xref: /freebsd/sys/kern/subr_unit.c (revision 6419bb52)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  *
30  *
31  * Unit number allocation functions.
32  *
33  * These functions implement a mixed run-length/bitmap management of unit
34  * number spaces in a very memory efficient manner.
35  *
36  * Allocation policy is always lowest free number first.
37  *
38  * A return value of -1 signals that no more unit numbers are available.
39  *
40  * There is no cost associated with the range of unitnumbers, so unless
41  * the resource really is finite, specify INT_MAX to new_unrhdr() and
42  * forget about checking the return value.
43  *
44  * If a mutex is not provided when the unit number space is created, a
45  * default global mutex is used.  The advantage to passing a mutex in, is
46  * that the alloc_unrl() function can be called with the mutex already
47  * held (it will not be released by alloc_unrl()).
48  *
49  * The allocation function alloc_unr{l}() never sleeps (but it may block on
50  * the mutex of course).
51  *
52  * Freeing a unit number may require allocating memory, and can therefore
53  * sleep so the free_unr() function does not come in a pre-locked variant.
54  *
55  * A userland test program is included.
56  *
57  * Memory usage is a very complex function of the exact allocation
58  * pattern, but always very compact:
59  *    * For the very typical case where a single unbroken run of unit
60  *      numbers are allocated 44 bytes are used on i386.
61  *    * For a unit number space of 1000 units and the random pattern
62  *      in the usermode test program included, the worst case usage
63  *	was 252 bytes on i386 for 500 allocated and 500 free units.
64  *    * For a unit number space of 10000 units and the random pattern
65  *      in the usermode test program included, the worst case usage
66  *	was 798 bytes on i386 for 5000 allocated and 5000 free units.
67  *    * The worst case is where every other unit number is allocated and
68  *	the rest are free.  In that case 44 + N/4 bytes are used where
69  *	N is the number of the highest unit allocated.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/_unrhdr.h>
75 
76 #ifdef _KERNEL
77 
78 #include <sys/bitstring.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/systm.h>
82 #include <sys/limits.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 
86 /*
87  * In theory it would be smarter to allocate the individual blocks
88  * with the zone allocator, but at this time the expectation is that
89  * there will typically not even be enough allocations to fill a single
90  * page, so we stick with malloc for now.
91  */
92 static MALLOC_DEFINE(M_UNIT, "Unitno", "Unit number allocation");
93 
94 #define Malloc(foo) malloc(foo, M_UNIT, M_WAITOK | M_ZERO)
95 #define Free(foo) free(foo, M_UNIT)
96 
97 static struct mtx unitmtx;
98 
99 MTX_SYSINIT(unit, &unitmtx, "unit# allocation", MTX_DEF);
100 
101 #ifdef UNR64_LOCKED
102 uint64_t
103 alloc_unr64(struct unrhdr64 *unr64)
104 {
105 	uint64_t item;
106 
107 	mtx_lock(&unitmtx);
108 	item = unr64->counter++;
109 	mtx_unlock(&unitmtx);
110 	return (item);
111 }
112 #endif
113 
114 #else /* ...USERLAND */
115 
116 #include <bitstring.h>
117 #include <err.h>
118 #include <errno.h>
119 #include <getopt.h>
120 #include <stdbool.h>
121 #include <stdio.h>
122 #include <stdlib.h>
123 #include <string.h>
124 
125 #define KASSERT(cond, arg) \
126 	do { \
127 		if (!(cond)) { \
128 			printf arg; \
129 			abort(); \
130 		} \
131 	} while (0)
132 
133 static int no_alloc;
134 #define Malloc(foo) _Malloc(foo, __LINE__)
135 static void *
136 _Malloc(size_t foo, int line)
137 {
138 
139 	KASSERT(no_alloc == 0, ("malloc in wrong place() line %d", line));
140 	return (calloc(foo, 1));
141 }
142 #define Free(foo) free(foo)
143 
144 struct unrhdr;
145 
146 struct mtx {
147 	int	state;
148 } unitmtx;
149 
150 static void
151 mtx_lock(struct mtx *mp)
152 {
153 	KASSERT(mp->state == 0, ("mutex already locked"));
154 	mp->state = 1;
155 }
156 
157 static void
158 mtx_unlock(struct mtx *mp)
159 {
160 	KASSERT(mp->state == 1, ("mutex not locked"));
161 	mp->state = 0;
162 }
163 
164 #define MA_OWNED	9
165 
166 static void
167 mtx_assert(struct mtx *mp, int flag)
168 {
169 	if (flag == MA_OWNED) {
170 		KASSERT(mp->state == 1, ("mtx_assert(MA_OWNED) not true"));
171 	}
172 }
173 
174 #define CTASSERT(foo)
175 #define WITNESS_WARN(flags, lock, fmt, ...)	(void)0
176 
177 #endif /* USERLAND */
178 
179 /*
180  * This is our basic building block.
181  *
182  * It can be used in three different ways depending on the value of the ptr
183  * element:
184  *     If ptr is NULL, it represents a run of free items.
185  *     If ptr points to the unrhdr it represents a run of allocated items.
186  *     Otherwise it points to a bitstring of allocated items.
187  *
188  * For runs the len field is the length of the run.
189  * For bitmaps the len field represents the number of allocated items.
190  *
191  * The bitmap is the same size as struct unr to optimize memory management.
192  */
193 struct unr {
194 	TAILQ_ENTRY(unr)	list;
195 	u_int			len;
196 	void			*ptr;
197 };
198 
199 struct unrb {
200 	bitstr_t		map[sizeof(struct unr) / sizeof(bitstr_t)];
201 };
202 
203 CTASSERT((sizeof(struct unr) % sizeof(bitstr_t)) == 0);
204 
205 /* Number of bits we can store in the bitmap */
206 #define NBITS (8 * sizeof(((struct unrb*)NULL)->map))
207 
208 /* Is the unrb empty in at least the first len bits? */
209 static inline bool
210 ub_empty(struct unrb *ub, int len) {
211 	int first_set;
212 
213 	bit_ffs(ub->map, len, &first_set);
214 	return (first_set == -1);
215 }
216 
217 /* Is the unrb full?  That is, is the number of set elements equal to len? */
218 static inline bool
219 ub_full(struct unrb *ub, int len)
220 {
221 	int first_clear;
222 
223 	bit_ffc(ub->map, len, &first_clear);
224 	return (first_clear == -1);
225 }
226 
227 #if defined(DIAGNOSTIC) || !defined(_KERNEL)
228 /*
229  * Consistency check function.
230  *
231  * Checks the internal consistency as well as we can.
232  *
233  * Called at all boundaries of this API.
234  */
235 static void
236 check_unrhdr(struct unrhdr *uh, int line)
237 {
238 	struct unr *up;
239 	struct unrb *ub;
240 	int w;
241 	u_int y, z;
242 
243 	y = uh->first;
244 	z = 0;
245 	TAILQ_FOREACH(up, &uh->head, list) {
246 		z++;
247 		if (up->ptr != uh && up->ptr != NULL) {
248 			ub = up->ptr;
249 			KASSERT (up->len <= NBITS,
250 			    ("UNR inconsistency: len %u max %zd (line %d)\n",
251 			    up->len, NBITS, line));
252 			z++;
253 			w = 0;
254 			bit_count(ub->map, 0, up->len, &w);
255 			y += w;
256 		} else if (up->ptr != NULL)
257 			y += up->len;
258 	}
259 	KASSERT (y == uh->busy,
260 	    ("UNR inconsistency: items %u found %u (line %d)\n",
261 	    uh->busy, y, line));
262 	KASSERT (z == uh->alloc,
263 	    ("UNR inconsistency: chunks %u found %u (line %d)\n",
264 	    uh->alloc, z, line));
265 }
266 
267 #else
268 
269 static __inline void
270 check_unrhdr(struct unrhdr *uh __unused, int line __unused)
271 {
272 
273 }
274 
275 #endif
276 
277 /*
278  * Userland memory management.  Just use calloc and keep track of how
279  * many elements we have allocated for check_unrhdr().
280  */
281 
282 static __inline void *
283 new_unr(struct unrhdr *uh, void **p1, void **p2)
284 {
285 	void *p;
286 
287 	uh->alloc++;
288 	KASSERT(*p1 != NULL || *p2 != NULL, ("Out of cached memory"));
289 	if (*p1 != NULL) {
290 		p = *p1;
291 		*p1 = NULL;
292 		return (p);
293 	} else {
294 		p = *p2;
295 		*p2 = NULL;
296 		return (p);
297 	}
298 }
299 
300 static __inline void
301 delete_unr(struct unrhdr *uh, void *ptr)
302 {
303 	struct unr *up;
304 
305 	uh->alloc--;
306 	up = ptr;
307 	TAILQ_INSERT_TAIL(&uh->ppfree, up, list);
308 }
309 
310 void
311 clean_unrhdrl(struct unrhdr *uh)
312 {
313 	struct unr *up;
314 
315 	mtx_assert(uh->mtx, MA_OWNED);
316 	while ((up = TAILQ_FIRST(&uh->ppfree)) != NULL) {
317 		TAILQ_REMOVE(&uh->ppfree, up, list);
318 		mtx_unlock(uh->mtx);
319 		Free(up);
320 		mtx_lock(uh->mtx);
321 	}
322 
323 }
324 
325 void
326 clean_unrhdr(struct unrhdr *uh)
327 {
328 
329 	mtx_lock(uh->mtx);
330 	clean_unrhdrl(uh);
331 	mtx_unlock(uh->mtx);
332 }
333 
334 void
335 init_unrhdr(struct unrhdr *uh, int low, int high, struct mtx *mutex)
336 {
337 
338 	KASSERT(low >= 0 && low <= high,
339 	    ("UNR: use error: new_unrhdr(%d, %d)", low, high));
340 	if (mutex != NULL)
341 		uh->mtx = mutex;
342 	else
343 		uh->mtx = &unitmtx;
344 	TAILQ_INIT(&uh->head);
345 	TAILQ_INIT(&uh->ppfree);
346 	uh->low = low;
347 	uh->high = high;
348 	uh->first = 0;
349 	uh->last = 1 + (high - low);
350 	check_unrhdr(uh, __LINE__);
351 }
352 
353 /*
354  * Allocate a new unrheader set.
355  *
356  * Highest and lowest valid values given as parameters.
357  */
358 
359 struct unrhdr *
360 new_unrhdr(int low, int high, struct mtx *mutex)
361 {
362 	struct unrhdr *uh;
363 
364 	uh = Malloc(sizeof *uh);
365 	init_unrhdr(uh, low, high, mutex);
366 	return (uh);
367 }
368 
369 void
370 delete_unrhdr(struct unrhdr *uh)
371 {
372 
373 	check_unrhdr(uh, __LINE__);
374 	KASSERT(uh->busy == 0, ("unrhdr has %u allocations", uh->busy));
375 	KASSERT(uh->alloc == 0, ("UNR memory leak in delete_unrhdr"));
376 	KASSERT(TAILQ_FIRST(&uh->ppfree) == NULL,
377 	    ("unrhdr has postponed item for free"));
378 	Free(uh);
379 }
380 
381 void
382 clear_unrhdr(struct unrhdr *uh)
383 {
384 	struct unr *up, *uq;
385 
386 	KASSERT(TAILQ_EMPTY(&uh->ppfree),
387 	    ("unrhdr has postponed item for free"));
388 	TAILQ_FOREACH_SAFE(up, &uh->head, list, uq) {
389 		if (up->ptr != uh) {
390 			Free(up->ptr);
391 		}
392 		Free(up);
393 	}
394 	uh->busy = 0;
395 	uh->alloc = 0;
396 	init_unrhdr(uh, uh->low, uh->high, uh->mtx);
397 
398 	check_unrhdr(uh, __LINE__);
399 }
400 
401 static __inline int
402 is_bitmap(struct unrhdr *uh, struct unr *up)
403 {
404 	return (up->ptr != uh && up->ptr != NULL);
405 }
406 
407 /*
408  * Look for sequence of items which can be combined into a bitmap, if
409  * multiple are present, take the one which saves most memory.
410  *
411  * Return (1) if a sequence was found to indicate that another call
412  * might be able to do more.  Return (0) if we found no suitable sequence.
413  *
414  * NB: called from alloc_unr(), no new memory allocation allowed.
415  */
416 static int
417 optimize_unr(struct unrhdr *uh)
418 {
419 	struct unr *up, *uf, *us;
420 	struct unrb *ub, *ubf;
421 	u_int a, l, ba;
422 
423 	/*
424 	 * Look for the run of items (if any) which when collapsed into
425 	 * a bitmap would save most memory.
426 	 */
427 	us = NULL;
428 	ba = 0;
429 	TAILQ_FOREACH(uf, &uh->head, list) {
430 		if (uf->len >= NBITS)
431 			continue;
432 		a = 1;
433 		if (is_bitmap(uh, uf))
434 			a++;
435 		l = uf->len;
436 		up = uf;
437 		while (1) {
438 			up = TAILQ_NEXT(up, list);
439 			if (up == NULL)
440 				break;
441 			if ((up->len + l) > NBITS)
442 				break;
443 			a++;
444 			if (is_bitmap(uh, up))
445 				a++;
446 			l += up->len;
447 		}
448 		if (a > ba) {
449 			ba = a;
450 			us = uf;
451 		}
452 	}
453 	if (ba < 3)
454 		return (0);
455 
456 	/*
457 	 * If the first element is not a bitmap, make it one.
458 	 * Trying to do so without allocating more memory complicates things
459 	 * a bit
460 	 */
461 	if (!is_bitmap(uh, us)) {
462 		uf = TAILQ_NEXT(us, list);
463 		TAILQ_REMOVE(&uh->head, us, list);
464 		a = us->len;
465 		l = us->ptr == uh ? 1 : 0;
466 		ub = (void *)us;
467 		bit_nclear(ub->map, 0, NBITS - 1);
468 		if (l)
469 			bit_nset(ub->map, 0, a);
470 		if (!is_bitmap(uh, uf)) {
471 			if (uf->ptr == NULL)
472 				bit_nclear(ub->map, a, a + uf->len - 1);
473 			else
474 				bit_nset(ub->map, a, a + uf->len - 1);
475 			uf->ptr = ub;
476 			uf->len += a;
477 			us = uf;
478 		} else {
479 			ubf = uf->ptr;
480 			for (l = 0; l < uf->len; l++, a++) {
481 				if (bit_test(ubf->map, l))
482 					bit_set(ub->map, a);
483 				else
484 					bit_clear(ub->map, a);
485 			}
486 			uf->len = a;
487 			delete_unr(uh, uf->ptr);
488 			uf->ptr = ub;
489 			us = uf;
490 		}
491 	}
492 	ub = us->ptr;
493 	while (1) {
494 		uf = TAILQ_NEXT(us, list);
495 		if (uf == NULL)
496 			return (1);
497 		if (uf->len + us->len > NBITS)
498 			return (1);
499 		if (uf->ptr == NULL) {
500 			bit_nclear(ub->map, us->len, us->len + uf->len - 1);
501 			us->len += uf->len;
502 			TAILQ_REMOVE(&uh->head, uf, list);
503 			delete_unr(uh, uf);
504 		} else if (uf->ptr == uh) {
505 			bit_nset(ub->map, us->len, us->len + uf->len - 1);
506 			us->len += uf->len;
507 			TAILQ_REMOVE(&uh->head, uf, list);
508 			delete_unr(uh, uf);
509 		} else {
510 			ubf = uf->ptr;
511 			for (l = 0; l < uf->len; l++, us->len++) {
512 				if (bit_test(ubf->map, l))
513 					bit_set(ub->map, us->len);
514 				else
515 					bit_clear(ub->map, us->len);
516 			}
517 			TAILQ_REMOVE(&uh->head, uf, list);
518 			delete_unr(uh, ubf);
519 			delete_unr(uh, uf);
520 		}
521 	}
522 }
523 
524 /*
525  * See if a given unr should be collapsed with a neighbor.
526  *
527  * NB: called from alloc_unr(), no new memory allocation allowed.
528  */
529 static void
530 collapse_unr(struct unrhdr *uh, struct unr *up)
531 {
532 	struct unr *upp;
533 	struct unrb *ub;
534 
535 	/* If bitmap is all set or clear, change it to runlength */
536 	if (is_bitmap(uh, up)) {
537 		ub = up->ptr;
538 		if (ub_full(ub, up->len)) {
539 			delete_unr(uh, up->ptr);
540 			up->ptr = uh;
541 		} else if (ub_empty(ub, up->len)) {
542 			delete_unr(uh, up->ptr);
543 			up->ptr = NULL;
544 		}
545 	}
546 
547 	/* If nothing left in runlength, delete it */
548 	if (up->len == 0) {
549 		upp = TAILQ_PREV(up, unrhd, list);
550 		if (upp == NULL)
551 			upp = TAILQ_NEXT(up, list);
552 		TAILQ_REMOVE(&uh->head, up, list);
553 		delete_unr(uh, up);
554 		up = upp;
555 	}
556 
557 	/* If we have "hot-spot" still, merge with neighbor if possible */
558 	if (up != NULL) {
559 		upp = TAILQ_PREV(up, unrhd, list);
560 		if (upp != NULL && up->ptr == upp->ptr) {
561 			up->len += upp->len;
562 			TAILQ_REMOVE(&uh->head, upp, list);
563 			delete_unr(uh, upp);
564 			}
565 		upp = TAILQ_NEXT(up, list);
566 		if (upp != NULL && up->ptr == upp->ptr) {
567 			up->len += upp->len;
568 			TAILQ_REMOVE(&uh->head, upp, list);
569 			delete_unr(uh, upp);
570 		}
571 	}
572 
573 	/* Merge into ->first if possible */
574 	upp = TAILQ_FIRST(&uh->head);
575 	if (upp != NULL && upp->ptr == uh) {
576 		uh->first += upp->len;
577 		TAILQ_REMOVE(&uh->head, upp, list);
578 		delete_unr(uh, upp);
579 		if (up == upp)
580 			up = NULL;
581 	}
582 
583 	/* Merge into ->last if possible */
584 	upp = TAILQ_LAST(&uh->head, unrhd);
585 	if (upp != NULL && upp->ptr == NULL) {
586 		uh->last += upp->len;
587 		TAILQ_REMOVE(&uh->head, upp, list);
588 		delete_unr(uh, upp);
589 		if (up == upp)
590 			up = NULL;
591 	}
592 
593 	/* Try to make bitmaps */
594 	while (optimize_unr(uh))
595 		continue;
596 }
597 
598 /*
599  * Allocate a free unr.
600  */
601 int
602 alloc_unrl(struct unrhdr *uh)
603 {
604 	struct unr *up;
605 	struct unrb *ub;
606 	u_int x;
607 	int y;
608 
609 	mtx_assert(uh->mtx, MA_OWNED);
610 	check_unrhdr(uh, __LINE__);
611 	x = uh->low + uh->first;
612 
613 	up = TAILQ_FIRST(&uh->head);
614 
615 	/*
616 	 * If we have an ideal split, just adjust the first+last
617 	 */
618 	if (up == NULL && uh->last > 0) {
619 		uh->first++;
620 		uh->last--;
621 		uh->busy++;
622 		return (x);
623 	}
624 
625 	/*
626 	 * We can always allocate from the first list element, so if we have
627 	 * nothing on the list, we must have run out of unit numbers.
628 	 */
629 	if (up == NULL)
630 		return (-1);
631 
632 	KASSERT(up->ptr != uh, ("UNR first element is allocated"));
633 
634 	if (up->ptr == NULL) {	/* free run */
635 		uh->first++;
636 		up->len--;
637 	} else {		/* bitmap */
638 		ub = up->ptr;
639 		bit_ffc(ub->map, up->len, &y);
640 		KASSERT(y != -1, ("UNR corruption: No clear bit in bitmap."));
641 		bit_set(ub->map, y);
642 		x += y;
643 	}
644 	uh->busy++;
645 	collapse_unr(uh, up);
646 	return (x);
647 }
648 
649 int
650 alloc_unr(struct unrhdr *uh)
651 {
652 	int i;
653 
654 	mtx_lock(uh->mtx);
655 	i = alloc_unrl(uh);
656 	clean_unrhdrl(uh);
657 	mtx_unlock(uh->mtx);
658 	return (i);
659 }
660 
661 static int
662 alloc_unr_specificl(struct unrhdr *uh, u_int item, void **p1, void **p2)
663 {
664 	struct unr *up, *upn;
665 	struct unrb *ub;
666 	u_int i, last, tl;
667 
668 	mtx_assert(uh->mtx, MA_OWNED);
669 
670 	if (item < uh->low + uh->first || item > uh->high)
671 		return (-1);
672 
673 	up = TAILQ_FIRST(&uh->head);
674 	/* Ideal split. */
675 	if (up == NULL && item - uh->low == uh->first) {
676 		uh->first++;
677 		uh->last--;
678 		uh->busy++;
679 		check_unrhdr(uh, __LINE__);
680 		return (item);
681 	}
682 
683 	i = item - uh->low - uh->first;
684 
685 	if (up == NULL) {
686 		up = new_unr(uh, p1, p2);
687 		up->ptr = NULL;
688 		up->len = i;
689 		TAILQ_INSERT_TAIL(&uh->head, up, list);
690 		up = new_unr(uh, p1, p2);
691 		up->ptr = uh;
692 		up->len = 1;
693 		TAILQ_INSERT_TAIL(&uh->head, up, list);
694 		uh->last = uh->high - uh->low - i;
695 		uh->busy++;
696 		check_unrhdr(uh, __LINE__);
697 		return (item);
698 	} else {
699 		/* Find the item which contains the unit we want to allocate. */
700 		TAILQ_FOREACH(up, &uh->head, list) {
701 			if (up->len > i)
702 				break;
703 			i -= up->len;
704 		}
705 	}
706 
707 	if (up == NULL) {
708 		if (i > 0) {
709 			up = new_unr(uh, p1, p2);
710 			up->ptr = NULL;
711 			up->len = i;
712 			TAILQ_INSERT_TAIL(&uh->head, up, list);
713 		}
714 		up = new_unr(uh, p1, p2);
715 		up->ptr = uh;
716 		up->len = 1;
717 		TAILQ_INSERT_TAIL(&uh->head, up, list);
718 		goto done;
719 	}
720 
721 	if (is_bitmap(uh, up)) {
722 		ub = up->ptr;
723 		if (bit_test(ub->map, i) == 0) {
724 			bit_set(ub->map, i);
725 			goto done;
726 		} else
727 			return (-1);
728 	} else if (up->ptr == uh)
729 		return (-1);
730 
731 	KASSERT(up->ptr == NULL,
732 	    ("alloc_unr_specificl: up->ptr != NULL (up=%p)", up));
733 
734 	/* Split off the tail end, if any. */
735 	tl = up->len - (1 + i);
736 	if (tl > 0) {
737 		upn = new_unr(uh, p1, p2);
738 		upn->ptr = NULL;
739 		upn->len = tl;
740 		TAILQ_INSERT_AFTER(&uh->head, up, upn, list);
741 	}
742 
743 	/* Split off head end, if any */
744 	if (i > 0) {
745 		upn = new_unr(uh, p1, p2);
746 		upn->len = i;
747 		upn->ptr = NULL;
748 		TAILQ_INSERT_BEFORE(up, upn, list);
749 	}
750 	up->len = 1;
751 	up->ptr = uh;
752 
753 done:
754 	last = uh->high - uh->low - (item - uh->low);
755 	if (uh->last > last)
756 		uh->last = last;
757 	uh->busy++;
758 	collapse_unr(uh, up);
759 	check_unrhdr(uh, __LINE__);
760 	return (item);
761 }
762 
763 int
764 alloc_unr_specific(struct unrhdr *uh, u_int item)
765 {
766 	void *p1, *p2;
767 	int i;
768 
769 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "alloc_unr_specific");
770 
771 	p1 = Malloc(sizeof(struct unr));
772 	p2 = Malloc(sizeof(struct unr));
773 
774 	mtx_lock(uh->mtx);
775 	i = alloc_unr_specificl(uh, item, &p1, &p2);
776 	mtx_unlock(uh->mtx);
777 
778 	if (p1 != NULL)
779 		Free(p1);
780 	if (p2 != NULL)
781 		Free(p2);
782 
783 	return (i);
784 }
785 
786 /*
787  * Free a unr.
788  *
789  * If we can save unrs by using a bitmap, do so.
790  */
791 static void
792 free_unrl(struct unrhdr *uh, u_int item, void **p1, void **p2)
793 {
794 	struct unr *up, *upp, *upn;
795 	struct unrb *ub;
796 	u_int pl;
797 
798 	KASSERT(item >= uh->low && item <= uh->high,
799 	    ("UNR: free_unr(%u) out of range [%u...%u]",
800 	     item, uh->low, uh->high));
801 	check_unrhdr(uh, __LINE__);
802 	item -= uh->low;
803 	upp = TAILQ_FIRST(&uh->head);
804 	/*
805 	 * Freeing in the ideal split case
806 	 */
807 	if (item + 1 == uh->first && upp == NULL) {
808 		uh->last++;
809 		uh->first--;
810 		uh->busy--;
811 		check_unrhdr(uh, __LINE__);
812 		return;
813 	}
814 	/*
815  	 * Freeing in the ->first section.  Create a run starting at the
816 	 * freed item.  The code below will subdivide it.
817 	 */
818 	if (item < uh->first) {
819 		up = new_unr(uh, p1, p2);
820 		up->ptr = uh;
821 		up->len = uh->first - item;
822 		TAILQ_INSERT_HEAD(&uh->head, up, list);
823 		uh->first -= up->len;
824 	}
825 
826 	item -= uh->first;
827 
828 	/* Find the item which contains the unit we want to free */
829 	TAILQ_FOREACH(up, &uh->head, list) {
830 		if (up->len > item)
831 			break;
832 		item -= up->len;
833 	}
834 
835 	/* Handle bitmap items */
836 	if (is_bitmap(uh, up)) {
837 		ub = up->ptr;
838 
839 		KASSERT(bit_test(ub->map, item) != 0,
840 		    ("UNR: Freeing free item %d (bitmap)\n", item));
841 		bit_clear(ub->map, item);
842 		uh->busy--;
843 		collapse_unr(uh, up);
844 		return;
845 	}
846 
847 	KASSERT(up->ptr == uh, ("UNR Freeing free item %d (run))\n", item));
848 
849 	/* Just this one left, reap it */
850 	if (up->len == 1) {
851 		up->ptr = NULL;
852 		uh->busy--;
853 		collapse_unr(uh, up);
854 		return;
855 	}
856 
857 	/* Check if we can shift the item into the previous 'free' run */
858 	upp = TAILQ_PREV(up, unrhd, list);
859 	if (item == 0 && upp != NULL && upp->ptr == NULL) {
860 		upp->len++;
861 		up->len--;
862 		uh->busy--;
863 		collapse_unr(uh, up);
864 		return;
865 	}
866 
867 	/* Check if we can shift the item to the next 'free' run */
868 	upn = TAILQ_NEXT(up, list);
869 	if (item == up->len - 1 && upn != NULL && upn->ptr == NULL) {
870 		upn->len++;
871 		up->len--;
872 		uh->busy--;
873 		collapse_unr(uh, up);
874 		return;
875 	}
876 
877 	/* Split off the tail end, if any. */
878 	pl = up->len - (1 + item);
879 	if (pl > 0) {
880 		upp = new_unr(uh, p1, p2);
881 		upp->ptr = uh;
882 		upp->len = pl;
883 		TAILQ_INSERT_AFTER(&uh->head, up, upp, list);
884 	}
885 
886 	/* Split off head end, if any */
887 	if (item > 0) {
888 		upp = new_unr(uh, p1, p2);
889 		upp->len = item;
890 		upp->ptr = uh;
891 		TAILQ_INSERT_BEFORE(up, upp, list);
892 	}
893 	up->len = 1;
894 	up->ptr = NULL;
895 	uh->busy--;
896 	collapse_unr(uh, up);
897 }
898 
899 void
900 free_unr(struct unrhdr *uh, u_int item)
901 {
902 	void *p1, *p2;
903 
904 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "free_unr");
905 	p1 = Malloc(sizeof(struct unr));
906 	p2 = Malloc(sizeof(struct unr));
907 	mtx_lock(uh->mtx);
908 	free_unrl(uh, item, &p1, &p2);
909 	clean_unrhdrl(uh);
910 	mtx_unlock(uh->mtx);
911 	if (p1 != NULL)
912 		Free(p1);
913 	if (p2 != NULL)
914 		Free(p2);
915 }
916 
917 #ifndef _KERNEL	/* USERLAND test driver */
918 
919 /*
920  * Simple stochastic test driver for the above functions.  The code resides
921  * here so that it can access static functions and structures.
922  */
923 
924 static bool verbose;
925 #define VPRINTF(...)	{if (verbose) printf(__VA_ARGS__);}
926 
927 static void
928 print_unr(struct unrhdr *uh, struct unr *up)
929 {
930 	u_int x;
931 	struct unrb *ub;
932 
933 	printf("  %p len = %5u ", up, up->len);
934 	if (up->ptr == NULL)
935 		printf("free\n");
936 	else if (up->ptr == uh)
937 		printf("alloc\n");
938 	else {
939 		ub = up->ptr;
940 		printf("bitmap [");
941 		for (x = 0; x < up->len; x++) {
942 			if (bit_test(ub->map, x))
943 				printf("#");
944 			else
945 				printf(" ");
946 		}
947 		printf("]\n");
948 	}
949 }
950 
951 static void
952 print_unrhdr(struct unrhdr *uh)
953 {
954 	struct unr *up;
955 	u_int x;
956 
957 	printf(
958 	    "%p low = %u high = %u first = %u last = %u busy %u chunks = %u\n",
959 	    uh, uh->low, uh->high, uh->first, uh->last, uh->busy, uh->alloc);
960 	x = uh->low + uh->first;
961 	TAILQ_FOREACH(up, &uh->head, list) {
962 		printf("  from = %5u", x);
963 		print_unr(uh, up);
964 		if (up->ptr == NULL || up->ptr == uh)
965 			x += up->len;
966 		else
967 			x += NBITS;
968 	}
969 }
970 
971 static void
972 test_alloc_unr(struct unrhdr *uh, u_int i, char a[])
973 {
974 	int j;
975 
976 	if (a[i]) {
977 		VPRINTF("F %u\n", i);
978 		free_unr(uh, i);
979 		a[i] = 0;
980 	} else {
981 		no_alloc = 1;
982 		j = alloc_unr(uh);
983 		if (j != -1) {
984 			a[j] = 1;
985 			VPRINTF("A %d\n", j);
986 		}
987 		no_alloc = 0;
988 	}
989 }
990 
991 static void
992 test_alloc_unr_specific(struct unrhdr *uh, u_int i, char a[])
993 {
994 	int j;
995 
996 	j = alloc_unr_specific(uh, i);
997 	if (j == -1) {
998 		VPRINTF("F %u\n", i);
999 		a[i] = 0;
1000 		free_unr(uh, i);
1001 	} else {
1002 		a[i] = 1;
1003 		VPRINTF("A %d\n", j);
1004 	}
1005 }
1006 
1007 static void
1008 usage(char** argv)
1009 {
1010 	printf("%s [-h] [-r REPETITIONS] [-v]\n", argv[0]);
1011 }
1012 
1013 int
1014 main(int argc, char **argv)
1015 {
1016 	struct unrhdr *uh;
1017 	char *a;
1018 	long count = 10000;	/* Number of unrs to test */
1019 	long reps = 1, m;
1020 	int ch;
1021 	u_int i;
1022 
1023 	verbose = false;
1024 
1025 	while ((ch = getopt(argc, argv, "hr:v")) != -1) {
1026 		switch (ch) {
1027 		case 'r':
1028 			errno = 0;
1029 			reps = strtol(optarg, NULL, 0);
1030 			if (errno == ERANGE || errno == EINVAL) {
1031 				usage(argv);
1032 				exit(2);
1033 			}
1034 
1035 			break;
1036 		case 'v':
1037 			verbose = true;
1038 			break;
1039 		case 'h':
1040 		default:
1041 			usage(argv);
1042 			exit(2);
1043 		}
1044 
1045 	}
1046 
1047 	setbuf(stdout, NULL);
1048 	uh = new_unrhdr(0, count - 1, NULL);
1049 	print_unrhdr(uh);
1050 
1051 	a = calloc(count, sizeof(char));
1052 	if (a == NULL)
1053 		err(1, "calloc failed");
1054 
1055 	printf("sizeof(struct unr) %zu\n", sizeof(struct unr));
1056 	printf("sizeof(struct unrb) %zu\n", sizeof(struct unrb));
1057 	printf("sizeof(struct unrhdr) %zu\n", sizeof(struct unrhdr));
1058 	printf("NBITS %lu\n", (unsigned long)NBITS);
1059 	for (m = 0; m < count * reps; m++) {
1060 		i = arc4random_uniform(count);
1061 #if 0
1062 		if (a[i] && (j & 1))
1063 			continue;
1064 #endif
1065 		if ((arc4random() & 1) != 0)
1066 			test_alloc_unr(uh, i, a);
1067 		else
1068 			test_alloc_unr_specific(uh, i, a);
1069 
1070 		if (verbose)
1071 			print_unrhdr(uh);
1072 		check_unrhdr(uh, __LINE__);
1073 	}
1074 	for (i = 0; i < (u_int)count; i++) {
1075 		if (a[i]) {
1076 			if (verbose) {
1077 				printf("C %u\n", i);
1078 				print_unrhdr(uh);
1079 			}
1080 			free_unr(uh, i);
1081 		}
1082 	}
1083 	print_unrhdr(uh);
1084 	delete_unrhdr(uh);
1085 	free(a);
1086 	return (0);
1087 }
1088 #endif
1089