keep 2 bytes' worth.
3001 	 */
3002 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
3003 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
3004 	device_sysctl_update(dev);
3005 	if (dev->busy)
3006 		dev->state = DS_BUSY;
3007 	else
3008 		dev->state = DS_ATTACHED;
3009 	dev->flags &= ~DF_DONENOMATCH;
3010 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
3011 	devadded(dev);
3012 	return (0);
3013 }
3014 
3015 /**
3016  * @brief Detach a driver from a device
3017  *
3018  * This function is a wrapper around the DEVICE_DETACH() driver
3019  * method. If the call to DEVICE_DETACH() succeeds, it calls
3020  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
3021  * notification event for user-based device management services and
3022  * cleans up the device's sysctl tree.
3023  *
3024  * @param dev		the device to un-initialise
3025  *
3026  * @retval 0		success
3027  * @retval ENXIO	no driver was found
3028  * @retval ENOMEM	memory allocation failure
3029  * @retval non-zero	some other unix error code
3030  */
3031 int
3032 device_detach(device_t dev)
3033 {
3034 	int error;
3035 
3036 	GIANT_REQUIRED;
3037 
3038 	PDEBUG(("%s", DEVICENAME(dev)));
3039 	if (dev->state == DS_BUSY)
3040 		return (EBUSY);
3041 	if (dev->state == DS_ATTACHING) {
3042 		device_printf(dev, "device in attaching state! Deferring detach.\n");
3043 		return (EBUSY);
3044 	}
3045 	if (dev->state != DS_ATTACHED)
3046 		return (0);
3047 
3048 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
3049 	if ((error = DEVICE_DETACH(dev)) != 0) {
3050 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3051 		    EVHDEV_DETACH_FAILED);
3052 		return (error);
3053 	} else {
3054 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
3055 		    EVHDEV_DETACH_COMPLETE);
3056 	}
3057 	devremoved(dev);
3058 	if (!device_is_quiet(dev))
3059 		device_printf(dev, "detached\n");
3060 	if (dev->parent)
3061 		BUS_CHILD_DETACHED(dev->parent, dev);
3062 
3063 	if (!(dev->flags & DF_FIXEDCLASS))
3064 		devclass_delete_device(dev->devclass, dev);
3065 
3066 	device_verbose(dev);
3067 	dev->state = DS_NOTPRESENT;
3068 	(void)device_set_driver(dev, NULL);
3069 	device_sysctl_fini(dev);
3070 
3071 	return (0);
3072 }
3073 
3074 /**
3075  * @brief Tells a driver to quiesce itself.
3076  *
3077  * This function is a wrapper around the DEVICE_QUIESCE() driver
3078  * method. If the call to DEVICE_QUIESCE() succeeds.
3079  *
3080  * @param dev		the device to quiesce
3081  *
3082  * @retval 0		success
3083  * @retval ENXIO	no driver was found
3084  * @retval ENOMEM	memory allocation failure
3085  * @retval non-zero	some other unix error code
3086  */
3087 int
3088 device_quiesce(device_t dev)
3089 {
3090 
3091 	PDEBUG(("%s", DEVICENAME(dev)));
3092 	if (dev->state == DS_BUSY)
3093 		return (EBUSY);
3094 	if (dev->state != DS_ATTACHED)
3095 		return (0);
3096 
3097 	return (DEVICE_QUIESCE(dev));
3098 }
3099 
3100 /**
3101  * @brief Notify a device of system shutdown
3102  *
3103  * This function calls the DEVICE_SHUTDOWN() driver method if the
3104  * device currently has an attached driver.
3105  *
3106  * @returns the value returned by DEVICE_SHUTDOWN()
3107  */
3108 int
3109 device_shutdown(device_t dev)
3110 {
3111 	if (dev->state < DS_ATTACHED)
3112 		return (0);
3113 	return (DEVICE_SHUTDOWN(dev));
3114 }
3115 
3116 /**
3117  * @brief Set the unit number of a device
3118  *
3119  * This function can be used to override the unit number used for a
3120  * device (e.g. to wire a device to a pre-configured unit number).
3121  */
3122 int
3123 device_set_unit(device_t dev, int unit)
3124 {
3125 	devclass_t dc;
3126 	int err;
3127 
3128 	dc = device_get_devclass(dev);
3129 	if (unit < dc->maxunit && dc->devices[unit])
3130 		return (EBUSY);
3131 	err = devclass_delete_device(dc, dev);
3132 	if (err)
3133 		return (err);
3134 	dev->unit = unit;
3135 	err = devclass_add_device(dc, dev);
3136 	if (err)
3137 		return (err);
3138 
3139 	bus_data_generation_update();
3140 	return (0);
3141 }
3142 
3143 /*======================================*/
3144 /*
3145  * Some useful method implementations to make life easier for bus drivers.
3146  */
3147 
3148 void
3149 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3150 {
3151 
3152 	bzero(args, sz);
3153 	args->size = sz;
3154 	args->memattr = VM_MEMATTR_UNCACHEABLE;
3155 }
3156 
3157 /**
3158  * @brief Initialise a resource list.
3159  *
3160  * @param rl		the resource list to initialise
3161  */
3162 void
3163 resource_list_init(struct resource_list *rl)
3164 {
3165 	STAILQ_INIT(rl);
3166 }
3167 
3168 /**
3169  * @brief Reclaim memory used by a resource list.
3170  *
3171  * This function frees the memory for all resource entries on the list
3172  * (if any).
3173  *
3174  * @param rl		the resource list to free
3175  */
3176 void
3177 resource_list_free(struct resource_list *rl)
3178 {
3179 	struct resource_list_entry *rle;
3180 
3181 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3182 		if (rle->res)
3183 			panic("resource_list_free: resource entry is busy");
3184 		STAILQ_REMOVE_HEAD(rl, link);
3185 		free(rle, M_BUS);
3186 	}
3187 }
3188 
3189 /**
3190  * @brief Add a resource entry.
3191  *
3192  * This function adds a resource entry using the given @p type, @p
3193  * start, @p end and @p count values. A rid value is chosen by
3194  * searching sequentially for the first unused rid starting at zero.
3195  *
3196  * @param rl		the resource list to edit
3197  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3198  * @param start		the start address of the resource
3199  * @param end		the end address of the resource
3200  * @param count		XXX end-start+1
3201  */
3202 int
3203 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3204     rman_res_t end, rman_res_t count)
3205 {
3206 	int rid;
3207 
3208 	rid = 0;
3209 	while (resource_list_find(rl, type, rid) != NULL)
3210 		rid++;
3211 	resource_list_add(rl, type, rid, start, end, count);
3212 	return (rid);
3213 }
3214 
3215 /**
3216  * @brief Add or modify a resource entry.
3217  *
3218  * If an existing entry exists with the same type and rid, it will be
3219  * modified using the given values of @p start, @p end and @p
3220  * count. If no entry exists, a new one will be created using the
3221  * given values.  The resource list entry that matches is then returned.
3222  *
3223  * @param rl		the resource list to edit
3224  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3225  * @param rid		the resource identifier
3226  * @param start		the start address of the resource
3227  * @param end		the end address of the resource
3228  * @param count		XXX end-start+1
3229  */
3230 struct resource_list_entry *
3231 resource_list_add(struct resource_list *rl, int type, int rid,
3232     rman_res_t start, rman_res_t end, rman_res_t count)
3233 {
3234 	struct resource_list_entry *rle;
3235 
3236 	rle = resource_list_find(rl, type, rid);
3237 	if (!rle) {
3238 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3239 		    M_NOWAIT);
3240 		if (!rle)
3241 			panic("resource_list_add: can't record entry");
3242 		STAILQ_INSERT_TAIL(rl, rle, link);
3243 		rle->type = type;
3244 		rle->rid = rid;
3245 		rle->res = NULL;
3246 		rle->flags = 0;
3247 	}
3248 
3249 	if (rle->res)
3250 		panic("resource_list_add: resource entry is busy");
3251 
3252 	rle->start = start;
3253 	rle->end = end;
3254 	rle->count = count;
3255 	return (rle);
3256 }
3257 
3258 /**
3259  * @brief Determine if a resource entry is busy.
3260  *
3261  * Returns true if a resource entry is busy meaning that it has an
3262  * associated resource that is not an unallocated "reserved" resource.
3263  *
3264  * @param rl		the resource list to search
3265  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3266  * @param rid		the resource identifier
3267  *
3268  * @returns Non-zero if the entry is busy, zero otherwise.
3269  */
3270 int
3271 resource_list_busy(struct resource_list *rl, int type, int rid)
3272 {
3273 	struct resource_list_entry *rle;
3274 
3275 	rle = resource_list_find(rl, type, rid);
3276 	if (rle == NULL || rle->res == NULL)
3277 		return (0);
3278 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3279 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3280 		    ("reserved resource is active"));
3281 		return (0);
3282 	}
3283 	return (1);
3284 }
3285 
3286 /**
3287  * @brief Determine if a resource entry is reserved.
3288  *
3289  * Returns true if a resource entry is reserved meaning that it has an
3290  * associated "reserved" resource.  The resource can either be
3291  * allocated or unallocated.
3292  *
3293  * @param rl		the resource list to search
3294  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3295  * @param rid		the resource identifier
3296  *
3297  * @returns Non-zero if the entry is reserved, zero otherwise.
3298  */
3299 int
3300 resource_list_reserved(struct resource_list *rl, int type, int rid)
3301 {
3302 	struct resource_list_entry *rle;
3303 
3304 	rle = resource_list_find(rl, type, rid);
3305 	if (rle != NULL && rle->flags & RLE_RESERVED)
3306 		return (1);
3307 	return (0);
3308 }
3309 
3310 /**
3311  * @brief Find a resource entry by type and rid.
3312  *
3313  * @param rl		the resource list to search
3314  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3315  * @param rid		the resource identifier
3316  *
3317  * @returns the resource entry pointer or NULL if there is no such
3318  * entry.
3319  */
3320 struct resource_list_entry *
3321 resource_list_find(struct resource_list *rl, int type, int rid)
3322 {
3323 	struct resource_list_entry *rle;
3324 
3325 	STAILQ_FOREACH(rle, rl, link) {
3326 		if (rle->type == type && rle->rid == rid)
3327 			return (rle);
3328 	}
3329 	return (NULL);
3330 }
3331 
3332 /**
3333  * @brief Delete a resource entry.
3334  *
3335  * @param rl		the resource list to edit
3336  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3337  * @param rid		the resource identifier
3338  */
3339 void
3340 resource_list_delete(struct resource_list *rl, int type, int rid)
3341 {
3342 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3343 
3344 	if (rle) {
3345 		if (rle->res != NULL)
3346 			panic("resource_list_delete: resource has not been released");
3347 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3348 		free(rle, M_BUS);
3349 	}
3350 }
3351 
3352 /**
3353  * @brief Allocate a reserved resource
3354  *
3355  * This can be used by buses to force the allocation of resources
3356  * that are always active in the system even if they are not allocated
3357  * by a driver (e.g. PCI BARs).  This function is usually called when
3358  * adding a new child to the bus.  The resource is allocated from the
3359  * parent bus when it is reserved.  The resource list entry is marked
3360  * with RLE_RESERVED to note that it is a reserved resource.
3361  *
3362  * Subsequent attempts to allocate the resource with
3363  * resource_list_alloc() will succeed the first time and will set
3364  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3365  * resource that has been allocated is released with
3366  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3367  * the actual resource remains allocated.  The resource can be released to
3368  * the parent bus by calling resource_list_unreserve().
3369  *
3370  * @param rl		the resource list to allocate from
3371  * @param bus		the parent device of @p child
3372  * @param child		the device for which the resource is being reserved
3373  * @param type		the type of resource to allocate
3374  * @param rid		a pointer to the resource identifier
3375  * @param start		hint at the start of the resource range - pass
3376  *			@c 0 for any start address
3377  * @param end		hint at the end of the resource range - pass
3378  *			@c ~0 for any end address
3379  * @param count		hint at the size of range required - pass @c 1
3380  *			for any size
3381  * @param flags		any extra flags to control the resource
3382  *			allocation - see @c RF_XXX flags in
3383  *			<sys/rman.h> for details
3384  *
3385  * @returns		the resource which was allocated or @c NULL if no
3386  *			resource could be allocated
3387  */
3388 struct resource *
3389 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3390     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3391 {
3392 	struct resource_list_entry *rle = NULL;
3393 	int passthrough = (device_get_parent(child) != bus);
3394 	struct resource *r;
3395 
3396 	if (passthrough)
3397 		panic(
3398     "resource_list_reserve() should only be called for direct children");
3399 	if (flags & RF_ACTIVE)
3400 		panic(
3401     "resource_list_reserve() should only reserve inactive resources");
3402 
3403 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3404 	    flags);
3405 	if (r != NULL) {
3406 		rle = resource_list_find(rl, type, *rid);
3407 		rle->flags |= RLE_RESERVED;
3408 	}
3409 	return (r);
3410 }
3411 
3412 /**
3413  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3414  *
3415  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3416  * and passing the allocation up to the parent of @p bus. This assumes
3417  * that the first entry of @c device_get_ivars(child) is a struct
3418  * resource_list. This also handles 'passthrough' allocations where a
3419  * child is a remote descendant of bus by passing the allocation up to
3420  * the parent of bus.
3421  *
3422  * Typically, a bus driver would store a list of child resources
3423  * somewhere in the child device's ivars (see device_get_ivars()) and
3424  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3425  * then call resource_list_alloc() to perform the allocation.
3426  *
3427  * @param rl		the resource list to allocate from
3428  * @param bus		the parent device of @p child
3429  * @param child		the device which is requesting an allocation
3430  * @param type		the type of resource to allocate
3431  * @param rid		a pointer to the resource identifier
3432  * @param start		hint at the start of the resource range - pass
3433  *			@c 0 for any start address
3434  * @param end		hint at the end of the resource range - pass
3435  *			@c ~0 for any end address
3436  * @param count		hint at the size of range required - pass @c 1
3437  *			for any size
3438  * @param flags		any extra flags to control the resource
3439  *			allocation - see @c RF_XXX flags in
3440  *			<sys/rman.h> for details
3441  *
3442  * @returns		the resource which was allocated or @c NULL if no
3443  *			resource could be allocated
3444  */
3445 struct resource *
3446 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3447     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3448 {
3449 	struct resource_list_entry *rle = NULL;
3450 	int passthrough = (device_get_parent(child) != bus);
3451 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3452 
3453 	if (passthrough) {
3454 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3455 		    type, rid, start, end, count, flags));
3456 	}
3457 
3458 	rle = resource_list_find(rl, type, *rid);
3459 
3460 	if (!rle)
3461 		return (NULL);		/* no resource of that type/rid */
3462 
3463 	if (rle->res) {
3464 		if (rle->flags & RLE_RESERVED) {
3465 			if (rle->flags & RLE_ALLOCATED)
3466 				return (NULL);
3467 			if ((flags & RF_ACTIVE) &&
3468 			    bus_activate_resource(child, type, *rid,
3469 			    rle->res) != 0)
3470 				return (NULL);
3471 			rle->flags |= RLE_ALLOCATED;
3472 			return (rle->res);
3473 		}
3474 		device_printf(bus,
3475 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3476 		    type, device_get_nameunit(child));
3477 		return (NULL);
3478 	}
3479 
3480 	if (isdefault) {
3481 		start = rle->start;
3482 		count = ulmax(count, rle->count);
3483 		end = ulmax(rle->end, start + count - 1);
3484 	}
3485 
3486 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3487 	    type, rid, start, end, count, flags);
3488 
3489 	/*
3490 	 * Record the new range.
3491 	 */
3492 	if (rle->res) {
3493 		rle->start = rman_get_start(rle->res);
3494 		rle->end = rman_get_end(rle->res);
3495 		rle->count = count;
3496 	}
3497 
3498 	return (rle->res);
3499 }
3500 
3501 /**
3502  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3503  *
3504  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3505  * used with resource_list_alloc().
3506  *
3507  * @param rl		the resource list which was allocated from
3508  * @param bus		the parent device of @p child
3509  * @param child		the device which is requesting a release
3510  * @param type		the type of resource to release
3511  * @param rid		the resource identifier
3512  * @param res		the resource to release
3513  *
3514  * @retval 0		success
3515  * @retval non-zero	a standard unix error code indicating what
3516  *			error condition prevented the operation
3517  */
3518 int
3519 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3520     int type, int rid, struct resource *res)
3521 {
3522 	struct resource_list_entry *rle = NULL;
3523 	int passthrough = (device_get_parent(child) != bus);
3524 	int error;
3525 
3526 	if (passthrough) {
3527 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3528 		    type, rid, res));
3529 	}
3530 
3531 	rle = resource_list_find(rl, type, rid);
3532 
3533 	if (!rle)
3534 		panic("resource_list_release: can't find resource");
3535 	if (!rle->res)
3536 		panic("resource_list_release: resource entry is not busy");
3537 	if (rle->flags & RLE_RESERVED) {
3538 		if (rle->flags & RLE_ALLOCATED) {
3539 			if (rman_get_flags(res) & RF_ACTIVE) {
3540 				error = bus_deactivate_resource(child, type,
3541 				    rid, res);
3542 				if (error)
3543 					return (error);
3544 			}
3545 			rle->flags &= ~RLE_ALLOCATED;
3546 			return (0);
3547 		}
3548 		return (EINVAL);
3549 	}
3550 
3551 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3552 	    type, rid, res);
3553 	if (error)
3554 		return (error);
3555 
3556 	rle->res = NULL;
3557 	return (0);
3558 }
3559 
3560 /**
3561  * @brief Release all active resources of a given type
3562  *
3563  * Release all active resources of a specified type.  This is intended
3564  * to be used to cleanup resources leaked by a driver after detach or
3565  * a failed attach.
3566  *
3567  * @param rl		the resource list which was allocated from
3568  * @param bus		the parent device of @p child
3569  * @param child		the device whose active resources are being released
3570  * @param type		the type of resources to release
3571  *
3572  * @retval 0		success
3573  * @retval EBUSY	at least one resource was active
3574  */
3575 int
3576 resource_list_release_active(struct resource_list *rl, device_t bus,
3577     device_t child, int type)
3578 {
3579 	struct resource_list_entry *rle;
3580 	int error, retval;
3581 
3582 	retval = 0;
3583 	STAILQ_FOREACH(rle, rl, link) {
3584 		if (rle->type != type)
3585 			continue;
3586 		if (rle->res == NULL)
3587 			continue;
3588 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3589 		    RLE_RESERVED)
3590 			continue;
3591 		retval = EBUSY;
3592 		error = resource_list_release(rl, bus, child, type,
3593 		    rman_get_rid(rle->res), rle->res);
3594 		if (error != 0)
3595 			device_printf(bus,
3596 			    "Failed to release active resource: %d\n", error);
3597 	}
3598 	return (retval);
3599 }
3600 
3601 /**
3602  * @brief Fully release a reserved resource
3603  *
3604  * Fully releases a resource reserved via resource_list_reserve().
3605  *
3606  * @param rl		the resource list which was allocated from
3607  * @param bus		the parent device of @p child
3608  * @param child		the device whose reserved resource is being released
3609  * @param type		the type of resource to release
3610  * @param rid		the resource identifier
3611  * @param res		the resource to release
3612  *
3613  * @retval 0		success
3614  * @retval non-zero	a standard unix error code indicating what
3615  *			error condition prevented the operation
3616  */
3617 int
3618 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3619     int type, int rid)
3620 {
3621 	struct resource_list_entry *rle = NULL;
3622 	int passthrough = (device_get_parent(child) != bus);
3623 
3624 	if (passthrough)
3625 		panic(
3626     "resource_list_unreserve() should only be called for direct children");
3627 
3628 	rle = resource_list_find(rl, type, rid);
3629 
3630 	if (!rle)
3631 		panic("resource_list_unreserve: can't find resource");
3632 	if (!(rle->flags & RLE_RESERVED))
3633 		return (EINVAL);
3634 	if (rle->flags & RLE_ALLOCATED)
3635 		return (EBUSY);
3636 	rle->flags &= ~RLE_RESERVED;
3637 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3638 }
3639 
3640 /**
3641  * @brief Print a description of resources in a resource list
3642  *
3643  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3644  * The name is printed if at least one resource of the given type is available.
3645  * The format is used to print resource start and end.
3646  *
3647  * @param rl		the resource list to print
3648  * @param name		the name of @p type, e.g. @c "memory"
3649  * @param type		type type of resource entry to print
3650  * @param format	printf(9) format string to print resource
3651  *			start and end values
3652  *
3653  * @returns		the number of characters printed
3654  */
3655 int
3656 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3657     const char *format)
3658 {
3659 	struct resource_list_entry *rle;
3660 	int printed, retval;
3661 
3662 	printed = 0;
3663 	retval = 0;
3664 	/* Yes, this is kinda cheating */
3665 	STAILQ_FOREACH(rle, rl, link) {
3666 		if (rle->type == type) {
3667 			if (printed == 0)
3668 				retval += printf(" %s ", name);
3669 			else
3670 				retval += printf(",");
3671 			printed++;
3672 			retval += printf(format, rle->start);
3673 			if (rle->count > 1) {
3674 				retval += printf("-");
3675 				retval += printf(format, rle->start +
3676 						 rle->count - 1);
3677 			}
3678 		}
3679 	}
3680 	return (retval);
3681 }
3682 
3683 /**
3684  * @brief Releases all the resources in a list.
3685  *
3686  * @param rl		The resource list to purge.
3687  *
3688  * @returns		nothing
3689  */
3690 void
3691 resource_list_purge(struct resource_list *rl)
3692 {
3693 	struct resource_list_entry *rle;
3694 
3695 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3696 		if (rle->res)
3697 			bus_release_resource(rman_get_device(rle->res),
3698 			    rle->type, rle->rid, rle->res);
3699 		STAILQ_REMOVE_HEAD(rl, link);
3700 		free(rle, M_BUS);
3701 	}
3702 }
3703 
3704 device_t
3705 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3706 {
3707 
3708 	return (device_add_child_ordered(dev, order, name, unit));
3709 }
3710 
3711 /**
3712  * @brief Helper function for implementing DEVICE_PROBE()
3713  *
3714  * This function can be used to help implement the DEVICE_PROBE() for
3715  * a bus (i.e. a device which has other devices attached to it). It
3716  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3717  * devclass.
3718  */
3719 int
3720 bus_generic_probe(device_t dev)
3721 {
3722 	devclass_t dc = dev->devclass;
3723 	driverlink_t dl;
3724 
3725 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3726 		/*
3727 		 * If this driver's pass is too high, then ignore it.
3728 		 * For most drivers in the default pass, this will
3729 		 * never be true.  For early-pass drivers they will
3730 		 * only call the identify routines of eligible drivers
3731 		 * when this routine is called.  Drivers for later
3732 		 * passes should have their identify routines called
3733 		 * on early-pass buses during BUS_NEW_PASS().
3734 		 */
3735 		if (dl->pass > bus_current_pass)
3736 			continue;
3737 		DEVICE_IDENTIFY(dl->driver, dev);
3738 	}
3739 
3740 	return (0);
3741 }
3742 
3743 /**
3744  * @brief Helper function for implementing DEVICE_ATTACH()
3745  *
3746  * This function can be used to help implement the DEVICE_ATTACH() for
3747  * a bus. It calls device_probe_and_attach() for each of the device's
3748  * children.
3749  */
3750 int
3751 bus_generic_attach(device_t dev)
3752 {
3753 	device_t child;
3754 
3755 	TAILQ_FOREACH(child, &dev->children, link) {
3756 		device_probe_and_attach(child);
3757 	}
3758 
3759 	return (0);
3760 }
3761 
3762 /**
3763  * @brief Helper function for delaying attaching children
3764  *
3765  * Many buses can't run transactions on the bus which children need to probe and
3766  * attach until after interrupts and/or timers are running.  This function
3767  * delays their attach until interrupts and timers are enabled.
3768  */
3769 int
3770 bus_delayed_attach_children(device_t dev)
3771 {
3772 	/* Probe and attach the bus children when interrupts are available */
3773 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3774 
3775 	return (0);
3776 }
3777 
3778 /**
3779  * @brief Helper function for implementing DEVICE_DETACH()
3780  *
3781  * This function can be used to help implement the DEVICE_DETACH() for
3782  * a bus. It calls device_detach() for each of the device's
3783  * children.
3784  */
3785 int
3786 bus_generic_detach(device_t dev)
3787 {
3788 	device_t child;
3789 	int error;
3790 
3791 	if (dev->state != DS_ATTACHED)
3792 		return (EBUSY);
3793 
3794 	/*
3795 	 * Detach children in the reverse order.
3796 	 * See bus_generic_suspend for details.
3797 	 */
3798 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3799 		if ((error = device_detach(child)) != 0)
3800 			return (error);
3801 	}
3802 
3803 	return (0);
3804 }
3805 
3806 /**
3807  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3808  *
3809  * This function can be used to help implement the DEVICE_SHUTDOWN()
3810  * for a bus. It calls device_shutdown() for each of the device's
3811  * children.
3812  */
3813 int
3814 bus_generic_shutdown(device_t dev)
3815 {
3816 	device_t child;
3817 
3818 	/*
3819 	 * Shut down children in the reverse order.
3820 	 * See bus_generic_suspend for details.
3821 	 */
3822 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3823 		device_shutdown(child);
3824 	}
3825 
3826 	return (0);
3827 }
3828 
3829 /**
3830  * @brief Default function for suspending a child device.
3831  *
3832  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3833  */
3834 int
3835 bus_generic_suspend_child(device_t dev, device_t child)
3836 {
3837 	int	error;
3838 
3839 	error = DEVICE_SUSPEND(child);
3840 
3841 	if (error == 0)
3842 		child->flags |= DF_SUSPENDED;
3843 
3844 	return (error);
3845 }
3846 
3847 /**
3848  * @brief Default function for resuming a child device.
3849  *
3850  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3851  */
3852 int
3853 bus_generic_resume_child(device_t dev, device_t child)
3854 {
3855 
3856 	DEVICE_RESUME(child);
3857 	child->flags &= ~DF_SUSPENDED;
3858 
3859 	return (0);
3860 }
3861 
3862 /**
3863  * @brief Helper function for implementing DEVICE_SUSPEND()
3864  *
3865  * This function can be used to help implement the DEVICE_SUSPEND()
3866  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3867  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3868  * operation is aborted and any devices which were suspended are
3869  * resumed immediately by calling their DEVICE_RESUME() methods.
3870  */
3871 int
3872 bus_generic_suspend(device_t dev)
3873 {
3874 	int		error;
3875 	device_t	child;
3876 
3877 	/*
3878 	 * Suspend children in the reverse order.
3879 	 * For most buses all children are equal, so the order does not matter.
3880 	 * Other buses, such as acpi, carefully order their child devices to
3881 	 * express implicit dependencies between them.  For such buses it is
3882 	 * safer to bring down devices in the reverse order.
3883 	 */
3884 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3885 		error = BUS_SUSPEND_CHILD(dev, child);
3886 		if (error != 0) {
3887 			child = TAILQ_NEXT(child, link);
3888 			if (child != NULL) {
3889 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3890 					BUS_RESUME_CHILD(dev, child);
3891 			}
3892 			return (error);
3893 		}
3894 	}
3895 	return (0);
3896 }
3897 
3898 /**
3899  * @brief Helper function for implementing DEVICE_RESUME()
3900  *
3901  * This function can be used to help implement the DEVICE_RESUME() for
3902  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3903  */
3904 int
3905 bus_generic_resume(device_t dev)
3906 {
3907 	device_t	child;
3908 
3909 	TAILQ_FOREACH(child, &dev->children, link) {
3910 		BUS_RESUME_CHILD(dev, child);
3911 		/* if resume fails, there's nothing we can usefully do... */
3912 	}
3913 	return (0);
3914 }
3915 
3916 /**
3917  * @brief Helper function for implementing BUS_RESET_POST
3918  *
3919  * Bus can use this function to implement common operations of
3920  * re-attaching or resuming the children after the bus itself was
3921  * reset, and after restoring bus-unique state of children.
3922  *
3923  * @param dev	The bus
3924  * #param flags	DEVF_RESET_*
3925  */
3926 int
3927 bus_helper_reset_post(device_t dev, int flags)
3928 {
3929 	device_t child;
3930 	int error, error1;
3931 
3932 	error = 0;
3933 	TAILQ_FOREACH(child, &dev->children,link) {
3934 		BUS_RESET_POST(dev, child);
3935 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3936 		    device_probe_and_attach(child) :
3937 		    BUS_RESUME_CHILD(dev, child);
3938 		if (error == 0 && error1 != 0)
3939 			error = error1;
3940 	}
3941 	return (error);
3942 }
3943 
3944 static void
3945 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3946 {
3947 
3948 	child = TAILQ_NEXT(child, link);
3949 	if (child == NULL)
3950 		return;
3951 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3952 		BUS_RESET_POST(dev, child);
3953 		if ((flags & DEVF_RESET_DETACH) != 0)
3954 			device_probe_and_attach(child);
3955 		else
3956 			BUS_RESUME_CHILD(dev, child);
3957 	}
3958 }
3959 
3960 /**
3961  * @brief Helper function for implementing BUS_RESET_PREPARE
3962  *
3963  * Bus can use this function to implement common operations of
3964  * detaching or suspending the children before the bus itself is
3965  * reset, and then save bus-unique state of children that must
3966  * persists around reset.
3967  *
3968  * @param dev	The bus
3969  * #param flags	DEVF_RESET_*
3970  */
3971 int
3972 bus_helper_reset_prepare(device_t dev, int flags)
3973 {
3974 	device_t child;
3975 	int error;
3976 
3977 	if (dev->state != DS_ATTACHED)
3978 		return (EBUSY);
3979 
3980 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3981 		if ((flags & DEVF_RESET_DETACH) != 0) {
3982 			error = device_get_state(child) == DS_ATTACHED ?
3983 			    device_detach(child) : 0;
3984 		} else {
3985 			error = BUS_SUSPEND_CHILD(dev, child);
3986 		}
3987 		if (error == 0) {
3988 			error = BUS_RESET_PREPARE(dev, child);
3989 			if (error != 0) {
3990 				if ((flags & DEVF_RESET_DETACH) != 0)
3991 					device_probe_and_attach(child);
3992 				else
3993 					BUS_RESUME_CHILD(dev, child);
3994 			}
3995 		}
3996 		if (error != 0) {
3997 			bus_helper_reset_prepare_rollback(dev, child, flags);
3998 			return (error);
3999 		}
4000 	}
4001 	return (0);
4002 }
4003 
4004 /**
4005  * @brief Helper function for implementing BUS_PRINT_CHILD().
4006  *
4007  * This function prints the first part of the ascii representation of
4008  * @p child, including its name, unit and description (if any - see
4009  * device_set_desc()).
4010  *
4011  * @returns the number of characters printed
4012  */
4013 int
4014 bus_print_child_header(device_t dev, device_t child)
4015 {
4016 	int	retval = 0;
4017 
4018 	if (device_get_desc(child)) {
4019 		retval += device_printf(child, "<%s>", device_get_desc(child));
4020 	} else {
4021 		retval += printf("%s", device_get_nameunit(child));
4022 	}
4023 
4024 	return (retval);
4025 }
4026 
4027 /**
4028  * @brief Helper function for implementing BUS_PRINT_CHILD().
4029  *
4030  * This function prints the last part of the ascii representation of
4031  * @p child, which consists of the string @c " on " followed by the
4032  * name and unit of the @p dev.
4033  *
4034  * @returns the number of characters printed
4035  */
4036 int
4037 bus_print_child_footer(device_t dev, device_t child)
4038 {
4039 	return (printf(" on %s\n", device_get_nameunit(dev)));
4040 }
4041 
4042 /**
4043  * @brief Helper function for implementing BUS_PRINT_CHILD().
4044  *
4045  * This function prints out the VM domain for the given device.
4046  *
4047  * @returns the number of characters printed
4048  */
4049 int
4050 bus_print_child_domain(device_t dev, device_t child)
4051 {
4052 	int domain;
4053 
4054 	/* No domain? Don't print anything */
4055 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
4056 		return (0);
4057 
4058 	return (printf(" numa-domain %d", domain));
4059 }
4060 
4061 /**
4062  * @brief Helper function for implementing BUS_PRINT_CHILD().
4063  *
4064  * This function simply calls bus_print_child_header() followed by
4065  * bus_print_child_footer().
4066  *
4067  * @returns the number of characters printed
4068  */
4069 int
4070 bus_generic_print_child(device_t dev, device_t child)
4071 {
4072 	int	retval = 0;
4073 
4074 	retval += bus_print_child_header(dev, child);
4075 	retval += bus_print_child_domain(dev, child);
4076 	retval += bus_print_child_footer(dev, child);
4077 
4078 	return (retval);
4079 }
4080 
4081 /**
4082  * @brief Stub function for implementing BUS_READ_IVAR().
4083  *
4084  * @returns ENOENT
4085  */
4086 int
4087 bus_generic_read_ivar(device_t dev, device_t child, int index,
4088     uintptr_t * result)
4089 {
4090 	return (ENOENT);
4091 }
4092 
4093 /**
4094  * @brief Stub function for implementing BUS_WRITE_IVAR().
4095  *
4096  * @returns ENOENT
4097  */
4098 int
4099 bus_generic_write_ivar(device_t dev, device_t child, int index,
4100     uintptr_t value)
4101 {
4102 	return (ENOENT);
4103 }
4104 
4105 /**
4106  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
4107  *
4108  * @returns NULL
4109  */
4110 struct resource_list *
4111 bus_generic_get_resource_list(device_t dev, device_t child)
4112 {
4113 	return (NULL);
4114 }
4115 
4116 /**
4117  * @brief Helper function for implementing BUS_DRIVER_ADDED().
4118  *
4119  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
4120  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
4121  * and then calls device_probe_and_attach() for each unattached child.
4122  */
4123 void
4124 bus_generic_driver_added(device_t dev, driver_t *driver)
4125 {
4126 	device_t child;
4127 
4128 	DEVICE_IDENTIFY(driver, dev);
4129 	TAILQ_FOREACH(child, &dev->children, link) {
4130 		if (child->state == DS_NOTPRESENT ||
4131 		    (child->flags & DF_REBID))
4132 			device_probe_and_attach(child);
4133 	}
4134 }
4135 
4136 /**
4137  * @brief Helper function for implementing BUS_NEW_PASS().
4138  *
4139  * This implementing of BUS_NEW_PASS() first calls the identify
4140  * routines for any drivers that probe at the current pass.  Then it
4141  * walks the list of devices for this bus.  If a device is already
4142  * attached, then it calls BUS_NEW_PASS() on that device.  If the
4143  * device is not already attached, it attempts to attach a driver to
4144  * it.
4145  */
4146 void
4147 bus_generic_new_pass(device_t dev)
4148 {
4149 	driverlink_t dl;
4150 	devclass_t dc;
4151 	device_t child;
4152 
4153 	dc = dev->devclass;
4154 	TAILQ_FOREACH(dl, &dc->drivers, link) {
4155 		if (dl->pass == bus_current_pass)
4156 			DEVICE_IDENTIFY(dl->driver, dev);
4157 	}
4158 	TAILQ_FOREACH(child, &dev->children, link) {
4159 		if (child->state >= DS_ATTACHED)
4160 			BUS_NEW_PASS(child);
4161 		else if (child->state == DS_NOTPRESENT)
4162 			device_probe_and_attach(child);
4163 	}
4164 }
4165 
4166 /**
4167  * @brief Helper function for implementing BUS_SETUP_INTR().
4168  *
4169  * This simple implementation of BUS_SETUP_INTR() simply calls the
4170  * BUS_SETUP_INTR() method of the parent of @p dev.
4171  */
4172 int
4173 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
4174     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
4175     void **cookiep)
4176 {
4177 	/* Propagate up the bus hierarchy until someone handles it. */
4178 	if (dev->parent)
4179 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
4180 		    filter, intr, arg, cookiep));
4181 	return (EINVAL);
4182 }
4183 
4184 /**
4185  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
4186  *
4187  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
4188  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4189  */
4190 int
4191 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4192     void *cookie)
4193 {
4194 	/* Propagate up the bus hierarchy until someone handles it. */
4195 	if (dev->parent)
4196 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4197 	return (EINVAL);
4198 }
4199 
4200 /**
4201  * @brief Helper function for implementing BUS_SUSPEND_INTR().
4202  *
4203  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
4204  * BUS_SUSPEND_INTR() method of the parent of @p dev.
4205  */
4206 int
4207 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
4208 {
4209 	/* Propagate up the bus hierarchy until someone handles it. */
4210 	if (dev->parent)
4211 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
4212 	return (EINVAL);
4213 }
4214 
4215 /**
4216  * @brief Helper function for implementing BUS_RESUME_INTR().
4217  *
4218  * This simple implementation of BUS_RESUME_INTR() simply calls the
4219  * BUS_RESUME_INTR() method of the parent of @p dev.
4220  */
4221 int
4222 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
4223 {
4224 	/* Propagate up the bus hierarchy until someone handles it. */
4225 	if (dev->parent)
4226 		return (BUS_RESUME_INTR(dev->parent, child, irq));
4227 	return (EINVAL);
4228 }
4229 
4230 /**
4231  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4232  *
4233  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4234  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4235  */
4236 int
4237 bus_generic_adjust_resource(device_t dev, device_t child, int type,
4238     struct resource *r, rman_res_t start, rman_res_t end)
4239 {
4240 	/* Propagate up the bus hierarchy until someone handles it. */
4241 	if (dev->parent)
4242 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4243 		    end));
4244 	return (EINVAL);
4245 }
4246 
4247 /**
4248  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4249  *
4250  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4251  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4252  */
4253 struct resource *
4254 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4255     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4256 {
4257 	/* Propagate up the bus hierarchy until someone handles it. */
4258 	if (dev->parent)
4259 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4260 		    start, end, count, flags));
4261 	return (NULL);
4262 }
4263 
4264 /**
4265  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4266  *
4267  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4268  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4269  */
4270 int
4271 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4272     struct resource *r)
4273 {
4274 	/* Propagate up the bus hierarchy until someone handles it. */
4275 	if (dev->parent)
4276 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4277 		    r));
4278 	return (EINVAL);
4279 }
4280 
4281 /**
4282  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4283  *
4284  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4285  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4286  */
4287 int
4288 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4289     struct resource *r)
4290 {
4291 	/* Propagate up the bus hierarchy until someone handles it. */
4292 	if (dev->parent)
4293 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4294 		    r));
4295 	return (EINVAL);
4296 }
4297 
4298 /**
4299  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4300  *
4301  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4302  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4303  */
4304 int
4305 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4306     int rid, struct resource *r)
4307 {
4308 	/* Propagate up the bus hierarchy until someone handles it. */
4309 	if (dev->parent)
4310 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4311 		    r));
4312 	return (EINVAL);
4313 }
4314 
4315 /**
4316  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4317  *
4318  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4319  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4320  */
4321 int
4322 bus_generic_map_resource(device_t dev, device_t child, int type,
4323     struct resource *r, struct resource_map_request *args,
4324     struct resource_map *map)
4325 {
4326 	/* Propagate up the bus hierarchy until someone handles it. */
4327 	if (dev->parent)
4328 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4329 		    map));
4330 	return (EINVAL);
4331 }
4332 
4333 /**
4334  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4335  *
4336  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4337  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4338  */
4339 int
4340 bus_generic_unmap_resource(device_t dev, device_t child, int type,
4341     struct resource *r, struct resource_map *map)
4342 {
4343 	/* Propagate up the bus hierarchy until someone handles it. */
4344 	if (dev->parent)
4345 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4346 	return (EINVAL);
4347 }
4348 
4349 /**
4350  * @brief Helper function for implementing BUS_BIND_INTR().
4351  *
4352  * This simple implementation of BUS_BIND_INTR() simply calls the
4353  * BUS_BIND_INTR() method of the parent of @p dev.
4354  */
4355 int
4356 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4357     int cpu)
4358 {
4359 
4360 	/* Propagate up the bus hierarchy until someone handles it. */
4361 	if (dev->parent)
4362 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4363 	return (EINVAL);
4364 }
4365 
4366 /**
4367  * @brief Helper function for implementing BUS_CONFIG_INTR().
4368  *
4369  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4370  * BUS_CONFIG_INTR() method of the parent of @p dev.
4371  */
4372 int
4373 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4374     enum intr_polarity pol)
4375 {
4376 
4377 	/* Propagate up the bus hierarchy until someone handles it. */
4378 	if (dev->parent)
4379 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4380 	return (EINVAL);
4381 }
4382 
4383 /**
4384  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4385  *
4386  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4387  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4388  */
4389 int
4390 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4391     void *cookie, const char *descr)
4392 {
4393 
4394 	/* Propagate up the bus hierarchy until someone handles it. */
4395 	if (dev->parent)
4396 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4397 		    descr));
4398 	return (EINVAL);
4399 }
4400 
4401 /**
4402  * @brief Helper function for implementing BUS_GET_CPUS().
4403  *
4404  * This simple implementation of BUS_GET_CPUS() simply calls the
4405  * BUS_GET_CPUS() method of the parent of @p dev.
4406  */
4407 int
4408 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4409     size_t setsize, cpuset_t *cpuset)
4410 {
4411 
4412 	/* Propagate up the bus hierarchy until someone handles it. */
4413 	if (dev->parent != NULL)
4414 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4415 	return (EINVAL);
4416 }
4417 
4418 /**
4419  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4420  *
4421  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4422  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4423  */
4424 bus_dma_tag_t
4425 bus_generic_get_dma_tag(device_t dev, device_t child)
4426 {
4427 
4428 	/* Propagate up the bus hierarchy until someone handles it. */
4429 	if (dev->parent != NULL)
4430 		return (BUS_GET_DMA_TAG(dev->parent, child));
4431 	return (NULL);
4432 }
4433 
4434 /**
4435  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4436  *
4437  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4438  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4439  */
4440 bus_space_tag_t
4441 bus_generic_get_bus_tag(device_t dev, device_t child)
4442 {
4443 
4444 	/* Propagate up the bus hierarchy until someone handles it. */
4445 	if (dev->parent != NULL)
4446 		return (BUS_GET_BUS_TAG(dev->parent, child));
4447 	return ((bus_space_tag_t)0);
4448 }
4449 
4450 /**
4451  * @brief Helper function for implementing BUS_GET_RESOURCE().
4452  *
4453  * This implementation of BUS_GET_RESOURCE() uses the
4454  * resource_list_find() function to do most of the work. It calls
4455  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4456  * search.
4457  */
4458 int
4459 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4460     rman_res_t *startp, rman_res_t *countp)
4461 {
4462 	struct resource_list *		rl = NULL;
4463 	struct resource_list_entry *	rle = NULL;
4464 
4465 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4466 	if (!rl)
4467 		return (EINVAL);
4468 
4469 	rle = resource_list_find(rl, type, rid);
4470 	if (!rle)
4471 		return (ENOENT);
4472 
4473 	if (startp)
4474 		*startp = rle->start;
4475 	if (countp)
4476 		*countp = rle->count;
4477 
4478 	return (0);
4479 }
4480 
4481 /**
4482  * @brief Helper function for implementing BUS_SET_RESOURCE().
4483  *
4484  * This implementation of BUS_SET_RESOURCE() uses the
4485  * resource_list_add() function to do most of the work. It calls
4486  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4487  * edit.
4488  */
4489 int
4490 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4491     rman_res_t start, rman_res_t count)
4492 {
4493 	struct resource_list *		rl = NULL;
4494 
4495 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4496 	if (!rl)
4497 		return (EINVAL);
4498 
4499 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4500 
4501 	return (0);
4502 }
4503 
4504 /**
4505  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4506  *
4507  * This implementation of BUS_DELETE_RESOURCE() uses the
4508  * resource_list_delete() function to do most of the work. It calls
4509  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4510  * edit.
4511  */
4512 void
4513 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4514 {
4515 	struct resource_list *		rl = NULL;
4516 
4517 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4518 	if (!rl)
4519 		return;
4520 
4521 	resource_list_delete(rl, type, rid);
4522 
4523 	return;
4524 }
4525 
4526 /**
4527  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4528  *
4529  * This implementation of BUS_RELEASE_RESOURCE() uses the
4530  * resource_list_release() function to do most of the work. It calls
4531  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4532  */
4533 int
4534 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4535     int rid, struct resource *r)
4536 {
4537 	struct resource_list *		rl = NULL;
4538 
4539 	if (device_get_parent(child) != dev)
4540 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4541 		    type, rid, r));
4542 
4543 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4544 	if (!rl)
4545 		return (EINVAL);
4546 
4547 	return (resource_list_release(rl, dev, child, type, rid, r));
4548 }
4549 
4550 /**
4551  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4552  *
4553  * This implementation of BUS_ALLOC_RESOURCE() uses the
4554  * resource_list_alloc() function to do most of the work. It calls
4555  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4556  */
4557 struct resource *
4558 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4559     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4560 {
4561 	struct resource_list *		rl = NULL;
4562 
4563 	if (device_get_parent(child) != dev)
4564 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4565 		    type, rid, start, end, count, flags));
4566 
4567 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4568 	if (!rl)
4569 		return (NULL);
4570 
4571 	return (resource_list_alloc(rl, dev, child, type, rid,
4572 	    start, end, count, flags));
4573 }
4574 
4575 /**
4576  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4577  *
4578  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4579  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4580  */
4581 int
4582 bus_generic_child_present(device_t dev, device_t child)
4583 {
4584 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4585 }
4586 
4587 int
4588 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4589 {
4590 
4591 	if (dev->parent)
4592 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4593 
4594 	return (ENOENT);
4595 }
4596 
4597 /**
4598  * @brief Helper function for implementing BUS_RESCAN().
4599  *
4600  * This null implementation of BUS_RESCAN() always fails to indicate
4601  * the bus does not support rescanning.
4602  */
4603 int
4604 bus_null_rescan(device_t dev)
4605 {
4606 
4607 	return (ENXIO);
4608 }
4609 
4610 /*
4611  * Some convenience functions to make it easier for drivers to use the
4612  * resource-management functions.  All these really do is hide the
4613  * indirection through the parent's method table, making for slightly
4614  * less-wordy code.  In the future, it might make sense for this code
4615  * to maintain some sort of a list of resources allocated by each device.
4616  */
4617 
4618 int
4619 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4620     struct resource **res)
4621 {
4622 	int i;
4623 
4624 	for (i = 0; rs[i].type != -1; i++)
4625 		res[i] = NULL;
4626 	for (i = 0; rs[i].type != -1; i++) {
4627 		res[i] = bus_alloc_resource_any(dev,
4628 		    rs[i].type, &rs[i].rid, rs[i].flags);
4629 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4630 			bus_release_resources(dev, rs, res);
4631 			return (ENXIO);
4632 		}
4633 	}
4634 	return (0);
4635 }
4636 
4637 void
4638 bus_release_resources(device_t dev, const struct resource_spec *rs,
4639     struct resource **res)
4640 {
4641 	int i;
4642 
4643 	for (i = 0; rs[i].type != -1; i++)
4644 		if (res[i] != NULL) {
4645 			bus_release_resource(
4646 			    dev, rs[i].type, rs[i].rid, res[i]);
4647 			res[i] = NULL;
4648 		}
4649 }
4650 
4651 /**
4652  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4653  *
4654  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4655  * parent of @p dev.
4656  */
4657 struct resource *
4658 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4659     rman_res_t end, rman_res_t count, u_int flags)
4660 {
4661 	struct resource *res;
4662 
4663 	if (dev->parent == NULL)
4664 		return (NULL);
4665 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4666 	    count, flags);
4667 	return (res);
4668 }
4669 
4670 /**
4671  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4672  *
4673  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4674  * parent of @p dev.
4675  */
4676 int
4677 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4678     rman_res_t end)
4679 {
4680 	if (dev->parent == NULL)
4681 		return (EINVAL);
4682 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4683 }
4684 
4685 /**
4686  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4687  *
4688  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4689  * parent of @p dev.
4690  */
4691 int
4692 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4693 {
4694 	if (dev->parent == NULL)
4695 		return (EINVAL);
4696 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4697 }
4698 
4699 /**
4700  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4701  *
4702  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4703  * parent of @p dev.
4704  */
4705 int
4706 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4707 {
4708 	if (dev->parent == NULL)
4709 		return (EINVAL);
4710 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4711 }
4712 
4713 /**
4714  * @brief Wrapper function for BUS_MAP_RESOURCE().
4715  *
4716  * This function simply calls the BUS_MAP_RESOURCE() method of the
4717  * parent of @p dev.
4718  */
4719 int
4720 bus_map_resource(device_t dev, int type, struct resource *r,
4721     struct resource_map_request *args, struct resource_map *map)
4722 {
4723 	if (dev->parent == NULL)
4724 		return (EINVAL);
4725 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4726 }
4727 
4728 /**
4729  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4730  *
4731  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4732  * parent of @p dev.
4733  */
4734 int
4735 bus_unmap_resource(device_t dev, int type, struct resource *r,
4736     struct resource_map *map)
4737 {
4738 	if (dev->parent == NULL)
4739 		return (EINVAL);
4740 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4741 }
4742 
4743 /**
4744  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4745  *
4746  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4747  * parent of @p dev.
4748  */
4749 int
4750 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4751 {
4752 	int rv;
4753 
4754 	if (dev->parent == NULL)
4755 		return (EINVAL);
4756 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4757 	return (rv);
4758 }
4759 
4760 /**
4761  * @brief Wrapper function for BUS_SETUP_INTR().
4762  *
4763  * This function simply calls the BUS_SETUP_INTR() method of the
4764  * parent of @p dev.
4765  */
4766 int
4767 bus_setup_intr(device_t dev, struct resource *r, int flags,
4768     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4769 {
4770 	int error;
4771 
4772 	if (dev->parent == NULL)
4773 		return (EINVAL);
4774 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4775 	    arg, cookiep);
4776 	if (error != 0)
4777 		return (error);
4778 	if (handler != NULL && !(flags & INTR_MPSAFE))
4779 		device_printf(dev, "[GIANT-LOCKED]\n");
4780 	return (0);
4781 }
4782 
4783 /**
4784  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4785  *
4786  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4787  * parent of @p dev.
4788  */
4789 int
4790 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4791 {
4792 	if (dev->parent == NULL)
4793 		return (EINVAL);
4794 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4795 }
4796 
4797 /**
4798  * @brief Wrapper function for BUS_SUSPEND_INTR().
4799  *
4800  * This function simply calls the BUS_SUSPEND_INTR() method of the
4801  * parent of @p dev.
4802  */
4803 int
4804 bus_suspend_intr(device_t dev, struct resource *r)
4805 {
4806 	if (dev->parent == NULL)
4807 		return (EINVAL);
4808 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4809 }
4810 
4811 /**
4812  * @brief Wrapper function for BUS_RESUME_INTR().
4813  *
4814  * This function simply calls the BUS_RESUME_INTR() method of the
4815  * parent of @p dev.
4816  */
4817 int
4818 bus_resume_intr(device_t dev, struct resource *r)
4819 {
4820 	if (dev->parent == NULL)
4821 		return (EINVAL);
4822 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4823 }
4824 
4825 /**
4826  * @brief Wrapper function for BUS_BIND_INTR().
4827  *
4828  * This function simply calls the BUS_BIND_INTR() method of the
4829  * parent of @p dev.
4830  */
4831 int
4832 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4833 {
4834 	if (dev->parent == NULL)
4835 		return (EINVAL);
4836 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4837 }
4838 
4839 /**
4840  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4841  *
4842  * This function first formats the requested description into a
4843  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4844  * the parent of @p dev.
4845  */
4846 int
4847 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4848     const char *fmt, ...)
4849 {
4850 	va_list ap;
4851 	char descr[MAXCOMLEN + 1];
4852 
4853 	if (dev->parent == NULL)
4854 		return (EINVAL);
4855 	va_start(ap, fmt);
4856 	vsnprintf(descr, sizeof(descr), fmt, ap);
4857 	va_end(ap);
4858 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4859 }
4860 
4861 /**
4862  * @brief Wrapper function for BUS_SET_RESOURCE().
4863  *
4864  * This function simply calls the BUS_SET_RESOURCE() method of the
4865  * parent of @p dev.
4866  */
4867 int
4868 bus_set_resource(device_t dev, int type, int rid,
4869     rman_res_t start, rman_res_t count)
4870 {
4871 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4872 	    start, count));
4873 }
4874 
4875 /**
4876  * @brief Wrapper function for BUS_GET_RESOURCE().
4877  *
4878  * This function simply calls the BUS_GET_RESOURCE() method of the
4879  * parent of @p dev.
4880  */
4881 int
4882 bus_get_resource(device_t dev, int type, int rid,
4883     rman_res_t *startp, rman_res_t *countp)
4884 {
4885 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4886 	    startp, countp));
4887 }
4888 
4889 /**
4890  * @brief Wrapper function for BUS_GET_RESOURCE().
4891  *
4892  * This function simply calls the BUS_GET_RESOURCE() method of the
4893  * parent of @p dev and returns the start value.
4894  */
4895 rman_res_t
4896 bus_get_resource_start(device_t dev, int type, int rid)
4897 {
4898 	rman_res_t start;
4899 	rman_res_t count;
4900 	int error;
4901 
4902 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4903 	    &start, &count);
4904 	if (error)
4905 		return (0);
4906 	return (start);
4907 }
4908 
4909 /**
4910  * @brief Wrapper function for BUS_GET_RESOURCE().
4911  *
4912  * This function simply calls the BUS_GET_RESOURCE() method of the
4913  * parent of @p dev and returns the count value.
4914  */
4915 rman_res_t
4916 bus_get_resource_count(device_t dev, int type, int rid)
4917 {
4918 	rman_res_t start;
4919 	rman_res_t count;
4920 	int error;
4921 
4922 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4923 	    &start, &count);
4924 	if (error)
4925 		return (0);
4926 	return (count);
4927 }
4928 
4929 /**
4930  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4931  *
4932  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4933  * parent of @p dev.
4934  */
4935 void
4936 bus_delete_resource(device_t dev, int type, int rid)
4937 {
4938 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4939 }
4940 
4941 /**
4942  * @brief Wrapper function for BUS_CHILD_PRESENT().
4943  *
4944  * This function simply calls the BUS_CHILD_PRESENT() method of the
4945  * parent of @p dev.
4946  */
4947 int
4948 bus_child_present(device_t child)
4949 {
4950 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4951 }
4952 
4953 /**
4954  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4955  *
4956  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4957  * parent of @p dev.
4958  */
4959 int
4960 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4961 {
4962 	device_t parent;
4963 
4964 	parent = device_get_parent(child);
4965 	if (parent == NULL) {
4966 		*buf = '\0';
4967 		return (0);
4968 	}
4969 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4970 }
4971 
4972 /**
4973  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4974  *
4975  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4976  * parent of @p dev.
4977  */
4978 int
4979 bus_child_location_str(device_t child, char *buf, size_t buflen)
4980 {
4981 	device_t parent;
4982 
4983 	parent = device_get_parent(child);
4984 	if (parent == NULL) {
4985 		*buf = '\0';
4986 		return (0);
4987 	}
4988 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4989 }
4990 
4991 /**
4992  * @brief Wrapper function for BUS_GET_CPUS().
4993  *
4994  * This function simply calls the BUS_GET_CPUS() method of the
4995  * parent of @p dev.
4996  */
4997 int
4998 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4999 {
5000 	device_t parent;
5001 
5002 	parent = device_get_parent(dev);
5003 	if (parent == NULL)
5004 		return (EINVAL);
5005 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5006 }
5007 
5008 /**
5009  * @brief Wrapper function for BUS_GET_DMA_TAG().
5010  *
5011  * This function simply calls the BUS_GET_DMA_TAG() method of the
5012  * parent of @p dev.
5013  */
5014 bus_dma_tag_t
5015 bus_get_dma_tag(device_t dev)
5016 {
5017 	device_t parent;
5018 
5019 	parent = device_get_parent(dev);
5020 	if (parent == NULL)
5021 		return (NULL);
5022 	return (BUS_GET_DMA_TAG(parent, dev));
5023 }
5024 
5025 /**
5026  * @brief Wrapper function for BUS_GET_BUS_TAG().
5027  *
5028  * This function simply calls the BUS_GET_BUS_TAG() method of the
5029  * parent of @p dev.
5030  */
5031 bus_space_tag_t
5032 bus_get_bus_tag(device_t dev)
5033 {
5034 	device_t parent;
5035 
5036 	parent = device_get_parent(dev);
5037 	if (parent == NULL)
5038 		return ((bus_space_tag_t)0);
5039 	return (BUS_GET_BUS_TAG(parent, dev));
5040 }
5041 
5042 /**
5043  * @brief Wrapper function for BUS_GET_DOMAIN().
5044  *
5045  * This function simply calls the BUS_GET_DOMAIN() method of the
5046  * parent of @p dev.
5047  */
5048 int
5049 bus_get_domain(device_t dev, int *domain)
5050 {
5051 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5052 }
5053 
5054 /* Resume all devices and then notify userland that we're up again. */
5055 static int
5056 root_resume(device_t dev)
5057 {
5058 	int error;
5059 
5060 	error = bus_generic_resume(dev);
5061 	if (error == 0)
5062 		devctl_notify("kern", "power", "resume", NULL);
5063 	return (error);
5064 }
5065 
5066 static int
5067 root_print_child(device_t dev, device_t child)
5068 {
5069 	int	retval = 0;
5070 
5071 	retval += bus_print_child_header(dev, child);
5072 	retval += printf("\n");
5073 
5074 	return (retval);
5075 }
5076 
5077 static int
5078 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5079     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5080 {
5081 	/*
5082 	 * If an interrupt mapping gets to here something bad has happened.
5083 	 */
5084 	panic("root_setup_intr");
5085 }
5086 
5087 /*
5088  * If we get here, assume that the device is permanent and really is
5089  * present in the system.  Removable bus drivers are expected to intercept
5090  * this call long before it gets here.  We return -1 so that drivers that
5091  * really care can check vs -1 or some ERRNO returned higher in the food
5092  * chain.
5093  */
5094 static int
5095 root_child_present(device_t dev, device_t child)
5096 {
5097 	return (-1);
5098 }
5099 
5100 static int
5101 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5102     cpuset_t *cpuset)
5103 {
5104 
5105 	switch (op) {
5106 	case INTR_CPUS:
5107 		/* Default to returning the set of all CPUs. */
5108 		if (setsize != sizeof(cpuset_t))
5109 			return (EINVAL);
5110 		*cpuset = all_cpus;
5111 		return (0);
5112 	default:
5113 		return (EINVAL);
5114 	}
5115 }
5116 
5117 static kobj_method_t root_methods[] = {
5118 	/* Device interface */
5119 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5120 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5121 	KOBJMETHOD(device_resume,	root_resume),
5122 
5123 	/* Bus interface */
5124 	KOBJMETHOD(bus_print_child,	root_print_child),
5125 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5126 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5127 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5128 	KOBJMETHOD(bus_child_present,	root_child_present),
5129 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5130 
5131 	KOBJMETHOD_END
5132 };
5133 
5134 static driver_t root_driver = {
5135 	"root",
5136 	root_methods,
5137 	1,			/* no softc */
5138 };
5139 
5140 device_t	root_bus;
5141 devclass_t	root_devclass;
5142 
5143 static int
5144 root_bus_module_handler(module_t mod, int what, void* arg)
5145 {
5146 	switch (what) {
5147 	case MOD_LOAD:
5148 		TAILQ_INIT(&bus_data_devices);
5149 		kobj_class_compile((kobj_class_t) &root_driver);
5150 		root_bus = make_device(NULL, "root", 0);
5151 		root_bus->desc = "System root bus";
5152 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5153 		root_bus->driver = &root_driver;
5154 		root_bus->state = DS_ATTACHED;
5155 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5156 		devinit();
5157 		return (0);
5158 
5159 	case MOD_SHUTDOWN:
5160 		device_shutdown(root_bus);
5161 		return (0);
5162 	default:
5163 		return (EOPNOTSUPP);
5164 	}
5165 
5166 	return (0);
5167 }
5168 
5169 static moduledata_t root_bus_mod = {
5170 	"rootbus",
5171 	root_bus_module_handler,
5172 	NULL
5173 };
5174 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5175 
5176 /**
5177  * @brief Automatically configure devices
5178  *
5179  * This function begins the autoconfiguration process by calling
5180  * device_probe_and_attach() for each child of the @c root0 device.
5181  */
5182 void
5183 root_bus_configure(void)
5184 {
5185 
5186 	PDEBUG(("."));
5187 
5188 	/* Eventually this will be split up, but this is sufficient for now. */
5189 	bus_set_pass(BUS_PASS_DEFAULT);
5190 }
5191 
5192 /**
5193  * @brief Module handler for registering device drivers
5194  *
5195  * This module handler is used to automatically register device
5196  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5197  * devclass_add_driver() for the driver described by the
5198  * driver_module_data structure pointed to by @p arg
5199  */
5200 int
5201 driver_module_handler(module_t mod, int what, void *arg)
5202 {
5203 	struct driver_module_data *dmd;
5204 	devclass_t bus_devclass;
5205 	kobj_class_t driver;
5206 	int error, pass;
5207 
5208 	dmd = (struct driver_module_data *)arg;
5209 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5210 	error = 0;
5211 
5212 	switch (what) {
5213 	case MOD_LOAD:
5214 		if (dmd->dmd_chainevh)
5215 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5216 
5217 		pass = dmd->dmd_pass;
5218 		driver = dmd->dmd_driver;
5219 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5220 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5221 		error = devclass_add_driver(bus_devclass, driver, pass,
5222 		    dmd->dmd_devclass);
5223 		break;
5224 
5225 	case MOD_UNLOAD:
5226 		PDEBUG(("Unloading module: driver %s from bus %s",
5227 		    DRIVERNAME(dmd->dmd_driver),
5228 		    dmd->dmd_busname));
5229 		error = devclass_delete_driver(bus_devclass,
5230 		    dmd->dmd_driver);
5231 
5232 		if (!error && dmd->dmd_chainevh)
5233 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5234 		break;
5235 	case MOD_QUIESCE:
5236 		PDEBUG(("Quiesce module: driver %s from bus %s",
5237 		    DRIVERNAME(dmd->dmd_driver),
5238 		    dmd->dmd_busname));
5239 		error = devclass_quiesce_driver(bus_devclass,
5240 		    dmd->dmd_driver);
5241 
5242 		if (!error && dmd->dmd_chainevh)
5243 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5244 		break;
5245 	default:
5246 		error = EOPNOTSUPP;
5247 		break;
5248 	}
5249 
5250 	return (error);
5251 }
5252 
5253 /**
5254  * @brief Enumerate all hinted devices for this bus.
5255  *
5256  * Walks through the hints for this bus and calls the bus_hinted_child
5257  * routine for each one it fines.  It searches first for the specific
5258  * bus that's being probed for hinted children (eg isa0), and then for
5259  * generic children (eg isa).
5260  *
5261  * @param	dev	bus device to enumerate
5262  */
5263 void
5264 bus_enumerate_hinted_children(device_t bus)
5265 {
5266 	int i;
5267 	const char *dname, *busname;
5268 	int dunit;
5269 
5270 	/*
5271 	 * enumerate all devices on the specific bus
5272 	 */
5273 	busname = device_get_nameunit(bus);
5274 	i = 0;
5275 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5276 		BUS_HINTED_CHILD(bus, dname, dunit);
5277 
5278 	/*
5279 	 * and all the generic ones.
5280 	 */
5281 	busname = device_get_name(bus);
5282 	i = 0;
5283 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5284 		BUS_HINTED_CHILD(bus, dname, dunit);
5285 }
5286 
5287 #ifdef BUS_DEBUG
5288 
5289 /* the _short versions avoid iteration by not calling anything that prints
5290  * more than oneliners. I love oneliners.
5291  */
5292 
5293 static void
5294 print_device_short(device_t dev, int indent)
5295 {
5296 	if (!dev)
5297 		return;
5298 
5299 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5300 	    dev->unit, dev->desc,
5301 	    (dev->parent? "":"no "),
5302 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5303 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5304 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5305 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5306 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5307 	    (dev->flags&DF_REBID? "rebiddable,":""),
5308 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5309 	    (dev->ivars? "":"no "),
5310 	    (dev->softc? "":"no "),
5311 	    dev->busy));
5312 }
5313 
5314 static void
5315 print_device(device_t dev, int indent)
5316 {
5317 	if (!dev)
5318 		return;
5319 
5320 	print_device_short(dev, indent);
5321 
5322 	indentprintf(("Parent:\n"));
5323 	print_device_short(dev->parent, indent+1);
5324 	indentprintf(("Driver:\n"));
5325 	print_driver_short(dev->driver, indent+1);
5326 	indentprintf(("Devclass:\n"));
5327 	print_devclass_short(dev->devclass, indent+1);
5328 }
5329 
5330 void
5331 print_device_tree_short(device_t dev, int indent)
5332 /* print the device and all its children (indented) */
5333 {
5334 	device_t child;
5335 
5336 	if (!dev)
5337 		return;
5338 
5339 	print_device_short(dev, indent);
5340 
5341 	TAILQ_FOREACH(child, &dev->children, link) {
5342 		print_device_tree_short(child, indent+1);
5343 	}
5344 }
5345 
5346 void
5347 print_device_tree(device_t dev, int indent)
5348 /* print the device and all its children (indented) */
5349 {
5350 	device_t child;
5351 
5352 	if (!dev)
5353 		return;
5354 
5355 	print_device(dev, indent);
5356 
5357 	TAILQ_FOREACH(child, &dev->children, link) {
5358 		print_device_tree(child, indent+1);
5359 	}
5360 }
5361 
5362 static void
5363 print_driver_short(driver_t *driver, int indent)
5364 {
5365 	if (!driver)
5366 		return;
5367 
5368 	indentprintf(("driver %s: softc size = %zd\n",
5369 	    driver->name, driver->size));
5370 }
5371 
5372 static void
5373 print_driver(driver_t *driver, int indent)
5374 {
5375 	if (!driver)
5376 		return;
5377 
5378 	print_driver_short(driver, indent);
5379 }
5380 
5381 static void
5382 print_driver_list(driver_list_t drivers, int indent)
5383 {
5384 	driverlink_t driver;
5385 
5386 	TAILQ_FOREACH(driver, &drivers, link) {
5387 		print_driver(driver->driver, indent);
5388 	}
5389 }
5390 
5391 static void
5392 print_devclass_short(devclass_t dc, int indent)
5393 {
5394 	if ( !dc )
5395 		return;
5396 
5397 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5398 }
5399 
5400 static void
5401 print_devclass(devclass_t dc, int indent)
5402 {
5403 	int i;
5404 
5405 	if ( !dc )
5406 		return;
5407 
5408 	print_devclass_short(dc, indent);
5409 	indentprintf(("Drivers:\n"));
5410 	print_driver_list(dc->drivers, indent+1);
5411 
5412 	indentprintf(("Devices:\n"));
5413 	for (i = 0; i < dc->maxunit; i++)
5414 		if (dc->devices[i])
5415 			print_device(dc->devices[i], indent+1);
5416 }
5417 
5418 void
5419 print_devclass_list_short(void)
5420 {
5421 	devclass_t dc;
5422 
5423 	printf("Short listing of devclasses, drivers & devices:\n");
5424 	TAILQ_FOREACH(dc, &devclasses, link) {
5425 		print_devclass_short(dc, 0);
5426 	}
5427 }
5428 
5429 void
5430 print_devclass_list(void)
5431 {
5432 	devclass_t dc;
5433 
5434 	printf("Full listing of devclasses, drivers & devices:\n");
5435 	TAILQ_FOREACH(dc, &devclasses, link) {
5436 		print_devclass(dc, 0);
5437 	}
5438 }
5439 
5440 #endif
5441 
5442 /*
5443  * User-space access to the device tree.
5444  *
5445  * We implement a small set of nodes:
5446  *
5447  * hw.bus			Single integer read method to obtain the
5448  *				current generation count.
5449  * hw.bus.devices		Reads the entire device tree in flat space.
5450  * hw.bus.rman			Resource manager interface
5451  *
5452  * We might like to add the ability to scan devclasses and/or drivers to
5453  * determine what else is currently loaded/available.
5454  */
5455 
5456 static int
5457 sysctl_bus(SYSCTL_HANDLER_ARGS)
5458 {
5459 	struct u_businfo	ubus;
5460 
5461 	ubus.ub_version = BUS_USER_VERSION;
5462 	ubus.ub_generation = bus_data_generation;
5463 
5464 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5465 }
5466 SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW | CTLFLAG_NEEDGIANT, sysctl_bus,
5467     "bus-related data");
5468 
5469 static int
5470 sysctl_devices(SYSCTL_HANDLER_ARGS)
5471 {
5472 	int			*name = (int *)arg1;
5473 	u_int			namelen = arg2;
5474 	int			index;
5475 	device_t		dev;
5476 	struct u_device		*udev;
5477 	int			error;
5478 	char			*walker, *ep;
5479 
5480 	if (namelen != 2)
5481 		return (EINVAL);
5482 
5483 	if (bus_data_generation_check(name[0]))
5484 		return (EINVAL);
5485 
5486 	index = name[1];
5487 
5488 	/*
5489 	 * Scan the list of devices, looking for the requested index.
5490 	 */
5491 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5492 		if (index-- == 0)
5493 			break;
5494 	}
5495 	if (dev == NULL)
5496 		return (ENOENT);
5497 
5498 	/*
5499 	 * Populate the return item, careful not to overflow the buffer.
5500 	 */
5501 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5502 	if (udev == NULL)
5503 		return (ENOMEM);
5504 	udev->dv_handle = (uintptr_t)dev;
5505 	udev->dv_parent = (uintptr_t)dev->parent;
5506 	udev->dv_devflags = dev->devflags;
5507 	udev->dv_flags = dev->flags;
5508 	udev->dv_state = dev->state;
5509 	walker = udev->dv_fields;
5510 	ep = walker + sizeof(udev->dv_fields);
5511 #define CP(src)						\
5512 	if ((src) == NULL)				\
5513 		*walker++ = '\0';			\
5514 	else {						\
5515 		strlcpy(walker, (src), ep - walker);	\
5516 		walker += strlen(walker) + 1;		\
5517 	}						\
5518 	if (walker >= ep)				\
5519 		break;
5520 
5521 	do {
5522 		CP(dev->nameunit);
5523 		CP(dev->desc);
5524 		CP(dev->driver != NULL ? dev->driver->name : NULL);
5525 		bus_child_pnpinfo_str(dev, walker, ep - walker);
5526 		walker += strlen(walker) + 1;
5527 		if (walker >= ep)
5528 			break;
5529 		bus_child_location_str(dev, walker, ep - walker);
5530 		walker += strlen(walker) + 1;
5531 		if (walker >= ep)
5532 			break;
5533 		*walker++ = '\0';
5534 	} while (0);
5535 #undef CP
5536 	error = SYSCTL_OUT(req, udev, sizeof(*udev));
5537 	free(udev, M_BUS);
5538 	return (error);
5539 }
5540 
5541 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5542     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5543     "system device tree");
5544 
5545 int
5546 bus_data_generation_check(int generation)
5547 {
5548 	if (generation != bus_data_generation)
5549 		return (1);
5550 
5551 	/* XXX generate optimised lists here? */
5552 	return (0);
5553 }
5554 
5555 void
5556 bus_data_generation_update(void)
5557 {
5558 	bus_data_generation++;
5559 }
5560 
5561 int
5562 bus_free_resource(device_t dev, int type, struct resource *r)
5563 {
5564 	if (r == NULL)
5565 		return (0);
5566 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5567 }
5568 
5569 device_t
5570 device_lookup_by_name(const char *name)
5571 {
5572 	device_t dev;
5573 
5574 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5575 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5576 			return (dev);
5577 	}
5578 	return (NULL);
5579 }
5580 
5581 /*
5582  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5583  * implicit semantics on open, so it could not be reused for this.
5584  * Another option would be to call this /dev/bus?
5585  */
5586 static int
5587 find_device(struct devreq *req, device_t *devp)
5588 {
5589 	device_t dev;
5590 
5591 	/*
5592 	 * First, ensure that the name is nul terminated.
5593 	 */
5594 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5595 		return (EINVAL);
5596 
5597 	/*
5598 	 * Second, try to find an attached device whose name matches
5599 	 * 'name'.
5600 	 */
5601 	dev = device_lookup_by_name(req->dr_name);
5602 	if (dev != NULL) {
5603 		*devp = dev;
5604 		return (0);
5605 	}
5606 
5607 	/* Finally, give device enumerators a chance. */
5608 	dev = NULL;
5609 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5610 	if (dev == NULL)
5611 		return (ENOENT);
5612 	*devp = dev;
5613 	return (0);
5614 }
5615 
5616 static bool
5617 driver_exists(device_t bus, const char *driver)
5618 {
5619 	devclass_t dc;
5620 
5621 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5622 		if (devclass_find_driver_internal(dc, driver) != NULL)
5623 			return (true);
5624 	}
5625 	return (false);
5626 }
5627 
5628 static void
5629 device_gen_nomatch(device_t dev)
5630 {
5631 	device_t child;
5632 
5633 	if (dev->flags & DF_NEEDNOMATCH &&
5634 	    dev->state == DS_NOTPRESENT) {
5635 		BUS_PROBE_NOMATCH(dev->parent, dev);
5636 		devnomatch(dev);
5637 		dev->flags |= DF_DONENOMATCH;
5638 	}
5639 	dev->flags &= ~DF_NEEDNOMATCH;
5640 	TAILQ_FOREACH(child, &dev->children, link) {
5641 		device_gen_nomatch(child);
5642 	}
5643 }
5644 
5645 static void
5646 device_do_deferred_actions(void)
5647 {
5648 	devclass_t dc;
5649 	driverlink_t dl;
5650 
5651 	/*
5652 	 * Walk through the devclasses to find all the drivers we've tagged as
5653 	 * deferred during the freeze and call the driver added routines. They
5654 	 * have already been added to the lists in the background, so the driver
5655 	 * added routines that trigger a probe will have all the right bidders
5656 	 * for the probe auction.
5657 	 */
5658 	TAILQ_FOREACH(dc, &devclasses, link) {
5659 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5660 			if (dl->flags & DL_DEFERRED_PROBE) {
5661 				devclass_driver_added(dc, dl->driver);
5662 				dl->flags &= ~DL_DEFERRED_PROBE;
5663 			}
5664 		}
5665 	}
5666 
5667 	/*
5668 	 * We also defer no-match events during a freeze. Walk the tree and
5669 	 * generate all the pent-up events that are still relevant.
5670 	 */
5671 	device_gen_nomatch(root_bus);
5672 	bus_data_generation_update();
5673 }
5674 
5675 static int
5676 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5677     struct thread *td)
5678 {
5679 	struct devreq *req;
5680 	device_t dev;
5681 	int error, old;
5682 
5683 	/* Locate the device to control. */
5684 	mtx_lock(&Giant);
5685 	req = (struct devreq *)data;
5686 	switch (cmd) {
5687 	case DEV_ATTACH:
5688 	case DEV_DETACH:
5689 	case DEV_ENABLE:
5690 	case DEV_DISABLE:
5691 	case DEV_SUSPEND:
5692 	case DEV_RESUME:
5693 	case DEV_SET_DRIVER:
5694 	case DEV_CLEAR_DRIVER:
5695 	case DEV_RESCAN:
5696 	case DEV_DELETE:
5697 	case DEV_RESET:
5698 		error = priv_check(td, PRIV_DRIVER);
5699 		if (error == 0)
5700 			error = find_device(req, &dev);
5701 		break;
5702 	case DEV_FREEZE:
5703 	case DEV_THAW:
5704 		error = priv_check(td, PRIV_DRIVER);
5705 		break;
5706 	default:
5707 		error = ENOTTY;
5708 		break;
5709 	}
5710 	if (error) {
5711 		mtx_unlock(&Giant);
5712 		return (error);
5713 	}
5714 
5715 	/* Perform the requested operation. */
5716 	switch (cmd) {
5717 	case DEV_ATTACH:
5718 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5719 			error = EBUSY;
5720 		else if (!device_is_enabled(dev))
5721 			error = ENXIO;
5722 		else
5723 			error = device_probe_and_attach(dev);
5724 		break;
5725 	case DEV_DETACH:
5726 		if (!device_is_attached(dev)) {
5727 			error = ENXIO;
5728 			break;
5729 		}
5730 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5731 			error = device_quiesce(dev);
5732 			if (error)
5733 				break;
5734 		}
5735 		error = device_detach(dev);
5736 		break;
5737 	case DEV_ENABLE:
5738 		if (device_is_enabled(dev)) {
5739 			error = EBUSY;
5740 			break;
5741 		}
5742 
5743 		/*
5744 		 * If the device has been probed but not attached (e.g.
5745 		 * when it has been disabled by a loader hint), just
5746 		 * attach the device rather than doing a full probe.
5747 		 */
5748 		device_enable(dev);
5749 		if (device_is_alive(dev)) {
5750 			/*
5751 			 * If the device was disabled via a hint, clear
5752 			 * the hint.
5753 			 */
5754 			if (resource_disabled(dev->driver->name, dev->unit))
5755 				resource_unset_value(dev->driver->name,
5756 				    dev->unit, "disabled");
5757 			error = device_attach(dev);
5758 		} else
5759 			error = device_probe_and_attach(dev);
5760 		break;
5761 	case DEV_DISABLE:
5762 		if (!device_is_enabled(dev)) {
5763 			error = ENXIO;
5764 			break;
5765 		}
5766 
5767 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5768 			error = device_quiesce(dev);
5769 			if (error)
5770 				break;
5771 		}
5772 
5773 		/*
5774 		 * Force DF_FIXEDCLASS on around detach to preserve
5775 		 * the existing name.
5776 		 */
5777 		old = dev->flags;
5778 		dev->flags |= DF_FIXEDCLASS;
5779 		error = device_detach(dev);
5780 		if (!(old & DF_FIXEDCLASS))
5781 			dev->flags &= ~DF_FIXEDCLASS;
5782 		if (error == 0)
5783 			device_disable(dev);
5784 		break;
5785 	case DEV_SUSPEND:
5786 		if (device_is_suspended(dev)) {
5787 			error = EBUSY;
5788 			break;
5789 		}
5790 		if (device_get_parent(dev) == NULL) {
5791 			error = EINVAL;
5792 			break;
5793 		}
5794 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5795 		break;
5796 	case DEV_RESUME:
5797 		if (!device_is_suspended(dev)) {
5798 			error = EINVAL;
5799 			break;
5800 		}
5801 		if (device_get_parent(dev) == NULL) {
5802 			error = EINVAL;
5803 			break;
5804 		}
5805 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5806 		break;
5807 	case DEV_SET_DRIVER: {
5808 		devclass_t dc;
5809 		char driver[128];
5810 
5811 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5812 		if (error)
5813 			break;
5814 		if (driver[0] == '\0') {
5815 			error = EINVAL;
5816 			break;
5817 		}
5818 		if (dev->devclass != NULL &&
5819 		    strcmp(driver, dev->devclass->name) == 0)
5820 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5821 			break;
5822 
5823 		/*
5824 		 * Scan drivers for this device's bus looking for at
5825 		 * least one matching driver.
5826 		 */
5827 		if (dev->parent == NULL) {
5828 			error = EINVAL;
5829 			break;
5830 		}
5831 		if (!driver_exists(dev->parent, driver)) {
5832 			error = ENOENT;
5833 			break;
5834 		}
5835 		dc = devclass_create(driver);
5836 		if (dc == NULL) {
5837 			error = ENOMEM;
5838 			break;
5839 		}
5840 
5841 		/* Detach device if necessary. */
5842 		if (device_is_attached(dev)) {
5843 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5844 				error = device_detach(dev);
5845 			else
5846 				error = EBUSY;
5847 			if (error)
5848 				break;
5849 		}
5850 
5851 		/* Clear any previously-fixed device class and unit. */
5852 		if (dev->flags & DF_FIXEDCLASS)
5853 			devclass_delete_device(dev->devclass, dev);
5854 		dev->flags |= DF_WILDCARD;
5855 		dev->unit = -1;
5856 
5857 		/* Force the new device class. */
5858 		error = devclass_add_device(dc, dev);
5859 		if (error)
5860 			break;
5861 		dev->flags |= DF_FIXEDCLASS;
5862 		error = device_probe_and_attach(dev);
5863 		break;
5864 	}
5865 	case DEV_CLEAR_DRIVER:
5866 		if (!(dev->flags & DF_FIXEDCLASS)) {
5867 			error = 0;
5868 			break;
5869 		}
5870 		if (device_is_attached(dev)) {
5871 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5872 				error = device_detach(dev);
5873 			else
5874 				error = EBUSY;
5875 			if (error)
5876 				break;
5877 		}
5878 
5879 		dev->flags &= ~DF_FIXEDCLASS;
5880 		dev->flags |= DF_WILDCARD;
5881 		devclass_delete_device(dev->devclass, dev);
5882 		error = device_probe_and_attach(dev);
5883 		break;
5884 	case DEV_RESCAN:
5885 		if (!device_is_attached(dev)) {
5886 			error = ENXIO;
5887 			break;
5888 		}
5889 		error = BUS_RESCAN(dev);
5890 		break;
5891 	case DEV_DELETE: {
5892 		device_t parent;
5893 
5894 		parent = device_get_parent(dev);
5895 		if (parent == NULL) {
5896 			error = EINVAL;
5897 			break;
5898 		}
5899 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5900 			if (bus_child_present(dev) != 0) {
5901 				error = EBUSY;
5902 				break;
5903 			}
5904 		}
5905 
5906 		error = device_delete_child(parent, dev);
5907 		break;
5908 	}
5909 	case DEV_FREEZE:
5910 		if (device_frozen)
5911 			error = EBUSY;
5912 		else
5913 			device_frozen = true;
5914 		break;
5915 	case DEV_THAW:
5916 		if (!device_frozen)
5917 			error = EBUSY;
5918 		else {
5919 			device_do_deferred_actions();
5920 			device_frozen = false;
5921 		}
5922 		break;
5923 	case DEV_RESET:
5924 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5925 			error = EINVAL;
5926 			break;
5927 		}
5928 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5929 		    req->dr_flags);
5930 		break;
5931 	}
5932 	mtx_unlock(&Giant);
5933 	return (error);
5934 }
5935 
5936 static struct cdevsw devctl2_cdevsw = {
5937 	.d_version =	D_VERSION,
5938 	.d_ioctl =	devctl2_ioctl,
5939 	.d_name =	"devctl2",
5940 };
5941 
5942 static void
5943 devctl2_init(void)
5944 {
5945 
5946 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5947 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5948 }
5949 
5950 /*
5951  * APIs to manage deprecation and obsolescence.
5952  */
5953 static int obsolete_panic = 0;
5954 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
5955     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
5956     "2 = if deprecated)");
5957 
5958 static void
5959 gone_panic(int major, int running, const char *msg)
5960 {
5961 
5962 	switch (obsolete_panic)
5963 	{
5964 	case 0:
5965 		return;
5966 	case 1:
5967 		if (running < major)
5968 			return;
5969 		/* FALLTHROUGH */
5970 	default:
5971 		panic("%s", msg);
5972 	}
5973 }
5974 
5975 void
5976 _gone_in(int major, const char *msg)
5977 {
5978 
5979 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5980 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5981 		printf("Obsolete code will be removed soon: %s\n", msg);
5982 	else
5983 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
5984 		    major, msg);
5985 }
5986 
5987 void
5988 _gone_in_dev(device_t dev, int major, const char *msg)
5989 {
5990 
5991 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
5992 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
5993 		device_printf(dev,
5994 		    "Obsolete code will be removed soon: %s\n", msg);
5995 	else
5996 		device_printf(dev,
5997 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
5998 		    major, msg);
5999 }
6000 
6001 #ifdef DDB
6002 DB_SHOW_COMMAND(device, db_show_device)
6003 {
6004 	device_t dev;
6005 
6006 	if (!have_addr)
6007 		return;
6008 
6009 	dev = (device_t)addr;
6010 
6011 	db_printf("name:    %s\n", device_get_nameunit(dev));
6012 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6013 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6014 	db_printf("  addr:    %p\n", dev);
6015 	db_printf("  parent:  %p\n", dev->parent);
6016 	db_printf("  softc:   %p\n", dev->softc);
6017 	db_printf("  ivars:   %p\n", dev->ivars);
6018 }
6019 
6020 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6021 {
6022 	device_t dev;
6023 
6024 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6025 		db_show_device((db_expr_t)dev, true, count, modif);
6026 	}
6027 }
6028 #endif
6029