xref: /freebsd/sys/kern/subr_sglist.c (revision 06c3fb27)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Yahoo!, Inc.
5  * All rights reserved.
6  * Written by: John Baldwin <jhb@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/bio.h>
36 #include <sys/malloc.h>
37 #include <sys/mbuf.h>
38 #include <sys/proc.h>
39 #include <sys/sglist.h>
40 #include <sys/uio.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_page.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_map.h>
46 
47 #include <sys/ktr.h>
48 
49 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
50 
51 /*
52  * Convenience macros to save the state of an sglist so it can be restored
53  * if an append attempt fails.  Since sglist's only grow we only need to
54  * save the current count of segments and the length of the ending segment.
55  * Earlier segments will not be changed by an append, and the only change
56  * that can occur to the ending segment is that it can be extended.
57  */
58 struct sgsave {
59 	u_short sg_nseg;
60 	size_t ss_len;
61 };
62 
63 #define	SGLIST_SAVE(sg, sgsave) do {					\
64 	(sgsave).sg_nseg = (sg)->sg_nseg;				\
65 	if ((sgsave).sg_nseg > 0)					\
66 		(sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
67 	else								\
68 		(sgsave).ss_len = 0;					\
69 } while (0)
70 
71 #define	SGLIST_RESTORE(sg, sgsave) do {					\
72 	(sg)->sg_nseg = (sgsave).sg_nseg;				\
73 	if ((sgsave).sg_nseg > 0)					\
74 		(sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
75 } while (0)
76 
77 /*
78  * Append a single (paddr, len) to a sglist.  sg is the list and ss is
79  * the current segment in the list.  If we run out of segments then
80  * EFBIG will be returned.
81  */
82 static __inline int
83 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
84     vm_paddr_t paddr, size_t len)
85 {
86 	struct sglist_seg *ss;
87 
88 	ss = *ssp;
89 	if (ss->ss_paddr + ss->ss_len == paddr)
90 		ss->ss_len += len;
91 	else {
92 		if (sg->sg_nseg == sg->sg_maxseg)
93 			return (EFBIG);
94 		ss++;
95 		ss->ss_paddr = paddr;
96 		ss->ss_len = len;
97 		sg->sg_nseg++;
98 		*ssp = ss;
99 	}
100 	return (0);
101 }
102 
103 /*
104  * Worker routine to append a virtual address range (either kernel or
105  * user) to a scatter/gather list.
106  */
107 static __inline int
108 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
109     size_t *donep)
110 {
111 	struct sglist_seg *ss;
112 	vm_offset_t vaddr, offset;
113 	vm_paddr_t paddr;
114 	size_t seglen;
115 	int error;
116 
117 	if (donep)
118 		*donep = 0;
119 	if (len == 0)
120 		return (0);
121 
122 	/* Do the first page.  It may have an offset. */
123 	vaddr = (vm_offset_t)buf;
124 	offset = vaddr & PAGE_MASK;
125 	if (pmap != NULL)
126 		paddr = pmap_extract(pmap, vaddr);
127 	else
128 		paddr = pmap_kextract(vaddr);
129 	seglen = MIN(len, PAGE_SIZE - offset);
130 	if (sg->sg_nseg == 0) {
131 		ss = sg->sg_segs;
132 		ss->ss_paddr = paddr;
133 		ss->ss_len = seglen;
134 		sg->sg_nseg = 1;
135 	} else {
136 		ss = &sg->sg_segs[sg->sg_nseg - 1];
137 		error = _sglist_append_range(sg, &ss, paddr, seglen);
138 		if (error)
139 			return (error);
140 	}
141 	vaddr += seglen;
142 	len -= seglen;
143 	if (donep)
144 		*donep += seglen;
145 
146 	while (len > 0) {
147 		seglen = MIN(len, PAGE_SIZE);
148 		if (pmap != NULL)
149 			paddr = pmap_extract(pmap, vaddr);
150 		else
151 			paddr = pmap_kextract(vaddr);
152 		error = _sglist_append_range(sg, &ss, paddr, seglen);
153 		if (error)
154 			return (error);
155 		vaddr += seglen;
156 		len -= seglen;
157 		if (donep)
158 			*donep += seglen;
159 	}
160 
161 	return (0);
162 }
163 
164 /*
165  * Determine the number of scatter/gather list elements needed to
166  * describe a kernel virtual address range.
167  */
168 int
169 sglist_count(void *buf, size_t len)
170 {
171 	vm_offset_t vaddr, vendaddr;
172 	vm_paddr_t lastaddr, paddr;
173 	int nsegs;
174 
175 	if (len == 0)
176 		return (0);
177 
178 	vaddr = trunc_page((vm_offset_t)buf);
179 	vendaddr = (vm_offset_t)buf + len;
180 	nsegs = 1;
181 	lastaddr = pmap_kextract(vaddr);
182 	vaddr += PAGE_SIZE;
183 	while (vaddr < vendaddr) {
184 		paddr = pmap_kextract(vaddr);
185 		if (lastaddr + PAGE_SIZE != paddr)
186 			nsegs++;
187 		lastaddr = paddr;
188 		vaddr += PAGE_SIZE;
189 	}
190 	return (nsegs);
191 }
192 
193 /*
194  * Determine the number of scatter/gather list elements needed to
195  * describe a buffer backed by an array of VM pages.
196  */
197 int
198 sglist_count_vmpages(vm_page_t *m, size_t pgoff, size_t len)
199 {
200 	vm_paddr_t lastaddr, paddr;
201 	int i, nsegs;
202 
203 	if (len == 0)
204 		return (0);
205 
206 	len += pgoff;
207 	nsegs = 1;
208 	lastaddr = VM_PAGE_TO_PHYS(m[0]);
209 	for (i = 1; len > PAGE_SIZE; len -= PAGE_SIZE, i++) {
210 		paddr = VM_PAGE_TO_PHYS(m[i]);
211 		if (lastaddr + PAGE_SIZE != paddr)
212 			nsegs++;
213 		lastaddr = paddr;
214 	}
215 	return (nsegs);
216 }
217 
218 /*
219  * Determine the number of scatter/gather list elements needed to
220  * describe an M_EXTPG mbuf.
221  */
222 int
223 sglist_count_mbuf_epg(struct mbuf *m, size_t off, size_t len)
224 {
225 	vm_paddr_t nextaddr, paddr;
226 	size_t seglen, segoff;
227 	int i, nsegs, pglen, pgoff;
228 
229 	if (len == 0)
230 		return (0);
231 
232 	nsegs = 0;
233 	if (m->m_epg_hdrlen != 0) {
234 		if (off >= m->m_epg_hdrlen) {
235 			off -= m->m_epg_hdrlen;
236 		} else {
237 			seglen = m->m_epg_hdrlen - off;
238 			segoff = off;
239 			seglen = MIN(seglen, len);
240 			off = 0;
241 			len -= seglen;
242 			nsegs += sglist_count(&m->m_epg_hdr[segoff],
243 			    seglen);
244 		}
245 	}
246 	nextaddr = 0;
247 	pgoff = m->m_epg_1st_off;
248 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
249 		pglen = m_epg_pagelen(m, i, pgoff);
250 		if (off >= pglen) {
251 			off -= pglen;
252 			pgoff = 0;
253 			continue;
254 		}
255 		seglen = pglen - off;
256 		segoff = pgoff + off;
257 		off = 0;
258 		seglen = MIN(seglen, len);
259 		len -= seglen;
260 		paddr = m->m_epg_pa[i] + segoff;
261 		if (paddr != nextaddr)
262 			nsegs++;
263 		nextaddr = paddr + seglen;
264 		pgoff = 0;
265 	};
266 	if (len != 0) {
267 		seglen = MIN(len, m->m_epg_trllen - off);
268 		len -= seglen;
269 		nsegs += sglist_count(&m->m_epg_trail[off], seglen);
270 	}
271 	KASSERT(len == 0, ("len != 0"));
272 	return (nsegs);
273 }
274 
275 /*
276  * Allocate a scatter/gather list along with 'nsegs' segments.  The
277  * 'mflags' parameters are the same as passed to malloc(9).  The caller
278  * should use sglist_free() to free this list.
279  */
280 struct sglist *
281 sglist_alloc(int nsegs, int mflags)
282 {
283 	struct sglist *sg;
284 
285 	sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
286 	    M_SGLIST, mflags);
287 	if (sg == NULL)
288 		return (NULL);
289 	sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
290 	return (sg);
291 }
292 
293 /*
294  * Free a scatter/gather list allocated via sglist_allc().
295  */
296 void
297 sglist_free(struct sglist *sg)
298 {
299 
300 	if (sg == NULL)
301 		return;
302 
303 	if (refcount_release(&sg->sg_refs))
304 		free(sg, M_SGLIST);
305 }
306 
307 /*
308  * Append the segments to describe a single kernel virtual address
309  * range to a scatter/gather list.  If there are insufficient
310  * segments, then this fails with EFBIG.
311  */
312 int
313 sglist_append(struct sglist *sg, void *buf, size_t len)
314 {
315 	struct sgsave save;
316 	int error;
317 
318 	if (sg->sg_maxseg == 0)
319 		return (EINVAL);
320 	SGLIST_SAVE(sg, save);
321 	error = _sglist_append_buf(sg, buf, len, NULL, NULL);
322 	if (error)
323 		SGLIST_RESTORE(sg, save);
324 	return (error);
325 }
326 
327 /*
328  * Append the segments to describe a bio's data to a scatter/gather list.
329  * If there are insufficient segments, then this fails with EFBIG.
330  *
331  * NOTE: This function expects bio_bcount to be initialized.
332  */
333 int
334 sglist_append_bio(struct sglist *sg, struct bio *bp)
335 {
336 	int error;
337 
338 	if ((bp->bio_flags & BIO_UNMAPPED) == 0)
339 		error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
340 	else
341 		error = sglist_append_vmpages(sg, bp->bio_ma,
342 		    bp->bio_ma_offset, bp->bio_bcount);
343 	return (error);
344 }
345 
346 /*
347  * Append a single physical address range to a scatter/gather list.
348  * If there are insufficient segments, then this fails with EFBIG.
349  */
350 int
351 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
352 {
353 	struct sglist_seg *ss;
354 	struct sgsave save;
355 	int error;
356 
357 	if (sg->sg_maxseg == 0)
358 		return (EINVAL);
359 	if (len == 0)
360 		return (0);
361 
362 	if (sg->sg_nseg == 0) {
363 		sg->sg_segs[0].ss_paddr = paddr;
364 		sg->sg_segs[0].ss_len = len;
365 		sg->sg_nseg = 1;
366 		return (0);
367 	}
368 	ss = &sg->sg_segs[sg->sg_nseg - 1];
369 	SGLIST_SAVE(sg, save);
370 	error = _sglist_append_range(sg, &ss, paddr, len);
371 	if (error)
372 		SGLIST_RESTORE(sg, save);
373 	return (error);
374 }
375 
376 /*
377  * Append the segments of single multi-page mbuf.
378  * If there are insufficient segments, then this fails with EFBIG.
379  */
380 int
381 sglist_append_mbuf_epg(struct sglist *sg, struct mbuf *m, size_t off,
382     size_t len)
383 {
384 	size_t seglen, segoff;
385 	vm_paddr_t paddr;
386 	int error, i, pglen, pgoff;
387 
388 	M_ASSERTEXTPG(m);
389 
390 	error = 0;
391 	if (m->m_epg_hdrlen != 0) {
392 		if (off >= m->m_epg_hdrlen) {
393 			off -= m->m_epg_hdrlen;
394 		} else {
395 			seglen = m->m_epg_hdrlen - off;
396 			segoff = off;
397 			seglen = MIN(seglen, len);
398 			off = 0;
399 			len -= seglen;
400 			error = sglist_append(sg,
401 			    &m->m_epg_hdr[segoff], seglen);
402 		}
403 	}
404 	pgoff = m->m_epg_1st_off;
405 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
406 		pglen = m_epg_pagelen(m, i, pgoff);
407 		if (off >= pglen) {
408 			off -= pglen;
409 			pgoff = 0;
410 			continue;
411 		}
412 		seglen = pglen - off;
413 		segoff = pgoff + off;
414 		off = 0;
415 		seglen = MIN(seglen, len);
416 		len -= seglen;
417 		paddr = m->m_epg_pa[i] + segoff;
418 		error = sglist_append_phys(sg, paddr, seglen);
419 		pgoff = 0;
420 	};
421 	if (error == 0 && len > 0) {
422 		seglen = MIN(len, m->m_epg_trllen - off);
423 		len -= seglen;
424 		error = sglist_append(sg,
425 		    &m->m_epg_trail[off], seglen);
426 	}
427 	if (error == 0)
428 		KASSERT(len == 0, ("len != 0"));
429 	return (error);
430 }
431 
432 /*
433  * Append the segments that describe a single mbuf chain to a
434  * scatter/gather list.  If there are insufficient segments, then this
435  * fails with EFBIG.
436  */
437 int
438 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
439 {
440 	struct sgsave save;
441 	struct mbuf *m;
442 	int error;
443 
444 	if (sg->sg_maxseg == 0)
445 		return (EINVAL);
446 
447 	error = 0;
448 	SGLIST_SAVE(sg, save);
449 	for (m = m0; m != NULL; m = m->m_next) {
450 		if (m->m_len > 0) {
451 			if ((m->m_flags & M_EXTPG) != 0)
452 				error = sglist_append_mbuf_epg(sg, m,
453 				    mtod(m, vm_offset_t), m->m_len);
454 			else
455 				error = sglist_append(sg, m->m_data,
456 				    m->m_len);
457 			if (error) {
458 				SGLIST_RESTORE(sg, save);
459 				return (error);
460 			}
461 		}
462 	}
463 	return (0);
464 }
465 
466 /*
467  * Append the segments that describe a single mbuf to a scatter/gather
468  * list.  If there are insufficient segments, then this fails with
469  * EFBIG.
470  */
471 int
472 sglist_append_single_mbuf(struct sglist *sg, struct mbuf *m)
473 {
474 	if ((m->m_flags & M_EXTPG) != 0)
475 		return (sglist_append_mbuf_epg(sg, m,
476 		    mtod(m, vm_offset_t), m->m_len));
477 	else
478 		return (sglist_append(sg, m->m_data, m->m_len));
479 }
480 
481 /*
482  * Append the segments that describe a buffer spanning an array of VM
483  * pages.  The buffer begins at an offset of 'pgoff' in the first
484  * page.
485  */
486 int
487 sglist_append_vmpages(struct sglist *sg, vm_page_t *m, size_t pgoff,
488     size_t len)
489 {
490 	struct sgsave save;
491 	struct sglist_seg *ss;
492 	vm_paddr_t paddr;
493 	size_t seglen;
494 	int error, i;
495 
496 	if (sg->sg_maxseg == 0)
497 		return (EINVAL);
498 	if (len == 0)
499 		return (0);
500 
501 	SGLIST_SAVE(sg, save);
502 	i = 0;
503 	if (sg->sg_nseg == 0) {
504 		seglen = min(PAGE_SIZE - pgoff, len);
505 		sg->sg_segs[0].ss_paddr = VM_PAGE_TO_PHYS(m[0]) + pgoff;
506 		sg->sg_segs[0].ss_len = seglen;
507 		sg->sg_nseg = 1;
508 		pgoff = 0;
509 		len -= seglen;
510 		i++;
511 	}
512 	ss = &sg->sg_segs[sg->sg_nseg - 1];
513 	for (; len > 0; i++, len -= seglen) {
514 		seglen = min(PAGE_SIZE - pgoff, len);
515 		paddr = VM_PAGE_TO_PHYS(m[i]) + pgoff;
516 		error = _sglist_append_range(sg, &ss, paddr, seglen);
517 		if (error) {
518 			SGLIST_RESTORE(sg, save);
519 			return (error);
520 		}
521 		pgoff = 0;
522 	}
523 	return (0);
524 }
525 
526 /*
527  * Append the segments that describe a single user address range to a
528  * scatter/gather list.  If there are insufficient segments, then this
529  * fails with EFBIG.
530  */
531 int
532 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
533 {
534 	struct sgsave save;
535 	int error;
536 
537 	if (sg->sg_maxseg == 0)
538 		return (EINVAL);
539 	SGLIST_SAVE(sg, save);
540 	error = _sglist_append_buf(sg, buf, len,
541 	    vmspace_pmap(td->td_proc->p_vmspace), NULL);
542 	if (error)
543 		SGLIST_RESTORE(sg, save);
544 	return (error);
545 }
546 
547 /*
548  * Append a subset of an existing scatter/gather list 'source' to a
549  * the scatter/gather list 'sg'.  If there are insufficient segments,
550  * then this fails with EFBIG.
551  */
552 int
553 sglist_append_sglist(struct sglist *sg, struct sglist *source, size_t offset,
554     size_t length)
555 {
556 	struct sgsave save;
557 	struct sglist_seg *ss;
558 	size_t seglen;
559 	int error, i;
560 
561 	if (sg->sg_maxseg == 0 || length == 0)
562 		return (EINVAL);
563 	SGLIST_SAVE(sg, save);
564 	error = EINVAL;
565 	ss = &sg->sg_segs[sg->sg_nseg - 1];
566 	for (i = 0; i < source->sg_nseg; i++) {
567 		if (offset >= source->sg_segs[i].ss_len) {
568 			offset -= source->sg_segs[i].ss_len;
569 			continue;
570 		}
571 		seglen = source->sg_segs[i].ss_len - offset;
572 		if (seglen > length)
573 			seglen = length;
574 		error = _sglist_append_range(sg, &ss,
575 		    source->sg_segs[i].ss_paddr + offset, seglen);
576 		if (error)
577 			break;
578 		offset = 0;
579 		length -= seglen;
580 		if (length == 0)
581 			break;
582 	}
583 	if (length != 0)
584 		error = EINVAL;
585 	if (error)
586 		SGLIST_RESTORE(sg, save);
587 	return (error);
588 }
589 
590 /*
591  * Append the segments that describe a single uio to a scatter/gather
592  * list.  If there are insufficient segments, then this fails with
593  * EFBIG.
594  */
595 int
596 sglist_append_uio(struct sglist *sg, struct uio *uio)
597 {
598 	struct iovec *iov;
599 	struct sgsave save;
600 	size_t resid, minlen;
601 	pmap_t pmap;
602 	int error, i;
603 
604 	if (sg->sg_maxseg == 0)
605 		return (EINVAL);
606 
607 	resid = uio->uio_resid;
608 	iov = uio->uio_iov;
609 
610 	if (uio->uio_segflg == UIO_USERSPACE) {
611 		KASSERT(uio->uio_td != NULL,
612 		    ("sglist_append_uio: USERSPACE but no thread"));
613 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
614 	} else
615 		pmap = NULL;
616 
617 	error = 0;
618 	SGLIST_SAVE(sg, save);
619 	for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
620 		/*
621 		 * Now at the first iovec to load.  Load each iovec
622 		 * until we have exhausted the residual count.
623 		 */
624 		minlen = MIN(resid, iov[i].iov_len);
625 		if (minlen > 0) {
626 			error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
627 			    pmap, NULL);
628 			if (error) {
629 				SGLIST_RESTORE(sg, save);
630 				return (error);
631 			}
632 			resid -= minlen;
633 		}
634 	}
635 	return (0);
636 }
637 
638 /*
639  * Append the segments that describe at most 'resid' bytes from a
640  * single uio to a scatter/gather list.  If there are insufficient
641  * segments, then only the amount that fits is appended.
642  */
643 int
644 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
645 {
646 	struct iovec *iov;
647 	size_t done;
648 	pmap_t pmap;
649 	int error, len;
650 
651 	if (sg->sg_maxseg == 0)
652 		return (EINVAL);
653 
654 	if (uio->uio_segflg == UIO_USERSPACE) {
655 		KASSERT(uio->uio_td != NULL,
656 		    ("sglist_consume_uio: USERSPACE but no thread"));
657 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
658 	} else
659 		pmap = NULL;
660 
661 	error = 0;
662 	while (resid > 0 && uio->uio_resid) {
663 		iov = uio->uio_iov;
664 		len = iov->iov_len;
665 		if (len == 0) {
666 			uio->uio_iov++;
667 			uio->uio_iovcnt--;
668 			continue;
669 		}
670 		if (len > resid)
671 			len = resid;
672 
673 		/*
674 		 * Try to append this iovec.  If we run out of room,
675 		 * then break out of the loop.
676 		 */
677 		error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
678 		iov->iov_base = (char *)iov->iov_base + done;
679 		iov->iov_len -= done;
680 		uio->uio_resid -= done;
681 		uio->uio_offset += done;
682 		resid -= done;
683 		if (error)
684 			break;
685 	}
686 	return (0);
687 }
688 
689 /*
690  * Allocate and populate a scatter/gather list to describe a single
691  * kernel virtual address range.
692  */
693 struct sglist *
694 sglist_build(void *buf, size_t len, int mflags)
695 {
696 	struct sglist *sg;
697 	int nsegs;
698 
699 	if (len == 0)
700 		return (NULL);
701 
702 	nsegs = sglist_count(buf, len);
703 	sg = sglist_alloc(nsegs, mflags);
704 	if (sg == NULL)
705 		return (NULL);
706 	if (sglist_append(sg, buf, len) != 0) {
707 		sglist_free(sg);
708 		return (NULL);
709 	}
710 	return (sg);
711 }
712 
713 /*
714  * Clone a new copy of a scatter/gather list.
715  */
716 struct sglist *
717 sglist_clone(struct sglist *sg, int mflags)
718 {
719 	struct sglist *new;
720 
721 	if (sg == NULL)
722 		return (NULL);
723 	new = sglist_alloc(sg->sg_maxseg, mflags);
724 	if (new == NULL)
725 		return (NULL);
726 	new->sg_nseg = sg->sg_nseg;
727 	bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
728 	    sg->sg_nseg);
729 	return (new);
730 }
731 
732 /*
733  * Calculate the total length of the segments described in a
734  * scatter/gather list.
735  */
736 size_t
737 sglist_length(struct sglist *sg)
738 {
739 	size_t space;
740 	int i;
741 
742 	space = 0;
743 	for (i = 0; i < sg->sg_nseg; i++)
744 		space += sg->sg_segs[i].ss_len;
745 	return (space);
746 }
747 
748 /*
749  * Split a scatter/gather list into two lists.  The scatter/gather
750  * entries for the first 'length' bytes of the 'original' list are
751  * stored in the '*head' list and are removed from 'original'.
752  *
753  * If '*head' is NULL, then a new list will be allocated using
754  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
755  * ENOMEM will be returned.
756  *
757  * If '*head' is not NULL, it should point to an empty sglist.  If it
758  * does not have enough room for the remaining space, then EFBIG will
759  * be returned.  If '*head' is not empty, then EINVAL will be
760  * returned.
761  *
762  * If 'original' is shared (refcount > 1), then EDOOFUS will be
763  * returned.
764  */
765 int
766 sglist_split(struct sglist *original, struct sglist **head, size_t length,
767     int mflags)
768 {
769 	struct sglist *sg;
770 	size_t space, split;
771 	int count, i;
772 
773 	if (original->sg_refs > 1)
774 		return (EDOOFUS);
775 
776 	/* Figure out how big of a sglist '*head' has to hold. */
777 	count = 0;
778 	space = 0;
779 	split = 0;
780 	for (i = 0; i < original->sg_nseg; i++) {
781 		space += original->sg_segs[i].ss_len;
782 		count++;
783 		if (space >= length) {
784 			/*
785 			 * If 'length' falls in the middle of a
786 			 * scatter/gather list entry, then 'split'
787 			 * holds how much of that entry will remain in
788 			 * 'original'.
789 			 */
790 			split = space - length;
791 			break;
792 		}
793 	}
794 
795 	/* Nothing to do, so leave head empty. */
796 	if (count == 0)
797 		return (0);
798 
799 	if (*head == NULL) {
800 		sg = sglist_alloc(count, mflags);
801 		if (sg == NULL)
802 			return (ENOMEM);
803 		*head = sg;
804 	} else {
805 		sg = *head;
806 		if (sg->sg_maxseg < count)
807 			return (EFBIG);
808 		if (sg->sg_nseg != 0)
809 			return (EINVAL);
810 	}
811 
812 	/* Copy 'count' entries to 'sg' from 'original'. */
813 	bcopy(original->sg_segs, sg->sg_segs, count *
814 	    sizeof(struct sglist_seg));
815 	sg->sg_nseg = count;
816 
817 	/*
818 	 * If we had to split a list entry, fixup the last entry in
819 	 * 'sg' and the new first entry in 'original'.  We also
820 	 * decrement 'count' by 1 since we will only be removing
821 	 * 'count - 1' segments from 'original' now.
822 	 */
823 	if (split != 0) {
824 		count--;
825 		sg->sg_segs[count].ss_len -= split;
826 		original->sg_segs[count].ss_paddr =
827 		    sg->sg_segs[count].ss_paddr + split;
828 		original->sg_segs[count].ss_len = split;
829 	}
830 
831 	/* Trim 'count' entries from the front of 'original'. */
832 	original->sg_nseg -= count;
833 	bcopy(original->sg_segs + count, original->sg_segs, count *
834 	    sizeof(struct sglist_seg));
835 	return (0);
836 }
837 
838 /*
839  * Append the scatter/gather list elements in 'second' to the
840  * scatter/gather list 'first'.  If there is not enough space in
841  * 'first', EFBIG is returned.
842  */
843 int
844 sglist_join(struct sglist *first, struct sglist *second)
845 {
846 	struct sglist_seg *flast, *sfirst;
847 	int append;
848 
849 	/* If 'second' is empty, there is nothing to do. */
850 	if (second->sg_nseg == 0)
851 		return (0);
852 
853 	/*
854 	 * If the first entry in 'second' can be appended to the last entry
855 	 * in 'first' then set append to '1'.
856 	 */
857 	append = 0;
858 	flast = &first->sg_segs[first->sg_nseg - 1];
859 	sfirst = &second->sg_segs[0];
860 	if (first->sg_nseg != 0 &&
861 	    flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
862 		append = 1;
863 
864 	/* Make sure 'first' has enough room. */
865 	if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
866 		return (EFBIG);
867 
868 	/* Merge last in 'first' and first in 'second' if needed. */
869 	if (append)
870 		flast->ss_len += sfirst->ss_len;
871 
872 	/* Append new segments from 'second' to 'first'. */
873 	bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
874 	    (second->sg_nseg - append) * sizeof(struct sglist_seg));
875 	first->sg_nseg += second->sg_nseg - append;
876 	sglist_reset(second);
877 	return (0);
878 }
879 
880 /*
881  * Generate a new scatter/gather list from a range of an existing
882  * scatter/gather list.  The 'offset' and 'length' parameters specify
883  * the logical range of the 'original' list to extract.  If that range
884  * is not a subset of the length of 'original', then EINVAL is
885  * returned.  The new scatter/gather list is stored in '*slice'.
886  *
887  * If '*slice' is NULL, then a new list will be allocated using
888  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
889  * ENOMEM will be returned.
890  *
891  * If '*slice' is not NULL, it should point to an empty sglist.  If it
892  * does not have enough room for the remaining space, then EFBIG will
893  * be returned.  If '*slice' is not empty, then EINVAL will be
894  * returned.
895  */
896 int
897 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
898     size_t length, int mflags)
899 {
900 	struct sglist *sg;
901 	size_t space, end, foffs, loffs;
902 	int count, i, fseg;
903 
904 	/* Nothing to do. */
905 	if (length == 0)
906 		return (0);
907 
908 	/* Figure out how many segments '*slice' needs to have. */
909 	end = offset + length;
910 	space = 0;
911 	count = 0;
912 	fseg = 0;
913 	foffs = loffs = 0;
914 	for (i = 0; i < original->sg_nseg; i++) {
915 		space += original->sg_segs[i].ss_len;
916 		if (space > offset) {
917 			/*
918 			 * When we hit the first segment, store its index
919 			 * in 'fseg' and the offset into the first segment
920 			 * of 'offset' in 'foffs'.
921 			 */
922 			if (count == 0) {
923 				fseg = i;
924 				foffs = offset - (space -
925 				    original->sg_segs[i].ss_len);
926 				CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
927 				    foffs);
928 			}
929 			count++;
930 
931 			/*
932 			 * When we hit the last segment, break out of
933 			 * the loop.  Store the amount of extra space
934 			 * at the end of this segment in 'loffs'.
935 			 */
936 			if (space >= end) {
937 				loffs = space - end;
938 				CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
939 				    loffs);
940 				break;
941 			}
942 		}
943 	}
944 
945 	/* If we never hit 'end', then 'length' ran off the end, so fail. */
946 	if (space < end)
947 		return (EINVAL);
948 
949 	if (*slice == NULL) {
950 		sg = sglist_alloc(count, mflags);
951 		if (sg == NULL)
952 			return (ENOMEM);
953 		*slice = sg;
954 	} else {
955 		sg = *slice;
956 		if (sg->sg_maxseg < count)
957 			return (EFBIG);
958 		if (sg->sg_nseg != 0)
959 			return (EINVAL);
960 	}
961 
962 	/*
963 	 * Copy over 'count' segments from 'original' starting at
964 	 * 'fseg' to 'sg'.
965 	 */
966 	bcopy(original->sg_segs + fseg, sg->sg_segs,
967 	    count * sizeof(struct sglist_seg));
968 	sg->sg_nseg = count;
969 
970 	/* Fixup first and last segments if needed. */
971 	if (foffs != 0) {
972 		sg->sg_segs[0].ss_paddr += foffs;
973 		sg->sg_segs[0].ss_len -= foffs;
974 		CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
975 		    (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
976 	}
977 	if (loffs != 0) {
978 		sg->sg_segs[count - 1].ss_len -= loffs;
979 		CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
980 		    sg->sg_segs[count - 1].ss_len);
981 	}
982 	return (0);
983 }
984