xref: /freebsd/sys/kern/uipc_socket.c (revision 38069501)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105 
106 #include "opt_inet.h"
107 #include "opt_inet6.h"
108 #include "opt_compat.h"
109 #include "opt_sctp.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h>			/* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/event.h>
126 #include <sys/eventhandler.h>
127 #include <sys/poll.h>
128 #include <sys/proc.h>
129 #include <sys/protosw.h>
130 #include <sys/socket.h>
131 #include <sys/socketvar.h>
132 #include <sys/resourcevar.h>
133 #include <net/route.h>
134 #include <sys/signalvar.h>
135 #include <sys/stat.h>
136 #include <sys/sx.h>
137 #include <sys/sysctl.h>
138 #include <sys/taskqueue.h>
139 #include <sys/uio.h>
140 #include <sys/jail.h>
141 #include <sys/syslog.h>
142 #include <netinet/in.h>
143 
144 #include <net/vnet.h>
145 
146 #include <security/mac/mac_framework.h>
147 
148 #include <vm/uma.h>
149 
150 #ifdef COMPAT_FREEBSD32
151 #include <sys/mount.h>
152 #include <sys/sysent.h>
153 #include <compat/freebsd32/freebsd32.h>
154 #endif
155 
156 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
157 		    int flags);
158 static void	so_rdknl_lock(void *);
159 static void	so_rdknl_unlock(void *);
160 static void	so_rdknl_assert_locked(void *);
161 static void	so_rdknl_assert_unlocked(void *);
162 static void	so_wrknl_lock(void *);
163 static void	so_wrknl_unlock(void *);
164 static void	so_wrknl_assert_locked(void *);
165 static void	so_wrknl_assert_unlocked(void *);
166 
167 static void	filt_sordetach(struct knote *kn);
168 static int	filt_soread(struct knote *kn, long hint);
169 static void	filt_sowdetach(struct knote *kn);
170 static int	filt_sowrite(struct knote *kn, long hint);
171 static int	filt_soempty(struct knote *kn, long hint);
172 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
173 fo_kqfilter_t	soo_kqfilter;
174 
175 static struct filterops soread_filtops = {
176 	.f_isfd = 1,
177 	.f_detach = filt_sordetach,
178 	.f_event = filt_soread,
179 };
180 static struct filterops sowrite_filtops = {
181 	.f_isfd = 1,
182 	.f_detach = filt_sowdetach,
183 	.f_event = filt_sowrite,
184 };
185 static struct filterops soempty_filtops = {
186 	.f_isfd = 1,
187 	.f_detach = filt_sowdetach,
188 	.f_event = filt_soempty,
189 };
190 
191 so_gen_t	so_gencnt;	/* generation count for sockets */
192 
193 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
194 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
195 
196 #define	VNET_SO_ASSERT(so)						\
197 	VNET_ASSERT(curvnet != NULL,					\
198 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
199 
200 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
201 #define	V_socket_hhh		VNET(socket_hhh)
202 
203 /*
204  * Limit on the number of connections in the listen queue waiting
205  * for accept(2).
206  * NB: The original sysctl somaxconn is still available but hidden
207  * to prevent confusion about the actual purpose of this number.
208  */
209 static u_int somaxconn = SOMAXCONN;
210 
211 static int
212 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
213 {
214 	int error;
215 	int val;
216 
217 	val = somaxconn;
218 	error = sysctl_handle_int(oidp, &val, 0, req);
219 	if (error || !req->newptr )
220 		return (error);
221 
222 	/*
223 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
224 	 *   3 * so_qlimit / 2
225 	 * below, will not overflow.
226          */
227 
228 	if (val < 1 || val > UINT_MAX / 3)
229 		return (EINVAL);
230 
231 	somaxconn = val;
232 	return (0);
233 }
234 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
235     0, sizeof(int), sysctl_somaxconn, "I",
236     "Maximum listen socket pending connection accept queue size");
237 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
238     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
239     0, sizeof(int), sysctl_somaxconn, "I",
240     "Maximum listen socket pending connection accept queue size (compat)");
241 
242 static int numopensockets;
243 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
244     &numopensockets, 0, "Number of open sockets");
245 
246 /*
247  * accept_mtx locks down per-socket fields relating to accept queues.  See
248  * socketvar.h for an annotation of the protected fields of struct socket.
249  */
250 struct mtx accept_mtx;
251 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
252 
253 /*
254  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
255  * so_gencnt field.
256  */
257 static struct mtx so_global_mtx;
258 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
259 
260 /*
261  * General IPC sysctl name space, used by sockets and a variety of other IPC
262  * types.
263  */
264 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
265 
266 /*
267  * Initialize the socket subsystem and set up the socket
268  * memory allocator.
269  */
270 static uma_zone_t socket_zone;
271 int	maxsockets;
272 
273 static void
274 socket_zone_change(void *tag)
275 {
276 
277 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
278 }
279 
280 static void
281 socket_hhook_register(int subtype)
282 {
283 
284 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
285 	    &V_socket_hhh[subtype],
286 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
287 		printf("%s: WARNING: unable to register hook\n", __func__);
288 }
289 
290 static void
291 socket_hhook_deregister(int subtype)
292 {
293 
294 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
295 		printf("%s: WARNING: unable to deregister hook\n", __func__);
296 }
297 
298 static void
299 socket_init(void *tag)
300 {
301 
302 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
303 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
304 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
305 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
306 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
307 	    EVENTHANDLER_PRI_FIRST);
308 }
309 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
310 
311 static void
312 socket_vnet_init(const void *unused __unused)
313 {
314 	int i;
315 
316 	/* We expect a contiguous range */
317 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
318 		socket_hhook_register(i);
319 }
320 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
321     socket_vnet_init, NULL);
322 
323 static void
324 socket_vnet_uninit(const void *unused __unused)
325 {
326 	int i;
327 
328 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
329 		socket_hhook_deregister(i);
330 }
331 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
332     socket_vnet_uninit, NULL);
333 
334 /*
335  * Initialise maxsockets.  This SYSINIT must be run after
336  * tunable_mbinit().
337  */
338 static void
339 init_maxsockets(void *ignored)
340 {
341 
342 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
343 	maxsockets = imax(maxsockets, maxfiles);
344 }
345 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
346 
347 /*
348  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
349  * of the change so that they can update their dependent limits as required.
350  */
351 static int
352 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
353 {
354 	int error, newmaxsockets;
355 
356 	newmaxsockets = maxsockets;
357 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
358 	if (error == 0 && req->newptr) {
359 		if (newmaxsockets > maxsockets &&
360 		    newmaxsockets <= maxfiles) {
361 			maxsockets = newmaxsockets;
362 			EVENTHANDLER_INVOKE(maxsockets_change);
363 		} else
364 			error = EINVAL;
365 	}
366 	return (error);
367 }
368 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
369     &maxsockets, 0, sysctl_maxsockets, "IU",
370     "Maximum number of sockets available");
371 
372 /*
373  * Socket operation routines.  These routines are called by the routines in
374  * sys_socket.c or from a system process, and implement the semantics of
375  * socket operations by switching out to the protocol specific routines.
376  */
377 
378 /*
379  * Get a socket structure from our zone, and initialize it.  Note that it
380  * would probably be better to allocate socket and PCB at the same time, but
381  * I'm not convinced that all the protocols can be easily modified to do
382  * this.
383  *
384  * soalloc() returns a socket with a ref count of 0.
385  */
386 static struct socket *
387 soalloc(struct vnet *vnet)
388 {
389 	struct socket *so;
390 
391 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
392 	if (so == NULL)
393 		return (NULL);
394 #ifdef MAC
395 	if (mac_socket_init(so, M_NOWAIT) != 0) {
396 		uma_zfree(socket_zone, so);
397 		return (NULL);
398 	}
399 #endif
400 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
401 		uma_zfree(socket_zone, so);
402 		return (NULL);
403 	}
404 
405 	/*
406 	 * The socket locking protocol allows to lock 2 sockets at a time,
407 	 * however, the first one must be a listening socket.  WITNESS lacks
408 	 * a feature to change class of an existing lock, so we use DUPOK.
409 	 */
410 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
411 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
412 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
413 	so->so_rcv.sb_sel = &so->so_rdsel;
414 	so->so_snd.sb_sel = &so->so_wrsel;
415 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
416 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
417 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
418 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
419 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
420 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
421 #ifdef VIMAGE
422 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
423 	    __func__, __LINE__, so));
424 	so->so_vnet = vnet;
425 #endif
426 	/* We shouldn't need the so_global_mtx */
427 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
428 		/* Do we need more comprehensive error returns? */
429 		uma_zfree(socket_zone, so);
430 		return (NULL);
431 	}
432 	mtx_lock(&so_global_mtx);
433 	so->so_gencnt = ++so_gencnt;
434 	++numopensockets;
435 #ifdef VIMAGE
436 	vnet->vnet_sockcnt++;
437 #endif
438 	mtx_unlock(&so_global_mtx);
439 
440 	return (so);
441 }
442 
443 /*
444  * Free the storage associated with a socket at the socket layer, tear down
445  * locks, labels, etc.  All protocol state is assumed already to have been
446  * torn down (and possibly never set up) by the caller.
447  */
448 static void
449 sodealloc(struct socket *so)
450 {
451 
452 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
453 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
454 
455 	mtx_lock(&so_global_mtx);
456 	so->so_gencnt = ++so_gencnt;
457 	--numopensockets;	/* Could be below, but faster here. */
458 #ifdef VIMAGE
459 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
460 	    __func__, __LINE__, so));
461 	so->so_vnet->vnet_sockcnt--;
462 #endif
463 	mtx_unlock(&so_global_mtx);
464 #ifdef MAC
465 	mac_socket_destroy(so);
466 #endif
467 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
468 
469 	crfree(so->so_cred);
470 	khelp_destroy_osd(&so->osd);
471 	if (SOLISTENING(so)) {
472 		if (so->sol_accept_filter != NULL)
473 			accept_filt_setopt(so, NULL);
474 	} else {
475 		if (so->so_rcv.sb_hiwat)
476 			(void)chgsbsize(so->so_cred->cr_uidinfo,
477 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
478 		if (so->so_snd.sb_hiwat)
479 			(void)chgsbsize(so->so_cred->cr_uidinfo,
480 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
481 		sx_destroy(&so->so_snd.sb_sx);
482 		sx_destroy(&so->so_rcv.sb_sx);
483 		SOCKBUF_LOCK_DESTROY(&so->so_snd);
484 		SOCKBUF_LOCK_DESTROY(&so->so_rcv);
485 	}
486 	mtx_destroy(&so->so_lock);
487 	uma_zfree(socket_zone, so);
488 }
489 
490 /*
491  * socreate returns a socket with a ref count of 1.  The socket should be
492  * closed with soclose().
493  */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto,
496     struct ucred *cred, struct thread *td)
497 {
498 	struct protosw *prp;
499 	struct socket *so;
500 	int error;
501 
502 	if (proto)
503 		prp = pffindproto(dom, proto, type);
504 	else
505 		prp = pffindtype(dom, type);
506 
507 	if (prp == NULL) {
508 		/* No support for domain. */
509 		if (pffinddomain(dom) == NULL)
510 			return (EAFNOSUPPORT);
511 		/* No support for socket type. */
512 		if (proto == 0 && type != 0)
513 			return (EPROTOTYPE);
514 		return (EPROTONOSUPPORT);
515 	}
516 	if (prp->pr_usrreqs->pru_attach == NULL ||
517 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
518 		return (EPROTONOSUPPORT);
519 
520 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
521 		return (EPROTONOSUPPORT);
522 
523 	if (prp->pr_type != type)
524 		return (EPROTOTYPE);
525 	so = soalloc(CRED_TO_VNET(cred));
526 	if (so == NULL)
527 		return (ENOBUFS);
528 
529 	so->so_type = type;
530 	so->so_cred = crhold(cred);
531 	if ((prp->pr_domain->dom_family == PF_INET) ||
532 	    (prp->pr_domain->dom_family == PF_INET6) ||
533 	    (prp->pr_domain->dom_family == PF_ROUTE))
534 		so->so_fibnum = td->td_proc->p_fibnum;
535 	else
536 		so->so_fibnum = 0;
537 	so->so_proto = prp;
538 #ifdef MAC
539 	mac_socket_create(cred, so);
540 #endif
541 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
542 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
543 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
544 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
545 	/*
546 	 * Auto-sizing of socket buffers is managed by the protocols and
547 	 * the appropriate flags must be set in the pru_attach function.
548 	 */
549 	CURVNET_SET(so->so_vnet);
550 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
551 	CURVNET_RESTORE();
552 	if (error) {
553 		sodealloc(so);
554 		return (error);
555 	}
556 	soref(so);
557 	*aso = so;
558 	return (0);
559 }
560 
561 #ifdef REGRESSION
562 static int regression_sonewconn_earlytest = 1;
563 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
564     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
565 #endif
566 
567 /*
568  * When an attempt at a new connection is noted on a socket which accepts
569  * connections, sonewconn is called.  If the connection is possible (subject
570  * to space constraints, etc.) then we allocate a new structure, properly
571  * linked into the data structure of the original socket, and return this.
572  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
573  *
574  * Note: the ref count on the socket is 0 on return.
575  */
576 struct socket *
577 sonewconn(struct socket *head, int connstatus)
578 {
579 	static struct timeval lastover;
580 	static struct timeval overinterval = { 60, 0 };
581 	static int overcount;
582 
583 	struct socket *so;
584 	u_int over;
585 
586 	SOLISTEN_LOCK(head);
587 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
588 	SOLISTEN_UNLOCK(head);
589 #ifdef REGRESSION
590 	if (regression_sonewconn_earlytest && over) {
591 #else
592 	if (over) {
593 #endif
594 		overcount++;
595 
596 		if (ratecheck(&lastover, &overinterval)) {
597 			log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
598 			    "%i already in queue awaiting acceptance "
599 			    "(%d occurrences)\n",
600 			    __func__, head->so_pcb, head->sol_qlen, overcount);
601 
602 			overcount = 0;
603 		}
604 
605 		return (NULL);
606 	}
607 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
608 	    __func__, head));
609 	so = soalloc(head->so_vnet);
610 	if (so == NULL) {
611 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
612 		    "limit reached or out of memory\n",
613 		    __func__, head->so_pcb);
614 		return (NULL);
615 	}
616 	so->so_listen = head;
617 	so->so_type = head->so_type;
618 	so->so_linger = head->so_linger;
619 	so->so_state = head->so_state | SS_NOFDREF;
620 	so->so_fibnum = head->so_fibnum;
621 	so->so_proto = head->so_proto;
622 	so->so_cred = crhold(head->so_cred);
623 #ifdef MAC
624 	mac_socket_newconn(head, so);
625 #endif
626 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
627 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
628 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
629 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
630 	VNET_SO_ASSERT(head);
631 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
632 		sodealloc(so);
633 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
634 		    __func__, head->so_pcb);
635 		return (NULL);
636 	}
637 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
638 		sodealloc(so);
639 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
640 		    __func__, head->so_pcb);
641 		return (NULL);
642 	}
643 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
644 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
645 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
646 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
647 	so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
648 	so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
649 
650 	SOLISTEN_LOCK(head);
651 	if (head->sol_accept_filter != NULL)
652 		connstatus = 0;
653 	so->so_state |= connstatus;
654 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
655 	soref(head); /* A socket on (in)complete queue refs head. */
656 	if (connstatus) {
657 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
658 		so->so_qstate = SQ_COMP;
659 		head->sol_qlen++;
660 		solisten_wakeup(head);	/* unlocks */
661 	} else {
662 		/*
663 		 * Keep removing sockets from the head until there's room for
664 		 * us to insert on the tail.  In pre-locking revisions, this
665 		 * was a simple if(), but as we could be racing with other
666 		 * threads and soabort() requires dropping locks, we must
667 		 * loop waiting for the condition to be true.
668 		 */
669 		while (head->sol_incqlen > head->sol_qlimit) {
670 			struct socket *sp;
671 
672 			sp = TAILQ_FIRST(&head->sol_incomp);
673 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
674 			head->sol_incqlen--;
675 			SOCK_LOCK(sp);
676 			sp->so_qstate = SQ_NONE;
677 			sp->so_listen = NULL;
678 			SOCK_UNLOCK(sp);
679 			sorele(head);	/* does SOLISTEN_UNLOCK, head stays */
680 			soabort(sp);
681 			SOLISTEN_LOCK(head);
682 		}
683 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
684 		so->so_qstate = SQ_INCOMP;
685 		head->sol_incqlen++;
686 		SOLISTEN_UNLOCK(head);
687 	}
688 	return (so);
689 }
690 
691 #ifdef SCTP
692 /*
693  * Socket part of sctp_peeloff().  Detach a new socket from an
694  * association.  The new socket is returned with a reference.
695  */
696 struct socket *
697 sopeeloff(struct socket *head)
698 {
699 	struct socket *so;
700 
701 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
702 	    __func__, __LINE__, head));
703 	so = soalloc(head->so_vnet);
704 	if (so == NULL) {
705 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
706 		    "limit reached or out of memory\n",
707 		    __func__, head->so_pcb);
708 		return (NULL);
709 	}
710 	so->so_type = head->so_type;
711 	so->so_options = head->so_options;
712 	so->so_linger = head->so_linger;
713 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
714 	so->so_fibnum = head->so_fibnum;
715 	so->so_proto = head->so_proto;
716 	so->so_cred = crhold(head->so_cred);
717 #ifdef MAC
718 	mac_socket_newconn(head, so);
719 #endif
720 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
721 	    so_rdknl_assert_locked, so_rdknl_assert_unlocked);
722 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
723 	    so_wrknl_assert_locked, so_wrknl_assert_unlocked);
724 	VNET_SO_ASSERT(head);
725 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
726 		sodealloc(so);
727 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
728 		    __func__, head->so_pcb);
729 		return (NULL);
730 	}
731 	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
732 		sodealloc(so);
733 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
734 		    __func__, head->so_pcb);
735 		return (NULL);
736 	}
737 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
738 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
739 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
740 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
741 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
742 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
743 
744 	soref(so);
745 
746 	return (so);
747 }
748 #endif	/* SCTP */
749 
750 int
751 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
752 {
753 	int error;
754 
755 	CURVNET_SET(so->so_vnet);
756 	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
757 	CURVNET_RESTORE();
758 	return (error);
759 }
760 
761 int
762 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
763 {
764 	int error;
765 
766 	CURVNET_SET(so->so_vnet);
767 	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
768 	CURVNET_RESTORE();
769 	return (error);
770 }
771 
772 /*
773  * solisten() transitions a socket from a non-listening state to a listening
774  * state, but can also be used to update the listen queue depth on an
775  * existing listen socket.  The protocol will call back into the sockets
776  * layer using solisten_proto_check() and solisten_proto() to check and set
777  * socket-layer listen state.  Call backs are used so that the protocol can
778  * acquire both protocol and socket layer locks in whatever order is required
779  * by the protocol.
780  *
781  * Protocol implementors are advised to hold the socket lock across the
782  * socket-layer test and set to avoid races at the socket layer.
783  */
784 int
785 solisten(struct socket *so, int backlog, struct thread *td)
786 {
787 	int error;
788 
789 	CURVNET_SET(so->so_vnet);
790 	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
791 	CURVNET_RESTORE();
792 	return (error);
793 }
794 
795 int
796 solisten_proto_check(struct socket *so)
797 {
798 
799 	SOCK_LOCK_ASSERT(so);
800 
801 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
802 	    SS_ISDISCONNECTING))
803 		return (EINVAL);
804 	return (0);
805 }
806 
807 void
808 solisten_proto(struct socket *so, int backlog)
809 {
810 	int sbrcv_lowat, sbsnd_lowat;
811 	u_int sbrcv_hiwat, sbsnd_hiwat;
812 	short sbrcv_flags, sbsnd_flags;
813 	sbintime_t sbrcv_timeo, sbsnd_timeo;
814 
815 	SOCK_LOCK_ASSERT(so);
816 
817 	if (SOLISTENING(so))
818 		goto listening;
819 
820 	/*
821 	 * Change this socket to listening state.
822 	 */
823 	sbrcv_lowat = so->so_rcv.sb_lowat;
824 	sbsnd_lowat = so->so_snd.sb_lowat;
825 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
826 	sbsnd_hiwat = so->so_snd.sb_hiwat;
827 	sbrcv_flags = so->so_rcv.sb_flags;
828 	sbsnd_flags = so->so_snd.sb_flags;
829 	sbrcv_timeo = so->so_rcv.sb_timeo;
830 	sbsnd_timeo = so->so_snd.sb_timeo;
831 
832 	sbdestroy(&so->so_snd, so);
833 	sbdestroy(&so->so_rcv, so);
834 	sx_destroy(&so->so_snd.sb_sx);
835 	sx_destroy(&so->so_rcv.sb_sx);
836 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
837 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
838 
839 #ifdef INVARIANTS
840 	bzero(&so->so_rcv,
841 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
842 #endif
843 
844 	so->sol_sbrcv_lowat = sbrcv_lowat;
845 	so->sol_sbsnd_lowat = sbsnd_lowat;
846 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
847 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
848 	so->sol_sbrcv_flags = sbrcv_flags;
849 	so->sol_sbsnd_flags = sbsnd_flags;
850 	so->sol_sbrcv_timeo = sbrcv_timeo;
851 	so->sol_sbsnd_timeo = sbsnd_timeo;
852 
853 	so->sol_qlen = so->sol_incqlen = 0;
854 	TAILQ_INIT(&so->sol_incomp);
855 	TAILQ_INIT(&so->sol_comp);
856 
857 	so->sol_accept_filter = NULL;
858 	so->sol_accept_filter_arg = NULL;
859 	so->sol_accept_filter_str = NULL;
860 
861 	so->sol_upcall = NULL;
862 	so->sol_upcallarg = NULL;
863 
864 	so->so_options |= SO_ACCEPTCONN;
865 
866 listening:
867 	if (backlog < 0 || backlog > somaxconn)
868 		backlog = somaxconn;
869 	so->sol_qlimit = backlog;
870 }
871 
872 /*
873  * Wakeup listeners/subsystems once we have a complete connection.
874  * Enters with lock, returns unlocked.
875  */
876 void
877 solisten_wakeup(struct socket *sol)
878 {
879 
880 	if (sol->sol_upcall != NULL)
881 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
882 	else {
883 		selwakeuppri(&sol->so_rdsel, PSOCK);
884 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
885 	}
886 	SOLISTEN_UNLOCK(sol);
887 	wakeup_one(&sol->sol_comp);
888 }
889 
890 /*
891  * Return single connection off a listening socket queue.  Main consumer of
892  * the function is kern_accept4().  Some modules, that do their own accept
893  * management also use the function.
894  *
895  * Listening socket must be locked on entry and is returned unlocked on
896  * return.
897  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
898  */
899 int
900 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
901 {
902 	struct socket *so;
903 	int error;
904 
905 	SOLISTEN_LOCK_ASSERT(head);
906 
907 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
908 	    head->so_error == 0) {
909 		error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
910 		    "accept", 0);
911 		if (error != 0) {
912 			SOLISTEN_UNLOCK(head);
913 			return (error);
914 		}
915 	}
916 	if (head->so_error) {
917 		error = head->so_error;
918 		head->so_error = 0;
919 		SOLISTEN_UNLOCK(head);
920 		return (error);
921         }
922 	if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) {
923 		SOLISTEN_UNLOCK(head);
924 		return (EWOULDBLOCK);
925 	}
926 	so = TAILQ_FIRST(&head->sol_comp);
927 	SOCK_LOCK(so);
928 	KASSERT(so->so_qstate == SQ_COMP,
929 	    ("%s: so %p not SQ_COMP", __func__, so));
930 	soref(so);
931 	head->sol_qlen--;
932 	so->so_qstate = SQ_NONE;
933 	so->so_listen = NULL;
934 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
935 	if (flags & ACCEPT4_INHERIT)
936 		so->so_state |= (head->so_state & SS_NBIO);
937 	else
938 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
939 	SOCK_UNLOCK(so);
940 	sorele(head);
941 
942 	*ret = so;
943 	return (0);
944 }
945 
946 /*
947  * Evaluate the reference count and named references on a socket; if no
948  * references remain, free it.  This should be called whenever a reference is
949  * released, such as in sorele(), but also when named reference flags are
950  * cleared in socket or protocol code.
951  *
952  * sofree() will free the socket if:
953  *
954  * - There are no outstanding file descriptor references or related consumers
955  *   (so_count == 0).
956  *
957  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
958  *
959  * - The protocol does not have an outstanding strong reference on the socket
960  *   (SS_PROTOREF).
961  *
962  * - The socket is not in a completed connection queue, so a process has been
963  *   notified that it is present.  If it is removed, the user process may
964  *   block in accept() despite select() saying the socket was ready.
965  */
966 void
967 sofree(struct socket *so)
968 {
969 	struct protosw *pr = so->so_proto;
970 
971 	SOCK_LOCK_ASSERT(so);
972 
973 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
974 	    (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
975 		SOCK_UNLOCK(so);
976 		return;
977 	}
978 
979 	if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
980 		struct socket *sol;
981 
982 		sol = so->so_listen;
983 		KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
984 
985 		/*
986 		 * To solve race between close of a listening socket and
987 		 * a socket on its incomplete queue, we need to lock both.
988 		 * The order is first listening socket, then regular.
989 		 * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
990 		 * function and the listening socket are the only pointers
991 		 * to so.  To preserve so and sol, we reference both and then
992 		 * relock.
993 		 * After relock the socket may not move to so_comp since it
994 		 * doesn't have PCB already, but it may be removed from
995 		 * so_incomp. If that happens, we share responsiblity on
996 		 * freeing the socket, but soclose() has already removed
997 		 * it from queue.
998 		 */
999 		soref(sol);
1000 		soref(so);
1001 		SOCK_UNLOCK(so);
1002 		SOLISTEN_LOCK(sol);
1003 		SOCK_LOCK(so);
1004 		if (so->so_qstate == SQ_INCOMP) {
1005 			KASSERT(so->so_listen == sol,
1006 			    ("%s: so %p migrated out of sol %p",
1007 			    __func__, so, sol));
1008 			TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
1009 			sol->sol_incqlen--;
1010 			/* This is guarenteed not to be the last. */
1011 			refcount_release(&sol->so_count);
1012 			so->so_qstate = SQ_NONE;
1013 			so->so_listen = NULL;
1014 		} else
1015 			KASSERT(so->so_listen == NULL,
1016 			    ("%s: so %p not on (in)comp with so_listen",
1017 			    __func__, so));
1018 		sorele(sol);
1019 		KASSERT(so->so_count == 1,
1020 		    ("%s: so %p count %u", __func__, so, so->so_count));
1021 		so->so_count = 0;
1022 	}
1023 	if (SOLISTENING(so))
1024 		so->so_error = ECONNABORTED;
1025 	SOCK_UNLOCK(so);
1026 
1027 	VNET_SO_ASSERT(so);
1028 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1029 		(*pr->pr_domain->dom_dispose)(so);
1030 	if (pr->pr_usrreqs->pru_detach != NULL)
1031 		(*pr->pr_usrreqs->pru_detach)(so);
1032 
1033 	/*
1034 	 * From this point on, we assume that no other references to this
1035 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1036 	 * to be acquired or held.
1037 	 *
1038 	 * We used to do a lot of socket buffer and socket locking here, as
1039 	 * well as invoke sorflush() and perform wakeups.  The direct call to
1040 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
1041 	 * necessary from sorflush().
1042 	 *
1043 	 * Notice that the socket buffer and kqueue state are torn down
1044 	 * before calling pru_detach.  This means that protocols shold not
1045 	 * assume they can perform socket wakeups, etc, in their detach code.
1046 	 */
1047 	if (!SOLISTENING(so)) {
1048 		sbdestroy(&so->so_snd, so);
1049 		sbdestroy(&so->so_rcv, so);
1050 	}
1051 	seldrain(&so->so_rdsel);
1052 	seldrain(&so->so_wrsel);
1053 	knlist_destroy(&so->so_rdsel.si_note);
1054 	knlist_destroy(&so->so_wrsel.si_note);
1055 	sodealloc(so);
1056 }
1057 
1058 /*
1059  * Close a socket on last file table reference removal.  Initiate disconnect
1060  * if connected.  Free socket when disconnect complete.
1061  *
1062  * This function will sorele() the socket.  Note that soclose() may be called
1063  * prior to the ref count reaching zero.  The actual socket structure will
1064  * not be freed until the ref count reaches zero.
1065  */
1066 int
1067 soclose(struct socket *so)
1068 {
1069 	struct accept_queue lqueue;
1070 	bool listening;
1071 	int error = 0;
1072 
1073 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
1074 
1075 	CURVNET_SET(so->so_vnet);
1076 	funsetown(&so->so_sigio);
1077 	if (so->so_state & SS_ISCONNECTED) {
1078 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1079 			error = sodisconnect(so);
1080 			if (error) {
1081 				if (error == ENOTCONN)
1082 					error = 0;
1083 				goto drop;
1084 			}
1085 		}
1086 		if (so->so_options & SO_LINGER) {
1087 			if ((so->so_state & SS_ISDISCONNECTING) &&
1088 			    (so->so_state & SS_NBIO))
1089 				goto drop;
1090 			while (so->so_state & SS_ISCONNECTED) {
1091 				error = tsleep(&so->so_timeo,
1092 				    PSOCK | PCATCH, "soclos",
1093 				    so->so_linger * hz);
1094 				if (error)
1095 					break;
1096 			}
1097 		}
1098 	}
1099 
1100 drop:
1101 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
1102 		(*so->so_proto->pr_usrreqs->pru_close)(so);
1103 
1104 	SOCK_LOCK(so);
1105 	if ((listening = (so->so_options & SO_ACCEPTCONN))) {
1106 		struct socket *sp;
1107 
1108 		TAILQ_INIT(&lqueue);
1109 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1110 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1111 
1112 		so->sol_qlen = so->sol_incqlen = 0;
1113 
1114 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1115 			SOCK_LOCK(sp);
1116 			sp->so_qstate = SQ_NONE;
1117 			sp->so_listen = NULL;
1118 			SOCK_UNLOCK(sp);
1119 			/* Guaranteed not to be the last. */
1120 			refcount_release(&so->so_count);
1121 		}
1122 	}
1123 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
1124 	so->so_state |= SS_NOFDREF;
1125 	sorele(so);
1126 	if (listening) {
1127 		struct socket *sp;
1128 
1129 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1130 			SOCK_LOCK(sp);
1131 			if (sp->so_count == 0) {
1132 				SOCK_UNLOCK(sp);
1133 				soabort(sp);
1134 			} else
1135 				/* sp is now in sofree() */
1136 				SOCK_UNLOCK(sp);
1137 		}
1138 	}
1139 	CURVNET_RESTORE();
1140 	return (error);
1141 }
1142 
1143 /*
1144  * soabort() is used to abruptly tear down a connection, such as when a
1145  * resource limit is reached (listen queue depth exceeded), or if a listen
1146  * socket is closed while there are sockets waiting to be accepted.
1147  *
1148  * This interface is tricky, because it is called on an unreferenced socket,
1149  * and must be called only by a thread that has actually removed the socket
1150  * from the listen queue it was on, or races with other threads are risked.
1151  *
1152  * This interface will call into the protocol code, so must not be called
1153  * with any socket locks held.  Protocols do call it while holding their own
1154  * recursible protocol mutexes, but this is something that should be subject
1155  * to review in the future.
1156  */
1157 void
1158 soabort(struct socket *so)
1159 {
1160 
1161 	/*
1162 	 * In as much as is possible, assert that no references to this
1163 	 * socket are held.  This is not quite the same as asserting that the
1164 	 * current thread is responsible for arranging for no references, but
1165 	 * is as close as we can get for now.
1166 	 */
1167 	KASSERT(so->so_count == 0, ("soabort: so_count"));
1168 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
1169 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
1170 	KASSERT(so->so_qstate == SQ_NONE, ("soabort: !SQ_NONE"));
1171 	VNET_SO_ASSERT(so);
1172 
1173 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
1174 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
1175 	SOCK_LOCK(so);
1176 	sofree(so);
1177 }
1178 
1179 int
1180 soaccept(struct socket *so, struct sockaddr **nam)
1181 {
1182 	int error;
1183 
1184 	SOCK_LOCK(so);
1185 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
1186 	so->so_state &= ~SS_NOFDREF;
1187 	SOCK_UNLOCK(so);
1188 
1189 	CURVNET_SET(so->so_vnet);
1190 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
1191 	CURVNET_RESTORE();
1192 	return (error);
1193 }
1194 
1195 int
1196 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1197 {
1198 
1199 	return (soconnectat(AT_FDCWD, so, nam, td));
1200 }
1201 
1202 int
1203 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1204 {
1205 	int error;
1206 
1207 	if (so->so_options & SO_ACCEPTCONN)
1208 		return (EOPNOTSUPP);
1209 
1210 	CURVNET_SET(so->so_vnet);
1211 	/*
1212 	 * If protocol is connection-based, can only connect once.
1213 	 * Otherwise, if connected, try to disconnect first.  This allows
1214 	 * user to disconnect by connecting to, e.g., a null address.
1215 	 */
1216 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1217 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1218 	    (error = sodisconnect(so)))) {
1219 		error = EISCONN;
1220 	} else {
1221 		/*
1222 		 * Prevent accumulated error from previous connection from
1223 		 * biting us.
1224 		 */
1225 		so->so_error = 0;
1226 		if (fd == AT_FDCWD) {
1227 			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1228 			    nam, td);
1229 		} else {
1230 			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1231 			    so, nam, td);
1232 		}
1233 	}
1234 	CURVNET_RESTORE();
1235 
1236 	return (error);
1237 }
1238 
1239 int
1240 soconnect2(struct socket *so1, struct socket *so2)
1241 {
1242 	int error;
1243 
1244 	CURVNET_SET(so1->so_vnet);
1245 	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1246 	CURVNET_RESTORE();
1247 	return (error);
1248 }
1249 
1250 int
1251 sodisconnect(struct socket *so)
1252 {
1253 	int error;
1254 
1255 	if ((so->so_state & SS_ISCONNECTED) == 0)
1256 		return (ENOTCONN);
1257 	if (so->so_state & SS_ISDISCONNECTING)
1258 		return (EALREADY);
1259 	VNET_SO_ASSERT(so);
1260 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1261 	return (error);
1262 }
1263 
1264 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1265 
1266 int
1267 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1268     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1269 {
1270 	long space;
1271 	ssize_t resid;
1272 	int clen = 0, error, dontroute;
1273 
1274 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1275 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1276 	    ("sosend_dgram: !PR_ATOMIC"));
1277 
1278 	if (uio != NULL)
1279 		resid = uio->uio_resid;
1280 	else
1281 		resid = top->m_pkthdr.len;
1282 	/*
1283 	 * In theory resid should be unsigned.  However, space must be
1284 	 * signed, as it might be less than 0 if we over-committed, and we
1285 	 * must use a signed comparison of space and resid.  On the other
1286 	 * hand, a negative resid causes us to loop sending 0-length
1287 	 * segments to the protocol.
1288 	 */
1289 	if (resid < 0) {
1290 		error = EINVAL;
1291 		goto out;
1292 	}
1293 
1294 	dontroute =
1295 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1296 	if (td != NULL)
1297 		td->td_ru.ru_msgsnd++;
1298 	if (control != NULL)
1299 		clen = control->m_len;
1300 
1301 	SOCKBUF_LOCK(&so->so_snd);
1302 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1303 		SOCKBUF_UNLOCK(&so->so_snd);
1304 		error = EPIPE;
1305 		goto out;
1306 	}
1307 	if (so->so_error) {
1308 		error = so->so_error;
1309 		so->so_error = 0;
1310 		SOCKBUF_UNLOCK(&so->so_snd);
1311 		goto out;
1312 	}
1313 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1314 		/*
1315 		 * `sendto' and `sendmsg' is allowed on a connection-based
1316 		 * socket if it supports implied connect.  Return ENOTCONN if
1317 		 * not connected and no address is supplied.
1318 		 */
1319 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1320 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1321 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1322 			    !(resid == 0 && clen != 0)) {
1323 				SOCKBUF_UNLOCK(&so->so_snd);
1324 				error = ENOTCONN;
1325 				goto out;
1326 			}
1327 		} else if (addr == NULL) {
1328 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1329 				error = ENOTCONN;
1330 			else
1331 				error = EDESTADDRREQ;
1332 			SOCKBUF_UNLOCK(&so->so_snd);
1333 			goto out;
1334 		}
1335 	}
1336 
1337 	/*
1338 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1339 	 * problem and need fixing.
1340 	 */
1341 	space = sbspace(&so->so_snd);
1342 	if (flags & MSG_OOB)
1343 		space += 1024;
1344 	space -= clen;
1345 	SOCKBUF_UNLOCK(&so->so_snd);
1346 	if (resid > space) {
1347 		error = EMSGSIZE;
1348 		goto out;
1349 	}
1350 	if (uio == NULL) {
1351 		resid = 0;
1352 		if (flags & MSG_EOR)
1353 			top->m_flags |= M_EOR;
1354 	} else {
1355 		/*
1356 		 * Copy the data from userland into a mbuf chain.
1357 		 * If no data is to be copied in, a single empty mbuf
1358 		 * is returned.
1359 		 */
1360 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1361 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1362 		if (top == NULL) {
1363 			error = EFAULT;	/* only possible error */
1364 			goto out;
1365 		}
1366 		space -= resid - uio->uio_resid;
1367 		resid = uio->uio_resid;
1368 	}
1369 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1370 	/*
1371 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1372 	 * than with.
1373 	 */
1374 	if (dontroute) {
1375 		SOCK_LOCK(so);
1376 		so->so_options |= SO_DONTROUTE;
1377 		SOCK_UNLOCK(so);
1378 	}
1379 	/*
1380 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1381 	 * of date.  We could have received a reset packet in an interrupt or
1382 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1383 	 * probably recheck again inside the locking protection here, but
1384 	 * there are probably other places that this also happens.  We must
1385 	 * rethink this.
1386 	 */
1387 	VNET_SO_ASSERT(so);
1388 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1389 	    (flags & MSG_OOB) ? PRUS_OOB :
1390 	/*
1391 	 * If the user set MSG_EOF, the protocol understands this flag and
1392 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1393 	 */
1394 	    ((flags & MSG_EOF) &&
1395 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1396 	     (resid <= 0)) ?
1397 		PRUS_EOF :
1398 		/* If there is more to send set PRUS_MORETOCOME */
1399 		(flags & MSG_MORETOCOME) ||
1400 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1401 		top, addr, control, td);
1402 	if (dontroute) {
1403 		SOCK_LOCK(so);
1404 		so->so_options &= ~SO_DONTROUTE;
1405 		SOCK_UNLOCK(so);
1406 	}
1407 	clen = 0;
1408 	control = NULL;
1409 	top = NULL;
1410 out:
1411 	if (top != NULL)
1412 		m_freem(top);
1413 	if (control != NULL)
1414 		m_freem(control);
1415 	return (error);
1416 }
1417 
1418 /*
1419  * Send on a socket.  If send must go all at once and message is larger than
1420  * send buffering, then hard error.  Lock against other senders.  If must go
1421  * all at once and not enough room now, then inform user that this would
1422  * block and do nothing.  Otherwise, if nonblocking, send as much as
1423  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1424  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1425  * in mbuf chain must be small enough to send all at once.
1426  *
1427  * Returns nonzero on error, timeout or signal; callers must check for short
1428  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1429  * on return.
1430  */
1431 int
1432 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1433     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1434 {
1435 	long space;
1436 	ssize_t resid;
1437 	int clen = 0, error, dontroute;
1438 	int atomic = sosendallatonce(so) || top;
1439 
1440 	if (uio != NULL)
1441 		resid = uio->uio_resid;
1442 	else
1443 		resid = top->m_pkthdr.len;
1444 	/*
1445 	 * In theory resid should be unsigned.  However, space must be
1446 	 * signed, as it might be less than 0 if we over-committed, and we
1447 	 * must use a signed comparison of space and resid.  On the other
1448 	 * hand, a negative resid causes us to loop sending 0-length
1449 	 * segments to the protocol.
1450 	 *
1451 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1452 	 * type sockets since that's an error.
1453 	 */
1454 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1455 		error = EINVAL;
1456 		goto out;
1457 	}
1458 
1459 	dontroute =
1460 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1461 	    (so->so_proto->pr_flags & PR_ATOMIC);
1462 	if (td != NULL)
1463 		td->td_ru.ru_msgsnd++;
1464 	if (control != NULL)
1465 		clen = control->m_len;
1466 
1467 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1468 	if (error)
1469 		goto out;
1470 
1471 restart:
1472 	do {
1473 		SOCKBUF_LOCK(&so->so_snd);
1474 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1475 			SOCKBUF_UNLOCK(&so->so_snd);
1476 			error = EPIPE;
1477 			goto release;
1478 		}
1479 		if (so->so_error) {
1480 			error = so->so_error;
1481 			so->so_error = 0;
1482 			SOCKBUF_UNLOCK(&so->so_snd);
1483 			goto release;
1484 		}
1485 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1486 			/*
1487 			 * `sendto' and `sendmsg' is allowed on a connection-
1488 			 * based socket if it supports implied connect.
1489 			 * Return ENOTCONN if not connected and no address is
1490 			 * supplied.
1491 			 */
1492 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1493 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1494 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1495 				    !(resid == 0 && clen != 0)) {
1496 					SOCKBUF_UNLOCK(&so->so_snd);
1497 					error = ENOTCONN;
1498 					goto release;
1499 				}
1500 			} else if (addr == NULL) {
1501 				SOCKBUF_UNLOCK(&so->so_snd);
1502 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1503 					error = ENOTCONN;
1504 				else
1505 					error = EDESTADDRREQ;
1506 				goto release;
1507 			}
1508 		}
1509 		space = sbspace(&so->so_snd);
1510 		if (flags & MSG_OOB)
1511 			space += 1024;
1512 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1513 		    clen > so->so_snd.sb_hiwat) {
1514 			SOCKBUF_UNLOCK(&so->so_snd);
1515 			error = EMSGSIZE;
1516 			goto release;
1517 		}
1518 		if (space < resid + clen &&
1519 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1520 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1521 				SOCKBUF_UNLOCK(&so->so_snd);
1522 				error = EWOULDBLOCK;
1523 				goto release;
1524 			}
1525 			error = sbwait(&so->so_snd);
1526 			SOCKBUF_UNLOCK(&so->so_snd);
1527 			if (error)
1528 				goto release;
1529 			goto restart;
1530 		}
1531 		SOCKBUF_UNLOCK(&so->so_snd);
1532 		space -= clen;
1533 		do {
1534 			if (uio == NULL) {
1535 				resid = 0;
1536 				if (flags & MSG_EOR)
1537 					top->m_flags |= M_EOR;
1538 			} else {
1539 				/*
1540 				 * Copy the data from userland into a mbuf
1541 				 * chain.  If resid is 0, which can happen
1542 				 * only if we have control to send, then
1543 				 * a single empty mbuf is returned.  This
1544 				 * is a workaround to prevent protocol send
1545 				 * methods to panic.
1546 				 */
1547 				top = m_uiotombuf(uio, M_WAITOK, space,
1548 				    (atomic ? max_hdr : 0),
1549 				    (atomic ? M_PKTHDR : 0) |
1550 				    ((flags & MSG_EOR) ? M_EOR : 0));
1551 				if (top == NULL) {
1552 					error = EFAULT; /* only possible error */
1553 					goto release;
1554 				}
1555 				space -= resid - uio->uio_resid;
1556 				resid = uio->uio_resid;
1557 			}
1558 			if (dontroute) {
1559 				SOCK_LOCK(so);
1560 				so->so_options |= SO_DONTROUTE;
1561 				SOCK_UNLOCK(so);
1562 			}
1563 			/*
1564 			 * XXX all the SBS_CANTSENDMORE checks previously
1565 			 * done could be out of date.  We could have received
1566 			 * a reset packet in an interrupt or maybe we slept
1567 			 * while doing page faults in uiomove() etc.  We
1568 			 * could probably recheck again inside the locking
1569 			 * protection here, but there are probably other
1570 			 * places that this also happens.  We must rethink
1571 			 * this.
1572 			 */
1573 			VNET_SO_ASSERT(so);
1574 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1575 			    (flags & MSG_OOB) ? PRUS_OOB :
1576 			/*
1577 			 * If the user set MSG_EOF, the protocol understands
1578 			 * this flag and nothing left to send then use
1579 			 * PRU_SEND_EOF instead of PRU_SEND.
1580 			 */
1581 			    ((flags & MSG_EOF) &&
1582 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1583 			     (resid <= 0)) ?
1584 				PRUS_EOF :
1585 			/* If there is more to send set PRUS_MORETOCOME. */
1586 			    (flags & MSG_MORETOCOME) ||
1587 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1588 			    top, addr, control, td);
1589 			if (dontroute) {
1590 				SOCK_LOCK(so);
1591 				so->so_options &= ~SO_DONTROUTE;
1592 				SOCK_UNLOCK(so);
1593 			}
1594 			clen = 0;
1595 			control = NULL;
1596 			top = NULL;
1597 			if (error)
1598 				goto release;
1599 		} while (resid && space > 0);
1600 	} while (resid);
1601 
1602 release:
1603 	sbunlock(&so->so_snd);
1604 out:
1605 	if (top != NULL)
1606 		m_freem(top);
1607 	if (control != NULL)
1608 		m_freem(control);
1609 	return (error);
1610 }
1611 
1612 int
1613 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1614     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1615 {
1616 	int error;
1617 
1618 	CURVNET_SET(so->so_vnet);
1619 	if (!SOLISTENING(so))
1620 		error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
1621 		    top, control, flags, td);
1622 	else {
1623 		m_freem(top);
1624 		m_freem(control);
1625 		error = ENOTCONN;
1626 	}
1627 	CURVNET_RESTORE();
1628 	return (error);
1629 }
1630 
1631 /*
1632  * The part of soreceive() that implements reading non-inline out-of-band
1633  * data from a socket.  For more complete comments, see soreceive(), from
1634  * which this code originated.
1635  *
1636  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1637  * unable to return an mbuf chain to the caller.
1638  */
1639 static int
1640 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1641 {
1642 	struct protosw *pr = so->so_proto;
1643 	struct mbuf *m;
1644 	int error;
1645 
1646 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1647 	VNET_SO_ASSERT(so);
1648 
1649 	m = m_get(M_WAITOK, MT_DATA);
1650 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1651 	if (error)
1652 		goto bad;
1653 	do {
1654 		error = uiomove(mtod(m, void *),
1655 		    (int) min(uio->uio_resid, m->m_len), uio);
1656 		m = m_free(m);
1657 	} while (uio->uio_resid && error == 0 && m);
1658 bad:
1659 	if (m != NULL)
1660 		m_freem(m);
1661 	return (error);
1662 }
1663 
1664 /*
1665  * Following replacement or removal of the first mbuf on the first mbuf chain
1666  * of a socket buffer, push necessary state changes back into the socket
1667  * buffer so that other consumers see the values consistently.  'nextrecord'
1668  * is the callers locally stored value of the original value of
1669  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1670  * NOTE: 'nextrecord' may be NULL.
1671  */
1672 static __inline void
1673 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1674 {
1675 
1676 	SOCKBUF_LOCK_ASSERT(sb);
1677 	/*
1678 	 * First, update for the new value of nextrecord.  If necessary, make
1679 	 * it the first record.
1680 	 */
1681 	if (sb->sb_mb != NULL)
1682 		sb->sb_mb->m_nextpkt = nextrecord;
1683 	else
1684 		sb->sb_mb = nextrecord;
1685 
1686 	/*
1687 	 * Now update any dependent socket buffer fields to reflect the new
1688 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1689 	 * addition of a second clause that takes care of the case where
1690 	 * sb_mb has been updated, but remains the last record.
1691 	 */
1692 	if (sb->sb_mb == NULL) {
1693 		sb->sb_mbtail = NULL;
1694 		sb->sb_lastrecord = NULL;
1695 	} else if (sb->sb_mb->m_nextpkt == NULL)
1696 		sb->sb_lastrecord = sb->sb_mb;
1697 }
1698 
1699 /*
1700  * Implement receive operations on a socket.  We depend on the way that
1701  * records are added to the sockbuf by sbappend.  In particular, each record
1702  * (mbufs linked through m_next) must begin with an address if the protocol
1703  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1704  * data, and then zero or more mbufs of data.  In order to allow parallelism
1705  * between network receive and copying to user space, as well as avoid
1706  * sleeping with a mutex held, we release the socket buffer mutex during the
1707  * user space copy.  Although the sockbuf is locked, new data may still be
1708  * appended, and thus we must maintain consistency of the sockbuf during that
1709  * time.
1710  *
1711  * The caller may receive the data as a single mbuf chain by supplying an
1712  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1713  * the count in uio_resid.
1714  */
1715 int
1716 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1717     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1718 {
1719 	struct mbuf *m, **mp;
1720 	int flags, error, offset;
1721 	ssize_t len;
1722 	struct protosw *pr = so->so_proto;
1723 	struct mbuf *nextrecord;
1724 	int moff, type = 0;
1725 	ssize_t orig_resid = uio->uio_resid;
1726 
1727 	mp = mp0;
1728 	if (psa != NULL)
1729 		*psa = NULL;
1730 	if (controlp != NULL)
1731 		*controlp = NULL;
1732 	if (flagsp != NULL)
1733 		flags = *flagsp &~ MSG_EOR;
1734 	else
1735 		flags = 0;
1736 	if (flags & MSG_OOB)
1737 		return (soreceive_rcvoob(so, uio, flags));
1738 	if (mp != NULL)
1739 		*mp = NULL;
1740 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1741 	    && uio->uio_resid) {
1742 		VNET_SO_ASSERT(so);
1743 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1744 	}
1745 
1746 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1747 	if (error)
1748 		return (error);
1749 
1750 restart:
1751 	SOCKBUF_LOCK(&so->so_rcv);
1752 	m = so->so_rcv.sb_mb;
1753 	/*
1754 	 * If we have less data than requested, block awaiting more (subject
1755 	 * to any timeout) if:
1756 	 *   1. the current count is less than the low water mark, or
1757 	 *   2. MSG_DONTWAIT is not set
1758 	 */
1759 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1760 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1761 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1762 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1763 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1764 		    ("receive: m == %p sbavail == %u",
1765 		    m, sbavail(&so->so_rcv)));
1766 		if (so->so_error) {
1767 			if (m != NULL)
1768 				goto dontblock;
1769 			error = so->so_error;
1770 			if ((flags & MSG_PEEK) == 0)
1771 				so->so_error = 0;
1772 			SOCKBUF_UNLOCK(&so->so_rcv);
1773 			goto release;
1774 		}
1775 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1776 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1777 			if (m == NULL) {
1778 				SOCKBUF_UNLOCK(&so->so_rcv);
1779 				goto release;
1780 			} else
1781 				goto dontblock;
1782 		}
1783 		for (; m != NULL; m = m->m_next)
1784 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1785 				m = so->so_rcv.sb_mb;
1786 				goto dontblock;
1787 			}
1788 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1789 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1790 			SOCKBUF_UNLOCK(&so->so_rcv);
1791 			error = ENOTCONN;
1792 			goto release;
1793 		}
1794 		if (uio->uio_resid == 0) {
1795 			SOCKBUF_UNLOCK(&so->so_rcv);
1796 			goto release;
1797 		}
1798 		if ((so->so_state & SS_NBIO) ||
1799 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1800 			SOCKBUF_UNLOCK(&so->so_rcv);
1801 			error = EWOULDBLOCK;
1802 			goto release;
1803 		}
1804 		SBLASTRECORDCHK(&so->so_rcv);
1805 		SBLASTMBUFCHK(&so->so_rcv);
1806 		error = sbwait(&so->so_rcv);
1807 		SOCKBUF_UNLOCK(&so->so_rcv);
1808 		if (error)
1809 			goto release;
1810 		goto restart;
1811 	}
1812 dontblock:
1813 	/*
1814 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1815 	 * pointer to the next record in the socket buffer.  We must keep the
1816 	 * various socket buffer pointers and local stack versions of the
1817 	 * pointers in sync, pushing out modifications before dropping the
1818 	 * socket buffer mutex, and re-reading them when picking it up.
1819 	 *
1820 	 * Otherwise, we will race with the network stack appending new data
1821 	 * or records onto the socket buffer by using inconsistent/stale
1822 	 * versions of the field, possibly resulting in socket buffer
1823 	 * corruption.
1824 	 *
1825 	 * By holding the high-level sblock(), we prevent simultaneous
1826 	 * readers from pulling off the front of the socket buffer.
1827 	 */
1828 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1829 	if (uio->uio_td)
1830 		uio->uio_td->td_ru.ru_msgrcv++;
1831 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1832 	SBLASTRECORDCHK(&so->so_rcv);
1833 	SBLASTMBUFCHK(&so->so_rcv);
1834 	nextrecord = m->m_nextpkt;
1835 	if (pr->pr_flags & PR_ADDR) {
1836 		KASSERT(m->m_type == MT_SONAME,
1837 		    ("m->m_type == %d", m->m_type));
1838 		orig_resid = 0;
1839 		if (psa != NULL)
1840 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1841 			    M_NOWAIT);
1842 		if (flags & MSG_PEEK) {
1843 			m = m->m_next;
1844 		} else {
1845 			sbfree(&so->so_rcv, m);
1846 			so->so_rcv.sb_mb = m_free(m);
1847 			m = so->so_rcv.sb_mb;
1848 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1849 		}
1850 	}
1851 
1852 	/*
1853 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1854 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1855 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1856 	 * perform externalization (or freeing if controlp == NULL).
1857 	 */
1858 	if (m != NULL && m->m_type == MT_CONTROL) {
1859 		struct mbuf *cm = NULL, *cmn;
1860 		struct mbuf **cme = &cm;
1861 
1862 		do {
1863 			if (flags & MSG_PEEK) {
1864 				if (controlp != NULL) {
1865 					*controlp = m_copym(m, 0, m->m_len,
1866 					    M_NOWAIT);
1867 					controlp = &(*controlp)->m_next;
1868 				}
1869 				m = m->m_next;
1870 			} else {
1871 				sbfree(&so->so_rcv, m);
1872 				so->so_rcv.sb_mb = m->m_next;
1873 				m->m_next = NULL;
1874 				*cme = m;
1875 				cme = &(*cme)->m_next;
1876 				m = so->so_rcv.sb_mb;
1877 			}
1878 		} while (m != NULL && m->m_type == MT_CONTROL);
1879 		if ((flags & MSG_PEEK) == 0)
1880 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1881 		while (cm != NULL) {
1882 			cmn = cm->m_next;
1883 			cm->m_next = NULL;
1884 			if (pr->pr_domain->dom_externalize != NULL) {
1885 				SOCKBUF_UNLOCK(&so->so_rcv);
1886 				VNET_SO_ASSERT(so);
1887 				error = (*pr->pr_domain->dom_externalize)
1888 				    (cm, controlp, flags);
1889 				SOCKBUF_LOCK(&so->so_rcv);
1890 			} else if (controlp != NULL)
1891 				*controlp = cm;
1892 			else
1893 				m_freem(cm);
1894 			if (controlp != NULL) {
1895 				orig_resid = 0;
1896 				while (*controlp != NULL)
1897 					controlp = &(*controlp)->m_next;
1898 			}
1899 			cm = cmn;
1900 		}
1901 		if (m != NULL)
1902 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1903 		else
1904 			nextrecord = so->so_rcv.sb_mb;
1905 		orig_resid = 0;
1906 	}
1907 	if (m != NULL) {
1908 		if ((flags & MSG_PEEK) == 0) {
1909 			KASSERT(m->m_nextpkt == nextrecord,
1910 			    ("soreceive: post-control, nextrecord !sync"));
1911 			if (nextrecord == NULL) {
1912 				KASSERT(so->so_rcv.sb_mb == m,
1913 				    ("soreceive: post-control, sb_mb!=m"));
1914 				KASSERT(so->so_rcv.sb_lastrecord == m,
1915 				    ("soreceive: post-control, lastrecord!=m"));
1916 			}
1917 		}
1918 		type = m->m_type;
1919 		if (type == MT_OOBDATA)
1920 			flags |= MSG_OOB;
1921 	} else {
1922 		if ((flags & MSG_PEEK) == 0) {
1923 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1924 			    ("soreceive: sb_mb != nextrecord"));
1925 			if (so->so_rcv.sb_mb == NULL) {
1926 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1927 				    ("soreceive: sb_lastercord != NULL"));
1928 			}
1929 		}
1930 	}
1931 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1932 	SBLASTRECORDCHK(&so->so_rcv);
1933 	SBLASTMBUFCHK(&so->so_rcv);
1934 
1935 	/*
1936 	 * Now continue to read any data mbufs off of the head of the socket
1937 	 * buffer until the read request is satisfied.  Note that 'type' is
1938 	 * used to store the type of any mbuf reads that have happened so far
1939 	 * such that soreceive() can stop reading if the type changes, which
1940 	 * causes soreceive() to return only one of regular data and inline
1941 	 * out-of-band data in a single socket receive operation.
1942 	 */
1943 	moff = 0;
1944 	offset = 0;
1945 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
1946 	    && error == 0) {
1947 		/*
1948 		 * If the type of mbuf has changed since the last mbuf
1949 		 * examined ('type'), end the receive operation.
1950 		 */
1951 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1952 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1953 			if (type != m->m_type)
1954 				break;
1955 		} else if (type == MT_OOBDATA)
1956 			break;
1957 		else
1958 		    KASSERT(m->m_type == MT_DATA,
1959 			("m->m_type == %d", m->m_type));
1960 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1961 		len = uio->uio_resid;
1962 		if (so->so_oobmark && len > so->so_oobmark - offset)
1963 			len = so->so_oobmark - offset;
1964 		if (len > m->m_len - moff)
1965 			len = m->m_len - moff;
1966 		/*
1967 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1968 		 * them out via the uio, then free.  Sockbuf must be
1969 		 * consistent here (points to current mbuf, it points to next
1970 		 * record) when we drop priority; we must note any additions
1971 		 * to the sockbuf when we block interrupts again.
1972 		 */
1973 		if (mp == NULL) {
1974 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1975 			SBLASTRECORDCHK(&so->so_rcv);
1976 			SBLASTMBUFCHK(&so->so_rcv);
1977 			SOCKBUF_UNLOCK(&so->so_rcv);
1978 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1979 			SOCKBUF_LOCK(&so->so_rcv);
1980 			if (error) {
1981 				/*
1982 				 * The MT_SONAME mbuf has already been removed
1983 				 * from the record, so it is necessary to
1984 				 * remove the data mbufs, if any, to preserve
1985 				 * the invariant in the case of PR_ADDR that
1986 				 * requires MT_SONAME mbufs at the head of
1987 				 * each record.
1988 				 */
1989 				if (pr->pr_flags & PR_ATOMIC &&
1990 				    ((flags & MSG_PEEK) == 0))
1991 					(void)sbdroprecord_locked(&so->so_rcv);
1992 				SOCKBUF_UNLOCK(&so->so_rcv);
1993 				goto release;
1994 			}
1995 		} else
1996 			uio->uio_resid -= len;
1997 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1998 		if (len == m->m_len - moff) {
1999 			if (m->m_flags & M_EOR)
2000 				flags |= MSG_EOR;
2001 			if (flags & MSG_PEEK) {
2002 				m = m->m_next;
2003 				moff = 0;
2004 			} else {
2005 				nextrecord = m->m_nextpkt;
2006 				sbfree(&so->so_rcv, m);
2007 				if (mp != NULL) {
2008 					m->m_nextpkt = NULL;
2009 					*mp = m;
2010 					mp = &m->m_next;
2011 					so->so_rcv.sb_mb = m = m->m_next;
2012 					*mp = NULL;
2013 				} else {
2014 					so->so_rcv.sb_mb = m_free(m);
2015 					m = so->so_rcv.sb_mb;
2016 				}
2017 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2018 				SBLASTRECORDCHK(&so->so_rcv);
2019 				SBLASTMBUFCHK(&so->so_rcv);
2020 			}
2021 		} else {
2022 			if (flags & MSG_PEEK)
2023 				moff += len;
2024 			else {
2025 				if (mp != NULL) {
2026 					if (flags & MSG_DONTWAIT) {
2027 						*mp = m_copym(m, 0, len,
2028 						    M_NOWAIT);
2029 						if (*mp == NULL) {
2030 							/*
2031 							 * m_copym() couldn't
2032 							 * allocate an mbuf.
2033 							 * Adjust uio_resid back
2034 							 * (it was adjusted
2035 							 * down by len bytes,
2036 							 * which we didn't end
2037 							 * up "copying" over).
2038 							 */
2039 							uio->uio_resid += len;
2040 							break;
2041 						}
2042 					} else {
2043 						SOCKBUF_UNLOCK(&so->so_rcv);
2044 						*mp = m_copym(m, 0, len,
2045 						    M_WAITOK);
2046 						SOCKBUF_LOCK(&so->so_rcv);
2047 					}
2048 				}
2049 				sbcut_locked(&so->so_rcv, len);
2050 			}
2051 		}
2052 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2053 		if (so->so_oobmark) {
2054 			if ((flags & MSG_PEEK) == 0) {
2055 				so->so_oobmark -= len;
2056 				if (so->so_oobmark == 0) {
2057 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2058 					break;
2059 				}
2060 			} else {
2061 				offset += len;
2062 				if (offset == so->so_oobmark)
2063 					break;
2064 			}
2065 		}
2066 		if (flags & MSG_EOR)
2067 			break;
2068 		/*
2069 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2070 		 * must not quit until "uio->uio_resid == 0" or an error
2071 		 * termination.  If a signal/timeout occurs, return with a
2072 		 * short count but without error.  Keep sockbuf locked
2073 		 * against other readers.
2074 		 */
2075 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2076 		    !sosendallatonce(so) && nextrecord == NULL) {
2077 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2078 			if (so->so_error ||
2079 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2080 				break;
2081 			/*
2082 			 * Notify the protocol that some data has been
2083 			 * drained before blocking.
2084 			 */
2085 			if (pr->pr_flags & PR_WANTRCVD) {
2086 				SOCKBUF_UNLOCK(&so->so_rcv);
2087 				VNET_SO_ASSERT(so);
2088 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2089 				SOCKBUF_LOCK(&so->so_rcv);
2090 			}
2091 			SBLASTRECORDCHK(&so->so_rcv);
2092 			SBLASTMBUFCHK(&so->so_rcv);
2093 			/*
2094 			 * We could receive some data while was notifying
2095 			 * the protocol. Skip blocking in this case.
2096 			 */
2097 			if (so->so_rcv.sb_mb == NULL) {
2098 				error = sbwait(&so->so_rcv);
2099 				if (error) {
2100 					SOCKBUF_UNLOCK(&so->so_rcv);
2101 					goto release;
2102 				}
2103 			}
2104 			m = so->so_rcv.sb_mb;
2105 			if (m != NULL)
2106 				nextrecord = m->m_nextpkt;
2107 		}
2108 	}
2109 
2110 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2111 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2112 		flags |= MSG_TRUNC;
2113 		if ((flags & MSG_PEEK) == 0)
2114 			(void) sbdroprecord_locked(&so->so_rcv);
2115 	}
2116 	if ((flags & MSG_PEEK) == 0) {
2117 		if (m == NULL) {
2118 			/*
2119 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2120 			 * part makes sure sb_lastrecord is up-to-date if
2121 			 * there is still data in the socket buffer.
2122 			 */
2123 			so->so_rcv.sb_mb = nextrecord;
2124 			if (so->so_rcv.sb_mb == NULL) {
2125 				so->so_rcv.sb_mbtail = NULL;
2126 				so->so_rcv.sb_lastrecord = NULL;
2127 			} else if (nextrecord->m_nextpkt == NULL)
2128 				so->so_rcv.sb_lastrecord = nextrecord;
2129 		}
2130 		SBLASTRECORDCHK(&so->so_rcv);
2131 		SBLASTMBUFCHK(&so->so_rcv);
2132 		/*
2133 		 * If soreceive() is being done from the socket callback,
2134 		 * then don't need to generate ACK to peer to update window,
2135 		 * since ACK will be generated on return to TCP.
2136 		 */
2137 		if (!(flags & MSG_SOCALLBCK) &&
2138 		    (pr->pr_flags & PR_WANTRCVD)) {
2139 			SOCKBUF_UNLOCK(&so->so_rcv);
2140 			VNET_SO_ASSERT(so);
2141 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
2142 			SOCKBUF_LOCK(&so->so_rcv);
2143 		}
2144 	}
2145 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2146 	if (orig_resid == uio->uio_resid && orig_resid &&
2147 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2148 		SOCKBUF_UNLOCK(&so->so_rcv);
2149 		goto restart;
2150 	}
2151 	SOCKBUF_UNLOCK(&so->so_rcv);
2152 
2153 	if (flagsp != NULL)
2154 		*flagsp |= flags;
2155 release:
2156 	sbunlock(&so->so_rcv);
2157 	return (error);
2158 }
2159 
2160 /*
2161  * Optimized version of soreceive() for stream (TCP) sockets.
2162  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
2163  */
2164 int
2165 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2166     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2167 {
2168 	int len = 0, error = 0, flags, oresid;
2169 	struct sockbuf *sb;
2170 	struct mbuf *m, *n = NULL;
2171 
2172 	/* We only do stream sockets. */
2173 	if (so->so_type != SOCK_STREAM)
2174 		return (EINVAL);
2175 	if (psa != NULL)
2176 		*psa = NULL;
2177 	if (controlp != NULL)
2178 		return (EINVAL);
2179 	if (flagsp != NULL)
2180 		flags = *flagsp &~ MSG_EOR;
2181 	else
2182 		flags = 0;
2183 	if (flags & MSG_OOB)
2184 		return (soreceive_rcvoob(so, uio, flags));
2185 	if (mp0 != NULL)
2186 		*mp0 = NULL;
2187 
2188 	sb = &so->so_rcv;
2189 
2190 	/* Prevent other readers from entering the socket. */
2191 	error = sblock(sb, SBLOCKWAIT(flags));
2192 	if (error)
2193 		goto out;
2194 	SOCKBUF_LOCK(sb);
2195 
2196 	/* Easy one, no space to copyout anything. */
2197 	if (uio->uio_resid == 0) {
2198 		error = EINVAL;
2199 		goto out;
2200 	}
2201 	oresid = uio->uio_resid;
2202 
2203 	/* We will never ever get anything unless we are or were connected. */
2204 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2205 		error = ENOTCONN;
2206 		goto out;
2207 	}
2208 
2209 restart:
2210 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2211 
2212 	/* Abort if socket has reported problems. */
2213 	if (so->so_error) {
2214 		if (sbavail(sb) > 0)
2215 			goto deliver;
2216 		if (oresid > uio->uio_resid)
2217 			goto out;
2218 		error = so->so_error;
2219 		if (!(flags & MSG_PEEK))
2220 			so->so_error = 0;
2221 		goto out;
2222 	}
2223 
2224 	/* Door is closed.  Deliver what is left, if any. */
2225 	if (sb->sb_state & SBS_CANTRCVMORE) {
2226 		if (sbavail(sb) > 0)
2227 			goto deliver;
2228 		else
2229 			goto out;
2230 	}
2231 
2232 	/* Socket buffer is empty and we shall not block. */
2233 	if (sbavail(sb) == 0 &&
2234 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2235 		error = EAGAIN;
2236 		goto out;
2237 	}
2238 
2239 	/* Socket buffer got some data that we shall deliver now. */
2240 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2241 	    ((so->so_state & SS_NBIO) ||
2242 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2243 	     sbavail(sb) >= sb->sb_lowat ||
2244 	     sbavail(sb) >= uio->uio_resid ||
2245 	     sbavail(sb) >= sb->sb_hiwat) ) {
2246 		goto deliver;
2247 	}
2248 
2249 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2250 	if ((flags & MSG_WAITALL) &&
2251 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2252 		goto deliver;
2253 
2254 	/*
2255 	 * Wait and block until (more) data comes in.
2256 	 * NB: Drops the sockbuf lock during wait.
2257 	 */
2258 	error = sbwait(sb);
2259 	if (error)
2260 		goto out;
2261 	goto restart;
2262 
2263 deliver:
2264 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2265 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2266 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2267 
2268 	/* Statistics. */
2269 	if (uio->uio_td)
2270 		uio->uio_td->td_ru.ru_msgrcv++;
2271 
2272 	/* Fill uio until full or current end of socket buffer is reached. */
2273 	len = min(uio->uio_resid, sbavail(sb));
2274 	if (mp0 != NULL) {
2275 		/* Dequeue as many mbufs as possible. */
2276 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2277 			if (*mp0 == NULL)
2278 				*mp0 = sb->sb_mb;
2279 			else
2280 				m_cat(*mp0, sb->sb_mb);
2281 			for (m = sb->sb_mb;
2282 			     m != NULL && m->m_len <= len;
2283 			     m = m->m_next) {
2284 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2285 				    ("%s: m %p not available", __func__, m));
2286 				len -= m->m_len;
2287 				uio->uio_resid -= m->m_len;
2288 				sbfree(sb, m);
2289 				n = m;
2290 			}
2291 			n->m_next = NULL;
2292 			sb->sb_mb = m;
2293 			sb->sb_lastrecord = sb->sb_mb;
2294 			if (sb->sb_mb == NULL)
2295 				SB_EMPTY_FIXUP(sb);
2296 		}
2297 		/* Copy the remainder. */
2298 		if (len > 0) {
2299 			KASSERT(sb->sb_mb != NULL,
2300 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2301 
2302 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2303 			if (m == NULL)
2304 				len = 0;	/* Don't flush data from sockbuf. */
2305 			else
2306 				uio->uio_resid -= len;
2307 			if (*mp0 != NULL)
2308 				m_cat(*mp0, m);
2309 			else
2310 				*mp0 = m;
2311 			if (*mp0 == NULL) {
2312 				error = ENOBUFS;
2313 				goto out;
2314 			}
2315 		}
2316 	} else {
2317 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2318 		SOCKBUF_UNLOCK(sb);
2319 		error = m_mbuftouio(uio, sb->sb_mb, len);
2320 		SOCKBUF_LOCK(sb);
2321 		if (error)
2322 			goto out;
2323 	}
2324 	SBLASTRECORDCHK(sb);
2325 	SBLASTMBUFCHK(sb);
2326 
2327 	/*
2328 	 * Remove the delivered data from the socket buffer unless we
2329 	 * were only peeking.
2330 	 */
2331 	if (!(flags & MSG_PEEK)) {
2332 		if (len > 0)
2333 			sbdrop_locked(sb, len);
2334 
2335 		/* Notify protocol that we drained some data. */
2336 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2337 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2338 		     !(flags & MSG_SOCALLBCK))) {
2339 			SOCKBUF_UNLOCK(sb);
2340 			VNET_SO_ASSERT(so);
2341 			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2342 			SOCKBUF_LOCK(sb);
2343 		}
2344 	}
2345 
2346 	/*
2347 	 * For MSG_WAITALL we may have to loop again and wait for
2348 	 * more data to come in.
2349 	 */
2350 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2351 		goto restart;
2352 out:
2353 	SOCKBUF_LOCK_ASSERT(sb);
2354 	SBLASTRECORDCHK(sb);
2355 	SBLASTMBUFCHK(sb);
2356 	SOCKBUF_UNLOCK(sb);
2357 	sbunlock(sb);
2358 	return (error);
2359 }
2360 
2361 /*
2362  * Optimized version of soreceive() for simple datagram cases from userspace.
2363  * Unlike in the stream case, we're able to drop a datagram if copyout()
2364  * fails, and because we handle datagrams atomically, we don't need to use a
2365  * sleep lock to prevent I/O interlacing.
2366  */
2367 int
2368 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2369     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2370 {
2371 	struct mbuf *m, *m2;
2372 	int flags, error;
2373 	ssize_t len;
2374 	struct protosw *pr = so->so_proto;
2375 	struct mbuf *nextrecord;
2376 
2377 	if (psa != NULL)
2378 		*psa = NULL;
2379 	if (controlp != NULL)
2380 		*controlp = NULL;
2381 	if (flagsp != NULL)
2382 		flags = *flagsp &~ MSG_EOR;
2383 	else
2384 		flags = 0;
2385 
2386 	/*
2387 	 * For any complicated cases, fall back to the full
2388 	 * soreceive_generic().
2389 	 */
2390 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2391 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2392 		    flagsp));
2393 
2394 	/*
2395 	 * Enforce restrictions on use.
2396 	 */
2397 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2398 	    ("soreceive_dgram: wantrcvd"));
2399 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2400 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2401 	    ("soreceive_dgram: SBS_RCVATMARK"));
2402 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2403 	    ("soreceive_dgram: P_CONNREQUIRED"));
2404 
2405 	/*
2406 	 * Loop blocking while waiting for a datagram.
2407 	 */
2408 	SOCKBUF_LOCK(&so->so_rcv);
2409 	while ((m = so->so_rcv.sb_mb) == NULL) {
2410 		KASSERT(sbavail(&so->so_rcv) == 0,
2411 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2412 		    sbavail(&so->so_rcv)));
2413 		if (so->so_error) {
2414 			error = so->so_error;
2415 			so->so_error = 0;
2416 			SOCKBUF_UNLOCK(&so->so_rcv);
2417 			return (error);
2418 		}
2419 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2420 		    uio->uio_resid == 0) {
2421 			SOCKBUF_UNLOCK(&so->so_rcv);
2422 			return (0);
2423 		}
2424 		if ((so->so_state & SS_NBIO) ||
2425 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2426 			SOCKBUF_UNLOCK(&so->so_rcv);
2427 			return (EWOULDBLOCK);
2428 		}
2429 		SBLASTRECORDCHK(&so->so_rcv);
2430 		SBLASTMBUFCHK(&so->so_rcv);
2431 		error = sbwait(&so->so_rcv);
2432 		if (error) {
2433 			SOCKBUF_UNLOCK(&so->so_rcv);
2434 			return (error);
2435 		}
2436 	}
2437 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2438 
2439 	if (uio->uio_td)
2440 		uio->uio_td->td_ru.ru_msgrcv++;
2441 	SBLASTRECORDCHK(&so->so_rcv);
2442 	SBLASTMBUFCHK(&so->so_rcv);
2443 	nextrecord = m->m_nextpkt;
2444 	if (nextrecord == NULL) {
2445 		KASSERT(so->so_rcv.sb_lastrecord == m,
2446 		    ("soreceive_dgram: lastrecord != m"));
2447 	}
2448 
2449 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2450 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2451 
2452 	/*
2453 	 * Pull 'm' and its chain off the front of the packet queue.
2454 	 */
2455 	so->so_rcv.sb_mb = NULL;
2456 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2457 
2458 	/*
2459 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2460 	 */
2461 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2462 		sbfree(&so->so_rcv, m2);
2463 
2464 	/*
2465 	 * Do a few last checks before we let go of the lock.
2466 	 */
2467 	SBLASTRECORDCHK(&so->so_rcv);
2468 	SBLASTMBUFCHK(&so->so_rcv);
2469 	SOCKBUF_UNLOCK(&so->so_rcv);
2470 
2471 	if (pr->pr_flags & PR_ADDR) {
2472 		KASSERT(m->m_type == MT_SONAME,
2473 		    ("m->m_type == %d", m->m_type));
2474 		if (psa != NULL)
2475 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2476 			    M_NOWAIT);
2477 		m = m_free(m);
2478 	}
2479 	if (m == NULL) {
2480 		/* XXXRW: Can this happen? */
2481 		return (0);
2482 	}
2483 
2484 	/*
2485 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2486 	 * queue.
2487 	 *
2488 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2489 	 * in the first mbuf chain on the socket buffer.  We call into the
2490 	 * protocol to perform externalization (or freeing if controlp ==
2491 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2492 	 * MT_DATA mbufs.
2493 	 */
2494 	if (m->m_type == MT_CONTROL) {
2495 		struct mbuf *cm = NULL, *cmn;
2496 		struct mbuf **cme = &cm;
2497 
2498 		do {
2499 			m2 = m->m_next;
2500 			m->m_next = NULL;
2501 			*cme = m;
2502 			cme = &(*cme)->m_next;
2503 			m = m2;
2504 		} while (m != NULL && m->m_type == MT_CONTROL);
2505 		while (cm != NULL) {
2506 			cmn = cm->m_next;
2507 			cm->m_next = NULL;
2508 			if (pr->pr_domain->dom_externalize != NULL) {
2509 				error = (*pr->pr_domain->dom_externalize)
2510 				    (cm, controlp, flags);
2511 			} else if (controlp != NULL)
2512 				*controlp = cm;
2513 			else
2514 				m_freem(cm);
2515 			if (controlp != NULL) {
2516 				while (*controlp != NULL)
2517 					controlp = &(*controlp)->m_next;
2518 			}
2519 			cm = cmn;
2520 		}
2521 	}
2522 	KASSERT(m == NULL || m->m_type == MT_DATA,
2523 	    ("soreceive_dgram: !data"));
2524 	while (m != NULL && uio->uio_resid > 0) {
2525 		len = uio->uio_resid;
2526 		if (len > m->m_len)
2527 			len = m->m_len;
2528 		error = uiomove(mtod(m, char *), (int)len, uio);
2529 		if (error) {
2530 			m_freem(m);
2531 			return (error);
2532 		}
2533 		if (len == m->m_len)
2534 			m = m_free(m);
2535 		else {
2536 			m->m_data += len;
2537 			m->m_len -= len;
2538 		}
2539 	}
2540 	if (m != NULL) {
2541 		flags |= MSG_TRUNC;
2542 		m_freem(m);
2543 	}
2544 	if (flagsp != NULL)
2545 		*flagsp |= flags;
2546 	return (0);
2547 }
2548 
2549 int
2550 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2551     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2552 {
2553 	int error;
2554 
2555 	CURVNET_SET(so->so_vnet);
2556 	if (!SOLISTENING(so))
2557 		error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
2558 		    mp0, controlp, flagsp));
2559 	else
2560 		error = ENOTCONN;
2561 	CURVNET_RESTORE();
2562 	return (error);
2563 }
2564 
2565 int
2566 soshutdown(struct socket *so, int how)
2567 {
2568 	struct protosw *pr = so->so_proto;
2569 	int error, soerror_enotconn;
2570 
2571 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2572 		return (EINVAL);
2573 
2574 	soerror_enotconn = 0;
2575 	if ((so->so_state &
2576 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2577 		/*
2578 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2579 		 * invoked on a datagram sockets, however historically we would
2580 		 * actually tear socket down. This is known to be leveraged by
2581 		 * some applications to unblock process waiting in recvXXX(2)
2582 		 * by other process that it shares that socket with. Try to meet
2583 		 * both backward-compatibility and POSIX requirements by forcing
2584 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2585 		 */
2586 		if (so->so_type != SOCK_DGRAM)
2587 			return (ENOTCONN);
2588 		soerror_enotconn = 1;
2589 	}
2590 
2591 	CURVNET_SET(so->so_vnet);
2592 	if (pr->pr_usrreqs->pru_flush != NULL)
2593 		(*pr->pr_usrreqs->pru_flush)(so, how);
2594 	if (how != SHUT_WR)
2595 		sorflush(so);
2596 	if (how != SHUT_RD) {
2597 		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2598 		wakeup(&so->so_timeo);
2599 		CURVNET_RESTORE();
2600 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2601 	}
2602 	wakeup(&so->so_timeo);
2603 	CURVNET_RESTORE();
2604 
2605 	return (soerror_enotconn ? ENOTCONN : 0);
2606 }
2607 
2608 void
2609 sorflush(struct socket *so)
2610 {
2611 	struct sockbuf *sb = &so->so_rcv;
2612 	struct protosw *pr = so->so_proto;
2613 	struct socket aso;
2614 
2615 	VNET_SO_ASSERT(so);
2616 
2617 	/*
2618 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2619 	 * held, and in order to generally avoid holding the lock for a long
2620 	 * time, we make a copy of the socket buffer and clear the original
2621 	 * (except locks, state).  The new socket buffer copy won't have
2622 	 * initialized locks so we can only call routines that won't use or
2623 	 * assert those locks.
2624 	 *
2625 	 * Dislodge threads currently blocked in receive and wait to acquire
2626 	 * a lock against other simultaneous readers before clearing the
2627 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2628 	 * despite any existing socket disposition on interruptable waiting.
2629 	 */
2630 	socantrcvmore(so);
2631 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2632 
2633 	/*
2634 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2635 	 * and mutex data unchanged.
2636 	 */
2637 	SOCKBUF_LOCK(sb);
2638 	bzero(&aso, sizeof(aso));
2639 	aso.so_pcb = so->so_pcb;
2640 	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2641 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2642 	bzero(&sb->sb_startzero,
2643 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2644 	SOCKBUF_UNLOCK(sb);
2645 	sbunlock(sb);
2646 
2647 	/*
2648 	 * Dispose of special rights and flush the copied socket.  Don't call
2649 	 * any unsafe routines (that rely on locks being initialized) on aso.
2650 	 */
2651 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2652 		(*pr->pr_domain->dom_dispose)(&aso);
2653 	sbrelease_internal(&aso.so_rcv, so);
2654 }
2655 
2656 /*
2657  * Wrapper for Socket established helper hook.
2658  * Parameters: socket, context of the hook point, hook id.
2659  */
2660 static int inline
2661 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2662 {
2663 	struct socket_hhook_data hhook_data = {
2664 		.so = so,
2665 		.hctx = hctx,
2666 		.m = NULL,
2667 		.status = 0
2668 	};
2669 
2670 	CURVNET_SET(so->so_vnet);
2671 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2672 	CURVNET_RESTORE();
2673 
2674 	/* Ugly but needed, since hhooks return void for now */
2675 	return (hhook_data.status);
2676 }
2677 
2678 /*
2679  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2680  * additional variant to handle the case where the option value needs to be
2681  * some kind of integer, but not a specific size.  In addition to their use
2682  * here, these functions are also called by the protocol-level pr_ctloutput()
2683  * routines.
2684  */
2685 int
2686 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2687 {
2688 	size_t	valsize;
2689 
2690 	/*
2691 	 * If the user gives us more than we wanted, we ignore it, but if we
2692 	 * don't get the minimum length the caller wants, we return EINVAL.
2693 	 * On success, sopt->sopt_valsize is set to however much we actually
2694 	 * retrieved.
2695 	 */
2696 	if ((valsize = sopt->sopt_valsize) < minlen)
2697 		return EINVAL;
2698 	if (valsize > len)
2699 		sopt->sopt_valsize = valsize = len;
2700 
2701 	if (sopt->sopt_td != NULL)
2702 		return (copyin(sopt->sopt_val, buf, valsize));
2703 
2704 	bcopy(sopt->sopt_val, buf, valsize);
2705 	return (0);
2706 }
2707 
2708 /*
2709  * Kernel version of setsockopt(2).
2710  *
2711  * XXX: optlen is size_t, not socklen_t
2712  */
2713 int
2714 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2715     size_t optlen)
2716 {
2717 	struct sockopt sopt;
2718 
2719 	sopt.sopt_level = level;
2720 	sopt.sopt_name = optname;
2721 	sopt.sopt_dir = SOPT_SET;
2722 	sopt.sopt_val = optval;
2723 	sopt.sopt_valsize = optlen;
2724 	sopt.sopt_td = NULL;
2725 	return (sosetopt(so, &sopt));
2726 }
2727 
2728 int
2729 sosetopt(struct socket *so, struct sockopt *sopt)
2730 {
2731 	int	error, optval;
2732 	struct	linger l;
2733 	struct	timeval tv;
2734 	sbintime_t val;
2735 	uint32_t val32;
2736 #ifdef MAC
2737 	struct mac extmac;
2738 #endif
2739 
2740 	CURVNET_SET(so->so_vnet);
2741 	error = 0;
2742 	if (sopt->sopt_level != SOL_SOCKET) {
2743 		if (so->so_proto->pr_ctloutput != NULL) {
2744 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2745 			CURVNET_RESTORE();
2746 			return (error);
2747 		}
2748 		error = ENOPROTOOPT;
2749 	} else {
2750 		switch (sopt->sopt_name) {
2751 		case SO_ACCEPTFILTER:
2752 			error = accept_filt_setopt(so, sopt);
2753 			if (error)
2754 				goto bad;
2755 			break;
2756 
2757 		case SO_LINGER:
2758 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2759 			if (error)
2760 				goto bad;
2761 
2762 			SOCK_LOCK(so);
2763 			so->so_linger = l.l_linger;
2764 			if (l.l_onoff)
2765 				so->so_options |= SO_LINGER;
2766 			else
2767 				so->so_options &= ~SO_LINGER;
2768 			SOCK_UNLOCK(so);
2769 			break;
2770 
2771 		case SO_DEBUG:
2772 		case SO_KEEPALIVE:
2773 		case SO_DONTROUTE:
2774 		case SO_USELOOPBACK:
2775 		case SO_BROADCAST:
2776 		case SO_REUSEADDR:
2777 		case SO_REUSEPORT:
2778 		case SO_OOBINLINE:
2779 		case SO_TIMESTAMP:
2780 		case SO_BINTIME:
2781 		case SO_NOSIGPIPE:
2782 		case SO_NO_DDP:
2783 		case SO_NO_OFFLOAD:
2784 			error = sooptcopyin(sopt, &optval, sizeof optval,
2785 			    sizeof optval);
2786 			if (error)
2787 				goto bad;
2788 			SOCK_LOCK(so);
2789 			if (optval)
2790 				so->so_options |= sopt->sopt_name;
2791 			else
2792 				so->so_options &= ~sopt->sopt_name;
2793 			SOCK_UNLOCK(so);
2794 			break;
2795 
2796 		case SO_SETFIB:
2797 			error = sooptcopyin(sopt, &optval, sizeof optval,
2798 			    sizeof optval);
2799 			if (error)
2800 				goto bad;
2801 
2802 			if (optval < 0 || optval >= rt_numfibs) {
2803 				error = EINVAL;
2804 				goto bad;
2805 			}
2806 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2807 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2808 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2809 				so->so_fibnum = optval;
2810 			else
2811 				so->so_fibnum = 0;
2812 			break;
2813 
2814 		case SO_USER_COOKIE:
2815 			error = sooptcopyin(sopt, &val32, sizeof val32,
2816 			    sizeof val32);
2817 			if (error)
2818 				goto bad;
2819 			so->so_user_cookie = val32;
2820 			break;
2821 
2822 		case SO_SNDBUF:
2823 		case SO_RCVBUF:
2824 		case SO_SNDLOWAT:
2825 		case SO_RCVLOWAT:
2826 			error = sooptcopyin(sopt, &optval, sizeof optval,
2827 			    sizeof optval);
2828 			if (error)
2829 				goto bad;
2830 
2831 			/*
2832 			 * Values < 1 make no sense for any of these options,
2833 			 * so disallow them.
2834 			 */
2835 			if (optval < 1) {
2836 				error = EINVAL;
2837 				goto bad;
2838 			}
2839 
2840 			error = sbsetopt(so, sopt->sopt_name, optval);
2841 			break;
2842 
2843 		case SO_SNDTIMEO:
2844 		case SO_RCVTIMEO:
2845 #ifdef COMPAT_FREEBSD32
2846 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2847 				struct timeval32 tv32;
2848 
2849 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2850 				    sizeof tv32);
2851 				CP(tv32, tv, tv_sec);
2852 				CP(tv32, tv, tv_usec);
2853 			} else
2854 #endif
2855 				error = sooptcopyin(sopt, &tv, sizeof tv,
2856 				    sizeof tv);
2857 			if (error)
2858 				goto bad;
2859 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
2860 			    tv.tv_usec >= 1000000) {
2861 				error = EDOM;
2862 				goto bad;
2863 			}
2864 			if (tv.tv_sec > INT32_MAX)
2865 				val = SBT_MAX;
2866 			else
2867 				val = tvtosbt(tv);
2868 			switch (sopt->sopt_name) {
2869 			case SO_SNDTIMEO:
2870 				so->so_snd.sb_timeo = val;
2871 				break;
2872 			case SO_RCVTIMEO:
2873 				so->so_rcv.sb_timeo = val;
2874 				break;
2875 			}
2876 			break;
2877 
2878 		case SO_LABEL:
2879 #ifdef MAC
2880 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2881 			    sizeof extmac);
2882 			if (error)
2883 				goto bad;
2884 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2885 			    so, &extmac);
2886 #else
2887 			error = EOPNOTSUPP;
2888 #endif
2889 			break;
2890 
2891 		case SO_TS_CLOCK:
2892 			error = sooptcopyin(sopt, &optval, sizeof optval,
2893 			    sizeof optval);
2894 			if (error)
2895 				goto bad;
2896 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
2897 				error = EINVAL;
2898 				goto bad;
2899 			}
2900 			so->so_ts_clock = optval;
2901 			break;
2902 
2903 		case SO_MAX_PACING_RATE:
2904 			error = sooptcopyin(sopt, &val32, sizeof(val32),
2905 			    sizeof(val32));
2906 			if (error)
2907 				goto bad;
2908 			so->so_max_pacing_rate = val32;
2909 			break;
2910 
2911 		default:
2912 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2913 				error = hhook_run_socket(so, sopt,
2914 				    HHOOK_SOCKET_OPT);
2915 			else
2916 				error = ENOPROTOOPT;
2917 			break;
2918 		}
2919 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2920 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2921 	}
2922 bad:
2923 	CURVNET_RESTORE();
2924 	return (error);
2925 }
2926 
2927 /*
2928  * Helper routine for getsockopt.
2929  */
2930 int
2931 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2932 {
2933 	int	error;
2934 	size_t	valsize;
2935 
2936 	error = 0;
2937 
2938 	/*
2939 	 * Documented get behavior is that we always return a value, possibly
2940 	 * truncated to fit in the user's buffer.  Traditional behavior is
2941 	 * that we always tell the user precisely how much we copied, rather
2942 	 * than something useful like the total amount we had available for
2943 	 * her.  Note that this interface is not idempotent; the entire
2944 	 * answer must be generated ahead of time.
2945 	 */
2946 	valsize = min(len, sopt->sopt_valsize);
2947 	sopt->sopt_valsize = valsize;
2948 	if (sopt->sopt_val != NULL) {
2949 		if (sopt->sopt_td != NULL)
2950 			error = copyout(buf, sopt->sopt_val, valsize);
2951 		else
2952 			bcopy(buf, sopt->sopt_val, valsize);
2953 	}
2954 	return (error);
2955 }
2956 
2957 int
2958 sogetopt(struct socket *so, struct sockopt *sopt)
2959 {
2960 	int	error, optval;
2961 	struct	linger l;
2962 	struct	timeval tv;
2963 #ifdef MAC
2964 	struct mac extmac;
2965 #endif
2966 
2967 	CURVNET_SET(so->so_vnet);
2968 	error = 0;
2969 	if (sopt->sopt_level != SOL_SOCKET) {
2970 		if (so->so_proto->pr_ctloutput != NULL)
2971 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2972 		else
2973 			error = ENOPROTOOPT;
2974 		CURVNET_RESTORE();
2975 		return (error);
2976 	} else {
2977 		switch (sopt->sopt_name) {
2978 		case SO_ACCEPTFILTER:
2979 			error = accept_filt_getopt(so, sopt);
2980 			break;
2981 
2982 		case SO_LINGER:
2983 			SOCK_LOCK(so);
2984 			l.l_onoff = so->so_options & SO_LINGER;
2985 			l.l_linger = so->so_linger;
2986 			SOCK_UNLOCK(so);
2987 			error = sooptcopyout(sopt, &l, sizeof l);
2988 			break;
2989 
2990 		case SO_USELOOPBACK:
2991 		case SO_DONTROUTE:
2992 		case SO_DEBUG:
2993 		case SO_KEEPALIVE:
2994 		case SO_REUSEADDR:
2995 		case SO_REUSEPORT:
2996 		case SO_BROADCAST:
2997 		case SO_OOBINLINE:
2998 		case SO_ACCEPTCONN:
2999 		case SO_TIMESTAMP:
3000 		case SO_BINTIME:
3001 		case SO_NOSIGPIPE:
3002 			optval = so->so_options & sopt->sopt_name;
3003 integer:
3004 			error = sooptcopyout(sopt, &optval, sizeof optval);
3005 			break;
3006 
3007 		case SO_TYPE:
3008 			optval = so->so_type;
3009 			goto integer;
3010 
3011 		case SO_PROTOCOL:
3012 			optval = so->so_proto->pr_protocol;
3013 			goto integer;
3014 
3015 		case SO_ERROR:
3016 			SOCK_LOCK(so);
3017 			optval = so->so_error;
3018 			so->so_error = 0;
3019 			SOCK_UNLOCK(so);
3020 			goto integer;
3021 
3022 		case SO_SNDBUF:
3023 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3024 			    so->so_snd.sb_hiwat;
3025 			goto integer;
3026 
3027 		case SO_RCVBUF:
3028 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3029 			    so->so_rcv.sb_hiwat;
3030 			goto integer;
3031 
3032 		case SO_SNDLOWAT:
3033 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3034 			    so->so_snd.sb_lowat;
3035 			goto integer;
3036 
3037 		case SO_RCVLOWAT:
3038 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3039 			    so->so_rcv.sb_lowat;
3040 			goto integer;
3041 
3042 		case SO_SNDTIMEO:
3043 		case SO_RCVTIMEO:
3044 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3045 			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
3046 #ifdef COMPAT_FREEBSD32
3047 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3048 				struct timeval32 tv32;
3049 
3050 				CP(tv, tv32, tv_sec);
3051 				CP(tv, tv32, tv_usec);
3052 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3053 			} else
3054 #endif
3055 				error = sooptcopyout(sopt, &tv, sizeof tv);
3056 			break;
3057 
3058 		case SO_LABEL:
3059 #ifdef MAC
3060 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3061 			    sizeof(extmac));
3062 			if (error)
3063 				goto bad;
3064 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3065 			    so, &extmac);
3066 			if (error)
3067 				goto bad;
3068 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3069 #else
3070 			error = EOPNOTSUPP;
3071 #endif
3072 			break;
3073 
3074 		case SO_PEERLABEL:
3075 #ifdef MAC
3076 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3077 			    sizeof(extmac));
3078 			if (error)
3079 				goto bad;
3080 			error = mac_getsockopt_peerlabel(
3081 			    sopt->sopt_td->td_ucred, so, &extmac);
3082 			if (error)
3083 				goto bad;
3084 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3085 #else
3086 			error = EOPNOTSUPP;
3087 #endif
3088 			break;
3089 
3090 		case SO_LISTENQLIMIT:
3091 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3092 			goto integer;
3093 
3094 		case SO_LISTENQLEN:
3095 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3096 			goto integer;
3097 
3098 		case SO_LISTENINCQLEN:
3099 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3100 			goto integer;
3101 
3102 		case SO_TS_CLOCK:
3103 			optval = so->so_ts_clock;
3104 			goto integer;
3105 
3106 		case SO_MAX_PACING_RATE:
3107 			optval = so->so_max_pacing_rate;
3108 			goto integer;
3109 
3110 		default:
3111 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3112 				error = hhook_run_socket(so, sopt,
3113 				    HHOOK_SOCKET_OPT);
3114 			else
3115 				error = ENOPROTOOPT;
3116 			break;
3117 		}
3118 	}
3119 #ifdef MAC
3120 bad:
3121 #endif
3122 	CURVNET_RESTORE();
3123 	return (error);
3124 }
3125 
3126 int
3127 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3128 {
3129 	struct mbuf *m, *m_prev;
3130 	int sopt_size = sopt->sopt_valsize;
3131 
3132 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3133 	if (m == NULL)
3134 		return ENOBUFS;
3135 	if (sopt_size > MLEN) {
3136 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3137 		if ((m->m_flags & M_EXT) == 0) {
3138 			m_free(m);
3139 			return ENOBUFS;
3140 		}
3141 		m->m_len = min(MCLBYTES, sopt_size);
3142 	} else {
3143 		m->m_len = min(MLEN, sopt_size);
3144 	}
3145 	sopt_size -= m->m_len;
3146 	*mp = m;
3147 	m_prev = m;
3148 
3149 	while (sopt_size) {
3150 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3151 		if (m == NULL) {
3152 			m_freem(*mp);
3153 			return ENOBUFS;
3154 		}
3155 		if (sopt_size > MLEN) {
3156 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3157 			    M_NOWAIT);
3158 			if ((m->m_flags & M_EXT) == 0) {
3159 				m_freem(m);
3160 				m_freem(*mp);
3161 				return ENOBUFS;
3162 			}
3163 			m->m_len = min(MCLBYTES, sopt_size);
3164 		} else {
3165 			m->m_len = min(MLEN, sopt_size);
3166 		}
3167 		sopt_size -= m->m_len;
3168 		m_prev->m_next = m;
3169 		m_prev = m;
3170 	}
3171 	return (0);
3172 }
3173 
3174 int
3175 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3176 {
3177 	struct mbuf *m0 = m;
3178 
3179 	if (sopt->sopt_val == NULL)
3180 		return (0);
3181 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3182 		if (sopt->sopt_td != NULL) {
3183 			int error;
3184 
3185 			error = copyin(sopt->sopt_val, mtod(m, char *),
3186 			    m->m_len);
3187 			if (error != 0) {
3188 				m_freem(m0);
3189 				return(error);
3190 			}
3191 		} else
3192 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3193 		sopt->sopt_valsize -= m->m_len;
3194 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3195 		m = m->m_next;
3196 	}
3197 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3198 		panic("ip6_sooptmcopyin");
3199 	return (0);
3200 }
3201 
3202 int
3203 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3204 {
3205 	struct mbuf *m0 = m;
3206 	size_t valsize = 0;
3207 
3208 	if (sopt->sopt_val == NULL)
3209 		return (0);
3210 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3211 		if (sopt->sopt_td != NULL) {
3212 			int error;
3213 
3214 			error = copyout(mtod(m, char *), sopt->sopt_val,
3215 			    m->m_len);
3216 			if (error != 0) {
3217 				m_freem(m0);
3218 				return(error);
3219 			}
3220 		} else
3221 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3222 		sopt->sopt_valsize -= m->m_len;
3223 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3224 		valsize += m->m_len;
3225 		m = m->m_next;
3226 	}
3227 	if (m != NULL) {
3228 		/* enough soopt buffer should be given from user-land */
3229 		m_freem(m0);
3230 		return(EINVAL);
3231 	}
3232 	sopt->sopt_valsize = valsize;
3233 	return (0);
3234 }
3235 
3236 /*
3237  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3238  * out-of-band data, which will then notify socket consumers.
3239  */
3240 void
3241 sohasoutofband(struct socket *so)
3242 {
3243 
3244 	if (so->so_sigio != NULL)
3245 		pgsigio(&so->so_sigio, SIGURG, 0);
3246 	selwakeuppri(&so->so_rdsel, PSOCK);
3247 }
3248 
3249 int
3250 sopoll(struct socket *so, int events, struct ucred *active_cred,
3251     struct thread *td)
3252 {
3253 
3254 	/*
3255 	 * We do not need to set or assert curvnet as long as everyone uses
3256 	 * sopoll_generic().
3257 	 */
3258 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3259 	    td));
3260 }
3261 
3262 int
3263 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3264     struct thread *td)
3265 {
3266 	int revents;
3267 
3268 	SOCK_LOCK(so);
3269 	if (SOLISTENING(so)) {
3270 		if (!(events & (POLLIN | POLLRDNORM)))
3271 			revents = 0;
3272 		else if (!TAILQ_EMPTY(&so->sol_comp))
3273 			revents = events & (POLLIN | POLLRDNORM);
3274 		else {
3275 			selrecord(td, &so->so_rdsel);
3276 			revents = 0;
3277 		}
3278 	} else {
3279 		revents = 0;
3280 		SOCKBUF_LOCK(&so->so_snd);
3281 		SOCKBUF_LOCK(&so->so_rcv);
3282 		if (events & (POLLIN | POLLRDNORM))
3283 			if (soreadabledata(so))
3284 				revents |= events & (POLLIN | POLLRDNORM);
3285 		if (events & (POLLOUT | POLLWRNORM))
3286 			if (sowriteable(so))
3287 				revents |= events & (POLLOUT | POLLWRNORM);
3288 		if (events & (POLLPRI | POLLRDBAND))
3289 			if (so->so_oobmark ||
3290 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3291 				revents |= events & (POLLPRI | POLLRDBAND);
3292 		if ((events & POLLINIGNEOF) == 0) {
3293 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3294 				revents |= events & (POLLIN | POLLRDNORM);
3295 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3296 					revents |= POLLHUP;
3297 			}
3298 		}
3299 		if (revents == 0) {
3300 			if (events &
3301 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3302 				selrecord(td, &so->so_rdsel);
3303 				so->so_rcv.sb_flags |= SB_SEL;
3304 			}
3305 			if (events & (POLLOUT | POLLWRNORM)) {
3306 				selrecord(td, &so->so_wrsel);
3307 				so->so_snd.sb_flags |= SB_SEL;
3308 			}
3309 		}
3310 		SOCKBUF_UNLOCK(&so->so_rcv);
3311 		SOCKBUF_UNLOCK(&so->so_snd);
3312 	}
3313 	SOCK_UNLOCK(so);
3314 	return (revents);
3315 }
3316 
3317 int
3318 soo_kqfilter(struct file *fp, struct knote *kn)
3319 {
3320 	struct socket *so = kn->kn_fp->f_data;
3321 	struct sockbuf *sb;
3322 	struct knlist *knl;
3323 
3324 	switch (kn->kn_filter) {
3325 	case EVFILT_READ:
3326 		kn->kn_fop = &soread_filtops;
3327 		knl = &so->so_rdsel.si_note;
3328 		sb = &so->so_rcv;
3329 		break;
3330 	case EVFILT_WRITE:
3331 		kn->kn_fop = &sowrite_filtops;
3332 		knl = &so->so_wrsel.si_note;
3333 		sb = &so->so_snd;
3334 		break;
3335 	case EVFILT_EMPTY:
3336 		kn->kn_fop = &soempty_filtops;
3337 		knl = &so->so_wrsel.si_note;
3338 		sb = &so->so_snd;
3339 		break;
3340 	default:
3341 		return (EINVAL);
3342 	}
3343 
3344 	SOCK_LOCK(so);
3345 	if (SOLISTENING(so)) {
3346 		knlist_add(knl, kn, 1);
3347 	} else {
3348 		SOCKBUF_LOCK(sb);
3349 		knlist_add(knl, kn, 1);
3350 		sb->sb_flags |= SB_KNOTE;
3351 		SOCKBUF_UNLOCK(sb);
3352 	}
3353 	SOCK_UNLOCK(so);
3354 	return (0);
3355 }
3356 
3357 /*
3358  * Some routines that return EOPNOTSUPP for entry points that are not
3359  * supported by a protocol.  Fill in as needed.
3360  */
3361 int
3362 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3363 {
3364 
3365 	return EOPNOTSUPP;
3366 }
3367 
3368 int
3369 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3370 {
3371 
3372 	return EOPNOTSUPP;
3373 }
3374 
3375 int
3376 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3377 {
3378 
3379 	return EOPNOTSUPP;
3380 }
3381 
3382 int
3383 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3384 {
3385 
3386 	return EOPNOTSUPP;
3387 }
3388 
3389 int
3390 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3391     struct thread *td)
3392 {
3393 
3394 	return EOPNOTSUPP;
3395 }
3396 
3397 int
3398 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3399 {
3400 
3401 	return EOPNOTSUPP;
3402 }
3403 
3404 int
3405 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3406     struct thread *td)
3407 {
3408 
3409 	return EOPNOTSUPP;
3410 }
3411 
3412 int
3413 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3414 {
3415 
3416 	return EOPNOTSUPP;
3417 }
3418 
3419 int
3420 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3421     struct ifnet *ifp, struct thread *td)
3422 {
3423 
3424 	return EOPNOTSUPP;
3425 }
3426 
3427 int
3428 pru_disconnect_notsupp(struct socket *so)
3429 {
3430 
3431 	return EOPNOTSUPP;
3432 }
3433 
3434 int
3435 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3436 {
3437 
3438 	return EOPNOTSUPP;
3439 }
3440 
3441 int
3442 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3443 {
3444 
3445 	return EOPNOTSUPP;
3446 }
3447 
3448 int
3449 pru_rcvd_notsupp(struct socket *so, int flags)
3450 {
3451 
3452 	return EOPNOTSUPP;
3453 }
3454 
3455 int
3456 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3457 {
3458 
3459 	return EOPNOTSUPP;
3460 }
3461 
3462 int
3463 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3464     struct sockaddr *addr, struct mbuf *control, struct thread *td)
3465 {
3466 
3467 	return EOPNOTSUPP;
3468 }
3469 
3470 int
3471 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3472 {
3473 
3474 	return (EOPNOTSUPP);
3475 }
3476 
3477 /*
3478  * This isn't really a ``null'' operation, but it's the default one and
3479  * doesn't do anything destructive.
3480  */
3481 int
3482 pru_sense_null(struct socket *so, struct stat *sb)
3483 {
3484 
3485 	sb->st_blksize = so->so_snd.sb_hiwat;
3486 	return 0;
3487 }
3488 
3489 int
3490 pru_shutdown_notsupp(struct socket *so)
3491 {
3492 
3493 	return EOPNOTSUPP;
3494 }
3495 
3496 int
3497 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3498 {
3499 
3500 	return EOPNOTSUPP;
3501 }
3502 
3503 int
3504 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3505     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3506 {
3507 
3508 	return EOPNOTSUPP;
3509 }
3510 
3511 int
3512 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3513     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3514 {
3515 
3516 	return EOPNOTSUPP;
3517 }
3518 
3519 int
3520 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3521     struct thread *td)
3522 {
3523 
3524 	return EOPNOTSUPP;
3525 }
3526 
3527 static void
3528 filt_sordetach(struct knote *kn)
3529 {
3530 	struct socket *so = kn->kn_fp->f_data;
3531 
3532 	so_rdknl_lock(so);
3533 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3534 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3535 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3536 	so_rdknl_unlock(so);
3537 }
3538 
3539 /*ARGSUSED*/
3540 static int
3541 filt_soread(struct knote *kn, long hint)
3542 {
3543 	struct socket *so;
3544 
3545 	so = kn->kn_fp->f_data;
3546 
3547 	if (SOLISTENING(so)) {
3548 		SOCK_LOCK_ASSERT(so);
3549 		kn->kn_data = so->sol_qlen;
3550 		return (!TAILQ_EMPTY(&so->sol_comp));
3551 	}
3552 
3553 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3554 
3555 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3556 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3557 		kn->kn_flags |= EV_EOF;
3558 		kn->kn_fflags = so->so_error;
3559 		return (1);
3560 	} else if (so->so_error)	/* temporary udp error */
3561 		return (1);
3562 
3563 	if (kn->kn_sfflags & NOTE_LOWAT) {
3564 		if (kn->kn_data >= kn->kn_sdata)
3565 			return (1);
3566 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3567 		return (1);
3568 
3569 	/* This hook returning non-zero indicates an event, not error */
3570 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3571 }
3572 
3573 static void
3574 filt_sowdetach(struct knote *kn)
3575 {
3576 	struct socket *so = kn->kn_fp->f_data;
3577 
3578 	so_wrknl_lock(so);
3579 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3580 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3581 		so->so_snd.sb_flags &= ~SB_KNOTE;
3582 	so_wrknl_unlock(so);
3583 }
3584 
3585 /*ARGSUSED*/
3586 static int
3587 filt_sowrite(struct knote *kn, long hint)
3588 {
3589 	struct socket *so;
3590 
3591 	so = kn->kn_fp->f_data;
3592 
3593 	if (SOLISTENING(so))
3594 		return (0);
3595 
3596 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3597 	kn->kn_data = sbspace(&so->so_snd);
3598 
3599 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3600 
3601 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3602 		kn->kn_flags |= EV_EOF;
3603 		kn->kn_fflags = so->so_error;
3604 		return (1);
3605 	} else if (so->so_error)	/* temporary udp error */
3606 		return (1);
3607 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3608 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3609 		return (0);
3610 	else if (kn->kn_sfflags & NOTE_LOWAT)
3611 		return (kn->kn_data >= kn->kn_sdata);
3612 	else
3613 		return (kn->kn_data >= so->so_snd.sb_lowat);
3614 }
3615 
3616 static int
3617 filt_soempty(struct knote *kn, long hint)
3618 {
3619 	struct socket *so;
3620 
3621 	so = kn->kn_fp->f_data;
3622 
3623 	if (SOLISTENING(so))
3624 		return (1);
3625 
3626 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3627 	kn->kn_data = sbused(&so->so_snd);
3628 
3629 	if (kn->kn_data == 0)
3630 		return (1);
3631 	else
3632 		return (0);
3633 }
3634 
3635 int
3636 socheckuid(struct socket *so, uid_t uid)
3637 {
3638 
3639 	if (so == NULL)
3640 		return (EPERM);
3641 	if (so->so_cred->cr_uid != uid)
3642 		return (EPERM);
3643 	return (0);
3644 }
3645 
3646 /*
3647  * These functions are used by protocols to notify the socket layer (and its
3648  * consumers) of state changes in the sockets driven by protocol-side events.
3649  */
3650 
3651 /*
3652  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3653  *
3654  * Normal sequence from the active (originating) side is that
3655  * soisconnecting() is called during processing of connect() call, resulting
3656  * in an eventual call to soisconnected() if/when the connection is
3657  * established.  When the connection is torn down soisdisconnecting() is
3658  * called during processing of disconnect() call, and soisdisconnected() is
3659  * called when the connection to the peer is totally severed.  The semantics
3660  * of these routines are such that connectionless protocols can call
3661  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3662  * calls when setting up a ``connection'' takes no time.
3663  *
3664  * From the passive side, a socket is created with two queues of sockets:
3665  * so_incomp for connections in progress and so_comp for connections already
3666  * made and awaiting user acceptance.  As a protocol is preparing incoming
3667  * connections, it creates a socket structure queued on so_incomp by calling
3668  * sonewconn().  When the connection is established, soisconnected() is
3669  * called, and transfers the socket structure to so_comp, making it available
3670  * to accept().
3671  *
3672  * If a socket is closed with sockets on either so_incomp or so_comp, these
3673  * sockets are dropped.
3674  *
3675  * If higher-level protocols are implemented in the kernel, the wakeups done
3676  * here will sometimes cause software-interrupt process scheduling.
3677  */
3678 void
3679 soisconnecting(struct socket *so)
3680 {
3681 
3682 	SOCK_LOCK(so);
3683 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3684 	so->so_state |= SS_ISCONNECTING;
3685 	SOCK_UNLOCK(so);
3686 }
3687 
3688 void
3689 soisconnected(struct socket *so)
3690 {
3691 
3692 	SOCK_LOCK(so);
3693 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3694 	so->so_state |= SS_ISCONNECTED;
3695 
3696 	if (so->so_qstate == SQ_INCOMP) {
3697 		struct socket *head = so->so_listen;
3698 		int ret;
3699 
3700 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3701 		/*
3702 		 * Promoting a socket from incomplete queue to complete, we
3703 		 * need to go through reverse order of locking.  We first do
3704 		 * trylock, and if that doesn't succeed, we go the hard way
3705 		 * leaving a reference and rechecking consistency after proper
3706 		 * locking.
3707 		 */
3708 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3709 			soref(head);
3710 			SOCK_UNLOCK(so);
3711 			SOLISTEN_LOCK(head);
3712 			SOCK_LOCK(so);
3713 			if (__predict_false(head != so->so_listen)) {
3714 				/*
3715 				 * The socket went off the listen queue,
3716 				 * should be lost race to close(2) of sol.
3717 				 * The socket is about to soabort().
3718 				 */
3719 				SOCK_UNLOCK(so);
3720 				sorele(head);
3721 				return;
3722 			}
3723 			/* Not the last one, as so holds a ref. */
3724 			refcount_release(&head->so_count);
3725 		}
3726 again:
3727 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3728 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3729 			head->sol_incqlen--;
3730 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3731 			head->sol_qlen++;
3732 			so->so_qstate = SQ_COMP;
3733 			SOCK_UNLOCK(so);
3734 			solisten_wakeup(head);	/* unlocks */
3735 		} else {
3736 			SOCKBUF_LOCK(&so->so_rcv);
3737 			soupcall_set(so, SO_RCV,
3738 			    head->sol_accept_filter->accf_callback,
3739 			    head->sol_accept_filter_arg);
3740 			so->so_options &= ~SO_ACCEPTFILTER;
3741 			ret = head->sol_accept_filter->accf_callback(so,
3742 			    head->sol_accept_filter_arg, M_NOWAIT);
3743 			if (ret == SU_ISCONNECTED) {
3744 				soupcall_clear(so, SO_RCV);
3745 				SOCKBUF_UNLOCK(&so->so_rcv);
3746 				goto again;
3747 			}
3748 			SOCKBUF_UNLOCK(&so->so_rcv);
3749 			SOCK_UNLOCK(so);
3750 			SOLISTEN_UNLOCK(head);
3751 		}
3752 		return;
3753 	}
3754 	SOCK_UNLOCK(so);
3755 	wakeup(&so->so_timeo);
3756 	sorwakeup(so);
3757 	sowwakeup(so);
3758 }
3759 
3760 void
3761 soisdisconnecting(struct socket *so)
3762 {
3763 
3764 	SOCK_LOCK(so);
3765 	so->so_state &= ~SS_ISCONNECTING;
3766 	so->so_state |= SS_ISDISCONNECTING;
3767 
3768 	if (!SOLISTENING(so)) {
3769 		SOCKBUF_LOCK(&so->so_rcv);
3770 		socantrcvmore_locked(so);
3771 		SOCKBUF_LOCK(&so->so_snd);
3772 		socantsendmore_locked(so);
3773 	}
3774 	SOCK_UNLOCK(so);
3775 	wakeup(&so->so_timeo);
3776 }
3777 
3778 void
3779 soisdisconnected(struct socket *so)
3780 {
3781 
3782 	SOCK_LOCK(so);
3783 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3784 	so->so_state |= SS_ISDISCONNECTED;
3785 
3786 	if (!SOLISTENING(so)) {
3787 		SOCK_UNLOCK(so);
3788 		SOCKBUF_LOCK(&so->so_rcv);
3789 		socantrcvmore_locked(so);
3790 		SOCKBUF_LOCK(&so->so_snd);
3791 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3792 		socantsendmore_locked(so);
3793 	} else
3794 		SOCK_UNLOCK(so);
3795 	wakeup(&so->so_timeo);
3796 }
3797 
3798 /*
3799  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3800  */
3801 struct sockaddr *
3802 sodupsockaddr(const struct sockaddr *sa, int mflags)
3803 {
3804 	struct sockaddr *sa2;
3805 
3806 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3807 	if (sa2)
3808 		bcopy(sa, sa2, sa->sa_len);
3809 	return sa2;
3810 }
3811 
3812 /*
3813  * Register per-socket buffer upcalls.
3814  */
3815 void
3816 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
3817 {
3818 	struct sockbuf *sb;
3819 
3820 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
3821 
3822 	switch (which) {
3823 	case SO_RCV:
3824 		sb = &so->so_rcv;
3825 		break;
3826 	case SO_SND:
3827 		sb = &so->so_snd;
3828 		break;
3829 	default:
3830 		panic("soupcall_set: bad which");
3831 	}
3832 	SOCKBUF_LOCK_ASSERT(sb);
3833 	sb->sb_upcall = func;
3834 	sb->sb_upcallarg = arg;
3835 	sb->sb_flags |= SB_UPCALL;
3836 }
3837 
3838 void
3839 soupcall_clear(struct socket *so, int which)
3840 {
3841 	struct sockbuf *sb;
3842 
3843 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
3844 
3845 	switch (which) {
3846 	case SO_RCV:
3847 		sb = &so->so_rcv;
3848 		break;
3849 	case SO_SND:
3850 		sb = &so->so_snd;
3851 		break;
3852 	default:
3853 		panic("soupcall_clear: bad which");
3854 	}
3855 	SOCKBUF_LOCK_ASSERT(sb);
3856 	KASSERT(sb->sb_upcall != NULL,
3857 	    ("%s: so %p no upcall to clear", __func__, so));
3858 	sb->sb_upcall = NULL;
3859 	sb->sb_upcallarg = NULL;
3860 	sb->sb_flags &= ~SB_UPCALL;
3861 }
3862 
3863 void
3864 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
3865 {
3866 
3867 	SOLISTEN_LOCK_ASSERT(so);
3868 	so->sol_upcall = func;
3869 	so->sol_upcallarg = arg;
3870 }
3871 
3872 static void
3873 so_rdknl_lock(void *arg)
3874 {
3875 	struct socket *so = arg;
3876 
3877 	if (SOLISTENING(so))
3878 		SOCK_LOCK(so);
3879 	else
3880 		SOCKBUF_LOCK(&so->so_rcv);
3881 }
3882 
3883 static void
3884 so_rdknl_unlock(void *arg)
3885 {
3886 	struct socket *so = arg;
3887 
3888 	if (SOLISTENING(so))
3889 		SOCK_UNLOCK(so);
3890 	else
3891 		SOCKBUF_UNLOCK(&so->so_rcv);
3892 }
3893 
3894 static void
3895 so_rdknl_assert_locked(void *arg)
3896 {
3897 	struct socket *so = arg;
3898 
3899 	if (SOLISTENING(so))
3900 		SOCK_LOCK_ASSERT(so);
3901 	else
3902 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3903 }
3904 
3905 static void
3906 so_rdknl_assert_unlocked(void *arg)
3907 {
3908 	struct socket *so = arg;
3909 
3910 	if (SOLISTENING(so))
3911 		SOCK_UNLOCK_ASSERT(so);
3912 	else
3913 		SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
3914 }
3915 
3916 static void
3917 so_wrknl_lock(void *arg)
3918 {
3919 	struct socket *so = arg;
3920 
3921 	if (SOLISTENING(so))
3922 		SOCK_LOCK(so);
3923 	else
3924 		SOCKBUF_LOCK(&so->so_snd);
3925 }
3926 
3927 static void
3928 so_wrknl_unlock(void *arg)
3929 {
3930 	struct socket *so = arg;
3931 
3932 	if (SOLISTENING(so))
3933 		SOCK_UNLOCK(so);
3934 	else
3935 		SOCKBUF_UNLOCK(&so->so_snd);
3936 }
3937 
3938 static void
3939 so_wrknl_assert_locked(void *arg)
3940 {
3941 	struct socket *so = arg;
3942 
3943 	if (SOLISTENING(so))
3944 		SOCK_LOCK_ASSERT(so);
3945 	else
3946 		SOCKBUF_LOCK_ASSERT(&so->so_snd);
3947 }
3948 
3949 static void
3950 so_wrknl_assert_unlocked(void *arg)
3951 {
3952 	struct socket *so = arg;
3953 
3954 	if (SOLISTENING(so))
3955 		SOCK_UNLOCK_ASSERT(so);
3956 	else
3957 		SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
3958 }
3959 
3960 /*
3961  * Create an external-format (``xsocket'') structure using the information in
3962  * the kernel-format socket structure pointed to by so.  This is done to
3963  * reduce the spew of irrelevant information over this interface, to isolate
3964  * user code from changes in the kernel structure, and potentially to provide
3965  * information-hiding if we decide that some of this information should be
3966  * hidden from users.
3967  */
3968 void
3969 sotoxsocket(struct socket *so, struct xsocket *xso)
3970 {
3971 
3972 	xso->xso_len = sizeof *xso;
3973 	xso->xso_so = so;
3974 	xso->so_type = so->so_type;
3975 	xso->so_options = so->so_options;
3976 	xso->so_linger = so->so_linger;
3977 	xso->so_state = so->so_state;
3978 	xso->so_pcb = so->so_pcb;
3979 	xso->xso_protocol = so->so_proto->pr_protocol;
3980 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3981 	xso->so_timeo = so->so_timeo;
3982 	xso->so_error = so->so_error;
3983 	xso->so_uid = so->so_cred->cr_uid;
3984 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3985 	if (SOLISTENING(so)) {
3986 		xso->so_qlen = so->sol_qlen;
3987 		xso->so_incqlen = so->sol_incqlen;
3988 		xso->so_qlimit = so->sol_qlimit;
3989 		xso->so_oobmark = 0;
3990 		bzero(&xso->so_snd, sizeof(xso->so_snd));
3991 		bzero(&xso->so_rcv, sizeof(xso->so_rcv));
3992 	} else {
3993 		xso->so_state |= so->so_qstate;
3994 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
3995 		xso->so_oobmark = so->so_oobmark;
3996 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3997 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3998 	}
3999 }
4000 
4001 struct sockbuf *
4002 so_sockbuf_rcv(struct socket *so)
4003 {
4004 
4005 	return (&so->so_rcv);
4006 }
4007 
4008 struct sockbuf *
4009 so_sockbuf_snd(struct socket *so)
4010 {
4011 
4012 	return (&so->so_snd);
4013 }
4014 
4015 int
4016 so_state_get(const struct socket *so)
4017 {
4018 
4019 	return (so->so_state);
4020 }
4021 
4022 void
4023 so_state_set(struct socket *so, int val)
4024 {
4025 
4026 	so->so_state = val;
4027 }
4028 
4029 int
4030 so_options_get(const struct socket *so)
4031 {
4032 
4033 	return (so->so_options);
4034 }
4035 
4036 void
4037 so_options_set(struct socket *so, int val)
4038 {
4039 
4040 	so->so_options = val;
4041 }
4042 
4043 int
4044 so_error_get(const struct socket *so)
4045 {
4046 
4047 	return (so->so_error);
4048 }
4049 
4050 void
4051 so_error_set(struct socket *so, int val)
4052 {
4053 
4054 	so->so_error = val;
4055 }
4056 
4057 int
4058 so_linger_get(const struct socket *so)
4059 {
4060 
4061 	return (so->so_linger);
4062 }
4063 
4064 void
4065 so_linger_set(struct socket *so, int val)
4066 {
4067 
4068 	so->so_linger = val;
4069 }
4070 
4071 struct protosw *
4072 so_protosw_get(const struct socket *so)
4073 {
4074 
4075 	return (so->so_proto);
4076 }
4077 
4078 void
4079 so_protosw_set(struct socket *so, struct protosw *val)
4080 {
4081 
4082 	so->so_proto = val;
4083 }
4084 
4085 void
4086 so_sorwakeup(struct socket *so)
4087 {
4088 
4089 	sorwakeup(so);
4090 }
4091 
4092 void
4093 so_sowwakeup(struct socket *so)
4094 {
4095 
4096 	sowwakeup(so);
4097 }
4098 
4099 void
4100 so_sorwakeup_locked(struct socket *so)
4101 {
4102 
4103 	sorwakeup_locked(so);
4104 }
4105 
4106 void
4107 so_sowwakeup_locked(struct socket *so)
4108 {
4109 
4110 	sowwakeup_locked(so);
4111 }
4112 
4113 void
4114 so_lock(struct socket *so)
4115 {
4116 
4117 	SOCK_LOCK(so);
4118 }
4119 
4120 void
4121 so_unlock(struct socket *so)
4122 {
4123 
4124 	SOCK_UNLOCK(so);
4125 }
4126