xref: /freebsd/sys/kern/uipc_sockbuf.c (revision 7b660faa)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_kern_tls.h"
38 #include "opt_param.h"
39 
40 #include <sys/param.h>
41 #include <sys/aio.h> /* for aio_swake proto */
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/protosw.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 
57 #include <netinet/in.h>
58 
59 /*
60  * Function pointer set by the AIO routines so that the socket buffer code
61  * can call back into the AIO module if it is loaded.
62  */
63 void	(*aio_swake)(struct socket *, struct sockbuf *);
64 
65 /*
66  * Primitive routines for operating on socket buffers
67  */
68 
69 #define	BUF_MAX_ADJ(_sz)	(((u_quad_t)(_sz)) * MCLBYTES / (MSIZE + MCLBYTES))
70 
71 u_long	sb_max = SB_MAX;
72 u_long sb_max_adj = BUF_MAX_ADJ(SB_MAX);
73 
74 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
75 
76 #ifdef KERN_TLS
77 static void	sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
78     struct mbuf *n);
79 #endif
80 static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
81 static void	sbflush_internal(struct sockbuf *sb);
82 
83 /*
84  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
85  */
86 static void
87 sbm_clrprotoflags(struct mbuf *m, int flags)
88 {
89 	int mask;
90 
91 	mask = ~M_PROTOFLAGS;
92 	if (flags & PRUS_NOTREADY)
93 		mask |= M_NOTREADY;
94 	while (m) {
95 		m->m_flags &= mask;
96 		m = m->m_next;
97 	}
98 }
99 
100 /*
101  * Compress M_NOTREADY mbufs after they have been readied by sbready().
102  *
103  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
104  * be copied at the time of sbcompress().  This function combines small
105  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
106  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
107  * ready.
108  */
109 static void
110 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
111 {
112 	struct mbuf *m, *n;
113 	int ext_size;
114 
115 	SOCKBUF_LOCK_ASSERT(sb);
116 
117 	if ((sb->sb_flags & SB_NOCOALESCE) != 0)
118 		return;
119 
120 	for (m = m0; m != end; m = m->m_next) {
121 		MPASS((m->m_flags & M_NOTREADY) == 0);
122 		/*
123 		 * NB: In sbcompress(), 'n' is the last mbuf in the
124 		 * socket buffer and 'm' is the new mbuf being copied
125 		 * into the trailing space of 'n'.  Here, the roles
126 		 * are reversed and 'n' is the next mbuf after 'm'
127 		 * that is being copied into the trailing space of
128 		 * 'm'.
129 		 */
130 		n = m->m_next;
131 #ifdef KERN_TLS
132 		/* Try to coalesce adjacent ktls mbuf hdr/trailers. */
133 		if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
134 		    (m->m_flags & M_EXTPG) &&
135 		    (n->m_flags & M_EXTPG) &&
136 		    !mbuf_has_tls_session(m) &&
137 		    !mbuf_has_tls_session(n)) {
138 			int hdr_len, trail_len;
139 
140 			hdr_len = n->m_epg_hdrlen;
141 			trail_len = m->m_epg_trllen;
142 			if (trail_len != 0 && hdr_len != 0 &&
143 			    trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
144 				/* copy n's header to m's trailer */
145 				memcpy(&m->m_epg_trail[trail_len],
146 				    n->m_epg_hdr, hdr_len);
147 				m->m_epg_trllen += hdr_len;
148 				m->m_len += hdr_len;
149 				n->m_epg_hdrlen = 0;
150 				n->m_len -= hdr_len;
151 			}
152 		}
153 #endif
154 
155 		/* Compress small unmapped mbufs into plain mbufs. */
156 		if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
157 		    !mbuf_has_tls_session(m)) {
158 			ext_size = m->m_ext.ext_size;
159 			if (mb_unmapped_compress(m) == 0)
160 				sb->sb_mbcnt -= ext_size;
161 		}
162 
163 		while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
164 		    M_WRITABLE(m) &&
165 		    (m->m_flags & M_EXTPG) == 0 &&
166 		    !mbuf_has_tls_session(n) &&
167 		    !mbuf_has_tls_session(m) &&
168 		    n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
169 		    n->m_len <= M_TRAILINGSPACE(m) &&
170 		    m->m_type == n->m_type) {
171 			KASSERT(sb->sb_lastrecord != n,
172 		    ("%s: merging start of record (%p) into previous mbuf (%p)",
173 			    __func__, n, m));
174 			m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
175 			m->m_len += n->m_len;
176 			m->m_next = n->m_next;
177 			m->m_flags |= n->m_flags & M_EOR;
178 			if (sb->sb_mbtail == n)
179 				sb->sb_mbtail = m;
180 
181 			sb->sb_mbcnt -= MSIZE;
182 			if (n->m_flags & M_EXT)
183 				sb->sb_mbcnt -= n->m_ext.ext_size;
184 			m_free(n);
185 			n = m->m_next;
186 		}
187 	}
188 	SBLASTRECORDCHK(sb);
189 	SBLASTMBUFCHK(sb);
190 }
191 
192 /*
193  * Mark ready "count" units of I/O starting with "m".  Most mbufs
194  * count as a single unit of I/O except for M_EXTPG mbufs which
195  * are backed by multiple pages.
196  */
197 int
198 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
199 {
200 	struct mbuf *m;
201 	u_int blocker;
202 
203 	SOCKBUF_LOCK_ASSERT(sb);
204 	KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
205 	KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
206 
207 	m = m0;
208 	blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
209 
210 	while (count > 0) {
211 		KASSERT(m->m_flags & M_NOTREADY,
212 		    ("%s: m %p !M_NOTREADY", __func__, m));
213 		if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
214 			if (count < m->m_epg_nrdy) {
215 				m->m_epg_nrdy -= count;
216 				count = 0;
217 				break;
218 			}
219 			count -= m->m_epg_nrdy;
220 			m->m_epg_nrdy = 0;
221 		} else
222 			count--;
223 
224 		m->m_flags &= ~(M_NOTREADY | blocker);
225 		if (blocker)
226 			sb->sb_acc += m->m_len;
227 		m = m->m_next;
228 	}
229 
230 	/*
231 	 * If the first mbuf is still not fully ready because only
232 	 * some of its backing pages were readied, no further progress
233 	 * can be made.
234 	 */
235 	if (m0 == m) {
236 		MPASS(m->m_flags & M_NOTREADY);
237 		return (EINPROGRESS);
238 	}
239 
240 	if (!blocker) {
241 		sbready_compress(sb, m0, m);
242 		return (EINPROGRESS);
243 	}
244 
245 	/* This one was blocking all the queue. */
246 	for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
247 		KASSERT(m->m_flags & M_BLOCKED,
248 		    ("%s: m %p !M_BLOCKED", __func__, m));
249 		m->m_flags &= ~M_BLOCKED;
250 		sb->sb_acc += m->m_len;
251 	}
252 
253 	sb->sb_fnrdy = m;
254 	sbready_compress(sb, m0, m);
255 
256 	return (0);
257 }
258 
259 /*
260  * Adjust sockbuf state reflecting allocation of m.
261  */
262 void
263 sballoc(struct sockbuf *sb, struct mbuf *m)
264 {
265 
266 	SOCKBUF_LOCK_ASSERT(sb);
267 
268 	sb->sb_ccc += m->m_len;
269 
270 	if (sb->sb_fnrdy == NULL) {
271 		if (m->m_flags & M_NOTREADY)
272 			sb->sb_fnrdy = m;
273 		else
274 			sb->sb_acc += m->m_len;
275 	} else
276 		m->m_flags |= M_BLOCKED;
277 
278 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
279 		sb->sb_ctl += m->m_len;
280 
281 	sb->sb_mbcnt += MSIZE;
282 
283 	if (m->m_flags & M_EXT)
284 		sb->sb_mbcnt += m->m_ext.ext_size;
285 }
286 
287 /*
288  * Adjust sockbuf state reflecting freeing of m.
289  */
290 void
291 sbfree(struct sockbuf *sb, struct mbuf *m)
292 {
293 
294 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
295 	SOCKBUF_LOCK_ASSERT(sb);
296 #endif
297 
298 	sb->sb_ccc -= m->m_len;
299 
300 	if (!(m->m_flags & M_NOTAVAIL))
301 		sb->sb_acc -= m->m_len;
302 
303 	if (m == sb->sb_fnrdy) {
304 		struct mbuf *n;
305 
306 		KASSERT(m->m_flags & M_NOTREADY,
307 		    ("%s: m %p !M_NOTREADY", __func__, m));
308 
309 		n = m->m_next;
310 		while (n != NULL && !(n->m_flags & M_NOTREADY)) {
311 			n->m_flags &= ~M_BLOCKED;
312 			sb->sb_acc += n->m_len;
313 			n = n->m_next;
314 		}
315 		sb->sb_fnrdy = n;
316 	}
317 
318 	if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
319 		sb->sb_ctl -= m->m_len;
320 
321 	sb->sb_mbcnt -= MSIZE;
322 	if (m->m_flags & M_EXT)
323 		sb->sb_mbcnt -= m->m_ext.ext_size;
324 
325 	if (sb->sb_sndptr == m) {
326 		sb->sb_sndptr = NULL;
327 		sb->sb_sndptroff = 0;
328 	}
329 	if (sb->sb_sndptroff != 0)
330 		sb->sb_sndptroff -= m->m_len;
331 }
332 
333 #ifdef KERN_TLS
334 /*
335  * Similar to sballoc/sbfree but does not adjust state associated with
336  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
337  * are not ready.
338  */
339 void
340 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
341 {
342 
343 	SOCKBUF_LOCK_ASSERT(sb);
344 
345 	sb->sb_ccc += m->m_len;
346 	sb->sb_tlscc += m->m_len;
347 
348 	sb->sb_mbcnt += MSIZE;
349 
350 	if (m->m_flags & M_EXT)
351 		sb->sb_mbcnt += m->m_ext.ext_size;
352 }
353 
354 void
355 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
356 {
357 
358 #if 0	/* XXX: not yet: soclose() call path comes here w/o lock. */
359 	SOCKBUF_LOCK_ASSERT(sb);
360 #endif
361 
362 	sb->sb_ccc -= m->m_len;
363 	sb->sb_tlscc -= m->m_len;
364 
365 	sb->sb_mbcnt -= MSIZE;
366 
367 	if (m->m_flags & M_EXT)
368 		sb->sb_mbcnt -= m->m_ext.ext_size;
369 }
370 #endif
371 
372 /*
373  * Socantsendmore indicates that no more data will be sent on the socket; it
374  * would normally be applied to a socket when the user informs the system
375  * that no more data is to be sent, by the protocol code (in case
376  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
377  * received, and will normally be applied to the socket by a protocol when it
378  * detects that the peer will send no more data.  Data queued for reading in
379  * the socket may yet be read.
380  */
381 void
382 socantsendmore_locked(struct socket *so)
383 {
384 
385 	SOCK_SENDBUF_LOCK_ASSERT(so);
386 
387 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
388 	sowwakeup_locked(so);
389 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
390 }
391 
392 void
393 socantsendmore(struct socket *so)
394 {
395 
396 	SOCK_SENDBUF_LOCK(so);
397 	socantsendmore_locked(so);
398 	SOCK_SENDBUF_UNLOCK_ASSERT(so);
399 }
400 
401 void
402 socantrcvmore_locked(struct socket *so)
403 {
404 
405 	SOCK_RECVBUF_LOCK_ASSERT(so);
406 
407 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
408 #ifdef KERN_TLS
409 	if (so->so_rcv.sb_flags & SB_TLS_RX)
410 		ktls_check_rx(&so->so_rcv);
411 #endif
412 	sorwakeup_locked(so);
413 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
414 }
415 
416 void
417 socantrcvmore(struct socket *so)
418 {
419 
420 	SOCK_RECVBUF_LOCK(so);
421 	socantrcvmore_locked(so);
422 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
423 }
424 
425 void
426 soroverflow_locked(struct socket *so)
427 {
428 
429 	SOCK_RECVBUF_LOCK_ASSERT(so);
430 
431 	if (so->so_options & SO_RERROR) {
432 		so->so_rerror = ENOBUFS;
433 		sorwakeup_locked(so);
434 	} else
435 		SOCK_RECVBUF_UNLOCK(so);
436 
437 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
438 }
439 
440 void
441 soroverflow(struct socket *so)
442 {
443 
444 	SOCK_RECVBUF_LOCK(so);
445 	soroverflow_locked(so);
446 	SOCK_RECVBUF_UNLOCK_ASSERT(so);
447 }
448 
449 /*
450  * Wait for data to arrive at/drain from a socket buffer.
451  */
452 int
453 sbwait(struct socket *so, sb_which which)
454 {
455 	struct sockbuf *sb;
456 
457 	SOCK_BUF_LOCK_ASSERT(so, which);
458 
459 	sb = sobuf(so, which);
460 	sb->sb_flags |= SB_WAIT;
461 	return (msleep_sbt(&sb->sb_acc, soeventmtx(so, which),
462 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
463 	    sb->sb_timeo, 0, 0));
464 }
465 
466 /*
467  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
468  * via SIGIO if the socket has the SS_ASYNC flag set.
469  *
470  * Called with the socket buffer lock held; will release the lock by the end
471  * of the function.  This allows the caller to acquire the socket buffer lock
472  * while testing for the need for various sorts of wakeup and hold it through
473  * to the point where it's no longer required.  We currently hold the lock
474  * through calls out to other subsystems (with the exception of kqueue), and
475  * then release it to avoid lock order issues.  It's not clear that's
476  * correct.
477  */
478 static __always_inline void
479 sowakeup(struct socket *so, const sb_which which)
480 {
481 	struct sockbuf *sb;
482 	int ret;
483 
484 	SOCK_BUF_LOCK_ASSERT(so, which);
485 
486 	sb = sobuf(so, which);
487 	selwakeuppri(sb->sb_sel, PSOCK);
488 	if (!SEL_WAITING(sb->sb_sel))
489 		sb->sb_flags &= ~SB_SEL;
490 	if (sb->sb_flags & SB_WAIT) {
491 		sb->sb_flags &= ~SB_WAIT;
492 		wakeup(&sb->sb_acc);
493 	}
494 	KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
495 	if (sb->sb_upcall != NULL) {
496 		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
497 		if (ret == SU_ISCONNECTED) {
498 			KASSERT(sb == &so->so_rcv,
499 			    ("SO_SND upcall returned SU_ISCONNECTED"));
500 			soupcall_clear(so, SO_RCV);
501 		}
502 	} else
503 		ret = SU_OK;
504 	if (sb->sb_flags & SB_AIO)
505 		sowakeup_aio(so, which);
506 	SOCK_BUF_UNLOCK(so, which);
507 	if (ret == SU_ISCONNECTED)
508 		soisconnected(so);
509 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
510 		pgsigio(&so->so_sigio, SIGIO, 0);
511 	SOCK_BUF_UNLOCK_ASSERT(so, which);
512 }
513 
514 /*
515  * Do we need to notify the other side when I/O is possible?
516  */
517 static __always_inline bool
518 sb_notify(const struct sockbuf *sb)
519 {
520 	return ((sb->sb_flags & (SB_WAIT | SB_SEL | SB_ASYNC |
521 	    SB_UPCALL | SB_AIO | SB_KNOTE)) != 0);
522 }
523 
524 void
525 sorwakeup_locked(struct socket *so)
526 {
527 	SOCK_RECVBUF_LOCK_ASSERT(so);
528 	if (sb_notify(&so->so_rcv))
529 		sowakeup(so, SO_RCV);
530 	else
531 		SOCK_RECVBUF_UNLOCK(so);
532 }
533 
534 void
535 sowwakeup_locked(struct socket *so)
536 {
537 	SOCK_SENDBUF_LOCK_ASSERT(so);
538 	if (sb_notify(&so->so_snd))
539 		sowakeup(so, SO_SND);
540 	else
541 		SOCK_SENDBUF_UNLOCK(so);
542 }
543 
544 /*
545  * Socket buffer (struct sockbuf) utility routines.
546  *
547  * Each socket contains two socket buffers: one for sending data and one for
548  * receiving data.  Each buffer contains a queue of mbufs, information about
549  * the number of mbufs and amount of data in the queue, and other fields
550  * allowing select() statements and notification on data availability to be
551  * implemented.
552  *
553  * Data stored in a socket buffer is maintained as a list of records.  Each
554  * record is a list of mbufs chained together with the m_next field.  Records
555  * are chained together with the m_nextpkt field. The upper level routine
556  * soreceive() expects the following conventions to be observed when placing
557  * information in the receive buffer:
558  *
559  * 1. If the protocol requires each message be preceded by the sender's name,
560  *    then a record containing that name must be present before any
561  *    associated data (mbuf's must be of type MT_SONAME).
562  * 2. If the protocol supports the exchange of ``access rights'' (really just
563  *    additional data associated with the message), and there are ``rights''
564  *    to be received, then a record containing this data should be present
565  *    (mbuf's must be of type MT_RIGHTS).
566  * 3. If a name or rights record exists, then it must be followed by a data
567  *    record, perhaps of zero length.
568  *
569  * Before using a new socket structure it is first necessary to reserve
570  * buffer space to the socket, by calling sbreserve().  This should commit
571  * some of the available buffer space in the system buffer pool for the
572  * socket (currently, it does nothing but enforce limits).  The space should
573  * be released by calling sbrelease() when the socket is destroyed.
574  */
575 int
576 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
577 {
578 	struct thread *td = curthread;
579 
580 	SOCK_SENDBUF_LOCK(so);
581 	SOCK_RECVBUF_LOCK(so);
582 	if (sbreserve_locked(so, SO_SND, sndcc, td) == 0)
583 		goto bad;
584 	if (sbreserve_locked(so, SO_RCV, rcvcc, td) == 0)
585 		goto bad2;
586 	if (so->so_rcv.sb_lowat == 0)
587 		so->so_rcv.sb_lowat = 1;
588 	if (so->so_snd.sb_lowat == 0)
589 		so->so_snd.sb_lowat = MCLBYTES;
590 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
591 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
592 	SOCK_RECVBUF_UNLOCK(so);
593 	SOCK_SENDBUF_UNLOCK(so);
594 	return (0);
595 bad2:
596 	sbrelease_locked(so, SO_SND);
597 bad:
598 	SOCK_RECVBUF_UNLOCK(so);
599 	SOCK_SENDBUF_UNLOCK(so);
600 	return (ENOBUFS);
601 }
602 
603 static int
604 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
605 {
606 	int error = 0;
607 	u_long tmp_sb_max = sb_max;
608 
609 	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
610 	if (error || !req->newptr)
611 		return (error);
612 	if (tmp_sb_max < MSIZE + MCLBYTES)
613 		return (EINVAL);
614 	sb_max = tmp_sb_max;
615 	sb_max_adj = BUF_MAX_ADJ(sb_max);
616 	return (0);
617 }
618 
619 /*
620  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
621  * become limiting if buffering efficiency is near the normal case.
622  */
623 bool
624 sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
625     u_long buf_max, struct thread *td)
626 {
627 	struct sockbuf *sb = sobuf(so, which);
628 	rlim_t sbsize_limit;
629 
630 	SOCK_BUF_LOCK_ASSERT(so, which);
631 
632 	/*
633 	 * When a thread is passed, we take into account the thread's socket
634 	 * buffer size limit.  The caller will generally pass curthread, but
635 	 * in the TCP input path, NULL will be passed to indicate that no
636 	 * appropriate thread resource limits are available.  In that case,
637 	 * we don't apply a process limit.
638 	 */
639 	if (cc > BUF_MAX_ADJ(buf_max))
640 		return (false);
641 	if (td != NULL) {
642 		sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
643 	} else
644 		sbsize_limit = RLIM_INFINITY;
645 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
646 	    sbsize_limit))
647 		return (false);
648 	sb->sb_mbmax = min(cc * sb_efficiency, buf_max);
649 	if (sb->sb_lowat > sb->sb_hiwat)
650 		sb->sb_lowat = sb->sb_hiwat;
651 	return (true);
652 }
653 
654 bool
655 sbreserve_locked(struct socket *so, sb_which which, u_long cc,
656     struct thread *td)
657 {
658 	return (sbreserve_locked_limit(so, which, cc, sb_max, td));
659 }
660 
661 int
662 sbsetopt(struct socket *so, struct sockopt *sopt)
663 {
664 	struct sockbuf *sb;
665 	sb_which wh;
666 	short *flags;
667 	u_int cc, *hiwat, *lowat;
668 	int error, optval;
669 
670 	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
671 	if (error != 0)
672 		return (error);
673 
674 	/*
675 	 * Values < 1 make no sense for any of these options,
676 	 * so disallow them.
677 	 */
678 	if (optval < 1)
679 		return (EINVAL);
680 	cc = optval;
681 
682 	sb = NULL;
683 	SOCK_LOCK(so);
684 	if (SOLISTENING(so)) {
685 		switch (sopt->sopt_name) {
686 			case SO_SNDLOWAT:
687 			case SO_SNDBUF:
688 				lowat = &so->sol_sbsnd_lowat;
689 				hiwat = &so->sol_sbsnd_hiwat;
690 				flags = &so->sol_sbsnd_flags;
691 				break;
692 			case SO_RCVLOWAT:
693 			case SO_RCVBUF:
694 				lowat = &so->sol_sbrcv_lowat;
695 				hiwat = &so->sol_sbrcv_hiwat;
696 				flags = &so->sol_sbrcv_flags;
697 				break;
698 		}
699 	} else {
700 		switch (sopt->sopt_name) {
701 			case SO_SNDLOWAT:
702 			case SO_SNDBUF:
703 				sb = &so->so_snd;
704 				wh = SO_SND;
705 				break;
706 			case SO_RCVLOWAT:
707 			case SO_RCVBUF:
708 				sb = &so->so_rcv;
709 				wh = SO_RCV;
710 				break;
711 		}
712 		flags = &sb->sb_flags;
713 		hiwat = &sb->sb_hiwat;
714 		lowat = &sb->sb_lowat;
715 		SOCK_BUF_LOCK(so, wh);
716 	}
717 
718 	error = 0;
719 	switch (sopt->sopt_name) {
720 	case SO_SNDBUF:
721 	case SO_RCVBUF:
722 		if (SOLISTENING(so)) {
723 			if (cc > sb_max_adj) {
724 				error = ENOBUFS;
725 				break;
726 			}
727 			*hiwat = cc;
728 			if (*lowat > *hiwat)
729 				*lowat = *hiwat;
730 		} else {
731 			if (!sbreserve_locked(so, wh, cc, curthread))
732 				error = ENOBUFS;
733 		}
734 		if (error == 0)
735 			*flags &= ~SB_AUTOSIZE;
736 		break;
737 	case SO_SNDLOWAT:
738 	case SO_RCVLOWAT:
739 		/*
740 		 * Make sure the low-water is never greater than the
741 		 * high-water.
742 		 */
743 		*lowat = (cc > *hiwat) ? *hiwat : cc;
744 		break;
745 	}
746 
747 	if (!SOLISTENING(so))
748 		SOCK_BUF_UNLOCK(so, wh);
749 	SOCK_UNLOCK(so);
750 	return (error);
751 }
752 
753 /*
754  * Free mbufs held by a socket, and reserved mbuf space.
755  */
756 static void
757 sbrelease_internal(struct socket *so, sb_which which)
758 {
759 	struct sockbuf *sb = sobuf(so, which);
760 
761 	sbflush_internal(sb);
762 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
763 	    RLIM_INFINITY);
764 	sb->sb_mbmax = 0;
765 }
766 
767 void
768 sbrelease_locked(struct socket *so, sb_which which)
769 {
770 
771 	SOCK_BUF_LOCK_ASSERT(so, which);
772 
773 	sbrelease_internal(so, which);
774 }
775 
776 void
777 sbrelease(struct socket *so, sb_which which)
778 {
779 
780 	SOCK_BUF_LOCK(so, which);
781 	sbrelease_locked(so, which);
782 	SOCK_BUF_UNLOCK(so, which);
783 }
784 
785 void
786 sbdestroy(struct socket *so, sb_which which)
787 {
788 #ifdef KERN_TLS
789 	struct sockbuf *sb = sobuf(so, which);
790 
791 	if (sb->sb_tls_info != NULL)
792 		ktls_free(sb->sb_tls_info);
793 	sb->sb_tls_info = NULL;
794 #endif
795 	sbrelease_internal(so, which);
796 }
797 
798 /*
799  * Routines to add and remove data from an mbuf queue.
800  *
801  * The routines sbappend() or sbappendrecord() are normally called to append
802  * new mbufs to a socket buffer, after checking that adequate space is
803  * available, comparing the function sbspace() with the amount of data to be
804  * added.  sbappendrecord() differs from sbappend() in that data supplied is
805  * treated as the beginning of a new record.  To place a sender's address,
806  * optional access rights, and data in a socket receive buffer,
807  * sbappendaddr() should be used.  To place access rights and data in a
808  * socket receive buffer, sbappendrights() should be used.  In either case,
809  * the new data begins a new record.  Note that unlike sbappend() and
810  * sbappendrecord(), these routines check for the caller that there will be
811  * enough space to store the data.  Each fails if there is not enough space,
812  * or if it cannot find mbufs to store additional information in.
813  *
814  * Reliable protocols may use the socket send buffer to hold data awaiting
815  * acknowledgement.  Data is normally copied from a socket send buffer in a
816  * protocol with m_copy for output to a peer, and then removing the data from
817  * the socket buffer with sbdrop() or sbdroprecord() when the data is
818  * acknowledged by the peer.
819  */
820 #ifdef SOCKBUF_DEBUG
821 void
822 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
823 {
824 	struct mbuf *m = sb->sb_mb;
825 
826 	SOCKBUF_LOCK_ASSERT(sb);
827 
828 	while (m && m->m_nextpkt)
829 		m = m->m_nextpkt;
830 
831 	if (m != sb->sb_lastrecord) {
832 		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
833 			__func__, sb->sb_mb, sb->sb_lastrecord, m);
834 		printf("packet chain:\n");
835 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
836 			printf("\t%p\n", m);
837 		panic("%s from %s:%u", __func__, file, line);
838 	}
839 }
840 
841 void
842 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
843 {
844 	struct mbuf *m = sb->sb_mb;
845 	struct mbuf *n;
846 
847 	SOCKBUF_LOCK_ASSERT(sb);
848 
849 	while (m && m->m_nextpkt)
850 		m = m->m_nextpkt;
851 
852 	while (m && m->m_next)
853 		m = m->m_next;
854 
855 	if (m != sb->sb_mbtail) {
856 		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
857 			__func__, sb->sb_mb, sb->sb_mbtail, m);
858 		printf("packet tree:\n");
859 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
860 			printf("\t");
861 			for (n = m; n != NULL; n = n->m_next)
862 				printf("%p ", n);
863 			printf("\n");
864 		}
865 		panic("%s from %s:%u", __func__, file, line);
866 	}
867 
868 #ifdef KERN_TLS
869 	m = sb->sb_mtls;
870 	while (m && m->m_next)
871 		m = m->m_next;
872 
873 	if (m != sb->sb_mtlstail) {
874 		printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
875 			__func__, sb->sb_mtls, sb->sb_mtlstail, m);
876 		printf("TLS packet tree:\n");
877 		printf("\t");
878 		for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
879 			printf("%p ", m);
880 		}
881 		printf("\n");
882 		panic("%s from %s:%u", __func__, file, line);
883 	}
884 #endif
885 }
886 #endif /* SOCKBUF_DEBUG */
887 
888 #define SBLINKRECORD(sb, m0) do {					\
889 	SOCKBUF_LOCK_ASSERT(sb);					\
890 	if ((sb)->sb_lastrecord != NULL)				\
891 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
892 	else								\
893 		(sb)->sb_mb = (m0);					\
894 	(sb)->sb_lastrecord = (m0);					\
895 } while (/*CONSTCOND*/0)
896 
897 /*
898  * Append mbuf chain m to the last record in the socket buffer sb.  The
899  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
900  * are discarded and mbufs are compacted where possible.
901  */
902 void
903 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
904 {
905 	struct mbuf *n;
906 
907 	SOCKBUF_LOCK_ASSERT(sb);
908 
909 	if (m == NULL)
910 		return;
911 	sbm_clrprotoflags(m, flags);
912 	SBLASTRECORDCHK(sb);
913 	n = sb->sb_mb;
914 	if (n) {
915 		while (n->m_nextpkt)
916 			n = n->m_nextpkt;
917 		do {
918 			if (n->m_flags & M_EOR) {
919 				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
920 				return;
921 			}
922 		} while (n->m_next && (n = n->m_next));
923 	} else {
924 		/*
925 		 * XXX Would like to simply use sb_mbtail here, but
926 		 * XXX I need to verify that I won't miss an EOR that
927 		 * XXX way.
928 		 */
929 		if ((n = sb->sb_lastrecord) != NULL) {
930 			do {
931 				if (n->m_flags & M_EOR) {
932 					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
933 					return;
934 				}
935 			} while (n->m_next && (n = n->m_next));
936 		} else {
937 			/*
938 			 * If this is the first record in the socket buffer,
939 			 * it's also the last record.
940 			 */
941 			sb->sb_lastrecord = m;
942 		}
943 	}
944 	sbcompress(sb, m, n);
945 	SBLASTRECORDCHK(sb);
946 }
947 
948 /*
949  * Append mbuf chain m to the last record in the socket buffer sb.  The
950  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
951  * are discarded and mbufs are compacted where possible.
952  */
953 void
954 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
955 {
956 
957 	SOCKBUF_LOCK(sb);
958 	sbappend_locked(sb, m, flags);
959 	SOCKBUF_UNLOCK(sb);
960 }
961 
962 #ifdef KERN_TLS
963 /*
964  * Append an mbuf containing encrypted TLS data.  The data
965  * is marked M_NOTREADY until it has been decrypted and
966  * stored as a TLS record.
967  */
968 static void
969 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
970 {
971 	struct ifnet *ifp;
972 	struct mbuf *n;
973 	int flags;
974 
975 	ifp = NULL;
976 	flags = M_NOTREADY;
977 
978 	SBLASTMBUFCHK(sb);
979 
980 	/* Mbuf chain must start with a packet header. */
981 	MPASS((m->m_flags & M_PKTHDR) != 0);
982 
983 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
984 	for (n = m; n != NULL; n = n->m_next) {
985 		if (n->m_flags & M_PKTHDR) {
986 			ifp = m->m_pkthdr.leaf_rcvif;
987 			if ((n->m_pkthdr.csum_flags & CSUM_TLS_MASK) ==
988 			    CSUM_TLS_DECRYPTED) {
989 				/* Mark all mbufs in this packet decrypted. */
990 				flags = M_NOTREADY | M_DECRYPTED;
991 			} else {
992 				flags = M_NOTREADY;
993 			}
994 			m_demote_pkthdr(n);
995 		}
996 
997 		n->m_flags &= M_DEMOTEFLAGS;
998 		n->m_flags |= flags;
999 
1000 		MPASS((n->m_flags & M_NOTREADY) != 0);
1001 	}
1002 
1003 	sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
1004 	ktls_check_rx(sb);
1005 
1006 	/* Check for incoming packet route changes: */
1007 	if (ifp != NULL && sb->sb_tls_info->rx_ifp != NULL &&
1008 	    sb->sb_tls_info->rx_ifp != ifp)
1009 		ktls_input_ifp_mismatch(sb, ifp);
1010 }
1011 #endif
1012 
1013 /*
1014  * This version of sbappend() should only be used when the caller absolutely
1015  * knows that there will never be more than one record in the socket buffer,
1016  * that is, a stream protocol (such as TCP).
1017  */
1018 void
1019 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
1020 {
1021 	SOCKBUF_LOCK_ASSERT(sb);
1022 
1023 	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
1024 
1025 #ifdef KERN_TLS
1026 	/*
1027 	 * Decrypted TLS records are appended as records via
1028 	 * sbappendrecord().  TCP passes encrypted TLS records to this
1029 	 * function which must be scheduled for decryption.
1030 	 */
1031 	if (sb->sb_flags & SB_TLS_RX) {
1032 		sbappend_ktls_rx(sb, m);
1033 		return;
1034 	}
1035 #endif
1036 
1037 	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
1038 
1039 	SBLASTMBUFCHK(sb);
1040 
1041 #ifdef KERN_TLS
1042 	if (sb->sb_tls_info != NULL)
1043 		ktls_seq(sb, m);
1044 #endif
1045 
1046 	/* Remove all packet headers and mbuf tags to get a pure data chain. */
1047 	m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
1048 
1049 	sbcompress(sb, m, sb->sb_mbtail);
1050 
1051 	sb->sb_lastrecord = sb->sb_mb;
1052 	SBLASTRECORDCHK(sb);
1053 }
1054 
1055 /*
1056  * This version of sbappend() should only be used when the caller absolutely
1057  * knows that there will never be more than one record in the socket buffer,
1058  * that is, a stream protocol (such as TCP).
1059  */
1060 void
1061 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
1062 {
1063 
1064 	SOCKBUF_LOCK(sb);
1065 	sbappendstream_locked(sb, m, flags);
1066 	SOCKBUF_UNLOCK(sb);
1067 }
1068 
1069 #ifdef SOCKBUF_DEBUG
1070 void
1071 sbcheck(struct sockbuf *sb, const char *file, int line)
1072 {
1073 	struct mbuf *m, *n, *fnrdy;
1074 	u_long acc, ccc, mbcnt;
1075 #ifdef KERN_TLS
1076 	u_long tlscc;
1077 #endif
1078 
1079 	SOCKBUF_LOCK_ASSERT(sb);
1080 
1081 	acc = ccc = mbcnt = 0;
1082 	fnrdy = NULL;
1083 
1084 	for (m = sb->sb_mb; m; m = n) {
1085 	    n = m->m_nextpkt;
1086 	    for (; m; m = m->m_next) {
1087 		if (m->m_len == 0) {
1088 			printf("sb %p empty mbuf %p\n", sb, m);
1089 			goto fail;
1090 		}
1091 		if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
1092 			if (m != sb->sb_fnrdy) {
1093 				printf("sb %p: fnrdy %p != m %p\n",
1094 				    sb, sb->sb_fnrdy, m);
1095 				goto fail;
1096 			}
1097 			fnrdy = m;
1098 		}
1099 		if (fnrdy) {
1100 			if (!(m->m_flags & M_NOTAVAIL)) {
1101 				printf("sb %p: fnrdy %p, m %p is avail\n",
1102 				    sb, sb->sb_fnrdy, m);
1103 				goto fail;
1104 			}
1105 		} else
1106 			acc += m->m_len;
1107 		ccc += m->m_len;
1108 		mbcnt += MSIZE;
1109 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1110 			mbcnt += m->m_ext.ext_size;
1111 	    }
1112 	}
1113 #ifdef KERN_TLS
1114 	/*
1115 	 * Account for mbufs "detached" by ktls_detach_record() while
1116 	 * they are decrypted by ktls_decrypt().  tlsdcc gives a count
1117 	 * of the detached bytes that are included in ccc.  The mbufs
1118 	 * and clusters are not included in the socket buffer
1119 	 * accounting.
1120 	 */
1121 	ccc += sb->sb_tlsdcc;
1122 
1123 	tlscc = 0;
1124 	for (m = sb->sb_mtls; m; m = m->m_next) {
1125 		if (m->m_nextpkt != NULL) {
1126 			printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
1127 			goto fail;
1128 		}
1129 		if ((m->m_flags & M_NOTREADY) == 0) {
1130 			printf("sb %p TLS mbuf %p ready\n", sb, m);
1131 			goto fail;
1132 		}
1133 		tlscc += m->m_len;
1134 		ccc += m->m_len;
1135 		mbcnt += MSIZE;
1136 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1137 			mbcnt += m->m_ext.ext_size;
1138 	}
1139 
1140 	if (sb->sb_tlscc != tlscc) {
1141 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1142 		    sb->sb_tlsdcc);
1143 		goto fail;
1144 	}
1145 #endif
1146 	if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
1147 		printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
1148 		    acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
1149 #ifdef KERN_TLS
1150 		printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
1151 		    sb->sb_tlsdcc);
1152 #endif
1153 		goto fail;
1154 	}
1155 	return;
1156 fail:
1157 	panic("%s from %s:%u", __func__, file, line);
1158 }
1159 #endif
1160 
1161 /*
1162  * As above, except the mbuf chain begins a new record.
1163  */
1164 void
1165 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
1166 {
1167 	struct mbuf *m;
1168 
1169 	SOCKBUF_LOCK_ASSERT(sb);
1170 
1171 	if (m0 == NULL)
1172 		return;
1173 	m_clrprotoflags(m0);
1174 	/*
1175 	 * Put the first mbuf on the queue.  Note this permits zero length
1176 	 * records.
1177 	 */
1178 	sballoc(sb, m0);
1179 	SBLASTRECORDCHK(sb);
1180 	SBLINKRECORD(sb, m0);
1181 	sb->sb_mbtail = m0;
1182 	m = m0->m_next;
1183 	m0->m_next = 0;
1184 	if (m && (m0->m_flags & M_EOR)) {
1185 		m0->m_flags &= ~M_EOR;
1186 		m->m_flags |= M_EOR;
1187 	}
1188 	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
1189 	sbcompress(sb, m, m0);
1190 }
1191 
1192 /*
1193  * As above, except the mbuf chain begins a new record.
1194  */
1195 void
1196 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
1197 {
1198 
1199 	SOCKBUF_LOCK(sb);
1200 	sbappendrecord_locked(sb, m0);
1201 	SOCKBUF_UNLOCK(sb);
1202 }
1203 
1204 /* Helper routine that appends data, control, and address to a sockbuf. */
1205 static int
1206 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
1207     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
1208 {
1209 	struct mbuf *m, *n, *nlast;
1210 #if MSIZE <= 256
1211 	if (asa->sa_len > MLEN)
1212 		return (0);
1213 #endif
1214 	m = m_get(M_NOWAIT, MT_SONAME);
1215 	if (m == NULL)
1216 		return (0);
1217 	m->m_len = asa->sa_len;
1218 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1219 	if (m0) {
1220 		M_ASSERT_NO_SND_TAG(m0);
1221 		m_clrprotoflags(m0);
1222 		m_tag_delete_chain(m0, NULL);
1223 		/*
1224 		 * Clear some persistent info from pkthdr.
1225 		 * We don't use m_demote(), because some netgraph consumers
1226 		 * expect M_PKTHDR presence.
1227 		 */
1228 		m0->m_pkthdr.rcvif = NULL;
1229 		m0->m_pkthdr.flowid = 0;
1230 		m0->m_pkthdr.csum_flags = 0;
1231 		m0->m_pkthdr.fibnum = 0;
1232 		m0->m_pkthdr.rsstype = 0;
1233 	}
1234 	if (ctrl_last)
1235 		ctrl_last->m_next = m0;	/* concatenate data to control */
1236 	else
1237 		control = m0;
1238 	m->m_next = control;
1239 	for (n = m; n->m_next != NULL; n = n->m_next)
1240 		sballoc(sb, n);
1241 	sballoc(sb, n);
1242 	nlast = n;
1243 	SBLINKRECORD(sb, m);
1244 
1245 	sb->sb_mbtail = nlast;
1246 	SBLASTMBUFCHK(sb);
1247 
1248 	SBLASTRECORDCHK(sb);
1249 	return (1);
1250 }
1251 
1252 /*
1253  * Append address and data, and optionally, control (ancillary) data to the
1254  * receive queue of a socket.  If present, m0 must include a packet header
1255  * with total length.  Returns 0 if no space in sockbuf or insufficient
1256  * mbufs.
1257  */
1258 int
1259 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
1260     struct mbuf *m0, struct mbuf *control)
1261 {
1262 	struct mbuf *ctrl_last;
1263 	int space = asa->sa_len;
1264 
1265 	SOCKBUF_LOCK_ASSERT(sb);
1266 
1267 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1268 		panic("sbappendaddr_locked");
1269 	if (m0)
1270 		space += m0->m_pkthdr.len;
1271 	space += m_length(control, &ctrl_last);
1272 
1273 	if (space > sbspace(sb))
1274 		return (0);
1275 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1276 }
1277 
1278 /*
1279  * Append address and data, and optionally, control (ancillary) data to the
1280  * receive queue of a socket.  If present, m0 must include a packet header
1281  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
1282  * on the receiving sockbuf.
1283  */
1284 int
1285 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
1286     struct mbuf *m0, struct mbuf *control)
1287 {
1288 	struct mbuf *ctrl_last;
1289 
1290 	SOCKBUF_LOCK_ASSERT(sb);
1291 
1292 	ctrl_last = (control == NULL) ? NULL : m_last(control);
1293 	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
1294 }
1295 
1296 /*
1297  * Append address and data, and optionally, control (ancillary) data to the
1298  * receive queue of a socket.  If present, m0 must include a packet header
1299  * with total length.  Returns 0 if no space in sockbuf or insufficient
1300  * mbufs.
1301  */
1302 int
1303 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
1304     struct mbuf *m0, struct mbuf *control)
1305 {
1306 	int retval;
1307 
1308 	SOCKBUF_LOCK(sb);
1309 	retval = sbappendaddr_locked(sb, asa, m0, control);
1310 	SOCKBUF_UNLOCK(sb);
1311 	return (retval);
1312 }
1313 
1314 void
1315 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
1316     struct mbuf *control, int flags)
1317 {
1318 	struct mbuf *m, *mlast;
1319 
1320 	sbm_clrprotoflags(m0, flags);
1321 	m_last(control)->m_next = m0;
1322 
1323 	SBLASTRECORDCHK(sb);
1324 
1325 	for (m = control; m->m_next; m = m->m_next)
1326 		sballoc(sb, m);
1327 	sballoc(sb, m);
1328 	mlast = m;
1329 	SBLINKRECORD(sb, control);
1330 
1331 	sb->sb_mbtail = mlast;
1332 	SBLASTMBUFCHK(sb);
1333 
1334 	SBLASTRECORDCHK(sb);
1335 }
1336 
1337 void
1338 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1339     int flags)
1340 {
1341 
1342 	SOCKBUF_LOCK(sb);
1343 	sbappendcontrol_locked(sb, m0, control, flags);
1344 	SOCKBUF_UNLOCK(sb);
1345 }
1346 
1347 /*
1348  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
1349  * (n).  If (n) is NULL, the buffer is presumed empty.
1350  *
1351  * When the data is compressed, mbufs in the chain may be handled in one of
1352  * three ways:
1353  *
1354  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
1355  *     record boundary, and no change in data type).
1356  *
1357  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
1358  *     an mbuf already in the socket buffer.  This can occur if an
1359  *     appropriate mbuf exists, there is room, both mbufs are not marked as
1360  *     not ready, and no merging of data types will occur.
1361  *
1362  * (3) The mbuf may be appended to the end of the existing mbuf chain.
1363  *
1364  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
1365  * end-of-record.
1366  */
1367 void
1368 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1369 {
1370 	int eor = 0;
1371 	struct mbuf *o;
1372 
1373 	SOCKBUF_LOCK_ASSERT(sb);
1374 
1375 	while (m) {
1376 		eor |= m->m_flags & M_EOR;
1377 		if (m->m_len == 0 &&
1378 		    (eor == 0 ||
1379 		     (((o = m->m_next) || (o = n)) &&
1380 		      o->m_type == m->m_type))) {
1381 			if (sb->sb_lastrecord == m)
1382 				sb->sb_lastrecord = m->m_next;
1383 			m = m_free(m);
1384 			continue;
1385 		}
1386 		if (n && (n->m_flags & M_EOR) == 0 &&
1387 		    M_WRITABLE(n) &&
1388 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1389 		    !(m->m_flags & M_NOTREADY) &&
1390 		    !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
1391 		    !mbuf_has_tls_session(m) &&
1392 		    !mbuf_has_tls_session(n) &&
1393 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1394 		    m->m_len <= M_TRAILINGSPACE(n) &&
1395 		    n->m_type == m->m_type) {
1396 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1397 			n->m_len += m->m_len;
1398 			sb->sb_ccc += m->m_len;
1399 			if (sb->sb_fnrdy == NULL)
1400 				sb->sb_acc += m->m_len;
1401 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1402 				/* XXX: Probably don't need.*/
1403 				sb->sb_ctl += m->m_len;
1404 			m = m_free(m);
1405 			continue;
1406 		}
1407 		if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
1408 		    (m->m_flags & M_NOTREADY) == 0 &&
1409 		    !mbuf_has_tls_session(m))
1410 			(void)mb_unmapped_compress(m);
1411 		if (n)
1412 			n->m_next = m;
1413 		else
1414 			sb->sb_mb = m;
1415 		sb->sb_mbtail = m;
1416 		sballoc(sb, m);
1417 		n = m;
1418 		m->m_flags &= ~M_EOR;
1419 		m = m->m_next;
1420 		n->m_next = 0;
1421 	}
1422 	if (eor) {
1423 		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
1424 		n->m_flags |= eor;
1425 	}
1426 	SBLASTMBUFCHK(sb);
1427 }
1428 
1429 #ifdef KERN_TLS
1430 /*
1431  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
1432  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
1433  * a bit simpler (no EOR markers, always MT_DATA, etc.).
1434  */
1435 static void
1436 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1437 {
1438 
1439 	SOCKBUF_LOCK_ASSERT(sb);
1440 
1441 	while (m) {
1442 		KASSERT((m->m_flags & M_EOR) == 0,
1443 		    ("TLS RX mbuf %p with EOR", m));
1444 		KASSERT(m->m_type == MT_DATA,
1445 		    ("TLS RX mbuf %p is not MT_DATA", m));
1446 		KASSERT((m->m_flags & M_NOTREADY) != 0,
1447 		    ("TLS RX mbuf %p ready", m));
1448 		KASSERT((m->m_flags & M_EXTPG) == 0,
1449 		    ("TLS RX mbuf %p unmapped", m));
1450 
1451 		if (m->m_len == 0) {
1452 			m = m_free(m);
1453 			continue;
1454 		}
1455 
1456 		/*
1457 		 * Even though both 'n' and 'm' are NOTREADY, it's ok
1458 		 * to coalesce the data.
1459 		 */
1460 		if (n &&
1461 		    M_WRITABLE(n) &&
1462 		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
1463 		    !((m->m_flags ^ n->m_flags) & M_DECRYPTED) &&
1464 		    !(n->m_flags & M_EXTPG) &&
1465 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1466 		    m->m_len <= M_TRAILINGSPACE(n)) {
1467 			m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
1468 			n->m_len += m->m_len;
1469 			sb->sb_ccc += m->m_len;
1470 			sb->sb_tlscc += m->m_len;
1471 			m = m_free(m);
1472 			continue;
1473 		}
1474 		if (n)
1475 			n->m_next = m;
1476 		else
1477 			sb->sb_mtls = m;
1478 		sb->sb_mtlstail = m;
1479 		sballoc_ktls_rx(sb, m);
1480 		n = m;
1481 		m = m->m_next;
1482 		n->m_next = NULL;
1483 	}
1484 	SBLASTMBUFCHK(sb);
1485 }
1486 #endif
1487 
1488 /*
1489  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
1490  */
1491 static void
1492 sbflush_internal(struct sockbuf *sb)
1493 {
1494 
1495 	while (sb->sb_mbcnt || sb->sb_tlsdcc) {
1496 		/*
1497 		 * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
1498 		 * we would loop forever. Panic instead.
1499 		 */
1500 		if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1501 			break;
1502 		m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
1503 	}
1504 	KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
1505 	    ("%s: ccc %u mb %p mbcnt %u", __func__,
1506 	    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
1507 }
1508 
1509 void
1510 sbflush_locked(struct sockbuf *sb)
1511 {
1512 
1513 	SOCKBUF_LOCK_ASSERT(sb);
1514 	sbflush_internal(sb);
1515 }
1516 
1517 void
1518 sbflush(struct sockbuf *sb)
1519 {
1520 
1521 	SOCKBUF_LOCK(sb);
1522 	sbflush_locked(sb);
1523 	SOCKBUF_UNLOCK(sb);
1524 }
1525 
1526 /*
1527  * Cut data from (the front of) a sockbuf.
1528  */
1529 static struct mbuf *
1530 sbcut_internal(struct sockbuf *sb, int len)
1531 {
1532 	struct mbuf *m, *next, *mfree;
1533 	bool is_tls;
1534 
1535 	KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
1536 	    __func__, len));
1537 	KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
1538 	    __func__, len, sb->sb_ccc));
1539 
1540 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1541 	is_tls = false;
1542 	mfree = NULL;
1543 
1544 	while (len > 0) {
1545 		if (m == NULL) {
1546 #ifdef KERN_TLS
1547 			if (next == NULL && !is_tls) {
1548 				if (sb->sb_tlsdcc != 0) {
1549 					MPASS(len >= sb->sb_tlsdcc);
1550 					len -= sb->sb_tlsdcc;
1551 					sb->sb_ccc -= sb->sb_tlsdcc;
1552 					sb->sb_tlsdcc = 0;
1553 					if (len == 0)
1554 						break;
1555 				}
1556 				next = sb->sb_mtls;
1557 				is_tls = true;
1558 			}
1559 #endif
1560 			KASSERT(next, ("%s: no next, len %d", __func__, len));
1561 			m = next;
1562 			next = m->m_nextpkt;
1563 		}
1564 		if (m->m_len > len) {
1565 			KASSERT(!(m->m_flags & M_NOTAVAIL),
1566 			    ("%s: m %p M_NOTAVAIL", __func__, m));
1567 			m->m_len -= len;
1568 			m->m_data += len;
1569 			sb->sb_ccc -= len;
1570 			sb->sb_acc -= len;
1571 			if (sb->sb_sndptroff != 0)
1572 				sb->sb_sndptroff -= len;
1573 			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
1574 				sb->sb_ctl -= len;
1575 			break;
1576 		}
1577 		len -= m->m_len;
1578 #ifdef KERN_TLS
1579 		if (is_tls)
1580 			sbfree_ktls_rx(sb, m);
1581 		else
1582 #endif
1583 			sbfree(sb, m);
1584 		/*
1585 		 * Do not put M_NOTREADY buffers to the free list, they
1586 		 * are referenced from outside.
1587 		 */
1588 		if (m->m_flags & M_NOTREADY && !is_tls)
1589 			m = m->m_next;
1590 		else {
1591 			struct mbuf *n;
1592 
1593 			n = m->m_next;
1594 			m->m_next = mfree;
1595 			mfree = m;
1596 			m = n;
1597 		}
1598 	}
1599 	/*
1600 	 * Free any zero-length mbufs from the buffer.
1601 	 * For SOCK_DGRAM sockets such mbufs represent empty records.
1602 	 * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
1603 	 * when sosend_generic() needs to send only control data.
1604 	 */
1605 	while (m && m->m_len == 0) {
1606 		struct mbuf *n;
1607 
1608 		sbfree(sb, m);
1609 		n = m->m_next;
1610 		m->m_next = mfree;
1611 		mfree = m;
1612 		m = n;
1613 	}
1614 #ifdef KERN_TLS
1615 	if (is_tls) {
1616 		sb->sb_mb = NULL;
1617 		sb->sb_mtls = m;
1618 		if (m == NULL)
1619 			sb->sb_mtlstail = NULL;
1620 	} else
1621 #endif
1622 	if (m) {
1623 		sb->sb_mb = m;
1624 		m->m_nextpkt = next;
1625 	} else
1626 		sb->sb_mb = next;
1627 	/*
1628 	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
1629 	 * sb_lastrecord is up-to-date if we dropped part of the last record.
1630 	 */
1631 	m = sb->sb_mb;
1632 	if (m == NULL) {
1633 		sb->sb_mbtail = NULL;
1634 		sb->sb_lastrecord = NULL;
1635 	} else if (m->m_nextpkt == NULL) {
1636 		sb->sb_lastrecord = m;
1637 	}
1638 
1639 	return (mfree);
1640 }
1641 
1642 /*
1643  * Drop data from (the front of) a sockbuf.
1644  */
1645 void
1646 sbdrop_locked(struct sockbuf *sb, int len)
1647 {
1648 
1649 	SOCKBUF_LOCK_ASSERT(sb);
1650 	m_freem(sbcut_internal(sb, len));
1651 }
1652 
1653 /*
1654  * Drop data from (the front of) a sockbuf,
1655  * and return it to caller.
1656  */
1657 struct mbuf *
1658 sbcut_locked(struct sockbuf *sb, int len)
1659 {
1660 
1661 	SOCKBUF_LOCK_ASSERT(sb);
1662 	return (sbcut_internal(sb, len));
1663 }
1664 
1665 void
1666 sbdrop(struct sockbuf *sb, int len)
1667 {
1668 	struct mbuf *mfree;
1669 
1670 	SOCKBUF_LOCK(sb);
1671 	mfree = sbcut_internal(sb, len);
1672 	SOCKBUF_UNLOCK(sb);
1673 
1674 	m_freem(mfree);
1675 }
1676 
1677 struct mbuf *
1678 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
1679 {
1680 	struct mbuf *m;
1681 
1682 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1683 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1684 		*moff = off;
1685 		if (sb->sb_sndptr == NULL) {
1686 			sb->sb_sndptr = sb->sb_mb;
1687 			sb->sb_sndptroff = 0;
1688 		}
1689 		return (sb->sb_mb);
1690 	} else {
1691 		m = sb->sb_sndptr;
1692 		off -= sb->sb_sndptroff;
1693 	}
1694 	*moff = off;
1695 	return (m);
1696 }
1697 
1698 void
1699 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
1700 {
1701 	/*
1702 	 * A small copy was done, advance forward the sb_sbsndptr to cover
1703 	 * it.
1704 	 */
1705 	struct mbuf *m;
1706 
1707 	if (mb != sb->sb_sndptr) {
1708 		/* Did not copyout at the same mbuf */
1709 		return;
1710 	}
1711 	m = mb;
1712 	while (m && (len > 0)) {
1713 		if (len >= m->m_len) {
1714 			len -= m->m_len;
1715 			if (m->m_next) {
1716 				sb->sb_sndptroff += m->m_len;
1717 				sb->sb_sndptr = m->m_next;
1718 			}
1719 			m = m->m_next;
1720 		} else {
1721 			len = 0;
1722 		}
1723 	}
1724 }
1725 
1726 /*
1727  * Return the first mbuf and the mbuf data offset for the provided
1728  * send offset without changing the "sb_sndptroff" field.
1729  */
1730 struct mbuf *
1731 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
1732 {
1733 	struct mbuf *m;
1734 
1735 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
1736 
1737 	/*
1738 	 * If the "off" is below the stored offset, which happens on
1739 	 * retransmits, just use "sb_mb":
1740 	 */
1741 	if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
1742 		m = sb->sb_mb;
1743 	} else {
1744 		m = sb->sb_sndptr;
1745 		off -= sb->sb_sndptroff;
1746 	}
1747 	while (off > 0 && m != NULL) {
1748 		if (off < m->m_len)
1749 			break;
1750 		off -= m->m_len;
1751 		m = m->m_next;
1752 	}
1753 	*moff = off;
1754 	return (m);
1755 }
1756 
1757 /*
1758  * Drop a record off the front of a sockbuf and move the next record to the
1759  * front.
1760  */
1761 void
1762 sbdroprecord_locked(struct sockbuf *sb)
1763 {
1764 	struct mbuf *m;
1765 
1766 	SOCKBUF_LOCK_ASSERT(sb);
1767 
1768 	m = sb->sb_mb;
1769 	if (m) {
1770 		sb->sb_mb = m->m_nextpkt;
1771 		do {
1772 			sbfree(sb, m);
1773 			m = m_free(m);
1774 		} while (m);
1775 	}
1776 	SB_EMPTY_FIXUP(sb);
1777 }
1778 
1779 /*
1780  * Drop a record off the front of a sockbuf and move the next record to the
1781  * front.
1782  */
1783 void
1784 sbdroprecord(struct sockbuf *sb)
1785 {
1786 
1787 	SOCKBUF_LOCK(sb);
1788 	sbdroprecord_locked(sb);
1789 	SOCKBUF_UNLOCK(sb);
1790 }
1791 
1792 /*
1793  * Create a "control" mbuf containing the specified data with the specified
1794  * type for presentation on a socket buffer.
1795  */
1796 struct mbuf *
1797 sbcreatecontrol(const void *p, u_int size, int type, int level, int wait)
1798 {
1799 	struct cmsghdr *cp;
1800 	struct mbuf *m;
1801 
1802 	MBUF_CHECKSLEEP(wait);
1803 
1804 	if (wait == M_NOWAIT) {
1805 		if (CMSG_SPACE(size) > MCLBYTES)
1806 			return (NULL);
1807 	} else
1808 		KASSERT(CMSG_SPACE(size) <= MCLBYTES,
1809 		    ("%s: passed CMSG_SPACE(%u) > MCLBYTES", __func__, size));
1810 
1811 	if (CMSG_SPACE(size) > MLEN)
1812 		m = m_getcl(wait, MT_CONTROL, 0);
1813 	else
1814 		m = m_get(wait, MT_CONTROL);
1815 	if (m == NULL)
1816 		return (NULL);
1817 
1818 	KASSERT(CMSG_SPACE(size) <= M_TRAILINGSPACE(m),
1819 	    ("sbcreatecontrol: short mbuf"));
1820 	/*
1821 	 * Don't leave the padding between the msg header and the
1822 	 * cmsg data and the padding after the cmsg data un-initialized.
1823 	 */
1824 	cp = mtod(m, struct cmsghdr *);
1825 	bzero(cp, CMSG_SPACE(size));
1826 	if (p != NULL)
1827 		(void)memcpy(CMSG_DATA(cp), p, size);
1828 	m->m_len = CMSG_SPACE(size);
1829 	cp->cmsg_len = CMSG_LEN(size);
1830 	cp->cmsg_level = level;
1831 	cp->cmsg_type = type;
1832 	return (m);
1833 }
1834 
1835 /*
1836  * This does the same for socket buffers that sotoxsocket does for sockets:
1837  * generate an user-format data structure describing the socket buffer.  Note
1838  * that the xsockbuf structure, since it is always embedded in a socket, does
1839  * not include a self pointer nor a length.  We make this entry point public
1840  * in case some other mechanism needs it.
1841  */
1842 void
1843 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1844 {
1845 
1846 	xsb->sb_cc = sb->sb_ccc;
1847 	xsb->sb_hiwat = sb->sb_hiwat;
1848 	xsb->sb_mbcnt = sb->sb_mbcnt;
1849 	xsb->sb_mbmax = sb->sb_mbmax;
1850 	xsb->sb_lowat = sb->sb_lowat;
1851 	xsb->sb_flags = sb->sb_flags;
1852 	xsb->sb_timeo = sb->sb_timeo;
1853 }
1854 
1855 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1856 static int dummy;
1857 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
1858 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
1859     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
1860     sysctl_handle_sb_max, "LU",
1861     "Maximum socket buffer size");
1862 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1863     &sb_efficiency, 0, "Socket buffer size waste factor");
1864