xref: /freebsd/sys/kern/subr_sglist.c (revision 16038816)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Yahoo!, Inc.
5  * All rights reserved.
6  * Written by: John Baldwin <jhb@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/bio.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/proc.h>
42 #include <sys/sglist.h>
43 #include <sys/uio.h>
44 
45 #include <vm/vm.h>
46 #include <vm/vm_page.h>
47 #include <vm/pmap.h>
48 #include <vm/vm_map.h>
49 
50 #include <sys/ktr.h>
51 
52 static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
53 
54 /*
55  * Convenience macros to save the state of an sglist so it can be restored
56  * if an append attempt fails.  Since sglist's only grow we only need to
57  * save the current count of segments and the length of the ending segment.
58  * Earlier segments will not be changed by an append, and the only change
59  * that can occur to the ending segment is that it can be extended.
60  */
61 struct sgsave {
62 	u_short sg_nseg;
63 	size_t ss_len;
64 };
65 
66 #define	SGLIST_SAVE(sg, sgsave) do {					\
67 	(sgsave).sg_nseg = (sg)->sg_nseg;				\
68 	if ((sgsave).sg_nseg > 0)					\
69 		(sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
70 	else								\
71 		(sgsave).ss_len = 0;					\
72 } while (0)
73 
74 #define	SGLIST_RESTORE(sg, sgsave) do {					\
75 	(sg)->sg_nseg = (sgsave).sg_nseg;				\
76 	if ((sgsave).sg_nseg > 0)					\
77 		(sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
78 } while (0)
79 
80 /*
81  * Append a single (paddr, len) to a sglist.  sg is the list and ss is
82  * the current segment in the list.  If we run out of segments then
83  * EFBIG will be returned.
84  */
85 static __inline int
86 _sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
87     vm_paddr_t paddr, size_t len)
88 {
89 	struct sglist_seg *ss;
90 
91 	ss = *ssp;
92 	if (ss->ss_paddr + ss->ss_len == paddr)
93 		ss->ss_len += len;
94 	else {
95 		if (sg->sg_nseg == sg->sg_maxseg)
96 			return (EFBIG);
97 		ss++;
98 		ss->ss_paddr = paddr;
99 		ss->ss_len = len;
100 		sg->sg_nseg++;
101 		*ssp = ss;
102 	}
103 	return (0);
104 }
105 
106 /*
107  * Worker routine to append a virtual address range (either kernel or
108  * user) to a scatter/gather list.
109  */
110 static __inline int
111 _sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
112     size_t *donep)
113 {
114 	struct sglist_seg *ss;
115 	vm_offset_t vaddr, offset;
116 	vm_paddr_t paddr;
117 	size_t seglen;
118 	int error;
119 
120 	if (donep)
121 		*donep = 0;
122 	if (len == 0)
123 		return (0);
124 
125 	/* Do the first page.  It may have an offset. */
126 	vaddr = (vm_offset_t)buf;
127 	offset = vaddr & PAGE_MASK;
128 	if (pmap != NULL)
129 		paddr = pmap_extract(pmap, vaddr);
130 	else
131 		paddr = pmap_kextract(vaddr);
132 	seglen = MIN(len, PAGE_SIZE - offset);
133 	if (sg->sg_nseg == 0) {
134 		ss = sg->sg_segs;
135 		ss->ss_paddr = paddr;
136 		ss->ss_len = seglen;
137 		sg->sg_nseg = 1;
138 	} else {
139 		ss = &sg->sg_segs[sg->sg_nseg - 1];
140 		error = _sglist_append_range(sg, &ss, paddr, seglen);
141 		if (error)
142 			return (error);
143 	}
144 	vaddr += seglen;
145 	len -= seglen;
146 	if (donep)
147 		*donep += seglen;
148 
149 	while (len > 0) {
150 		seglen = MIN(len, PAGE_SIZE);
151 		if (pmap != NULL)
152 			paddr = pmap_extract(pmap, vaddr);
153 		else
154 			paddr = pmap_kextract(vaddr);
155 		error = _sglist_append_range(sg, &ss, paddr, seglen);
156 		if (error)
157 			return (error);
158 		vaddr += seglen;
159 		len -= seglen;
160 		if (donep)
161 			*donep += seglen;
162 	}
163 
164 	return (0);
165 }
166 
167 /*
168  * Determine the number of scatter/gather list elements needed to
169  * describe a kernel virtual address range.
170  */
171 int
172 sglist_count(void *buf, size_t len)
173 {
174 	vm_offset_t vaddr, vendaddr;
175 	vm_paddr_t lastaddr, paddr;
176 	int nsegs;
177 
178 	if (len == 0)
179 		return (0);
180 
181 	vaddr = trunc_page((vm_offset_t)buf);
182 	vendaddr = (vm_offset_t)buf + len;
183 	nsegs = 1;
184 	lastaddr = pmap_kextract(vaddr);
185 	vaddr += PAGE_SIZE;
186 	while (vaddr < vendaddr) {
187 		paddr = pmap_kextract(vaddr);
188 		if (lastaddr + PAGE_SIZE != paddr)
189 			nsegs++;
190 		lastaddr = paddr;
191 		vaddr += PAGE_SIZE;
192 	}
193 	return (nsegs);
194 }
195 
196 /*
197  * Determine the number of scatter/gather list elements needed to
198  * describe a buffer backed by an array of VM pages.
199  */
200 int
201 sglist_count_vmpages(vm_page_t *m, size_t pgoff, size_t len)
202 {
203 	vm_paddr_t lastaddr, paddr;
204 	int i, nsegs;
205 
206 	if (len == 0)
207 		return (0);
208 
209 	len += pgoff;
210 	nsegs = 1;
211 	lastaddr = VM_PAGE_TO_PHYS(m[0]);
212 	for (i = 1; len > PAGE_SIZE; len -= PAGE_SIZE, i++) {
213 		paddr = VM_PAGE_TO_PHYS(m[i]);
214 		if (lastaddr + PAGE_SIZE != paddr)
215 			nsegs++;
216 		lastaddr = paddr;
217 	}
218 	return (nsegs);
219 }
220 
221 /*
222  * Determine the number of scatter/gather list elements needed to
223  * describe an M_EXTPG mbuf.
224  */
225 int
226 sglist_count_mbuf_epg(struct mbuf *m, size_t off, size_t len)
227 {
228 	vm_paddr_t nextaddr, paddr;
229 	size_t seglen, segoff;
230 	int i, nsegs, pglen, pgoff;
231 
232 	if (len == 0)
233 		return (0);
234 
235 	nsegs = 0;
236 	if (m->m_epg_hdrlen != 0) {
237 		if (off >= m->m_epg_hdrlen) {
238 			off -= m->m_epg_hdrlen;
239 		} else {
240 			seglen = m->m_epg_hdrlen - off;
241 			segoff = off;
242 			seglen = MIN(seglen, len);
243 			off = 0;
244 			len -= seglen;
245 			nsegs += sglist_count(&m->m_epg_hdr[segoff],
246 			    seglen);
247 		}
248 	}
249 	nextaddr = 0;
250 	pgoff = m->m_epg_1st_off;
251 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
252 		pglen = m_epg_pagelen(m, i, pgoff);
253 		if (off >= pglen) {
254 			off -= pglen;
255 			pgoff = 0;
256 			continue;
257 		}
258 		seglen = pglen - off;
259 		segoff = pgoff + off;
260 		off = 0;
261 		seglen = MIN(seglen, len);
262 		len -= seglen;
263 		paddr = m->m_epg_pa[i] + segoff;
264 		if (paddr != nextaddr)
265 			nsegs++;
266 		nextaddr = paddr + seglen;
267 		pgoff = 0;
268 	};
269 	if (len != 0) {
270 		seglen = MIN(len, m->m_epg_trllen - off);
271 		len -= seglen;
272 		nsegs += sglist_count(&m->m_epg_trail[off], seglen);
273 	}
274 	KASSERT(len == 0, ("len != 0"));
275 	return (nsegs);
276 }
277 
278 /*
279  * Allocate a scatter/gather list along with 'nsegs' segments.  The
280  * 'mflags' parameters are the same as passed to malloc(9).  The caller
281  * should use sglist_free() to free this list.
282  */
283 struct sglist *
284 sglist_alloc(int nsegs, int mflags)
285 {
286 	struct sglist *sg;
287 
288 	sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
289 	    M_SGLIST, mflags);
290 	if (sg == NULL)
291 		return (NULL);
292 	sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
293 	return (sg);
294 }
295 
296 /*
297  * Free a scatter/gather list allocated via sglist_allc().
298  */
299 void
300 sglist_free(struct sglist *sg)
301 {
302 
303 	if (sg == NULL)
304 		return;
305 
306 	if (refcount_release(&sg->sg_refs))
307 		free(sg, M_SGLIST);
308 }
309 
310 /*
311  * Append the segments to describe a single kernel virtual address
312  * range to a scatter/gather list.  If there are insufficient
313  * segments, then this fails with EFBIG.
314  */
315 int
316 sglist_append(struct sglist *sg, void *buf, size_t len)
317 {
318 	struct sgsave save;
319 	int error;
320 
321 	if (sg->sg_maxseg == 0)
322 		return (EINVAL);
323 	SGLIST_SAVE(sg, save);
324 	error = _sglist_append_buf(sg, buf, len, NULL, NULL);
325 	if (error)
326 		SGLIST_RESTORE(sg, save);
327 	return (error);
328 }
329 
330 /*
331  * Append the segments to describe a bio's data to a scatter/gather list.
332  * If there are insufficient segments, then this fails with EFBIG.
333  *
334  * NOTE: This function expects bio_bcount to be initialized.
335  */
336 int
337 sglist_append_bio(struct sglist *sg, struct bio *bp)
338 {
339 	int error;
340 
341 	if ((bp->bio_flags & BIO_UNMAPPED) == 0)
342 		error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
343 	else
344 		error = sglist_append_vmpages(sg, bp->bio_ma,
345 		    bp->bio_ma_offset, bp->bio_bcount);
346 	return (error);
347 }
348 
349 /*
350  * Append a single physical address range to a scatter/gather list.
351  * If there are insufficient segments, then this fails with EFBIG.
352  */
353 int
354 sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
355 {
356 	struct sglist_seg *ss;
357 	struct sgsave save;
358 	int error;
359 
360 	if (sg->sg_maxseg == 0)
361 		return (EINVAL);
362 	if (len == 0)
363 		return (0);
364 
365 	if (sg->sg_nseg == 0) {
366 		sg->sg_segs[0].ss_paddr = paddr;
367 		sg->sg_segs[0].ss_len = len;
368 		sg->sg_nseg = 1;
369 		return (0);
370 	}
371 	ss = &sg->sg_segs[sg->sg_nseg - 1];
372 	SGLIST_SAVE(sg, save);
373 	error = _sglist_append_range(sg, &ss, paddr, len);
374 	if (error)
375 		SGLIST_RESTORE(sg, save);
376 	return (error);
377 }
378 
379 /*
380  * Append the segments of single multi-page mbuf.
381  * If there are insufficient segments, then this fails with EFBIG.
382  */
383 int
384 sglist_append_mbuf_epg(struct sglist *sg, struct mbuf *m, size_t off,
385     size_t len)
386 {
387 	size_t seglen, segoff;
388 	vm_paddr_t paddr;
389 	int error, i, pglen, pgoff;
390 
391 	M_ASSERTEXTPG(m);
392 
393 	error = 0;
394 	if (m->m_epg_hdrlen != 0) {
395 		if (off >= m->m_epg_hdrlen) {
396 			off -= m->m_epg_hdrlen;
397 		} else {
398 			seglen = m->m_epg_hdrlen - off;
399 			segoff = off;
400 			seglen = MIN(seglen, len);
401 			off = 0;
402 			len -= seglen;
403 			error = sglist_append(sg,
404 			    &m->m_epg_hdr[segoff], seglen);
405 		}
406 	}
407 	pgoff = m->m_epg_1st_off;
408 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
409 		pglen = m_epg_pagelen(m, i, pgoff);
410 		if (off >= pglen) {
411 			off -= pglen;
412 			pgoff = 0;
413 			continue;
414 		}
415 		seglen = pglen - off;
416 		segoff = pgoff + off;
417 		off = 0;
418 		seglen = MIN(seglen, len);
419 		len -= seglen;
420 		paddr = m->m_epg_pa[i] + segoff;
421 		error = sglist_append_phys(sg, paddr, seglen);
422 		pgoff = 0;
423 	};
424 	if (error == 0 && len > 0) {
425 		seglen = MIN(len, m->m_epg_trllen - off);
426 		len -= seglen;
427 		error = sglist_append(sg,
428 		    &m->m_epg_trail[off], seglen);
429 	}
430 	if (error == 0)
431 		KASSERT(len == 0, ("len != 0"));
432 	return (error);
433 }
434 
435 /*
436  * Append the segments that describe a single mbuf chain to a
437  * scatter/gather list.  If there are insufficient segments, then this
438  * fails with EFBIG.
439  */
440 int
441 sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
442 {
443 	struct sgsave save;
444 	struct mbuf *m;
445 	int error;
446 
447 	if (sg->sg_maxseg == 0)
448 		return (EINVAL);
449 
450 	error = 0;
451 	SGLIST_SAVE(sg, save);
452 	for (m = m0; m != NULL; m = m->m_next) {
453 		if (m->m_len > 0) {
454 			if ((m->m_flags & M_EXTPG) != 0)
455 				error = sglist_append_mbuf_epg(sg, m,
456 				    mtod(m, vm_offset_t), m->m_len);
457 			else
458 				error = sglist_append(sg, m->m_data,
459 				    m->m_len);
460 			if (error) {
461 				SGLIST_RESTORE(sg, save);
462 				return (error);
463 			}
464 		}
465 	}
466 	return (0);
467 }
468 
469 /*
470  * Append the segments that describe a single mbuf to a scatter/gather
471  * list.  If there are insufficient segments, then this fails with
472  * EFBIG.
473  */
474 int
475 sglist_append_single_mbuf(struct sglist *sg, struct mbuf *m)
476 {
477 	if ((m->m_flags & M_EXTPG) != 0)
478 		return (sglist_append_mbuf_epg(sg, m,
479 		    mtod(m, vm_offset_t), m->m_len));
480 	else
481 		return (sglist_append(sg, m->m_data, m->m_len));
482 }
483 
484 /*
485  * Append the segments that describe a buffer spanning an array of VM
486  * pages.  The buffer begins at an offset of 'pgoff' in the first
487  * page.
488  */
489 int
490 sglist_append_vmpages(struct sglist *sg, vm_page_t *m, size_t pgoff,
491     size_t len)
492 {
493 	struct sgsave save;
494 	struct sglist_seg *ss;
495 	vm_paddr_t paddr;
496 	size_t seglen;
497 	int error, i;
498 
499 	if (sg->sg_maxseg == 0)
500 		return (EINVAL);
501 	if (len == 0)
502 		return (0);
503 
504 	SGLIST_SAVE(sg, save);
505 	i = 0;
506 	if (sg->sg_nseg == 0) {
507 		seglen = min(PAGE_SIZE - pgoff, len);
508 		sg->sg_segs[0].ss_paddr = VM_PAGE_TO_PHYS(m[0]) + pgoff;
509 		sg->sg_segs[0].ss_len = seglen;
510 		sg->sg_nseg = 1;
511 		pgoff = 0;
512 		len -= seglen;
513 		i++;
514 	}
515 	ss = &sg->sg_segs[sg->sg_nseg - 1];
516 	for (; len > 0; i++, len -= seglen) {
517 		seglen = min(PAGE_SIZE - pgoff, len);
518 		paddr = VM_PAGE_TO_PHYS(m[i]) + pgoff;
519 		error = _sglist_append_range(sg, &ss, paddr, seglen);
520 		if (error) {
521 			SGLIST_RESTORE(sg, save);
522 			return (error);
523 		}
524 		pgoff = 0;
525 	}
526 	return (0);
527 }
528 
529 /*
530  * Append the segments that describe a single user address range to a
531  * scatter/gather list.  If there are insufficient segments, then this
532  * fails with EFBIG.
533  */
534 int
535 sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
536 {
537 	struct sgsave save;
538 	int error;
539 
540 	if (sg->sg_maxseg == 0)
541 		return (EINVAL);
542 	SGLIST_SAVE(sg, save);
543 	error = _sglist_append_buf(sg, buf, len,
544 	    vmspace_pmap(td->td_proc->p_vmspace), NULL);
545 	if (error)
546 		SGLIST_RESTORE(sg, save);
547 	return (error);
548 }
549 
550 /*
551  * Append a subset of an existing scatter/gather list 'source' to a
552  * the scatter/gather list 'sg'.  If there are insufficient segments,
553  * then this fails with EFBIG.
554  */
555 int
556 sglist_append_sglist(struct sglist *sg, struct sglist *source, size_t offset,
557     size_t length)
558 {
559 	struct sgsave save;
560 	struct sglist_seg *ss;
561 	size_t seglen;
562 	int error, i;
563 
564 	if (sg->sg_maxseg == 0 || length == 0)
565 		return (EINVAL);
566 	SGLIST_SAVE(sg, save);
567 	error = EINVAL;
568 	ss = &sg->sg_segs[sg->sg_nseg - 1];
569 	for (i = 0; i < source->sg_nseg; i++) {
570 		if (offset >= source->sg_segs[i].ss_len) {
571 			offset -= source->sg_segs[i].ss_len;
572 			continue;
573 		}
574 		seglen = source->sg_segs[i].ss_len - offset;
575 		if (seglen > length)
576 			seglen = length;
577 		error = _sglist_append_range(sg, &ss,
578 		    source->sg_segs[i].ss_paddr + offset, seglen);
579 		if (error)
580 			break;
581 		offset = 0;
582 		length -= seglen;
583 		if (length == 0)
584 			break;
585 	}
586 	if (length != 0)
587 		error = EINVAL;
588 	if (error)
589 		SGLIST_RESTORE(sg, save);
590 	return (error);
591 }
592 
593 /*
594  * Append the segments that describe a single uio to a scatter/gather
595  * list.  If there are insufficient segments, then this fails with
596  * EFBIG.
597  */
598 int
599 sglist_append_uio(struct sglist *sg, struct uio *uio)
600 {
601 	struct iovec *iov;
602 	struct sgsave save;
603 	size_t resid, minlen;
604 	pmap_t pmap;
605 	int error, i;
606 
607 	if (sg->sg_maxseg == 0)
608 		return (EINVAL);
609 
610 	resid = uio->uio_resid;
611 	iov = uio->uio_iov;
612 
613 	if (uio->uio_segflg == UIO_USERSPACE) {
614 		KASSERT(uio->uio_td != NULL,
615 		    ("sglist_append_uio: USERSPACE but no thread"));
616 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
617 	} else
618 		pmap = NULL;
619 
620 	error = 0;
621 	SGLIST_SAVE(sg, save);
622 	for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
623 		/*
624 		 * Now at the first iovec to load.  Load each iovec
625 		 * until we have exhausted the residual count.
626 		 */
627 		minlen = MIN(resid, iov[i].iov_len);
628 		if (minlen > 0) {
629 			error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
630 			    pmap, NULL);
631 			if (error) {
632 				SGLIST_RESTORE(sg, save);
633 				return (error);
634 			}
635 			resid -= minlen;
636 		}
637 	}
638 	return (0);
639 }
640 
641 /*
642  * Append the segments that describe at most 'resid' bytes from a
643  * single uio to a scatter/gather list.  If there are insufficient
644  * segments, then only the amount that fits is appended.
645  */
646 int
647 sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
648 {
649 	struct iovec *iov;
650 	size_t done;
651 	pmap_t pmap;
652 	int error, len;
653 
654 	if (sg->sg_maxseg == 0)
655 		return (EINVAL);
656 
657 	if (uio->uio_segflg == UIO_USERSPACE) {
658 		KASSERT(uio->uio_td != NULL,
659 		    ("sglist_consume_uio: USERSPACE but no thread"));
660 		pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
661 	} else
662 		pmap = NULL;
663 
664 	error = 0;
665 	while (resid > 0 && uio->uio_resid) {
666 		iov = uio->uio_iov;
667 		len = iov->iov_len;
668 		if (len == 0) {
669 			uio->uio_iov++;
670 			uio->uio_iovcnt--;
671 			continue;
672 		}
673 		if (len > resid)
674 			len = resid;
675 
676 		/*
677 		 * Try to append this iovec.  If we run out of room,
678 		 * then break out of the loop.
679 		 */
680 		error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
681 		iov->iov_base = (char *)iov->iov_base + done;
682 		iov->iov_len -= done;
683 		uio->uio_resid -= done;
684 		uio->uio_offset += done;
685 		resid -= done;
686 		if (error)
687 			break;
688 	}
689 	return (0);
690 }
691 
692 /*
693  * Allocate and populate a scatter/gather list to describe a single
694  * kernel virtual address range.
695  */
696 struct sglist *
697 sglist_build(void *buf, size_t len, int mflags)
698 {
699 	struct sglist *sg;
700 	int nsegs;
701 
702 	if (len == 0)
703 		return (NULL);
704 
705 	nsegs = sglist_count(buf, len);
706 	sg = sglist_alloc(nsegs, mflags);
707 	if (sg == NULL)
708 		return (NULL);
709 	if (sglist_append(sg, buf, len) != 0) {
710 		sglist_free(sg);
711 		return (NULL);
712 	}
713 	return (sg);
714 }
715 
716 /*
717  * Clone a new copy of a scatter/gather list.
718  */
719 struct sglist *
720 sglist_clone(struct sglist *sg, int mflags)
721 {
722 	struct sglist *new;
723 
724 	if (sg == NULL)
725 		return (NULL);
726 	new = sglist_alloc(sg->sg_maxseg, mflags);
727 	if (new == NULL)
728 		return (NULL);
729 	new->sg_nseg = sg->sg_nseg;
730 	bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
731 	    sg->sg_nseg);
732 	return (new);
733 }
734 
735 /*
736  * Calculate the total length of the segments described in a
737  * scatter/gather list.
738  */
739 size_t
740 sglist_length(struct sglist *sg)
741 {
742 	size_t space;
743 	int i;
744 
745 	space = 0;
746 	for (i = 0; i < sg->sg_nseg; i++)
747 		space += sg->sg_segs[i].ss_len;
748 	return (space);
749 }
750 
751 /*
752  * Split a scatter/gather list into two lists.  The scatter/gather
753  * entries for the first 'length' bytes of the 'original' list are
754  * stored in the '*head' list and are removed from 'original'.
755  *
756  * If '*head' is NULL, then a new list will be allocated using
757  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
758  * ENOMEM will be returned.
759  *
760  * If '*head' is not NULL, it should point to an empty sglist.  If it
761  * does not have enough room for the remaining space, then EFBIG will
762  * be returned.  If '*head' is not empty, then EINVAL will be
763  * returned.
764  *
765  * If 'original' is shared (refcount > 1), then EDOOFUS will be
766  * returned.
767  */
768 int
769 sglist_split(struct sglist *original, struct sglist **head, size_t length,
770     int mflags)
771 {
772 	struct sglist *sg;
773 	size_t space, split;
774 	int count, i;
775 
776 	if (original->sg_refs > 1)
777 		return (EDOOFUS);
778 
779 	/* Figure out how big of a sglist '*head' has to hold. */
780 	count = 0;
781 	space = 0;
782 	split = 0;
783 	for (i = 0; i < original->sg_nseg; i++) {
784 		space += original->sg_segs[i].ss_len;
785 		count++;
786 		if (space >= length) {
787 			/*
788 			 * If 'length' falls in the middle of a
789 			 * scatter/gather list entry, then 'split'
790 			 * holds how much of that entry will remain in
791 			 * 'original'.
792 			 */
793 			split = space - length;
794 			break;
795 		}
796 	}
797 
798 	/* Nothing to do, so leave head empty. */
799 	if (count == 0)
800 		return (0);
801 
802 	if (*head == NULL) {
803 		sg = sglist_alloc(count, mflags);
804 		if (sg == NULL)
805 			return (ENOMEM);
806 		*head = sg;
807 	} else {
808 		sg = *head;
809 		if (sg->sg_maxseg < count)
810 			return (EFBIG);
811 		if (sg->sg_nseg != 0)
812 			return (EINVAL);
813 	}
814 
815 	/* Copy 'count' entries to 'sg' from 'original'. */
816 	bcopy(original->sg_segs, sg->sg_segs, count *
817 	    sizeof(struct sglist_seg));
818 	sg->sg_nseg = count;
819 
820 	/*
821 	 * If we had to split a list entry, fixup the last entry in
822 	 * 'sg' and the new first entry in 'original'.  We also
823 	 * decrement 'count' by 1 since we will only be removing
824 	 * 'count - 1' segments from 'original' now.
825 	 */
826 	if (split != 0) {
827 		count--;
828 		sg->sg_segs[count].ss_len -= split;
829 		original->sg_segs[count].ss_paddr =
830 		    sg->sg_segs[count].ss_paddr + split;
831 		original->sg_segs[count].ss_len = split;
832 	}
833 
834 	/* Trim 'count' entries from the front of 'original'. */
835 	original->sg_nseg -= count;
836 	bcopy(original->sg_segs + count, original->sg_segs, count *
837 	    sizeof(struct sglist_seg));
838 	return (0);
839 }
840 
841 /*
842  * Append the scatter/gather list elements in 'second' to the
843  * scatter/gather list 'first'.  If there is not enough space in
844  * 'first', EFBIG is returned.
845  */
846 int
847 sglist_join(struct sglist *first, struct sglist *second)
848 {
849 	struct sglist_seg *flast, *sfirst;
850 	int append;
851 
852 	/* If 'second' is empty, there is nothing to do. */
853 	if (second->sg_nseg == 0)
854 		return (0);
855 
856 	/*
857 	 * If the first entry in 'second' can be appended to the last entry
858 	 * in 'first' then set append to '1'.
859 	 */
860 	append = 0;
861 	flast = &first->sg_segs[first->sg_nseg - 1];
862 	sfirst = &second->sg_segs[0];
863 	if (first->sg_nseg != 0 &&
864 	    flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
865 		append = 1;
866 
867 	/* Make sure 'first' has enough room. */
868 	if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
869 		return (EFBIG);
870 
871 	/* Merge last in 'first' and first in 'second' if needed. */
872 	if (append)
873 		flast->ss_len += sfirst->ss_len;
874 
875 	/* Append new segments from 'second' to 'first'. */
876 	bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
877 	    (second->sg_nseg - append) * sizeof(struct sglist_seg));
878 	first->sg_nseg += second->sg_nseg - append;
879 	sglist_reset(second);
880 	return (0);
881 }
882 
883 /*
884  * Generate a new scatter/gather list from a range of an existing
885  * scatter/gather list.  The 'offset' and 'length' parameters specify
886  * the logical range of the 'original' list to extract.  If that range
887  * is not a subset of the length of 'original', then EINVAL is
888  * returned.  The new scatter/gather list is stored in '*slice'.
889  *
890  * If '*slice' is NULL, then a new list will be allocated using
891  * 'mflags'.  If M_NOWAIT is specified and the allocation fails,
892  * ENOMEM will be returned.
893  *
894  * If '*slice' is not NULL, it should point to an empty sglist.  If it
895  * does not have enough room for the remaining space, then EFBIG will
896  * be returned.  If '*slice' is not empty, then EINVAL will be
897  * returned.
898  */
899 int
900 sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
901     size_t length, int mflags)
902 {
903 	struct sglist *sg;
904 	size_t space, end, foffs, loffs;
905 	int count, i, fseg;
906 
907 	/* Nothing to do. */
908 	if (length == 0)
909 		return (0);
910 
911 	/* Figure out how many segments '*slice' needs to have. */
912 	end = offset + length;
913 	space = 0;
914 	count = 0;
915 	fseg = 0;
916 	foffs = loffs = 0;
917 	for (i = 0; i < original->sg_nseg; i++) {
918 		space += original->sg_segs[i].ss_len;
919 		if (space > offset) {
920 			/*
921 			 * When we hit the first segment, store its index
922 			 * in 'fseg' and the offset into the first segment
923 			 * of 'offset' in 'foffs'.
924 			 */
925 			if (count == 0) {
926 				fseg = i;
927 				foffs = offset - (space -
928 				    original->sg_segs[i].ss_len);
929 				CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
930 				    foffs);
931 			}
932 			count++;
933 
934 			/*
935 			 * When we hit the last segment, break out of
936 			 * the loop.  Store the amount of extra space
937 			 * at the end of this segment in 'loffs'.
938 			 */
939 			if (space >= end) {
940 				loffs = space - end;
941 				CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
942 				    loffs);
943 				break;
944 			}
945 		}
946 	}
947 
948 	/* If we never hit 'end', then 'length' ran off the end, so fail. */
949 	if (space < end)
950 		return (EINVAL);
951 
952 	if (*slice == NULL) {
953 		sg = sglist_alloc(count, mflags);
954 		if (sg == NULL)
955 			return (ENOMEM);
956 		*slice = sg;
957 	} else {
958 		sg = *slice;
959 		if (sg->sg_maxseg < count)
960 			return (EFBIG);
961 		if (sg->sg_nseg != 0)
962 			return (EINVAL);
963 	}
964 
965 	/*
966 	 * Copy over 'count' segments from 'original' starting at
967 	 * 'fseg' to 'sg'.
968 	 */
969 	bcopy(original->sg_segs + fseg, sg->sg_segs,
970 	    count * sizeof(struct sglist_seg));
971 	sg->sg_nseg = count;
972 
973 	/* Fixup first and last segments if needed. */
974 	if (foffs != 0) {
975 		sg->sg_segs[0].ss_paddr += foffs;
976 		sg->sg_segs[0].ss_len -= foffs;
977 		CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
978 		    (long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
979 	}
980 	if (loffs != 0) {
981 		sg->sg_segs[count - 1].ss_len -= loffs;
982 		CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
983 		    sg->sg_segs[count - 1].ss_len);
984 	}
985 	return (0);
986 }
987