xref: /freebsd/sys/kern/subr_pctrie.c (revision bdd1243d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  *
35  * The implementation takes into account the following rationale:
36  * - Size of the nodes should be as small as possible but still big enough
37  *   to avoid a large maximum depth for the trie.  This is a balance
38  *   between the necessity to not wire too much physical memory for the nodes
39  *   and the necessity to avoid too much cache pollution during the trie
40  *   operations.
41  * - There is not a huge bias toward the number of lookup operations over
42  *   the number of insert and remove operations.  This basically implies
43  *   that optimizations supposedly helping one operation but hurting the
44  *   other might be carefully evaluated.
45  * - On average not many nodes are expected to be fully populated, hence
46  *   level compression may just complicate things.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_ddb.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/libkern.h>
58 #include <sys/pctrie.h>
59 #include <sys/proc.h>	/* smr.h depends on struct thread. */
60 #include <sys/smr.h>
61 #include <sys/smr_types.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
68 #define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
69 
70 /* Flag bits stored in node pointers. */
71 #define	PCTRIE_ISLEAF	0x1
72 #define	PCTRIE_FLAGS	0x1
73 #define	PCTRIE_PAD	PCTRIE_FLAGS
74 
75 /* Returns one unit associated with specified level. */
76 #define	PCTRIE_UNITLEVEL(lev)						\
77 	((uint64_t)1 << ((lev) * PCTRIE_WIDTH))
78 
79 struct pctrie_node;
80 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
81 
82 struct pctrie_node {
83 	uint64_t	pn_owner;			/* Owner of record. */
84 	uint16_t	pn_count;			/* Valid children. */
85 	uint8_t		pn_clev;			/* Current level. */
86 	int8_t		pn_last;			/* Zero last ptr. */
87 	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
88 };
89 
90 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
91 
92 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
93     enum pctrie_access access);
94 
95 /*
96  * Allocate a node.  Pre-allocation should ensure that the request
97  * will always be satisfied.
98  */
99 static struct pctrie_node *
100 pctrie_node_get(struct pctrie *ptree, pctrie_alloc_t allocfn, uint64_t owner,
101     uint16_t count, uint16_t clevel)
102 {
103 	struct pctrie_node *node;
104 
105 	node = allocfn(ptree);
106 	if (node == NULL)
107 		return (NULL);
108 
109 	/*
110 	 * We want to clear the last child pointer after the final section
111 	 * has exited so lookup can not return false negatives.  It is done
112 	 * here because it will be cache-cold in the dtor callback.
113 	 */
114 	if (node->pn_last != 0) {
115 		pctrie_node_store(&node->pn_child[node->pn_last - 1], NULL,
116 		    PCTRIE_UNSERIALIZED);
117 		node->pn_last = 0;
118 	}
119 	node->pn_owner = owner;
120 	node->pn_count = count;
121 	node->pn_clev = clevel;
122 	return (node);
123 }
124 
125 /*
126  * Free radix node.
127  */
128 static __inline void
129 pctrie_node_put(struct pctrie *ptree, struct pctrie_node *node,
130     pctrie_free_t freefn, int8_t last)
131 {
132 #ifdef INVARIANTS
133 	int slot;
134 
135 	KASSERT(node->pn_count == 0,
136 	    ("pctrie_node_put: node %p has %d children", node,
137 	    node->pn_count));
138 	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
139 		if (slot == last)
140 			continue;
141 		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
142 		    NULL, ("pctrie_node_put: node %p has a child", node));
143 	}
144 #endif
145 	node->pn_last = last + 1;
146 	freefn(ptree, node);
147 }
148 
149 /*
150  * Return the position in the array for a given level.
151  */
152 static __inline int
153 pctrie_slot(uint64_t index, uint16_t level)
154 {
155 
156 	return ((index >> (level * PCTRIE_WIDTH)) & PCTRIE_MASK);
157 }
158 
159 /* Trims the key after the specified level. */
160 static __inline uint64_t
161 pctrie_trimkey(uint64_t index, uint16_t level)
162 {
163 	uint64_t ret;
164 
165 	ret = index;
166 	if (level > 0) {
167 		ret >>= level * PCTRIE_WIDTH;
168 		ret <<= level * PCTRIE_WIDTH;
169 	}
170 	return (ret);
171 }
172 
173 /*
174  * Fetch a node pointer from a slot.
175  */
176 static __inline struct pctrie_node *
177 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
178 {
179 	switch (access) {
180 	case PCTRIE_UNSERIALIZED:
181 		return (smr_unserialized_load(p, true));
182 	case PCTRIE_LOCKED:
183 		return (smr_serialized_load(p, true));
184 	case PCTRIE_SMR:
185 		return (smr_entered_load(p, smr));
186 	}
187 	__assert_unreachable();
188 }
189 
190 static __inline void
191 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
192 {
193 	switch (access) {
194 	case PCTRIE_UNSERIALIZED:
195 		smr_unserialized_store(p, v, true);
196 		break;
197 	case PCTRIE_LOCKED:
198 		smr_serialized_store(p, v, true);
199 		break;
200 	case PCTRIE_SMR:
201 		panic("%s: Not supported in SMR section.", __func__);
202 		break;
203 	default:
204 		__assert_unreachable();
205 		break;
206 	}
207 }
208 
209 /*
210  * Get the root node for a tree.
211  */
212 static __inline struct pctrie_node *
213 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
214 {
215 	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
216 }
217 
218 /*
219  * Set the root node for a tree.
220  */
221 static __inline void
222 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
223     enum pctrie_access access)
224 {
225 	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
226 }
227 
228 /*
229  * Returns TRUE if the specified node is a leaf and FALSE otherwise.
230  */
231 static __inline bool
232 pctrie_isleaf(struct pctrie_node *node)
233 {
234 
235 	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
236 }
237 
238 /*
239  * Returns the associated val extracted from node.
240  */
241 static __inline uint64_t *
242 pctrie_toval(struct pctrie_node *node)
243 {
244 
245 	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
246 }
247 
248 /*
249  * Adds the val as a child of the provided node.
250  */
251 static __inline void
252 pctrie_addval(struct pctrie_node *node, uint64_t index, uint16_t clev,
253     uint64_t *val, enum pctrie_access access)
254 {
255 	int slot;
256 
257 	slot = pctrie_slot(index, clev);
258 	pctrie_node_store(&node->pn_child[slot],
259 	    (void *)((uintptr_t)val | PCTRIE_ISLEAF), access);
260 }
261 
262 /*
263  * Returns the level where two keys differ.
264  * It cannot accept 2 equal keys.
265  */
266 static __inline uint16_t
267 pctrie_keydiff(uint64_t index1, uint64_t index2)
268 {
269 
270 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
271 	    __func__, (uintmax_t)index1));
272 	CTASSERT(sizeof(long long) >= sizeof(uint64_t));
273 
274 	/*
275 	 * From the highest-order bit where the indexes differ,
276 	 * compute the highest level in the trie where they differ.
277 	 */
278 	return ((flsll(index1 ^ index2) - 1) / PCTRIE_WIDTH);
279 }
280 
281 /*
282  * Returns TRUE if it can be determined that key does not belong to the
283  * specified node.  Otherwise, returns FALSE.
284  */
285 static __inline bool
286 pctrie_keybarr(struct pctrie_node *node, uint64_t idx)
287 {
288 
289 	if (node->pn_clev < PCTRIE_LIMIT) {
290 		idx = pctrie_trimkey(idx, node->pn_clev + 1);
291 		return (idx != node->pn_owner);
292 	}
293 	return (false);
294 }
295 
296 /*
297  * Internal helper for pctrie_reclaim_allnodes().
298  * This function is recursive.
299  */
300 static void
301 pctrie_reclaim_allnodes_int(struct pctrie *ptree, struct pctrie_node *node,
302     pctrie_free_t freefn)
303 {
304 	struct pctrie_node *child;
305 	int slot;
306 
307 	KASSERT(node->pn_count <= PCTRIE_COUNT,
308 	    ("pctrie_reclaim_allnodes_int: bad count in node %p", node));
309 	for (slot = 0; node->pn_count != 0; slot++) {
310 		child = pctrie_node_load(&node->pn_child[slot], NULL,
311 		    PCTRIE_UNSERIALIZED);
312 		if (child == NULL)
313 			continue;
314 		if (!pctrie_isleaf(child))
315 			pctrie_reclaim_allnodes_int(ptree, child, freefn);
316 		pctrie_node_store(&node->pn_child[slot], NULL,
317 		    PCTRIE_UNSERIALIZED);
318 		node->pn_count--;
319 	}
320 	pctrie_node_put(ptree, node, freefn, -1);
321 }
322 
323 /*
324  * pctrie node zone initializer.
325  */
326 int
327 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
328 {
329 	struct pctrie_node *node;
330 
331 	node = mem;
332 	node->pn_last = 0;
333 	memset(node->pn_child, 0, sizeof(node->pn_child));
334 	return (0);
335 }
336 
337 size_t
338 pctrie_node_size(void)
339 {
340 
341 	return (sizeof(struct pctrie_node));
342 }
343 
344 /*
345  * Inserts the key-value pair into the trie.
346  * Panics if the key already exists.
347  */
348 int
349 pctrie_insert(struct pctrie *ptree, uint64_t *val, pctrie_alloc_t allocfn)
350 {
351 	uint64_t index, newind;
352 	struct pctrie_node *node, *tmp;
353 	smr_pctnode_t *parentp;
354 	uint64_t *m;
355 	int slot;
356 	uint16_t clev;
357 
358 	index = *val;
359 
360 	/*
361 	 * The owner of record for root is not really important because it
362 	 * will never be used.
363 	 */
364 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
365 	if (node == NULL) {
366 		ptree->pt_root = (uintptr_t)val | PCTRIE_ISLEAF;
367 		return (0);
368 	}
369 	parentp = (smr_pctnode_t *)&ptree->pt_root;
370 	for (;;) {
371 		if (pctrie_isleaf(node)) {
372 			m = pctrie_toval(node);
373 			if (*m == index)
374 				panic("%s: key %jx is already present",
375 				    __func__, (uintmax_t)index);
376 			clev = pctrie_keydiff(*m, index);
377 			tmp = pctrie_node_get(ptree, allocfn,
378 			    pctrie_trimkey(index, clev + 1), 2, clev);
379 			if (tmp == NULL)
380 				return (ENOMEM);
381 			/* These writes are not yet visible due to ordering. */
382 			pctrie_addval(tmp, index, clev, val,
383 			    PCTRIE_UNSERIALIZED);
384 			pctrie_addval(tmp, *m, clev, m, PCTRIE_UNSERIALIZED);
385 			/* Synchronize to make leaf visible. */
386 			pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
387 			return (0);
388 		} else if (pctrie_keybarr(node, index))
389 			break;
390 		slot = pctrie_slot(index, node->pn_clev);
391 		parentp = &node->pn_child[slot];
392 		tmp = pctrie_node_load(parentp, NULL, PCTRIE_LOCKED);
393 		if (tmp == NULL) {
394 			node->pn_count++;
395 			pctrie_addval(node, index, node->pn_clev, val,
396 			    PCTRIE_LOCKED);
397 			return (0);
398 		}
399 		node = tmp;
400 	}
401 
402 	/*
403 	 * A new node is needed because the right insertion level is reached.
404 	 * Setup the new intermediate node and add the 2 children: the
405 	 * new object and the older edge.
406 	 */
407 	newind = node->pn_owner;
408 	clev = pctrie_keydiff(newind, index);
409 	tmp = pctrie_node_get(ptree, allocfn,
410 	    pctrie_trimkey(index, clev + 1), 2, clev);
411 	if (tmp == NULL)
412 		return (ENOMEM);
413 	slot = pctrie_slot(newind, clev);
414 	/* These writes are not yet visible due to ordering. */
415 	pctrie_addval(tmp, index, clev, val, PCTRIE_UNSERIALIZED);
416 	pctrie_node_store(&tmp->pn_child[slot], node, PCTRIE_UNSERIALIZED);
417 	/* Synchronize to make the above visible. */
418 	pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
419 
420 	return (0);
421 }
422 
423 /*
424  * Returns the value stored at the index.  If the index is not present,
425  * NULL is returned.
426  */
427 static __always_inline uint64_t *
428 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
429     enum pctrie_access access)
430 {
431 	struct pctrie_node *node;
432 	uint64_t *m;
433 	int slot;
434 
435 	node = pctrie_root_load(ptree, smr, access);
436 	while (node != NULL) {
437 		if (pctrie_isleaf(node)) {
438 			m = pctrie_toval(node);
439 			if (*m == index)
440 				return (m);
441 			break;
442 		}
443 		if (pctrie_keybarr(node, index))
444 			break;
445 		slot = pctrie_slot(index, node->pn_clev);
446 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
447 	}
448 	return (NULL);
449 }
450 
451 /*
452  * Returns the value stored at the index, assuming access is externally
453  * synchronized by a lock.
454  *
455  * If the index is not present, NULL is returned.
456  */
457 uint64_t *
458 pctrie_lookup(struct pctrie *ptree, uint64_t index)
459 {
460 	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
461 }
462 
463 /*
464  * Returns the value stored at the index without requiring an external lock.
465  *
466  * If the index is not present, NULL is returned.
467  */
468 uint64_t *
469 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
470 {
471 	uint64_t *res;
472 
473 	smr_enter(smr);
474 	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
475 	smr_exit(smr);
476 	return (res);
477 }
478 
479 /*
480  * Look up the nearest entry at a position bigger than or equal to index,
481  * assuming access is externally synchronized by a lock.
482  */
483 uint64_t *
484 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
485 {
486 	struct pctrie_node *stack[PCTRIE_LIMIT];
487 	uint64_t inc;
488 	uint64_t *m;
489 	struct pctrie_node *child, *node;
490 #ifdef INVARIANTS
491 	int loops = 0;
492 #endif
493 	unsigned tos;
494 	int slot;
495 
496 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
497 	if (node == NULL)
498 		return (NULL);
499 	else if (pctrie_isleaf(node)) {
500 		m = pctrie_toval(node);
501 		if (*m >= index)
502 			return (m);
503 		else
504 			return (NULL);
505 	}
506 	tos = 0;
507 	for (;;) {
508 		/*
509 		 * If the keys differ before the current bisection node,
510 		 * then the search key might rollback to the earliest
511 		 * available bisection node or to the smallest key
512 		 * in the current node (if the owner is greater than the
513 		 * search key).
514 		 */
515 		if (pctrie_keybarr(node, index)) {
516 			if (index > node->pn_owner) {
517 ascend:
518 				KASSERT(++loops < 1000,
519 				    ("pctrie_lookup_ge: too many loops"));
520 
521 				/*
522 				 * Pop nodes from the stack until either the
523 				 * stack is empty or a node that could have a
524 				 * matching descendant is found.
525 				 */
526 				do {
527 					if (tos == 0)
528 						return (NULL);
529 					node = stack[--tos];
530 				} while (pctrie_slot(index,
531 				    node->pn_clev) == (PCTRIE_COUNT - 1));
532 
533 				/*
534 				 * The following computation cannot overflow
535 				 * because index's slot at the current level
536 				 * is less than PCTRIE_COUNT - 1.
537 				 */
538 				index = pctrie_trimkey(index,
539 				    node->pn_clev);
540 				index += PCTRIE_UNITLEVEL(node->pn_clev);
541 			} else
542 				index = node->pn_owner;
543 			KASSERT(!pctrie_keybarr(node, index),
544 			    ("pctrie_lookup_ge: keybarr failed"));
545 		}
546 		slot = pctrie_slot(index, node->pn_clev);
547 		child = pctrie_node_load(&node->pn_child[slot], NULL,
548 		    PCTRIE_LOCKED);
549 		if (pctrie_isleaf(child)) {
550 			m = pctrie_toval(child);
551 			if (*m >= index)
552 				return (m);
553 		} else if (child != NULL)
554 			goto descend;
555 
556 		/*
557 		 * Look for an available edge or val within the current
558 		 * bisection node.
559 		 */
560                 if (slot < (PCTRIE_COUNT - 1)) {
561 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
562 			index = pctrie_trimkey(index, node->pn_clev);
563 			do {
564 				index += inc;
565 				slot++;
566 				child = pctrie_node_load(&node->pn_child[slot],
567 				    NULL, PCTRIE_LOCKED);
568 				if (pctrie_isleaf(child)) {
569 					m = pctrie_toval(child);
570 					if (*m >= index)
571 						return (m);
572 				} else if (child != NULL)
573 					goto descend;
574 			} while (slot < (PCTRIE_COUNT - 1));
575 		}
576 		KASSERT(child == NULL || pctrie_isleaf(child),
577 		    ("pctrie_lookup_ge: child is radix node"));
578 
579 		/*
580 		 * If a value or edge greater than the search slot is not found
581 		 * in the current node, ascend to the next higher-level node.
582 		 */
583 		goto ascend;
584 descend:
585 		KASSERT(node->pn_clev > 0,
586 		    ("pctrie_lookup_ge: pushing leaf's parent"));
587 		KASSERT(tos < PCTRIE_LIMIT,
588 		    ("pctrie_lookup_ge: stack overflow"));
589 		stack[tos++] = node;
590 		node = child;
591 	}
592 }
593 
594 /*
595  * Look up the nearest entry at a position less than or equal to index,
596  * assuming access is externally synchronized by a lock.
597  */
598 uint64_t *
599 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
600 {
601 	struct pctrie_node *stack[PCTRIE_LIMIT];
602 	uint64_t inc;
603 	uint64_t *m;
604 	struct pctrie_node *child, *node;
605 #ifdef INVARIANTS
606 	int loops = 0;
607 #endif
608 	unsigned tos;
609 	int slot;
610 
611 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
612 	if (node == NULL)
613 		return (NULL);
614 	else if (pctrie_isleaf(node)) {
615 		m = pctrie_toval(node);
616 		if (*m <= index)
617 			return (m);
618 		else
619 			return (NULL);
620 	}
621 	tos = 0;
622 	for (;;) {
623 		/*
624 		 * If the keys differ before the current bisection node,
625 		 * then the search key might rollback to the earliest
626 		 * available bisection node or to the largest key
627 		 * in the current node (if the owner is smaller than the
628 		 * search key).
629 		 */
630 		if (pctrie_keybarr(node, index)) {
631 			if (index > node->pn_owner) {
632 				index = node->pn_owner + PCTRIE_COUNT *
633 				    PCTRIE_UNITLEVEL(node->pn_clev);
634 			} else {
635 ascend:
636 				KASSERT(++loops < 1000,
637 				    ("pctrie_lookup_le: too many loops"));
638 
639 				/*
640 				 * Pop nodes from the stack until either the
641 				 * stack is empty or a node that could have a
642 				 * matching descendant is found.
643 				 */
644 				do {
645 					if (tos == 0)
646 						return (NULL);
647 					node = stack[--tos];
648 				} while (pctrie_slot(index,
649 				    node->pn_clev) == 0);
650 
651 				/*
652 				 * The following computation cannot overflow
653 				 * because index's slot at the current level
654 				 * is greater than 0.
655 				 */
656 				index = pctrie_trimkey(index,
657 				    node->pn_clev);
658 			}
659 			index--;
660 			KASSERT(!pctrie_keybarr(node, index),
661 			    ("pctrie_lookup_le: keybarr failed"));
662 		}
663 		slot = pctrie_slot(index, node->pn_clev);
664 		child = pctrie_node_load(&node->pn_child[slot], NULL,
665 		    PCTRIE_LOCKED);
666 		if (pctrie_isleaf(child)) {
667 			m = pctrie_toval(child);
668 			if (*m <= index)
669 				return (m);
670 		} else if (child != NULL)
671 			goto descend;
672 
673 		/*
674 		 * Look for an available edge or value within the current
675 		 * bisection node.
676 		 */
677 		if (slot > 0) {
678 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
679 			index |= inc - 1;
680 			do {
681 				index -= inc;
682 				slot--;
683 				child = pctrie_node_load(&node->pn_child[slot],
684 				    NULL, PCTRIE_LOCKED);
685 				if (pctrie_isleaf(child)) {
686 					m = pctrie_toval(child);
687 					if (*m <= index)
688 						return (m);
689 				} else if (child != NULL)
690 					goto descend;
691 			} while (slot > 0);
692 		}
693 		KASSERT(child == NULL || pctrie_isleaf(child),
694 		    ("pctrie_lookup_le: child is radix node"));
695 
696 		/*
697 		 * If a value or edge smaller than the search slot is not found
698 		 * in the current node, ascend to the next higher-level node.
699 		 */
700 		goto ascend;
701 descend:
702 		KASSERT(node->pn_clev > 0,
703 		    ("pctrie_lookup_le: pushing leaf's parent"));
704 		KASSERT(tos < PCTRIE_LIMIT,
705 		    ("pctrie_lookup_le: stack overflow"));
706 		stack[tos++] = node;
707 		node = child;
708 	}
709 }
710 
711 /*
712  * Remove the specified index from the tree.
713  * Panics if the key is not present.
714  */
715 void
716 pctrie_remove(struct pctrie *ptree, uint64_t index, pctrie_free_t freefn)
717 {
718 	struct pctrie_node *node, *parent, *tmp;
719 	uint64_t *m;
720 	int i, slot;
721 
722 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
723 	if (pctrie_isleaf(node)) {
724 		m = pctrie_toval(node);
725 		if (*m != index)
726 			panic("%s: invalid key found", __func__);
727 		pctrie_root_store(ptree, NULL, PCTRIE_LOCKED);
728 		return;
729 	}
730 	parent = NULL;
731 	for (;;) {
732 		if (node == NULL)
733 			panic("pctrie_remove: impossible to locate the key");
734 		slot = pctrie_slot(index, node->pn_clev);
735 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
736 		    PCTRIE_LOCKED);
737 		if (pctrie_isleaf(tmp)) {
738 			m = pctrie_toval(tmp);
739 			if (*m != index)
740 				panic("%s: invalid key found", __func__);
741 			pctrie_node_store(&node->pn_child[slot], NULL,
742 			    PCTRIE_LOCKED);
743 			node->pn_count--;
744 			if (node->pn_count > 1)
745 				break;
746 			for (i = 0; i < PCTRIE_COUNT; i++) {
747 				tmp = pctrie_node_load(&node->pn_child[i],
748 				    NULL, PCTRIE_LOCKED);
749 				if (tmp != NULL)
750 					break;
751 			}
752 			KASSERT(i != PCTRIE_COUNT,
753 			    ("%s: invalid node configuration", __func__));
754 			if (parent == NULL)
755 				pctrie_root_store(ptree, tmp, PCTRIE_LOCKED);
756 			else {
757 				slot = pctrie_slot(index, parent->pn_clev);
758 				KASSERT(pctrie_node_load(
759 					&parent->pn_child[slot], NULL,
760 					PCTRIE_LOCKED) == node,
761 				    ("%s: invalid child value", __func__));
762 				pctrie_node_store(&parent->pn_child[slot], tmp,
763 				    PCTRIE_LOCKED);
764 			}
765 			/*
766 			 * The child is still valid and we can not zero the
767 			 * pointer until all SMR references are gone.
768 			 */
769 			node->pn_count--;
770 			pctrie_node_put(ptree, node, freefn, i);
771 			break;
772 		}
773 		parent = node;
774 		node = tmp;
775 	}
776 }
777 
778 /*
779  * Remove and free all the nodes from the tree.
780  * This function is recursive but there is a tight control on it as the
781  * maximum depth of the tree is fixed.
782  */
783 void
784 pctrie_reclaim_allnodes(struct pctrie *ptree, pctrie_free_t freefn)
785 {
786 	struct pctrie_node *root;
787 
788 	root = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
789 	if (root == NULL)
790 		return;
791 	pctrie_root_store(ptree, NULL, PCTRIE_UNSERIALIZED);
792 	if (!pctrie_isleaf(root))
793 		pctrie_reclaim_allnodes_int(ptree, root, freefn);
794 }
795 
796 #ifdef DDB
797 /*
798  * Show details about the given node.
799  */
800 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
801 {
802 	struct pctrie_node *node, *tmp;
803 	int i;
804 
805         if (!have_addr)
806                 return;
807 	node = (struct pctrie_node *)addr;
808 	db_printf("node %p, owner %jx, children count %u, level %u:\n",
809 	    (void *)node, (uintmax_t)node->pn_owner, node->pn_count,
810 	    node->pn_clev);
811 	for (i = 0; i < PCTRIE_COUNT; i++) {
812 		tmp = pctrie_node_load(&node->pn_child[i], NULL,
813 		    PCTRIE_UNSERIALIZED);
814 		if (tmp != NULL)
815 			db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
816 			    i, (void *)tmp,
817 			    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
818 			    node->pn_clev);
819 	}
820 }
821 #endif /* DDB */
822