xref: /freebsd/sys/kern/uipc_mbuf.c (revision c1d255d3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_param.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mbuf_profiling.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/uio.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sdt.h>
54 #include <vm/vm.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/vm_page.h>
57 
58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
59     "struct mbuf *", "mbufinfo_t *",
60     "uint32_t", "uint32_t",
61     "uint16_t", "uint16_t",
62     "uint32_t", "uint32_t",
63     "uint32_t", "uint32_t");
64 
65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw,
66     "uint32_t", "uint32_t",
67     "uint16_t", "uint16_t",
68     "struct mbuf *", "mbufinfo_t *");
69 
70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
71     "uint32_t", "uint32_t",
72     "uint16_t", "uint16_t",
73     "struct mbuf *", "mbufinfo_t *");
74 
75 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw,
76     "uint32_t", "uint32_t",
77     "uint16_t", "uint16_t",
78     "struct mbuf *", "mbufinfo_t *");
79 
80 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
81     "uint32_t", "uint32_t",
82     "uint16_t", "uint16_t",
83     "struct mbuf *", "mbufinfo_t *");
84 
85 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
86     "uint32_t", "uint32_t",
87     "uint16_t", "uint16_t",
88     "uint32_t", "uint32_t",
89     "struct mbuf *", "mbufinfo_t *");
90 
91 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
92     "uint32_t", "uint32_t",
93     "uint16_t", "uint16_t",
94     "uint32_t", "uint32_t",
95     "uint32_t", "uint32_t",
96     "struct mbuf *", "mbufinfo_t *");
97 
98 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
99     "struct mbuf *", "mbufinfo_t *",
100     "uint32_t", "uint32_t",
101     "uint32_t", "uint32_t");
102 
103 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
104     "struct mbuf *", "mbufinfo_t *",
105     "uint32_t", "uint32_t",
106     "uint32_t", "uint32_t",
107     "void*", "void*");
108 
109 SDT_PROBE_DEFINE(sdt, , , m__cljset);
110 
111 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
112         "struct mbuf *", "mbufinfo_t *");
113 
114 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
115     "struct mbuf *", "mbufinfo_t *");
116 
117 #include <security/mac/mac_framework.h>
118 
119 int	max_linkhdr;
120 int	max_protohdr;
121 int	max_hdr;
122 int	max_datalen;
123 #ifdef MBUF_STRESS_TEST
124 int	m_defragpackets;
125 int	m_defragbytes;
126 int	m_defraguseless;
127 int	m_defragfailure;
128 int	m_defragrandomfailures;
129 #endif
130 
131 /*
132  * sysctl(8) exported objects
133  */
134 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
135 	   &max_linkhdr, 0, "Size of largest link layer header");
136 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
137 	   &max_protohdr, 0, "Size of largest protocol layer header");
138 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
139 	   &max_hdr, 0, "Size of largest link plus protocol header");
140 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
141 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
142 #ifdef MBUF_STRESS_TEST
143 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
144 	   &m_defragpackets, 0, "");
145 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
146 	   &m_defragbytes, 0, "");
147 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
148 	   &m_defraguseless, 0, "");
149 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
150 	   &m_defragfailure, 0, "");
151 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
152 	   &m_defragrandomfailures, 0, "");
153 #endif
154 
155 /*
156  * Ensure the correct size of various mbuf parameters.  It could be off due
157  * to compiler-induced padding and alignment artifacts.
158  */
159 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
160 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
161 
162 /*
163  * mbuf data storage should be 64-bit aligned regardless of architectural
164  * pointer size; check this is the case with and without a packet header.
165  */
166 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
167 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
168 
169 /*
170  * While the specific values here don't matter too much (i.e., +/- a few
171  * words), we do want to ensure that changes to these values are carefully
172  * reasoned about and properly documented.  This is especially the case as
173  * network-protocol and device-driver modules encode these layouts, and must
174  * be recompiled if the structures change.  Check these values at compile time
175  * against the ones documented in comments in mbuf.h.
176  *
177  * NB: Possibly they should be documented there via #define's and not just
178  * comments.
179  */
180 #if defined(__LP64__)
181 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
182 CTASSERT(sizeof(struct pkthdr) == 56);
183 CTASSERT(sizeof(struct m_ext) == 160);
184 #else
185 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
186 CTASSERT(sizeof(struct pkthdr) == 48);
187 #if defined(__powerpc__) && defined(BOOKE)
188 /* PowerPC booke has 64-bit physical pointers. */
189 CTASSERT(sizeof(struct m_ext) == 184);
190 #else
191 CTASSERT(sizeof(struct m_ext) == 180);
192 #endif
193 #endif
194 
195 /*
196  * Assert that the queue(3) macros produce code of the same size as an old
197  * plain pointer does.
198  */
199 #ifdef INVARIANTS
200 static struct mbuf __used m_assertbuf;
201 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
202 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
203 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
204 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
205 #endif
206 
207 /*
208  * Attach the cluster from *m to *n, set up m_ext in *n
209  * and bump the refcount of the cluster.
210  */
211 void
212 mb_dupcl(struct mbuf *n, struct mbuf *m)
213 {
214 	volatile u_int *refcnt;
215 
216 	KASSERT(m->m_flags & (M_EXT|M_EXTPG),
217 	    ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
218 	KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
219 	    ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
220 
221 	/*
222 	 * Cache access optimization.
223 	 *
224 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
225 	 *   the holder of the 'ext_count' is responsible to carry the free
226 	 *   routine and its arguments.
227 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
228 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
229 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
230 	 *   special - it needs full copy of m_ext into each mbuf, since any
231 	 *   copy could end up as the last to free.
232 	 */
233 	if (m->m_flags & M_EXTPG) {
234 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
235 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
236 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
237 	} else if (m->m_ext.ext_type == EXT_EXTREF)
238 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
239 	else
240 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
241 
242 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
243 
244 	/* See if this is the mbuf that holds the embedded refcount. */
245 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
246 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
247 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
248 	} else {
249 		KASSERT(m->m_ext.ext_cnt != NULL,
250 		    ("%s: no refcounting pointer on %p", __func__, m));
251 		refcnt = m->m_ext.ext_cnt;
252 	}
253 
254 	if (*refcnt == 1)
255 		*refcnt += 1;
256 	else
257 		atomic_add_int(refcnt, 1);
258 }
259 
260 void
261 m_demote_pkthdr(struct mbuf *m)
262 {
263 
264 	M_ASSERTPKTHDR(m);
265 
266 	m_tag_delete_chain(m, NULL);
267 	m->m_flags &= ~M_PKTHDR;
268 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
269 }
270 
271 /*
272  * Clean up mbuf (chain) from any tags and packet headers.
273  * If "all" is set then the first mbuf in the chain will be
274  * cleaned too.
275  */
276 void
277 m_demote(struct mbuf *m0, int all, int flags)
278 {
279 	struct mbuf *m;
280 
281 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
282 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
283 		    __func__, m, m0));
284 		if (m->m_flags & M_PKTHDR)
285 			m_demote_pkthdr(m);
286 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE |
287 		    M_EXTPG | flags);
288 	}
289 }
290 
291 /*
292  * Sanity checks on mbuf (chain) for use in KASSERT() and general
293  * debugging.
294  * Returns 0 or panics when bad and 1 on all tests passed.
295  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
296  * blow up later.
297  */
298 int
299 m_sanity(struct mbuf *m0, int sanitize)
300 {
301 	struct mbuf *m;
302 	caddr_t a, b;
303 	int pktlen = 0;
304 
305 #ifdef INVARIANTS
306 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
307 #else
308 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
309 #endif
310 
311 	for (m = m0; m != NULL; m = m->m_next) {
312 		/*
313 		 * Basic pointer checks.  If any of these fails then some
314 		 * unrelated kernel memory before or after us is trashed.
315 		 * No way to recover from that.
316 		 */
317 		a = M_START(m);
318 		b = a + M_SIZE(m);
319 		if ((caddr_t)m->m_data < a)
320 			M_SANITY_ACTION("m_data outside mbuf data range left");
321 		if ((caddr_t)m->m_data > b)
322 			M_SANITY_ACTION("m_data outside mbuf data range right");
323 		if ((caddr_t)m->m_data + m->m_len > b)
324 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
325 
326 		/* m->m_nextpkt may only be set on first mbuf in chain. */
327 		if (m != m0 && m->m_nextpkt != NULL) {
328 			if (sanitize) {
329 				m_freem(m->m_nextpkt);
330 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
331 			} else
332 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
333 		}
334 
335 		/* packet length (not mbuf length!) calculation */
336 		if (m0->m_flags & M_PKTHDR)
337 			pktlen += m->m_len;
338 
339 		/* m_tags may only be attached to first mbuf in chain. */
340 		if (m != m0 && m->m_flags & M_PKTHDR &&
341 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
342 			if (sanitize) {
343 				m_tag_delete_chain(m, NULL);
344 				/* put in 0xDEADC0DE perhaps? */
345 			} else
346 				M_SANITY_ACTION("m_tags on in-chain mbuf");
347 		}
348 
349 		/* M_PKTHDR may only be set on first mbuf in chain */
350 		if (m != m0 && m->m_flags & M_PKTHDR) {
351 			if (sanitize) {
352 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
353 				m->m_flags &= ~M_PKTHDR;
354 				/* put in 0xDEADCODE and leave hdr flag in */
355 			} else
356 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
357 		}
358 	}
359 	m = m0;
360 	if (pktlen && pktlen != m->m_pkthdr.len) {
361 		if (sanitize)
362 			m->m_pkthdr.len = 0;
363 		else
364 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
365 	}
366 	return 1;
367 
368 #undef	M_SANITY_ACTION
369 }
370 
371 /*
372  * Non-inlined part of m_init().
373  */
374 int
375 m_pkthdr_init(struct mbuf *m, int how)
376 {
377 #ifdef MAC
378 	int error;
379 #endif
380 	m->m_data = m->m_pktdat;
381 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
382 #ifdef NUMA
383 	m->m_pkthdr.numa_domain = M_NODOM;
384 #endif
385 #ifdef MAC
386 	/* If the label init fails, fail the alloc */
387 	error = mac_mbuf_init(m, how);
388 	if (error)
389 		return (error);
390 #endif
391 
392 	return (0);
393 }
394 
395 /*
396  * "Move" mbuf pkthdr from "from" to "to".
397  * "from" must have M_PKTHDR set, and "to" must be empty.
398  */
399 void
400 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
401 {
402 
403 #if 0
404 	/* see below for why these are not enabled */
405 	M_ASSERTPKTHDR(to);
406 	/* Note: with MAC, this may not be a good assertion. */
407 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
408 	    ("m_move_pkthdr: to has tags"));
409 #endif
410 #ifdef MAC
411 	/*
412 	 * XXXMAC: It could be this should also occur for non-MAC?
413 	 */
414 	if (to->m_flags & M_PKTHDR)
415 		m_tag_delete_chain(to, NULL);
416 #endif
417 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
418 	    (to->m_flags & (M_EXT | M_EXTPG));
419 	if ((to->m_flags & M_EXT) == 0)
420 		to->m_data = to->m_pktdat;
421 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
422 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
423 	from->m_flags &= ~M_PKTHDR;
424 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
425 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
426 		from->m_pkthdr.snd_tag = NULL;
427 	}
428 }
429 
430 /*
431  * Duplicate "from"'s mbuf pkthdr in "to".
432  * "from" must have M_PKTHDR set, and "to" must be empty.
433  * In particular, this does a deep copy of the packet tags.
434  */
435 int
436 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
437 {
438 
439 #if 0
440 	/*
441 	 * The mbuf allocator only initializes the pkthdr
442 	 * when the mbuf is allocated with m_gethdr(). Many users
443 	 * (e.g. m_copy*, m_prepend) use m_get() and then
444 	 * smash the pkthdr as needed causing these
445 	 * assertions to trip.  For now just disable them.
446 	 */
447 	M_ASSERTPKTHDR(to);
448 	/* Note: with MAC, this may not be a good assertion. */
449 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
450 #endif
451 	MBUF_CHECKSLEEP(how);
452 #ifdef MAC
453 	if (to->m_flags & M_PKTHDR)
454 		m_tag_delete_chain(to, NULL);
455 #endif
456 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
457 	    (to->m_flags & (M_EXT | M_EXTPG));
458 	if ((to->m_flags & M_EXT) == 0)
459 		to->m_data = to->m_pktdat;
460 	to->m_pkthdr = from->m_pkthdr;
461 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
462 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
463 	SLIST_INIT(&to->m_pkthdr.tags);
464 	return (m_tag_copy_chain(to, from, how));
465 }
466 
467 /*
468  * Lesser-used path for M_PREPEND:
469  * allocate new mbuf to prepend to chain,
470  * copy junk along.
471  */
472 struct mbuf *
473 m_prepend(struct mbuf *m, int len, int how)
474 {
475 	struct mbuf *mn;
476 
477 	if (m->m_flags & M_PKTHDR)
478 		mn = m_gethdr(how, m->m_type);
479 	else
480 		mn = m_get(how, m->m_type);
481 	if (mn == NULL) {
482 		m_freem(m);
483 		return (NULL);
484 	}
485 	if (m->m_flags & M_PKTHDR)
486 		m_move_pkthdr(mn, m);
487 	mn->m_next = m;
488 	m = mn;
489 	if (len < M_SIZE(m))
490 		M_ALIGN(m, len);
491 	m->m_len = len;
492 	return (m);
493 }
494 
495 /*
496  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
497  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
498  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
499  * Note that the copy is read-only, because clusters are not copied,
500  * only their reference counts are incremented.
501  */
502 struct mbuf *
503 m_copym(struct mbuf *m, int off0, int len, int wait)
504 {
505 	struct mbuf *n, **np;
506 	int off = off0;
507 	struct mbuf *top;
508 	int copyhdr = 0;
509 
510 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
511 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
512 	MBUF_CHECKSLEEP(wait);
513 	if (off == 0 && m->m_flags & M_PKTHDR)
514 		copyhdr = 1;
515 	while (off > 0) {
516 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
517 		if (off < m->m_len)
518 			break;
519 		off -= m->m_len;
520 		m = m->m_next;
521 	}
522 	np = &top;
523 	top = NULL;
524 	while (len > 0) {
525 		if (m == NULL) {
526 			KASSERT(len == M_COPYALL,
527 			    ("m_copym, length > size of mbuf chain"));
528 			break;
529 		}
530 		if (copyhdr)
531 			n = m_gethdr(wait, m->m_type);
532 		else
533 			n = m_get(wait, m->m_type);
534 		*np = n;
535 		if (n == NULL)
536 			goto nospace;
537 		if (copyhdr) {
538 			if (!m_dup_pkthdr(n, m, wait))
539 				goto nospace;
540 			if (len == M_COPYALL)
541 				n->m_pkthdr.len -= off0;
542 			else
543 				n->m_pkthdr.len = len;
544 			copyhdr = 0;
545 		}
546 		n->m_len = min(len, m->m_len - off);
547 		if (m->m_flags & (M_EXT|M_EXTPG)) {
548 			n->m_data = m->m_data + off;
549 			mb_dupcl(n, m);
550 		} else
551 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
552 			    (u_int)n->m_len);
553 		if (len != M_COPYALL)
554 			len -= n->m_len;
555 		off = 0;
556 		m = m->m_next;
557 		np = &n->m_next;
558 	}
559 
560 	return (top);
561 nospace:
562 	m_freem(top);
563 	return (NULL);
564 }
565 
566 /*
567  * Copy an entire packet, including header (which must be present).
568  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
569  * Note that the copy is read-only, because clusters are not copied,
570  * only their reference counts are incremented.
571  * Preserve alignment of the first mbuf so if the creator has left
572  * some room at the beginning (e.g. for inserting protocol headers)
573  * the copies still have the room available.
574  */
575 struct mbuf *
576 m_copypacket(struct mbuf *m, int how)
577 {
578 	struct mbuf *top, *n, *o;
579 
580 	MBUF_CHECKSLEEP(how);
581 	n = m_get(how, m->m_type);
582 	top = n;
583 	if (n == NULL)
584 		goto nospace;
585 
586 	if (!m_dup_pkthdr(n, m, how))
587 		goto nospace;
588 	n->m_len = m->m_len;
589 	if (m->m_flags & (M_EXT|M_EXTPG)) {
590 		n->m_data = m->m_data;
591 		mb_dupcl(n, m);
592 	} else {
593 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
594 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
595 	}
596 
597 	m = m->m_next;
598 	while (m) {
599 		o = m_get(how, m->m_type);
600 		if (o == NULL)
601 			goto nospace;
602 
603 		n->m_next = o;
604 		n = n->m_next;
605 
606 		n->m_len = m->m_len;
607 		if (m->m_flags & (M_EXT|M_EXTPG)) {
608 			n->m_data = m->m_data;
609 			mb_dupcl(n, m);
610 		} else {
611 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
612 		}
613 
614 		m = m->m_next;
615 	}
616 	return top;
617 nospace:
618 	m_freem(top);
619 	return (NULL);
620 }
621 
622 static void
623 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
624 {
625 	struct iovec iov;
626 	struct uio uio;
627 	int error;
628 
629 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
630 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
631 	KASSERT(off < m->m_len,
632 	    ("m_copyfromunmapped: len exceeds mbuf length"));
633 	iov.iov_base = cp;
634 	iov.iov_len = len;
635 	uio.uio_resid = len;
636 	uio.uio_iov = &iov;
637 	uio.uio_segflg = UIO_SYSSPACE;
638 	uio.uio_iovcnt = 1;
639 	uio.uio_offset = 0;
640 	uio.uio_rw = UIO_READ;
641 	error = m_unmapped_uiomove(m, off, &uio, len);
642 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
643 	   len));
644 }
645 
646 /*
647  * Copy data from an mbuf chain starting "off" bytes from the beginning,
648  * continuing for "len" bytes, into the indicated buffer.
649  */
650 void
651 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
652 {
653 	u_int count;
654 
655 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
656 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
657 	while (off > 0) {
658 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
659 		if (off < m->m_len)
660 			break;
661 		off -= m->m_len;
662 		m = m->m_next;
663 	}
664 	while (len > 0) {
665 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
666 		count = min(m->m_len - off, len);
667 		if ((m->m_flags & M_EXTPG) != 0)
668 			m_copyfromunmapped(m, off, count, cp);
669 		else
670 			bcopy(mtod(m, caddr_t) + off, cp, count);
671 		len -= count;
672 		cp += count;
673 		off = 0;
674 		m = m->m_next;
675 	}
676 }
677 
678 /*
679  * Copy a packet header mbuf chain into a completely new chain, including
680  * copying any mbuf clusters.  Use this instead of m_copypacket() when
681  * you need a writable copy of an mbuf chain.
682  */
683 struct mbuf *
684 m_dup(const struct mbuf *m, int how)
685 {
686 	struct mbuf **p, *top = NULL;
687 	int remain, moff, nsize;
688 
689 	MBUF_CHECKSLEEP(how);
690 	/* Sanity check */
691 	if (m == NULL)
692 		return (NULL);
693 	M_ASSERTPKTHDR(m);
694 
695 	/* While there's more data, get a new mbuf, tack it on, and fill it */
696 	remain = m->m_pkthdr.len;
697 	moff = 0;
698 	p = &top;
699 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
700 		struct mbuf *n;
701 
702 		/* Get the next new mbuf */
703 		if (remain >= MINCLSIZE) {
704 			n = m_getcl(how, m->m_type, 0);
705 			nsize = MCLBYTES;
706 		} else {
707 			n = m_get(how, m->m_type);
708 			nsize = MLEN;
709 		}
710 		if (n == NULL)
711 			goto nospace;
712 
713 		if (top == NULL) {		/* First one, must be PKTHDR */
714 			if (!m_dup_pkthdr(n, m, how)) {
715 				m_free(n);
716 				goto nospace;
717 			}
718 			if ((n->m_flags & M_EXT) == 0)
719 				nsize = MHLEN;
720 			n->m_flags &= ~M_RDONLY;
721 		}
722 		n->m_len = 0;
723 
724 		/* Link it into the new chain */
725 		*p = n;
726 		p = &n->m_next;
727 
728 		/* Copy data from original mbuf(s) into new mbuf */
729 		while (n->m_len < nsize && m != NULL) {
730 			int chunk = min(nsize - n->m_len, m->m_len - moff);
731 
732 			m_copydata(m, moff, chunk, n->m_data + n->m_len);
733 			moff += chunk;
734 			n->m_len += chunk;
735 			remain -= chunk;
736 			if (moff == m->m_len) {
737 				m = m->m_next;
738 				moff = 0;
739 			}
740 		}
741 
742 		/* Check correct total mbuf length */
743 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
744 		    	("%s: bogus m_pkthdr.len", __func__));
745 	}
746 	return (top);
747 
748 nospace:
749 	m_freem(top);
750 	return (NULL);
751 }
752 
753 /*
754  * Concatenate mbuf chain n to m.
755  * Both chains must be of the same type (e.g. MT_DATA).
756  * Any m_pkthdr is not updated.
757  */
758 void
759 m_cat(struct mbuf *m, struct mbuf *n)
760 {
761 	while (m->m_next)
762 		m = m->m_next;
763 	while (n) {
764 		if (!M_WRITABLE(m) ||
765 		    (n->m_flags & M_EXTPG) != 0 ||
766 		    M_TRAILINGSPACE(m) < n->m_len) {
767 			/* just join the two chains */
768 			m->m_next = n;
769 			return;
770 		}
771 		/* splat the data from one into the other */
772 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
773 		    (u_int)n->m_len);
774 		m->m_len += n->m_len;
775 		n = m_free(n);
776 	}
777 }
778 
779 /*
780  * Concatenate two pkthdr mbuf chains.
781  */
782 void
783 m_catpkt(struct mbuf *m, struct mbuf *n)
784 {
785 
786 	M_ASSERTPKTHDR(m);
787 	M_ASSERTPKTHDR(n);
788 
789 	m->m_pkthdr.len += n->m_pkthdr.len;
790 	m_demote(n, 1, 0);
791 
792 	m_cat(m, n);
793 }
794 
795 void
796 m_adj(struct mbuf *mp, int req_len)
797 {
798 	int len = req_len;
799 	struct mbuf *m;
800 	int count;
801 
802 	if ((m = mp) == NULL)
803 		return;
804 	if (len >= 0) {
805 		/*
806 		 * Trim from head.
807 		 */
808 		while (m != NULL && len > 0) {
809 			if (m->m_len <= len) {
810 				len -= m->m_len;
811 				m->m_len = 0;
812 				m = m->m_next;
813 			} else {
814 				m->m_len -= len;
815 				m->m_data += len;
816 				len = 0;
817 			}
818 		}
819 		if (mp->m_flags & M_PKTHDR)
820 			mp->m_pkthdr.len -= (req_len - len);
821 	} else {
822 		/*
823 		 * Trim from tail.  Scan the mbuf chain,
824 		 * calculating its length and finding the last mbuf.
825 		 * If the adjustment only affects this mbuf, then just
826 		 * adjust and return.  Otherwise, rescan and truncate
827 		 * after the remaining size.
828 		 */
829 		len = -len;
830 		count = 0;
831 		for (;;) {
832 			count += m->m_len;
833 			if (m->m_next == (struct mbuf *)0)
834 				break;
835 			m = m->m_next;
836 		}
837 		if (m->m_len >= len) {
838 			m->m_len -= len;
839 			if (mp->m_flags & M_PKTHDR)
840 				mp->m_pkthdr.len -= len;
841 			return;
842 		}
843 		count -= len;
844 		if (count < 0)
845 			count = 0;
846 		/*
847 		 * Correct length for chain is "count".
848 		 * Find the mbuf with last data, adjust its length,
849 		 * and toss data from remaining mbufs on chain.
850 		 */
851 		m = mp;
852 		if (m->m_flags & M_PKTHDR)
853 			m->m_pkthdr.len = count;
854 		for (; m; m = m->m_next) {
855 			if (m->m_len >= count) {
856 				m->m_len = count;
857 				if (m->m_next != NULL) {
858 					m_freem(m->m_next);
859 					m->m_next = NULL;
860 				}
861 				break;
862 			}
863 			count -= m->m_len;
864 		}
865 	}
866 }
867 
868 void
869 m_adj_decap(struct mbuf *mp, int len)
870 {
871 	uint8_t rsstype;
872 
873 	m_adj(mp, len);
874 	if ((mp->m_flags & M_PKTHDR) != 0) {
875 		/*
876 		 * If flowid was calculated by card from the inner
877 		 * headers, move flowid to the decapsulated mbuf
878 		 * chain, otherwise clear.  This depends on the
879 		 * internals of m_adj, which keeps pkthdr as is, in
880 		 * particular not changing rsstype and flowid.
881 		 */
882 		rsstype = mp->m_pkthdr.rsstype;
883 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
884 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
885 		} else {
886 			M_HASHTYPE_CLEAR(mp);
887 		}
888 	}
889 }
890 
891 /*
892  * Rearange an mbuf chain so that len bytes are contiguous
893  * and in the data area of an mbuf (so that mtod will work
894  * for a structure of size len).  Returns the resulting
895  * mbuf chain on success, frees it and returns null on failure.
896  * If there is room, it will add up to max_protohdr-len extra bytes to the
897  * contiguous region in an attempt to avoid being called next time.
898  */
899 struct mbuf *
900 m_pullup(struct mbuf *n, int len)
901 {
902 	struct mbuf *m;
903 	int count;
904 	int space;
905 
906 	KASSERT((n->m_flags & M_EXTPG) == 0,
907 	    ("%s: unmapped mbuf %p", __func__, n));
908 
909 	/*
910 	 * If first mbuf has no cluster, and has room for len bytes
911 	 * without shifting current data, pullup into it,
912 	 * otherwise allocate a new mbuf to prepend to the chain.
913 	 */
914 	if ((n->m_flags & M_EXT) == 0 &&
915 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
916 		if (n->m_len >= len)
917 			return (n);
918 		m = n;
919 		n = n->m_next;
920 		len -= m->m_len;
921 	} else {
922 		if (len > MHLEN)
923 			goto bad;
924 		m = m_get(M_NOWAIT, n->m_type);
925 		if (m == NULL)
926 			goto bad;
927 		if (n->m_flags & M_PKTHDR)
928 			m_move_pkthdr(m, n);
929 	}
930 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
931 	do {
932 		count = min(min(max(len, max_protohdr), space), n->m_len);
933 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
934 		  (u_int)count);
935 		len -= count;
936 		m->m_len += count;
937 		n->m_len -= count;
938 		space -= count;
939 		if (n->m_len)
940 			n->m_data += count;
941 		else
942 			n = m_free(n);
943 	} while (len > 0 && n);
944 	if (len > 0) {
945 		(void) m_free(m);
946 		goto bad;
947 	}
948 	m->m_next = n;
949 	return (m);
950 bad:
951 	m_freem(n);
952 	return (NULL);
953 }
954 
955 /*
956  * Like m_pullup(), except a new mbuf is always allocated, and we allow
957  * the amount of empty space before the data in the new mbuf to be specified
958  * (in the event that the caller expects to prepend later).
959  */
960 struct mbuf *
961 m_copyup(struct mbuf *n, int len, int dstoff)
962 {
963 	struct mbuf *m;
964 	int count, space;
965 
966 	if (len > (MHLEN - dstoff))
967 		goto bad;
968 	m = m_get(M_NOWAIT, n->m_type);
969 	if (m == NULL)
970 		goto bad;
971 	if (n->m_flags & M_PKTHDR)
972 		m_move_pkthdr(m, n);
973 	m->m_data += dstoff;
974 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
975 	do {
976 		count = min(min(max(len, max_protohdr), space), n->m_len);
977 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
978 		    (unsigned)count);
979 		len -= count;
980 		m->m_len += count;
981 		n->m_len -= count;
982 		space -= count;
983 		if (n->m_len)
984 			n->m_data += count;
985 		else
986 			n = m_free(n);
987 	} while (len > 0 && n);
988 	if (len > 0) {
989 		(void) m_free(m);
990 		goto bad;
991 	}
992 	m->m_next = n;
993 	return (m);
994  bad:
995 	m_freem(n);
996 	return (NULL);
997 }
998 
999 /*
1000  * Partition an mbuf chain in two pieces, returning the tail --
1001  * all but the first len0 bytes.  In case of failure, it returns NULL and
1002  * attempts to restore the chain to its original state.
1003  *
1004  * Note that the resulting mbufs might be read-only, because the new
1005  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1006  * the "breaking point" happens to lie within a cluster mbuf. Use the
1007  * M_WRITABLE() macro to check for this case.
1008  */
1009 struct mbuf *
1010 m_split(struct mbuf *m0, int len0, int wait)
1011 {
1012 	struct mbuf *m, *n;
1013 	u_int len = len0, remain;
1014 
1015 	MBUF_CHECKSLEEP(wait);
1016 	for (m = m0; m && len > m->m_len; m = m->m_next)
1017 		len -= m->m_len;
1018 	if (m == NULL)
1019 		return (NULL);
1020 	remain = m->m_len - len;
1021 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1022 		n = m_gethdr(wait, m0->m_type);
1023 		if (n == NULL)
1024 			return (NULL);
1025 		n->m_next = m->m_next;
1026 		m->m_next = NULL;
1027 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1028 			n->m_pkthdr.snd_tag =
1029 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1030 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1031 		} else
1032 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1033 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1034 		m0->m_pkthdr.len = len0;
1035 		return (n);
1036 	} else if (m0->m_flags & M_PKTHDR) {
1037 		n = m_gethdr(wait, m0->m_type);
1038 		if (n == NULL)
1039 			return (NULL);
1040 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1041 			n->m_pkthdr.snd_tag =
1042 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1043 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1044 		} else
1045 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1046 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1047 		m0->m_pkthdr.len = len0;
1048 		if (m->m_flags & (M_EXT|M_EXTPG))
1049 			goto extpacket;
1050 		if (remain > MHLEN) {
1051 			/* m can't be the lead packet */
1052 			M_ALIGN(n, 0);
1053 			n->m_next = m_split(m, len, wait);
1054 			if (n->m_next == NULL) {
1055 				(void) m_free(n);
1056 				return (NULL);
1057 			} else {
1058 				n->m_len = 0;
1059 				return (n);
1060 			}
1061 		} else
1062 			M_ALIGN(n, remain);
1063 	} else if (remain == 0) {
1064 		n = m->m_next;
1065 		m->m_next = NULL;
1066 		return (n);
1067 	} else {
1068 		n = m_get(wait, m->m_type);
1069 		if (n == NULL)
1070 			return (NULL);
1071 		M_ALIGN(n, remain);
1072 	}
1073 extpacket:
1074 	if (m->m_flags & (M_EXT|M_EXTPG)) {
1075 		n->m_data = m->m_data + len;
1076 		mb_dupcl(n, m);
1077 	} else {
1078 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1079 	}
1080 	n->m_len = remain;
1081 	m->m_len = len;
1082 	n->m_next = m->m_next;
1083 	m->m_next = NULL;
1084 	return (n);
1085 }
1086 /*
1087  * Routine to copy from device local memory into mbufs.
1088  * Note that `off' argument is offset into first mbuf of target chain from
1089  * which to begin copying the data to.
1090  */
1091 struct mbuf *
1092 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1093     void (*copy)(char *from, caddr_t to, u_int len))
1094 {
1095 	struct mbuf *m;
1096 	struct mbuf *top = NULL, **mp = &top;
1097 	int len;
1098 
1099 	if (off < 0 || off > MHLEN)
1100 		return (NULL);
1101 
1102 	while (totlen > 0) {
1103 		if (top == NULL) {	/* First one, must be PKTHDR */
1104 			if (totlen + off >= MINCLSIZE) {
1105 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1106 				len = MCLBYTES;
1107 			} else {
1108 				m = m_gethdr(M_NOWAIT, MT_DATA);
1109 				len = MHLEN;
1110 
1111 				/* Place initial small packet/header at end of mbuf */
1112 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1113 					m->m_data += max_linkhdr;
1114 					len -= max_linkhdr;
1115 				}
1116 			}
1117 			if (m == NULL)
1118 				return NULL;
1119 			m->m_pkthdr.rcvif = ifp;
1120 			m->m_pkthdr.len = totlen;
1121 		} else {
1122 			if (totlen + off >= MINCLSIZE) {
1123 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1124 				len = MCLBYTES;
1125 			} else {
1126 				m = m_get(M_NOWAIT, MT_DATA);
1127 				len = MLEN;
1128 			}
1129 			if (m == NULL) {
1130 				m_freem(top);
1131 				return NULL;
1132 			}
1133 		}
1134 		if (off) {
1135 			m->m_data += off;
1136 			len -= off;
1137 			off = 0;
1138 		}
1139 		m->m_len = len = min(totlen, len);
1140 		if (copy)
1141 			copy(buf, mtod(m, caddr_t), (u_int)len);
1142 		else
1143 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1144 		buf += len;
1145 		*mp = m;
1146 		mp = &m->m_next;
1147 		totlen -= len;
1148 	}
1149 	return (top);
1150 }
1151 
1152 static void
1153 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
1154 {
1155 	struct iovec iov;
1156 	struct uio uio;
1157 	int error;
1158 
1159 	KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
1160 	KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
1161 	KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
1162 	iov.iov_base = __DECONST(caddr_t, cp);
1163 	iov.iov_len = len;
1164 	uio.uio_resid = len;
1165 	uio.uio_iov = &iov;
1166 	uio.uio_segflg = UIO_SYSSPACE;
1167 	uio.uio_iovcnt = 1;
1168 	uio.uio_offset = 0;
1169 	uio.uio_rw = UIO_WRITE;
1170 	error = m_unmapped_uiomove(m, off, &uio, len);
1171 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
1172 	   len));
1173 }
1174 
1175 /*
1176  * Copy data from a buffer back into the indicated mbuf chain,
1177  * starting "off" bytes from the beginning, extending the mbuf
1178  * chain if necessary.
1179  */
1180 void
1181 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1182 {
1183 	int mlen;
1184 	struct mbuf *m = m0, *n;
1185 	int totlen = 0;
1186 
1187 	if (m0 == NULL)
1188 		return;
1189 	while (off > (mlen = m->m_len)) {
1190 		off -= mlen;
1191 		totlen += mlen;
1192 		if (m->m_next == NULL) {
1193 			n = m_get(M_NOWAIT, m->m_type);
1194 			if (n == NULL)
1195 				goto out;
1196 			bzero(mtod(n, caddr_t), MLEN);
1197 			n->m_len = min(MLEN, len + off);
1198 			m->m_next = n;
1199 		}
1200 		m = m->m_next;
1201 	}
1202 	while (len > 0) {
1203 		if (m->m_next == NULL && (len > m->m_len - off)) {
1204 			m->m_len += min(len - (m->m_len - off),
1205 			    M_TRAILINGSPACE(m));
1206 		}
1207 		mlen = min (m->m_len - off, len);
1208 		if ((m->m_flags & M_EXTPG) != 0)
1209 			m_copytounmapped(m, off, mlen, cp);
1210 		else
1211 			bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1212 		cp += mlen;
1213 		len -= mlen;
1214 		mlen += off;
1215 		off = 0;
1216 		totlen += mlen;
1217 		if (len == 0)
1218 			break;
1219 		if (m->m_next == NULL) {
1220 			n = m_get(M_NOWAIT, m->m_type);
1221 			if (n == NULL)
1222 				break;
1223 			n->m_len = min(MLEN, len);
1224 			m->m_next = n;
1225 		}
1226 		m = m->m_next;
1227 	}
1228 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1229 		m->m_pkthdr.len = totlen;
1230 }
1231 
1232 /*
1233  * Append the specified data to the indicated mbuf chain,
1234  * Extend the mbuf chain if the new data does not fit in
1235  * existing space.
1236  *
1237  * Return 1 if able to complete the job; otherwise 0.
1238  */
1239 int
1240 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1241 {
1242 	struct mbuf *m, *n;
1243 	int remainder, space;
1244 
1245 	for (m = m0; m->m_next != NULL; m = m->m_next)
1246 		;
1247 	remainder = len;
1248 	space = M_TRAILINGSPACE(m);
1249 	if (space > 0) {
1250 		/*
1251 		 * Copy into available space.
1252 		 */
1253 		if (space > remainder)
1254 			space = remainder;
1255 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1256 		m->m_len += space;
1257 		cp += space, remainder -= space;
1258 	}
1259 	while (remainder > 0) {
1260 		/*
1261 		 * Allocate a new mbuf; could check space
1262 		 * and allocate a cluster instead.
1263 		 */
1264 		n = m_get(M_NOWAIT, m->m_type);
1265 		if (n == NULL)
1266 			break;
1267 		n->m_len = min(MLEN, remainder);
1268 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1269 		cp += n->m_len, remainder -= n->m_len;
1270 		m->m_next = n;
1271 		m = n;
1272 	}
1273 	if (m0->m_flags & M_PKTHDR)
1274 		m0->m_pkthdr.len += len - remainder;
1275 	return (remainder == 0);
1276 }
1277 
1278 static int
1279 m_apply_extpg_one(struct mbuf *m, int off, int len,
1280     int (*f)(void *, void *, u_int), void *arg)
1281 {
1282 	void *p;
1283 	u_int i, count, pgoff, pglen;
1284 	int rval;
1285 
1286 	KASSERT(PMAP_HAS_DMAP,
1287 	    ("m_apply_extpg_one does not support unmapped mbufs"));
1288 	off += mtod(m, vm_offset_t);
1289 	if (off < m->m_epg_hdrlen) {
1290 		count = min(m->m_epg_hdrlen - off, len);
1291 		rval = f(arg, m->m_epg_hdr + off, count);
1292 		if (rval)
1293 			return (rval);
1294 		len -= count;
1295 		off = 0;
1296 	} else
1297 		off -= m->m_epg_hdrlen;
1298 	pgoff = m->m_epg_1st_off;
1299 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
1300 		pglen = m_epg_pagelen(m, i, pgoff);
1301 		if (off < pglen) {
1302 			count = min(pglen - off, len);
1303 			p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff);
1304 			rval = f(arg, p, count);
1305 			if (rval)
1306 				return (rval);
1307 			len -= count;
1308 			off = 0;
1309 		} else
1310 			off -= pglen;
1311 		pgoff = 0;
1312 	}
1313 	if (len > 0) {
1314 		KASSERT(off < m->m_epg_trllen,
1315 		    ("m_apply_extpg_one: offset beyond trailer"));
1316 		KASSERT(len <= m->m_epg_trllen - off,
1317 		    ("m_apply_extpg_one: length beyond trailer"));
1318 		return (f(arg, m->m_epg_trail + off, len));
1319 	}
1320 	return (0);
1321 }
1322 
1323 /* Apply function f to the data in a single mbuf. */
1324 static int
1325 m_apply_one(struct mbuf *m, int off, int len,
1326     int (*f)(void *, void *, u_int), void *arg)
1327 {
1328 	if ((m->m_flags & M_EXTPG) != 0)
1329 		return (m_apply_extpg_one(m, off, len, f, arg));
1330 	else
1331 		return (f(arg, mtod(m, caddr_t) + off, len));
1332 }
1333 
1334 /*
1335  * Apply function f to the data in an mbuf chain starting "off" bytes from
1336  * the beginning, continuing for "len" bytes.
1337  */
1338 int
1339 m_apply(struct mbuf *m, int off, int len,
1340     int (*f)(void *, void *, u_int), void *arg)
1341 {
1342 	u_int count;
1343 	int rval;
1344 
1345 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1346 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1347 	while (off > 0) {
1348 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1349 		if (off < m->m_len)
1350 			break;
1351 		off -= m->m_len;
1352 		m = m->m_next;
1353 	}
1354 	while (len > 0) {
1355 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1356 		count = min(m->m_len - off, len);
1357 		rval = m_apply_one(m, off, count, f, arg);
1358 		if (rval)
1359 			return (rval);
1360 		len -= count;
1361 		off = 0;
1362 		m = m->m_next;
1363 	}
1364 	return (0);
1365 }
1366 
1367 /*
1368  * Return a pointer to mbuf/offset of location in mbuf chain.
1369  */
1370 struct mbuf *
1371 m_getptr(struct mbuf *m, int loc, int *off)
1372 {
1373 
1374 	while (loc >= 0) {
1375 		/* Normal end of search. */
1376 		if (m->m_len > loc) {
1377 			*off = loc;
1378 			return (m);
1379 		} else {
1380 			loc -= m->m_len;
1381 			if (m->m_next == NULL) {
1382 				if (loc == 0) {
1383 					/* Point at the end of valid data. */
1384 					*off = m->m_len;
1385 					return (m);
1386 				}
1387 				return (NULL);
1388 			}
1389 			m = m->m_next;
1390 		}
1391 	}
1392 	return (NULL);
1393 }
1394 
1395 void
1396 m_print(const struct mbuf *m, int maxlen)
1397 {
1398 	int len;
1399 	int pdata;
1400 	const struct mbuf *m2;
1401 
1402 	if (m == NULL) {
1403 		printf("mbuf: %p\n", m);
1404 		return;
1405 	}
1406 
1407 	if (m->m_flags & M_PKTHDR)
1408 		len = m->m_pkthdr.len;
1409 	else
1410 		len = -1;
1411 	m2 = m;
1412 	while (m2 != NULL && (len == -1 || len)) {
1413 		pdata = m2->m_len;
1414 		if (maxlen != -1 && pdata > maxlen)
1415 			pdata = maxlen;
1416 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1417 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1418 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1419 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1420 		if (pdata)
1421 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1422 		if (len != -1)
1423 			len -= m2->m_len;
1424 		m2 = m2->m_next;
1425 	}
1426 	if (len > 0)
1427 		printf("%d bytes unaccounted for.\n", len);
1428 	return;
1429 }
1430 
1431 u_int
1432 m_fixhdr(struct mbuf *m0)
1433 {
1434 	u_int len;
1435 
1436 	len = m_length(m0, NULL);
1437 	m0->m_pkthdr.len = len;
1438 	return (len);
1439 }
1440 
1441 u_int
1442 m_length(struct mbuf *m0, struct mbuf **last)
1443 {
1444 	struct mbuf *m;
1445 	u_int len;
1446 
1447 	len = 0;
1448 	for (m = m0; m != NULL; m = m->m_next) {
1449 		len += m->m_len;
1450 		if (m->m_next == NULL)
1451 			break;
1452 	}
1453 	if (last != NULL)
1454 		*last = m;
1455 	return (len);
1456 }
1457 
1458 /*
1459  * Defragment a mbuf chain, returning the shortest possible
1460  * chain of mbufs and clusters.  If allocation fails and
1461  * this cannot be completed, NULL will be returned, but
1462  * the passed in chain will be unchanged.  Upon success,
1463  * the original chain will be freed, and the new chain
1464  * will be returned.
1465  *
1466  * If a non-packet header is passed in, the original
1467  * mbuf (chain?) will be returned unharmed.
1468  */
1469 struct mbuf *
1470 m_defrag(struct mbuf *m0, int how)
1471 {
1472 	struct mbuf *m_new = NULL, *m_final = NULL;
1473 	int progress = 0, length;
1474 
1475 	MBUF_CHECKSLEEP(how);
1476 	if (!(m0->m_flags & M_PKTHDR))
1477 		return (m0);
1478 
1479 	m_fixhdr(m0); /* Needed sanity check */
1480 
1481 #ifdef MBUF_STRESS_TEST
1482 	if (m_defragrandomfailures) {
1483 		int temp = arc4random() & 0xff;
1484 		if (temp == 0xba)
1485 			goto nospace;
1486 	}
1487 #endif
1488 
1489 	if (m0->m_pkthdr.len > MHLEN)
1490 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1491 	else
1492 		m_final = m_gethdr(how, MT_DATA);
1493 
1494 	if (m_final == NULL)
1495 		goto nospace;
1496 
1497 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1498 		goto nospace;
1499 
1500 	m_new = m_final;
1501 
1502 	while (progress < m0->m_pkthdr.len) {
1503 		length = m0->m_pkthdr.len - progress;
1504 		if (length > MCLBYTES)
1505 			length = MCLBYTES;
1506 
1507 		if (m_new == NULL) {
1508 			if (length > MLEN)
1509 				m_new = m_getcl(how, MT_DATA, 0);
1510 			else
1511 				m_new = m_get(how, MT_DATA);
1512 			if (m_new == NULL)
1513 				goto nospace;
1514 		}
1515 
1516 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1517 		progress += length;
1518 		m_new->m_len = length;
1519 		if (m_new != m_final)
1520 			m_cat(m_final, m_new);
1521 		m_new = NULL;
1522 	}
1523 #ifdef MBUF_STRESS_TEST
1524 	if (m0->m_next == NULL)
1525 		m_defraguseless++;
1526 #endif
1527 	m_freem(m0);
1528 	m0 = m_final;
1529 #ifdef MBUF_STRESS_TEST
1530 	m_defragpackets++;
1531 	m_defragbytes += m0->m_pkthdr.len;
1532 #endif
1533 	return (m0);
1534 nospace:
1535 #ifdef MBUF_STRESS_TEST
1536 	m_defragfailure++;
1537 #endif
1538 	if (m_final)
1539 		m_freem(m_final);
1540 	return (NULL);
1541 }
1542 
1543 /*
1544  * Return the number of fragments an mbuf will use.  This is usually
1545  * used as a proxy for the number of scatter/gather elements needed by
1546  * a DMA engine to access an mbuf.  In general mapped mbufs are
1547  * assumed to be backed by physically contiguous buffers that only
1548  * need a single fragment.  Unmapped mbufs, on the other hand, can
1549  * span disjoint physical pages.
1550  */
1551 static int
1552 frags_per_mbuf(struct mbuf *m)
1553 {
1554 	int frags;
1555 
1556 	if ((m->m_flags & M_EXTPG) == 0)
1557 		return (1);
1558 
1559 	/*
1560 	 * The header and trailer are counted as a single fragment
1561 	 * each when present.
1562 	 *
1563 	 * XXX: This overestimates the number of fragments by assuming
1564 	 * all the backing physical pages are disjoint.
1565 	 */
1566 	frags = 0;
1567 	if (m->m_epg_hdrlen != 0)
1568 		frags++;
1569 	frags += m->m_epg_npgs;
1570 	if (m->m_epg_trllen != 0)
1571 		frags++;
1572 
1573 	return (frags);
1574 }
1575 
1576 /*
1577  * Defragment an mbuf chain, returning at most maxfrags separate
1578  * mbufs+clusters.  If this is not possible NULL is returned and
1579  * the original mbuf chain is left in its present (potentially
1580  * modified) state.  We use two techniques: collapsing consecutive
1581  * mbufs and replacing consecutive mbufs by a cluster.
1582  *
1583  * NB: this should really be named m_defrag but that name is taken
1584  */
1585 struct mbuf *
1586 m_collapse(struct mbuf *m0, int how, int maxfrags)
1587 {
1588 	struct mbuf *m, *n, *n2, **prev;
1589 	u_int curfrags;
1590 
1591 	/*
1592 	 * Calculate the current number of frags.
1593 	 */
1594 	curfrags = 0;
1595 	for (m = m0; m != NULL; m = m->m_next)
1596 		curfrags += frags_per_mbuf(m);
1597 	/*
1598 	 * First, try to collapse mbufs.  Note that we always collapse
1599 	 * towards the front so we don't need to deal with moving the
1600 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1601 	 * less data than the following.
1602 	 */
1603 	m = m0;
1604 again:
1605 	for (;;) {
1606 		n = m->m_next;
1607 		if (n == NULL)
1608 			break;
1609 		if (M_WRITABLE(m) &&
1610 		    n->m_len < M_TRAILINGSPACE(m)) {
1611 			m_copydata(n, 0, n->m_len,
1612 			    mtod(m, char *) + m->m_len);
1613 			m->m_len += n->m_len;
1614 			m->m_next = n->m_next;
1615 			curfrags -= frags_per_mbuf(n);
1616 			m_free(n);
1617 			if (curfrags <= maxfrags)
1618 				return m0;
1619 		} else
1620 			m = n;
1621 	}
1622 	KASSERT(maxfrags > 1,
1623 		("maxfrags %u, but normal collapse failed", maxfrags));
1624 	/*
1625 	 * Collapse consecutive mbufs to a cluster.
1626 	 */
1627 	prev = &m0->m_next;		/* NB: not the first mbuf */
1628 	while ((n = *prev) != NULL) {
1629 		if ((n2 = n->m_next) != NULL &&
1630 		    n->m_len + n2->m_len < MCLBYTES) {
1631 			m = m_getcl(how, MT_DATA, 0);
1632 			if (m == NULL)
1633 				goto bad;
1634 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1635 			m_copydata(n2, 0,  n2->m_len,
1636 			    mtod(m, char *) + n->m_len);
1637 			m->m_len = n->m_len + n2->m_len;
1638 			m->m_next = n2->m_next;
1639 			*prev = m;
1640 			curfrags += 1;  /* For the new cluster */
1641 			curfrags -= frags_per_mbuf(n);
1642 			curfrags -= frags_per_mbuf(n2);
1643 			m_free(n);
1644 			m_free(n2);
1645 			if (curfrags <= maxfrags)
1646 				return m0;
1647 			/*
1648 			 * Still not there, try the normal collapse
1649 			 * again before we allocate another cluster.
1650 			 */
1651 			goto again;
1652 		}
1653 		prev = &n->m_next;
1654 	}
1655 	/*
1656 	 * No place where we can collapse to a cluster; punt.
1657 	 * This can occur if, for example, you request 2 frags
1658 	 * but the packet requires that both be clusters (we
1659 	 * never reallocate the first mbuf to avoid moving the
1660 	 * packet header).
1661 	 */
1662 bad:
1663 	return NULL;
1664 }
1665 
1666 #ifdef MBUF_STRESS_TEST
1667 
1668 /*
1669  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1670  * this in normal usage, but it's great for stress testing various
1671  * mbuf consumers.
1672  *
1673  * If fragmentation is not possible, the original chain will be
1674  * returned.
1675  *
1676  * Possible length values:
1677  * 0	 no fragmentation will occur
1678  * > 0	each fragment will be of the specified length
1679  * -1	each fragment will be the same random value in length
1680  * -2	each fragment's length will be entirely random
1681  * (Random values range from 1 to 256)
1682  */
1683 struct mbuf *
1684 m_fragment(struct mbuf *m0, int how, int length)
1685 {
1686 	struct mbuf *m_first, *m_last;
1687 	int divisor = 255, progress = 0, fraglen;
1688 
1689 	if (!(m0->m_flags & M_PKTHDR))
1690 		return (m0);
1691 
1692 	if (length == 0 || length < -2)
1693 		return (m0);
1694 	if (length > MCLBYTES)
1695 		length = MCLBYTES;
1696 	if (length < 0 && divisor > MCLBYTES)
1697 		divisor = MCLBYTES;
1698 	if (length == -1)
1699 		length = 1 + (arc4random() % divisor);
1700 	if (length > 0)
1701 		fraglen = length;
1702 
1703 	m_fixhdr(m0); /* Needed sanity check */
1704 
1705 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1706 	if (m_first == NULL)
1707 		goto nospace;
1708 
1709 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1710 		goto nospace;
1711 
1712 	m_last = m_first;
1713 
1714 	while (progress < m0->m_pkthdr.len) {
1715 		if (length == -2)
1716 			fraglen = 1 + (arc4random() % divisor);
1717 		if (fraglen > m0->m_pkthdr.len - progress)
1718 			fraglen = m0->m_pkthdr.len - progress;
1719 
1720 		if (progress != 0) {
1721 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1722 			if (m_new == NULL)
1723 				goto nospace;
1724 
1725 			m_last->m_next = m_new;
1726 			m_last = m_new;
1727 		}
1728 
1729 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1730 		progress += fraglen;
1731 		m_last->m_len = fraglen;
1732 	}
1733 	m_freem(m0);
1734 	m0 = m_first;
1735 	return (m0);
1736 nospace:
1737 	if (m_first)
1738 		m_freem(m_first);
1739 	/* Return the original chain on failure */
1740 	return (m0);
1741 }
1742 
1743 #endif
1744 
1745 /*
1746  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1747  * vm_page_alloc() and aren't associated with any object.  Complement
1748  * to allocator from m_uiotombuf_nomap().
1749  */
1750 void
1751 mb_free_mext_pgs(struct mbuf *m)
1752 {
1753 	vm_page_t pg;
1754 
1755 	M_ASSERTEXTPG(m);
1756 	for (int i = 0; i < m->m_epg_npgs; i++) {
1757 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1758 		vm_page_unwire_noq(pg);
1759 		vm_page_free(pg);
1760 	}
1761 }
1762 
1763 static struct mbuf *
1764 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1765 {
1766 	struct mbuf *m, *mb, *prev;
1767 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1768 	int error, length, i, needed;
1769 	ssize_t total;
1770 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP |
1771 	    VM_ALLOC_WIRED;
1772 
1773 	MPASS((flags & M_PKTHDR) == 0);
1774 	MPASS((how & M_ZERO) == 0);
1775 
1776 	/*
1777 	 * len can be zero or an arbitrary large value bound by
1778 	 * the total data supplied by the uio.
1779 	 */
1780 	if (len > 0)
1781 		total = MIN(uio->uio_resid, len);
1782 	else
1783 		total = uio->uio_resid;
1784 
1785 	if (maxseg == 0)
1786 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1787 
1788 	/*
1789 	 * If total is zero, return an empty mbuf.  This can occur
1790 	 * for TLS 1.0 connections which send empty fragments as
1791 	 * a countermeasure against the known-IV weakness in CBC
1792 	 * ciphersuites.
1793 	 */
1794 	if (__predict_false(total == 0)) {
1795 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1796 		if (mb == NULL)
1797 			return (NULL);
1798 		mb->m_epg_flags = EPG_FLAG_ANON;
1799 		return (mb);
1800 	}
1801 
1802 	/*
1803 	 * Allocate the pages
1804 	 */
1805 	m = NULL;
1806 	while (total > 0) {
1807 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1808 		if (mb == NULL)
1809 			goto failed;
1810 		if (m == NULL)
1811 			m = mb;
1812 		else
1813 			prev->m_next = mb;
1814 		prev = mb;
1815 		mb->m_epg_flags = EPG_FLAG_ANON;
1816 		needed = length = MIN(maxseg, total);
1817 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1818 retry_page:
1819 			pg_array[i] = vm_page_alloc(NULL, 0, pflags);
1820 			if (pg_array[i] == NULL) {
1821 				if (how & M_NOWAIT) {
1822 					goto failed;
1823 				} else {
1824 					vm_wait(NULL);
1825 					goto retry_page;
1826 				}
1827 			}
1828 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1829 			mb->m_epg_npgs++;
1830 		}
1831 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1832 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1833 		total -= length;
1834 		error = uiomove_fromphys(pg_array, 0, length, uio);
1835 		if (error != 0)
1836 			goto failed;
1837 		mb->m_len = length;
1838 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1839 		if (flags & M_PKTHDR)
1840 			m->m_pkthdr.len += length;
1841 	}
1842 	return (m);
1843 
1844 failed:
1845 	m_freem(m);
1846 	return (NULL);
1847 }
1848 
1849 /*
1850  * Copy the contents of uio into a properly sized mbuf chain.
1851  */
1852 struct mbuf *
1853 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1854 {
1855 	struct mbuf *m, *mb;
1856 	int error, length;
1857 	ssize_t total;
1858 	int progress = 0;
1859 
1860 	if (flags & M_EXTPG)
1861 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1862 
1863 	/*
1864 	 * len can be zero or an arbitrary large value bound by
1865 	 * the total data supplied by the uio.
1866 	 */
1867 	if (len > 0)
1868 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1869 	else
1870 		total = uio->uio_resid;
1871 
1872 	/*
1873 	 * The smallest unit returned by m_getm2() is a single mbuf
1874 	 * with pkthdr.  We can't align past it.
1875 	 */
1876 	if (align >= MHLEN)
1877 		return (NULL);
1878 
1879 	/*
1880 	 * Give us the full allocation or nothing.
1881 	 * If len is zero return the smallest empty mbuf.
1882 	 */
1883 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1884 	if (m == NULL)
1885 		return (NULL);
1886 	m->m_data += align;
1887 
1888 	/* Fill all mbufs with uio data and update header information. */
1889 	for (mb = m; mb != NULL; mb = mb->m_next) {
1890 		length = min(M_TRAILINGSPACE(mb), total - progress);
1891 
1892 		error = uiomove(mtod(mb, void *), length, uio);
1893 		if (error) {
1894 			m_freem(m);
1895 			return (NULL);
1896 		}
1897 
1898 		mb->m_len = length;
1899 		progress += length;
1900 		if (flags & M_PKTHDR)
1901 			m->m_pkthdr.len += length;
1902 	}
1903 	KASSERT(progress == total, ("%s: progress != total", __func__));
1904 
1905 	return (m);
1906 }
1907 
1908 /*
1909  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
1910  */
1911 int
1912 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
1913 {
1914 	vm_page_t pg;
1915 	int error, i, off, pglen, pgoff, seglen, segoff;
1916 
1917 	M_ASSERTEXTPG(m);
1918 	error = 0;
1919 
1920 	/* Skip over any data removed from the front. */
1921 	off = mtod(m, vm_offset_t);
1922 
1923 	off += m_off;
1924 	if (m->m_epg_hdrlen != 0) {
1925 		if (off >= m->m_epg_hdrlen) {
1926 			off -= m->m_epg_hdrlen;
1927 		} else {
1928 			seglen = m->m_epg_hdrlen - off;
1929 			segoff = off;
1930 			seglen = min(seglen, len);
1931 			off = 0;
1932 			len -= seglen;
1933 			error = uiomove(__DECONST(void *,
1934 			    &m->m_epg_hdr[segoff]), seglen, uio);
1935 		}
1936 	}
1937 	pgoff = m->m_epg_1st_off;
1938 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
1939 		pglen = m_epg_pagelen(m, i, pgoff);
1940 		if (off >= pglen) {
1941 			off -= pglen;
1942 			pgoff = 0;
1943 			continue;
1944 		}
1945 		seglen = pglen - off;
1946 		segoff = pgoff + off;
1947 		off = 0;
1948 		seglen = min(seglen, len);
1949 		len -= seglen;
1950 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1951 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1952 		pgoff = 0;
1953 	};
1954 	if (len != 0 && error == 0) {
1955 		KASSERT((off + len) <= m->m_epg_trllen,
1956 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1957 		    m->m_epg_trllen, m_off));
1958 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
1959 		    len, uio);
1960 	}
1961 	return (error);
1962 }
1963 
1964 /*
1965  * Copy an mbuf chain into a uio limited by len if set.
1966  */
1967 int
1968 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1969 {
1970 	int error, length, total;
1971 	int progress = 0;
1972 
1973 	if (len > 0)
1974 		total = min(uio->uio_resid, len);
1975 	else
1976 		total = uio->uio_resid;
1977 
1978 	/* Fill the uio with data from the mbufs. */
1979 	for (; m != NULL; m = m->m_next) {
1980 		length = min(m->m_len, total - progress);
1981 
1982 		if ((m->m_flags & M_EXTPG) != 0)
1983 			error = m_unmapped_uiomove(m, 0, uio, length);
1984 		else
1985 			error = uiomove(mtod(m, void *), length, uio);
1986 		if (error)
1987 			return (error);
1988 
1989 		progress += length;
1990 	}
1991 
1992 	return (0);
1993 }
1994 
1995 /*
1996  * Create a writable copy of the mbuf chain.  While doing this
1997  * we compact the chain with a goal of producing a chain with
1998  * at most two mbufs.  The second mbuf in this chain is likely
1999  * to be a cluster.  The primary purpose of this work is to create
2000  * a writable packet for encryption, compression, etc.  The
2001  * secondary goal is to linearize the data so the data can be
2002  * passed to crypto hardware in the most efficient manner possible.
2003  */
2004 struct mbuf *
2005 m_unshare(struct mbuf *m0, int how)
2006 {
2007 	struct mbuf *m, *mprev;
2008 	struct mbuf *n, *mfirst, *mlast;
2009 	int len, off;
2010 
2011 	mprev = NULL;
2012 	for (m = m0; m != NULL; m = mprev->m_next) {
2013 		/*
2014 		 * Regular mbufs are ignored unless there's a cluster
2015 		 * in front of it that we can use to coalesce.  We do
2016 		 * the latter mainly so later clusters can be coalesced
2017 		 * also w/o having to handle them specially (i.e. convert
2018 		 * mbuf+cluster -> cluster).  This optimization is heavily
2019 		 * influenced by the assumption that we're running over
2020 		 * Ethernet where MCLBYTES is large enough that the max
2021 		 * packet size will permit lots of coalescing into a
2022 		 * single cluster.  This in turn permits efficient
2023 		 * crypto operations, especially when using hardware.
2024 		 */
2025 		if ((m->m_flags & M_EXT) == 0) {
2026 			if (mprev && (mprev->m_flags & M_EXT) &&
2027 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
2028 				/* XXX: this ignores mbuf types */
2029 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2030 				    mtod(m, caddr_t), m->m_len);
2031 				mprev->m_len += m->m_len;
2032 				mprev->m_next = m->m_next;	/* unlink from chain */
2033 				m_free(m);			/* reclaim mbuf */
2034 			} else {
2035 				mprev = m;
2036 			}
2037 			continue;
2038 		}
2039 		/*
2040 		 * Writable mbufs are left alone (for now).
2041 		 */
2042 		if (M_WRITABLE(m)) {
2043 			mprev = m;
2044 			continue;
2045 		}
2046 
2047 		/*
2048 		 * Not writable, replace with a copy or coalesce with
2049 		 * the previous mbuf if possible (since we have to copy
2050 		 * it anyway, we try to reduce the number of mbufs and
2051 		 * clusters so that future work is easier).
2052 		 */
2053 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2054 		/* NB: we only coalesce into a cluster or larger */
2055 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2056 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
2057 			/* XXX: this ignores mbuf types */
2058 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2059 			    mtod(m, caddr_t), m->m_len);
2060 			mprev->m_len += m->m_len;
2061 			mprev->m_next = m->m_next;	/* unlink from chain */
2062 			m_free(m);			/* reclaim mbuf */
2063 			continue;
2064 		}
2065 
2066 		/*
2067 		 * Allocate new space to hold the copy and copy the data.
2068 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
2069 		 * splitting them into clusters.  We could just malloc a
2070 		 * buffer and make it external but too many device drivers
2071 		 * don't know how to break up the non-contiguous memory when
2072 		 * doing DMA.
2073 		 */
2074 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2075 		if (n == NULL) {
2076 			m_freem(m0);
2077 			return (NULL);
2078 		}
2079 		if (m->m_flags & M_PKTHDR) {
2080 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
2081 			    __func__, m0, m));
2082 			m_move_pkthdr(n, m);
2083 		}
2084 		len = m->m_len;
2085 		off = 0;
2086 		mfirst = n;
2087 		mlast = NULL;
2088 		for (;;) {
2089 			int cc = min(len, MCLBYTES);
2090 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2091 			n->m_len = cc;
2092 			if (mlast != NULL)
2093 				mlast->m_next = n;
2094 			mlast = n;
2095 #if 0
2096 			newipsecstat.ips_clcopied++;
2097 #endif
2098 
2099 			len -= cc;
2100 			if (len <= 0)
2101 				break;
2102 			off += cc;
2103 
2104 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2105 			if (n == NULL) {
2106 				m_freem(mfirst);
2107 				m_freem(m0);
2108 				return (NULL);
2109 			}
2110 		}
2111 		n->m_next = m->m_next;
2112 		if (mprev == NULL)
2113 			m0 = mfirst;		/* new head of chain */
2114 		else
2115 			mprev->m_next = mfirst;	/* replace old mbuf */
2116 		m_free(m);			/* release old mbuf */
2117 		mprev = mfirst;
2118 	}
2119 	return (m0);
2120 }
2121 
2122 #ifdef MBUF_PROFILING
2123 
2124 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2125 struct mbufprofile {
2126 	uintmax_t wasted[MP_BUCKETS];
2127 	uintmax_t used[MP_BUCKETS];
2128 	uintmax_t segments[MP_BUCKETS];
2129 } mbprof;
2130 
2131 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2132 #define MP_NUMLINES 6
2133 #define MP_NUMSPERLINE 16
2134 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2135 /* work out max space needed and add a bit of spare space too */
2136 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2137 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2138 
2139 char mbprofbuf[MP_BUFSIZE];
2140 
2141 void
2142 m_profile(struct mbuf *m)
2143 {
2144 	int segments = 0;
2145 	int used = 0;
2146 	int wasted = 0;
2147 
2148 	while (m) {
2149 		segments++;
2150 		used += m->m_len;
2151 		if (m->m_flags & M_EXT) {
2152 			wasted += MHLEN - sizeof(m->m_ext) +
2153 			    m->m_ext.ext_size - m->m_len;
2154 		} else {
2155 			if (m->m_flags & M_PKTHDR)
2156 				wasted += MHLEN - m->m_len;
2157 			else
2158 				wasted += MLEN - m->m_len;
2159 		}
2160 		m = m->m_next;
2161 	}
2162 	/* be paranoid.. it helps */
2163 	if (segments > MP_BUCKETS - 1)
2164 		segments = MP_BUCKETS - 1;
2165 	if (used > 100000)
2166 		used = 100000;
2167 	if (wasted > 100000)
2168 		wasted = 100000;
2169 	/* store in the appropriate bucket */
2170 	/* don't bother locking. if it's slightly off, so what? */
2171 	mbprof.segments[segments]++;
2172 	mbprof.used[fls(used)]++;
2173 	mbprof.wasted[fls(wasted)]++;
2174 }
2175 
2176 static void
2177 mbprof_textify(void)
2178 {
2179 	int offset;
2180 	char *c;
2181 	uint64_t *p;
2182 
2183 	p = &mbprof.wasted[0];
2184 	c = mbprofbuf;
2185 	offset = snprintf(c, MP_MAXLINE + 10,
2186 	    "wasted:\n"
2187 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2188 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2189 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2190 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2191 #ifdef BIG_ARRAY
2192 	p = &mbprof.wasted[16];
2193 	c += offset;
2194 	offset = snprintf(c, MP_MAXLINE,
2195 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2196 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2197 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2198 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2199 #endif
2200 	p = &mbprof.used[0];
2201 	c += offset;
2202 	offset = snprintf(c, MP_MAXLINE + 10,
2203 	    "used:\n"
2204 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2205 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2206 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2207 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2208 #ifdef BIG_ARRAY
2209 	p = &mbprof.used[16];
2210 	c += offset;
2211 	offset = snprintf(c, MP_MAXLINE,
2212 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2213 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2214 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2215 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2216 #endif
2217 	p = &mbprof.segments[0];
2218 	c += offset;
2219 	offset = snprintf(c, MP_MAXLINE + 10,
2220 	    "segments:\n"
2221 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2222 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2223 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2224 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2225 #ifdef BIG_ARRAY
2226 	p = &mbprof.segments[16];
2227 	c += offset;
2228 	offset = snprintf(c, MP_MAXLINE,
2229 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2230 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2231 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2232 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2233 #endif
2234 }
2235 
2236 static int
2237 mbprof_handler(SYSCTL_HANDLER_ARGS)
2238 {
2239 	int error;
2240 
2241 	mbprof_textify();
2242 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2243 	return (error);
2244 }
2245 
2246 static int
2247 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2248 {
2249 	int clear, error;
2250 
2251 	clear = 0;
2252 	error = sysctl_handle_int(oidp, &clear, 0, req);
2253 	if (error || !req->newptr)
2254 		return (error);
2255 
2256 	if (clear) {
2257 		bzero(&mbprof, sizeof(mbprof));
2258 	}
2259 
2260 	return (error);
2261 }
2262 
2263 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2264     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
2265     mbprof_handler, "A",
2266     "mbuf profiling statistics");
2267 
2268 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2269     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
2270     mbprof_clr_handler, "I",
2271     "clear mbuf profiling statistics");
2272 #endif
2273