xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 6890b588)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39 
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 
57 /*
58  * Function pointer set by the AIO routines so that the socket buffer code
59  * can call back into the AIO module if it is loaded.
60  */
61 void	(*aio_swake)(struct socket *, struct sockbuf *);
62 
63 /*
64  * Primitive routines for operating on socket buffers
65  */
66 
67 u_long	sb_max = SB_MAX;
68 u_long sb_max_adj =
69        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 #ifdef KERN_TLS
74 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
75     struct mbuf *n);
76 #endif
77 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
78 static void	sbflush_internal(struct sockbuf *sb);
79 
80 /*
81  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
82  */
83 static void
84 sbm_clrprotoflags(struct mbuf *m, int flags)
85 {
86 	int mask;
87 
88 	mask = ~M_PROTOFLAGS;
89 	if (flags & PRUS_NOTREADY)
90 		mask |= M_NOTREADY;
91 	while (m) {
92 		m->m_flags &= mask;
93 		m = m->m_next;
94 	}
95 }
96 
97 /*
98  * Compress M_NOTREADY mbufs after they have been readied by sbready().
99  *
100  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
101  * be copied at the time of sbcompress().  This function combines small
102  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
103  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
104  * ready.
105  */
106 static void
107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
108 {
109 	struct mbuf *m, *n;
110 	int ext_size;
111 
112 	SOCKBUF_LOCK_ASSERT(sb);
113 
114 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
115 		return;
116 
117 	for (m = m0; m != end; m = m->m_next) {
118 		MPASS((m->m_flags & M_NOTREADY) == 0);
119 		/*
120 		 * NB: In sbcompress(), 'n' is the last mbuf in the
121 		 * socket buffer and 'm' is the new mbuf being copied
122 		 * into the trailing space of 'n'.  Here, the roles
123 		 * are reversed and 'n' is the next mbuf after 'm'
124 		 * that is being copied into the trailing space of
125 		 * 'm'.
126 		 */
127 		n = m->m_next;
128 #ifdef KERN_TLS
129 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
130 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
131 		    (m->m_flags & M_EXTPG) &&
132 		    (n->m_flags & M_EXTPG) &&
133 		    !mbuf_has_tls_session(m) &&
134 		    !mbuf_has_tls_session(n)) {
135 			int hdr_len, trail_len;
136 
137 			hdr_len = n->m_epg_hdrlen;
138 			trail_len = m->m_epg_trllen;
139 			if (trail_len != 0 && hdr_len != 0 &&
140 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
141 				/* copy n's header to m's trailer */
142 				memcpy(&m->m_epg_trail[trail_len],
143 				    n->m_epg_hdr, hdr_len);
144 				m->m_epg_trllen += hdr_len;
145 				m->m_len += hdr_len;
146 				n->m_epg_hdrlen = 0;
147 				n->m_len -= hdr_len;
148 			}
149 		}
150 #endif
151 
152 		/* Compress small unmapped mbufs into plain mbufs. */
153 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
154 		    !mbuf_has_tls_session(m)) {
155 			ext_size = m->m_ext.ext_size;
156 			if (mb_unmapped_compress(m) == 0) {
157 				sb->sb_mbcnt -= ext_size;
158 				sb->sb_ccnt -= 1;
159 			}
160 		}
161 
162 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
163 		    M_WRITABLE(m) &&
164 		    (m->m_flags & M_EXTPG) == 0 &&
165 		    !mbuf_has_tls_session(n) &&
166 		    !mbuf_has_tls_session(m) &&
167 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
168 		    n->m_len <= M_TRAILINGSPACE(m) &&
169 		    m->m_type == n->m_type) {
170 			KASSERT(sb->sb_lastrecord != n,
171 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
172 			    __func__, n, m));
173 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
174 			m->m_len += n->m_len;
175 			m->m_next = n->m_next;
176 			m->m_flags |= n->m_flags & M_EOR;
177 			if (sb->sb_mbtail == n)
178 				sb->sb_mbtail = m;
179 
180 			sb->sb_mbcnt -= MSIZE;
181 			sb->sb_mcnt -= 1;
182 			if (n->m_flags & M_EXT) {
183 				sb->sb_mbcnt -= n->m_ext.ext_size;
184 				sb->sb_ccnt -= 1;
185 			}
186 			m_free(n);
187 			n = m->m_next;
188 		}
189 	}
190 	SBLASTRECORDCHK(sb);
191 	SBLASTMBUFCHK(sb);
192 }
193 
194 /*
195  * Mark ready "count" units of I/O starting with "m".  Most mbufs
196  * count as a single unit of I/O except for M_EXTPG mbufs which
197  * are backed by multiple pages.
198  */
199 int
200 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
201 {
202 	struct mbuf *m;
203 	u_int blocker;
204 
205 	SOCKBUF_LOCK_ASSERT(sb);
206 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
207 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
208 
209 	m = m0;
210 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
211 
212 	while (count > 0) {
213 		KASSERT(m->m_flags & M_NOTREADY,
214 		    ("%s: m %p !M_NOTREADY", __func__, m));
215 		if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
216 			if (count < m->m_epg_nrdy) {
217 				m->m_epg_nrdy -= count;
218 				count = 0;
219 				break;
220 			}
221 			count -= m->m_epg_nrdy;
222 			m->m_epg_nrdy = 0;
223 		} else
224 			count--;
225 
226 		m->m_flags &= ~(M_NOTREADY | blocker);
227 		if (blocker)
228 			sb->sb_acc += m->m_len;
229 		m = m->m_next;
230 	}
231 
232 	/*
233 	 * If the first mbuf is still not fully ready because only
234 	 * some of its backing pages were readied, no further progress
235 	 * can be made.
236 	 */
237 	if (m0 == m) {
238 		MPASS(m->m_flags & M_NOTREADY);
239 		return (EINPROGRESS);
240 	}
241 
242 	if (!blocker) {
243 		sbready_compress(sb, m0, m);
244 		return (EINPROGRESS);
245 	}
246 
247 	/* This one was blocking all the queue. */
248 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
249 		KASSERT(m->m_flags & M_BLOCKED,
250 		    ("%s: m %p !M_BLOCKED", __func__, m));
251 		m->m_flags &= ~M_BLOCKED;
252 		sb->sb_acc += m->m_len;
253 	}
254 
255 	sb->sb_fnrdy = m;
256 	sbready_compress(sb, m0, m);
257 
258 	return (0);
259 }
260 
261 /*
262  * Adjust sockbuf state reflecting allocation of m.
263  */
264 void
265 sballoc(struct sockbuf *sb, struct mbuf *m)
266 {
267 
268 	SOCKBUF_LOCK_ASSERT(sb);
269 
270 	sb->sb_ccc += m->m_len;
271 
272 	if (sb->sb_fnrdy == NULL) {
273 		if (m->m_flags & M_NOTREADY)
274 			sb->sb_fnrdy = m;
275 		else
276 			sb->sb_acc += m->m_len;
277 	} else
278 		m->m_flags |= M_BLOCKED;
279 
280 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
281 		sb->sb_ctl += m->m_len;
282 
283 	sb->sb_mbcnt += MSIZE;
284 	sb->sb_mcnt += 1;
285 
286 	if (m->m_flags & M_EXT) {
287 		sb->sb_mbcnt += m->m_ext.ext_size;
288 		sb->sb_ccnt += 1;
289 	}
290 }
291 
292 /*
293  * Adjust sockbuf state reflecting freeing of m.
294  */
295 void
296 sbfree(struct sockbuf *sb, struct mbuf *m)
297 {
298 
299 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
300 	SOCKBUF_LOCK_ASSERT(sb);
301 #endif
302 
303 	sb->sb_ccc -= m->m_len;
304 
305 	if (!(m->m_flags & M_NOTAVAIL))
306 		sb->sb_acc -= m->m_len;
307 
308 	if (m == sb->sb_fnrdy) {
309 		struct mbuf *n;
310 
311 		KASSERT(m->m_flags & M_NOTREADY,
312 		    ("%s: m %p !M_NOTREADY", __func__, m));
313 
314 		n = m->m_next;
315 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
316 			n->m_flags &= ~M_BLOCKED;
317 			sb->sb_acc += n->m_len;
318 			n = n->m_next;
319 		}
320 		sb->sb_fnrdy = n;
321 	}
322 
323 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
324 		sb->sb_ctl -= m->m_len;
325 
326 	sb->sb_mbcnt -= MSIZE;
327 	sb->sb_mcnt -= 1;
328 	if (m->m_flags & M_EXT) {
329 		sb->sb_mbcnt -= m->m_ext.ext_size;
330 		sb->sb_ccnt -= 1;
331 	}
332 
333 	if (sb->sb_sndptr == m) {
334 		sb->sb_sndptr = NULL;
335 		sb->sb_sndptroff = 0;
336 	}
337 	if (sb->sb_sndptroff != 0)
338 		sb->sb_sndptroff -= m->m_len;
339 }
340 
341 #ifdef KERN_TLS
342 /*
343  * Similar to sballoc/sbfree but does not adjust state associated with
344  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
345  * are not ready.
346  */
347 void
348 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
349 {
350 
351 	SOCKBUF_LOCK_ASSERT(sb);
352 
353 	sb->sb_ccc += m->m_len;
354 	sb->sb_tlscc += m->m_len;
355 
356 	sb->sb_mbcnt += MSIZE;
357 	sb->sb_mcnt += 1;
358 
359 	if (m->m_flags & M_EXT) {
360 		sb->sb_mbcnt += m->m_ext.ext_size;
361 		sb->sb_ccnt += 1;
362 	}
363 }
364 
365 void
366 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
367 {
368 
369 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
370 	SOCKBUF_LOCK_ASSERT(sb);
371 #endif
372 
373 	sb->sb_ccc -= m->m_len;
374 	sb->sb_tlscc -= m->m_len;
375 
376 	sb->sb_mbcnt -= MSIZE;
377 	sb->sb_mcnt -= 1;
378 
379 	if (m->m_flags & M_EXT) {
380 		sb->sb_mbcnt -= m->m_ext.ext_size;
381 		sb->sb_ccnt -= 1;
382 	}
383 }
384 #endif
385 
386 /*
387  * Socantsendmore indicates that no more data will be sent on the socket; it
388  * would normally be applied to a socket when the user informs the system
389  * that no more data is to be sent, by the protocol code (in case
390  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
391  * received, and will normally be applied to the socket by a protocol when it
392  * detects that the peer will send no more data.  Data queued for reading in
393  * the socket may yet be read.
394  */
395 void
396 socantsendmore_locked(struct socket *so)
397 {
398 
399 	SOCK_SENDBUF_LOCK_ASSERT(so);
400 
401 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
402 	sowwakeup_locked(so);
403 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
404 }
405 
406 void
407 socantsendmore(struct socket *so)
408 {
409 
410 	SOCK_SENDBUF_LOCK(so);
411 	socantsendmore_locked(so);
412 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
413 }
414 
415 void
416 socantrcvmore_locked(struct socket *so)
417 {
418 
419 	SOCK_RECVBUF_LOCK_ASSERT(so);
420 
421 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
422 #ifdef KERN_TLS
423 	if (so->so_rcv.sb_flags & SB_TLS_RX)
424 		ktls_check_rx(&so->so_rcv);
425 #endif
426 	sorwakeup_locked(so);
427 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
428 }
429 
430 void
431 socantrcvmore(struct socket *so)
432 {
433 
434 	SOCK_RECVBUF_LOCK(so);
435 	socantrcvmore_locked(so);
436 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
437 }
438 
439 void
440 soroverflow_locked(struct socket *so)
441 {
442 
443 	SOCK_RECVBUF_LOCK_ASSERT(so);
444 
445 	if (so->so_options & SO_RERROR) {
446 		so->so_rerror = ENOBUFS;
447 		sorwakeup_locked(so);
448 	} else
449 		SOCK_RECVBUF_UNLOCK(so);
450 
451 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
452 }
453 
454 void
455 soroverflow(struct socket *so)
456 {
457 
458 	SOCK_RECVBUF_LOCK(so);
459 	soroverflow_locked(so);
460 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
461 }
462 
463 /*
464  * Wait for data to arrive at/drain from a socket buffer.
465  */
466 int
467 sbwait(struct socket *so, sb_which which)
468 {
469 	struct sockbuf *sb;
470 
471 	SOCK_BUF_LOCK_ASSERT(so, which);
472 
473 	sb = sobuf(so, which);
474 	sb->sb_flags |= SB_WAIT;
475 	return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
476 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
477 	    sb->sb_timeo, 0, 0));
478 }
479 
480 /*
481  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
482  * via SIGIO if the socket has the SS_ASYNC flag set.
483  *
484  * Called with the socket buffer lock held; will release the lock by the end
485  * of the function.  This allows the caller to acquire the socket buffer lock
486  * while testing for the need for various sorts of wakeup and hold it through
487  * to the point where it's no longer required.  We currently hold the lock
488  * through calls out to other subsystems (with the exception of kqueue), and
489  * then release it to avoid lock order issues.  It's not clear that's
490  * correct.
491  */
492 static __always_inline void
493 sowakeup(struct socket *so, const sb_which which)
494 {
495 	struct sockbuf *sb;
496 	int ret;
497 
498 	SOCK_BUF_LOCK_ASSERT(so, which);
499 
500 	sb = sobuf(so, which);
501 	selwakeuppri(sb->sb_sel, PSOCK);
502 	if (!SEL_WAITING(sb->sb_sel))
503 		sb->sb_flags &= ~SB_SEL;
504 	if (sb->sb_flags & SB_WAIT) {
505 		sb->sb_flags &= ~SB_WAIT;
506 		wakeup(&sb->sb_acc);
507 	}
508 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
509 	if (sb->sb_upcall != NULL) {
510 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
511 		if (ret == SU_ISCONNECTED) {
512 			KASSERT(sb == &so->so_rcv,
513 			    ("SO_SND upcall returned SU_ISCONNECTED"));
514 			soupcall_clear(so, SO_RCV);
515 		}
516 	} else
517 		ret = SU_OK;
518 	if (sb->sb_flags & SB_AIO)
519 		sowakeup_aio(so, which);
520 	SOCK_BUF_UNLOCK(so, which);
521 	if (ret == SU_ISCONNECTED)
522 		soisconnected(so);
523 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
524 		pgsigio(&so->so_sigio, SIGIO, 0);
525 	SOCK_BUF_UNLOCK_ASSERT(so, which);
526 }
527 
528 /*
529  * Do we need to notify the other side when I/O is possible?
530  */
531 static __always_inline bool
532 sb_notify(const struct sockbuf *sb)
533 {
534 	return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
535 	    SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
536 }
537 
538 void
539 sorwakeup_locked(struct socket *so)
540 {
541 	SOCK_RECVBUF_LOCK_ASSERT(so);
542 	if (sb_notify(&so->so_rcv))
543 		sowakeup(so, SO_RCV);
544 	else
545 		SOCK_RECVBUF_UNLOCK(so);
546 }
547 
548 void
549 sowwakeup_locked(struct socket *so)
550 {
551 	SOCK_SENDBUF_LOCK_ASSERT(so);
552 	if (sb_notify(&so->so_snd))
553 		sowakeup(so, SO_SND);
554 	else
555 		SOCK_SENDBUF_UNLOCK(so);
556 }
557 
558 /*
559  * Socket buffer (struct sockbuf) utility routines.
560  *
561  * Each socket contains two socket buffers: one for sending data and one for
562  * receiving data.  Each buffer contains a queue of mbufs, information about
563  * the number of mbufs and amount of data in the queue, and other fields
564  * allowing select() statements and notification on data availability to be
565  * implemented.
566  *
567  * Data stored in a socket buffer is maintained as a list of records.  Each
568  * record is a list of mbufs chained together with the m_next field.  Records
569  * are chained together with the m_nextpkt field. The upper level routine
570  * soreceive() expects the following conventions to be observed when placing
571  * information in the receive buffer:
572  *
573  * 1. If the protocol requires each message be preceded by the sender's name,
574  *    then a record containing that name must be present before any
575  *    associated data (mbuf's must be of type MT_SONAME).
576  * 2. If the protocol supports the exchange of ``access rights'' (really just
577  *    additional data associated with the message), and there are ``rights''
578  *    to be received, then a record containing this data should be present
579  *    (mbuf's must be of type MT_RIGHTS).
580  * 3. If a name or rights record exists, then it must be followed by a data
581  *    record, perhaps of zero length.
582  *
583  * Before using a new socket structure it is first necessary to reserve
584  * buffer space to the socket, by calling sbreserve().  This should commit
585  * some of the available buffer space in the system buffer pool for the
586  * socket (currently, it does nothing but enforce limits).  The space should
587  * be released by calling sbrelease() when the socket is destroyed.
588  */
589 int
590 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
591 {
592 	struct thread *td = curthread;
593 
594 	SOCK_SENDBUF_LOCK(so);
595 	SOCK_RECVBUF_LOCK(so);
596 	if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
597 		goto bad;
598 	if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
599 		goto bad2;
600 	if (so->so_rcv.sb_lowat == 0)
601 		so->so_rcv.sb_lowat = 1;
602 	if (so->so_snd.sb_lowat == 0)
603 		so->so_snd.sb_lowat = MCLBYTES;
604 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
605 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
606 	SOCK_RECVBUF_UNLOCK(so);
607 	SOCK_SENDBUF_UNLOCK(so);
608 	return (0);
609 bad2:
610 	sbrelease_locked(so, SO_SND);
611 bad:
612 	SOCK_RECVBUF_UNLOCK(so);
613 	SOCK_SENDBUF_UNLOCK(so);
614 	return (ENOBUFS);
615 }
616 
617 static int
618 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
619 {
620 	int error = 0;
621 	u_long tmp_sb_max = sb_max;
622 
623 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
624 	if (error || !req->newptr)
625 		return (error);
626 	if (tmp_sb_max < MSIZE + MCLBYTES)
627 		return (EINVAL);
628 	sb_max = tmp_sb_max;
629 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
630 	return (0);
631 }
632 
633 /*
634  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
635  * become limiting if buffering efficiency is near the normal case.
636  */
637 bool
638 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
639     struct thread *td)
640 {
641 	struct sockbuf *sb = sobuf(so, which);
642 	rlim_t sbsize_limit;
643 
644 	SOCK_BUF_LOCK_ASSERT(so, which);
645 
646 	/*
647 	 * When a thread is passed, we take into account the thread's socket
648 	 * buffer size limit.  The caller will generally pass curthread, but
649 	 * in the TCP input path, NULL will be passed to indicate that no
650 	 * appropriate thread resource limits are available.  In that case,
651 	 * we don't apply a process limit.
652 	 */
653 	if (cc > sb_max_adj)
654 		return (false);
655 	if (td != NULL) {
656 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
657 	} else
658 		sbsize_limit = RLIM_INFINITY;
659 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
660 	    sbsize_limit))
661 		return (false);
662 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
663 	if (sb->sb_lowat > sb->sb_hiwat)
664 		sb->sb_lowat = sb->sb_hiwat;
665 	return (true);
666 }
667 
668 int
669 sbsetopt(struct socket *so, int cmd, u_long cc)
670 {
671 	struct sockbuf *sb;
672 	sb_which wh;
673 	short *flags;
674 	u_int *hiwat, *lowat;
675 	int error;
676 
677 	sb = NULL;
678 	SOCK_LOCK(so);
679 	if (SOLISTENING(so)) {
680 		switch (cmd) {
681 			case SO_SNDLOWAT:
682 			case SO_SNDBUF:
683 				lowat = &so->sol_sbsnd_lowat;
684 				hiwat = &so->sol_sbsnd_hiwat;
685 				flags = &so->sol_sbsnd_flags;
686 				break;
687 			case SO_RCVLOWAT:
688 			case SO_RCVBUF:
689 				lowat = &so->sol_sbrcv_lowat;
690 				hiwat = &so->sol_sbrcv_hiwat;
691 				flags = &so->sol_sbrcv_flags;
692 				break;
693 		}
694 	} else {
695 		switch (cmd) {
696 			case SO_SNDLOWAT:
697 			case SO_SNDBUF:
698 				sb = &so->so_snd;
699 				wh = SO_SND;
700 				break;
701 			case SO_RCVLOWAT:
702 			case SO_RCVBUF:
703 				sb = &so->so_rcv;
704 				wh = SO_RCV;
705 				break;
706 		}
707 		flags = &sb->sb_flags;
708 		hiwat = &sb->sb_hiwat;
709 		lowat = &sb->sb_lowat;
710 		SOCK_BUF_LOCK(so, wh);
711 	}
712 
713 	error = 0;
714 	switch (cmd) {
715 	case SO_SNDBUF:
716 	case SO_RCVBUF:
717 		if (SOLISTENING(so)) {
718 			if (cc > sb_max_adj) {
719 				error = ENOBUFS;
720 				break;
721 			}
722 			*hiwat = cc;
723 			if (*lowat > *hiwat)
724 				*lowat = *hiwat;
725 		} else {
726 			if (!sbreserve_locked(so, wh, cc, curthread))
727 				error = ENOBUFS;
728 		}
729 		if (error == 0)
730 			*flags &= ~SB_AUTOSIZE;
731 		break;
732 	case SO_SNDLOWAT:
733 	case SO_RCVLOWAT:
734 		/*
735 		 * Make sure the low-water is never greater than the
736 		 * high-water.
737 		 */
738 		*lowat = (cc > *hiwat) ? *hiwat : cc;
739 		break;
740 	}
741 
742 	if (!SOLISTENING(so))
743 		SOCK_BUF_UNLOCK(so, wh);
744 	SOCK_UNLOCK(so);
745 	return (error);
746 }
747 
748 /*
749  * Free mbufs held by a socket, and reserved mbuf space.
750  */
751 static void
752 sbrelease_internal(struct socket *so, sb_which which)
753 {
754 	struct sockbuf *sb = sobuf(so, which);
755 
756 	sbflush_internal(sb);
757 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
758 	    RLIM_INFINITY);
759 	sb->sb_mbmax = 0;
760 }
761 
762 void
763 sbrelease_locked(struct socket *so, sb_which which)
764 {
765 
766 	SOCK_BUF_LOCK_ASSERT(so, which);
767 
768 	sbrelease_internal(so, which);
769 }
770 
771 void
772 sbrelease(struct socket *so, sb_which which)
773 {
774 
775 	SOCK_BUF_LOCK(so, which);
776 	sbrelease_locked(so, which);
777 	SOCK_BUF_UNLOCK(so, which);
778 }
779 
780 void
781 sbdestroy(struct socket *so, sb_which which)
782 {
783 #ifdef KERN_TLS
784 	struct sockbuf *sb = sobuf(so, which);
785 
786 	if (sb->sb_tls_info != NULL)
787 		ktls_free(sb->sb_tls_info);
788 	sb->sb_tls_info = NULL;
789 #endif
790 	sbrelease_internal(so, which);
791 }
792 
793 /*
794  * Routines to add and remove data from an mbuf queue.
795  *
796  * The routines sbappend() or sbappendrecord() are normally called to append
797  * new mbufs to a socket buffer, after checking that adequate space is
798  * available, comparing the function sbspace() with the amount of data to be
799  * added.  sbappendrecord() differs from sbappend() in that data supplied is
800  * treated as the beginning of a new record.  To place a sender's address,
801  * optional access rights, and data in a socket receive buffer,
802  * sbappendaddr() should be used.  To place access rights and data in a
803  * socket receive buffer, sbappendrights() should be used.  In either case,
804  * the new data begins a new record.  Note that unlike sbappend() and
805  * sbappendrecord(), these routines check for the caller that there will be
806  * enough space to store the data.  Each fails if there is not enough space,
807  * or if it cannot find mbufs to store additional information in.
808  *
809  * Reliable protocols may use the socket send buffer to hold data awaiting
810  * acknowledgement.  Data is normally copied from a socket send buffer in a
811  * protocol with m_copy for output to a peer, and then removing the data from
812  * the socket buffer with sbdrop() or sbdroprecord() when the data is
813  * acknowledged by the peer.
814  */
815 #ifdef SOCKBUF_DEBUG
816 void
817 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
818 {
819 	struct mbuf *m = sb->sb_mb;
820 
821 	SOCKBUF_LOCK_ASSERT(sb);
822 
823 	while (m && m->m_nextpkt)
824 		m = m->m_nextpkt;
825 
826 	if (m != sb->sb_lastrecord) {
827 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
828 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
829 		printf("packet chain:\n");
830 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
831 			printf("\t%p\n", m);
832 		panic("%s from %s:%u", __func__, file, line);
833 	}
834 }
835 
836 void
837 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
838 {
839 	struct mbuf *m = sb->sb_mb;
840 	struct mbuf *n;
841 
842 	SOCKBUF_LOCK_ASSERT(sb);
843 
844 	while (m && m->m_nextpkt)
845 		m = m->m_nextpkt;
846 
847 	while (m && m->m_next)
848 		m = m->m_next;
849 
850 	if (m != sb->sb_mbtail) {
851 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
852 			__func__, sb->sb_mb, sb->sb_mbtail, m);
853 		printf("packet tree:\n");
854 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
855 			printf("\t");
856 			for (n = m; n != NULL; n = n->m_next)
857 				printf("%p ", n);
858 			printf("\n");
859 		}
860 		panic("%s from %s:%u", __func__, file, line);
861 	}
862 
863 #ifdef KERN_TLS
864 	m = sb->sb_mtls;
865 	while (m && m->m_next)
866 		m = m->m_next;
867 
868 	if (m != sb->sb_mtlstail) {
869 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
870 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
871 		printf("TLS packet tree:\n");
872 		printf("\t");
873 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
874 			printf("%p ", m);
875 		}
876 		printf("\n");
877 		panic("%s from %s:%u", __func__, file, line);
878 	}
879 #endif
880 }
881 #endif /* SOCKBUF_DEBUG */
882 
883 #define SBLINKRECORD(sb, m0) do {					\
884 	SOCKBUF_LOCK_ASSERT(sb);					\
885 	if ((sb)->sb_lastrecord != NULL)				\
886 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
887 	else								\
888 		(sb)->sb_mb = (m0);					\
889 	(sb)->sb_lastrecord = (m0);					\
890 } while (/*CONSTCOND*/0)
891 
892 /*
893  * Append mbuf chain m to the last record in the socket buffer sb.  The
894  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
895  * are discarded and mbufs are compacted where possible.
896  */
897 void
898 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
899 {
900 	struct mbuf *n;
901 
902 	SOCKBUF_LOCK_ASSERT(sb);
903 
904 	if (m == NULL)
905 		return;
906 	sbm_clrprotoflags(m, flags);
907 	SBLASTRECORDCHK(sb);
908 	n = sb->sb_mb;
909 	if (n) {
910 		while (n->m_nextpkt)
911 			n = n->m_nextpkt;
912 		do {
913 			if (n->m_flags & M_EOR) {
914 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
915 				return;
916 			}
917 		} while (n->m_next && (n = n->m_next));
918 	} else {
919 		/*
920 		 * XXX Would like to simply use sb_mbtail here, but
921 		 * XXX I need to verify that I won't miss an EOR that
922 		 * XXX way.
923 		 */
924 		if ((n = sb->sb_lastrecord) != NULL) {
925 			do {
926 				if (n->m_flags & M_EOR) {
927 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
928 					return;
929 				}
930 			} while (n->m_next && (n = n->m_next));
931 		} else {
932 			/*
933 			 * If this is the first record in the socket buffer,
934 			 * it's also the last record.
935 			 */
936 			sb->sb_lastrecord = m;
937 		}
938 	}
939 	sbcompress(sb, m, n);
940 	SBLASTRECORDCHK(sb);
941 }
942 
943 /*
944  * Append mbuf chain m to the last record in the socket buffer sb.  The
945  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
946  * are discarded and mbufs are compacted where possible.
947  */
948 void
949 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
950 {
951 
952 	SOCKBUF_LOCK(sb);
953 	sbappend_locked(sb, m, flags);
954 	SOCKBUF_UNLOCK(sb);
955 }
956 
957 #ifdef KERN_TLS
958 /*
959  * Append an mbuf containing encrypted TLS data.  The data
960  * is marked M_NOTREADY until it has been decrypted and
961  * stored as a TLS record.
962  */
963 static void
964 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
965 {
966 	struct mbuf *n;
967 
968 	SBLASTMBUFCHK(sb);
969 
970 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
971 	m_demote(m, 1, 0);
972 
973 	for (n = m; n != NULL; n = n->m_next)
974 		n->m_flags |= M_NOTREADY;
975 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
976 	ktls_check_rx(sb);
977 }
978 #endif
979 
980 /*
981  * This version of sbappend() should only be used when the caller absolutely
982  * knows that there will never be more than one record in the socket buffer,
983  * that is, a stream protocol (such as TCP).
984  */
985 void
986 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
987 {
988 	SOCKBUF_LOCK_ASSERT(sb);
989 
990 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
991 
992 #ifdef KERN_TLS
993 	/*
994 	 * Decrypted TLS records are appended as records via
995 	 * sbappendrecord().  TCP passes encrypted TLS records to this
996 	 * function which must be scheduled for decryption.
997 	 */
998 	if (sb->sb_flags & SB_TLS_RX) {
999 		sbappend_ktls_rx(sb, m);
1000 		return;
1001 	}
1002 #endif
1003 
1004 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1005 
1006 	SBLASTMBUFCHK(sb);
1007 
1008 #ifdef KERN_TLS
1009 	if (sb->sb_tls_info != NULL)
1010 		ktls_seq(sb, m);
1011 #endif
1012 
1013 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1014 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1015 
1016 	sbcompress(sb, m, sb->sb_mbtail);
1017 
1018 	sb->sb_lastrecord = sb->sb_mb;
1019 	SBLASTRECORDCHK(sb);
1020 }
1021 
1022 /*
1023  * This version of sbappend() should only be used when the caller absolutely
1024  * knows that there will never be more than one record in the socket buffer,
1025  * that is, a stream protocol (such as TCP).
1026  */
1027 void
1028 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1029 {
1030 
1031 	SOCKBUF_LOCK(sb);
1032 	sbappendstream_locked(sb, m, flags);
1033 	SOCKBUF_UNLOCK(sb);
1034 }
1035 
1036 #ifdef SOCKBUF_DEBUG
1037 void
1038 sbcheck(struct sockbuf *sb, const char *file, int line)
1039 {
1040 	struct mbuf *m, *n, *fnrdy;
1041 	u_long acc, ccc, mbcnt;
1042 #ifdef KERN_TLS
1043 	u_long tlscc;
1044 #endif
1045 
1046 	SOCKBUF_LOCK_ASSERT(sb);
1047 
1048 	acc = ccc = mbcnt = 0;
1049 	fnrdy = NULL;
1050 
1051 	for (m = sb->sb_mb; m; m = n) {
1052 	    n = m->m_nextpkt;
1053 	    for (; m; m = m->m_next) {
1054 		if (m->m_len == 0) {
1055 			printf("sb %p empty mbuf %p\n", sb, m);
1056 			goto fail;
1057 		}
1058 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1059 			if (m != sb->sb_fnrdy) {
1060 				printf("sb %p: fnrdy %p != m %p\n",
1061 				    sb, sb->sb_fnrdy, m);
1062 				goto fail;
1063 			}
1064 			fnrdy = m;
1065 		}
1066 		if (fnrdy) {
1067 			if (!(m->m_flags & M_NOTAVAIL)) {
1068 				printf("sb %p: fnrdy %p, m %p is avail\n",
1069 				    sb, sb->sb_fnrdy, m);
1070 				goto fail;
1071 			}
1072 		} else
1073 			acc += m->m_len;
1074 		ccc += m->m_len;
1075 		mbcnt += MSIZE;
1076 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1077 			mbcnt += m->m_ext.ext_size;
1078 	    }
1079 	}
1080 #ifdef KERN_TLS
1081 	/*
1082 	 * Account for mbufs "detached" by ktls_detach_record() while
1083 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1084 	 * of the detached bytes that are included in ccc.  The mbufs
1085 	 * and clusters are not included in the socket buffer
1086 	 * accounting.
1087 	 */
1088 	ccc += sb->sb_tlsdcc;
1089 
1090 	tlscc = 0;
1091 	for (m = sb->sb_mtls; m; m = m->m_next) {
1092 		if (m->m_nextpkt != NULL) {
1093 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1094 			goto fail;
1095 		}
1096 		if ((m->m_flags & M_NOTREADY) == 0) {
1097 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1098 			goto fail;
1099 		}
1100 		tlscc += m->m_len;
1101 		ccc += m->m_len;
1102 		mbcnt += MSIZE;
1103 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1104 			mbcnt += m->m_ext.ext_size;
1105 	}
1106 
1107 	if (sb->sb_tlscc != tlscc) {
1108 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1109 		    sb->sb_tlsdcc);
1110 		goto fail;
1111 	}
1112 #endif
1113 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1114 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1115 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1116 #ifdef KERN_TLS
1117 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1118 		    sb->sb_tlsdcc);
1119 #endif
1120 		goto fail;
1121 	}
1122 	return;
1123 fail:
1124 	panic("%s from %s:%u", __func__, file, line);
1125 }
1126 #endif
1127 
1128 /*
1129  * As above, except the mbuf chain begins a new record.
1130  */
1131 void
1132 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1133 {
1134 	struct mbuf *m;
1135 
1136 	SOCKBUF_LOCK_ASSERT(sb);
1137 
1138 	if (m0 == NULL)
1139 		return;
1140 	m_clrprotoflags(m0);
1141 	/*
1142 	 * Put the first mbuf on the queue.  Note this permits zero length
1143 	 * records.
1144 	 */
1145 	sballoc(sb, m0);
1146 	SBLASTRECORDCHK(sb);
1147 	SBLINKRECORD(sb, m0);
1148 	sb->sb_mbtail = m0;
1149 	m = m0->m_next;
1150 	m0->m_next = 0;
1151 	if (m && (m0->m_flags & M_EOR)) {
1152 		m0->m_flags &= ~M_EOR;
1153 		m->m_flags |= M_EOR;
1154 	}
1155 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1156 	sbcompress(sb, m, m0);
1157 }
1158 
1159 /*
1160  * As above, except the mbuf chain begins a new record.
1161  */
1162 void
1163 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1164 {
1165 
1166 	SOCKBUF_LOCK(sb);
1167 	sbappendrecord_locked(sb, m0);
1168 	SOCKBUF_UNLOCK(sb);
1169 }
1170 
1171 /* Helper routine that appends data, control, and address to a sockbuf. */
1172 static int
1173 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1174     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1175 {
1176 	struct mbuf *m, *n, *nlast;
1177 #if MSIZE <= 256
1178 	if (asa->sa_len > MLEN)
1179 		return (0);
1180 #endif
1181 	m = m_get(M_NOWAIT, MT_SONAME);
1182 	if (m == NULL)
1183 		return (0);
1184 	m->m_len = asa->sa_len;
1185 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1186 	if (m0) {
1187 		M_ASSERT_NO_SND_TAG(m0);
1188 		m_clrprotoflags(m0);
1189 		m_tag_delete_chain(m0, NULL);
1190 		/*
1191 		 * Clear some persistent info from pkthdr.
1192 		 * We don't use m_demote(), because some netgraph consumers
1193 		 * expect M_PKTHDR presence.
1194 		 */
1195 		m0->m_pkthdr.rcvif = NULL;
1196 		m0->m_pkthdr.flowid = 0;
1197 		m0->m_pkthdr.csum_flags = 0;
1198 		m0->m_pkthdr.fibnum = 0;
1199 		m0->m_pkthdr.rsstype = 0;
1200 	}
1201 	if (ctrl_last)
1202 		ctrl_last->m_next = m0;	/* concatenate data to control */
1203 	else
1204 		control = m0;
1205 	m->m_next = control;
1206 	for (n = m; n->m_next != NULL; n = n->m_next)
1207 		sballoc(sb, n);
1208 	sballoc(sb, n);
1209 	nlast = n;
1210 	SBLINKRECORD(sb, m);
1211 
1212 	sb->sb_mbtail = nlast;
1213 	SBLASTMBUFCHK(sb);
1214 
1215 	SBLASTRECORDCHK(sb);
1216 	return (1);
1217 }
1218 
1219 /*
1220  * Append address and data, and optionally, control (ancillary) data to the
1221  * receive queue of a socket.  If present, m0 must include a packet header
1222  * with total length.  Returns 0 if no space in sockbuf or insufficient
1223  * mbufs.
1224  */
1225 int
1226 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1227     struct mbuf *m0, struct mbuf *control)
1228 {
1229 	struct mbuf *ctrl_last;
1230 	int space = asa->sa_len;
1231 
1232 	SOCKBUF_LOCK_ASSERT(sb);
1233 
1234 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1235 		panic("sbappendaddr_locked");
1236 	if (m0)
1237 		space += m0->m_pkthdr.len;
1238 	space += m_length(control, &ctrl_last);
1239 
1240 	if (space > sbspace(sb))
1241 		return (0);
1242 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1243 }
1244 
1245 /*
1246  * Append address and data, and optionally, control (ancillary) data to the
1247  * receive queue of a socket.  If present, m0 must include a packet header
1248  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1249  * on the receiving sockbuf.
1250  */
1251 int
1252 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1253     struct mbuf *m0, struct mbuf *control)
1254 {
1255 	struct mbuf *ctrl_last;
1256 
1257 	SOCKBUF_LOCK_ASSERT(sb);
1258 
1259 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1260 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1261 }
1262 
1263 /*
1264  * Append address and data, and optionally, control (ancillary) data to the
1265  * receive queue of a socket.  If present, m0 must include a packet header
1266  * with total length.  Returns 0 if no space in sockbuf or insufficient
1267  * mbufs.
1268  */
1269 int
1270 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1271     struct mbuf *m0, struct mbuf *control)
1272 {
1273 	int retval;
1274 
1275 	SOCKBUF_LOCK(sb);
1276 	retval = sbappendaddr_locked(sb, asa, m0, control);
1277 	SOCKBUF_UNLOCK(sb);
1278 	return (retval);
1279 }
1280 
1281 void
1282 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1283     struct mbuf *control, int flags)
1284 {
1285 	struct mbuf *m, *mlast;
1286 
1287 	sbm_clrprotoflags(m0, flags);
1288 	m_last(control)->m_next = m0;
1289 
1290 	SBLASTRECORDCHK(sb);
1291 
1292 	for (m = control; m->m_next; m = m->m_next)
1293 		sballoc(sb, m);
1294 	sballoc(sb, m);
1295 	mlast = m;
1296 	SBLINKRECORD(sb, control);
1297 
1298 	sb->sb_mbtail = mlast;
1299 	SBLASTMBUFCHK(sb);
1300 
1301 	SBLASTRECORDCHK(sb);
1302 }
1303 
1304 void
1305 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1306     int flags)
1307 {
1308 
1309 	SOCKBUF_LOCK(sb);
1310 	sbappendcontrol_locked(sb, m0, control, flags);
1311 	SOCKBUF_UNLOCK(sb);
1312 }
1313 
1314 /*
1315  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1316  * (n).  If (n) is NULL, the buffer is presumed empty.
1317  *
1318  * When the data is compressed, mbufs in the chain may be handled in one of
1319  * three ways:
1320  *
1321  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1322  *     record boundary, and no change in data type).
1323  *
1324  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1325  *     an mbuf already in the socket buffer.  This can occur if an
1326  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1327  *     not ready, and no merging of data types will occur.
1328  *
1329  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1330  *
1331  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1332  * end-of-record.
1333  */
1334 void
1335 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1336 {
1337 	int eor = 0;
1338 	struct mbuf *o;
1339 
1340 	SOCKBUF_LOCK_ASSERT(sb);
1341 
1342 	while (m) {
1343 		eor |= m->m_flags & M_EOR;
1344 		if (m->m_len == 0 &&
1345 		    (eor == 0 ||
1346 		     (((o = m->m_next) || (o = n)) &&
1347 		      o->m_type == m->m_type))) {
1348 			if (sb->sb_lastrecord == m)
1349 				sb->sb_lastrecord = m->m_next;
1350 			m = m_free(m);
1351 			continue;
1352 		}
1353 		if (n && (n->m_flags & M_EOR) == 0 &&
1354 		    M_WRITABLE(n) &&
1355 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1356 		    !(m->m_flags & M_NOTREADY) &&
1357 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1358 		    !mbuf_has_tls_session(m) &&
1359 		    !mbuf_has_tls_session(n) &&
1360 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1361 		    m->m_len <= M_TRAILINGSPACE(n) &&
1362 		    n->m_type == m->m_type) {
1363 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1364 			n->m_len += m->m_len;
1365 			sb->sb_ccc += m->m_len;
1366 			if (sb->sb_fnrdy == NULL)
1367 				sb->sb_acc += m->m_len;
1368 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1369 				/* XXX: Probably don't need.*/
1370 				sb->sb_ctl += m->m_len;
1371 			m = m_free(m);
1372 			continue;
1373 		}
1374 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1375 		    (m->m_flags & M_NOTREADY) == 0 &&
1376 		    !mbuf_has_tls_session(m))
1377 			(void)mb_unmapped_compress(m);
1378 		if (n)
1379 			n->m_next = m;
1380 		else
1381 			sb->sb_mb = m;
1382 		sb->sb_mbtail = m;
1383 		sballoc(sb, m);
1384 		n = m;
1385 		m->m_flags &= ~M_EOR;
1386 		m = m->m_next;
1387 		n->m_next = 0;
1388 	}
1389 	if (eor) {
1390 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1391 		n->m_flags |= eor;
1392 	}
1393 	SBLASTMBUFCHK(sb);
1394 }
1395 
1396 #ifdef KERN_TLS
1397 /*
1398  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1399  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1400  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1401  */
1402 static void
1403 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1404 {
1405 
1406 	SOCKBUF_LOCK_ASSERT(sb);
1407 
1408 	while (m) {
1409 		KASSERT((m->m_flags & M_EOR) == 0,
1410 		    ("TLS RX mbuf %p with EOR", m));
1411 		KASSERT(m->m_type == MT_DATA,
1412 		    ("TLS RX mbuf %p is not MT_DATA", m));
1413 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1414 		    ("TLS RX mbuf %p ready", m));
1415 		KASSERT((m->m_flags & M_EXTPG) == 0,
1416 		    ("TLS RX mbuf %p unmapped", m));
1417 
1418 		if (m->m_len == 0) {
1419 			m = m_free(m);
1420 			continue;
1421 		}
1422 
1423 		/*
1424 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1425 		 * to coalesce the data.
1426 		 */
1427 		if (n &&
1428 		    M_WRITABLE(n) &&
1429 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1430 		    !(n->m_flags & (M_EXTPG)) &&
1431 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1432 		    m->m_len <= M_TRAILINGSPACE(n)) {
1433 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1434 			n->m_len += m->m_len;
1435 			sb->sb_ccc += m->m_len;
1436 			sb->sb_tlscc += m->m_len;
1437 			m = m_free(m);
1438 			continue;
1439 		}
1440 		if (n)
1441 			n->m_next = m;
1442 		else
1443 			sb->sb_mtls = m;
1444 		sb->sb_mtlstail = m;
1445 		sballoc_ktls_rx(sb, m);
1446 		n = m;
1447 		m = m->m_next;
1448 		n->m_next = NULL;
1449 	}
1450 	SBLASTMBUFCHK(sb);
1451 }
1452 #endif
1453 
1454 /*
1455  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1456  */
1457 static void
1458 sbflush_internal(struct sockbuf *sb)
1459 {
1460 
1461 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1462 		/*
1463 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1464 		 * we would loop forever. Panic instead.
1465 		 */
1466 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1467 			break;
1468 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1469 	}
1470 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1471 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1472 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1473 }
1474 
1475 void
1476 sbflush_locked(struct sockbuf *sb)
1477 {
1478 
1479 	SOCKBUF_LOCK_ASSERT(sb);
1480 	sbflush_internal(sb);
1481 }
1482 
1483 void
1484 sbflush(struct sockbuf *sb)
1485 {
1486 
1487 	SOCKBUF_LOCK(sb);
1488 	sbflush_locked(sb);
1489 	SOCKBUF_UNLOCK(sb);
1490 }
1491 
1492 /*
1493  * Cut data from (the front of) a sockbuf.
1494  */
1495 static struct mbuf *
1496 sbcut_internal(struct sockbuf *sb, int len)
1497 {
1498 	struct mbuf *m, *next, *mfree;
1499 	bool is_tls;
1500 
1501 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1502 	    __func__, len));
1503 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1504 	    __func__, len, sb->sb_ccc));
1505 
1506 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1507 	is_tls = false;
1508 	mfree = NULL;
1509 
1510 	while (len > 0) {
1511 		if (m == NULL) {
1512 #ifdef KERN_TLS
1513 			if (next == NULL && !is_tls) {
1514 				if (sb->sb_tlsdcc != 0) {
1515 					MPASS(len >= sb->sb_tlsdcc);
1516 					len -= sb->sb_tlsdcc;
1517 					sb->sb_ccc -= sb->sb_tlsdcc;
1518 					sb->sb_tlsdcc = 0;
1519 					if (len == 0)
1520 						break;
1521 				}
1522 				next = sb->sb_mtls;
1523 				is_tls = true;
1524 			}
1525 #endif
1526 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1527 			m = next;
1528 			next = m->m_nextpkt;
1529 		}
1530 		if (m->m_len > len) {
1531 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1532 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1533 			m->m_len -= len;
1534 			m->m_data += len;
1535 			sb->sb_ccc -= len;
1536 			sb->sb_acc -= len;
1537 			if (sb->sb_sndptroff != 0)
1538 				sb->sb_sndptroff -= len;
1539 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1540 				sb->sb_ctl -= len;
1541 			break;
1542 		}
1543 		len -= m->m_len;
1544 #ifdef KERN_TLS
1545 		if (is_tls)
1546 			sbfree_ktls_rx(sb, m);
1547 		else
1548 #endif
1549 			sbfree(sb, m);
1550 		/*
1551 		 * Do not put M_NOTREADY buffers to the free list, they
1552 		 * are referenced from outside.
1553 		 */
1554 		if (m->m_flags & M_NOTREADY && !is_tls)
1555 			m = m->m_next;
1556 		else {
1557 			struct mbuf *n;
1558 
1559 			n = m->m_next;
1560 			m->m_next = mfree;
1561 			mfree = m;
1562 			m = n;
1563 		}
1564 	}
1565 	/*
1566 	 * Free any zero-length mbufs from the buffer.
1567 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1568 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1569 	 * when sosend_generic() needs to send only control data.
1570 	 */
1571 	while (m && m->m_len == 0) {
1572 		struct mbuf *n;
1573 
1574 		sbfree(sb, m);
1575 		n = m->m_next;
1576 		m->m_next = mfree;
1577 		mfree = m;
1578 		m = n;
1579 	}
1580 #ifdef KERN_TLS
1581 	if (is_tls) {
1582 		sb->sb_mb = NULL;
1583 		sb->sb_mtls = m;
1584 		if (m == NULL)
1585 			sb->sb_mtlstail = NULL;
1586 	} else
1587 #endif
1588 	if (m) {
1589 		sb->sb_mb = m;
1590 		m->m_nextpkt = next;
1591 	} else
1592 		sb->sb_mb = next;
1593 	/*
1594 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1595 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1596 	 */
1597 	m = sb->sb_mb;
1598 	if (m == NULL) {
1599 		sb->sb_mbtail = NULL;
1600 		sb->sb_lastrecord = NULL;
1601 	} else if (m->m_nextpkt == NULL) {
1602 		sb->sb_lastrecord = m;
1603 	}
1604 
1605 	return (mfree);
1606 }
1607 
1608 /*
1609  * Drop data from (the front of) a sockbuf.
1610  */
1611 void
1612 sbdrop_locked(struct sockbuf *sb, int len)
1613 {
1614 
1615 	SOCKBUF_LOCK_ASSERT(sb);
1616 	m_freem(sbcut_internal(sb, len));
1617 }
1618 
1619 /*
1620  * Drop data from (the front of) a sockbuf,
1621  * and return it to caller.
1622  */
1623 struct mbuf *
1624 sbcut_locked(struct sockbuf *sb, int len)
1625 {
1626 
1627 	SOCKBUF_LOCK_ASSERT(sb);
1628 	return (sbcut_internal(sb, len));
1629 }
1630 
1631 void
1632 sbdrop(struct sockbuf *sb, int len)
1633 {
1634 	struct mbuf *mfree;
1635 
1636 	SOCKBUF_LOCK(sb);
1637 	mfree = sbcut_internal(sb, len);
1638 	SOCKBUF_UNLOCK(sb);
1639 
1640 	m_freem(mfree);
1641 }
1642 
1643 struct mbuf *
1644 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1645 {
1646 	struct mbuf *m;
1647 
1648 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1649 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1650 		*moff = off;
1651 		if (sb->sb_sndptr == NULL) {
1652 			sb->sb_sndptr = sb->sb_mb;
1653 			sb->sb_sndptroff = 0;
1654 		}
1655 		return (sb->sb_mb);
1656 	} else {
1657 		m = sb->sb_sndptr;
1658 		off -= sb->sb_sndptroff;
1659 	}
1660 	*moff = off;
1661 	return (m);
1662 }
1663 
1664 void
1665 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1666 {
1667 	/*
1668 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1669 	 * it.
1670 	 */
1671 	struct mbuf *m;
1672 
1673 	if (mb != sb->sb_sndptr) {
1674 		/* Did not copyout at the same mbuf */
1675 		return;
1676 	}
1677 	m = mb;
1678 	while (m && (len > 0)) {
1679 		if (len >= m->m_len) {
1680 			len -= m->m_len;
1681 			if (m->m_next) {
1682 				sb->sb_sndptroff += m->m_len;
1683 				sb->sb_sndptr = m->m_next;
1684 			}
1685 			m = m->m_next;
1686 		} else {
1687 			len = 0;
1688 		}
1689 	}
1690 }
1691 
1692 /*
1693  * Return the first mbuf and the mbuf data offset for the provided
1694  * send offset without changing the "sb_sndptroff" field.
1695  */
1696 struct mbuf *
1697 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1698 {
1699 	struct mbuf *m;
1700 
1701 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1702 
1703 	/*
1704 	 * If the "off" is below the stored offset, which happens on
1705 	 * retransmits, just use "sb_mb":
1706 	 */
1707 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1708 		m = sb->sb_mb;
1709 	} else {
1710 		m = sb->sb_sndptr;
1711 		off -= sb->sb_sndptroff;
1712 	}
1713 	while (off > 0 && m != NULL) {
1714 		if (off < m->m_len)
1715 			break;
1716 		off -= m->m_len;
1717 		m = m->m_next;
1718 	}
1719 	*moff = off;
1720 	return (m);
1721 }
1722 
1723 /*
1724  * Drop a record off the front of a sockbuf and move the next record to the
1725  * front.
1726  */
1727 void
1728 sbdroprecord_locked(struct sockbuf *sb)
1729 {
1730 	struct mbuf *m;
1731 
1732 	SOCKBUF_LOCK_ASSERT(sb);
1733 
1734 	m = sb->sb_mb;
1735 	if (m) {
1736 		sb->sb_mb = m->m_nextpkt;
1737 		do {
1738 			sbfree(sb, m);
1739 			m = m_free(m);
1740 		} while (m);
1741 	}
1742 	SB_EMPTY_FIXUP(sb);
1743 }
1744 
1745 /*
1746  * Drop a record off the front of a sockbuf and move the next record to the
1747  * front.
1748  */
1749 void
1750 sbdroprecord(struct sockbuf *sb)
1751 {
1752 
1753 	SOCKBUF_LOCK(sb);
1754 	sbdroprecord_locked(sb);
1755 	SOCKBUF_UNLOCK(sb);
1756 }
1757 
1758 /*
1759  * Create a "control" mbuf containing the specified data with the specified
1760  * type for presentation on a socket buffer.
1761  */
1762 struct mbuf *
1763 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1764 {
1765 	struct cmsghdr *cp;
1766 	struct mbuf *m;
1767 
1768 	MBUF_CHECKSLEEP(wait);
1769 
1770 	if (wait == M_NOWAIT) {
1771 		if (CMSG_SPACE(size) > MCLBYTES)
1772 			return (NULL);
1773 	} else
1774 		KASSERT(size <= MCLBYTES, ("%s: passed size %u > MCLBYTES",
1775 		    __func__, size));
1776 
1777 	if (CMSG_SPACE(size) > MLEN)
1778 		m = m_getcl(wait, MT_CONTROL, 0);
1779 	else
1780 		m = m_get(wait, MT_CONTROL);
1781 	if (m == NULL)
1782 		return (NULL);
1783 
1784 	KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1785 	    ("sbcreatecontrol: short mbuf"));
1786 	/*
1787 	 * Don't leave the padding between the msg header and the
1788 	 * cmsg data and the padding after the cmsg data un-initialized.
1789 	 */
1790 	cp = mtod(m, struct cmsghdr *);
1791 	bzero(cp, CMSG_SPACE(size));
1792 	if (p != NULL)
1793 		(void)memcpy(CMSG_DATA(cp), p, size);
1794 	m->m_len = CMSG_SPACE(size);
1795 	cp->cmsg_len = CMSG_LEN(size);
1796 	cp->cmsg_level = level;
1797 	cp->cmsg_type = type;
1798 	return (m);
1799 }
1800 
1801 /*
1802  * This does the same for socket buffers that sotoxsocket does for sockets:
1803  * generate an user-format data structure describing the socket buffer.  Note
1804  * that the xsockbuf structure, since it is always embedded in a socket, does
1805  * not include a self pointer nor a length.  We make this entry point public
1806  * in case some other mechanism needs it.
1807  */
1808 void
1809 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1810 {
1811 
1812 	xsb->sb_cc = sb->sb_ccc;
1813 	xsb->sb_hiwat = sb->sb_hiwat;
1814 	xsb->sb_mbcnt = sb->sb_mbcnt;
1815 	xsb->sb_mcnt = sb->sb_mcnt;
1816 	xsb->sb_ccnt = sb->sb_ccnt;
1817 	xsb->sb_mbmax = sb->sb_mbmax;
1818 	xsb->sb_lowat = sb->sb_lowat;
1819 	xsb->sb_flags = sb->sb_flags;
1820 	xsb->sb_timeo = sb->sb_timeo;
1821 }
1822 
1823 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1824 static int dummy;
1825 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1826 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1827     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1828     sysctl_handle_sb_max, "LU",
1829     "Maximum socket buffer size");
1830 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1831     &sb_efficiency, 0, "Socket buffer size waste factor");
1832