xref: /freebsd/sys/kern/sys_pipe.c (revision 81ad6265)
1 /*-
2  * Copyright (c) 1996 John S. Dyson
3  * Copyright (c) 2012 Giovanni Trematerra
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice immediately at the beginning of the file, without modification,
11  *    this list of conditions, and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Absolutely no warranty of function or purpose is made by the author
16  *    John S. Dyson.
17  * 4. Modifications may be freely made to this file if the above conditions
18  *    are met.
19  */
20 
21 /*
22  * This file contains a high-performance replacement for the socket-based
23  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24  * all features of sockets, but does do everything that pipes normally
25  * do.
26  */
27 
28 /*
29  * This code has two modes of operation, a small write mode and a large
30  * write mode.  The small write mode acts like conventional pipes with
31  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33  * and PIPE_SIZE in size, the sending process pins the underlying pages in
34  * memory, and the receiving process copies directly from these pinned pages
35  * in the sending process.
36  *
37  * If the sending process receives a signal, it is possible that it will
38  * go away, and certainly its address space can change, because control
39  * is returned back to the user-mode side.  In that case, the pipe code
40  * arranges to copy the buffer supplied by the user process, to a pageable
41  * kernel buffer, and the receiving process will grab the data from the
42  * pageable kernel buffer.  Since signals don't happen all that often,
43  * the copy operation is normally eliminated.
44  *
45  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46  * happen for small transfers so that the system will not spend all of
47  * its time context switching.
48  *
49  * In order to limit the resource use of pipes, two sysctls exist:
50  *
51  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52  * address space available to us in pipe_map. This value is normally
53  * autotuned, but may also be loader tuned.
54  *
55  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56  * memory in use by pipes.
57  *
58  * Based on how large pipekva is relative to maxpipekva, the following
59  * will happen:
60  *
61  * 0% - 50%:
62  *     New pipes are given 16K of memory backing, pipes may dynamically
63  *     grow to as large as 64K where needed.
64  * 50% - 75%:
65  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66  *     existing pipes may NOT grow.
67  * 75% - 100%:
68  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69  *     existing pipes will be shrunk down to 4K whenever possible.
70  *
71  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73  * resize which MUST occur for reverse-direction pipes when they are
74  * first used.
75  *
76  * Additional information about the current state of pipes may be obtained
77  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78  * and kern.ipc.piperesizefail.
79  *
80  * Locking rules:  There are two locks present here:  A mutex, used via
81  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82  * the flag, as mutexes can not persist over uiomove.  The mutex
83  * exists only to guard access to the flag, and is not in itself a
84  * locking mechanism.  Also note that there is only a single mutex for
85  * both directions of a pipe.
86  *
87  * As pipelock() may have to sleep before it can acquire the flag, it
88  * is important to reread all data after a call to pipelock(); everything
89  * in the structure may have changed.
90  */
91 
92 #include <sys/cdefs.h>
93 __FBSDID("$FreeBSD$");
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/conf.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/syscallsubr.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/user.h>
119 #include <sys/event.h>
120 
121 #include <security/mac/mac_framework.h>
122 
123 #include <vm/vm.h>
124 #include <vm/vm_param.h>
125 #include <vm/vm_object.h>
126 #include <vm/vm_kern.h>
127 #include <vm/vm_extern.h>
128 #include <vm/pmap.h>
129 #include <vm/vm_map.h>
130 #include <vm/vm_page.h>
131 #include <vm/uma.h>
132 
133 /*
134  * Use this define if you want to disable *fancy* VM things.  Expect an
135  * approx 30% decrease in transfer rate.  This could be useful for
136  * NetBSD or OpenBSD.
137  */
138 /* #define PIPE_NODIRECT */
139 
140 #define PIPE_PEER(pipe)	\
141 	(((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
142 
143 /*
144  * interfaces to the outside world
145  */
146 static fo_rdwr_t	pipe_read;
147 static fo_rdwr_t	pipe_write;
148 static fo_truncate_t	pipe_truncate;
149 static fo_ioctl_t	pipe_ioctl;
150 static fo_poll_t	pipe_poll;
151 static fo_kqfilter_t	pipe_kqfilter;
152 static fo_stat_t	pipe_stat;
153 static fo_close_t	pipe_close;
154 static fo_chmod_t	pipe_chmod;
155 static fo_chown_t	pipe_chown;
156 static fo_fill_kinfo_t	pipe_fill_kinfo;
157 
158 struct fileops pipeops = {
159 	.fo_read = pipe_read,
160 	.fo_write = pipe_write,
161 	.fo_truncate = pipe_truncate,
162 	.fo_ioctl = pipe_ioctl,
163 	.fo_poll = pipe_poll,
164 	.fo_kqfilter = pipe_kqfilter,
165 	.fo_stat = pipe_stat,
166 	.fo_close = pipe_close,
167 	.fo_chmod = pipe_chmod,
168 	.fo_chown = pipe_chown,
169 	.fo_sendfile = invfo_sendfile,
170 	.fo_fill_kinfo = pipe_fill_kinfo,
171 	.fo_flags = DFLAG_PASSABLE
172 };
173 
174 static void	filt_pipedetach(struct knote *kn);
175 static void	filt_pipedetach_notsup(struct knote *kn);
176 static int	filt_pipenotsup(struct knote *kn, long hint);
177 static int	filt_piperead(struct knote *kn, long hint);
178 static int	filt_pipewrite(struct knote *kn, long hint);
179 
180 static struct filterops pipe_nfiltops = {
181 	.f_isfd = 1,
182 	.f_detach = filt_pipedetach_notsup,
183 	.f_event = filt_pipenotsup
184 };
185 static struct filterops pipe_rfiltops = {
186 	.f_isfd = 1,
187 	.f_detach = filt_pipedetach,
188 	.f_event = filt_piperead
189 };
190 static struct filterops pipe_wfiltops = {
191 	.f_isfd = 1,
192 	.f_detach = filt_pipedetach,
193 	.f_event = filt_pipewrite
194 };
195 
196 /*
197  * Default pipe buffer size(s), this can be kind-of large now because pipe
198  * space is pageable.  The pipe code will try to maintain locality of
199  * reference for performance reasons, so small amounts of outstanding I/O
200  * will not wipe the cache.
201  */
202 #define MINPIPESIZE (PIPE_SIZE/3)
203 #define MAXPIPESIZE (2*PIPE_SIZE/3)
204 
205 static long amountpipekva;
206 static int pipefragretry;
207 static int pipeallocfail;
208 static int piperesizefail;
209 static int piperesizeallowed = 1;
210 static long pipe_mindirect = PIPE_MINDIRECT;
211 
212 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
213 	   &maxpipekva, 0, "Pipe KVA limit");
214 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
215 	   &amountpipekva, 0, "Pipe KVA usage");
216 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
217 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
218 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
219 	  &pipeallocfail, 0, "Pipe allocation failures");
220 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
221 	  &piperesizefail, 0, "Pipe resize failures");
222 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
223 	  &piperesizeallowed, 0, "Pipe resizing allowed");
224 
225 static void pipeinit(void *dummy __unused);
226 static void pipeclose(struct pipe *cpipe);
227 static void pipe_free_kmem(struct pipe *cpipe);
228 static int pipe_create(struct pipe *pipe, bool backing);
229 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
230 static __inline int pipelock(struct pipe *cpipe, int catch);
231 static __inline void pipeunlock(struct pipe *cpipe);
232 static void pipe_timestamp(struct timespec *tsp);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241 
242 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int	pipe_zone_init(void *mem, int size, int flags);
244 static void	pipe_zone_fini(void *mem, int size);
245 
246 static uma_zone_t pipe_zone;
247 static struct unrhdr64 pipeino_unr;
248 static dev_t pipedev_ino;
249 
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251 
252 static void
253 pipeinit(void *dummy __unused)
254 {
255 
256 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 	    UMA_ALIGN_PTR, 0);
259 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 	new_unrhdr64(&pipeino_unr, 1);
261 	pipedev_ino = devfs_alloc_cdp_inode();
262 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
263 }
264 
265 static int
266 sysctl_handle_pipe_mindirect(SYSCTL_HANDLER_ARGS)
267 {
268 	int error = 0;
269 	long tmp_pipe_mindirect = pipe_mindirect;
270 
271 	error = sysctl_handle_long(oidp, &tmp_pipe_mindirect, arg2, req);
272 	if (error != 0 || req->newptr == NULL)
273 		return (error);
274 
275 	/*
276 	 * Don't allow pipe_mindirect to be set so low that we violate
277 	 * atomicity requirements.
278 	 */
279 	if (tmp_pipe_mindirect <= PIPE_BUF)
280 		return (EINVAL);
281 	pipe_mindirect = tmp_pipe_mindirect;
282 	return (0);
283 }
284 SYSCTL_OID(_kern_ipc, OID_AUTO, pipe_mindirect, CTLTYPE_LONG | CTLFLAG_RW,
285     &pipe_mindirect, 0, sysctl_handle_pipe_mindirect, "L",
286     "Minimum write size triggering VM optimization");
287 
288 static int
289 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
290 {
291 	struct pipepair *pp;
292 	struct pipe *rpipe, *wpipe;
293 
294 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
295 
296 	pp = (struct pipepair *)mem;
297 
298 	/*
299 	 * We zero both pipe endpoints to make sure all the kmem pointers
300 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
301 	 * endpoints with the same time.
302 	 */
303 	rpipe = &pp->pp_rpipe;
304 	bzero(rpipe, sizeof(*rpipe));
305 	pipe_timestamp(&rpipe->pipe_ctime);
306 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
307 
308 	wpipe = &pp->pp_wpipe;
309 	bzero(wpipe, sizeof(*wpipe));
310 	wpipe->pipe_ctime = rpipe->pipe_ctime;
311 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
312 
313 	rpipe->pipe_peer = wpipe;
314 	rpipe->pipe_pair = pp;
315 	wpipe->pipe_peer = rpipe;
316 	wpipe->pipe_pair = pp;
317 
318 	/*
319 	 * Mark both endpoints as present; they will later get free'd
320 	 * one at a time.  When both are free'd, then the whole pair
321 	 * is released.
322 	 */
323 	rpipe->pipe_present = PIPE_ACTIVE;
324 	wpipe->pipe_present = PIPE_ACTIVE;
325 
326 	/*
327 	 * Eventually, the MAC Framework may initialize the label
328 	 * in ctor or init, but for now we do it elswhere to avoid
329 	 * blocking in ctor or init.
330 	 */
331 	pp->pp_label = NULL;
332 
333 	return (0);
334 }
335 
336 static int
337 pipe_zone_init(void *mem, int size, int flags)
338 {
339 	struct pipepair *pp;
340 
341 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
342 
343 	pp = (struct pipepair *)mem;
344 
345 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
346 	return (0);
347 }
348 
349 static void
350 pipe_zone_fini(void *mem, int size)
351 {
352 	struct pipepair *pp;
353 
354 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
355 
356 	pp = (struct pipepair *)mem;
357 
358 	mtx_destroy(&pp->pp_mtx);
359 }
360 
361 static int
362 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
363 {
364 	struct pipepair *pp;
365 	struct pipe *rpipe, *wpipe;
366 	int error;
367 
368 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
369 #ifdef MAC
370 	/*
371 	 * The MAC label is shared between the connected endpoints.  As a
372 	 * result mac_pipe_init() and mac_pipe_create() are called once
373 	 * for the pair, and not on the endpoints.
374 	 */
375 	mac_pipe_init(pp);
376 	mac_pipe_create(td->td_ucred, pp);
377 #endif
378 	rpipe = &pp->pp_rpipe;
379 	wpipe = &pp->pp_wpipe;
380 
381 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
382 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
383 
384 	/*
385 	 * Only the forward direction pipe is backed by big buffer by
386 	 * default.
387 	 */
388 	error = pipe_create(rpipe, true);
389 	if (error != 0)
390 		goto fail;
391 	error = pipe_create(wpipe, false);
392 	if (error != 0) {
393 		/*
394 		 * This cleanup leaves the pipe inode number for rpipe
395 		 * still allocated, but never used.  We do not free
396 		 * inode numbers for opened pipes, which is required
397 		 * for correctness because numbers must be unique.
398 		 * But also it avoids any memory use by the unr
399 		 * allocator, so stashing away the transient inode
400 		 * number is reasonable.
401 		 */
402 		pipe_free_kmem(rpipe);
403 		goto fail;
404 	}
405 
406 	rpipe->pipe_state |= PIPE_DIRECTOK;
407 	wpipe->pipe_state |= PIPE_DIRECTOK;
408 	return (0);
409 
410 fail:
411 	knlist_destroy(&rpipe->pipe_sel.si_note);
412 	knlist_destroy(&wpipe->pipe_sel.si_note);
413 #ifdef MAC
414 	mac_pipe_destroy(pp);
415 #endif
416 	uma_zfree(pipe_zone, pp);
417 	return (error);
418 }
419 
420 int
421 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
422 {
423 	struct pipepair *pp;
424 	int error;
425 
426 	error = pipe_paircreate(td, &pp);
427 	if (error != 0)
428 		return (error);
429 	pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
430 	*ppipe = &pp->pp_rpipe;
431 	return (0);
432 }
433 
434 void
435 pipe_dtor(struct pipe *dpipe)
436 {
437 	struct pipe *peer;
438 
439 	peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
440 	funsetown(&dpipe->pipe_sigio);
441 	pipeclose(dpipe);
442 	if (peer != NULL) {
443 		funsetown(&peer->pipe_sigio);
444 		pipeclose(peer);
445 	}
446 }
447 
448 /*
449  * Get a timestamp.
450  *
451  * This used to be vfs_timestamp but the higher precision is unnecessary and
452  * can very negatively affect performance in virtualized environments (e.g., on
453  * vms running on amd64 when using the rdtscp instruction).
454  */
455 static void
456 pipe_timestamp(struct timespec *tsp)
457 {
458 
459 	getnanotime(tsp);
460 }
461 
462 /*
463  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
464  * the zone pick up the pieces via pipeclose().
465  */
466 int
467 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
468     struct filecaps *fcaps2)
469 {
470 	struct file *rf, *wf;
471 	struct pipe *rpipe, *wpipe;
472 	struct pipepair *pp;
473 	int fd, fflags, error;
474 
475 	error = pipe_paircreate(td, &pp);
476 	if (error != 0)
477 		return (error);
478 	rpipe = &pp->pp_rpipe;
479 	wpipe = &pp->pp_wpipe;
480 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
481 	if (error) {
482 		pipeclose(rpipe);
483 		pipeclose(wpipe);
484 		return (error);
485 	}
486 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
487 	fildes[0] = fd;
488 
489 	fflags = FREAD | FWRITE;
490 	if ((flags & O_NONBLOCK) != 0)
491 		fflags |= FNONBLOCK;
492 
493 	/*
494 	 * Warning: once we've gotten past allocation of the fd for the
495 	 * read-side, we can only drop the read side via fdrop() in order
496 	 * to avoid races against processes which manage to dup() the read
497 	 * side while we are blocked trying to allocate the write side.
498 	 */
499 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
500 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
501 	if (error) {
502 		fdclose(td, rf, fildes[0]);
503 		fdrop(rf, td);
504 		/* rpipe has been closed by fdrop(). */
505 		pipeclose(wpipe);
506 		return (error);
507 	}
508 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
509 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
510 	fdrop(wf, td);
511 	fildes[1] = fd;
512 	fdrop(rf, td);
513 
514 	return (0);
515 }
516 
517 #ifdef COMPAT_FREEBSD10
518 /* ARGSUSED */
519 int
520 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
521 {
522 	int error;
523 	int fildes[2];
524 
525 	error = kern_pipe(td, fildes, 0, NULL, NULL);
526 	if (error)
527 		return (error);
528 
529 	td->td_retval[0] = fildes[0];
530 	td->td_retval[1] = fildes[1];
531 
532 	return (0);
533 }
534 #endif
535 
536 int
537 sys_pipe2(struct thread *td, struct pipe2_args *uap)
538 {
539 	int error, fildes[2];
540 
541 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
542 		return (EINVAL);
543 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
544 	if (error)
545 		return (error);
546 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
547 	if (error) {
548 		(void)kern_close(td, fildes[0]);
549 		(void)kern_close(td, fildes[1]);
550 	}
551 	return (error);
552 }
553 
554 /*
555  * Allocate kva for pipe circular buffer, the space is pageable
556  * This routine will 'realloc' the size of a pipe safely, if it fails
557  * it will retain the old buffer.
558  * If it fails it will return ENOMEM.
559  */
560 static int
561 pipespace_new(struct pipe *cpipe, int size)
562 {
563 	caddr_t buffer;
564 	int error, cnt, firstseg;
565 	static int curfail = 0;
566 	static struct timeval lastfail;
567 
568 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
569 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
570 		("pipespace: resize of direct writes not allowed"));
571 retry:
572 	cnt = cpipe->pipe_buffer.cnt;
573 	if (cnt > size)
574 		size = cnt;
575 
576 	size = round_page(size);
577 	buffer = (caddr_t) vm_map_min(pipe_map);
578 
579 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
580 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
581 	if (error != KERN_SUCCESS) {
582 		if (cpipe->pipe_buffer.buffer == NULL &&
583 		    size > SMALL_PIPE_SIZE) {
584 			size = SMALL_PIPE_SIZE;
585 			pipefragretry++;
586 			goto retry;
587 		}
588 		if (cpipe->pipe_buffer.buffer == NULL) {
589 			pipeallocfail++;
590 			if (ppsratecheck(&lastfail, &curfail, 1))
591 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
592 		} else {
593 			piperesizefail++;
594 		}
595 		return (ENOMEM);
596 	}
597 
598 	/* copy data, then free old resources if we're resizing */
599 	if (cnt > 0) {
600 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
601 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
602 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
603 				buffer, firstseg);
604 			if ((cnt - firstseg) > 0)
605 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
606 					cpipe->pipe_buffer.in);
607 		} else {
608 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
609 				buffer, cnt);
610 		}
611 	}
612 	pipe_free_kmem(cpipe);
613 	cpipe->pipe_buffer.buffer = buffer;
614 	cpipe->pipe_buffer.size = size;
615 	cpipe->pipe_buffer.in = cnt;
616 	cpipe->pipe_buffer.out = 0;
617 	cpipe->pipe_buffer.cnt = cnt;
618 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
619 	return (0);
620 }
621 
622 /*
623  * Wrapper for pipespace_new() that performs locking assertions.
624  */
625 static int
626 pipespace(struct pipe *cpipe, int size)
627 {
628 
629 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
630 	    ("Unlocked pipe passed to pipespace"));
631 	return (pipespace_new(cpipe, size));
632 }
633 
634 /*
635  * lock a pipe for I/O, blocking other access
636  */
637 static __inline int
638 pipelock(struct pipe *cpipe, int catch)
639 {
640 	int error, prio;
641 
642 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
643 
644 	prio = PRIBIO;
645 	if (catch)
646 		prio |= PCATCH;
647 	while (cpipe->pipe_state & PIPE_LOCKFL) {
648 		KASSERT(cpipe->pipe_waiters >= 0,
649 		    ("%s: bad waiter count %d", __func__,
650 		    cpipe->pipe_waiters));
651 		cpipe->pipe_waiters++;
652 		error = msleep(&cpipe->pipe_waiters, PIPE_MTX(cpipe), prio,
653 		    "pipelk", 0);
654 		cpipe->pipe_waiters--;
655 		if (error != 0)
656 			return (error);
657 	}
658 	cpipe->pipe_state |= PIPE_LOCKFL;
659 	return (0);
660 }
661 
662 /*
663  * unlock a pipe I/O lock
664  */
665 static __inline void
666 pipeunlock(struct pipe *cpipe)
667 {
668 
669 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
670 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
671 		("Unlocked pipe passed to pipeunlock"));
672 	KASSERT(cpipe->pipe_waiters >= 0,
673 	    ("%s: bad waiter count %d", __func__,
674 	    cpipe->pipe_waiters));
675 	cpipe->pipe_state &= ~PIPE_LOCKFL;
676 	if (cpipe->pipe_waiters > 0)
677 		wakeup_one(&cpipe->pipe_waiters);
678 }
679 
680 void
681 pipeselwakeup(struct pipe *cpipe)
682 {
683 
684 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
685 	if (cpipe->pipe_state & PIPE_SEL) {
686 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
687 		if (!SEL_WAITING(&cpipe->pipe_sel))
688 			cpipe->pipe_state &= ~PIPE_SEL;
689 	}
690 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
691 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
692 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
693 }
694 
695 /*
696  * Initialize and allocate VM and memory for pipe.  The structure
697  * will start out zero'd from the ctor, so we just manage the kmem.
698  */
699 static int
700 pipe_create(struct pipe *pipe, bool large_backing)
701 {
702 	int error;
703 
704 	error = pipespace_new(pipe, !large_backing || amountpipekva >
705 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
706 	if (error == 0)
707 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
708 	return (error);
709 }
710 
711 /* ARGSUSED */
712 static int
713 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
714     int flags, struct thread *td)
715 {
716 	struct pipe *rpipe;
717 	int error;
718 	int nread = 0;
719 	int size;
720 
721 	rpipe = fp->f_data;
722 
723 	/*
724 	 * Try to avoid locking the pipe if we have nothing to do.
725 	 *
726 	 * There are programs which share one pipe amongst multiple processes
727 	 * and perform non-blocking reads in parallel, even if the pipe is
728 	 * empty.  This in particular is the case with BSD make, which when
729 	 * spawned with a high -j number can find itself with over half of the
730 	 * calls failing to find anything.
731 	 */
732 	if ((fp->f_flag & FNONBLOCK) != 0 && !mac_pipe_check_read_enabled()) {
733 		if (__predict_false(uio->uio_resid == 0))
734 			return (0);
735 		if ((atomic_load_short(&rpipe->pipe_state) & PIPE_EOF) == 0 &&
736 		    atomic_load_int(&rpipe->pipe_buffer.cnt) == 0 &&
737 		    atomic_load_int(&rpipe->pipe_pages.cnt) == 0)
738 			return (EAGAIN);
739 	}
740 
741 	PIPE_LOCK(rpipe);
742 	++rpipe->pipe_busy;
743 	error = pipelock(rpipe, 1);
744 	if (error)
745 		goto unlocked_error;
746 
747 #ifdef MAC
748 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
749 	if (error)
750 		goto locked_error;
751 #endif
752 	if (amountpipekva > (3 * maxpipekva) / 4) {
753 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
754 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
755 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
756 		    piperesizeallowed == 1) {
757 			PIPE_UNLOCK(rpipe);
758 			pipespace(rpipe, SMALL_PIPE_SIZE);
759 			PIPE_LOCK(rpipe);
760 		}
761 	}
762 
763 	while (uio->uio_resid) {
764 		/*
765 		 * normal pipe buffer receive
766 		 */
767 		if (rpipe->pipe_buffer.cnt > 0) {
768 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
769 			if (size > rpipe->pipe_buffer.cnt)
770 				size = rpipe->pipe_buffer.cnt;
771 			if (size > uio->uio_resid)
772 				size = uio->uio_resid;
773 
774 			PIPE_UNLOCK(rpipe);
775 			error = uiomove(
776 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
777 			    size, uio);
778 			PIPE_LOCK(rpipe);
779 			if (error)
780 				break;
781 
782 			rpipe->pipe_buffer.out += size;
783 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
784 				rpipe->pipe_buffer.out = 0;
785 
786 			rpipe->pipe_buffer.cnt -= size;
787 
788 			/*
789 			 * If there is no more to read in the pipe, reset
790 			 * its pointers to the beginning.  This improves
791 			 * cache hit stats.
792 			 */
793 			if (rpipe->pipe_buffer.cnt == 0) {
794 				rpipe->pipe_buffer.in = 0;
795 				rpipe->pipe_buffer.out = 0;
796 			}
797 			nread += size;
798 #ifndef PIPE_NODIRECT
799 		/*
800 		 * Direct copy, bypassing a kernel buffer.
801 		 */
802 		} else if ((size = rpipe->pipe_pages.cnt) != 0) {
803 			if (size > uio->uio_resid)
804 				size = (u_int) uio->uio_resid;
805 			PIPE_UNLOCK(rpipe);
806 			error = uiomove_fromphys(rpipe->pipe_pages.ms,
807 			    rpipe->pipe_pages.pos, size, uio);
808 			PIPE_LOCK(rpipe);
809 			if (error)
810 				break;
811 			nread += size;
812 			rpipe->pipe_pages.pos += size;
813 			rpipe->pipe_pages.cnt -= size;
814 			if (rpipe->pipe_pages.cnt == 0) {
815 				rpipe->pipe_state &= ~PIPE_WANTW;
816 				wakeup(rpipe);
817 			}
818 #endif
819 		} else {
820 			/*
821 			 * detect EOF condition
822 			 * read returns 0 on EOF, no need to set error
823 			 */
824 			if (rpipe->pipe_state & PIPE_EOF)
825 				break;
826 
827 			/*
828 			 * If the "write-side" has been blocked, wake it up now.
829 			 */
830 			if (rpipe->pipe_state & PIPE_WANTW) {
831 				rpipe->pipe_state &= ~PIPE_WANTW;
832 				wakeup(rpipe);
833 			}
834 
835 			/*
836 			 * Break if some data was read.
837 			 */
838 			if (nread > 0)
839 				break;
840 
841 			/*
842 			 * Unlock the pipe buffer for our remaining processing.
843 			 * We will either break out with an error or we will
844 			 * sleep and relock to loop.
845 			 */
846 			pipeunlock(rpipe);
847 
848 			/*
849 			 * Handle non-blocking mode operation or
850 			 * wait for more data.
851 			 */
852 			if (fp->f_flag & FNONBLOCK) {
853 				error = EAGAIN;
854 			} else {
855 				rpipe->pipe_state |= PIPE_WANTR;
856 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
857 				    PRIBIO | PCATCH,
858 				    "piperd", 0)) == 0)
859 					error = pipelock(rpipe, 1);
860 			}
861 			if (error)
862 				goto unlocked_error;
863 		}
864 	}
865 #ifdef MAC
866 locked_error:
867 #endif
868 	pipeunlock(rpipe);
869 
870 	/* XXX: should probably do this before getting any locks. */
871 	if (error == 0)
872 		pipe_timestamp(&rpipe->pipe_atime);
873 unlocked_error:
874 	--rpipe->pipe_busy;
875 
876 	/*
877 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
878 	 */
879 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
880 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
881 		wakeup(rpipe);
882 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
883 		/*
884 		 * Handle write blocking hysteresis.
885 		 */
886 		if (rpipe->pipe_state & PIPE_WANTW) {
887 			rpipe->pipe_state &= ~PIPE_WANTW;
888 			wakeup(rpipe);
889 		}
890 	}
891 
892 	/*
893 	 * Only wake up writers if there was actually something read.
894 	 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
895 	 */
896 	if (nread > 0 &&
897 	    rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
898 		pipeselwakeup(rpipe);
899 
900 	PIPE_UNLOCK(rpipe);
901 	if (nread > 0)
902 		td->td_ru.ru_msgrcv++;
903 	return (error);
904 }
905 
906 #ifndef PIPE_NODIRECT
907 /*
908  * Map the sending processes' buffer into kernel space and wire it.
909  * This is similar to a physical write operation.
910  */
911 static int
912 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
913 {
914 	u_int size;
915 	int i;
916 
917 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
918 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
919 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
920 	KASSERT(wpipe->pipe_pages.cnt == 0,
921 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
922 
923 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
924                 size = wpipe->pipe_buffer.size;
925 	else
926                 size = uio->uio_iov->iov_len;
927 
928 	wpipe->pipe_state |= PIPE_DIRECTW;
929 	PIPE_UNLOCK(wpipe);
930 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
931 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
932 	    wpipe->pipe_pages.ms, PIPENPAGES);
933 	PIPE_LOCK(wpipe);
934 	if (i < 0) {
935 		wpipe->pipe_state &= ~PIPE_DIRECTW;
936 		return (EFAULT);
937 	}
938 
939 	wpipe->pipe_pages.npages = i;
940 	wpipe->pipe_pages.pos =
941 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
942 	wpipe->pipe_pages.cnt = size;
943 
944 	uio->uio_iov->iov_len -= size;
945 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
946 	if (uio->uio_iov->iov_len == 0)
947 		uio->uio_iov++;
948 	uio->uio_resid -= size;
949 	uio->uio_offset += size;
950 	return (0);
951 }
952 
953 /*
954  * Unwire the process buffer.
955  */
956 static void
957 pipe_destroy_write_buffer(struct pipe *wpipe)
958 {
959 
960 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
961 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
962 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
963 	KASSERT(wpipe->pipe_pages.cnt == 0,
964 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
965 
966 	wpipe->pipe_state &= ~PIPE_DIRECTW;
967 	vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
968 	wpipe->pipe_pages.npages = 0;
969 }
970 
971 /*
972  * In the case of a signal, the writing process might go away.  This
973  * code copies the data into the circular buffer so that the source
974  * pages can be freed without loss of data.
975  */
976 static void
977 pipe_clone_write_buffer(struct pipe *wpipe)
978 {
979 	struct uio uio;
980 	struct iovec iov;
981 	int size;
982 	int pos;
983 
984 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
985 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
986 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
987 
988 	size = wpipe->pipe_pages.cnt;
989 	pos = wpipe->pipe_pages.pos;
990 	wpipe->pipe_pages.cnt = 0;
991 
992 	wpipe->pipe_buffer.in = size;
993 	wpipe->pipe_buffer.out = 0;
994 	wpipe->pipe_buffer.cnt = size;
995 
996 	PIPE_UNLOCK(wpipe);
997 	iov.iov_base = wpipe->pipe_buffer.buffer;
998 	iov.iov_len = size;
999 	uio.uio_iov = &iov;
1000 	uio.uio_iovcnt = 1;
1001 	uio.uio_offset = 0;
1002 	uio.uio_resid = size;
1003 	uio.uio_segflg = UIO_SYSSPACE;
1004 	uio.uio_rw = UIO_READ;
1005 	uio.uio_td = curthread;
1006 	uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
1007 	PIPE_LOCK(wpipe);
1008 	pipe_destroy_write_buffer(wpipe);
1009 }
1010 
1011 /*
1012  * This implements the pipe buffer write mechanism.  Note that only
1013  * a direct write OR a normal pipe write can be pending at any given time.
1014  * If there are any characters in the pipe buffer, the direct write will
1015  * be deferred until the receiving process grabs all of the bytes from
1016  * the pipe buffer.  Then the direct mapping write is set-up.
1017  */
1018 static int
1019 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
1020 {
1021 	int error;
1022 
1023 retry:
1024 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1025 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1026 		error = EPIPE;
1027 		goto error1;
1028 	}
1029 	if (wpipe->pipe_state & PIPE_DIRECTW) {
1030 		if (wpipe->pipe_state & PIPE_WANTR) {
1031 			wpipe->pipe_state &= ~PIPE_WANTR;
1032 			wakeup(wpipe);
1033 		}
1034 		pipeselwakeup(wpipe);
1035 		wpipe->pipe_state |= PIPE_WANTW;
1036 		pipeunlock(wpipe);
1037 		error = msleep(wpipe, PIPE_MTX(wpipe),
1038 		    PRIBIO | PCATCH, "pipdww", 0);
1039 		pipelock(wpipe, 0);
1040 		if (error != 0)
1041 			goto error1;
1042 		goto retry;
1043 	}
1044 	if (wpipe->pipe_buffer.cnt > 0) {
1045 		if (wpipe->pipe_state & PIPE_WANTR) {
1046 			wpipe->pipe_state &= ~PIPE_WANTR;
1047 			wakeup(wpipe);
1048 		}
1049 		pipeselwakeup(wpipe);
1050 		wpipe->pipe_state |= PIPE_WANTW;
1051 		pipeunlock(wpipe);
1052 		error = msleep(wpipe, PIPE_MTX(wpipe),
1053 		    PRIBIO | PCATCH, "pipdwc", 0);
1054 		pipelock(wpipe, 0);
1055 		if (error != 0)
1056 			goto error1;
1057 		goto retry;
1058 	}
1059 
1060 	error = pipe_build_write_buffer(wpipe, uio);
1061 	if (error) {
1062 		goto error1;
1063 	}
1064 
1065 	while (wpipe->pipe_pages.cnt != 0 &&
1066 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1067 		if (wpipe->pipe_state & PIPE_WANTR) {
1068 			wpipe->pipe_state &= ~PIPE_WANTR;
1069 			wakeup(wpipe);
1070 		}
1071 		pipeselwakeup(wpipe);
1072 		wpipe->pipe_state |= PIPE_WANTW;
1073 		pipeunlock(wpipe);
1074 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1075 		    "pipdwt", 0);
1076 		pipelock(wpipe, 0);
1077 		if (error != 0)
1078 			break;
1079 	}
1080 
1081 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1082 		wpipe->pipe_pages.cnt = 0;
1083 		pipe_destroy_write_buffer(wpipe);
1084 		pipeselwakeup(wpipe);
1085 		error = EPIPE;
1086 	} else if (error == EINTR || error == ERESTART) {
1087 		pipe_clone_write_buffer(wpipe);
1088 	} else {
1089 		pipe_destroy_write_buffer(wpipe);
1090 	}
1091 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1092 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1093 	return (error);
1094 
1095 error1:
1096 	wakeup(wpipe);
1097 	return (error);
1098 }
1099 #endif
1100 
1101 static int
1102 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1103     int flags, struct thread *td)
1104 {
1105 	struct pipe *wpipe, *rpipe;
1106 	ssize_t orig_resid;
1107 	int desiredsize, error;
1108 
1109 	rpipe = fp->f_data;
1110 	wpipe = PIPE_PEER(rpipe);
1111 	PIPE_LOCK(rpipe);
1112 	error = pipelock(wpipe, 1);
1113 	if (error) {
1114 		PIPE_UNLOCK(rpipe);
1115 		return (error);
1116 	}
1117 	/*
1118 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1119 	 */
1120 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1121 	    (wpipe->pipe_state & PIPE_EOF)) {
1122 		pipeunlock(wpipe);
1123 		PIPE_UNLOCK(rpipe);
1124 		return (EPIPE);
1125 	}
1126 #ifdef MAC
1127 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1128 	if (error) {
1129 		pipeunlock(wpipe);
1130 		PIPE_UNLOCK(rpipe);
1131 		return (error);
1132 	}
1133 #endif
1134 	++wpipe->pipe_busy;
1135 
1136 	/* Choose a larger size if it's advantageous */
1137 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1138 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1139 		if (piperesizeallowed != 1)
1140 			break;
1141 		if (amountpipekva > maxpipekva / 2)
1142 			break;
1143 		if (desiredsize == BIG_PIPE_SIZE)
1144 			break;
1145 		desiredsize = desiredsize * 2;
1146 	}
1147 
1148 	/* Choose a smaller size if we're in a OOM situation */
1149 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1150 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1151 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1152 	    piperesizeallowed == 1)
1153 		desiredsize = SMALL_PIPE_SIZE;
1154 
1155 	/* Resize if the above determined that a new size was necessary */
1156 	if (desiredsize != wpipe->pipe_buffer.size &&
1157 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1158 		PIPE_UNLOCK(wpipe);
1159 		pipespace(wpipe, desiredsize);
1160 		PIPE_LOCK(wpipe);
1161 	}
1162 	MPASS(wpipe->pipe_buffer.size != 0);
1163 
1164 	orig_resid = uio->uio_resid;
1165 
1166 	while (uio->uio_resid) {
1167 		int space;
1168 
1169 		if (wpipe->pipe_state & PIPE_EOF) {
1170 			error = EPIPE;
1171 			break;
1172 		}
1173 #ifndef PIPE_NODIRECT
1174 		/*
1175 		 * If the transfer is large, we can gain performance if
1176 		 * we do process-to-process copies directly.
1177 		 * If the write is non-blocking, we don't use the
1178 		 * direct write mechanism.
1179 		 *
1180 		 * The direct write mechanism will detect the reader going
1181 		 * away on us.
1182 		 */
1183 		if (uio->uio_segflg == UIO_USERSPACE &&
1184 		    uio->uio_iov->iov_len >= pipe_mindirect &&
1185 		    wpipe->pipe_buffer.size >= pipe_mindirect &&
1186 		    (fp->f_flag & FNONBLOCK) == 0) {
1187 			error = pipe_direct_write(wpipe, uio);
1188 			if (error != 0)
1189 				break;
1190 			continue;
1191 		}
1192 #endif
1193 
1194 		/*
1195 		 * Pipe buffered writes cannot be coincidental with
1196 		 * direct writes.  We wait until the currently executing
1197 		 * direct write is completed before we start filling the
1198 		 * pipe buffer.  We break out if a signal occurs or the
1199 		 * reader goes away.
1200 		 */
1201 		if (wpipe->pipe_pages.cnt != 0) {
1202 			if (wpipe->pipe_state & PIPE_WANTR) {
1203 				wpipe->pipe_state &= ~PIPE_WANTR;
1204 				wakeup(wpipe);
1205 			}
1206 			pipeselwakeup(wpipe);
1207 			wpipe->pipe_state |= PIPE_WANTW;
1208 			pipeunlock(wpipe);
1209 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1210 			    "pipbww", 0);
1211 			pipelock(wpipe, 0);
1212 			if (error != 0)
1213 				break;
1214 			continue;
1215 		}
1216 
1217 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1218 
1219 		/* Writes of size <= PIPE_BUF must be atomic. */
1220 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1221 			space = 0;
1222 
1223 		if (space > 0) {
1224 			int size;	/* Transfer size */
1225 			int segsize;	/* first segment to transfer */
1226 
1227 			/*
1228 			 * Transfer size is minimum of uio transfer
1229 			 * and free space in pipe buffer.
1230 			 */
1231 			if (space > uio->uio_resid)
1232 				size = uio->uio_resid;
1233 			else
1234 				size = space;
1235 			/*
1236 			 * First segment to transfer is minimum of
1237 			 * transfer size and contiguous space in
1238 			 * pipe buffer.  If first segment to transfer
1239 			 * is less than the transfer size, we've got
1240 			 * a wraparound in the buffer.
1241 			 */
1242 			segsize = wpipe->pipe_buffer.size -
1243 				wpipe->pipe_buffer.in;
1244 			if (segsize > size)
1245 				segsize = size;
1246 
1247 			/* Transfer first segment */
1248 
1249 			PIPE_UNLOCK(rpipe);
1250 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1251 					segsize, uio);
1252 			PIPE_LOCK(rpipe);
1253 
1254 			if (error == 0 && segsize < size) {
1255 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1256 					wpipe->pipe_buffer.size,
1257 					("Pipe buffer wraparound disappeared"));
1258 				/*
1259 				 * Transfer remaining part now, to
1260 				 * support atomic writes.  Wraparound
1261 				 * happened.
1262 				 */
1263 
1264 				PIPE_UNLOCK(rpipe);
1265 				error = uiomove(
1266 				    &wpipe->pipe_buffer.buffer[0],
1267 				    size - segsize, uio);
1268 				PIPE_LOCK(rpipe);
1269 			}
1270 			if (error == 0) {
1271 				wpipe->pipe_buffer.in += size;
1272 				if (wpipe->pipe_buffer.in >=
1273 				    wpipe->pipe_buffer.size) {
1274 					KASSERT(wpipe->pipe_buffer.in ==
1275 						size - segsize +
1276 						wpipe->pipe_buffer.size,
1277 						("Expected wraparound bad"));
1278 					wpipe->pipe_buffer.in = size - segsize;
1279 				}
1280 
1281 				wpipe->pipe_buffer.cnt += size;
1282 				KASSERT(wpipe->pipe_buffer.cnt <=
1283 					wpipe->pipe_buffer.size,
1284 					("Pipe buffer overflow"));
1285 			}
1286 			if (error != 0)
1287 				break;
1288 			continue;
1289 		} else {
1290 			/*
1291 			 * If the "read-side" has been blocked, wake it up now.
1292 			 */
1293 			if (wpipe->pipe_state & PIPE_WANTR) {
1294 				wpipe->pipe_state &= ~PIPE_WANTR;
1295 				wakeup(wpipe);
1296 			}
1297 
1298 			/*
1299 			 * don't block on non-blocking I/O
1300 			 */
1301 			if (fp->f_flag & FNONBLOCK) {
1302 				error = EAGAIN;
1303 				break;
1304 			}
1305 
1306 			/*
1307 			 * We have no more space and have something to offer,
1308 			 * wake up select/poll.
1309 			 */
1310 			pipeselwakeup(wpipe);
1311 
1312 			wpipe->pipe_state |= PIPE_WANTW;
1313 			pipeunlock(wpipe);
1314 			error = msleep(wpipe, PIPE_MTX(rpipe),
1315 			    PRIBIO | PCATCH, "pipewr", 0);
1316 			pipelock(wpipe, 0);
1317 			if (error != 0)
1318 				break;
1319 			continue;
1320 		}
1321 	}
1322 
1323 	--wpipe->pipe_busy;
1324 
1325 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1326 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1327 		wakeup(wpipe);
1328 	} else if (wpipe->pipe_buffer.cnt > 0) {
1329 		/*
1330 		 * If we have put any characters in the buffer, we wake up
1331 		 * the reader.
1332 		 */
1333 		if (wpipe->pipe_state & PIPE_WANTR) {
1334 			wpipe->pipe_state &= ~PIPE_WANTR;
1335 			wakeup(wpipe);
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * Don't return EPIPE if any byte was written.
1341 	 * EINTR and other interrupts are handled by generic I/O layer.
1342 	 * Do not pretend that I/O succeeded for obvious user error
1343 	 * like EFAULT.
1344 	 */
1345 	if (uio->uio_resid != orig_resid && error == EPIPE)
1346 		error = 0;
1347 
1348 	if (error == 0)
1349 		pipe_timestamp(&wpipe->pipe_mtime);
1350 
1351 	/*
1352 	 * We have something to offer,
1353 	 * wake up select/poll.
1354 	 */
1355 	if (wpipe->pipe_buffer.cnt)
1356 		pipeselwakeup(wpipe);
1357 
1358 	pipeunlock(wpipe);
1359 	PIPE_UNLOCK(rpipe);
1360 	if (uio->uio_resid != orig_resid)
1361 		td->td_ru.ru_msgsnd++;
1362 	return (error);
1363 }
1364 
1365 /* ARGSUSED */
1366 static int
1367 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1368     struct thread *td)
1369 {
1370 	struct pipe *cpipe;
1371 	int error;
1372 
1373 	cpipe = fp->f_data;
1374 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1375 		error = vnops.fo_truncate(fp, length, active_cred, td);
1376 	else
1377 		error = invfo_truncate(fp, length, active_cred, td);
1378 	return (error);
1379 }
1380 
1381 /*
1382  * we implement a very minimal set of ioctls for compatibility with sockets.
1383  */
1384 static int
1385 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1386     struct thread *td)
1387 {
1388 	struct pipe *mpipe = fp->f_data;
1389 	int error;
1390 
1391 	PIPE_LOCK(mpipe);
1392 
1393 #ifdef MAC
1394 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1395 	if (error) {
1396 		PIPE_UNLOCK(mpipe);
1397 		return (error);
1398 	}
1399 #endif
1400 
1401 	error = 0;
1402 	switch (cmd) {
1403 	case FIONBIO:
1404 		break;
1405 
1406 	case FIOASYNC:
1407 		if (*(int *)data) {
1408 			mpipe->pipe_state |= PIPE_ASYNC;
1409 		} else {
1410 			mpipe->pipe_state &= ~PIPE_ASYNC;
1411 		}
1412 		break;
1413 
1414 	case FIONREAD:
1415 		if (!(fp->f_flag & FREAD)) {
1416 			*(int *)data = 0;
1417 			PIPE_UNLOCK(mpipe);
1418 			return (0);
1419 		}
1420 		if (mpipe->pipe_pages.cnt != 0)
1421 			*(int *)data = mpipe->pipe_pages.cnt;
1422 		else
1423 			*(int *)data = mpipe->pipe_buffer.cnt;
1424 		break;
1425 
1426 	case FIOSETOWN:
1427 		PIPE_UNLOCK(mpipe);
1428 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1429 		goto out_unlocked;
1430 
1431 	case FIOGETOWN:
1432 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1433 		break;
1434 
1435 	/* This is deprecated, FIOSETOWN should be used instead. */
1436 	case TIOCSPGRP:
1437 		PIPE_UNLOCK(mpipe);
1438 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1439 		goto out_unlocked;
1440 
1441 	/* This is deprecated, FIOGETOWN should be used instead. */
1442 	case TIOCGPGRP:
1443 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1444 		break;
1445 
1446 	default:
1447 		error = ENOTTY;
1448 		break;
1449 	}
1450 	PIPE_UNLOCK(mpipe);
1451 out_unlocked:
1452 	return (error);
1453 }
1454 
1455 static int
1456 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1457     struct thread *td)
1458 {
1459 	struct pipe *rpipe;
1460 	struct pipe *wpipe;
1461 	int levents, revents;
1462 #ifdef MAC
1463 	int error;
1464 #endif
1465 
1466 	revents = 0;
1467 	rpipe = fp->f_data;
1468 	wpipe = PIPE_PEER(rpipe);
1469 	PIPE_LOCK(rpipe);
1470 #ifdef MAC
1471 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1472 	if (error)
1473 		goto locked_error;
1474 #endif
1475 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1476 		if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1477 			revents |= events & (POLLIN | POLLRDNORM);
1478 
1479 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1480 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1481 		    (wpipe->pipe_state & PIPE_EOF) ||
1482 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1483 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1484 			 wpipe->pipe_buffer.size == 0)))
1485 			revents |= events & (POLLOUT | POLLWRNORM);
1486 
1487 	levents = events &
1488 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1489 	if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1490 	    fp->f_pipegen == rpipe->pipe_wgen)
1491 		events |= POLLINIGNEOF;
1492 
1493 	if ((events & POLLINIGNEOF) == 0) {
1494 		if (rpipe->pipe_state & PIPE_EOF) {
1495 			if (fp->f_flag & FREAD)
1496 				revents |= (events & (POLLIN | POLLRDNORM));
1497 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1498 			    (wpipe->pipe_state & PIPE_EOF))
1499 				revents |= POLLHUP;
1500 		}
1501 	}
1502 
1503 	if (revents == 0) {
1504 		/*
1505 		 * Add ourselves regardless of eventmask as we have to return
1506 		 * POLLHUP even if it was not asked for.
1507 		 */
1508 		if ((fp->f_flag & FREAD) != 0) {
1509 			selrecord(td, &rpipe->pipe_sel);
1510 			if (SEL_WAITING(&rpipe->pipe_sel))
1511 				rpipe->pipe_state |= PIPE_SEL;
1512 		}
1513 
1514 		if ((fp->f_flag & FWRITE) != 0 &&
1515 		    wpipe->pipe_present == PIPE_ACTIVE) {
1516 			selrecord(td, &wpipe->pipe_sel);
1517 			if (SEL_WAITING(&wpipe->pipe_sel))
1518 				wpipe->pipe_state |= PIPE_SEL;
1519 		}
1520 	}
1521 #ifdef MAC
1522 locked_error:
1523 #endif
1524 	PIPE_UNLOCK(rpipe);
1525 
1526 	return (revents);
1527 }
1528 
1529 /*
1530  * We shouldn't need locks here as we're doing a read and this should
1531  * be a natural race.
1532  */
1533 static int
1534 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred)
1535 {
1536 	struct pipe *pipe;
1537 #ifdef MAC
1538 	int error;
1539 #endif
1540 
1541 	pipe = fp->f_data;
1542 #ifdef MAC
1543 	if (mac_pipe_check_stat_enabled()) {
1544 		PIPE_LOCK(pipe);
1545 		error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1546 		PIPE_UNLOCK(pipe);
1547 		if (error) {
1548 			return (error);
1549 		}
1550 	}
1551 #endif
1552 
1553 	/* For named pipes ask the underlying filesystem. */
1554 	if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1555 		return (vnops.fo_stat(fp, ub, active_cred));
1556 	}
1557 
1558 	bzero(ub, sizeof(*ub));
1559 	ub->st_mode = S_IFIFO;
1560 	ub->st_blksize = PAGE_SIZE;
1561 	if (pipe->pipe_pages.cnt != 0)
1562 		ub->st_size = pipe->pipe_pages.cnt;
1563 	else
1564 		ub->st_size = pipe->pipe_buffer.cnt;
1565 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1566 	ub->st_atim = pipe->pipe_atime;
1567 	ub->st_mtim = pipe->pipe_mtime;
1568 	ub->st_ctim = pipe->pipe_ctime;
1569 	ub->st_uid = fp->f_cred->cr_uid;
1570 	ub->st_gid = fp->f_cred->cr_gid;
1571 	ub->st_dev = pipedev_ino;
1572 	ub->st_ino = pipe->pipe_ino;
1573 	/*
1574 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1575 	 */
1576 	return (0);
1577 }
1578 
1579 /* ARGSUSED */
1580 static int
1581 pipe_close(struct file *fp, struct thread *td)
1582 {
1583 
1584 	if (fp->f_vnode != NULL)
1585 		return vnops.fo_close(fp, td);
1586 	fp->f_ops = &badfileops;
1587 	pipe_dtor(fp->f_data);
1588 	fp->f_data = NULL;
1589 	return (0);
1590 }
1591 
1592 static int
1593 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1594 {
1595 	struct pipe *cpipe;
1596 	int error;
1597 
1598 	cpipe = fp->f_data;
1599 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1600 		error = vn_chmod(fp, mode, active_cred, td);
1601 	else
1602 		error = invfo_chmod(fp, mode, active_cred, td);
1603 	return (error);
1604 }
1605 
1606 static int
1607 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1608     struct thread *td)
1609 {
1610 	struct pipe *cpipe;
1611 	int error;
1612 
1613 	cpipe = fp->f_data;
1614 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1615 		error = vn_chown(fp, uid, gid, active_cred, td);
1616 	else
1617 		error = invfo_chown(fp, uid, gid, active_cred, td);
1618 	return (error);
1619 }
1620 
1621 static int
1622 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1623 {
1624 	struct pipe *pi;
1625 
1626 	if (fp->f_type == DTYPE_FIFO)
1627 		return (vn_fill_kinfo(fp, kif, fdp));
1628 	kif->kf_type = KF_TYPE_PIPE;
1629 	pi = fp->f_data;
1630 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1631 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1632 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1633 	kif->kf_un.kf_pipe.kf_pipe_buffer_in = pi->pipe_buffer.in;
1634 	kif->kf_un.kf_pipe.kf_pipe_buffer_out = pi->pipe_buffer.out;
1635 	kif->kf_un.kf_pipe.kf_pipe_buffer_size = pi->pipe_buffer.size;
1636 	return (0);
1637 }
1638 
1639 static void
1640 pipe_free_kmem(struct pipe *cpipe)
1641 {
1642 
1643 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1644 	    ("pipe_free_kmem: pipe mutex locked"));
1645 
1646 	if (cpipe->pipe_buffer.buffer != NULL) {
1647 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1648 		vm_map_remove(pipe_map,
1649 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1650 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1651 		cpipe->pipe_buffer.buffer = NULL;
1652 	}
1653 #ifndef PIPE_NODIRECT
1654 	{
1655 		cpipe->pipe_pages.cnt = 0;
1656 		cpipe->pipe_pages.pos = 0;
1657 		cpipe->pipe_pages.npages = 0;
1658 	}
1659 #endif
1660 }
1661 
1662 /*
1663  * shutdown the pipe
1664  */
1665 static void
1666 pipeclose(struct pipe *cpipe)
1667 {
1668 #ifdef MAC
1669 	struct pipepair *pp;
1670 #endif
1671 	struct pipe *ppipe;
1672 
1673 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1674 
1675 	PIPE_LOCK(cpipe);
1676 	pipelock(cpipe, 0);
1677 #ifdef MAC
1678 	pp = cpipe->pipe_pair;
1679 #endif
1680 
1681 	/*
1682 	 * If the other side is blocked, wake it up saying that
1683 	 * we want to close it down.
1684 	 */
1685 	cpipe->pipe_state |= PIPE_EOF;
1686 	while (cpipe->pipe_busy) {
1687 		wakeup(cpipe);
1688 		cpipe->pipe_state |= PIPE_WANT;
1689 		pipeunlock(cpipe);
1690 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1691 		pipelock(cpipe, 0);
1692 	}
1693 
1694 	pipeselwakeup(cpipe);
1695 
1696 	/*
1697 	 * Disconnect from peer, if any.
1698 	 */
1699 	ppipe = cpipe->pipe_peer;
1700 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1701 		ppipe->pipe_state |= PIPE_EOF;
1702 		wakeup(ppipe);
1703 		pipeselwakeup(ppipe);
1704 	}
1705 
1706 	/*
1707 	 * Mark this endpoint as free.  Release kmem resources.  We
1708 	 * don't mark this endpoint as unused until we've finished
1709 	 * doing that, or the pipe might disappear out from under
1710 	 * us.
1711 	 */
1712 	PIPE_UNLOCK(cpipe);
1713 	pipe_free_kmem(cpipe);
1714 	PIPE_LOCK(cpipe);
1715 	cpipe->pipe_present = PIPE_CLOSING;
1716 	pipeunlock(cpipe);
1717 
1718 	/*
1719 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1720 	 * PIPE_FINALIZED, that allows other end to free the
1721 	 * pipe_pair, only after the knotes are completely dismantled.
1722 	 */
1723 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1724 	cpipe->pipe_present = PIPE_FINALIZED;
1725 	seldrain(&cpipe->pipe_sel);
1726 	knlist_destroy(&cpipe->pipe_sel.si_note);
1727 
1728 	/*
1729 	 * If both endpoints are now closed, release the memory for the
1730 	 * pipe pair.  If not, unlock.
1731 	 */
1732 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1733 		PIPE_UNLOCK(cpipe);
1734 #ifdef MAC
1735 		mac_pipe_destroy(pp);
1736 #endif
1737 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1738 	} else
1739 		PIPE_UNLOCK(cpipe);
1740 }
1741 
1742 /*ARGSUSED*/
1743 static int
1744 pipe_kqfilter(struct file *fp, struct knote *kn)
1745 {
1746 	struct pipe *cpipe;
1747 
1748 	/*
1749 	 * If a filter is requested that is not supported by this file
1750 	 * descriptor, don't return an error, but also don't ever generate an
1751 	 * event.
1752 	 */
1753 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1754 		kn->kn_fop = &pipe_nfiltops;
1755 		return (0);
1756 	}
1757 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1758 		kn->kn_fop = &pipe_nfiltops;
1759 		return (0);
1760 	}
1761 	cpipe = fp->f_data;
1762 	PIPE_LOCK(cpipe);
1763 	switch (kn->kn_filter) {
1764 	case EVFILT_READ:
1765 		kn->kn_fop = &pipe_rfiltops;
1766 		break;
1767 	case EVFILT_WRITE:
1768 		kn->kn_fop = &pipe_wfiltops;
1769 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1770 			/* other end of pipe has been closed */
1771 			PIPE_UNLOCK(cpipe);
1772 			return (EPIPE);
1773 		}
1774 		cpipe = PIPE_PEER(cpipe);
1775 		break;
1776 	default:
1777 		if ((cpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1778 			PIPE_UNLOCK(cpipe);
1779 			return (vnops.fo_kqfilter(fp, kn));
1780 		}
1781 		PIPE_UNLOCK(cpipe);
1782 		return (EINVAL);
1783 	}
1784 
1785 	kn->kn_hook = cpipe;
1786 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1787 	PIPE_UNLOCK(cpipe);
1788 	return (0);
1789 }
1790 
1791 static void
1792 filt_pipedetach(struct knote *kn)
1793 {
1794 	struct pipe *cpipe = kn->kn_hook;
1795 
1796 	PIPE_LOCK(cpipe);
1797 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1798 	PIPE_UNLOCK(cpipe);
1799 }
1800 
1801 /*ARGSUSED*/
1802 static int
1803 filt_piperead(struct knote *kn, long hint)
1804 {
1805 	struct file *fp = kn->kn_fp;
1806 	struct pipe *rpipe = kn->kn_hook;
1807 
1808 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1809 	kn->kn_data = rpipe->pipe_buffer.cnt;
1810 	if (kn->kn_data == 0)
1811 		kn->kn_data = rpipe->pipe_pages.cnt;
1812 
1813 	if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1814 	    ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1815 	    fp->f_pipegen != rpipe->pipe_wgen)) {
1816 		kn->kn_flags |= EV_EOF;
1817 		return (1);
1818 	}
1819 	kn->kn_flags &= ~EV_EOF;
1820 	return (kn->kn_data > 0);
1821 }
1822 
1823 /*ARGSUSED*/
1824 static int
1825 filt_pipewrite(struct knote *kn, long hint)
1826 {
1827 	struct pipe *wpipe = kn->kn_hook;
1828 
1829 	/*
1830 	 * If this end of the pipe is closed, the knote was removed from the
1831 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1832 	 */
1833 	if (wpipe->pipe_present == PIPE_ACTIVE ||
1834 	    (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1835 		PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1836 
1837 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1838 			kn->kn_data = 0;
1839 		} else if (wpipe->pipe_buffer.size > 0) {
1840 			kn->kn_data = wpipe->pipe_buffer.size -
1841 			    wpipe->pipe_buffer.cnt;
1842 		} else {
1843 			kn->kn_data = PIPE_BUF;
1844 		}
1845 	}
1846 
1847 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1848 	    (wpipe->pipe_state & PIPE_EOF)) {
1849 		kn->kn_flags |= EV_EOF;
1850 		return (1);
1851 	}
1852 	kn->kn_flags &= ~EV_EOF;
1853 	return (kn->kn_data >= PIPE_BUF);
1854 }
1855 
1856 static void
1857 filt_pipedetach_notsup(struct knote *kn)
1858 {
1859 
1860 }
1861 
1862 static int
1863 filt_pipenotsup(struct knote *kn, long hint)
1864 {
1865 
1866 	return (0);
1867 }
1868