xref: /freebsd/sys/kern/subr_smp.c (revision e28a4053)
1 /*-
2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * This module holds the global variables and machine independent functions
32  * used for the kernel SMP support.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/proc.h>
43 #include <sys/bus.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/pcpu.h>
47 #include <sys/smp.h>
48 #include <sys/sysctl.h>
49 
50 #include <machine/cpu.h>
51 #include <machine/smp.h>
52 
53 #include "opt_sched.h"
54 
55 #ifdef SMP
56 volatile cpumask_t stopped_cpus;
57 volatile cpumask_t started_cpus;
58 cpumask_t idle_cpus_mask;
59 cpumask_t hlt_cpus_mask;
60 cpumask_t logical_cpus_mask;
61 
62 void (*cpustop_restartfunc)(void);
63 #endif
64 /* This is used in modules that need to work in both SMP and UP. */
65 cpumask_t all_cpus;
66 
67 int mp_ncpus;
68 /* export this for libkvm consumers. */
69 int mp_maxcpus = MAXCPU;
70 
71 volatile int smp_started;
72 u_int mp_maxid;
73 
74 SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
75 
76 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0,
77     "Max CPU ID.");
78 
79 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0,
80     "Max number of CPUs that the system was compiled for.");
81 
82 int smp_active = 0;	/* are the APs allowed to run? */
83 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
84     "Number of Auxillary Processors (APs) that were successfully started");
85 
86 int smp_disabled = 0;	/* has smp been disabled? */
87 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0,
88     "SMP has been disabled from the loader");
89 TUNABLE_INT("kern.smp.disabled", &smp_disabled);
90 
91 int smp_cpus = 1;	/* how many cpu's running */
92 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0,
93     "Number of CPUs online");
94 
95 int smp_topology = 0;	/* Which topology we're using. */
96 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
97     "Topology override setting; 0 is default provided by hardware.");
98 TUNABLE_INT("kern.smp.topology", &smp_topology);
99 
100 #ifdef SMP
101 /* Enable forwarding of a signal to a process running on a different CPU */
102 static int forward_signal_enabled = 1;
103 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
104 	   &forward_signal_enabled, 0,
105 	   "Forwarding of a signal to a process on a different CPU");
106 
107 /* Variables needed for SMP rendezvous. */
108 static volatile int smp_rv_ncpus;
109 static void (*volatile smp_rv_setup_func)(void *arg);
110 static void (*volatile smp_rv_action_func)(void *arg);
111 static void (*volatile smp_rv_teardown_func)(void *arg);
112 static void *volatile smp_rv_func_arg;
113 static volatile int smp_rv_waiters[3];
114 
115 /*
116  * Shared mutex to restrict busywaits between smp_rendezvous() and
117  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
118  * functions trigger at once and cause multiple CPUs to busywait with
119  * interrupts disabled.
120  */
121 struct mtx smp_ipi_mtx;
122 
123 /*
124  * Let the MD SMP code initialize mp_maxid very early if it can.
125  */
126 static void
127 mp_setmaxid(void *dummy)
128 {
129 	cpu_mp_setmaxid();
130 }
131 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
132 
133 /*
134  * Call the MD SMP initialization code.
135  */
136 static void
137 mp_start(void *dummy)
138 {
139 
140 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
141 
142 	/* Probe for MP hardware. */
143 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
144 		mp_ncpus = 1;
145 		all_cpus = PCPU_GET(cpumask);
146 		return;
147 	}
148 
149 	cpu_mp_start();
150 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
151 	    mp_ncpus);
152 	cpu_mp_announce();
153 }
154 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
155 
156 void
157 forward_signal(struct thread *td)
158 {
159 	int id;
160 
161 	/*
162 	 * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
163 	 * this thread, so all we need to do is poke it if it is currently
164 	 * executing so that it executes ast().
165 	 */
166 	THREAD_LOCK_ASSERT(td, MA_OWNED);
167 	KASSERT(TD_IS_RUNNING(td),
168 	    ("forward_signal: thread is not TDS_RUNNING"));
169 
170 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
171 
172 	if (!smp_started || cold || panicstr)
173 		return;
174 	if (!forward_signal_enabled)
175 		return;
176 
177 	/* No need to IPI ourself. */
178 	if (td == curthread)
179 		return;
180 
181 	id = td->td_oncpu;
182 	if (id == NOCPU)
183 		return;
184 	ipi_cpu(id, IPI_AST);
185 }
186 
187 /*
188  * When called the executing CPU will send an IPI to all other CPUs
189  *  requesting that they halt execution.
190  *
191  * Usually (but not necessarily) called with 'other_cpus' as its arg.
192  *
193  *  - Signals all CPUs in map to stop.
194  *  - Waits for each to stop.
195  *
196  * Returns:
197  *  -1: error
198  *   0: NA
199  *   1: ok
200  *
201  */
202 static int
203 generic_stop_cpus(cpumask_t map, u_int type)
204 {
205 	static volatile u_int stopping_cpu = NOCPU;
206 	int i;
207 
208 	KASSERT(
209 #if defined(__amd64__)
210 	    type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
211 #else
212 	    type == IPI_STOP || type == IPI_STOP_HARD,
213 #endif
214 	    ("%s: invalid stop type", __func__));
215 
216 	if (!smp_started)
217 		return (0);
218 
219 	CTR2(KTR_SMP, "stop_cpus(%x) with %u type", map, type);
220 
221 	if (stopping_cpu != PCPU_GET(cpuid))
222 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
223 		    PCPU_GET(cpuid)) == 0)
224 			while (stopping_cpu != NOCPU)
225 				cpu_spinwait(); /* spin */
226 
227 	/* send the stop IPI to all CPUs in map */
228 	ipi_selected(map, type);
229 
230 	i = 0;
231 	while ((stopped_cpus & map) != map) {
232 		/* spin */
233 		cpu_spinwait();
234 		i++;
235 #ifdef DIAGNOSTIC
236 		if (i == 100000) {
237 			printf("timeout stopping cpus\n");
238 			break;
239 		}
240 #endif
241 	}
242 
243 	stopping_cpu = NOCPU;
244 	return (1);
245 }
246 
247 int
248 stop_cpus(cpumask_t map)
249 {
250 
251 	return (generic_stop_cpus(map, IPI_STOP));
252 }
253 
254 int
255 stop_cpus_hard(cpumask_t map)
256 {
257 
258 	return (generic_stop_cpus(map, IPI_STOP_HARD));
259 }
260 
261 #if defined(__amd64__)
262 int
263 suspend_cpus(cpumask_t map)
264 {
265 
266 	return (generic_stop_cpus(map, IPI_SUSPEND));
267 }
268 #endif
269 
270 /*
271  * Called by a CPU to restart stopped CPUs.
272  *
273  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
274  *
275  *  - Signals all CPUs in map to restart.
276  *  - Waits for each to restart.
277  *
278  * Returns:
279  *  -1: error
280  *   0: NA
281  *   1: ok
282  */
283 int
284 restart_cpus(cpumask_t map)
285 {
286 
287 	if (!smp_started)
288 		return 0;
289 
290 	CTR1(KTR_SMP, "restart_cpus(%x)", map);
291 
292 	/* signal other cpus to restart */
293 	atomic_store_rel_int(&started_cpus, map);
294 
295 	/* wait for each to clear its bit */
296 	while ((stopped_cpus & map) != 0)
297 		cpu_spinwait();
298 
299 	return 1;
300 }
301 
302 /*
303  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
304  * (if specified), rendezvous, execute the action function (if specified),
305  * rendezvous again, execute the teardown function (if specified), and then
306  * resume.
307  *
308  * Note that the supplied external functions _must_ be reentrant and aware
309  * that they are running in parallel and in an unknown lock context.
310  */
311 void
312 smp_rendezvous_action(void)
313 {
314 	void* local_func_arg = smp_rv_func_arg;
315 	void (*local_setup_func)(void*)   = smp_rv_setup_func;
316 	void (*local_action_func)(void*)   = smp_rv_action_func;
317 	void (*local_teardown_func)(void*) = smp_rv_teardown_func;
318 
319 	/* Ensure we have up-to-date values. */
320 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
321 	while (smp_rv_waiters[0] < smp_rv_ncpus)
322 		cpu_spinwait();
323 
324 	/* setup function */
325 	if (local_setup_func != smp_no_rendevous_barrier) {
326 		if (smp_rv_setup_func != NULL)
327 			smp_rv_setup_func(smp_rv_func_arg);
328 
329 		/* spin on entry rendezvous */
330 		atomic_add_int(&smp_rv_waiters[1], 1);
331 		while (smp_rv_waiters[1] < smp_rv_ncpus)
332                 	cpu_spinwait();
333 	}
334 
335 	/* action function */
336 	if (local_action_func != NULL)
337 		local_action_func(local_func_arg);
338 
339 	/* spin on exit rendezvous */
340 	atomic_add_int(&smp_rv_waiters[2], 1);
341 	if (local_teardown_func == smp_no_rendevous_barrier)
342                 return;
343 	while (smp_rv_waiters[2] < smp_rv_ncpus)
344 		cpu_spinwait();
345 
346 	/* teardown function */
347 	if (local_teardown_func != NULL)
348 		local_teardown_func(local_func_arg);
349 }
350 
351 void
352 smp_rendezvous_cpus(cpumask_t map,
353 	void (* setup_func)(void *),
354 	void (* action_func)(void *),
355 	void (* teardown_func)(void *),
356 	void *arg)
357 {
358 	int i, ncpus = 0;
359 
360 	if (!smp_started) {
361 		if (setup_func != NULL)
362 			setup_func(arg);
363 		if (action_func != NULL)
364 			action_func(arg);
365 		if (teardown_func != NULL)
366 			teardown_func(arg);
367 		return;
368 	}
369 
370 	CPU_FOREACH(i) {
371 		if (((1 << i) & map) != 0)
372 			ncpus++;
373 	}
374 	if (ncpus == 0)
375 		panic("ncpus is 0 with map=0x%x", map);
376 
377 	/* obtain rendezvous lock */
378 	mtx_lock_spin(&smp_ipi_mtx);
379 
380 	/* set static function pointers */
381 	smp_rv_ncpus = ncpus;
382 	smp_rv_setup_func = setup_func;
383 	smp_rv_action_func = action_func;
384 	smp_rv_teardown_func = teardown_func;
385 	smp_rv_func_arg = arg;
386 	smp_rv_waiters[1] = 0;
387 	smp_rv_waiters[2] = 0;
388 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
389 
390 	/* signal other processors, which will enter the IPI with interrupts off */
391 	ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS);
392 
393 	/* Check if the current CPU is in the map */
394 	if ((map & (1 << curcpu)) != 0)
395 		smp_rendezvous_action();
396 
397 	if (teardown_func == smp_no_rendevous_barrier)
398 		while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus)
399 			cpu_spinwait();
400 
401 	/* release lock */
402 	mtx_unlock_spin(&smp_ipi_mtx);
403 }
404 
405 void
406 smp_rendezvous(void (* setup_func)(void *),
407 	       void (* action_func)(void *),
408 	       void (* teardown_func)(void *),
409 	       void *arg)
410 {
411 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
412 }
413 
414 static struct cpu_group group[MAXCPU];
415 
416 struct cpu_group *
417 smp_topo(void)
418 {
419 	struct cpu_group *top;
420 
421 	/*
422 	 * Check for a fake topology request for debugging purposes.
423 	 */
424 	switch (smp_topology) {
425 	case 1:
426 		/* Dual core with no sharing.  */
427 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
428 		break;
429 	case 2:
430 		/* No topology, all cpus are equal. */
431 		top = smp_topo_none();
432 		break;
433 	case 3:
434 		/* Dual core with shared L2.  */
435 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
436 		break;
437 	case 4:
438 		/* quad core, shared l3 among each package, private l2.  */
439 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
440 		break;
441 	case 5:
442 		/* quad core,  2 dualcore parts on each package share l2.  */
443 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
444 		break;
445 	case 6:
446 		/* Single-core 2xHTT */
447 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
448 		break;
449 	case 7:
450 		/* quad core with a shared l3, 8 threads sharing L2.  */
451 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
452 		    CG_FLAG_SMT);
453 		break;
454 	default:
455 		/* Default, ask the system what it wants. */
456 		top = cpu_topo();
457 		break;
458 	}
459 	/*
460 	 * Verify the returned topology.
461 	 */
462 	if (top->cg_count != mp_ncpus)
463 		panic("Built bad topology at %p.  CPU count %d != %d",
464 		    top, top->cg_count, mp_ncpus);
465 	if (top->cg_mask != all_cpus)
466 		panic("Built bad topology at %p.  CPU mask 0x%X != 0x%X",
467 		    top, top->cg_mask, all_cpus);
468 	return (top);
469 }
470 
471 struct cpu_group *
472 smp_topo_none(void)
473 {
474 	struct cpu_group *top;
475 
476 	top = &group[0];
477 	top->cg_parent = NULL;
478 	top->cg_child = NULL;
479 	top->cg_mask = ~0U >> (32 - mp_ncpus);
480 	top->cg_count = mp_ncpus;
481 	top->cg_children = 0;
482 	top->cg_level = CG_SHARE_NONE;
483 	top->cg_flags = 0;
484 
485 	return (top);
486 }
487 
488 static int
489 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
490     int count, int flags, int start)
491 {
492 	cpumask_t mask;
493 	int i;
494 
495 	for (mask = 0, i = 0; i < count; i++, start++)
496 		mask |= (1 << start);
497 	child->cg_parent = parent;
498 	child->cg_child = NULL;
499 	child->cg_children = 0;
500 	child->cg_level = share;
501 	child->cg_count = count;
502 	child->cg_flags = flags;
503 	child->cg_mask = mask;
504 	parent->cg_children++;
505 	for (; parent != NULL; parent = parent->cg_parent) {
506 		if ((parent->cg_mask & child->cg_mask) != 0)
507 			panic("Duplicate children in %p.  mask 0x%X child 0x%X",
508 			    parent, parent->cg_mask, child->cg_mask);
509 		parent->cg_mask |= child->cg_mask;
510 		parent->cg_count += child->cg_count;
511 	}
512 
513 	return (start);
514 }
515 
516 struct cpu_group *
517 smp_topo_1level(int share, int count, int flags)
518 {
519 	struct cpu_group *child;
520 	struct cpu_group *top;
521 	int packages;
522 	int cpu;
523 	int i;
524 
525 	cpu = 0;
526 	top = &group[0];
527 	packages = mp_ncpus / count;
528 	top->cg_child = child = &group[1];
529 	top->cg_level = CG_SHARE_NONE;
530 	for (i = 0; i < packages; i++, child++)
531 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
532 	return (top);
533 }
534 
535 struct cpu_group *
536 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
537     int l1flags)
538 {
539 	struct cpu_group *top;
540 	struct cpu_group *l1g;
541 	struct cpu_group *l2g;
542 	int cpu;
543 	int i;
544 	int j;
545 
546 	cpu = 0;
547 	top = &group[0];
548 	l2g = &group[1];
549 	top->cg_child = l2g;
550 	top->cg_level = CG_SHARE_NONE;
551 	top->cg_children = mp_ncpus / (l2count * l1count);
552 	l1g = l2g + top->cg_children;
553 	for (i = 0; i < top->cg_children; i++, l2g++) {
554 		l2g->cg_parent = top;
555 		l2g->cg_child = l1g;
556 		l2g->cg_level = l2share;
557 		for (j = 0; j < l2count; j++, l1g++)
558 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
559 			    l1flags, cpu);
560 	}
561 	return (top);
562 }
563 
564 
565 struct cpu_group *
566 smp_topo_find(struct cpu_group *top, int cpu)
567 {
568 	struct cpu_group *cg;
569 	cpumask_t mask;
570 	int children;
571 	int i;
572 
573 	mask = (1 << cpu);
574 	cg = top;
575 	for (;;) {
576 		if ((cg->cg_mask & mask) == 0)
577 			return (NULL);
578 		if (cg->cg_children == 0)
579 			return (cg);
580 		children = cg->cg_children;
581 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
582 			if ((cg->cg_mask & mask) != 0)
583 				break;
584 	}
585 	return (NULL);
586 }
587 #else /* !SMP */
588 
589 void
590 smp_rendezvous_cpus(cpumask_t map,
591 	void (*setup_func)(void *),
592 	void (*action_func)(void *),
593 	void (*teardown_func)(void *),
594 	void *arg)
595 {
596 	if (setup_func != NULL)
597 		setup_func(arg);
598 	if (action_func != NULL)
599 		action_func(arg);
600 	if (teardown_func != NULL)
601 		teardown_func(arg);
602 }
603 
604 void
605 smp_rendezvous(void (*setup_func)(void *),
606 	       void (*action_func)(void *),
607 	       void (*teardown_func)(void *),
608 	       void *arg)
609 {
610 
611 	if (setup_func != NULL)
612 		setup_func(arg);
613 	if (action_func != NULL)
614 		action_func(arg);
615 	if (teardown_func != NULL)
616 		teardown_func(arg);
617 }
618 
619 /*
620  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
621  * APIs will still work using this dummy support.
622  */
623 static void
624 mp_setvariables_for_up(void *dummy)
625 {
626 	mp_ncpus = 1;
627 	mp_maxid = PCPU_GET(cpuid);
628 	all_cpus = PCPU_GET(cpumask);
629 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
630 }
631 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
632     mp_setvariables_for_up, NULL);
633 #endif /* SMP */
634 
635 void
636 smp_no_rendevous_barrier(void *dummy)
637 {
638 #ifdef SMP
639 	KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
640 #endif
641 }
642