xref: /freebsd/sys/kern/subr_turnstile.c (revision a3557ef0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Implementation of turnstiles used to hold queue of threads blocked on
36  * non-sleepable locks.  Sleepable locks use condition variables to
37  * implement their queues.  Turnstiles differ from a sleep queue in that
38  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
39  * when one thread is enqueued onto a turnstile, it can lend its priority
40  * to the owning thread.
41  *
42  * We wish to avoid bloating locks with an embedded turnstile and we do not
43  * want to use back-pointers in the locks for the same reason.  Thus, we
44  * use a similar approach to that of Solaris 7 as described in Solaris
45  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
46  * in a hash table based on the address of the lock.  Each entry in the
47  * hash table is a linked-lists of turnstiles and is called a turnstile
48  * chain.  Each chain contains a spin mutex that protects all of the
49  * turnstiles in the chain.
50  *
51  * Each time a thread is created, a turnstile is allocated from a UMA zone
52  * and attached to that thread.  When a thread blocks on a lock, if it is the
53  * first thread to block, it lends its turnstile to the lock.  If the lock
54  * already has a turnstile, then it gives its turnstile to the lock's
55  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
56  * the free list if there are any other waiters.  If it is the only thread
57  * blocked on the lock, then it reclaims the turnstile associated with the lock
58  * and removes it from the hash table.
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_ddb.h"
65 #include "opt_turnstile_profiling.h"
66 #include "opt_sched.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kdb.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/queue.h>
77 #include <sys/sched.h>
78 #include <sys/sdt.h>
79 #include <sys/sysctl.h>
80 #include <sys/turnstile.h>
81 
82 #include <vm/uma.h>
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #include <sys/lockmgr.h>
87 #include <sys/sx.h>
88 #endif
89 
90 /*
91  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
92  * number chosen because the sleep queue's use the same value for the
93  * shift.  Basically, we ignore the lower 8 bits of the address.
94  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
95  */
96 #define	TC_TABLESIZE	128			/* Must be power of 2. */
97 #define	TC_MASK		(TC_TABLESIZE - 1)
98 #define	TC_SHIFT	8
99 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
100 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
101 
102 /*
103  * There are three different lists of turnstiles as follows.  The list
104  * connected by ts_link entries is a per-thread list of all the turnstiles
105  * attached to locks that we own.  This is used to fixup our priority when
106  * a lock is released.  The other two lists use the ts_hash entries.  The
107  * first of these two is the turnstile chain list that a turnstile is on
108  * when it is attached to a lock.  The second list to use ts_hash is the
109  * free list hung off of a turnstile that is attached to a lock.
110  *
111  * Each turnstile contains three lists of threads.  The two ts_blocked lists
112  * are linked list of threads blocked on the turnstile's lock.  One list is
113  * for exclusive waiters, and the other is for shared waiters.  The
114  * ts_pending list is a linked list of threads previously awakened by
115  * turnstile_signal() or turnstile_wait() that are waiting to be put on
116  * the run queue.
117  *
118  * Locking key:
119  *  c - turnstile chain lock
120  *  q - td_contested lock
121  */
122 struct turnstile {
123 	struct mtx ts_lock;			/* Spin lock for self. */
124 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
125 	struct threadqueue ts_pending;		/* (c) Pending threads. */
126 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
127 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
128 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
129 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
130 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
131 };
132 
133 struct turnstile_chain {
134 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
135 	struct mtx tc_lock;			/* Spin lock for this chain. */
136 #ifdef TURNSTILE_PROFILING
137 	u_int	tc_depth;			/* Length of tc_queues. */
138 	u_int	tc_max_depth;			/* Max length of tc_queues. */
139 #endif
140 };
141 
142 #ifdef TURNSTILE_PROFILING
143 u_int turnstile_max_depth;
144 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
145     "turnstile profiling");
146 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains,
147     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
148     "turnstile chain stats");
149 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
150     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
151 #endif
152 static struct mtx td_contested_lock;
153 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
154 static uma_zone_t turnstile_zone;
155 
156 /*
157  * Prototypes for non-exported routines.
158  */
159 static void	init_turnstile0(void *dummy);
160 #ifdef TURNSTILE_PROFILING
161 static void	init_turnstile_profiling(void *arg);
162 #endif
163 static void	propagate_priority(struct thread *td);
164 static int	turnstile_adjust_thread(struct turnstile *ts,
165 		    struct thread *td);
166 static struct thread *turnstile_first_waiter(struct turnstile *ts);
167 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
168 #ifdef INVARIANTS
169 static void	turnstile_dtor(void *mem, int size, void *arg);
170 #endif
171 static int	turnstile_init(void *mem, int size, int flags);
172 static void	turnstile_fini(void *mem, int size);
173 
174 SDT_PROVIDER_DECLARE(sched);
175 SDT_PROBE_DEFINE(sched, , , sleep);
176 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
177     "struct proc *");
178 
179 static inline void
180 propagate_unlock_ts(struct turnstile *top, struct turnstile *ts)
181 {
182 
183 	if (ts != top)
184 		mtx_unlock_spin(&ts->ts_lock);
185 }
186 
187 static inline void
188 propagate_unlock_td(struct turnstile *top, struct thread *td)
189 {
190 
191 	if (td->td_lock != &top->ts_lock)
192 		thread_unlock(td);
193 }
194 
195 /*
196  * Walks the chain of turnstiles and their owners to propagate the priority
197  * of the thread being blocked to all the threads holding locks that have to
198  * release their locks before this thread can run again.
199  */
200 static void
201 propagate_priority(struct thread *td)
202 {
203 	struct turnstile *ts, *top;
204 	int pri;
205 
206 	THREAD_LOCK_ASSERT(td, MA_OWNED);
207 	pri = td->td_priority;
208 	top = ts = td->td_blocked;
209 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
210 
211 	/*
212 	 * The original turnstile lock is held across the entire
213 	 * operation.  We only ever lock down the chain so the lock
214 	 * order is constant.
215 	 */
216 	for (;;) {
217 		td = ts->ts_owner;
218 
219 		if (td == NULL) {
220 			/*
221 			 * This might be a read lock with no owner.  There's
222 			 * not much we can do, so just bail.
223 			 */
224 			propagate_unlock_ts(top, ts);
225 			return;
226 		}
227 
228 		/*
229 		 * Wait for the thread lock to be stable and then only
230 		 * acquire if it is not the turnstile lock.
231 		 */
232 		thread_lock_block_wait(td);
233 		if (td->td_lock != &ts->ts_lock) {
234 			thread_lock_flags(td, MTX_DUPOK);
235 			propagate_unlock_ts(top, ts);
236 		}
237 		MPASS(td->td_proc != NULL);
238 		MPASS(td->td_proc->p_magic == P_MAGIC);
239 
240 		/*
241 		 * If the thread is asleep, then we are probably about
242 		 * to deadlock.  To make debugging this easier, show
243 		 * backtrace of misbehaving thread and panic to not
244 		 * leave the kernel deadlocked.
245 		 */
246 		if (TD_IS_SLEEPING(td)) {
247 			printf(
248 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
249 			    td->td_tid, td->td_proc->p_pid);
250 			kdb_backtrace_thread(td);
251 			panic("sleeping thread");
252 		}
253 
254 		/*
255 		 * If this thread already has higher priority than the
256 		 * thread that is being blocked, we are finished.
257 		 */
258 		if (td->td_priority <= pri) {
259 			propagate_unlock_td(top, td);
260 			return;
261 		}
262 
263 		/*
264 		 * Bump this thread's priority.
265 		 */
266 		sched_lend_prio(td, pri);
267 
268 		/*
269 		 * If lock holder is actually running or on the run queue
270 		 * then we are done.
271 		 */
272 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
273 			MPASS(td->td_blocked == NULL);
274 			propagate_unlock_td(top, td);
275 			return;
276 		}
277 
278 #ifndef SMP
279 		/*
280 		 * For UP, we check to see if td is curthread (this shouldn't
281 		 * ever happen however as it would mean we are in a deadlock.)
282 		 */
283 		KASSERT(td != curthread, ("Deadlock detected"));
284 #endif
285 
286 		/*
287 		 * If we aren't blocked on a lock, we should be.
288 		 */
289 		KASSERT(TD_ON_LOCK(td), (
290 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
291 		    td->td_tid, td->td_name, td->td_state,
292 		    ts->ts_lockobj->lo_name));
293 
294 		/*
295 		 * Pick up the lock that td is blocked on.
296 		 */
297 		ts = td->td_blocked;
298 		MPASS(ts != NULL);
299 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
300 		/* Resort td on the list if needed. */
301 		if (!turnstile_adjust_thread(ts, td)) {
302 			propagate_unlock_ts(top, ts);
303 			return;
304 		}
305 		/* The thread lock is released as ts lock above. */
306 	}
307 }
308 
309 /*
310  * Adjust the thread's position on a turnstile after its priority has been
311  * changed.
312  */
313 static int
314 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
315 {
316 	struct thread *td1, *td2;
317 	int queue;
318 
319 	THREAD_LOCK_ASSERT(td, MA_OWNED);
320 	MPASS(TD_ON_LOCK(td));
321 
322 	/*
323 	 * This thread may not be blocked on this turnstile anymore
324 	 * but instead might already be woken up on another CPU
325 	 * that is waiting on the thread lock in turnstile_unpend() to
326 	 * finish waking this thread up.  We can detect this case
327 	 * by checking to see if this thread has been given a
328 	 * turnstile by either turnstile_signal() or
329 	 * turnstile_broadcast().  In this case, treat the thread as
330 	 * if it was already running.
331 	 */
332 	if (td->td_turnstile != NULL)
333 		return (0);
334 
335 	/*
336 	 * Check if the thread needs to be moved on the blocked chain.
337 	 * It needs to be moved if either its priority is lower than
338 	 * the previous thread or higher than the next thread.
339 	 */
340 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
341 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
342 	td2 = TAILQ_NEXT(td, td_lockq);
343 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
344 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
345 
346 		/*
347 		 * Remove thread from blocked chain and determine where
348 		 * it should be moved to.
349 		 */
350 		queue = td->td_tsqueue;
351 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
352 		mtx_lock_spin(&td_contested_lock);
353 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
354 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
355 			MPASS(td1->td_proc->p_magic == P_MAGIC);
356 			if (td1->td_priority > td->td_priority)
357 				break;
358 		}
359 
360 		if (td1 == NULL)
361 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
362 		else
363 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
364 		mtx_unlock_spin(&td_contested_lock);
365 		if (td1 == NULL)
366 			CTR3(KTR_LOCK,
367 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
368 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
369 		else
370 			CTR4(KTR_LOCK,
371 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
372 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
373 			    ts->ts_lockobj->lo_name);
374 	}
375 	return (1);
376 }
377 
378 /*
379  * Early initialization of turnstiles.  This is not done via a SYSINIT()
380  * since this needs to be initialized very early when mutexes are first
381  * initialized.
382  */
383 void
384 init_turnstiles(void)
385 {
386 	int i;
387 
388 	for (i = 0; i < TC_TABLESIZE; i++) {
389 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
390 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
391 		    NULL, MTX_SPIN);
392 	}
393 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
394 	LIST_INIT(&thread0.td_contested);
395 	thread0.td_turnstile = NULL;
396 }
397 
398 #ifdef TURNSTILE_PROFILING
399 static void
400 init_turnstile_profiling(void *arg)
401 {
402 	struct sysctl_oid *chain_oid;
403 	char chain_name[10];
404 	int i;
405 
406 	for (i = 0; i < TC_TABLESIZE; i++) {
407 		snprintf(chain_name, sizeof(chain_name), "%d", i);
408 		chain_oid = SYSCTL_ADD_NODE(NULL,
409 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
410 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
411 		    "turnstile chain stats");
412 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
413 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
414 		    NULL);
415 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
416 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
417 		    0, NULL);
418 	}
419 }
420 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
421     init_turnstile_profiling, NULL);
422 #endif
423 
424 static void
425 init_turnstile0(void *dummy)
426 {
427 
428 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
429 	    NULL,
430 #ifdef INVARIANTS
431 	    turnstile_dtor,
432 #else
433 	    NULL,
434 #endif
435 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
436 	thread0.td_turnstile = turnstile_alloc();
437 }
438 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
439 
440 /*
441  * Update a thread on the turnstile list after it's priority has been changed.
442  * The old priority is passed in as an argument.
443  */
444 void
445 turnstile_adjust(struct thread *td, u_char oldpri)
446 {
447 	struct turnstile *ts;
448 
449 	MPASS(TD_ON_LOCK(td));
450 
451 	/*
452 	 * Pick up the lock that td is blocked on.
453 	 */
454 	ts = td->td_blocked;
455 	MPASS(ts != NULL);
456 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
457 	mtx_assert(&ts->ts_lock, MA_OWNED);
458 
459 	/* Resort the turnstile on the list. */
460 	if (!turnstile_adjust_thread(ts, td))
461 		return;
462 	/*
463 	 * If our priority was lowered and we are at the head of the
464 	 * turnstile, then propagate our new priority up the chain.
465 	 * Note that we currently don't try to revoke lent priorities
466 	 * when our priority goes up.
467 	 */
468 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
469 	    td->td_tsqueue == TS_SHARED_QUEUE);
470 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
471 	    td->td_priority < oldpri) {
472 		propagate_priority(td);
473 	}
474 }
475 
476 /*
477  * Set the owner of the lock this turnstile is attached to.
478  */
479 static void
480 turnstile_setowner(struct turnstile *ts, struct thread *owner)
481 {
482 
483 	mtx_assert(&td_contested_lock, MA_OWNED);
484 	MPASS(ts->ts_owner == NULL);
485 
486 	/* A shared lock might not have an owner. */
487 	if (owner == NULL)
488 		return;
489 
490 	MPASS(owner->td_proc->p_magic == P_MAGIC);
491 	ts->ts_owner = owner;
492 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
493 }
494 
495 #ifdef INVARIANTS
496 /*
497  * UMA zone item deallocator.
498  */
499 static void
500 turnstile_dtor(void *mem, int size, void *arg)
501 {
502 	struct turnstile *ts;
503 
504 	ts = mem;
505 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
506 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
507 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
508 }
509 #endif
510 
511 /*
512  * UMA zone item initializer.
513  */
514 static int
515 turnstile_init(void *mem, int size, int flags)
516 {
517 	struct turnstile *ts;
518 
519 	bzero(mem, size);
520 	ts = mem;
521 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
522 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
523 	TAILQ_INIT(&ts->ts_pending);
524 	LIST_INIT(&ts->ts_free);
525 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN);
526 	return (0);
527 }
528 
529 static void
530 turnstile_fini(void *mem, int size)
531 {
532 	struct turnstile *ts;
533 
534 	ts = mem;
535 	mtx_destroy(&ts->ts_lock);
536 }
537 
538 /*
539  * Get a turnstile for a new thread.
540  */
541 struct turnstile *
542 turnstile_alloc(void)
543 {
544 
545 	return (uma_zalloc(turnstile_zone, M_WAITOK));
546 }
547 
548 /*
549  * Free a turnstile when a thread is destroyed.
550  */
551 void
552 turnstile_free(struct turnstile *ts)
553 {
554 
555 	uma_zfree(turnstile_zone, ts);
556 }
557 
558 /*
559  * Lock the turnstile chain associated with the specified lock.
560  */
561 void
562 turnstile_chain_lock(struct lock_object *lock)
563 {
564 	struct turnstile_chain *tc;
565 
566 	tc = TC_LOOKUP(lock);
567 	mtx_lock_spin(&tc->tc_lock);
568 }
569 
570 struct turnstile *
571 turnstile_trywait(struct lock_object *lock)
572 {
573 	struct turnstile_chain *tc;
574 	struct turnstile *ts;
575 
576 	tc = TC_LOOKUP(lock);
577 	mtx_lock_spin(&tc->tc_lock);
578 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
579 		if (ts->ts_lockobj == lock) {
580 			mtx_lock_spin(&ts->ts_lock);
581 			return (ts);
582 		}
583 
584 	ts = curthread->td_turnstile;
585 	MPASS(ts != NULL);
586 	mtx_lock_spin(&ts->ts_lock);
587 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
588 	ts->ts_lockobj = lock;
589 
590 	return (ts);
591 }
592 
593 bool
594 turnstile_lock(struct turnstile *ts, struct lock_object **lockp,
595     struct thread **tdp)
596 {
597 	struct turnstile_chain *tc;
598 	struct lock_object *lock;
599 
600 	if ((lock = ts->ts_lockobj) == NULL)
601 		return (false);
602 	tc = TC_LOOKUP(lock);
603 	mtx_lock_spin(&tc->tc_lock);
604 	mtx_lock_spin(&ts->ts_lock);
605 	if (__predict_false(lock != ts->ts_lockobj)) {
606 		mtx_unlock_spin(&tc->tc_lock);
607 		mtx_unlock_spin(&ts->ts_lock);
608 		return (false);
609 	}
610 	*lockp = lock;
611 	*tdp = ts->ts_owner;
612 	return (true);
613 }
614 
615 void
616 turnstile_unlock(struct turnstile *ts, struct lock_object *lock)
617 {
618 	struct turnstile_chain *tc;
619 
620 	mtx_assert(&ts->ts_lock, MA_OWNED);
621 	mtx_unlock_spin(&ts->ts_lock);
622 	if (ts == curthread->td_turnstile)
623 		ts->ts_lockobj = NULL;
624 	tc = TC_LOOKUP(lock);
625 	mtx_unlock_spin(&tc->tc_lock);
626 }
627 
628 void
629 turnstile_assert(struct turnstile *ts)
630 {
631 	MPASS(ts->ts_lockobj == NULL);
632 }
633 
634 void
635 turnstile_cancel(struct turnstile *ts)
636 {
637 	struct turnstile_chain *tc;
638 	struct lock_object *lock;
639 
640 	mtx_assert(&ts->ts_lock, MA_OWNED);
641 
642 	mtx_unlock_spin(&ts->ts_lock);
643 	lock = ts->ts_lockobj;
644 	if (ts == curthread->td_turnstile)
645 		ts->ts_lockobj = NULL;
646 	tc = TC_LOOKUP(lock);
647 	mtx_unlock_spin(&tc->tc_lock);
648 }
649 
650 /*
651  * Look up the turnstile for a lock in the hash table locking the associated
652  * turnstile chain along the way.  If no turnstile is found in the hash
653  * table, NULL is returned.
654  */
655 struct turnstile *
656 turnstile_lookup(struct lock_object *lock)
657 {
658 	struct turnstile_chain *tc;
659 	struct turnstile *ts;
660 
661 	tc = TC_LOOKUP(lock);
662 	mtx_assert(&tc->tc_lock, MA_OWNED);
663 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
664 		if (ts->ts_lockobj == lock) {
665 			mtx_lock_spin(&ts->ts_lock);
666 			return (ts);
667 		}
668 	return (NULL);
669 }
670 
671 /*
672  * Unlock the turnstile chain associated with a given lock.
673  */
674 void
675 turnstile_chain_unlock(struct lock_object *lock)
676 {
677 	struct turnstile_chain *tc;
678 
679 	tc = TC_LOOKUP(lock);
680 	mtx_unlock_spin(&tc->tc_lock);
681 }
682 
683 /*
684  * Return a pointer to the thread waiting on this turnstile with the
685  * most important priority or NULL if the turnstile has no waiters.
686  */
687 static struct thread *
688 turnstile_first_waiter(struct turnstile *ts)
689 {
690 	struct thread *std, *xtd;
691 
692 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
693 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
694 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
695 		return (std);
696 	return (xtd);
697 }
698 
699 /*
700  * Take ownership of a turnstile and adjust the priority of the new
701  * owner appropriately.
702  */
703 void
704 turnstile_claim(struct turnstile *ts)
705 {
706 	struct thread *td, *owner;
707 	struct turnstile_chain *tc;
708 
709 	mtx_assert(&ts->ts_lock, MA_OWNED);
710 	MPASS(ts != curthread->td_turnstile);
711 
712 	owner = curthread;
713 	mtx_lock_spin(&td_contested_lock);
714 	turnstile_setowner(ts, owner);
715 	mtx_unlock_spin(&td_contested_lock);
716 
717 	td = turnstile_first_waiter(ts);
718 	MPASS(td != NULL);
719 	MPASS(td->td_proc->p_magic == P_MAGIC);
720 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
721 
722 	/*
723 	 * Update the priority of the new owner if needed.
724 	 */
725 	thread_lock(owner);
726 	if (td->td_priority < owner->td_priority)
727 		sched_lend_prio(owner, td->td_priority);
728 	thread_unlock(owner);
729 	tc = TC_LOOKUP(ts->ts_lockobj);
730 	mtx_unlock_spin(&ts->ts_lock);
731 	mtx_unlock_spin(&tc->tc_lock);
732 }
733 
734 /*
735  * Block the current thread on the turnstile assicated with 'lock'.  This
736  * function will context switch and not return until this thread has been
737  * woken back up.  This function must be called with the appropriate
738  * turnstile chain locked and will return with it unlocked.
739  */
740 void
741 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
742 {
743 	struct turnstile_chain *tc;
744 	struct thread *td, *td1;
745 	struct lock_object *lock;
746 
747 	td = curthread;
748 	mtx_assert(&ts->ts_lock, MA_OWNED);
749 	if (owner)
750 		MPASS(owner->td_proc->p_magic == P_MAGIC);
751 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
752 
753 	/*
754 	 * If the lock does not already have a turnstile, use this thread's
755 	 * turnstile.  Otherwise insert the current thread into the
756 	 * turnstile already in use by this lock.
757 	 */
758 	tc = TC_LOOKUP(ts->ts_lockobj);
759 	mtx_assert(&tc->tc_lock, MA_OWNED);
760 	if (ts == td->td_turnstile) {
761 #ifdef TURNSTILE_PROFILING
762 		tc->tc_depth++;
763 		if (tc->tc_depth > tc->tc_max_depth) {
764 			tc->tc_max_depth = tc->tc_depth;
765 			if (tc->tc_max_depth > turnstile_max_depth)
766 				turnstile_max_depth = tc->tc_max_depth;
767 		}
768 #endif
769 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
770 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
771 		    ("thread's turnstile has pending threads"));
772 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
773 		    ("thread's turnstile has exclusive waiters"));
774 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
775 		    ("thread's turnstile has shared waiters"));
776 		KASSERT(LIST_EMPTY(&ts->ts_free),
777 		    ("thread's turnstile has a non-empty free list"));
778 		MPASS(ts->ts_lockobj != NULL);
779 		mtx_lock_spin(&td_contested_lock);
780 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
781 		turnstile_setowner(ts, owner);
782 		mtx_unlock_spin(&td_contested_lock);
783 	} else {
784 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
785 			if (td1->td_priority > td->td_priority)
786 				break;
787 		mtx_lock_spin(&td_contested_lock);
788 		if (td1 != NULL)
789 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
790 		else
791 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
792 		MPASS(owner == ts->ts_owner);
793 		mtx_unlock_spin(&td_contested_lock);
794 		MPASS(td->td_turnstile != NULL);
795 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
796 	}
797 	thread_lock(td);
798 	thread_lock_set(td, &ts->ts_lock);
799 	td->td_turnstile = NULL;
800 
801 	/* Save who we are blocked on and switch. */
802 	lock = ts->ts_lockobj;
803 	td->td_tsqueue = queue;
804 	td->td_blocked = ts;
805 	td->td_lockname = lock->lo_name;
806 	td->td_blktick = ticks;
807 	TD_SET_LOCK(td);
808 	mtx_unlock_spin(&tc->tc_lock);
809 	propagate_priority(td);
810 
811 	if (LOCK_LOG_TEST(lock, 0))
812 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
813 		    td->td_tid, lock, lock->lo_name);
814 
815 	SDT_PROBE0(sched, , , sleep);
816 
817 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
818 	mi_switch(SW_VOL | SWT_TURNSTILE);
819 
820 	if (LOCK_LOG_TEST(lock, 0))
821 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
822 		    __func__, td->td_tid, lock, lock->lo_name);
823 }
824 
825 /*
826  * Pick the highest priority thread on this turnstile and put it on the
827  * pending list.  This must be called with the turnstile chain locked.
828  */
829 int
830 turnstile_signal(struct turnstile *ts, int queue)
831 {
832 	struct turnstile_chain *tc __unused;
833 	struct thread *td;
834 	int empty;
835 
836 	MPASS(ts != NULL);
837 	mtx_assert(&ts->ts_lock, MA_OWNED);
838 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
839 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
840 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
841 
842 	/*
843 	 * Pick the highest priority thread blocked on this lock and
844 	 * move it to the pending list.
845 	 */
846 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
847 	MPASS(td->td_proc->p_magic == P_MAGIC);
848 	mtx_lock_spin(&td_contested_lock);
849 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
850 	mtx_unlock_spin(&td_contested_lock);
851 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
852 
853 	/*
854 	 * If the turnstile is now empty, remove it from its chain and
855 	 * give it to the about-to-be-woken thread.  Otherwise take a
856 	 * turnstile from the free list and give it to the thread.
857 	 */
858 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
859 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
860 	if (empty) {
861 		tc = TC_LOOKUP(ts->ts_lockobj);
862 		mtx_assert(&tc->tc_lock, MA_OWNED);
863 		MPASS(LIST_EMPTY(&ts->ts_free));
864 #ifdef TURNSTILE_PROFILING
865 		tc->tc_depth--;
866 #endif
867 	} else
868 		ts = LIST_FIRST(&ts->ts_free);
869 	MPASS(ts != NULL);
870 	LIST_REMOVE(ts, ts_hash);
871 	td->td_turnstile = ts;
872 
873 	return (empty);
874 }
875 
876 /*
877  * Put all blocked threads on the pending list.  This must be called with
878  * the turnstile chain locked.
879  */
880 void
881 turnstile_broadcast(struct turnstile *ts, int queue)
882 {
883 	struct turnstile_chain *tc __unused;
884 	struct turnstile *ts1;
885 	struct thread *td;
886 
887 	MPASS(ts != NULL);
888 	mtx_assert(&ts->ts_lock, MA_OWNED);
889 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
890 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
891 	/*
892 	 * We must have the chain locked so that we can remove the empty
893 	 * turnstile from the hash queue.
894 	 */
895 	tc = TC_LOOKUP(ts->ts_lockobj);
896 	mtx_assert(&tc->tc_lock, MA_OWNED);
897 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
898 
899 	/*
900 	 * Transfer the blocked list to the pending list.
901 	 */
902 	mtx_lock_spin(&td_contested_lock);
903 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
904 	mtx_unlock_spin(&td_contested_lock);
905 
906 	/*
907 	 * Give a turnstile to each thread.  The last thread gets
908 	 * this turnstile if the turnstile is empty.
909 	 */
910 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
911 		if (LIST_EMPTY(&ts->ts_free)) {
912 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
913 			ts1 = ts;
914 #ifdef TURNSTILE_PROFILING
915 			tc->tc_depth--;
916 #endif
917 		} else
918 			ts1 = LIST_FIRST(&ts->ts_free);
919 		MPASS(ts1 != NULL);
920 		LIST_REMOVE(ts1, ts_hash);
921 		td->td_turnstile = ts1;
922 	}
923 }
924 
925 static u_char
926 turnstile_calc_unlend_prio_locked(struct thread *td)
927 {
928 	struct turnstile *nts;
929 	u_char cp, pri;
930 
931 	THREAD_LOCK_ASSERT(td, MA_OWNED);
932 	mtx_assert(&td_contested_lock, MA_OWNED);
933 
934 	pri = PRI_MAX;
935 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
936 		cp = turnstile_first_waiter(nts)->td_priority;
937 		if (cp < pri)
938 			pri = cp;
939 	}
940 	return (pri);
941 }
942 
943 /*
944  * Wakeup all threads on the pending list and adjust the priority of the
945  * current thread appropriately.  This must be called with the turnstile
946  * chain locked.
947  */
948 void
949 turnstile_unpend(struct turnstile *ts)
950 {
951 	TAILQ_HEAD( ,thread) pending_threads;
952 	struct thread *td;
953 	u_char pri;
954 
955 	MPASS(ts != NULL);
956 	mtx_assert(&ts->ts_lock, MA_OWNED);
957 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
958 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
959 
960 	/*
961 	 * Move the list of pending threads out of the turnstile and
962 	 * into a local variable.
963 	 */
964 	TAILQ_INIT(&pending_threads);
965 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
966 #ifdef INVARIANTS
967 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
968 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
969 		ts->ts_lockobj = NULL;
970 #endif
971 	/*
972 	 * Adjust the priority of curthread based on other contested
973 	 * locks it owns.  Don't lower the priority below the base
974 	 * priority however.
975 	 */
976 	td = curthread;
977 	thread_lock(td);
978 	mtx_lock_spin(&td_contested_lock);
979 	/*
980 	 * Remove the turnstile from this thread's list of contested locks
981 	 * since this thread doesn't own it anymore.  New threads will
982 	 * not be blocking on the turnstile until it is claimed by a new
983 	 * owner.  There might not be a current owner if this is a shared
984 	 * lock.
985 	 */
986 	if (ts->ts_owner != NULL) {
987 		ts->ts_owner = NULL;
988 		LIST_REMOVE(ts, ts_link);
989 	}
990 	pri = turnstile_calc_unlend_prio_locked(td);
991 	mtx_unlock_spin(&td_contested_lock);
992 	sched_unlend_prio(td, pri);
993 	thread_unlock(td);
994 	/*
995 	 * Wake up all the pending threads.  If a thread is not blocked
996 	 * on a lock, then it is currently executing on another CPU in
997 	 * turnstile_wait() or sitting on a run queue waiting to resume
998 	 * in turnstile_wait().  Set a flag to force it to try to acquire
999 	 * the lock again instead of blocking.
1000 	 */
1001 	while (!TAILQ_EMPTY(&pending_threads)) {
1002 		td = TAILQ_FIRST(&pending_threads);
1003 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
1004 		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
1005 		thread_lock_block_wait(td);
1006 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
1007 		MPASS(td->td_proc->p_magic == P_MAGIC);
1008 		MPASS(TD_ON_LOCK(td));
1009 		TD_CLR_LOCK(td);
1010 		MPASS(TD_CAN_RUN(td));
1011 		td->td_blocked = NULL;
1012 		td->td_lockname = NULL;
1013 		td->td_blktick = 0;
1014 #ifdef INVARIANTS
1015 		td->td_tsqueue = 0xff;
1016 #endif
1017 		sched_add(td, SRQ_HOLD | SRQ_BORING);
1018 	}
1019 	mtx_unlock_spin(&ts->ts_lock);
1020 }
1021 
1022 /*
1023  * Give up ownership of a turnstile.  This must be called with the
1024  * turnstile chain locked.
1025  */
1026 void
1027 turnstile_disown(struct turnstile *ts)
1028 {
1029 	struct thread *td;
1030 	u_char pri;
1031 
1032 	MPASS(ts != NULL);
1033 	mtx_assert(&ts->ts_lock, MA_OWNED);
1034 	MPASS(ts->ts_owner == curthread);
1035 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
1036 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
1037 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
1038 
1039 	/*
1040 	 * Remove the turnstile from this thread's list of contested locks
1041 	 * since this thread doesn't own it anymore.  New threads will
1042 	 * not be blocking on the turnstile until it is claimed by a new
1043 	 * owner.
1044 	 */
1045 	mtx_lock_spin(&td_contested_lock);
1046 	ts->ts_owner = NULL;
1047 	LIST_REMOVE(ts, ts_link);
1048 	mtx_unlock_spin(&td_contested_lock);
1049 
1050 	/*
1051 	 * Adjust the priority of curthread based on other contested
1052 	 * locks it owns.  Don't lower the priority below the base
1053 	 * priority however.
1054 	 */
1055 	td = curthread;
1056 	thread_lock(td);
1057 	mtx_unlock_spin(&ts->ts_lock);
1058 	mtx_lock_spin(&td_contested_lock);
1059 	pri = turnstile_calc_unlend_prio_locked(td);
1060 	mtx_unlock_spin(&td_contested_lock);
1061 	sched_unlend_prio(td, pri);
1062 	thread_unlock(td);
1063 }
1064 
1065 /*
1066  * Return the first thread in a turnstile.
1067  */
1068 struct thread *
1069 turnstile_head(struct turnstile *ts, int queue)
1070 {
1071 #ifdef INVARIANTS
1072 
1073 	MPASS(ts != NULL);
1074 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1075 	mtx_assert(&ts->ts_lock, MA_OWNED);
1076 #endif
1077 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1078 }
1079 
1080 /*
1081  * Returns true if a sub-queue of a turnstile is empty.
1082  */
1083 int
1084 turnstile_empty(struct turnstile *ts, int queue)
1085 {
1086 #ifdef INVARIANTS
1087 
1088 	MPASS(ts != NULL);
1089 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1090 	mtx_assert(&ts->ts_lock, MA_OWNED);
1091 #endif
1092 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1093 }
1094 
1095 #ifdef DDB
1096 static void
1097 print_thread(struct thread *td, const char *prefix)
1098 {
1099 
1100 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1101 	    td->td_proc->p_pid, td->td_name);
1102 }
1103 
1104 static void
1105 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1106 {
1107 	struct thread *td;
1108 
1109 	db_printf("%s:\n", header);
1110 	if (TAILQ_EMPTY(queue)) {
1111 		db_printf("%sempty\n", prefix);
1112 		return;
1113 	}
1114 	TAILQ_FOREACH(td, queue, td_lockq) {
1115 		print_thread(td, prefix);
1116 	}
1117 }
1118 
1119 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1120 {
1121 	struct turnstile_chain *tc;
1122 	struct turnstile *ts;
1123 	struct lock_object *lock;
1124 	int i;
1125 
1126 	if (!have_addr)
1127 		return;
1128 
1129 	/*
1130 	 * First, see if there is an active turnstile for the lock indicated
1131 	 * by the address.
1132 	 */
1133 	lock = (struct lock_object *)addr;
1134 	tc = TC_LOOKUP(lock);
1135 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1136 		if (ts->ts_lockobj == lock)
1137 			goto found;
1138 
1139 	/*
1140 	 * Second, see if there is an active turnstile at the address
1141 	 * indicated.
1142 	 */
1143 	for (i = 0; i < TC_TABLESIZE; i++)
1144 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1145 			if (ts == (struct turnstile *)addr)
1146 				goto found;
1147 		}
1148 
1149 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1150 	return;
1151 found:
1152 	lock = ts->ts_lockobj;
1153 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1154 	    lock->lo_name);
1155 	if (ts->ts_owner)
1156 		print_thread(ts->ts_owner, "Lock Owner: ");
1157 	else
1158 		db_printf("Lock Owner: none\n");
1159 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1160 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1161 	    "\t");
1162 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1163 
1164 }
1165 
1166 /*
1167  * Show all the threads a particular thread is waiting on based on
1168  * non-spin locks.
1169  */
1170 static void
1171 print_lockchain(struct thread *td, const char *prefix)
1172 {
1173 	struct lock_object *lock;
1174 	struct lock_class *class;
1175 	struct turnstile *ts;
1176 	struct thread *owner;
1177 
1178 	/*
1179 	 * Follow the chain.  We keep walking as long as the thread is
1180 	 * blocked on a lock that has an owner.
1181 	 */
1182 	while (!db_pager_quit) {
1183 		if (td == (void *)LK_KERNPROC) {
1184 			db_printf("%sdisowned (LK_KERNPROC)\n", prefix);
1185 			return;
1186 		}
1187 		db_printf("%sthread %d (pid %d, %s) is ", prefix, td->td_tid,
1188 		    td->td_proc->p_pid, td->td_name);
1189 		switch (td->td_state) {
1190 		case TDS_INACTIVE:
1191 			db_printf("inactive\n");
1192 			return;
1193 		case TDS_CAN_RUN:
1194 			db_printf("runnable\n");
1195 			return;
1196 		case TDS_RUNQ:
1197 			db_printf("on a run queue\n");
1198 			return;
1199 		case TDS_RUNNING:
1200 			db_printf("running on CPU %d\n", td->td_oncpu);
1201 			return;
1202 		case TDS_INHIBITED:
1203 			if (TD_ON_LOCK(td)) {
1204 				ts = td->td_blocked;
1205 				lock = ts->ts_lockobj;
1206 				class = LOCK_CLASS(lock);
1207 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1208 				    lock, class->lc_name, lock->lo_name);
1209 				if (ts->ts_owner == NULL)
1210 					return;
1211 				td = ts->ts_owner;
1212 				break;
1213 			} else if (TD_ON_SLEEPQ(td)) {
1214 				if (!lockmgr_chain(td, &owner) &&
1215 				    !sx_chain(td, &owner)) {
1216 					db_printf("sleeping on %p \"%s\"\n",
1217 					    td->td_wchan, td->td_wmesg);
1218 					return;
1219 				}
1220 				if (owner == NULL)
1221 					return;
1222 				td = owner;
1223 				break;
1224 			}
1225 			db_printf("inhibited: %s\n", KTDSTATE(td));
1226 			return;
1227 		default:
1228 			db_printf("??? (%#x)\n", td->td_state);
1229 			return;
1230 		}
1231 	}
1232 }
1233 
1234 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1235 {
1236 	struct thread *td;
1237 
1238 	/* Figure out which thread to start with. */
1239 	if (have_addr)
1240 		td = db_lookup_thread(addr, true);
1241 	else
1242 		td = kdb_thread;
1243 
1244 	print_lockchain(td, "");
1245 }
1246 DB_SHOW_ALIAS(sleepchain, db_show_lockchain);
1247 
1248 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1249 {
1250 	struct thread *td;
1251 	struct proc *p;
1252 	int i;
1253 
1254 	i = 1;
1255 	FOREACH_PROC_IN_SYSTEM(p) {
1256 		FOREACH_THREAD_IN_PROC(p, td) {
1257 			if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested))
1258 			    || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) {
1259 				db_printf("chain %d:\n", i++);
1260 				print_lockchain(td, " ");
1261 			}
1262 			if (db_pager_quit)
1263 				return;
1264 		}
1265 	}
1266 }
1267 DB_SHOW_ALIAS(allchains, db_show_allchains)
1268 
1269 static void	print_waiters(struct turnstile *ts, int indent);
1270 
1271 static void
1272 print_waiter(struct thread *td, int indent)
1273 {
1274 	struct turnstile *ts;
1275 	int i;
1276 
1277 	if (db_pager_quit)
1278 		return;
1279 	for (i = 0; i < indent; i++)
1280 		db_printf(" ");
1281 	print_thread(td, "thread ");
1282 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1283 		print_waiters(ts, indent + 1);
1284 }
1285 
1286 static void
1287 print_waiters(struct turnstile *ts, int indent)
1288 {
1289 	struct lock_object *lock;
1290 	struct lock_class *class;
1291 	struct thread *td;
1292 	int i;
1293 
1294 	if (db_pager_quit)
1295 		return;
1296 	lock = ts->ts_lockobj;
1297 	class = LOCK_CLASS(lock);
1298 	for (i = 0; i < indent; i++)
1299 		db_printf(" ");
1300 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1301 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1302 		print_waiter(td, indent + 1);
1303 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1304 		print_waiter(td, indent + 1);
1305 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1306 		print_waiter(td, indent + 1);
1307 }
1308 
1309 DB_SHOW_COMMAND(locktree, db_show_locktree)
1310 {
1311 	struct lock_object *lock;
1312 	struct lock_class *class;
1313 	struct turnstile_chain *tc;
1314 	struct turnstile *ts;
1315 
1316 	if (!have_addr)
1317 		return;
1318 	lock = (struct lock_object *)addr;
1319 	tc = TC_LOOKUP(lock);
1320 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1321 		if (ts->ts_lockobj == lock)
1322 			break;
1323 	if (ts == NULL) {
1324 		class = LOCK_CLASS(lock);
1325 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1326 		    lock->lo_name);
1327 	} else
1328 		print_waiters(ts, 0);
1329 }
1330 #endif
1331