xref: /freebsd/sys/kern/sys_pipe.c (revision c697fb7f)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static int pipe_create(struct pipe *pipe, bool backing);
230 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 #ifndef PIPE_NODIRECT
234 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235 static void pipe_destroy_write_buffer(struct pipe *wpipe);
236 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237 static void pipe_clone_write_buffer(struct pipe *wpipe);
238 #endif
239 static int pipespace(struct pipe *cpipe, int size);
240 static int pipespace_new(struct pipe *cpipe, int size);
241 
242 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243 static int	pipe_zone_init(void *mem, int size, int flags);
244 static void	pipe_zone_fini(void *mem, int size);
245 
246 static uma_zone_t pipe_zone;
247 static struct unrhdr64 pipeino_unr;
248 static dev_t pipedev_ino;
249 
250 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251 
252 static void
253 pipeinit(void *dummy __unused)
254 {
255 
256 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258 	    UMA_ALIGN_PTR, 0);
259 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260 	new_unrhdr64(&pipeino_unr, 1);
261 	pipedev_ino = devfs_alloc_cdp_inode();
262 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
263 }
264 
265 static int
266 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
267 {
268 	struct pipepair *pp;
269 	struct pipe *rpipe, *wpipe;
270 
271 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
272 
273 	pp = (struct pipepair *)mem;
274 
275 	/*
276 	 * We zero both pipe endpoints to make sure all the kmem pointers
277 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
278 	 * endpoints with the same time.
279 	 */
280 	rpipe = &pp->pp_rpipe;
281 	bzero(rpipe, sizeof(*rpipe));
282 	vfs_timestamp(&rpipe->pipe_ctime);
283 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
284 
285 	wpipe = &pp->pp_wpipe;
286 	bzero(wpipe, sizeof(*wpipe));
287 	wpipe->pipe_ctime = rpipe->pipe_ctime;
288 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
289 
290 	rpipe->pipe_peer = wpipe;
291 	rpipe->pipe_pair = pp;
292 	wpipe->pipe_peer = rpipe;
293 	wpipe->pipe_pair = pp;
294 
295 	/*
296 	 * Mark both endpoints as present; they will later get free'd
297 	 * one at a time.  When both are free'd, then the whole pair
298 	 * is released.
299 	 */
300 	rpipe->pipe_present = PIPE_ACTIVE;
301 	wpipe->pipe_present = PIPE_ACTIVE;
302 
303 	/*
304 	 * Eventually, the MAC Framework may initialize the label
305 	 * in ctor or init, but for now we do it elswhere to avoid
306 	 * blocking in ctor or init.
307 	 */
308 	pp->pp_label = NULL;
309 
310 	return (0);
311 }
312 
313 static int
314 pipe_zone_init(void *mem, int size, int flags)
315 {
316 	struct pipepair *pp;
317 
318 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
319 
320 	pp = (struct pipepair *)mem;
321 
322 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
323 	return (0);
324 }
325 
326 static void
327 pipe_zone_fini(void *mem, int size)
328 {
329 	struct pipepair *pp;
330 
331 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
332 
333 	pp = (struct pipepair *)mem;
334 
335 	mtx_destroy(&pp->pp_mtx);
336 }
337 
338 static int
339 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
340 {
341 	struct pipepair *pp;
342 	struct pipe *rpipe, *wpipe;
343 	int error;
344 
345 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346 #ifdef MAC
347 	/*
348 	 * The MAC label is shared between the connected endpoints.  As a
349 	 * result mac_pipe_init() and mac_pipe_create() are called once
350 	 * for the pair, and not on the endpoints.
351 	 */
352 	mac_pipe_init(pp);
353 	mac_pipe_create(td->td_ucred, pp);
354 #endif
355 	rpipe = &pp->pp_rpipe;
356 	wpipe = &pp->pp_wpipe;
357 
358 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360 
361 	/*
362 	 * Only the forward direction pipe is backed by big buffer by
363 	 * default.
364 	 */
365 	error = pipe_create(rpipe, true);
366 	if (error != 0)
367 		goto fail;
368 	error = pipe_create(wpipe, false);
369 	if (error != 0) {
370 		/*
371 		 * This cleanup leaves the pipe inode number for rpipe
372 		 * still allocated, but never used.  We do not free
373 		 * inode numbers for opened pipes, which is required
374 		 * for correctness because numbers must be unique.
375 		 * But also it avoids any memory use by the unr
376 		 * allocator, so stashing away the transient inode
377 		 * number is reasonable.
378 		 */
379 		pipe_free_kmem(rpipe);
380 		goto fail;
381 	}
382 
383 	rpipe->pipe_state |= PIPE_DIRECTOK;
384 	wpipe->pipe_state |= PIPE_DIRECTOK;
385 	return (0);
386 
387 fail:
388 	knlist_destroy(&rpipe->pipe_sel.si_note);
389 	knlist_destroy(&wpipe->pipe_sel.si_note);
390 #ifdef MAC
391 	mac_pipe_destroy(pp);
392 #endif
393 	return (error);
394 }
395 
396 int
397 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
398 {
399 	struct pipepair *pp;
400 	int error;
401 
402 	error = pipe_paircreate(td, &pp);
403 	if (error != 0)
404 		return (error);
405 	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
406 	*ppipe = &pp->pp_rpipe;
407 	return (0);
408 }
409 
410 void
411 pipe_dtor(struct pipe *dpipe)
412 {
413 	struct pipe *peer;
414 
415 	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
416 	funsetown(&dpipe->pipe_sigio);
417 	pipeclose(dpipe);
418 	if (peer != NULL) {
419 		funsetown(&peer->pipe_sigio);
420 		pipeclose(peer);
421 	}
422 }
423 
424 /*
425  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
426  * the zone pick up the pieces via pipeclose().
427  */
428 int
429 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
430     struct filecaps *fcaps2)
431 {
432 	struct file *rf, *wf;
433 	struct pipe *rpipe, *wpipe;
434 	struct pipepair *pp;
435 	int fd, fflags, error;
436 
437 	error = pipe_paircreate(td, &pp);
438 	if (error != 0)
439 		return (error);
440 	rpipe = &pp->pp_rpipe;
441 	wpipe = &pp->pp_wpipe;
442 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
443 	if (error) {
444 		pipeclose(rpipe);
445 		pipeclose(wpipe);
446 		return (error);
447 	}
448 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
449 	fildes[0] = fd;
450 
451 	fflags = FREAD | FWRITE;
452 	if ((flags & O_NONBLOCK) != 0)
453 		fflags |= FNONBLOCK;
454 
455 	/*
456 	 * Warning: once we've gotten past allocation of the fd for the
457 	 * read-side, we can only drop the read side via fdrop() in order
458 	 * to avoid races against processes which manage to dup() the read
459 	 * side while we are blocked trying to allocate the write side.
460 	 */
461 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
462 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
463 	if (error) {
464 		fdclose(td, rf, fildes[0]);
465 		fdrop(rf, td);
466 		/* rpipe has been closed by fdrop(). */
467 		pipeclose(wpipe);
468 		return (error);
469 	}
470 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
471 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
472 	fdrop(wf, td);
473 	fildes[1] = fd;
474 	fdrop(rf, td);
475 
476 	return (0);
477 }
478 
479 #ifdef COMPAT_FREEBSD10
480 /* ARGSUSED */
481 int
482 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
483 {
484 	int error;
485 	int fildes[2];
486 
487 	error = kern_pipe(td, fildes, 0, NULL, NULL);
488 	if (error)
489 		return (error);
490 
491 	td->td_retval[0] = fildes[0];
492 	td->td_retval[1] = fildes[1];
493 
494 	return (0);
495 }
496 #endif
497 
498 int
499 sys_pipe2(struct thread *td, struct pipe2_args *uap)
500 {
501 	int error, fildes[2];
502 
503 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
504 		return (EINVAL);
505 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
506 	if (error)
507 		return (error);
508 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
509 	if (error) {
510 		(void)kern_close(td, fildes[0]);
511 		(void)kern_close(td, fildes[1]);
512 	}
513 	return (error);
514 }
515 
516 /*
517  * Allocate kva for pipe circular buffer, the space is pageable
518  * This routine will 'realloc' the size of a pipe safely, if it fails
519  * it will retain the old buffer.
520  * If it fails it will return ENOMEM.
521  */
522 static int
523 pipespace_new(struct pipe *cpipe, int size)
524 {
525 	caddr_t buffer;
526 	int error, cnt, firstseg;
527 	static int curfail = 0;
528 	static struct timeval lastfail;
529 
530 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
531 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
532 		("pipespace: resize of direct writes not allowed"));
533 retry:
534 	cnt = cpipe->pipe_buffer.cnt;
535 	if (cnt > size)
536 		size = cnt;
537 
538 	size = round_page(size);
539 	buffer = (caddr_t) vm_map_min(pipe_map);
540 
541 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
542 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
543 	if (error != KERN_SUCCESS) {
544 		if (cpipe->pipe_buffer.buffer == NULL &&
545 		    size > SMALL_PIPE_SIZE) {
546 			size = SMALL_PIPE_SIZE;
547 			pipefragretry++;
548 			goto retry;
549 		}
550 		if (cpipe->pipe_buffer.buffer == NULL) {
551 			pipeallocfail++;
552 			if (ppsratecheck(&lastfail, &curfail, 1))
553 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
554 		} else {
555 			piperesizefail++;
556 		}
557 		return (ENOMEM);
558 	}
559 
560 	/* copy data, then free old resources if we're resizing */
561 	if (cnt > 0) {
562 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
563 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
564 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
565 				buffer, firstseg);
566 			if ((cnt - firstseg) > 0)
567 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
568 					cpipe->pipe_buffer.in);
569 		} else {
570 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
571 				buffer, cnt);
572 		}
573 	}
574 	pipe_free_kmem(cpipe);
575 	cpipe->pipe_buffer.buffer = buffer;
576 	cpipe->pipe_buffer.size = size;
577 	cpipe->pipe_buffer.in = cnt;
578 	cpipe->pipe_buffer.out = 0;
579 	cpipe->pipe_buffer.cnt = cnt;
580 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
581 	return (0);
582 }
583 
584 /*
585  * Wrapper for pipespace_new() that performs locking assertions.
586  */
587 static int
588 pipespace(struct pipe *cpipe, int size)
589 {
590 
591 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
592 	    ("Unlocked pipe passed to pipespace"));
593 	return (pipespace_new(cpipe, size));
594 }
595 
596 /*
597  * lock a pipe for I/O, blocking other access
598  */
599 static __inline int
600 pipelock(struct pipe *cpipe, int catch)
601 {
602 	int error;
603 
604 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
605 	while (cpipe->pipe_state & PIPE_LOCKFL) {
606 		cpipe->pipe_state |= PIPE_LWANT;
607 		error = msleep(cpipe, PIPE_MTX(cpipe),
608 		    catch ? (PRIBIO | PCATCH) : PRIBIO,
609 		    "pipelk", 0);
610 		if (error != 0)
611 			return (error);
612 	}
613 	cpipe->pipe_state |= PIPE_LOCKFL;
614 	return (0);
615 }
616 
617 /*
618  * unlock a pipe I/O lock
619  */
620 static __inline void
621 pipeunlock(struct pipe *cpipe)
622 {
623 
624 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
625 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
626 		("Unlocked pipe passed to pipeunlock"));
627 	cpipe->pipe_state &= ~PIPE_LOCKFL;
628 	if (cpipe->pipe_state & PIPE_LWANT) {
629 		cpipe->pipe_state &= ~PIPE_LWANT;
630 		wakeup(cpipe);
631 	}
632 }
633 
634 void
635 pipeselwakeup(struct pipe *cpipe)
636 {
637 
638 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
639 	if (cpipe->pipe_state & PIPE_SEL) {
640 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
641 		if (!SEL_WAITING(&cpipe->pipe_sel))
642 			cpipe->pipe_state &= ~PIPE_SEL;
643 	}
644 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
645 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
646 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
647 }
648 
649 /*
650  * Initialize and allocate VM and memory for pipe.  The structure
651  * will start out zero'd from the ctor, so we just manage the kmem.
652  */
653 static int
654 pipe_create(struct pipe *pipe, bool large_backing)
655 {
656 	int error;
657 
658 	error = pipespace_new(pipe, !large_backing || amountpipekva >
659 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
660 	if (error == 0)
661 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
662 	return (error);
663 }
664 
665 /* ARGSUSED */
666 static int
667 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
668     int flags, struct thread *td)
669 {
670 	struct pipe *rpipe;
671 	int error;
672 	int nread = 0;
673 	int size;
674 
675 	rpipe = fp->f_data;
676 	PIPE_LOCK(rpipe);
677 	++rpipe->pipe_busy;
678 	error = pipelock(rpipe, 1);
679 	if (error)
680 		goto unlocked_error;
681 
682 #ifdef MAC
683 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
684 	if (error)
685 		goto locked_error;
686 #endif
687 	if (amountpipekva > (3 * maxpipekva) / 4) {
688 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
689 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
690 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
691 		    piperesizeallowed == 1) {
692 			PIPE_UNLOCK(rpipe);
693 			pipespace(rpipe, SMALL_PIPE_SIZE);
694 			PIPE_LOCK(rpipe);
695 		}
696 	}
697 
698 	while (uio->uio_resid) {
699 		/*
700 		 * normal pipe buffer receive
701 		 */
702 		if (rpipe->pipe_buffer.cnt > 0) {
703 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
704 			if (size > rpipe->pipe_buffer.cnt)
705 				size = rpipe->pipe_buffer.cnt;
706 			if (size > uio->uio_resid)
707 				size = uio->uio_resid;
708 
709 			PIPE_UNLOCK(rpipe);
710 			error = uiomove(
711 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
712 			    size, uio);
713 			PIPE_LOCK(rpipe);
714 			if (error)
715 				break;
716 
717 			rpipe->pipe_buffer.out += size;
718 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
719 				rpipe->pipe_buffer.out = 0;
720 
721 			rpipe->pipe_buffer.cnt -= size;
722 
723 			/*
724 			 * If there is no more to read in the pipe, reset
725 			 * its pointers to the beginning.  This improves
726 			 * cache hit stats.
727 			 */
728 			if (rpipe->pipe_buffer.cnt == 0) {
729 				rpipe->pipe_buffer.in = 0;
730 				rpipe->pipe_buffer.out = 0;
731 			}
732 			nread += size;
733 #ifndef PIPE_NODIRECT
734 		/*
735 		 * Direct copy, bypassing a kernel buffer.
736 		 */
737 		} else if ((size = rpipe->pipe_map.cnt) != 0) {
738 			if (size > uio->uio_resid)
739 				size = (u_int) uio->uio_resid;
740 			PIPE_UNLOCK(rpipe);
741 			error = uiomove_fromphys(rpipe->pipe_map.ms,
742 			    rpipe->pipe_map.pos, size, uio);
743 			PIPE_LOCK(rpipe);
744 			if (error)
745 				break;
746 			nread += size;
747 			rpipe->pipe_map.pos += size;
748 			rpipe->pipe_map.cnt -= size;
749 			if (rpipe->pipe_map.cnt == 0) {
750 				rpipe->pipe_state &= ~PIPE_WANTW;
751 				wakeup(rpipe);
752 			}
753 #endif
754 		} else {
755 			/*
756 			 * detect EOF condition
757 			 * read returns 0 on EOF, no need to set error
758 			 */
759 			if (rpipe->pipe_state & PIPE_EOF)
760 				break;
761 
762 			/*
763 			 * If the "write-side" has been blocked, wake it up now.
764 			 */
765 			if (rpipe->pipe_state & PIPE_WANTW) {
766 				rpipe->pipe_state &= ~PIPE_WANTW;
767 				wakeup(rpipe);
768 			}
769 
770 			/*
771 			 * Break if some data was read.
772 			 */
773 			if (nread > 0)
774 				break;
775 
776 			/*
777 			 * Unlock the pipe buffer for our remaining processing.
778 			 * We will either break out with an error or we will
779 			 * sleep and relock to loop.
780 			 */
781 			pipeunlock(rpipe);
782 
783 			/*
784 			 * Handle non-blocking mode operation or
785 			 * wait for more data.
786 			 */
787 			if (fp->f_flag & FNONBLOCK) {
788 				error = EAGAIN;
789 			} else {
790 				rpipe->pipe_state |= PIPE_WANTR;
791 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
792 				    PRIBIO | PCATCH,
793 				    "piperd", 0)) == 0)
794 					error = pipelock(rpipe, 1);
795 			}
796 			if (error)
797 				goto unlocked_error;
798 		}
799 	}
800 #ifdef MAC
801 locked_error:
802 #endif
803 	pipeunlock(rpipe);
804 
805 	/* XXX: should probably do this before getting any locks. */
806 	if (error == 0)
807 		vfs_timestamp(&rpipe->pipe_atime);
808 unlocked_error:
809 	--rpipe->pipe_busy;
810 
811 	/*
812 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
813 	 */
814 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
815 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
816 		wakeup(rpipe);
817 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
818 		/*
819 		 * Handle write blocking hysteresis.
820 		 */
821 		if (rpipe->pipe_state & PIPE_WANTW) {
822 			rpipe->pipe_state &= ~PIPE_WANTW;
823 			wakeup(rpipe);
824 		}
825 	}
826 
827 	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
828 		pipeselwakeup(rpipe);
829 
830 	PIPE_UNLOCK(rpipe);
831 	return (error);
832 }
833 
834 #ifndef PIPE_NODIRECT
835 /*
836  * Map the sending processes' buffer into kernel space and wire it.
837  * This is similar to a physical write operation.
838  */
839 static int
840 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
841 {
842 	u_int size;
843 	int i;
844 
845 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
846 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
847 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
848 	KASSERT(wpipe->pipe_map.cnt == 0,
849 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
850 
851 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
852                 size = wpipe->pipe_buffer.size;
853 	else
854                 size = uio->uio_iov->iov_len;
855 
856 	wpipe->pipe_state |= PIPE_DIRECTW;
857 	PIPE_UNLOCK(wpipe);
858 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
859 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
860 	    wpipe->pipe_map.ms, PIPENPAGES);
861 	PIPE_LOCK(wpipe);
862 	if (i < 0) {
863 		wpipe->pipe_state &= ~PIPE_DIRECTW;
864 		return (EFAULT);
865 	}
866 
867 	wpipe->pipe_map.npages = i;
868 	wpipe->pipe_map.pos =
869 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
870 	wpipe->pipe_map.cnt = size;
871 
872 	uio->uio_iov->iov_len -= size;
873 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
874 	if (uio->uio_iov->iov_len == 0)
875 		uio->uio_iov++;
876 	uio->uio_resid -= size;
877 	uio->uio_offset += size;
878 	return (0);
879 }
880 
881 /*
882  * Unwire the process buffer.
883  */
884 static void
885 pipe_destroy_write_buffer(struct pipe *wpipe)
886 {
887 
888 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
889 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
890 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
891 	KASSERT(wpipe->pipe_map.cnt == 0,
892 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
893 
894 	wpipe->pipe_state &= ~PIPE_DIRECTW;
895 	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
896 	wpipe->pipe_map.npages = 0;
897 }
898 
899 /*
900  * In the case of a signal, the writing process might go away.  This
901  * code copies the data into the circular buffer so that the source
902  * pages can be freed without loss of data.
903  */
904 static void
905 pipe_clone_write_buffer(struct pipe *wpipe)
906 {
907 	struct uio uio;
908 	struct iovec iov;
909 	int size;
910 	int pos;
911 
912 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
913 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
914 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
915 
916 	size = wpipe->pipe_map.cnt;
917 	pos = wpipe->pipe_map.pos;
918 	wpipe->pipe_map.cnt = 0;
919 
920 	wpipe->pipe_buffer.in = size;
921 	wpipe->pipe_buffer.out = 0;
922 	wpipe->pipe_buffer.cnt = size;
923 
924 	PIPE_UNLOCK(wpipe);
925 	iov.iov_base = wpipe->pipe_buffer.buffer;
926 	iov.iov_len = size;
927 	uio.uio_iov = &iov;
928 	uio.uio_iovcnt = 1;
929 	uio.uio_offset = 0;
930 	uio.uio_resid = size;
931 	uio.uio_segflg = UIO_SYSSPACE;
932 	uio.uio_rw = UIO_READ;
933 	uio.uio_td = curthread;
934 	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
935 	PIPE_LOCK(wpipe);
936 	pipe_destroy_write_buffer(wpipe);
937 }
938 
939 /*
940  * This implements the pipe buffer write mechanism.  Note that only
941  * a direct write OR a normal pipe write can be pending at any given time.
942  * If there are any characters in the pipe buffer, the direct write will
943  * be deferred until the receiving process grabs all of the bytes from
944  * the pipe buffer.  Then the direct mapping write is set-up.
945  */
946 static int
947 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
948 {
949 	int error;
950 
951 retry:
952 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
953 	error = pipelock(wpipe, 1);
954 	if (error != 0)
955 		goto error1;
956 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
957 		error = EPIPE;
958 		pipeunlock(wpipe);
959 		goto error1;
960 	}
961 	if (wpipe->pipe_state & PIPE_DIRECTW) {
962 		if (wpipe->pipe_state & PIPE_WANTR) {
963 			wpipe->pipe_state &= ~PIPE_WANTR;
964 			wakeup(wpipe);
965 		}
966 		pipeselwakeup(wpipe);
967 		wpipe->pipe_state |= PIPE_WANTW;
968 		pipeunlock(wpipe);
969 		error = msleep(wpipe, PIPE_MTX(wpipe),
970 		    PRIBIO | PCATCH, "pipdww", 0);
971 		if (error)
972 			goto error1;
973 		else
974 			goto retry;
975 	}
976 	if (wpipe->pipe_buffer.cnt > 0) {
977 		if (wpipe->pipe_state & PIPE_WANTR) {
978 			wpipe->pipe_state &= ~PIPE_WANTR;
979 			wakeup(wpipe);
980 		}
981 		pipeselwakeup(wpipe);
982 		wpipe->pipe_state |= PIPE_WANTW;
983 		pipeunlock(wpipe);
984 		error = msleep(wpipe, PIPE_MTX(wpipe),
985 		    PRIBIO | PCATCH, "pipdwc", 0);
986 		if (error)
987 			goto error1;
988 		else
989 			goto retry;
990 	}
991 
992 	error = pipe_build_write_buffer(wpipe, uio);
993 	if (error) {
994 		pipeunlock(wpipe);
995 		goto error1;
996 	}
997 
998 	while (wpipe->pipe_map.cnt != 0 &&
999 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1000 		if (wpipe->pipe_state & PIPE_WANTR) {
1001 			wpipe->pipe_state &= ~PIPE_WANTR;
1002 			wakeup(wpipe);
1003 		}
1004 		pipeselwakeup(wpipe);
1005 		wpipe->pipe_state |= PIPE_WANTW;
1006 		pipeunlock(wpipe);
1007 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1008 		    "pipdwt", 0);
1009 		pipelock(wpipe, 0);
1010 		if (error != 0)
1011 			break;
1012 	}
1013 
1014 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1015 		wpipe->pipe_map.cnt = 0;
1016 		pipe_destroy_write_buffer(wpipe);
1017 		pipeselwakeup(wpipe);
1018 		error = EPIPE;
1019 	} else if (error == EINTR || error == ERESTART) {
1020 		pipe_clone_write_buffer(wpipe);
1021 	} else {
1022 		pipe_destroy_write_buffer(wpipe);
1023 	}
1024 	pipeunlock(wpipe);
1025 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1026 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1027 	return (error);
1028 
1029 error1:
1030 	wakeup(wpipe);
1031 	return (error);
1032 }
1033 #endif
1034 
1035 static int
1036 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1037     int flags, struct thread *td)
1038 {
1039 	struct pipe *wpipe, *rpipe;
1040 	ssize_t orig_resid;
1041 	int desiredsize, error;
1042 
1043 	rpipe = fp->f_data;
1044 	wpipe = PIPE_PEER(rpipe);
1045 	PIPE_LOCK(rpipe);
1046 	error = pipelock(wpipe, 1);
1047 	if (error) {
1048 		PIPE_UNLOCK(rpipe);
1049 		return (error);
1050 	}
1051 	/*
1052 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1053 	 */
1054 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1055 	    (wpipe->pipe_state & PIPE_EOF)) {
1056 		pipeunlock(wpipe);
1057 		PIPE_UNLOCK(rpipe);
1058 		return (EPIPE);
1059 	}
1060 #ifdef MAC
1061 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1062 	if (error) {
1063 		pipeunlock(wpipe);
1064 		PIPE_UNLOCK(rpipe);
1065 		return (error);
1066 	}
1067 #endif
1068 	++wpipe->pipe_busy;
1069 
1070 	/* Choose a larger size if it's advantageous */
1071 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1072 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1073 		if (piperesizeallowed != 1)
1074 			break;
1075 		if (amountpipekva > maxpipekva / 2)
1076 			break;
1077 		if (desiredsize == BIG_PIPE_SIZE)
1078 			break;
1079 		desiredsize = desiredsize * 2;
1080 	}
1081 
1082 	/* Choose a smaller size if we're in a OOM situation */
1083 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1084 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1085 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1086 	    piperesizeallowed == 1)
1087 		desiredsize = SMALL_PIPE_SIZE;
1088 
1089 	/* Resize if the above determined that a new size was necessary */
1090 	if (desiredsize != wpipe->pipe_buffer.size &&
1091 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1092 		PIPE_UNLOCK(wpipe);
1093 		pipespace(wpipe, desiredsize);
1094 		PIPE_LOCK(wpipe);
1095 	}
1096 	MPASS(wpipe->pipe_buffer.size != 0);
1097 
1098 	pipeunlock(wpipe);
1099 
1100 	orig_resid = uio->uio_resid;
1101 
1102 	while (uio->uio_resid) {
1103 		int space;
1104 
1105 		pipelock(wpipe, 0);
1106 		if (wpipe->pipe_state & PIPE_EOF) {
1107 			pipeunlock(wpipe);
1108 			error = EPIPE;
1109 			break;
1110 		}
1111 #ifndef PIPE_NODIRECT
1112 		/*
1113 		 * If the transfer is large, we can gain performance if
1114 		 * we do process-to-process copies directly.
1115 		 * If the write is non-blocking, we don't use the
1116 		 * direct write mechanism.
1117 		 *
1118 		 * The direct write mechanism will detect the reader going
1119 		 * away on us.
1120 		 */
1121 		if (uio->uio_segflg == UIO_USERSPACE &&
1122 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1123 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1124 		    (fp->f_flag & FNONBLOCK) == 0) {
1125 			pipeunlock(wpipe);
1126 			error = pipe_direct_write(wpipe, uio);
1127 			if (error)
1128 				break;
1129 			continue;
1130 		}
1131 #endif
1132 
1133 		/*
1134 		 * Pipe buffered writes cannot be coincidental with
1135 		 * direct writes.  We wait until the currently executing
1136 		 * direct write is completed before we start filling the
1137 		 * pipe buffer.  We break out if a signal occurs or the
1138 		 * reader goes away.
1139 		 */
1140 		if (wpipe->pipe_map.cnt != 0) {
1141 			if (wpipe->pipe_state & PIPE_WANTR) {
1142 				wpipe->pipe_state &= ~PIPE_WANTR;
1143 				wakeup(wpipe);
1144 			}
1145 			pipeselwakeup(wpipe);
1146 			wpipe->pipe_state |= PIPE_WANTW;
1147 			pipeunlock(wpipe);
1148 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1149 			    "pipbww", 0);
1150 			if (error)
1151 				break;
1152 			else
1153 				continue;
1154 		}
1155 
1156 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1157 
1158 		/* Writes of size <= PIPE_BUF must be atomic. */
1159 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1160 			space = 0;
1161 
1162 		if (space > 0) {
1163 			int size;	/* Transfer size */
1164 			int segsize;	/* first segment to transfer */
1165 
1166 			/*
1167 			 * Transfer size is minimum of uio transfer
1168 			 * and free space in pipe buffer.
1169 			 */
1170 			if (space > uio->uio_resid)
1171 				size = uio->uio_resid;
1172 			else
1173 				size = space;
1174 			/*
1175 			 * First segment to transfer is minimum of
1176 			 * transfer size and contiguous space in
1177 			 * pipe buffer.  If first segment to transfer
1178 			 * is less than the transfer size, we've got
1179 			 * a wraparound in the buffer.
1180 			 */
1181 			segsize = wpipe->pipe_buffer.size -
1182 				wpipe->pipe_buffer.in;
1183 			if (segsize > size)
1184 				segsize = size;
1185 
1186 			/* Transfer first segment */
1187 
1188 			PIPE_UNLOCK(rpipe);
1189 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1190 					segsize, uio);
1191 			PIPE_LOCK(rpipe);
1192 
1193 			if (error == 0 && segsize < size) {
1194 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1195 					wpipe->pipe_buffer.size,
1196 					("Pipe buffer wraparound disappeared"));
1197 				/*
1198 				 * Transfer remaining part now, to
1199 				 * support atomic writes.  Wraparound
1200 				 * happened.
1201 				 */
1202 
1203 				PIPE_UNLOCK(rpipe);
1204 				error = uiomove(
1205 				    &wpipe->pipe_buffer.buffer[0],
1206 				    size - segsize, uio);
1207 				PIPE_LOCK(rpipe);
1208 			}
1209 			if (error == 0) {
1210 				wpipe->pipe_buffer.in += size;
1211 				if (wpipe->pipe_buffer.in >=
1212 				    wpipe->pipe_buffer.size) {
1213 					KASSERT(wpipe->pipe_buffer.in ==
1214 						size - segsize +
1215 						wpipe->pipe_buffer.size,
1216 						("Expected wraparound bad"));
1217 					wpipe->pipe_buffer.in = size - segsize;
1218 				}
1219 
1220 				wpipe->pipe_buffer.cnt += size;
1221 				KASSERT(wpipe->pipe_buffer.cnt <=
1222 					wpipe->pipe_buffer.size,
1223 					("Pipe buffer overflow"));
1224 			}
1225 			pipeunlock(wpipe);
1226 			if (error != 0)
1227 				break;
1228 		} else {
1229 			/*
1230 			 * If the "read-side" has been blocked, wake it up now.
1231 			 */
1232 			if (wpipe->pipe_state & PIPE_WANTR) {
1233 				wpipe->pipe_state &= ~PIPE_WANTR;
1234 				wakeup(wpipe);
1235 			}
1236 
1237 			/*
1238 			 * don't block on non-blocking I/O
1239 			 */
1240 			if (fp->f_flag & FNONBLOCK) {
1241 				error = EAGAIN;
1242 				pipeunlock(wpipe);
1243 				break;
1244 			}
1245 
1246 			/*
1247 			 * We have no more space and have something to offer,
1248 			 * wake up select/poll.
1249 			 */
1250 			pipeselwakeup(wpipe);
1251 
1252 			wpipe->pipe_state |= PIPE_WANTW;
1253 			pipeunlock(wpipe);
1254 			error = msleep(wpipe, PIPE_MTX(rpipe),
1255 			    PRIBIO | PCATCH, "pipewr", 0);
1256 			if (error != 0)
1257 				break;
1258 		}
1259 	}
1260 
1261 	pipelock(wpipe, 0);
1262 	--wpipe->pipe_busy;
1263 
1264 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1265 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1266 		wakeup(wpipe);
1267 	} else if (wpipe->pipe_buffer.cnt > 0) {
1268 		/*
1269 		 * If we have put any characters in the buffer, we wake up
1270 		 * the reader.
1271 		 */
1272 		if (wpipe->pipe_state & PIPE_WANTR) {
1273 			wpipe->pipe_state &= ~PIPE_WANTR;
1274 			wakeup(wpipe);
1275 		}
1276 	}
1277 
1278 	/*
1279 	 * Don't return EPIPE if any byte was written.
1280 	 * EINTR and other interrupts are handled by generic I/O layer.
1281 	 * Do not pretend that I/O succeeded for obvious user error
1282 	 * like EFAULT.
1283 	 */
1284 	if (uio->uio_resid != orig_resid && error == EPIPE)
1285 		error = 0;
1286 
1287 	if (error == 0)
1288 		vfs_timestamp(&wpipe->pipe_mtime);
1289 
1290 	/*
1291 	 * We have something to offer,
1292 	 * wake up select/poll.
1293 	 */
1294 	if (wpipe->pipe_buffer.cnt)
1295 		pipeselwakeup(wpipe);
1296 
1297 	pipeunlock(wpipe);
1298 	PIPE_UNLOCK(rpipe);
1299 	return (error);
1300 }
1301 
1302 /* ARGSUSED */
1303 static int
1304 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1305     struct thread *td)
1306 {
1307 	struct pipe *cpipe;
1308 	int error;
1309 
1310 	cpipe = fp->f_data;
1311 	if (cpipe->pipe_state & PIPE_NAMED)
1312 		error = vnops.fo_truncate(fp, length, active_cred, td);
1313 	else
1314 		error = invfo_truncate(fp, length, active_cred, td);
1315 	return (error);
1316 }
1317 
1318 /*
1319  * we implement a very minimal set of ioctls for compatibility with sockets.
1320  */
1321 static int
1322 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1323     struct thread *td)
1324 {
1325 	struct pipe *mpipe = fp->f_data;
1326 	int error;
1327 
1328 	PIPE_LOCK(mpipe);
1329 
1330 #ifdef MAC
1331 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1332 	if (error) {
1333 		PIPE_UNLOCK(mpipe);
1334 		return (error);
1335 	}
1336 #endif
1337 
1338 	error = 0;
1339 	switch (cmd) {
1340 
1341 	case FIONBIO:
1342 		break;
1343 
1344 	case FIOASYNC:
1345 		if (*(int *)data) {
1346 			mpipe->pipe_state |= PIPE_ASYNC;
1347 		} else {
1348 			mpipe->pipe_state &= ~PIPE_ASYNC;
1349 		}
1350 		break;
1351 
1352 	case FIONREAD:
1353 		if (!(fp->f_flag & FREAD)) {
1354 			*(int *)data = 0;
1355 			PIPE_UNLOCK(mpipe);
1356 			return (0);
1357 		}
1358 		if (mpipe->pipe_map.cnt != 0)
1359 			*(int *)data = mpipe->pipe_map.cnt;
1360 		else
1361 			*(int *)data = mpipe->pipe_buffer.cnt;
1362 		break;
1363 
1364 	case FIOSETOWN:
1365 		PIPE_UNLOCK(mpipe);
1366 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1367 		goto out_unlocked;
1368 
1369 	case FIOGETOWN:
1370 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1371 		break;
1372 
1373 	/* This is deprecated, FIOSETOWN should be used instead. */
1374 	case TIOCSPGRP:
1375 		PIPE_UNLOCK(mpipe);
1376 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1377 		goto out_unlocked;
1378 
1379 	/* This is deprecated, FIOGETOWN should be used instead. */
1380 	case TIOCGPGRP:
1381 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1382 		break;
1383 
1384 	default:
1385 		error = ENOTTY;
1386 		break;
1387 	}
1388 	PIPE_UNLOCK(mpipe);
1389 out_unlocked:
1390 	return (error);
1391 }
1392 
1393 static int
1394 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1395     struct thread *td)
1396 {
1397 	struct pipe *rpipe;
1398 	struct pipe *wpipe;
1399 	int levents, revents;
1400 #ifdef MAC
1401 	int error;
1402 #endif
1403 
1404 	revents = 0;
1405 	rpipe = fp->f_data;
1406 	wpipe = PIPE_PEER(rpipe);
1407 	PIPE_LOCK(rpipe);
1408 #ifdef MAC
1409 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1410 	if (error)
1411 		goto locked_error;
1412 #endif
1413 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1414 		if (rpipe->pipe_map.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1415 			revents |= events & (POLLIN | POLLRDNORM);
1416 
1417 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1418 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1419 		    (wpipe->pipe_state & PIPE_EOF) ||
1420 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1421 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1422 			 wpipe->pipe_buffer.size == 0)))
1423 			revents |= events & (POLLOUT | POLLWRNORM);
1424 
1425 	levents = events &
1426 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1427 	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1428 	    fp->f_pipegen == rpipe->pipe_wgen)
1429 		events |= POLLINIGNEOF;
1430 
1431 	if ((events & POLLINIGNEOF) == 0) {
1432 		if (rpipe->pipe_state & PIPE_EOF) {
1433 			revents |= (events & (POLLIN | POLLRDNORM));
1434 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1435 			    (wpipe->pipe_state & PIPE_EOF))
1436 				revents |= POLLHUP;
1437 		}
1438 	}
1439 
1440 	if (revents == 0) {
1441 		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1442 			selrecord(td, &rpipe->pipe_sel);
1443 			if (SEL_WAITING(&rpipe->pipe_sel))
1444 				rpipe->pipe_state |= PIPE_SEL;
1445 		}
1446 
1447 		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1448 			selrecord(td, &wpipe->pipe_sel);
1449 			if (SEL_WAITING(&wpipe->pipe_sel))
1450 				wpipe->pipe_state |= PIPE_SEL;
1451 		}
1452 	}
1453 #ifdef MAC
1454 locked_error:
1455 #endif
1456 	PIPE_UNLOCK(rpipe);
1457 
1458 	return (revents);
1459 }
1460 
1461 /*
1462  * We shouldn't need locks here as we're doing a read and this should
1463  * be a natural race.
1464  */
1465 static int
1466 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1467     struct thread *td)
1468 {
1469 	struct pipe *pipe;
1470 #ifdef MAC
1471 	int error;
1472 #endif
1473 
1474 	pipe = fp->f_data;
1475 	PIPE_LOCK(pipe);
1476 #ifdef MAC
1477 	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1478 	if (error) {
1479 		PIPE_UNLOCK(pipe);
1480 		return (error);
1481 	}
1482 #endif
1483 
1484 	/* For named pipes ask the underlying filesystem. */
1485 	if (pipe->pipe_state & PIPE_NAMED) {
1486 		PIPE_UNLOCK(pipe);
1487 		return (vnops.fo_stat(fp, ub, active_cred, td));
1488 	}
1489 
1490 	PIPE_UNLOCK(pipe);
1491 
1492 	bzero(ub, sizeof(*ub));
1493 	ub->st_mode = S_IFIFO;
1494 	ub->st_blksize = PAGE_SIZE;
1495 	if (pipe->pipe_map.cnt != 0)
1496 		ub->st_size = pipe->pipe_map.cnt;
1497 	else
1498 		ub->st_size = pipe->pipe_buffer.cnt;
1499 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1500 	ub->st_atim = pipe->pipe_atime;
1501 	ub->st_mtim = pipe->pipe_mtime;
1502 	ub->st_ctim = pipe->pipe_ctime;
1503 	ub->st_uid = fp->f_cred->cr_uid;
1504 	ub->st_gid = fp->f_cred->cr_gid;
1505 	ub->st_dev = pipedev_ino;
1506 	ub->st_ino = pipe->pipe_ino;
1507 	/*
1508 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1509 	 */
1510 	return (0);
1511 }
1512 
1513 /* ARGSUSED */
1514 static int
1515 pipe_close(struct file *fp, struct thread *td)
1516 {
1517 
1518 	if (fp->f_vnode != NULL)
1519 		return vnops.fo_close(fp, td);
1520 	fp->f_ops = &badfileops;
1521 	pipe_dtor(fp->f_data);
1522 	fp->f_data = NULL;
1523 	return (0);
1524 }
1525 
1526 static int
1527 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1528 {
1529 	struct pipe *cpipe;
1530 	int error;
1531 
1532 	cpipe = fp->f_data;
1533 	if (cpipe->pipe_state & PIPE_NAMED)
1534 		error = vn_chmod(fp, mode, active_cred, td);
1535 	else
1536 		error = invfo_chmod(fp, mode, active_cred, td);
1537 	return (error);
1538 }
1539 
1540 static int
1541 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1542     struct thread *td)
1543 {
1544 	struct pipe *cpipe;
1545 	int error;
1546 
1547 	cpipe = fp->f_data;
1548 	if (cpipe->pipe_state & PIPE_NAMED)
1549 		error = vn_chown(fp, uid, gid, active_cred, td);
1550 	else
1551 		error = invfo_chown(fp, uid, gid, active_cred, td);
1552 	return (error);
1553 }
1554 
1555 static int
1556 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1557 {
1558 	struct pipe *pi;
1559 
1560 	if (fp->f_type == DTYPE_FIFO)
1561 		return (vn_fill_kinfo(fp, kif, fdp));
1562 	kif->kf_type = KF_TYPE_PIPE;
1563 	pi = fp->f_data;
1564 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1565 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1566 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1567 	return (0);
1568 }
1569 
1570 static void
1571 pipe_free_kmem(struct pipe *cpipe)
1572 {
1573 
1574 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1575 	    ("pipe_free_kmem: pipe mutex locked"));
1576 
1577 	if (cpipe->pipe_buffer.buffer != NULL) {
1578 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1579 		vm_map_remove(pipe_map,
1580 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1581 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1582 		cpipe->pipe_buffer.buffer = NULL;
1583 	}
1584 #ifndef PIPE_NODIRECT
1585 	{
1586 		cpipe->pipe_map.cnt = 0;
1587 		cpipe->pipe_map.pos = 0;
1588 		cpipe->pipe_map.npages = 0;
1589 	}
1590 #endif
1591 }
1592 
1593 /*
1594  * shutdown the pipe
1595  */
1596 static void
1597 pipeclose(struct pipe *cpipe)
1598 {
1599 	struct pipepair *pp;
1600 	struct pipe *ppipe;
1601 
1602 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1603 
1604 	PIPE_LOCK(cpipe);
1605 	pipelock(cpipe, 0);
1606 	pp = cpipe->pipe_pair;
1607 
1608 	pipeselwakeup(cpipe);
1609 
1610 	/*
1611 	 * If the other side is blocked, wake it up saying that
1612 	 * we want to close it down.
1613 	 */
1614 	cpipe->pipe_state |= PIPE_EOF;
1615 	while (cpipe->pipe_busy) {
1616 		wakeup(cpipe);
1617 		cpipe->pipe_state |= PIPE_WANT;
1618 		pipeunlock(cpipe);
1619 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1620 		pipelock(cpipe, 0);
1621 	}
1622 
1623 	/*
1624 	 * Disconnect from peer, if any.
1625 	 */
1626 	ppipe = cpipe->pipe_peer;
1627 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1628 		pipeselwakeup(ppipe);
1629 
1630 		ppipe->pipe_state |= PIPE_EOF;
1631 		wakeup(ppipe);
1632 		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1633 	}
1634 
1635 	/*
1636 	 * Mark this endpoint as free.  Release kmem resources.  We
1637 	 * don't mark this endpoint as unused until we've finished
1638 	 * doing that, or the pipe might disappear out from under
1639 	 * us.
1640 	 */
1641 	PIPE_UNLOCK(cpipe);
1642 	pipe_free_kmem(cpipe);
1643 	PIPE_LOCK(cpipe);
1644 	cpipe->pipe_present = PIPE_CLOSING;
1645 	pipeunlock(cpipe);
1646 
1647 	/*
1648 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1649 	 * PIPE_FINALIZED, that allows other end to free the
1650 	 * pipe_pair, only after the knotes are completely dismantled.
1651 	 */
1652 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1653 	cpipe->pipe_present = PIPE_FINALIZED;
1654 	seldrain(&cpipe->pipe_sel);
1655 	knlist_destroy(&cpipe->pipe_sel.si_note);
1656 
1657 	/*
1658 	 * If both endpoints are now closed, release the memory for the
1659 	 * pipe pair.  If not, unlock.
1660 	 */
1661 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1662 		PIPE_UNLOCK(cpipe);
1663 #ifdef MAC
1664 		mac_pipe_destroy(pp);
1665 #endif
1666 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1667 	} else
1668 		PIPE_UNLOCK(cpipe);
1669 }
1670 
1671 /*ARGSUSED*/
1672 static int
1673 pipe_kqfilter(struct file *fp, struct knote *kn)
1674 {
1675 	struct pipe *cpipe;
1676 
1677 	/*
1678 	 * If a filter is requested that is not supported by this file
1679 	 * descriptor, don't return an error, but also don't ever generate an
1680 	 * event.
1681 	 */
1682 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1683 		kn->kn_fop = &pipe_nfiltops;
1684 		return (0);
1685 	}
1686 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1687 		kn->kn_fop = &pipe_nfiltops;
1688 		return (0);
1689 	}
1690 	cpipe = fp->f_data;
1691 	PIPE_LOCK(cpipe);
1692 	switch (kn->kn_filter) {
1693 	case EVFILT_READ:
1694 		kn->kn_fop = &pipe_rfiltops;
1695 		break;
1696 	case EVFILT_WRITE:
1697 		kn->kn_fop = &pipe_wfiltops;
1698 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1699 			/* other end of pipe has been closed */
1700 			PIPE_UNLOCK(cpipe);
1701 			return (EPIPE);
1702 		}
1703 		cpipe = PIPE_PEER(cpipe);
1704 		break;
1705 	default:
1706 		PIPE_UNLOCK(cpipe);
1707 		return (EINVAL);
1708 	}
1709 
1710 	kn->kn_hook = cpipe;
1711 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1712 	PIPE_UNLOCK(cpipe);
1713 	return (0);
1714 }
1715 
1716 static void
1717 filt_pipedetach(struct knote *kn)
1718 {
1719 	struct pipe *cpipe = kn->kn_hook;
1720 
1721 	PIPE_LOCK(cpipe);
1722 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1723 	PIPE_UNLOCK(cpipe);
1724 }
1725 
1726 /*ARGSUSED*/
1727 static int
1728 filt_piperead(struct knote *kn, long hint)
1729 {
1730 	struct pipe *rpipe = kn->kn_hook;
1731 	struct pipe *wpipe = rpipe->pipe_peer;
1732 	int ret;
1733 
1734 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1735 	kn->kn_data = rpipe->pipe_buffer.cnt;
1736 	if (kn->kn_data == 0)
1737 		kn->kn_data = rpipe->pipe_map.cnt;
1738 
1739 	if ((rpipe->pipe_state & PIPE_EOF) ||
1740 	    wpipe->pipe_present != PIPE_ACTIVE ||
1741 	    (wpipe->pipe_state & PIPE_EOF)) {
1742 		kn->kn_flags |= EV_EOF;
1743 		return (1);
1744 	}
1745 	ret = kn->kn_data > 0;
1746 	return ret;
1747 }
1748 
1749 /*ARGSUSED*/
1750 static int
1751 filt_pipewrite(struct knote *kn, long hint)
1752 {
1753 	struct pipe *wpipe;
1754 
1755 	/*
1756 	 * If this end of the pipe is closed, the knote was removed from the
1757 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1758 	 */
1759 	wpipe = kn->kn_hook;
1760 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1761 	    (wpipe->pipe_state & PIPE_EOF)) {
1762 		kn->kn_data = 0;
1763 		kn->kn_flags |= EV_EOF;
1764 		return (1);
1765 	}
1766 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1767 	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1768 	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1769 	if (wpipe->pipe_state & PIPE_DIRECTW)
1770 		kn->kn_data = 0;
1771 
1772 	return (kn->kn_data >= PIPE_BUF);
1773 }
1774 
1775 static void
1776 filt_pipedetach_notsup(struct knote *kn)
1777 {
1778 
1779 }
1780 
1781 static int
1782 filt_pipenotsup(struct knote *kn, long hint)
1783 {
1784 
1785 	return (0);
1786 }
1787