xref: /freebsd/sys/kern/uipc_shm.c (revision 2b68eb8e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006, 2011, 2016-2017 Robert N. M. Watson
5  * Copyright 2020 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * Portions of this software were developed by BAE Systems, the University of
9  * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
10  * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
11  * Computing (TC) research program.
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 /*
39  * Support for shared swap-backed anonymous memory objects via
40  * shm_open(2), shm_rename(2), and shm_unlink(2).
41  * While most of the implementation is here, vm_mmap.c contains
42  * mapping logic changes.
43  *
44  * posixshmcontrol(1) allows users to inspect the state of the memory
45  * objects.  Per-uid swap resource limit controls total amount of
46  * memory that user can consume for anonymous objects, including
47  * shared.
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_capsicum.h"
54 #include "opt_ktrace.h"
55 
56 #include <sys/param.h>
57 #include <sys/capsicum.h>
58 #include <sys/conf.h>
59 #include <sys/fcntl.h>
60 #include <sys/file.h>
61 #include <sys/filedesc.h>
62 #include <sys/filio.h>
63 #include <sys/fnv_hash.h>
64 #include <sys/kernel.h>
65 #include <sys/limits.h>
66 #include <sys/uio.h>
67 #include <sys/signal.h>
68 #include <sys/jail.h>
69 #include <sys/ktrace.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mman.h>
73 #include <sys/mutex.h>
74 #include <sys/priv.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/sbuf.h>
80 #include <sys/stat.h>
81 #include <sys/syscallsubr.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysproto.h>
84 #include <sys/systm.h>
85 #include <sys/sx.h>
86 #include <sys/time.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 #include <sys/unistd.h>
90 #include <sys/user.h>
91 
92 #include <security/audit/audit.h>
93 #include <security/mac/mac_framework.h>
94 
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 
107 struct shm_mapping {
108 	char		*sm_path;
109 	Fnv32_t		sm_fnv;
110 	struct shmfd	*sm_shmfd;
111 	LIST_ENTRY(shm_mapping) sm_link;
112 };
113 
114 static MALLOC_DEFINE(M_SHMFD, "shmfd", "shared memory file descriptor");
115 static LIST_HEAD(, shm_mapping) *shm_dictionary;
116 static struct sx shm_dict_lock;
117 static struct mtx shm_timestamp_lock;
118 static u_long shm_hash;
119 static struct unrhdr64 shm_ino_unr;
120 static dev_t shm_dev_ino;
121 
122 #define	SHM_HASH(fnv)	(&shm_dictionary[(fnv) & shm_hash])
123 
124 static void	shm_init(void *arg);
125 static void	shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd);
126 static struct shmfd *shm_lookup(char *path, Fnv32_t fnv);
127 static int	shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred);
128 static int	shm_dotruncate_cookie(struct shmfd *shmfd, off_t length,
129     void *rl_cookie);
130 static int	shm_dotruncate_locked(struct shmfd *shmfd, off_t length,
131     void *rl_cookie);
132 static int	shm_copyin_path(struct thread *td, const char *userpath_in,
133     char **path_out);
134 static int	shm_deallocate(struct shmfd *shmfd, off_t *offset,
135     off_t *length, int flags);
136 
137 static fo_rdwr_t	shm_read;
138 static fo_rdwr_t	shm_write;
139 static fo_truncate_t	shm_truncate;
140 static fo_ioctl_t	shm_ioctl;
141 static fo_stat_t	shm_stat;
142 static fo_close_t	shm_close;
143 static fo_chmod_t	shm_chmod;
144 static fo_chown_t	shm_chown;
145 static fo_seek_t	shm_seek;
146 static fo_fill_kinfo_t	shm_fill_kinfo;
147 static fo_mmap_t	shm_mmap;
148 static fo_get_seals_t	shm_get_seals;
149 static fo_add_seals_t	shm_add_seals;
150 static fo_fallocate_t	shm_fallocate;
151 static fo_fspacectl_t	shm_fspacectl;
152 
153 /* File descriptor operations. */
154 struct fileops shm_ops = {
155 	.fo_read = shm_read,
156 	.fo_write = shm_write,
157 	.fo_truncate = shm_truncate,
158 	.fo_ioctl = shm_ioctl,
159 	.fo_poll = invfo_poll,
160 	.fo_kqfilter = invfo_kqfilter,
161 	.fo_stat = shm_stat,
162 	.fo_close = shm_close,
163 	.fo_chmod = shm_chmod,
164 	.fo_chown = shm_chown,
165 	.fo_sendfile = vn_sendfile,
166 	.fo_seek = shm_seek,
167 	.fo_fill_kinfo = shm_fill_kinfo,
168 	.fo_mmap = shm_mmap,
169 	.fo_get_seals = shm_get_seals,
170 	.fo_add_seals = shm_add_seals,
171 	.fo_fallocate = shm_fallocate,
172 	.fo_fspacectl = shm_fspacectl,
173 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE,
174 };
175 
176 FEATURE(posix_shm, "POSIX shared memory");
177 
178 static SYSCTL_NODE(_vm, OID_AUTO, largepages, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
179     "");
180 
181 static int largepage_reclaim_tries = 1;
182 SYSCTL_INT(_vm_largepages, OID_AUTO, reclaim_tries,
183     CTLFLAG_RWTUN, &largepage_reclaim_tries, 0,
184     "Number of contig reclaims before giving up for default alloc policy");
185 
186 static int
187 uiomove_object_page(vm_object_t obj, size_t len, struct uio *uio)
188 {
189 	vm_page_t m;
190 	vm_pindex_t idx;
191 	size_t tlen;
192 	int error, offset, rv;
193 
194 	idx = OFF_TO_IDX(uio->uio_offset);
195 	offset = uio->uio_offset & PAGE_MASK;
196 	tlen = MIN(PAGE_SIZE - offset, len);
197 
198 	rv = vm_page_grab_valid_unlocked(&m, obj, idx,
199 	    VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOCREAT);
200 	if (rv == VM_PAGER_OK)
201 		goto found;
202 
203 	/*
204 	 * Read I/O without either a corresponding resident page or swap
205 	 * page: use zero_region.  This is intended to avoid instantiating
206 	 * pages on read from a sparse region.
207 	 */
208 	VM_OBJECT_WLOCK(obj);
209 	m = vm_page_lookup(obj, idx);
210 	if (uio->uio_rw == UIO_READ && m == NULL &&
211 	    !vm_pager_has_page(obj, idx, NULL, NULL)) {
212 		VM_OBJECT_WUNLOCK(obj);
213 		return (uiomove(__DECONST(void *, zero_region), tlen, uio));
214 	}
215 
216 	/*
217 	 * Although the tmpfs vnode lock is held here, it is
218 	 * nonetheless safe to sleep waiting for a free page.  The
219 	 * pageout daemon does not need to acquire the tmpfs vnode
220 	 * lock to page out tobj's pages because tobj is a OBJT_SWAP
221 	 * type object.
222 	 */
223 	rv = vm_page_grab_valid(&m, obj, idx,
224 	    VM_ALLOC_NORMAL | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY);
225 	if (rv != VM_PAGER_OK) {
226 		VM_OBJECT_WUNLOCK(obj);
227 		printf("uiomove_object: vm_obj %p idx %jd pager error %d\n",
228 		    obj, idx, rv);
229 		return (EIO);
230 	}
231 	VM_OBJECT_WUNLOCK(obj);
232 
233 found:
234 	error = uiomove_fromphys(&m, offset, tlen, uio);
235 	if (uio->uio_rw == UIO_WRITE && error == 0)
236 		vm_page_set_dirty(m);
237 	vm_page_activate(m);
238 	vm_page_sunbusy(m);
239 
240 	return (error);
241 }
242 
243 int
244 uiomove_object(vm_object_t obj, off_t obj_size, struct uio *uio)
245 {
246 	ssize_t resid;
247 	size_t len;
248 	int error;
249 
250 	error = 0;
251 	while ((resid = uio->uio_resid) > 0) {
252 		if (obj_size <= uio->uio_offset)
253 			break;
254 		len = MIN(obj_size - uio->uio_offset, resid);
255 		if (len == 0)
256 			break;
257 		error = uiomove_object_page(obj, len, uio);
258 		if (error != 0 || resid == uio->uio_resid)
259 			break;
260 	}
261 	return (error);
262 }
263 
264 static u_long count_largepages[MAXPAGESIZES];
265 
266 static int
267 shm_largepage_phys_populate(vm_object_t object, vm_pindex_t pidx,
268     int fault_type, vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
269 {
270 	vm_page_t m;
271 	int psind;
272 
273 	psind = object->un_pager.phys.data_val;
274 	if (psind == 0 || pidx >= object->size)
275 		return (VM_PAGER_FAIL);
276 	*first = rounddown2(pidx, pagesizes[psind] / PAGE_SIZE);
277 
278 	/*
279 	 * We only busy the first page in the superpage run.  It is
280 	 * useless to busy whole run since we only remove full
281 	 * superpage, and it takes too long to busy e.g. 512 * 512 ==
282 	 * 262144 pages constituing 1G amd64 superage.
283 	 */
284 	m = vm_page_grab(object, *first, VM_ALLOC_NORMAL | VM_ALLOC_NOCREAT);
285 	MPASS(m != NULL);
286 
287 	*last = *first + atop(pagesizes[psind]) - 1;
288 	return (VM_PAGER_OK);
289 }
290 
291 static boolean_t
292 shm_largepage_phys_haspage(vm_object_t object, vm_pindex_t pindex,
293     int *before, int *after)
294 {
295 	int psind;
296 
297 	psind = object->un_pager.phys.data_val;
298 	if (psind == 0 || pindex >= object->size)
299 		return (FALSE);
300 	if (before != NULL) {
301 		*before = pindex - rounddown2(pindex, pagesizes[psind] /
302 		    PAGE_SIZE);
303 	}
304 	if (after != NULL) {
305 		*after = roundup2(pindex, pagesizes[psind] / PAGE_SIZE) -
306 		    pindex;
307 	}
308 	return (TRUE);
309 }
310 
311 static void
312 shm_largepage_phys_ctor(vm_object_t object, vm_prot_t prot,
313     vm_ooffset_t foff, struct ucred *cred)
314 {
315 }
316 
317 static void
318 shm_largepage_phys_dtor(vm_object_t object)
319 {
320 	int psind;
321 
322 	psind = object->un_pager.phys.data_val;
323 	if (psind != 0) {
324 		atomic_subtract_long(&count_largepages[psind],
325 		    object->size / (pagesizes[psind] / PAGE_SIZE));
326 		vm_wire_sub(object->size);
327 	} else {
328 		KASSERT(object->size == 0,
329 		    ("largepage phys obj %p not initialized bit size %#jx > 0",
330 		    object, (uintmax_t)object->size));
331 	}
332 }
333 
334 static const struct phys_pager_ops shm_largepage_phys_ops = {
335 	.phys_pg_populate =	shm_largepage_phys_populate,
336 	.phys_pg_haspage =	shm_largepage_phys_haspage,
337 	.phys_pg_ctor =		shm_largepage_phys_ctor,
338 	.phys_pg_dtor =		shm_largepage_phys_dtor,
339 };
340 
341 bool
342 shm_largepage(struct shmfd *shmfd)
343 {
344 	return (shmfd->shm_object->type == OBJT_PHYS);
345 }
346 
347 static int
348 shm_seek(struct file *fp, off_t offset, int whence, struct thread *td)
349 {
350 	struct shmfd *shmfd;
351 	off_t foffset;
352 	int error;
353 
354 	shmfd = fp->f_data;
355 	foffset = foffset_lock(fp, 0);
356 	error = 0;
357 	switch (whence) {
358 	case L_INCR:
359 		if (foffset < 0 ||
360 		    (offset > 0 && foffset > OFF_MAX - offset)) {
361 			error = EOVERFLOW;
362 			break;
363 		}
364 		offset += foffset;
365 		break;
366 	case L_XTND:
367 		if (offset > 0 && shmfd->shm_size > OFF_MAX - offset) {
368 			error = EOVERFLOW;
369 			break;
370 		}
371 		offset += shmfd->shm_size;
372 		break;
373 	case L_SET:
374 		break;
375 	default:
376 		error = EINVAL;
377 	}
378 	if (error == 0) {
379 		if (offset < 0 || offset > shmfd->shm_size)
380 			error = EINVAL;
381 		else
382 			td->td_uretoff.tdu_off = offset;
383 	}
384 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
385 	return (error);
386 }
387 
388 static int
389 shm_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
390     int flags, struct thread *td)
391 {
392 	struct shmfd *shmfd;
393 	void *rl_cookie;
394 	int error;
395 
396 	shmfd = fp->f_data;
397 #ifdef MAC
398 	error = mac_posixshm_check_read(active_cred, fp->f_cred, shmfd);
399 	if (error)
400 		return (error);
401 #endif
402 	foffset_lock_uio(fp, uio, flags);
403 	rl_cookie = rangelock_rlock(&shmfd->shm_rl, uio->uio_offset,
404 	    uio->uio_offset + uio->uio_resid, &shmfd->shm_mtx);
405 	error = uiomove_object(shmfd->shm_object, shmfd->shm_size, uio);
406 	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
407 	foffset_unlock_uio(fp, uio, flags);
408 	return (error);
409 }
410 
411 static int
412 shm_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
413     int flags, struct thread *td)
414 {
415 	struct shmfd *shmfd;
416 	void *rl_cookie;
417 	int error;
418 	off_t size;
419 
420 	shmfd = fp->f_data;
421 #ifdef MAC
422 	error = mac_posixshm_check_write(active_cred, fp->f_cred, shmfd);
423 	if (error)
424 		return (error);
425 #endif
426 	if (shm_largepage(shmfd) && shmfd->shm_lp_psind == 0)
427 		return (EINVAL);
428 	foffset_lock_uio(fp, uio, flags);
429 	if (uio->uio_resid > OFF_MAX - uio->uio_offset) {
430 		/*
431 		 * Overflow is only an error if we're supposed to expand on
432 		 * write.  Otherwise, we'll just truncate the write to the
433 		 * size of the file, which can only grow up to OFF_MAX.
434 		 */
435 		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0) {
436 			foffset_unlock_uio(fp, uio, flags);
437 			return (EFBIG);
438 		}
439 
440 		size = shmfd->shm_size;
441 	} else {
442 		size = uio->uio_offset + uio->uio_resid;
443 	}
444 	if ((flags & FOF_OFFSET) == 0) {
445 		rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
446 		    &shmfd->shm_mtx);
447 	} else {
448 		rl_cookie = rangelock_wlock(&shmfd->shm_rl, uio->uio_offset,
449 		    size, &shmfd->shm_mtx);
450 	}
451 	if ((shmfd->shm_seals & F_SEAL_WRITE) != 0) {
452 		error = EPERM;
453 	} else {
454 		error = 0;
455 		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0 &&
456 		    size > shmfd->shm_size) {
457 			error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
458 		}
459 		if (error == 0)
460 			error = uiomove_object(shmfd->shm_object,
461 			    shmfd->shm_size, uio);
462 	}
463 	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
464 	foffset_unlock_uio(fp, uio, flags);
465 	return (error);
466 }
467 
468 static int
469 shm_truncate(struct file *fp, off_t length, struct ucred *active_cred,
470     struct thread *td)
471 {
472 	struct shmfd *shmfd;
473 #ifdef MAC
474 	int error;
475 #endif
476 
477 	shmfd = fp->f_data;
478 #ifdef MAC
479 	error = mac_posixshm_check_truncate(active_cred, fp->f_cred, shmfd);
480 	if (error)
481 		return (error);
482 #endif
483 	return (shm_dotruncate(shmfd, length));
484 }
485 
486 int
487 shm_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
488     struct thread *td)
489 {
490 	struct shmfd *shmfd;
491 	struct shm_largepage_conf *conf;
492 	void *rl_cookie;
493 
494 	shmfd = fp->f_data;
495 	switch (com) {
496 	case FIONBIO:
497 	case FIOASYNC:
498 		/*
499 		 * Allow fcntl(fd, F_SETFL, O_NONBLOCK) to work,
500 		 * just like it would on an unlinked regular file
501 		 */
502 		return (0);
503 	case FIOSSHMLPGCNF:
504 		if (!shm_largepage(shmfd))
505 			return (ENOTTY);
506 		conf = data;
507 		if (shmfd->shm_lp_psind != 0 &&
508 		    conf->psind != shmfd->shm_lp_psind)
509 			return (EINVAL);
510 		if (conf->psind <= 0 || conf->psind >= MAXPAGESIZES ||
511 		    pagesizes[conf->psind] == 0)
512 			return (EINVAL);
513 		if (conf->alloc_policy != SHM_LARGEPAGE_ALLOC_DEFAULT &&
514 		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_NOWAIT &&
515 		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_HARD)
516 			return (EINVAL);
517 
518 		rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
519 		    &shmfd->shm_mtx);
520 		shmfd->shm_lp_psind = conf->psind;
521 		shmfd->shm_lp_alloc_policy = conf->alloc_policy;
522 		shmfd->shm_object->un_pager.phys.data_val = conf->psind;
523 		rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
524 		return (0);
525 	case FIOGSHMLPGCNF:
526 		if (!shm_largepage(shmfd))
527 			return (ENOTTY);
528 		conf = data;
529 		rl_cookie = rangelock_rlock(&shmfd->shm_rl, 0, OFF_MAX,
530 		    &shmfd->shm_mtx);
531 		conf->psind = shmfd->shm_lp_psind;
532 		conf->alloc_policy = shmfd->shm_lp_alloc_policy;
533 		rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
534 		return (0);
535 	default:
536 		return (ENOTTY);
537 	}
538 }
539 
540 static int
541 shm_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
542 {
543 	struct shmfd *shmfd;
544 #ifdef MAC
545 	int error;
546 #endif
547 
548 	shmfd = fp->f_data;
549 
550 #ifdef MAC
551 	error = mac_posixshm_check_stat(active_cred, fp->f_cred, shmfd);
552 	if (error)
553 		return (error);
554 #endif
555 
556 	/*
557 	 * Attempt to return sanish values for fstat() on a memory file
558 	 * descriptor.
559 	 */
560 	bzero(sb, sizeof(*sb));
561 	sb->st_blksize = PAGE_SIZE;
562 	sb->st_size = shmfd->shm_size;
563 	sb->st_blocks = howmany(sb->st_size, sb->st_blksize);
564 	mtx_lock(&shm_timestamp_lock);
565 	sb->st_atim = shmfd->shm_atime;
566 	sb->st_ctim = shmfd->shm_ctime;
567 	sb->st_mtim = shmfd->shm_mtime;
568 	sb->st_birthtim = shmfd->shm_birthtime;
569 	sb->st_mode = S_IFREG | shmfd->shm_mode;		/* XXX */
570 	sb->st_uid = shmfd->shm_uid;
571 	sb->st_gid = shmfd->shm_gid;
572 	mtx_unlock(&shm_timestamp_lock);
573 	sb->st_dev = shm_dev_ino;
574 	sb->st_ino = shmfd->shm_ino;
575 	sb->st_nlink = shmfd->shm_object->ref_count;
576 	sb->st_blocks = shmfd->shm_object->size /
577 	    (pagesizes[shmfd->shm_lp_psind] >> PAGE_SHIFT);
578 
579 	return (0);
580 }
581 
582 static int
583 shm_close(struct file *fp, struct thread *td)
584 {
585 	struct shmfd *shmfd;
586 
587 	shmfd = fp->f_data;
588 	fp->f_data = NULL;
589 	shm_drop(shmfd);
590 
591 	return (0);
592 }
593 
594 static int
595 shm_copyin_path(struct thread *td, const char *userpath_in, char **path_out) {
596 	int error;
597 	char *path;
598 	const char *pr_path;
599 	size_t pr_pathlen;
600 
601 	path = malloc(MAXPATHLEN, M_SHMFD, M_WAITOK);
602 	pr_path = td->td_ucred->cr_prison->pr_path;
603 
604 	/* Construct a full pathname for jailed callers. */
605 	pr_pathlen = strcmp(pr_path, "/") ==
606 	    0 ? 0 : strlcpy(path, pr_path, MAXPATHLEN);
607 	error = copyinstr(userpath_in, path + pr_pathlen,
608 	    MAXPATHLEN - pr_pathlen, NULL);
609 	if (error != 0)
610 		goto out;
611 
612 #ifdef KTRACE
613 	if (KTRPOINT(curthread, KTR_NAMEI))
614 		ktrnamei(path);
615 #endif
616 
617 	/* Require paths to start with a '/' character. */
618 	if (path[pr_pathlen] != '/') {
619 		error = EINVAL;
620 		goto out;
621 	}
622 
623 	*path_out = path;
624 
625 out:
626 	if (error != 0)
627 		free(path, M_SHMFD);
628 
629 	return (error);
630 }
631 
632 static int
633 shm_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
634     int end)
635 {
636 	vm_page_t m;
637 	int rv;
638 
639 	VM_OBJECT_ASSERT_WLOCKED(object);
640 	KASSERT(base >= 0, ("%s: base %d", __func__, base));
641 	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
642 	    end));
643 
644 retry:
645 	m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
646 	if (m != NULL) {
647 		MPASS(vm_page_all_valid(m));
648 	} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
649 		m = vm_page_alloc(object, idx,
650 		    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
651 		if (m == NULL)
652 			goto retry;
653 		vm_object_pip_add(object, 1);
654 		VM_OBJECT_WUNLOCK(object);
655 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
656 		VM_OBJECT_WLOCK(object);
657 		vm_object_pip_wakeup(object);
658 		if (rv == VM_PAGER_OK) {
659 			/*
660 			 * Since the page was not resident, and therefore not
661 			 * recently accessed, immediately enqueue it for
662 			 * asynchronous laundering.  The current operation is
663 			 * not regarded as an access.
664 			 */
665 			vm_page_launder(m);
666 		} else {
667 			vm_page_free(m);
668 			VM_OBJECT_WUNLOCK(object);
669 			return (EIO);
670 		}
671 	}
672 	if (m != NULL) {
673 		pmap_zero_page_area(m, base, end - base);
674 		KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid",
675 		    __func__, m));
676 		vm_page_set_dirty(m);
677 		vm_page_xunbusy(m);
678 	}
679 
680 	return (0);
681 }
682 
683 static int
684 shm_dotruncate_locked(struct shmfd *shmfd, off_t length, void *rl_cookie)
685 {
686 	vm_object_t object;
687 	vm_pindex_t nobjsize;
688 	vm_ooffset_t delta;
689 	int base, error;
690 
691 	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
692 	object = shmfd->shm_object;
693 	VM_OBJECT_ASSERT_WLOCKED(object);
694 	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
695 	if (length == shmfd->shm_size)
696 		return (0);
697 	nobjsize = OFF_TO_IDX(length + PAGE_MASK);
698 
699 	/* Are we shrinking?  If so, trim the end. */
700 	if (length < shmfd->shm_size) {
701 		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
702 			return (EPERM);
703 
704 		/*
705 		 * Disallow any requests to shrink the size if this
706 		 * object is mapped into the kernel.
707 		 */
708 		if (shmfd->shm_kmappings > 0)
709 			return (EBUSY);
710 
711 		/*
712 		 * Zero the truncated part of the last page.
713 		 */
714 		base = length & PAGE_MASK;
715 		if (base != 0) {
716 			error = shm_partial_page_invalidate(object,
717 			    OFF_TO_IDX(length), base, PAGE_SIZE);
718 			if (error)
719 				return (error);
720 		}
721 		delta = IDX_TO_OFF(object->size - nobjsize);
722 
723 		if (nobjsize < object->size)
724 			vm_object_page_remove(object, nobjsize, object->size,
725 			    0);
726 
727 		/* Free the swap accounted for shm */
728 		swap_release_by_cred(delta, object->cred);
729 		object->charge -= delta;
730 	} else {
731 		if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
732 			return (EPERM);
733 
734 		/* Try to reserve additional swap space. */
735 		delta = IDX_TO_OFF(nobjsize - object->size);
736 		if (!swap_reserve_by_cred(delta, object->cred))
737 			return (ENOMEM);
738 		object->charge += delta;
739 	}
740 	shmfd->shm_size = length;
741 	mtx_lock(&shm_timestamp_lock);
742 	vfs_timestamp(&shmfd->shm_ctime);
743 	shmfd->shm_mtime = shmfd->shm_ctime;
744 	mtx_unlock(&shm_timestamp_lock);
745 	object->size = nobjsize;
746 	return (0);
747 }
748 
749 static int
750 shm_dotruncate_largepage(struct shmfd *shmfd, off_t length, void *rl_cookie)
751 {
752 	vm_object_t object;
753 	vm_page_t m;
754 	vm_pindex_t newobjsz, oldobjsz;
755 	int aflags, error, i, psind, try;
756 
757 	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
758 	object = shmfd->shm_object;
759 	VM_OBJECT_ASSERT_WLOCKED(object);
760 	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
761 
762 	oldobjsz = object->size;
763 	newobjsz = OFF_TO_IDX(length);
764 	if (length == shmfd->shm_size)
765 		return (0);
766 	psind = shmfd->shm_lp_psind;
767 	if (psind == 0 && length != 0)
768 		return (EINVAL);
769 	if ((length & (pagesizes[psind] - 1)) != 0)
770 		return (EINVAL);
771 
772 	if (length < shmfd->shm_size) {
773 		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
774 			return (EPERM);
775 		if (shmfd->shm_kmappings > 0)
776 			return (EBUSY);
777 		return (ENOTSUP);	/* Pages are unmanaged. */
778 #if 0
779 		vm_object_page_remove(object, newobjsz, oldobjsz, 0);
780 		object->size = newobjsz;
781 		shmfd->shm_size = length;
782 		return (0);
783 #endif
784 	}
785 
786 	if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
787 		return (EPERM);
788 
789 	aflags = VM_ALLOC_NORMAL | VM_ALLOC_ZERO;
790 	if (shmfd->shm_lp_alloc_policy == SHM_LARGEPAGE_ALLOC_NOWAIT)
791 		aflags |= VM_ALLOC_WAITFAIL;
792 	try = 0;
793 
794 	/*
795 	 * Extend shmfd and object, keeping all already fully
796 	 * allocated large pages intact even on error, because dropped
797 	 * object lock might allowed mapping of them.
798 	 */
799 	while (object->size < newobjsz) {
800 		m = vm_page_alloc_contig(object, object->size, aflags,
801 		    pagesizes[psind] / PAGE_SIZE, 0, ~0,
802 		    pagesizes[psind], 0,
803 		    VM_MEMATTR_DEFAULT);
804 		if (m == NULL) {
805 			VM_OBJECT_WUNLOCK(object);
806 			if (shmfd->shm_lp_alloc_policy ==
807 			    SHM_LARGEPAGE_ALLOC_NOWAIT ||
808 			    (shmfd->shm_lp_alloc_policy ==
809 			    SHM_LARGEPAGE_ALLOC_DEFAULT &&
810 			    try >= largepage_reclaim_tries)) {
811 				VM_OBJECT_WLOCK(object);
812 				return (ENOMEM);
813 			}
814 			error = vm_page_reclaim_contig(aflags,
815 			    pagesizes[psind] / PAGE_SIZE, 0, ~0,
816 			    pagesizes[psind], 0) ? 0 :
817 			    vm_wait_intr(object);
818 			if (error != 0) {
819 				VM_OBJECT_WLOCK(object);
820 				return (error);
821 			}
822 			try++;
823 			VM_OBJECT_WLOCK(object);
824 			continue;
825 		}
826 		try = 0;
827 		for (i = 0; i < pagesizes[psind] / PAGE_SIZE; i++) {
828 			if ((m[i].flags & PG_ZERO) == 0)
829 				pmap_zero_page(&m[i]);
830 			vm_page_valid(&m[i]);
831 			vm_page_xunbusy(&m[i]);
832 		}
833 		object->size += OFF_TO_IDX(pagesizes[psind]);
834 		shmfd->shm_size += pagesizes[psind];
835 		atomic_add_long(&count_largepages[psind], 1);
836 		vm_wire_add(atop(pagesizes[psind]));
837 	}
838 	return (0);
839 }
840 
841 static int
842 shm_dotruncate_cookie(struct shmfd *shmfd, off_t length, void *rl_cookie)
843 {
844 	int error;
845 
846 	VM_OBJECT_WLOCK(shmfd->shm_object);
847 	error = shm_largepage(shmfd) ? shm_dotruncate_largepage(shmfd,
848 	    length, rl_cookie) : shm_dotruncate_locked(shmfd, length,
849 	    rl_cookie);
850 	VM_OBJECT_WUNLOCK(shmfd->shm_object);
851 	return (error);
852 }
853 
854 int
855 shm_dotruncate(struct shmfd *shmfd, off_t length)
856 {
857 	void *rl_cookie;
858 	int error;
859 
860 	rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
861 	    &shmfd->shm_mtx);
862 	error = shm_dotruncate_cookie(shmfd, length, rl_cookie);
863 	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
864 	return (error);
865 }
866 
867 /*
868  * shmfd object management including creation and reference counting
869  * routines.
870  */
871 struct shmfd *
872 shm_alloc(struct ucred *ucred, mode_t mode, bool largepage)
873 {
874 	struct shmfd *shmfd;
875 
876 	shmfd = malloc(sizeof(*shmfd), M_SHMFD, M_WAITOK | M_ZERO);
877 	shmfd->shm_size = 0;
878 	shmfd->shm_uid = ucred->cr_uid;
879 	shmfd->shm_gid = ucred->cr_gid;
880 	shmfd->shm_mode = mode;
881 	if (largepage) {
882 		shmfd->shm_object = phys_pager_allocate(NULL,
883 		    &shm_largepage_phys_ops, NULL, shmfd->shm_size,
884 		    VM_PROT_DEFAULT, 0, ucred);
885 		shmfd->shm_lp_alloc_policy = SHM_LARGEPAGE_ALLOC_DEFAULT;
886 	} else {
887 		shmfd->shm_object = vm_pager_allocate(OBJT_SWAP, NULL,
888 		    shmfd->shm_size, VM_PROT_DEFAULT, 0, ucred);
889 	}
890 	KASSERT(shmfd->shm_object != NULL, ("shm_create: vm_pager_allocate"));
891 	vfs_timestamp(&shmfd->shm_birthtime);
892 	shmfd->shm_atime = shmfd->shm_mtime = shmfd->shm_ctime =
893 	    shmfd->shm_birthtime;
894 	shmfd->shm_ino = alloc_unr64(&shm_ino_unr);
895 	refcount_init(&shmfd->shm_refs, 1);
896 	mtx_init(&shmfd->shm_mtx, "shmrl", NULL, MTX_DEF);
897 	rangelock_init(&shmfd->shm_rl);
898 #ifdef MAC
899 	mac_posixshm_init(shmfd);
900 	mac_posixshm_create(ucred, shmfd);
901 #endif
902 
903 	return (shmfd);
904 }
905 
906 struct shmfd *
907 shm_hold(struct shmfd *shmfd)
908 {
909 
910 	refcount_acquire(&shmfd->shm_refs);
911 	return (shmfd);
912 }
913 
914 void
915 shm_drop(struct shmfd *shmfd)
916 {
917 
918 	if (refcount_release(&shmfd->shm_refs)) {
919 #ifdef MAC
920 		mac_posixshm_destroy(shmfd);
921 #endif
922 		rangelock_destroy(&shmfd->shm_rl);
923 		mtx_destroy(&shmfd->shm_mtx);
924 		vm_object_deallocate(shmfd->shm_object);
925 		free(shmfd, M_SHMFD);
926 	}
927 }
928 
929 /*
930  * Determine if the credentials have sufficient permissions for a
931  * specified combination of FREAD and FWRITE.
932  */
933 int
934 shm_access(struct shmfd *shmfd, struct ucred *ucred, int flags)
935 {
936 	accmode_t accmode;
937 	int error;
938 
939 	accmode = 0;
940 	if (flags & FREAD)
941 		accmode |= VREAD;
942 	if (flags & FWRITE)
943 		accmode |= VWRITE;
944 	mtx_lock(&shm_timestamp_lock);
945 	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
946 	    accmode, ucred);
947 	mtx_unlock(&shm_timestamp_lock);
948 	return (error);
949 }
950 
951 static void
952 shm_init(void *arg)
953 {
954 	char name[32];
955 	int i;
956 
957 	mtx_init(&shm_timestamp_lock, "shm timestamps", NULL, MTX_DEF);
958 	sx_init(&shm_dict_lock, "shm dictionary");
959 	shm_dictionary = hashinit(1024, M_SHMFD, &shm_hash);
960 	new_unrhdr64(&shm_ino_unr, 1);
961 	shm_dev_ino = devfs_alloc_cdp_inode();
962 	KASSERT(shm_dev_ino > 0, ("shm dev inode not initialized"));
963 
964 	for (i = 1; i < MAXPAGESIZES; i++) {
965 		if (pagesizes[i] == 0)
966 			break;
967 #define	M	(1024 * 1024)
968 #define	G	(1024 * M)
969 		if (pagesizes[i] >= G)
970 			snprintf(name, sizeof(name), "%luG", pagesizes[i] / G);
971 		else if (pagesizes[i] >= M)
972 			snprintf(name, sizeof(name), "%luM", pagesizes[i] / M);
973 		else
974 			snprintf(name, sizeof(name), "%lu", pagesizes[i]);
975 #undef G
976 #undef M
977 		SYSCTL_ADD_ULONG(NULL, SYSCTL_STATIC_CHILDREN(_vm_largepages),
978 		    OID_AUTO, name, CTLFLAG_RD, &count_largepages[i],
979 		    "number of non-transient largepages allocated");
980 	}
981 }
982 SYSINIT(shm_init, SI_SUB_SYSV_SHM, SI_ORDER_ANY, shm_init, NULL);
983 
984 /*
985  * Dictionary management.  We maintain an in-kernel dictionary to map
986  * paths to shmfd objects.  We use the FNV hash on the path to store
987  * the mappings in a hash table.
988  */
989 static struct shmfd *
990 shm_lookup(char *path, Fnv32_t fnv)
991 {
992 	struct shm_mapping *map;
993 
994 	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
995 		if (map->sm_fnv != fnv)
996 			continue;
997 		if (strcmp(map->sm_path, path) == 0)
998 			return (map->sm_shmfd);
999 	}
1000 
1001 	return (NULL);
1002 }
1003 
1004 static void
1005 shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd)
1006 {
1007 	struct shm_mapping *map;
1008 
1009 	map = malloc(sizeof(struct shm_mapping), M_SHMFD, M_WAITOK);
1010 	map->sm_path = path;
1011 	map->sm_fnv = fnv;
1012 	map->sm_shmfd = shm_hold(shmfd);
1013 	shmfd->shm_path = path;
1014 	LIST_INSERT_HEAD(SHM_HASH(fnv), map, sm_link);
1015 }
1016 
1017 static int
1018 shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred)
1019 {
1020 	struct shm_mapping *map;
1021 	int error;
1022 
1023 	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
1024 		if (map->sm_fnv != fnv)
1025 			continue;
1026 		if (strcmp(map->sm_path, path) == 0) {
1027 #ifdef MAC
1028 			error = mac_posixshm_check_unlink(ucred, map->sm_shmfd);
1029 			if (error)
1030 				return (error);
1031 #endif
1032 			error = shm_access(map->sm_shmfd, ucred,
1033 			    FREAD | FWRITE);
1034 			if (error)
1035 				return (error);
1036 			map->sm_shmfd->shm_path = NULL;
1037 			LIST_REMOVE(map, sm_link);
1038 			shm_drop(map->sm_shmfd);
1039 			free(map->sm_path, M_SHMFD);
1040 			free(map, M_SHMFD);
1041 			return (0);
1042 		}
1043 	}
1044 
1045 	return (ENOENT);
1046 }
1047 
1048 int
1049 kern_shm_open2(struct thread *td, const char *userpath, int flags, mode_t mode,
1050     int shmflags, struct filecaps *fcaps, const char *name __unused)
1051 {
1052 	struct pwddesc *pdp;
1053 	struct shmfd *shmfd;
1054 	struct file *fp;
1055 	char *path;
1056 	void *rl_cookie;
1057 	Fnv32_t fnv;
1058 	mode_t cmode;
1059 	int error, fd, initial_seals;
1060 	bool largepage;
1061 
1062 	if ((shmflags & ~(SHM_ALLOW_SEALING | SHM_GROW_ON_WRITE |
1063 	    SHM_LARGEPAGE)) != 0)
1064 		return (EINVAL);
1065 
1066 	initial_seals = F_SEAL_SEAL;
1067 	if ((shmflags & SHM_ALLOW_SEALING) != 0)
1068 		initial_seals &= ~F_SEAL_SEAL;
1069 
1070 #ifdef CAPABILITY_MODE
1071 	/*
1072 	 * shm_open(2) is only allowed for anonymous objects.
1073 	 */
1074 	if (IN_CAPABILITY_MODE(td) && (userpath != SHM_ANON))
1075 		return (ECAPMODE);
1076 #endif
1077 
1078 	AUDIT_ARG_FFLAGS(flags);
1079 	AUDIT_ARG_MODE(mode);
1080 
1081 	if ((flags & O_ACCMODE) != O_RDONLY && (flags & O_ACCMODE) != O_RDWR)
1082 		return (EINVAL);
1083 
1084 	if ((flags & ~(O_ACCMODE | O_CREAT | O_EXCL | O_TRUNC | O_CLOEXEC)) != 0)
1085 		return (EINVAL);
1086 
1087 	largepage = (shmflags & SHM_LARGEPAGE) != 0;
1088 	if (largepage && !PMAP_HAS_LARGEPAGES)
1089 		return (ENOTTY);
1090 
1091 	/*
1092 	 * Currently only F_SEAL_SEAL may be set when creating or opening shmfd.
1093 	 * If the decision is made later to allow additional seals, care must be
1094 	 * taken below to ensure that the seals are properly set if the shmfd
1095 	 * already existed -- this currently assumes that only F_SEAL_SEAL can
1096 	 * be set and doesn't take further precautions to ensure the validity of
1097 	 * the seals being added with respect to current mappings.
1098 	 */
1099 	if ((initial_seals & ~F_SEAL_SEAL) != 0)
1100 		return (EINVAL);
1101 
1102 	pdp = td->td_proc->p_pd;
1103 	cmode = (mode & ~pdp->pd_cmask) & ACCESSPERMS;
1104 
1105 	/*
1106 	 * shm_open(2) created shm should always have O_CLOEXEC set, as mandated
1107 	 * by POSIX.  We allow it to be unset here so that an in-kernel
1108 	 * interface may be written as a thin layer around shm, optionally not
1109 	 * setting CLOEXEC.  For shm_open(2), O_CLOEXEC is set unconditionally
1110 	 * in sys_shm_open() to keep this implementation compliant.
1111 	 */
1112 	error = falloc_caps(td, &fp, &fd, flags & O_CLOEXEC, fcaps);
1113 	if (error)
1114 		return (error);
1115 
1116 	/* A SHM_ANON path pointer creates an anonymous object. */
1117 	if (userpath == SHM_ANON) {
1118 		/* A read-only anonymous object is pointless. */
1119 		if ((flags & O_ACCMODE) == O_RDONLY) {
1120 			fdclose(td, fp, fd);
1121 			fdrop(fp, td);
1122 			return (EINVAL);
1123 		}
1124 		shmfd = shm_alloc(td->td_ucred, cmode, largepage);
1125 		shmfd->shm_seals = initial_seals;
1126 		shmfd->shm_flags = shmflags;
1127 	} else {
1128 		error = shm_copyin_path(td, userpath, &path);
1129 		if (error != 0) {
1130 			fdclose(td, fp, fd);
1131 			fdrop(fp, td);
1132 			return (error);
1133 		}
1134 
1135 		AUDIT_ARG_UPATH1_CANON(path);
1136 		fnv = fnv_32_str(path, FNV1_32_INIT);
1137 		sx_xlock(&shm_dict_lock);
1138 		shmfd = shm_lookup(path, fnv);
1139 		if (shmfd == NULL) {
1140 			/* Object does not yet exist, create it if requested. */
1141 			if (flags & O_CREAT) {
1142 #ifdef MAC
1143 				error = mac_posixshm_check_create(td->td_ucred,
1144 				    path);
1145 				if (error == 0) {
1146 #endif
1147 					shmfd = shm_alloc(td->td_ucred, cmode,
1148 					    largepage);
1149 					shmfd->shm_seals = initial_seals;
1150 					shmfd->shm_flags = shmflags;
1151 					shm_insert(path, fnv, shmfd);
1152 #ifdef MAC
1153 				}
1154 #endif
1155 			} else {
1156 				free(path, M_SHMFD);
1157 				error = ENOENT;
1158 			}
1159 		} else {
1160 			rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
1161 			    &shmfd->shm_mtx);
1162 
1163 			/*
1164 			 * kern_shm_open() likely shouldn't ever error out on
1165 			 * trying to set a seal that already exists, unlike
1166 			 * F_ADD_SEALS.  This would break terribly as
1167 			 * shm_open(2) actually sets F_SEAL_SEAL to maintain
1168 			 * historical behavior where the underlying file could
1169 			 * not be sealed.
1170 			 */
1171 			initial_seals &= ~shmfd->shm_seals;
1172 
1173 			/*
1174 			 * Object already exists, obtain a new
1175 			 * reference if requested and permitted.
1176 			 */
1177 			free(path, M_SHMFD);
1178 
1179 			/*
1180 			 * initial_seals can't set additional seals if we've
1181 			 * already been set F_SEAL_SEAL.  If F_SEAL_SEAL is set,
1182 			 * then we've already removed that one from
1183 			 * initial_seals.  This is currently redundant as we
1184 			 * only allow setting F_SEAL_SEAL at creation time, but
1185 			 * it's cheap to check and decreases the effort required
1186 			 * to allow additional seals.
1187 			 */
1188 			if ((shmfd->shm_seals & F_SEAL_SEAL) != 0 &&
1189 			    initial_seals != 0)
1190 				error = EPERM;
1191 			else if ((flags & (O_CREAT | O_EXCL)) ==
1192 			    (O_CREAT | O_EXCL))
1193 				error = EEXIST;
1194 			else if (shmflags != 0 && shmflags != shmfd->shm_flags)
1195 				error = EINVAL;
1196 			else {
1197 #ifdef MAC
1198 				error = mac_posixshm_check_open(td->td_ucred,
1199 				    shmfd, FFLAGS(flags & O_ACCMODE));
1200 				if (error == 0)
1201 #endif
1202 				error = shm_access(shmfd, td->td_ucred,
1203 				    FFLAGS(flags & O_ACCMODE));
1204 			}
1205 
1206 			/*
1207 			 * Truncate the file back to zero length if
1208 			 * O_TRUNC was specified and the object was
1209 			 * opened with read/write.
1210 			 */
1211 			if (error == 0 &&
1212 			    (flags & (O_ACCMODE | O_TRUNC)) ==
1213 			    (O_RDWR | O_TRUNC)) {
1214 				VM_OBJECT_WLOCK(shmfd->shm_object);
1215 #ifdef MAC
1216 				error = mac_posixshm_check_truncate(
1217 					td->td_ucred, fp->f_cred, shmfd);
1218 				if (error == 0)
1219 #endif
1220 					error = shm_dotruncate_locked(shmfd, 0,
1221 					    rl_cookie);
1222 				VM_OBJECT_WUNLOCK(shmfd->shm_object);
1223 			}
1224 			if (error == 0) {
1225 				/*
1226 				 * Currently we only allow F_SEAL_SEAL to be
1227 				 * set initially.  As noted above, this would
1228 				 * need to be reworked should that change.
1229 				 */
1230 				shmfd->shm_seals |= initial_seals;
1231 				shm_hold(shmfd);
1232 			}
1233 			rangelock_unlock(&shmfd->shm_rl, rl_cookie,
1234 			    &shmfd->shm_mtx);
1235 		}
1236 		sx_xunlock(&shm_dict_lock);
1237 
1238 		if (error) {
1239 			fdclose(td, fp, fd);
1240 			fdrop(fp, td);
1241 			return (error);
1242 		}
1243 	}
1244 
1245 	finit(fp, FFLAGS(flags & O_ACCMODE), DTYPE_SHM, shmfd, &shm_ops);
1246 
1247 	td->td_retval[0] = fd;
1248 	fdrop(fp, td);
1249 
1250 	return (0);
1251 }
1252 
1253 /* System calls. */
1254 #ifdef COMPAT_FREEBSD12
1255 int
1256 freebsd12_shm_open(struct thread *td, struct freebsd12_shm_open_args *uap)
1257 {
1258 
1259 	return (kern_shm_open(td, uap->path, uap->flags | O_CLOEXEC,
1260 	    uap->mode, NULL));
1261 }
1262 #endif
1263 
1264 int
1265 sys_shm_unlink(struct thread *td, struct shm_unlink_args *uap)
1266 {
1267 	char *path;
1268 	Fnv32_t fnv;
1269 	int error;
1270 
1271 	error = shm_copyin_path(td, uap->path, &path);
1272 	if (error != 0)
1273 		return (error);
1274 
1275 	AUDIT_ARG_UPATH1_CANON(path);
1276 	fnv = fnv_32_str(path, FNV1_32_INIT);
1277 	sx_xlock(&shm_dict_lock);
1278 	error = shm_remove(path, fnv, td->td_ucred);
1279 	sx_xunlock(&shm_dict_lock);
1280 	free(path, M_SHMFD);
1281 
1282 	return (error);
1283 }
1284 
1285 int
1286 sys_shm_rename(struct thread *td, struct shm_rename_args *uap)
1287 {
1288 	char *path_from = NULL, *path_to = NULL;
1289 	Fnv32_t fnv_from, fnv_to;
1290 	struct shmfd *fd_from;
1291 	struct shmfd *fd_to;
1292 	int error;
1293 	int flags;
1294 
1295 	flags = uap->flags;
1296 	AUDIT_ARG_FFLAGS(flags);
1297 
1298 	/*
1299 	 * Make sure the user passed only valid flags.
1300 	 * If you add a new flag, please add a new term here.
1301 	 */
1302 	if ((flags & ~(
1303 	    SHM_RENAME_NOREPLACE |
1304 	    SHM_RENAME_EXCHANGE
1305 	    )) != 0) {
1306 		error = EINVAL;
1307 		goto out;
1308 	}
1309 
1310 	/*
1311 	 * EXCHANGE and NOREPLACE don't quite make sense together. Let's
1312 	 * force the user to choose one or the other.
1313 	 */
1314 	if ((flags & SHM_RENAME_NOREPLACE) != 0 &&
1315 	    (flags & SHM_RENAME_EXCHANGE) != 0) {
1316 		error = EINVAL;
1317 		goto out;
1318 	}
1319 
1320 	/* Renaming to or from anonymous makes no sense */
1321 	if (uap->path_from == SHM_ANON || uap->path_to == SHM_ANON) {
1322 		error = EINVAL;
1323 		goto out;
1324 	}
1325 
1326 	error = shm_copyin_path(td, uap->path_from, &path_from);
1327 	if (error != 0)
1328 		goto out;
1329 
1330 	error = shm_copyin_path(td, uap->path_to, &path_to);
1331 	if (error != 0)
1332 		goto out;
1333 
1334 	AUDIT_ARG_UPATH1_CANON(path_from);
1335 	AUDIT_ARG_UPATH2_CANON(path_to);
1336 
1337 	/* Rename with from/to equal is a no-op */
1338 	if (strcmp(path_from, path_to) == 0)
1339 		goto out;
1340 
1341 	fnv_from = fnv_32_str(path_from, FNV1_32_INIT);
1342 	fnv_to = fnv_32_str(path_to, FNV1_32_INIT);
1343 
1344 	sx_xlock(&shm_dict_lock);
1345 
1346 	fd_from = shm_lookup(path_from, fnv_from);
1347 	if (fd_from == NULL) {
1348 		error = ENOENT;
1349 		goto out_locked;
1350 	}
1351 
1352 	fd_to = shm_lookup(path_to, fnv_to);
1353 	if ((flags & SHM_RENAME_NOREPLACE) != 0 && fd_to != NULL) {
1354 		error = EEXIST;
1355 		goto out_locked;
1356 	}
1357 
1358 	/*
1359 	 * Unconditionally prevents shm_remove from invalidating the 'from'
1360 	 * shm's state.
1361 	 */
1362 	shm_hold(fd_from);
1363 	error = shm_remove(path_from, fnv_from, td->td_ucred);
1364 
1365 	/*
1366 	 * One of my assumptions failed if ENOENT (e.g. locking didn't
1367 	 * protect us)
1368 	 */
1369 	KASSERT(error != ENOENT, ("Our shm disappeared during shm_rename: %s",
1370 	    path_from));
1371 	if (error != 0) {
1372 		shm_drop(fd_from);
1373 		goto out_locked;
1374 	}
1375 
1376 	/*
1377 	 * If we are exchanging, we need to ensure the shm_remove below
1378 	 * doesn't invalidate the dest shm's state.
1379 	 */
1380 	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL)
1381 		shm_hold(fd_to);
1382 
1383 	/*
1384 	 * NOTE: if path_to is not already in the hash, c'est la vie;
1385 	 * it simply means we have nothing already at path_to to unlink.
1386 	 * That is the ENOENT case.
1387 	 *
1388 	 * If we somehow don't have access to unlink this guy, but
1389 	 * did for the shm at path_from, then relink the shm to path_from
1390 	 * and abort with EACCES.
1391 	 *
1392 	 * All other errors: that is weird; let's relink and abort the
1393 	 * operation.
1394 	 */
1395 	error = shm_remove(path_to, fnv_to, td->td_ucred);
1396 	if (error != 0 && error != ENOENT) {
1397 		shm_insert(path_from, fnv_from, fd_from);
1398 		shm_drop(fd_from);
1399 		/* Don't free path_from now, since the hash references it */
1400 		path_from = NULL;
1401 		goto out_locked;
1402 	}
1403 
1404 	error = 0;
1405 
1406 	shm_insert(path_to, fnv_to, fd_from);
1407 
1408 	/* Don't free path_to now, since the hash references it */
1409 	path_to = NULL;
1410 
1411 	/* We kept a ref when we removed, and incremented again in insert */
1412 	shm_drop(fd_from);
1413 	KASSERT(fd_from->shm_refs > 0, ("Expected >0 refs; got: %d\n",
1414 	    fd_from->shm_refs));
1415 
1416 	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL) {
1417 		shm_insert(path_from, fnv_from, fd_to);
1418 		path_from = NULL;
1419 		shm_drop(fd_to);
1420 		KASSERT(fd_to->shm_refs > 0, ("Expected >0 refs; got: %d\n",
1421 		    fd_to->shm_refs));
1422 	}
1423 
1424 out_locked:
1425 	sx_xunlock(&shm_dict_lock);
1426 
1427 out:
1428 	free(path_from, M_SHMFD);
1429 	free(path_to, M_SHMFD);
1430 	return (error);
1431 }
1432 
1433 static int
1434 shm_mmap_large(struct shmfd *shmfd, vm_map_t map, vm_offset_t *addr,
1435     vm_size_t size, vm_prot_t prot, vm_prot_t max_prot, int flags,
1436     vm_ooffset_t foff, struct thread *td)
1437 {
1438 	struct vmspace *vms;
1439 	vm_map_entry_t next_entry, prev_entry;
1440 	vm_offset_t align, mask, maxaddr;
1441 	int docow, error, rv, try;
1442 	bool curmap;
1443 
1444 	if (shmfd->shm_lp_psind == 0)
1445 		return (EINVAL);
1446 
1447 	/* MAP_PRIVATE is disabled */
1448 	if ((flags & ~(MAP_SHARED | MAP_FIXED | MAP_EXCL |
1449 	    MAP_NOCORE |
1450 #ifdef MAP_32BIT
1451 	    MAP_32BIT |
1452 #endif
1453 	    MAP_ALIGNMENT_MASK)) != 0)
1454 		return (EINVAL);
1455 
1456 	vms = td->td_proc->p_vmspace;
1457 	curmap = map == &vms->vm_map;
1458 	if (curmap) {
1459 		error = kern_mmap_racct_check(td, map, size);
1460 		if (error != 0)
1461 			return (error);
1462 	}
1463 
1464 	docow = shmfd->shm_lp_psind << MAP_SPLIT_BOUNDARY_SHIFT;
1465 	docow |= MAP_INHERIT_SHARE;
1466 	if ((flags & MAP_NOCORE) != 0)
1467 		docow |= MAP_DISABLE_COREDUMP;
1468 
1469 	mask = pagesizes[shmfd->shm_lp_psind] - 1;
1470 	if ((foff & mask) != 0)
1471 		return (EINVAL);
1472 	maxaddr = vm_map_max(map);
1473 #ifdef MAP_32BIT
1474 	if ((flags & MAP_32BIT) != 0 && maxaddr > MAP_32BIT_MAX_ADDR)
1475 		maxaddr = MAP_32BIT_MAX_ADDR;
1476 #endif
1477 	if (size == 0 || (size & mask) != 0 ||
1478 	    (*addr != 0 && ((*addr & mask) != 0 ||
1479 	    *addr + size < *addr || *addr + size > maxaddr)))
1480 		return (EINVAL);
1481 
1482 	align = flags & MAP_ALIGNMENT_MASK;
1483 	if (align == 0) {
1484 		align = pagesizes[shmfd->shm_lp_psind];
1485 	} else if (align == MAP_ALIGNED_SUPER) {
1486 		if (shmfd->shm_lp_psind != 1)
1487 			return (EINVAL);
1488 		align = pagesizes[1];
1489 	} else {
1490 		align >>= MAP_ALIGNMENT_SHIFT;
1491 		align = 1ULL << align;
1492 		/* Also handles overflow. */
1493 		if (align < pagesizes[shmfd->shm_lp_psind])
1494 			return (EINVAL);
1495 	}
1496 
1497 	vm_map_lock(map);
1498 	if ((flags & MAP_FIXED) == 0) {
1499 		try = 1;
1500 		if (curmap && (*addr == 0 ||
1501 		    (*addr >= round_page((vm_offset_t)vms->vm_taddr) &&
1502 		    *addr < round_page((vm_offset_t)vms->vm_daddr +
1503 		    lim_max(td, RLIMIT_DATA))))) {
1504 			*addr = roundup2((vm_offset_t)vms->vm_daddr +
1505 			    lim_max(td, RLIMIT_DATA),
1506 			    pagesizes[shmfd->shm_lp_psind]);
1507 		}
1508 again:
1509 		rv = vm_map_find_aligned(map, addr, size, maxaddr, align);
1510 		if (rv != KERN_SUCCESS) {
1511 			if (try == 1) {
1512 				try = 2;
1513 				*addr = vm_map_min(map);
1514 				if ((*addr & mask) != 0)
1515 					*addr = (*addr + mask) & mask;
1516 				goto again;
1517 			}
1518 			goto fail1;
1519 		}
1520 	} else if ((flags & MAP_EXCL) == 0) {
1521 		rv = vm_map_delete(map, *addr, *addr + size);
1522 		if (rv != KERN_SUCCESS)
1523 			goto fail1;
1524 	} else {
1525 		error = ENOSPC;
1526 		if (vm_map_lookup_entry(map, *addr, &prev_entry))
1527 			goto fail;
1528 		next_entry = vm_map_entry_succ(prev_entry);
1529 		if (next_entry->start < *addr + size)
1530 			goto fail;
1531 	}
1532 
1533 	rv = vm_map_insert(map, shmfd->shm_object, foff, *addr, *addr + size,
1534 	    prot, max_prot, docow);
1535 fail1:
1536 	error = vm_mmap_to_errno(rv);
1537 fail:
1538 	vm_map_unlock(map);
1539 	return (error);
1540 }
1541 
1542 static int
1543 shm_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t objsize,
1544     vm_prot_t prot, vm_prot_t cap_maxprot, int flags,
1545     vm_ooffset_t foff, struct thread *td)
1546 {
1547 	struct shmfd *shmfd;
1548 	vm_prot_t maxprot;
1549 	int error;
1550 	bool writecnt;
1551 	void *rl_cookie;
1552 
1553 	shmfd = fp->f_data;
1554 	maxprot = VM_PROT_NONE;
1555 
1556 	rl_cookie = rangelock_rlock(&shmfd->shm_rl, 0, objsize,
1557 	    &shmfd->shm_mtx);
1558 	/* FREAD should always be set. */
1559 	if ((fp->f_flag & FREAD) != 0)
1560 		maxprot |= VM_PROT_EXECUTE | VM_PROT_READ;
1561 
1562 	/*
1563 	 * If FWRITE's set, we can allow VM_PROT_WRITE unless it's a shared
1564 	 * mapping with a write seal applied.  Private mappings are always
1565 	 * writeable.
1566 	 */
1567 	if ((flags & MAP_SHARED) == 0) {
1568 		cap_maxprot |= VM_PROT_WRITE;
1569 		maxprot |= VM_PROT_WRITE;
1570 		writecnt = false;
1571 	} else {
1572 		if ((fp->f_flag & FWRITE) != 0 &&
1573 		    (shmfd->shm_seals & F_SEAL_WRITE) == 0)
1574 			maxprot |= VM_PROT_WRITE;
1575 
1576 		/*
1577 		 * Any mappings from a writable descriptor may be upgraded to
1578 		 * VM_PROT_WRITE with mprotect(2), unless a write-seal was
1579 		 * applied between the open and subsequent mmap(2).  We want to
1580 		 * reject application of a write seal as long as any such
1581 		 * mapping exists so that the seal cannot be trivially bypassed.
1582 		 */
1583 		writecnt = (maxprot & VM_PROT_WRITE) != 0;
1584 		if (!writecnt && (prot & VM_PROT_WRITE) != 0) {
1585 			error = EACCES;
1586 			goto out;
1587 		}
1588 	}
1589 	maxprot &= cap_maxprot;
1590 
1591 	/* See comment in vn_mmap(). */
1592 	if (
1593 #ifdef _LP64
1594 	    objsize > OFF_MAX ||
1595 #endif
1596 	    foff > OFF_MAX - objsize) {
1597 		error = EINVAL;
1598 		goto out;
1599 	}
1600 
1601 #ifdef MAC
1602 	error = mac_posixshm_check_mmap(td->td_ucred, shmfd, prot, flags);
1603 	if (error != 0)
1604 		goto out;
1605 #endif
1606 
1607 	mtx_lock(&shm_timestamp_lock);
1608 	vfs_timestamp(&shmfd->shm_atime);
1609 	mtx_unlock(&shm_timestamp_lock);
1610 	vm_object_reference(shmfd->shm_object);
1611 
1612 	if (shm_largepage(shmfd)) {
1613 		writecnt = false;
1614 		error = shm_mmap_large(shmfd, map, addr, objsize, prot,
1615 		    maxprot, flags, foff, td);
1616 	} else {
1617 		if (writecnt) {
1618 			vm_pager_update_writecount(shmfd->shm_object, 0,
1619 			    objsize);
1620 		}
1621 		error = vm_mmap_object(map, addr, objsize, prot, maxprot, flags,
1622 		    shmfd->shm_object, foff, writecnt, td);
1623 	}
1624 	if (error != 0) {
1625 		if (writecnt)
1626 			vm_pager_release_writecount(shmfd->shm_object, 0,
1627 			    objsize);
1628 		vm_object_deallocate(shmfd->shm_object);
1629 	}
1630 out:
1631 	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
1632 	return (error);
1633 }
1634 
1635 static int
1636 shm_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1637     struct thread *td)
1638 {
1639 	struct shmfd *shmfd;
1640 	int error;
1641 
1642 	error = 0;
1643 	shmfd = fp->f_data;
1644 	mtx_lock(&shm_timestamp_lock);
1645 	/*
1646 	 * SUSv4 says that x bits of permission need not be affected.
1647 	 * Be consistent with our shm_open there.
1648 	 */
1649 #ifdef MAC
1650 	error = mac_posixshm_check_setmode(active_cred, shmfd, mode);
1651 	if (error != 0)
1652 		goto out;
1653 #endif
1654 	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
1655 	    VADMIN, active_cred);
1656 	if (error != 0)
1657 		goto out;
1658 	shmfd->shm_mode = mode & ACCESSPERMS;
1659 out:
1660 	mtx_unlock(&shm_timestamp_lock);
1661 	return (error);
1662 }
1663 
1664 static int
1665 shm_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1666     struct thread *td)
1667 {
1668 	struct shmfd *shmfd;
1669 	int error;
1670 
1671 	error = 0;
1672 	shmfd = fp->f_data;
1673 	mtx_lock(&shm_timestamp_lock);
1674 #ifdef MAC
1675 	error = mac_posixshm_check_setowner(active_cred, shmfd, uid, gid);
1676 	if (error != 0)
1677 		goto out;
1678 #endif
1679 	if (uid == (uid_t)-1)
1680 		uid = shmfd->shm_uid;
1681 	if (gid == (gid_t)-1)
1682                  gid = shmfd->shm_gid;
1683 	if (((uid != shmfd->shm_uid && uid != active_cred->cr_uid) ||
1684 	    (gid != shmfd->shm_gid && !groupmember(gid, active_cred))) &&
1685 	    (error = priv_check_cred(active_cred, PRIV_VFS_CHOWN)))
1686 		goto out;
1687 	shmfd->shm_uid = uid;
1688 	shmfd->shm_gid = gid;
1689 out:
1690 	mtx_unlock(&shm_timestamp_lock);
1691 	return (error);
1692 }
1693 
1694 /*
1695  * Helper routines to allow the backing object of a shared memory file
1696  * descriptor to be mapped in the kernel.
1697  */
1698 int
1699 shm_map(struct file *fp, size_t size, off_t offset, void **memp)
1700 {
1701 	struct shmfd *shmfd;
1702 	vm_offset_t kva, ofs;
1703 	vm_object_t obj;
1704 	int rv;
1705 
1706 	if (fp->f_type != DTYPE_SHM)
1707 		return (EINVAL);
1708 	shmfd = fp->f_data;
1709 	obj = shmfd->shm_object;
1710 	VM_OBJECT_WLOCK(obj);
1711 	/*
1712 	 * XXXRW: This validation is probably insufficient, and subject to
1713 	 * sign errors.  It should be fixed.
1714 	 */
1715 	if (offset >= shmfd->shm_size ||
1716 	    offset + size > round_page(shmfd->shm_size)) {
1717 		VM_OBJECT_WUNLOCK(obj);
1718 		return (EINVAL);
1719 	}
1720 
1721 	shmfd->shm_kmappings++;
1722 	vm_object_reference_locked(obj);
1723 	VM_OBJECT_WUNLOCK(obj);
1724 
1725 	/* Map the object into the kernel_map and wire it. */
1726 	kva = vm_map_min(kernel_map);
1727 	ofs = offset & PAGE_MASK;
1728 	offset = trunc_page(offset);
1729 	size = round_page(size + ofs);
1730 	rv = vm_map_find(kernel_map, obj, offset, &kva, size, 0,
1731 	    VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
1732 	    VM_PROT_READ | VM_PROT_WRITE, 0);
1733 	if (rv == KERN_SUCCESS) {
1734 		rv = vm_map_wire(kernel_map, kva, kva + size,
1735 		    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
1736 		if (rv == KERN_SUCCESS) {
1737 			*memp = (void *)(kva + ofs);
1738 			return (0);
1739 		}
1740 		vm_map_remove(kernel_map, kva, kva + size);
1741 	} else
1742 		vm_object_deallocate(obj);
1743 
1744 	/* On failure, drop our mapping reference. */
1745 	VM_OBJECT_WLOCK(obj);
1746 	shmfd->shm_kmappings--;
1747 	VM_OBJECT_WUNLOCK(obj);
1748 
1749 	return (vm_mmap_to_errno(rv));
1750 }
1751 
1752 /*
1753  * We require the caller to unmap the entire entry.  This allows us to
1754  * safely decrement shm_kmappings when a mapping is removed.
1755  */
1756 int
1757 shm_unmap(struct file *fp, void *mem, size_t size)
1758 {
1759 	struct shmfd *shmfd;
1760 	vm_map_entry_t entry;
1761 	vm_offset_t kva, ofs;
1762 	vm_object_t obj;
1763 	vm_pindex_t pindex;
1764 	vm_prot_t prot;
1765 	boolean_t wired;
1766 	vm_map_t map;
1767 	int rv;
1768 
1769 	if (fp->f_type != DTYPE_SHM)
1770 		return (EINVAL);
1771 	shmfd = fp->f_data;
1772 	kva = (vm_offset_t)mem;
1773 	ofs = kva & PAGE_MASK;
1774 	kva = trunc_page(kva);
1775 	size = round_page(size + ofs);
1776 	map = kernel_map;
1777 	rv = vm_map_lookup(&map, kva, VM_PROT_READ | VM_PROT_WRITE, &entry,
1778 	    &obj, &pindex, &prot, &wired);
1779 	if (rv != KERN_SUCCESS)
1780 		return (EINVAL);
1781 	if (entry->start != kva || entry->end != kva + size) {
1782 		vm_map_lookup_done(map, entry);
1783 		return (EINVAL);
1784 	}
1785 	vm_map_lookup_done(map, entry);
1786 	if (obj != shmfd->shm_object)
1787 		return (EINVAL);
1788 	vm_map_remove(map, kva, kva + size);
1789 	VM_OBJECT_WLOCK(obj);
1790 	KASSERT(shmfd->shm_kmappings > 0, ("shm_unmap: object not mapped"));
1791 	shmfd->shm_kmappings--;
1792 	VM_OBJECT_WUNLOCK(obj);
1793 	return (0);
1794 }
1795 
1796 static int
1797 shm_fill_kinfo_locked(struct shmfd *shmfd, struct kinfo_file *kif, bool list)
1798 {
1799 	const char *path, *pr_path;
1800 	size_t pr_pathlen;
1801 	bool visible;
1802 
1803 	sx_assert(&shm_dict_lock, SA_LOCKED);
1804 	kif->kf_type = KF_TYPE_SHM;
1805 	kif->kf_un.kf_file.kf_file_mode = S_IFREG | shmfd->shm_mode;
1806 	kif->kf_un.kf_file.kf_file_size = shmfd->shm_size;
1807 	if (shmfd->shm_path != NULL) {
1808 		if (shmfd->shm_path != NULL) {
1809 			path = shmfd->shm_path;
1810 			pr_path = curthread->td_ucred->cr_prison->pr_path;
1811 			if (strcmp(pr_path, "/") != 0) {
1812 				/* Return the jail-rooted pathname. */
1813 				pr_pathlen = strlen(pr_path);
1814 				visible = strncmp(path, pr_path, pr_pathlen)
1815 				    == 0 && path[pr_pathlen] == '/';
1816 				if (list && !visible)
1817 					return (EPERM);
1818 				if (visible)
1819 					path += pr_pathlen;
1820 			}
1821 			strlcpy(kif->kf_path, path, sizeof(kif->kf_path));
1822 		}
1823 	}
1824 	return (0);
1825 }
1826 
1827 static int
1828 shm_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1829     struct filedesc *fdp __unused)
1830 {
1831 	int res;
1832 
1833 	sx_slock(&shm_dict_lock);
1834 	res = shm_fill_kinfo_locked(fp->f_data, kif, false);
1835 	sx_sunlock(&shm_dict_lock);
1836 	return (res);
1837 }
1838 
1839 static int
1840 shm_add_seals(struct file *fp, int seals)
1841 {
1842 	struct shmfd *shmfd;
1843 	void *rl_cookie;
1844 	vm_ooffset_t writemappings;
1845 	int error, nseals;
1846 
1847 	error = 0;
1848 	shmfd = fp->f_data;
1849 	rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
1850 	    &shmfd->shm_mtx);
1851 
1852 	/* Even already-set seals should result in EPERM. */
1853 	if ((shmfd->shm_seals & F_SEAL_SEAL) != 0) {
1854 		error = EPERM;
1855 		goto out;
1856 	}
1857 	nseals = seals & ~shmfd->shm_seals;
1858 	if ((nseals & F_SEAL_WRITE) != 0) {
1859 		if (shm_largepage(shmfd)) {
1860 			error = ENOTSUP;
1861 			goto out;
1862 		}
1863 
1864 		/*
1865 		 * The rangelock above prevents writable mappings from being
1866 		 * added after we've started applying seals.  The RLOCK here
1867 		 * is to avoid torn reads on ILP32 arches as unmapping/reducing
1868 		 * writemappings will be done without a rangelock.
1869 		 */
1870 		VM_OBJECT_RLOCK(shmfd->shm_object);
1871 		writemappings = shmfd->shm_object->un_pager.swp.writemappings;
1872 		VM_OBJECT_RUNLOCK(shmfd->shm_object);
1873 		/* kmappings are also writable */
1874 		if (writemappings > 0) {
1875 			error = EBUSY;
1876 			goto out;
1877 		}
1878 	}
1879 	shmfd->shm_seals |= nseals;
1880 out:
1881 	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
1882 	return (error);
1883 }
1884 
1885 static int
1886 shm_get_seals(struct file *fp, int *seals)
1887 {
1888 	struct shmfd *shmfd;
1889 
1890 	shmfd = fp->f_data;
1891 	*seals = shmfd->shm_seals;
1892 	return (0);
1893 }
1894 
1895 static int
1896 shm_deallocate(struct shmfd *shmfd, off_t *offset, off_t *length, int flags)
1897 {
1898 	vm_object_t object;
1899 	vm_pindex_t pistart, pi, piend;
1900 	vm_ooffset_t off, len;
1901 	int startofs, endofs, end;
1902 	int error;
1903 
1904 	off = *offset;
1905 	len = *length;
1906 	KASSERT(off + len <= (vm_ooffset_t)OFF_MAX, ("off + len overflows"));
1907 	if (off + len > shmfd->shm_size)
1908 		len = shmfd->shm_size - off;
1909 	object = shmfd->shm_object;
1910 	startofs = off & PAGE_MASK;
1911 	endofs = (off + len) & PAGE_MASK;
1912 	pistart = OFF_TO_IDX(off);
1913 	piend = OFF_TO_IDX(off + len);
1914 	pi = OFF_TO_IDX(off + PAGE_MASK);
1915 	error = 0;
1916 
1917 	/* Handle the case when offset is on or beyond shm size. */
1918 	if ((off_t)len <= 0) {
1919 		*length = 0;
1920 		return (0);
1921 	}
1922 
1923 	VM_OBJECT_WLOCK(object);
1924 
1925 	if (startofs != 0) {
1926 		end = pistart != piend ? PAGE_SIZE : endofs;
1927 		error = shm_partial_page_invalidate(object, pistart, startofs,
1928 		    end);
1929 		if (error)
1930 			goto out;
1931 		off += end - startofs;
1932 		len -= end - startofs;
1933 	}
1934 
1935 	if (pi < piend) {
1936 		vm_object_page_remove(object, pi, piend, 0);
1937 		off += IDX_TO_OFF(piend - pi);
1938 		len -= IDX_TO_OFF(piend - pi);
1939 	}
1940 
1941 	if (endofs != 0 && pistart != piend) {
1942 		error = shm_partial_page_invalidate(object, piend, 0, endofs);
1943 		if (error)
1944 			goto out;
1945 		off += endofs;
1946 		len -= endofs;
1947 	}
1948 
1949 out:
1950 	VM_OBJECT_WUNLOCK(shmfd->shm_object);
1951 	*offset = off;
1952 	*length = len;
1953 	return (error);
1954 }
1955 
1956 static int
1957 shm_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
1958     struct ucred *active_cred, struct thread *td)
1959 {
1960 	void *rl_cookie;
1961 	struct shmfd *shmfd;
1962 	off_t off, len;
1963 	int error;
1964 
1965 	/* This assumes that the caller already checked for overflow. */
1966 	error = EINVAL;
1967 	shmfd = fp->f_data;
1968 	off = *offset;
1969 	len = *length;
1970 
1971 	if (cmd != SPACECTL_DEALLOC || off < 0 || len <= 0 ||
1972 	    len > OFF_MAX - off || flags != 0)
1973 		return (EINVAL);
1974 
1975 	rl_cookie = rangelock_wlock(&shmfd->shm_rl, off, off + len,
1976 	    &shmfd->shm_mtx);
1977 	switch (cmd) {
1978 	case SPACECTL_DEALLOC:
1979 		if ((shmfd->shm_seals & F_SEAL_WRITE) != 0) {
1980 			error = EPERM;
1981 			break;
1982 		}
1983 		error = shm_deallocate(shmfd, &off, &len, flags);
1984 		*offset = off;
1985 		*length = len;
1986 		break;
1987 	default:
1988 		__assert_unreachable();
1989 	}
1990 	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
1991 	return (error);
1992 }
1993 
1994 
1995 static int
1996 shm_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
1997 {
1998 	void *rl_cookie;
1999 	struct shmfd *shmfd;
2000 	size_t size;
2001 	int error;
2002 
2003 	/* This assumes that the caller already checked for overflow. */
2004 	error = 0;
2005 	shmfd = fp->f_data;
2006 	size = offset + len;
2007 
2008 	/*
2009 	 * Just grab the rangelock for the range that we may be attempting to
2010 	 * grow, rather than blocking read/write for regions we won't be
2011 	 * touching while this (potential) resize is in progress.  Other
2012 	 * attempts to resize the shmfd will have to take a write lock from 0 to
2013 	 * OFF_MAX, so this being potentially beyond the current usable range of
2014 	 * the shmfd is not necessarily a concern.  If other mechanisms are
2015 	 * added to grow a shmfd, this may need to be re-evaluated.
2016 	 */
2017 	rl_cookie = rangelock_wlock(&shmfd->shm_rl, offset, size,
2018 	    &shmfd->shm_mtx);
2019 	if (size > shmfd->shm_size)
2020 		error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
2021 	rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
2022 	/* Translate to posix_fallocate(2) return value as needed. */
2023 	if (error == ENOMEM)
2024 		error = ENOSPC;
2025 	return (error);
2026 }
2027 
2028 static int
2029 sysctl_posix_shm_list(SYSCTL_HANDLER_ARGS)
2030 {
2031 	struct shm_mapping *shmm;
2032 	struct sbuf sb;
2033 	struct kinfo_file kif;
2034 	u_long i;
2035 	ssize_t curlen;
2036 	int error, error2;
2037 
2038 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file) * 5, req);
2039 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2040 	curlen = 0;
2041 	error = 0;
2042 	sx_slock(&shm_dict_lock);
2043 	for (i = 0; i < shm_hash + 1; i++) {
2044 		LIST_FOREACH(shmm, &shm_dictionary[i], sm_link) {
2045 			error = shm_fill_kinfo_locked(shmm->sm_shmfd,
2046 			    &kif, true);
2047 			if (error == EPERM) {
2048 				error = 0;
2049 				continue;
2050 			}
2051 			if (error != 0)
2052 				break;
2053 			pack_kinfo(&kif);
2054 			if (req->oldptr != NULL &&
2055 			    kif.kf_structsize + curlen > req->oldlen)
2056 				break;
2057 			error = sbuf_bcat(&sb, &kif, kif.kf_structsize) == 0 ?
2058 			    0 : ENOMEM;
2059 			if (error != 0)
2060 				break;
2061 			curlen += kif.kf_structsize;
2062 		}
2063 	}
2064 	sx_sunlock(&shm_dict_lock);
2065 	error2 = sbuf_finish(&sb);
2066 	sbuf_delete(&sb);
2067 	return (error != 0 ? error : error2);
2068 }
2069 
2070 SYSCTL_PROC(_kern_ipc, OID_AUTO, posix_shm_list,
2071     CTLFLAG_RD | CTLFLAG_MPSAFE | CTLTYPE_OPAQUE,
2072     NULL, 0, sysctl_posix_shm_list, "",
2073     "POSIX SHM list");
2074 
2075 int
2076 kern_shm_open(struct thread *td, const char *path, int flags, mode_t mode,
2077     struct filecaps *caps)
2078 {
2079 
2080 	return (kern_shm_open2(td, path, flags, mode, 0, caps, NULL));
2081 }
2082 
2083 /*
2084  * This version of the shm_open() interface leaves CLOEXEC behavior up to the
2085  * caller, and libc will enforce it for the traditional shm_open() call.  This
2086  * allows other consumers, like memfd_create(), to opt-in for CLOEXEC.  This
2087  * interface also includes a 'name' argument that is currently unused, but could
2088  * potentially be exported later via some interface for debugging purposes.
2089  * From the kernel's perspective, it is optional.  Individual consumers like
2090  * memfd_create() may require it in order to be compatible with other systems
2091  * implementing the same function.
2092  */
2093 int
2094 sys_shm_open2(struct thread *td, struct shm_open2_args *uap)
2095 {
2096 
2097 	return (kern_shm_open2(td, uap->path, uap->flags, uap->mode,
2098 	    uap->shmflags, NULL, uap->name));
2099 }
2100