xref: /freebsd/sys/kern/uipc_mbuf.c (revision 780fb4a2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_param.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mbuf_profiling.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/uio.h>
52 #include <sys/sdt.h>
53 
54 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
55     "struct mbuf *", "mbufinfo_t *",
56     "uint32_t", "uint32_t",
57     "uint16_t", "uint16_t",
58     "uint32_t", "uint32_t",
59     "uint32_t", "uint32_t");
60 
61 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
62     "uint32_t", "uint32_t",
63     "uint16_t", "uint16_t",
64     "struct mbuf *", "mbufinfo_t *");
65 
66 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
67     "uint32_t", "uint32_t",
68     "uint16_t", "uint16_t",
69     "struct mbuf *", "mbufinfo_t *");
70 
71 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
72     "uint32_t", "uint32_t",
73     "uint16_t", "uint16_t",
74     "uint32_t", "uint32_t",
75     "struct mbuf *", "mbufinfo_t *");
76 
77 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
78     "struct mbuf *", "mbufinfo_t *",
79     "uint32_t", "uint32_t",
80     "uint32_t", "uint32_t");
81 
82 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
83     "struct mbuf *", "mbufinfo_t *",
84     "uint32_t", "uint32_t",
85     "uint32_t", "uint32_t",
86     "void*", "void*");
87 
88 SDT_PROBE_DEFINE(sdt, , , m__cljset);
89 
90 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
91         "struct mbuf *", "mbufinfo_t *");
92 
93 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
94     "struct mbuf *", "mbufinfo_t *");
95 
96 #include <security/mac/mac_framework.h>
97 
98 int	max_linkhdr;
99 int	max_protohdr;
100 int	max_hdr;
101 int	max_datalen;
102 #ifdef MBUF_STRESS_TEST
103 int	m_defragpackets;
104 int	m_defragbytes;
105 int	m_defraguseless;
106 int	m_defragfailure;
107 int	m_defragrandomfailures;
108 #endif
109 
110 /*
111  * sysctl(8) exported objects
112  */
113 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
114 	   &max_linkhdr, 0, "Size of largest link layer header");
115 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
116 	   &max_protohdr, 0, "Size of largest protocol layer header");
117 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
118 	   &max_hdr, 0, "Size of largest link plus protocol header");
119 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
120 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
121 #ifdef MBUF_STRESS_TEST
122 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
123 	   &m_defragpackets, 0, "");
124 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
125 	   &m_defragbytes, 0, "");
126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
127 	   &m_defraguseless, 0, "");
128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
129 	   &m_defragfailure, 0, "");
130 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
131 	   &m_defragrandomfailures, 0, "");
132 #endif
133 
134 /*
135  * Ensure the correct size of various mbuf parameters.  It could be off due
136  * to compiler-induced padding and alignment artifacts.
137  */
138 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
139 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
140 
141 /*
142  * mbuf data storage should be 64-bit aligned regardless of architectural
143  * pointer size; check this is the case with and without a packet header.
144  */
145 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
146 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
147 
148 /*
149  * While the specific values here don't matter too much (i.e., +/- a few
150  * words), we do want to ensure that changes to these values are carefully
151  * reasoned about and properly documented.  This is especially the case as
152  * network-protocol and device-driver modules encode these layouts, and must
153  * be recompiled if the structures change.  Check these values at compile time
154  * against the ones documented in comments in mbuf.h.
155  *
156  * NB: Possibly they should be documented there via #define's and not just
157  * comments.
158  */
159 #if defined(__LP64__)
160 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
161 CTASSERT(sizeof(struct pkthdr) == 56);
162 CTASSERT(sizeof(struct m_ext) == 48);
163 #else
164 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
165 CTASSERT(sizeof(struct pkthdr) == 48);
166 CTASSERT(sizeof(struct m_ext) == 28);
167 #endif
168 
169 /*
170  * Assert that the queue(3) macros produce code of the same size as an old
171  * plain pointer does.
172  */
173 #ifdef INVARIANTS
174 static struct mbuf __used m_assertbuf;
175 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
176 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
177 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
178 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
179 #endif
180 
181 /*
182  * Attach the cluster from *m to *n, set up m_ext in *n
183  * and bump the refcount of the cluster.
184  */
185 void
186 mb_dupcl(struct mbuf *n, struct mbuf *m)
187 {
188 	volatile u_int *refcnt;
189 
190 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
191 	KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
192 
193 	/*
194 	 * Cache access optimization.  For most kinds of external
195 	 * storage we don't need full copy of m_ext, since the
196 	 * holder of the 'ext_count' is responsible to carry the
197 	 * free routine and its arguments.  Exclusion is EXT_EXTREF,
198 	 * where 'ext_cnt' doesn't point into mbuf at all.
199 	 */
200 	if (m->m_ext.ext_type == EXT_EXTREF)
201 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
202 	else
203 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
204 	n->m_flags |= M_EXT;
205 	n->m_flags |= m->m_flags & M_RDONLY;
206 
207 	/* See if this is the mbuf that holds the embedded refcount. */
208 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
209 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
210 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
211 	} else {
212 		KASSERT(m->m_ext.ext_cnt != NULL,
213 		    ("%s: no refcounting pointer on %p", __func__, m));
214 		refcnt = m->m_ext.ext_cnt;
215 	}
216 
217 	if (*refcnt == 1)
218 		*refcnt += 1;
219 	else
220 		atomic_add_int(refcnt, 1);
221 }
222 
223 void
224 m_demote_pkthdr(struct mbuf *m)
225 {
226 
227 	M_ASSERTPKTHDR(m);
228 
229 	m_tag_delete_chain(m, NULL);
230 	m->m_flags &= ~M_PKTHDR;
231 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
232 }
233 
234 /*
235  * Clean up mbuf (chain) from any tags and packet headers.
236  * If "all" is set then the first mbuf in the chain will be
237  * cleaned too.
238  */
239 void
240 m_demote(struct mbuf *m0, int all, int flags)
241 {
242 	struct mbuf *m;
243 
244 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
245 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
246 		    __func__, m, m0));
247 		if (m->m_flags & M_PKTHDR)
248 			m_demote_pkthdr(m);
249 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
250 	}
251 }
252 
253 /*
254  * Sanity checks on mbuf (chain) for use in KASSERT() and general
255  * debugging.
256  * Returns 0 or panics when bad and 1 on all tests passed.
257  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
258  * blow up later.
259  */
260 int
261 m_sanity(struct mbuf *m0, int sanitize)
262 {
263 	struct mbuf *m;
264 	caddr_t a, b;
265 	int pktlen = 0;
266 
267 #ifdef INVARIANTS
268 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
269 #else
270 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
271 #endif
272 
273 	for (m = m0; m != NULL; m = m->m_next) {
274 		/*
275 		 * Basic pointer checks.  If any of these fails then some
276 		 * unrelated kernel memory before or after us is trashed.
277 		 * No way to recover from that.
278 		 */
279 		a = M_START(m);
280 		b = a + M_SIZE(m);
281 		if ((caddr_t)m->m_data < a)
282 			M_SANITY_ACTION("m_data outside mbuf data range left");
283 		if ((caddr_t)m->m_data > b)
284 			M_SANITY_ACTION("m_data outside mbuf data range right");
285 		if ((caddr_t)m->m_data + m->m_len > b)
286 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
287 
288 		/* m->m_nextpkt may only be set on first mbuf in chain. */
289 		if (m != m0 && m->m_nextpkt != NULL) {
290 			if (sanitize) {
291 				m_freem(m->m_nextpkt);
292 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
293 			} else
294 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
295 		}
296 
297 		/* packet length (not mbuf length!) calculation */
298 		if (m0->m_flags & M_PKTHDR)
299 			pktlen += m->m_len;
300 
301 		/* m_tags may only be attached to first mbuf in chain. */
302 		if (m != m0 && m->m_flags & M_PKTHDR &&
303 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
304 			if (sanitize) {
305 				m_tag_delete_chain(m, NULL);
306 				/* put in 0xDEADC0DE perhaps? */
307 			} else
308 				M_SANITY_ACTION("m_tags on in-chain mbuf");
309 		}
310 
311 		/* M_PKTHDR may only be set on first mbuf in chain */
312 		if (m != m0 && m->m_flags & M_PKTHDR) {
313 			if (sanitize) {
314 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
315 				m->m_flags &= ~M_PKTHDR;
316 				/* put in 0xDEADCODE and leave hdr flag in */
317 			} else
318 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
319 		}
320 	}
321 	m = m0;
322 	if (pktlen && pktlen != m->m_pkthdr.len) {
323 		if (sanitize)
324 			m->m_pkthdr.len = 0;
325 		else
326 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
327 	}
328 	return 1;
329 
330 #undef	M_SANITY_ACTION
331 }
332 
333 /*
334  * Non-inlined part of m_init().
335  */
336 int
337 m_pkthdr_init(struct mbuf *m, int how)
338 {
339 #ifdef MAC
340 	int error;
341 #endif
342 	m->m_data = m->m_pktdat;
343 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
344 #ifdef MAC
345 	/* If the label init fails, fail the alloc */
346 	error = mac_mbuf_init(m, how);
347 	if (error)
348 		return (error);
349 #endif
350 
351 	return (0);
352 }
353 
354 /*
355  * "Move" mbuf pkthdr from "from" to "to".
356  * "from" must have M_PKTHDR set, and "to" must be empty.
357  */
358 void
359 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
360 {
361 
362 #if 0
363 	/* see below for why these are not enabled */
364 	M_ASSERTPKTHDR(to);
365 	/* Note: with MAC, this may not be a good assertion. */
366 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
367 	    ("m_move_pkthdr: to has tags"));
368 #endif
369 #ifdef MAC
370 	/*
371 	 * XXXMAC: It could be this should also occur for non-MAC?
372 	 */
373 	if (to->m_flags & M_PKTHDR)
374 		m_tag_delete_chain(to, NULL);
375 #endif
376 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
377 	if ((to->m_flags & M_EXT) == 0)
378 		to->m_data = to->m_pktdat;
379 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
380 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
381 	from->m_flags &= ~M_PKTHDR;
382 }
383 
384 /*
385  * Duplicate "from"'s mbuf pkthdr in "to".
386  * "from" must have M_PKTHDR set, and "to" must be empty.
387  * In particular, this does a deep copy of the packet tags.
388  */
389 int
390 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
391 {
392 
393 #if 0
394 	/*
395 	 * The mbuf allocator only initializes the pkthdr
396 	 * when the mbuf is allocated with m_gethdr(). Many users
397 	 * (e.g. m_copy*, m_prepend) use m_get() and then
398 	 * smash the pkthdr as needed causing these
399 	 * assertions to trip.  For now just disable them.
400 	 */
401 	M_ASSERTPKTHDR(to);
402 	/* Note: with MAC, this may not be a good assertion. */
403 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
404 #endif
405 	MBUF_CHECKSLEEP(how);
406 #ifdef MAC
407 	if (to->m_flags & M_PKTHDR)
408 		m_tag_delete_chain(to, NULL);
409 #endif
410 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
411 	if ((to->m_flags & M_EXT) == 0)
412 		to->m_data = to->m_pktdat;
413 	to->m_pkthdr = from->m_pkthdr;
414 	SLIST_INIT(&to->m_pkthdr.tags);
415 	return (m_tag_copy_chain(to, from, how));
416 }
417 
418 /*
419  * Lesser-used path for M_PREPEND:
420  * allocate new mbuf to prepend to chain,
421  * copy junk along.
422  */
423 struct mbuf *
424 m_prepend(struct mbuf *m, int len, int how)
425 {
426 	struct mbuf *mn;
427 
428 	if (m->m_flags & M_PKTHDR)
429 		mn = m_gethdr(how, m->m_type);
430 	else
431 		mn = m_get(how, m->m_type);
432 	if (mn == NULL) {
433 		m_freem(m);
434 		return (NULL);
435 	}
436 	if (m->m_flags & M_PKTHDR)
437 		m_move_pkthdr(mn, m);
438 	mn->m_next = m;
439 	m = mn;
440 	if (len < M_SIZE(m))
441 		M_ALIGN(m, len);
442 	m->m_len = len;
443 	return (m);
444 }
445 
446 /*
447  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
448  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
449  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
450  * Note that the copy is read-only, because clusters are not copied,
451  * only their reference counts are incremented.
452  */
453 struct mbuf *
454 m_copym(struct mbuf *m, int off0, int len, int wait)
455 {
456 	struct mbuf *n, **np;
457 	int off = off0;
458 	struct mbuf *top;
459 	int copyhdr = 0;
460 
461 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
462 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
463 	MBUF_CHECKSLEEP(wait);
464 	if (off == 0 && m->m_flags & M_PKTHDR)
465 		copyhdr = 1;
466 	while (off > 0) {
467 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
468 		if (off < m->m_len)
469 			break;
470 		off -= m->m_len;
471 		m = m->m_next;
472 	}
473 	np = &top;
474 	top = NULL;
475 	while (len > 0) {
476 		if (m == NULL) {
477 			KASSERT(len == M_COPYALL,
478 			    ("m_copym, length > size of mbuf chain"));
479 			break;
480 		}
481 		if (copyhdr)
482 			n = m_gethdr(wait, m->m_type);
483 		else
484 			n = m_get(wait, m->m_type);
485 		*np = n;
486 		if (n == NULL)
487 			goto nospace;
488 		if (copyhdr) {
489 			if (!m_dup_pkthdr(n, m, wait))
490 				goto nospace;
491 			if (len == M_COPYALL)
492 				n->m_pkthdr.len -= off0;
493 			else
494 				n->m_pkthdr.len = len;
495 			copyhdr = 0;
496 		}
497 		n->m_len = min(len, m->m_len - off);
498 		if (m->m_flags & M_EXT) {
499 			n->m_data = m->m_data + off;
500 			mb_dupcl(n, m);
501 		} else
502 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
503 			    (u_int)n->m_len);
504 		if (len != M_COPYALL)
505 			len -= n->m_len;
506 		off = 0;
507 		m = m->m_next;
508 		np = &n->m_next;
509 	}
510 
511 	return (top);
512 nospace:
513 	m_freem(top);
514 	return (NULL);
515 }
516 
517 /*
518  * Copy an entire packet, including header (which must be present).
519  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
520  * Note that the copy is read-only, because clusters are not copied,
521  * only their reference counts are incremented.
522  * Preserve alignment of the first mbuf so if the creator has left
523  * some room at the beginning (e.g. for inserting protocol headers)
524  * the copies still have the room available.
525  */
526 struct mbuf *
527 m_copypacket(struct mbuf *m, int how)
528 {
529 	struct mbuf *top, *n, *o;
530 
531 	MBUF_CHECKSLEEP(how);
532 	n = m_get(how, m->m_type);
533 	top = n;
534 	if (n == NULL)
535 		goto nospace;
536 
537 	if (!m_dup_pkthdr(n, m, how))
538 		goto nospace;
539 	n->m_len = m->m_len;
540 	if (m->m_flags & M_EXT) {
541 		n->m_data = m->m_data;
542 		mb_dupcl(n, m);
543 	} else {
544 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
545 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
546 	}
547 
548 	m = m->m_next;
549 	while (m) {
550 		o = m_get(how, m->m_type);
551 		if (o == NULL)
552 			goto nospace;
553 
554 		n->m_next = o;
555 		n = n->m_next;
556 
557 		n->m_len = m->m_len;
558 		if (m->m_flags & M_EXT) {
559 			n->m_data = m->m_data;
560 			mb_dupcl(n, m);
561 		} else {
562 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
563 		}
564 
565 		m = m->m_next;
566 	}
567 	return top;
568 nospace:
569 	m_freem(top);
570 	return (NULL);
571 }
572 
573 /*
574  * Copy data from an mbuf chain starting "off" bytes from the beginning,
575  * continuing for "len" bytes, into the indicated buffer.
576  */
577 void
578 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
579 {
580 	u_int count;
581 
582 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
583 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
584 	while (off > 0) {
585 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
586 		if (off < m->m_len)
587 			break;
588 		off -= m->m_len;
589 		m = m->m_next;
590 	}
591 	while (len > 0) {
592 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
593 		count = min(m->m_len - off, len);
594 		bcopy(mtod(m, caddr_t) + off, cp, count);
595 		len -= count;
596 		cp += count;
597 		off = 0;
598 		m = m->m_next;
599 	}
600 }
601 
602 /*
603  * Copy a packet header mbuf chain into a completely new chain, including
604  * copying any mbuf clusters.  Use this instead of m_copypacket() when
605  * you need a writable copy of an mbuf chain.
606  */
607 struct mbuf *
608 m_dup(const struct mbuf *m, int how)
609 {
610 	struct mbuf **p, *top = NULL;
611 	int remain, moff, nsize;
612 
613 	MBUF_CHECKSLEEP(how);
614 	/* Sanity check */
615 	if (m == NULL)
616 		return (NULL);
617 	M_ASSERTPKTHDR(m);
618 
619 	/* While there's more data, get a new mbuf, tack it on, and fill it */
620 	remain = m->m_pkthdr.len;
621 	moff = 0;
622 	p = &top;
623 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
624 		struct mbuf *n;
625 
626 		/* Get the next new mbuf */
627 		if (remain >= MINCLSIZE) {
628 			n = m_getcl(how, m->m_type, 0);
629 			nsize = MCLBYTES;
630 		} else {
631 			n = m_get(how, m->m_type);
632 			nsize = MLEN;
633 		}
634 		if (n == NULL)
635 			goto nospace;
636 
637 		if (top == NULL) {		/* First one, must be PKTHDR */
638 			if (!m_dup_pkthdr(n, m, how)) {
639 				m_free(n);
640 				goto nospace;
641 			}
642 			if ((n->m_flags & M_EXT) == 0)
643 				nsize = MHLEN;
644 			n->m_flags &= ~M_RDONLY;
645 		}
646 		n->m_len = 0;
647 
648 		/* Link it into the new chain */
649 		*p = n;
650 		p = &n->m_next;
651 
652 		/* Copy data from original mbuf(s) into new mbuf */
653 		while (n->m_len < nsize && m != NULL) {
654 			int chunk = min(nsize - n->m_len, m->m_len - moff);
655 
656 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
657 			moff += chunk;
658 			n->m_len += chunk;
659 			remain -= chunk;
660 			if (moff == m->m_len) {
661 				m = m->m_next;
662 				moff = 0;
663 			}
664 		}
665 
666 		/* Check correct total mbuf length */
667 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
668 		    	("%s: bogus m_pkthdr.len", __func__));
669 	}
670 	return (top);
671 
672 nospace:
673 	m_freem(top);
674 	return (NULL);
675 }
676 
677 /*
678  * Concatenate mbuf chain n to m.
679  * Both chains must be of the same type (e.g. MT_DATA).
680  * Any m_pkthdr is not updated.
681  */
682 void
683 m_cat(struct mbuf *m, struct mbuf *n)
684 {
685 	while (m->m_next)
686 		m = m->m_next;
687 	while (n) {
688 		if (!M_WRITABLE(m) ||
689 		    M_TRAILINGSPACE(m) < n->m_len) {
690 			/* just join the two chains */
691 			m->m_next = n;
692 			return;
693 		}
694 		/* splat the data from one into the other */
695 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
696 		    (u_int)n->m_len);
697 		m->m_len += n->m_len;
698 		n = m_free(n);
699 	}
700 }
701 
702 /*
703  * Concatenate two pkthdr mbuf chains.
704  */
705 void
706 m_catpkt(struct mbuf *m, struct mbuf *n)
707 {
708 
709 	M_ASSERTPKTHDR(m);
710 	M_ASSERTPKTHDR(n);
711 
712 	m->m_pkthdr.len += n->m_pkthdr.len;
713 	m_demote(n, 1, 0);
714 
715 	m_cat(m, n);
716 }
717 
718 void
719 m_adj(struct mbuf *mp, int req_len)
720 {
721 	int len = req_len;
722 	struct mbuf *m;
723 	int count;
724 
725 	if ((m = mp) == NULL)
726 		return;
727 	if (len >= 0) {
728 		/*
729 		 * Trim from head.
730 		 */
731 		while (m != NULL && len > 0) {
732 			if (m->m_len <= len) {
733 				len -= m->m_len;
734 				m->m_len = 0;
735 				m = m->m_next;
736 			} else {
737 				m->m_len -= len;
738 				m->m_data += len;
739 				len = 0;
740 			}
741 		}
742 		if (mp->m_flags & M_PKTHDR)
743 			mp->m_pkthdr.len -= (req_len - len);
744 	} else {
745 		/*
746 		 * Trim from tail.  Scan the mbuf chain,
747 		 * calculating its length and finding the last mbuf.
748 		 * If the adjustment only affects this mbuf, then just
749 		 * adjust and return.  Otherwise, rescan and truncate
750 		 * after the remaining size.
751 		 */
752 		len = -len;
753 		count = 0;
754 		for (;;) {
755 			count += m->m_len;
756 			if (m->m_next == (struct mbuf *)0)
757 				break;
758 			m = m->m_next;
759 		}
760 		if (m->m_len >= len) {
761 			m->m_len -= len;
762 			if (mp->m_flags & M_PKTHDR)
763 				mp->m_pkthdr.len -= len;
764 			return;
765 		}
766 		count -= len;
767 		if (count < 0)
768 			count = 0;
769 		/*
770 		 * Correct length for chain is "count".
771 		 * Find the mbuf with last data, adjust its length,
772 		 * and toss data from remaining mbufs on chain.
773 		 */
774 		m = mp;
775 		if (m->m_flags & M_PKTHDR)
776 			m->m_pkthdr.len = count;
777 		for (; m; m = m->m_next) {
778 			if (m->m_len >= count) {
779 				m->m_len = count;
780 				if (m->m_next != NULL) {
781 					m_freem(m->m_next);
782 					m->m_next = NULL;
783 				}
784 				break;
785 			}
786 			count -= m->m_len;
787 		}
788 	}
789 }
790 
791 /*
792  * Rearange an mbuf chain so that len bytes are contiguous
793  * and in the data area of an mbuf (so that mtod will work
794  * for a structure of size len).  Returns the resulting
795  * mbuf chain on success, frees it and returns null on failure.
796  * If there is room, it will add up to max_protohdr-len extra bytes to the
797  * contiguous region in an attempt to avoid being called next time.
798  */
799 struct mbuf *
800 m_pullup(struct mbuf *n, int len)
801 {
802 	struct mbuf *m;
803 	int count;
804 	int space;
805 
806 	/*
807 	 * If first mbuf has no cluster, and has room for len bytes
808 	 * without shifting current data, pullup into it,
809 	 * otherwise allocate a new mbuf to prepend to the chain.
810 	 */
811 	if ((n->m_flags & M_EXT) == 0 &&
812 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
813 		if (n->m_len >= len)
814 			return (n);
815 		m = n;
816 		n = n->m_next;
817 		len -= m->m_len;
818 	} else {
819 		if (len > MHLEN)
820 			goto bad;
821 		m = m_get(M_NOWAIT, n->m_type);
822 		if (m == NULL)
823 			goto bad;
824 		if (n->m_flags & M_PKTHDR)
825 			m_move_pkthdr(m, n);
826 	}
827 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
828 	do {
829 		count = min(min(max(len, max_protohdr), space), n->m_len);
830 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
831 		  (u_int)count);
832 		len -= count;
833 		m->m_len += count;
834 		n->m_len -= count;
835 		space -= count;
836 		if (n->m_len)
837 			n->m_data += count;
838 		else
839 			n = m_free(n);
840 	} while (len > 0 && n);
841 	if (len > 0) {
842 		(void) m_free(m);
843 		goto bad;
844 	}
845 	m->m_next = n;
846 	return (m);
847 bad:
848 	m_freem(n);
849 	return (NULL);
850 }
851 
852 /*
853  * Like m_pullup(), except a new mbuf is always allocated, and we allow
854  * the amount of empty space before the data in the new mbuf to be specified
855  * (in the event that the caller expects to prepend later).
856  */
857 struct mbuf *
858 m_copyup(struct mbuf *n, int len, int dstoff)
859 {
860 	struct mbuf *m;
861 	int count, space;
862 
863 	if (len > (MHLEN - dstoff))
864 		goto bad;
865 	m = m_get(M_NOWAIT, n->m_type);
866 	if (m == NULL)
867 		goto bad;
868 	if (n->m_flags & M_PKTHDR)
869 		m_move_pkthdr(m, n);
870 	m->m_data += dstoff;
871 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
872 	do {
873 		count = min(min(max(len, max_protohdr), space), n->m_len);
874 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
875 		    (unsigned)count);
876 		len -= count;
877 		m->m_len += count;
878 		n->m_len -= count;
879 		space -= count;
880 		if (n->m_len)
881 			n->m_data += count;
882 		else
883 			n = m_free(n);
884 	} while (len > 0 && n);
885 	if (len > 0) {
886 		(void) m_free(m);
887 		goto bad;
888 	}
889 	m->m_next = n;
890 	return (m);
891  bad:
892 	m_freem(n);
893 	return (NULL);
894 }
895 
896 /*
897  * Partition an mbuf chain in two pieces, returning the tail --
898  * all but the first len0 bytes.  In case of failure, it returns NULL and
899  * attempts to restore the chain to its original state.
900  *
901  * Note that the resulting mbufs might be read-only, because the new
902  * mbuf can end up sharing an mbuf cluster with the original mbuf if
903  * the "breaking point" happens to lie within a cluster mbuf. Use the
904  * M_WRITABLE() macro to check for this case.
905  */
906 struct mbuf *
907 m_split(struct mbuf *m0, int len0, int wait)
908 {
909 	struct mbuf *m, *n;
910 	u_int len = len0, remain;
911 
912 	MBUF_CHECKSLEEP(wait);
913 	for (m = m0; m && len > m->m_len; m = m->m_next)
914 		len -= m->m_len;
915 	if (m == NULL)
916 		return (NULL);
917 	remain = m->m_len - len;
918 	if (m0->m_flags & M_PKTHDR && remain == 0) {
919 		n = m_gethdr(wait, m0->m_type);
920 		if (n == NULL)
921 			return (NULL);
922 		n->m_next = m->m_next;
923 		m->m_next = NULL;
924 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
925 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
926 		m0->m_pkthdr.len = len0;
927 		return (n);
928 	} else if (m0->m_flags & M_PKTHDR) {
929 		n = m_gethdr(wait, m0->m_type);
930 		if (n == NULL)
931 			return (NULL);
932 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
933 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
934 		m0->m_pkthdr.len = len0;
935 		if (m->m_flags & M_EXT)
936 			goto extpacket;
937 		if (remain > MHLEN) {
938 			/* m can't be the lead packet */
939 			M_ALIGN(n, 0);
940 			n->m_next = m_split(m, len, wait);
941 			if (n->m_next == NULL) {
942 				(void) m_free(n);
943 				return (NULL);
944 			} else {
945 				n->m_len = 0;
946 				return (n);
947 			}
948 		} else
949 			M_ALIGN(n, remain);
950 	} else if (remain == 0) {
951 		n = m->m_next;
952 		m->m_next = NULL;
953 		return (n);
954 	} else {
955 		n = m_get(wait, m->m_type);
956 		if (n == NULL)
957 			return (NULL);
958 		M_ALIGN(n, remain);
959 	}
960 extpacket:
961 	if (m->m_flags & M_EXT) {
962 		n->m_data = m->m_data + len;
963 		mb_dupcl(n, m);
964 	} else {
965 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
966 	}
967 	n->m_len = remain;
968 	m->m_len = len;
969 	n->m_next = m->m_next;
970 	m->m_next = NULL;
971 	return (n);
972 }
973 /*
974  * Routine to copy from device local memory into mbufs.
975  * Note that `off' argument is offset into first mbuf of target chain from
976  * which to begin copying the data to.
977  */
978 struct mbuf *
979 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
980     void (*copy)(char *from, caddr_t to, u_int len))
981 {
982 	struct mbuf *m;
983 	struct mbuf *top = NULL, **mp = &top;
984 	int len;
985 
986 	if (off < 0 || off > MHLEN)
987 		return (NULL);
988 
989 	while (totlen > 0) {
990 		if (top == NULL) {	/* First one, must be PKTHDR */
991 			if (totlen + off >= MINCLSIZE) {
992 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
993 				len = MCLBYTES;
994 			} else {
995 				m = m_gethdr(M_NOWAIT, MT_DATA);
996 				len = MHLEN;
997 
998 				/* Place initial small packet/header at end of mbuf */
999 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1000 					m->m_data += max_linkhdr;
1001 					len -= max_linkhdr;
1002 				}
1003 			}
1004 			if (m == NULL)
1005 				return NULL;
1006 			m->m_pkthdr.rcvif = ifp;
1007 			m->m_pkthdr.len = totlen;
1008 		} else {
1009 			if (totlen + off >= MINCLSIZE) {
1010 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1011 				len = MCLBYTES;
1012 			} else {
1013 				m = m_get(M_NOWAIT, MT_DATA);
1014 				len = MLEN;
1015 			}
1016 			if (m == NULL) {
1017 				m_freem(top);
1018 				return NULL;
1019 			}
1020 		}
1021 		if (off) {
1022 			m->m_data += off;
1023 			len -= off;
1024 			off = 0;
1025 		}
1026 		m->m_len = len = min(totlen, len);
1027 		if (copy)
1028 			copy(buf, mtod(m, caddr_t), (u_int)len);
1029 		else
1030 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1031 		buf += len;
1032 		*mp = m;
1033 		mp = &m->m_next;
1034 		totlen -= len;
1035 	}
1036 	return (top);
1037 }
1038 
1039 /*
1040  * Copy data from a buffer back into the indicated mbuf chain,
1041  * starting "off" bytes from the beginning, extending the mbuf
1042  * chain if necessary.
1043  */
1044 void
1045 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1046 {
1047 	int mlen;
1048 	struct mbuf *m = m0, *n;
1049 	int totlen = 0;
1050 
1051 	if (m0 == NULL)
1052 		return;
1053 	while (off > (mlen = m->m_len)) {
1054 		off -= mlen;
1055 		totlen += mlen;
1056 		if (m->m_next == NULL) {
1057 			n = m_get(M_NOWAIT, m->m_type);
1058 			if (n == NULL)
1059 				goto out;
1060 			bzero(mtod(n, caddr_t), MLEN);
1061 			n->m_len = min(MLEN, len + off);
1062 			m->m_next = n;
1063 		}
1064 		m = m->m_next;
1065 	}
1066 	while (len > 0) {
1067 		if (m->m_next == NULL && (len > m->m_len - off)) {
1068 			m->m_len += min(len - (m->m_len - off),
1069 			    M_TRAILINGSPACE(m));
1070 		}
1071 		mlen = min (m->m_len - off, len);
1072 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1073 		cp += mlen;
1074 		len -= mlen;
1075 		mlen += off;
1076 		off = 0;
1077 		totlen += mlen;
1078 		if (len == 0)
1079 			break;
1080 		if (m->m_next == NULL) {
1081 			n = m_get(M_NOWAIT, m->m_type);
1082 			if (n == NULL)
1083 				break;
1084 			n->m_len = min(MLEN, len);
1085 			m->m_next = n;
1086 		}
1087 		m = m->m_next;
1088 	}
1089 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1090 		m->m_pkthdr.len = totlen;
1091 }
1092 
1093 /*
1094  * Append the specified data to the indicated mbuf chain,
1095  * Extend the mbuf chain if the new data does not fit in
1096  * existing space.
1097  *
1098  * Return 1 if able to complete the job; otherwise 0.
1099  */
1100 int
1101 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1102 {
1103 	struct mbuf *m, *n;
1104 	int remainder, space;
1105 
1106 	for (m = m0; m->m_next != NULL; m = m->m_next)
1107 		;
1108 	remainder = len;
1109 	space = M_TRAILINGSPACE(m);
1110 	if (space > 0) {
1111 		/*
1112 		 * Copy into available space.
1113 		 */
1114 		if (space > remainder)
1115 			space = remainder;
1116 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1117 		m->m_len += space;
1118 		cp += space, remainder -= space;
1119 	}
1120 	while (remainder > 0) {
1121 		/*
1122 		 * Allocate a new mbuf; could check space
1123 		 * and allocate a cluster instead.
1124 		 */
1125 		n = m_get(M_NOWAIT, m->m_type);
1126 		if (n == NULL)
1127 			break;
1128 		n->m_len = min(MLEN, remainder);
1129 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1130 		cp += n->m_len, remainder -= n->m_len;
1131 		m->m_next = n;
1132 		m = n;
1133 	}
1134 	if (m0->m_flags & M_PKTHDR)
1135 		m0->m_pkthdr.len += len - remainder;
1136 	return (remainder == 0);
1137 }
1138 
1139 /*
1140  * Apply function f to the data in an mbuf chain starting "off" bytes from
1141  * the beginning, continuing for "len" bytes.
1142  */
1143 int
1144 m_apply(struct mbuf *m, int off, int len,
1145     int (*f)(void *, void *, u_int), void *arg)
1146 {
1147 	u_int count;
1148 	int rval;
1149 
1150 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1151 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1152 	while (off > 0) {
1153 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1154 		if (off < m->m_len)
1155 			break;
1156 		off -= m->m_len;
1157 		m = m->m_next;
1158 	}
1159 	while (len > 0) {
1160 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1161 		count = min(m->m_len - off, len);
1162 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1163 		if (rval)
1164 			return (rval);
1165 		len -= count;
1166 		off = 0;
1167 		m = m->m_next;
1168 	}
1169 	return (0);
1170 }
1171 
1172 /*
1173  * Return a pointer to mbuf/offset of location in mbuf chain.
1174  */
1175 struct mbuf *
1176 m_getptr(struct mbuf *m, int loc, int *off)
1177 {
1178 
1179 	while (loc >= 0) {
1180 		/* Normal end of search. */
1181 		if (m->m_len > loc) {
1182 			*off = loc;
1183 			return (m);
1184 		} else {
1185 			loc -= m->m_len;
1186 			if (m->m_next == NULL) {
1187 				if (loc == 0) {
1188 					/* Point at the end of valid data. */
1189 					*off = m->m_len;
1190 					return (m);
1191 				}
1192 				return (NULL);
1193 			}
1194 			m = m->m_next;
1195 		}
1196 	}
1197 	return (NULL);
1198 }
1199 
1200 void
1201 m_print(const struct mbuf *m, int maxlen)
1202 {
1203 	int len;
1204 	int pdata;
1205 	const struct mbuf *m2;
1206 
1207 	if (m == NULL) {
1208 		printf("mbuf: %p\n", m);
1209 		return;
1210 	}
1211 
1212 	if (m->m_flags & M_PKTHDR)
1213 		len = m->m_pkthdr.len;
1214 	else
1215 		len = -1;
1216 	m2 = m;
1217 	while (m2 != NULL && (len == -1 || len)) {
1218 		pdata = m2->m_len;
1219 		if (maxlen != -1 && pdata > maxlen)
1220 			pdata = maxlen;
1221 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1222 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1223 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1224 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1225 		if (pdata)
1226 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1227 		if (len != -1)
1228 			len -= m2->m_len;
1229 		m2 = m2->m_next;
1230 	}
1231 	if (len > 0)
1232 		printf("%d bytes unaccounted for.\n", len);
1233 	return;
1234 }
1235 
1236 u_int
1237 m_fixhdr(struct mbuf *m0)
1238 {
1239 	u_int len;
1240 
1241 	len = m_length(m0, NULL);
1242 	m0->m_pkthdr.len = len;
1243 	return (len);
1244 }
1245 
1246 u_int
1247 m_length(struct mbuf *m0, struct mbuf **last)
1248 {
1249 	struct mbuf *m;
1250 	u_int len;
1251 
1252 	len = 0;
1253 	for (m = m0; m != NULL; m = m->m_next) {
1254 		len += m->m_len;
1255 		if (m->m_next == NULL)
1256 			break;
1257 	}
1258 	if (last != NULL)
1259 		*last = m;
1260 	return (len);
1261 }
1262 
1263 /*
1264  * Defragment a mbuf chain, returning the shortest possible
1265  * chain of mbufs and clusters.  If allocation fails and
1266  * this cannot be completed, NULL will be returned, but
1267  * the passed in chain will be unchanged.  Upon success,
1268  * the original chain will be freed, and the new chain
1269  * will be returned.
1270  *
1271  * If a non-packet header is passed in, the original
1272  * mbuf (chain?) will be returned unharmed.
1273  */
1274 struct mbuf *
1275 m_defrag(struct mbuf *m0, int how)
1276 {
1277 	struct mbuf *m_new = NULL, *m_final = NULL;
1278 	int progress = 0, length;
1279 
1280 	MBUF_CHECKSLEEP(how);
1281 	if (!(m0->m_flags & M_PKTHDR))
1282 		return (m0);
1283 
1284 	m_fixhdr(m0); /* Needed sanity check */
1285 
1286 #ifdef MBUF_STRESS_TEST
1287 	if (m_defragrandomfailures) {
1288 		int temp = arc4random() & 0xff;
1289 		if (temp == 0xba)
1290 			goto nospace;
1291 	}
1292 #endif
1293 
1294 	if (m0->m_pkthdr.len > MHLEN)
1295 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1296 	else
1297 		m_final = m_gethdr(how, MT_DATA);
1298 
1299 	if (m_final == NULL)
1300 		goto nospace;
1301 
1302 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1303 		goto nospace;
1304 
1305 	m_new = m_final;
1306 
1307 	while (progress < m0->m_pkthdr.len) {
1308 		length = m0->m_pkthdr.len - progress;
1309 		if (length > MCLBYTES)
1310 			length = MCLBYTES;
1311 
1312 		if (m_new == NULL) {
1313 			if (length > MLEN)
1314 				m_new = m_getcl(how, MT_DATA, 0);
1315 			else
1316 				m_new = m_get(how, MT_DATA);
1317 			if (m_new == NULL)
1318 				goto nospace;
1319 		}
1320 
1321 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1322 		progress += length;
1323 		m_new->m_len = length;
1324 		if (m_new != m_final)
1325 			m_cat(m_final, m_new);
1326 		m_new = NULL;
1327 	}
1328 #ifdef MBUF_STRESS_TEST
1329 	if (m0->m_next == NULL)
1330 		m_defraguseless++;
1331 #endif
1332 	m_freem(m0);
1333 	m0 = m_final;
1334 #ifdef MBUF_STRESS_TEST
1335 	m_defragpackets++;
1336 	m_defragbytes += m0->m_pkthdr.len;
1337 #endif
1338 	return (m0);
1339 nospace:
1340 #ifdef MBUF_STRESS_TEST
1341 	m_defragfailure++;
1342 #endif
1343 	if (m_final)
1344 		m_freem(m_final);
1345 	return (NULL);
1346 }
1347 
1348 /*
1349  * Defragment an mbuf chain, returning at most maxfrags separate
1350  * mbufs+clusters.  If this is not possible NULL is returned and
1351  * the original mbuf chain is left in its present (potentially
1352  * modified) state.  We use two techniques: collapsing consecutive
1353  * mbufs and replacing consecutive mbufs by a cluster.
1354  *
1355  * NB: this should really be named m_defrag but that name is taken
1356  */
1357 struct mbuf *
1358 m_collapse(struct mbuf *m0, int how, int maxfrags)
1359 {
1360 	struct mbuf *m, *n, *n2, **prev;
1361 	u_int curfrags;
1362 
1363 	/*
1364 	 * Calculate the current number of frags.
1365 	 */
1366 	curfrags = 0;
1367 	for (m = m0; m != NULL; m = m->m_next)
1368 		curfrags++;
1369 	/*
1370 	 * First, try to collapse mbufs.  Note that we always collapse
1371 	 * towards the front so we don't need to deal with moving the
1372 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1373 	 * less data than the following.
1374 	 */
1375 	m = m0;
1376 again:
1377 	for (;;) {
1378 		n = m->m_next;
1379 		if (n == NULL)
1380 			break;
1381 		if (M_WRITABLE(m) &&
1382 		    n->m_len < M_TRAILINGSPACE(m)) {
1383 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1384 				n->m_len);
1385 			m->m_len += n->m_len;
1386 			m->m_next = n->m_next;
1387 			m_free(n);
1388 			if (--curfrags <= maxfrags)
1389 				return m0;
1390 		} else
1391 			m = n;
1392 	}
1393 	KASSERT(maxfrags > 1,
1394 		("maxfrags %u, but normal collapse failed", maxfrags));
1395 	/*
1396 	 * Collapse consecutive mbufs to a cluster.
1397 	 */
1398 	prev = &m0->m_next;		/* NB: not the first mbuf */
1399 	while ((n = *prev) != NULL) {
1400 		if ((n2 = n->m_next) != NULL &&
1401 		    n->m_len + n2->m_len < MCLBYTES) {
1402 			m = m_getcl(how, MT_DATA, 0);
1403 			if (m == NULL)
1404 				goto bad;
1405 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1406 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1407 				n2->m_len);
1408 			m->m_len = n->m_len + n2->m_len;
1409 			m->m_next = n2->m_next;
1410 			*prev = m;
1411 			m_free(n);
1412 			m_free(n2);
1413 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1414 				return m0;
1415 			/*
1416 			 * Still not there, try the normal collapse
1417 			 * again before we allocate another cluster.
1418 			 */
1419 			goto again;
1420 		}
1421 		prev = &n->m_next;
1422 	}
1423 	/*
1424 	 * No place where we can collapse to a cluster; punt.
1425 	 * This can occur if, for example, you request 2 frags
1426 	 * but the packet requires that both be clusters (we
1427 	 * never reallocate the first mbuf to avoid moving the
1428 	 * packet header).
1429 	 */
1430 bad:
1431 	return NULL;
1432 }
1433 
1434 #ifdef MBUF_STRESS_TEST
1435 
1436 /*
1437  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1438  * this in normal usage, but it's great for stress testing various
1439  * mbuf consumers.
1440  *
1441  * If fragmentation is not possible, the original chain will be
1442  * returned.
1443  *
1444  * Possible length values:
1445  * 0	 no fragmentation will occur
1446  * > 0	each fragment will be of the specified length
1447  * -1	each fragment will be the same random value in length
1448  * -2	each fragment's length will be entirely random
1449  * (Random values range from 1 to 256)
1450  */
1451 struct mbuf *
1452 m_fragment(struct mbuf *m0, int how, int length)
1453 {
1454 	struct mbuf *m_first, *m_last;
1455 	int divisor = 255, progress = 0, fraglen;
1456 
1457 	if (!(m0->m_flags & M_PKTHDR))
1458 		return (m0);
1459 
1460 	if (length == 0 || length < -2)
1461 		return (m0);
1462 	if (length > MCLBYTES)
1463 		length = MCLBYTES;
1464 	if (length < 0 && divisor > MCLBYTES)
1465 		divisor = MCLBYTES;
1466 	if (length == -1)
1467 		length = 1 + (arc4random() % divisor);
1468 	if (length > 0)
1469 		fraglen = length;
1470 
1471 	m_fixhdr(m0); /* Needed sanity check */
1472 
1473 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1474 	if (m_first == NULL)
1475 		goto nospace;
1476 
1477 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1478 		goto nospace;
1479 
1480 	m_last = m_first;
1481 
1482 	while (progress < m0->m_pkthdr.len) {
1483 		if (length == -2)
1484 			fraglen = 1 + (arc4random() % divisor);
1485 		if (fraglen > m0->m_pkthdr.len - progress)
1486 			fraglen = m0->m_pkthdr.len - progress;
1487 
1488 		if (progress != 0) {
1489 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1490 			if (m_new == NULL)
1491 				goto nospace;
1492 
1493 			m_last->m_next = m_new;
1494 			m_last = m_new;
1495 		}
1496 
1497 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1498 		progress += fraglen;
1499 		m_last->m_len = fraglen;
1500 	}
1501 	m_freem(m0);
1502 	m0 = m_first;
1503 	return (m0);
1504 nospace:
1505 	if (m_first)
1506 		m_freem(m_first);
1507 	/* Return the original chain on failure */
1508 	return (m0);
1509 }
1510 
1511 #endif
1512 
1513 /*
1514  * Copy the contents of uio into a properly sized mbuf chain.
1515  */
1516 struct mbuf *
1517 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1518 {
1519 	struct mbuf *m, *mb;
1520 	int error, length;
1521 	ssize_t total;
1522 	int progress = 0;
1523 
1524 	/*
1525 	 * len can be zero or an arbitrary large value bound by
1526 	 * the total data supplied by the uio.
1527 	 */
1528 	if (len > 0)
1529 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1530 	else
1531 		total = uio->uio_resid;
1532 
1533 	/*
1534 	 * The smallest unit returned by m_getm2() is a single mbuf
1535 	 * with pkthdr.  We can't align past it.
1536 	 */
1537 	if (align >= MHLEN)
1538 		return (NULL);
1539 
1540 	/*
1541 	 * Give us the full allocation or nothing.
1542 	 * If len is zero return the smallest empty mbuf.
1543 	 */
1544 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1545 	if (m == NULL)
1546 		return (NULL);
1547 	m->m_data += align;
1548 
1549 	/* Fill all mbufs with uio data and update header information. */
1550 	for (mb = m; mb != NULL; mb = mb->m_next) {
1551 		length = min(M_TRAILINGSPACE(mb), total - progress);
1552 
1553 		error = uiomove(mtod(mb, void *), length, uio);
1554 		if (error) {
1555 			m_freem(m);
1556 			return (NULL);
1557 		}
1558 
1559 		mb->m_len = length;
1560 		progress += length;
1561 		if (flags & M_PKTHDR)
1562 			m->m_pkthdr.len += length;
1563 	}
1564 	KASSERT(progress == total, ("%s: progress != total", __func__));
1565 
1566 	return (m);
1567 }
1568 
1569 /*
1570  * Copy an mbuf chain into a uio limited by len if set.
1571  */
1572 int
1573 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1574 {
1575 	int error, length, total;
1576 	int progress = 0;
1577 
1578 	if (len > 0)
1579 		total = min(uio->uio_resid, len);
1580 	else
1581 		total = uio->uio_resid;
1582 
1583 	/* Fill the uio with data from the mbufs. */
1584 	for (; m != NULL; m = m->m_next) {
1585 		length = min(m->m_len, total - progress);
1586 
1587 		error = uiomove(mtod(m, void *), length, uio);
1588 		if (error)
1589 			return (error);
1590 
1591 		progress += length;
1592 	}
1593 
1594 	return (0);
1595 }
1596 
1597 /*
1598  * Create a writable copy of the mbuf chain.  While doing this
1599  * we compact the chain with a goal of producing a chain with
1600  * at most two mbufs.  The second mbuf in this chain is likely
1601  * to be a cluster.  The primary purpose of this work is to create
1602  * a writable packet for encryption, compression, etc.  The
1603  * secondary goal is to linearize the data so the data can be
1604  * passed to crypto hardware in the most efficient manner possible.
1605  */
1606 struct mbuf *
1607 m_unshare(struct mbuf *m0, int how)
1608 {
1609 	struct mbuf *m, *mprev;
1610 	struct mbuf *n, *mfirst, *mlast;
1611 	int len, off;
1612 
1613 	mprev = NULL;
1614 	for (m = m0; m != NULL; m = mprev->m_next) {
1615 		/*
1616 		 * Regular mbufs are ignored unless there's a cluster
1617 		 * in front of it that we can use to coalesce.  We do
1618 		 * the latter mainly so later clusters can be coalesced
1619 		 * also w/o having to handle them specially (i.e. convert
1620 		 * mbuf+cluster -> cluster).  This optimization is heavily
1621 		 * influenced by the assumption that we're running over
1622 		 * Ethernet where MCLBYTES is large enough that the max
1623 		 * packet size will permit lots of coalescing into a
1624 		 * single cluster.  This in turn permits efficient
1625 		 * crypto operations, especially when using hardware.
1626 		 */
1627 		if ((m->m_flags & M_EXT) == 0) {
1628 			if (mprev && (mprev->m_flags & M_EXT) &&
1629 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1630 				/* XXX: this ignores mbuf types */
1631 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1632 				    mtod(m, caddr_t), m->m_len);
1633 				mprev->m_len += m->m_len;
1634 				mprev->m_next = m->m_next;	/* unlink from chain */
1635 				m_free(m);			/* reclaim mbuf */
1636 			} else {
1637 				mprev = m;
1638 			}
1639 			continue;
1640 		}
1641 		/*
1642 		 * Writable mbufs are left alone (for now).
1643 		 */
1644 		if (M_WRITABLE(m)) {
1645 			mprev = m;
1646 			continue;
1647 		}
1648 
1649 		/*
1650 		 * Not writable, replace with a copy or coalesce with
1651 		 * the previous mbuf if possible (since we have to copy
1652 		 * it anyway, we try to reduce the number of mbufs and
1653 		 * clusters so that future work is easier).
1654 		 */
1655 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1656 		/* NB: we only coalesce into a cluster or larger */
1657 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1658 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1659 			/* XXX: this ignores mbuf types */
1660 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1661 			    mtod(m, caddr_t), m->m_len);
1662 			mprev->m_len += m->m_len;
1663 			mprev->m_next = m->m_next;	/* unlink from chain */
1664 			m_free(m);			/* reclaim mbuf */
1665 			continue;
1666 		}
1667 
1668 		/*
1669 		 * Allocate new space to hold the copy and copy the data.
1670 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1671 		 * splitting them into clusters.  We could just malloc a
1672 		 * buffer and make it external but too many device drivers
1673 		 * don't know how to break up the non-contiguous memory when
1674 		 * doing DMA.
1675 		 */
1676 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1677 		if (n == NULL) {
1678 			m_freem(m0);
1679 			return (NULL);
1680 		}
1681 		if (m->m_flags & M_PKTHDR) {
1682 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
1683 			    __func__, m0, m));
1684 			m_move_pkthdr(n, m);
1685 		}
1686 		len = m->m_len;
1687 		off = 0;
1688 		mfirst = n;
1689 		mlast = NULL;
1690 		for (;;) {
1691 			int cc = min(len, MCLBYTES);
1692 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1693 			n->m_len = cc;
1694 			if (mlast != NULL)
1695 				mlast->m_next = n;
1696 			mlast = n;
1697 #if 0
1698 			newipsecstat.ips_clcopied++;
1699 #endif
1700 
1701 			len -= cc;
1702 			if (len <= 0)
1703 				break;
1704 			off += cc;
1705 
1706 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
1707 			if (n == NULL) {
1708 				m_freem(mfirst);
1709 				m_freem(m0);
1710 				return (NULL);
1711 			}
1712 		}
1713 		n->m_next = m->m_next;
1714 		if (mprev == NULL)
1715 			m0 = mfirst;		/* new head of chain */
1716 		else
1717 			mprev->m_next = mfirst;	/* replace old mbuf */
1718 		m_free(m);			/* release old mbuf */
1719 		mprev = mfirst;
1720 	}
1721 	return (m0);
1722 }
1723 
1724 #ifdef MBUF_PROFILING
1725 
1726 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1727 struct mbufprofile {
1728 	uintmax_t wasted[MP_BUCKETS];
1729 	uintmax_t used[MP_BUCKETS];
1730 	uintmax_t segments[MP_BUCKETS];
1731 } mbprof;
1732 
1733 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1734 #define MP_NUMLINES 6
1735 #define MP_NUMSPERLINE 16
1736 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1737 /* work out max space needed and add a bit of spare space too */
1738 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1739 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1740 
1741 char mbprofbuf[MP_BUFSIZE];
1742 
1743 void
1744 m_profile(struct mbuf *m)
1745 {
1746 	int segments = 0;
1747 	int used = 0;
1748 	int wasted = 0;
1749 
1750 	while (m) {
1751 		segments++;
1752 		used += m->m_len;
1753 		if (m->m_flags & M_EXT) {
1754 			wasted += MHLEN - sizeof(m->m_ext) +
1755 			    m->m_ext.ext_size - m->m_len;
1756 		} else {
1757 			if (m->m_flags & M_PKTHDR)
1758 				wasted += MHLEN - m->m_len;
1759 			else
1760 				wasted += MLEN - m->m_len;
1761 		}
1762 		m = m->m_next;
1763 	}
1764 	/* be paranoid.. it helps */
1765 	if (segments > MP_BUCKETS - 1)
1766 		segments = MP_BUCKETS - 1;
1767 	if (used > 100000)
1768 		used = 100000;
1769 	if (wasted > 100000)
1770 		wasted = 100000;
1771 	/* store in the appropriate bucket */
1772 	/* don't bother locking. if it's slightly off, so what? */
1773 	mbprof.segments[segments]++;
1774 	mbprof.used[fls(used)]++;
1775 	mbprof.wasted[fls(wasted)]++;
1776 }
1777 
1778 static void
1779 mbprof_textify(void)
1780 {
1781 	int offset;
1782 	char *c;
1783 	uint64_t *p;
1784 
1785 	p = &mbprof.wasted[0];
1786 	c = mbprofbuf;
1787 	offset = snprintf(c, MP_MAXLINE + 10,
1788 	    "wasted:\n"
1789 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1790 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1791 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1792 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1793 #ifdef BIG_ARRAY
1794 	p = &mbprof.wasted[16];
1795 	c += offset;
1796 	offset = snprintf(c, MP_MAXLINE,
1797 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1798 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1799 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1800 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1801 #endif
1802 	p = &mbprof.used[0];
1803 	c += offset;
1804 	offset = snprintf(c, MP_MAXLINE + 10,
1805 	    "used:\n"
1806 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1807 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1808 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1809 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1810 #ifdef BIG_ARRAY
1811 	p = &mbprof.used[16];
1812 	c += offset;
1813 	offset = snprintf(c, MP_MAXLINE,
1814 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1815 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1816 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1817 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1818 #endif
1819 	p = &mbprof.segments[0];
1820 	c += offset;
1821 	offset = snprintf(c, MP_MAXLINE + 10,
1822 	    "segments:\n"
1823 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1824 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1825 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1826 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1827 #ifdef BIG_ARRAY
1828 	p = &mbprof.segments[16];
1829 	c += offset;
1830 	offset = snprintf(c, MP_MAXLINE,
1831 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1832 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
1833 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1834 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1835 #endif
1836 }
1837 
1838 static int
1839 mbprof_handler(SYSCTL_HANDLER_ARGS)
1840 {
1841 	int error;
1842 
1843 	mbprof_textify();
1844 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
1845 	return (error);
1846 }
1847 
1848 static int
1849 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
1850 {
1851 	int clear, error;
1852 
1853 	clear = 0;
1854 	error = sysctl_handle_int(oidp, &clear, 0, req);
1855 	if (error || !req->newptr)
1856 		return (error);
1857 
1858 	if (clear) {
1859 		bzero(&mbprof, sizeof(mbprof));
1860 	}
1861 
1862 	return (error);
1863 }
1864 
1865 
1866 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
1867 	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
1868 
1869 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
1870 	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
1871 #endif
1872 
1873