xref: /freebsd/sys/kern/uipc_socket.c (revision 39beb93c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn().  Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn().  Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation.  This is called
46  * from socreate() and sonewconn().  Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called.  If pru_attach() returned an error,
51  * pru_detach() will not be called.  Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection.  Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state.  This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state.  This is a
64  * public interface  that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected).  This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required.  Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation.  This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed.  This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment.  For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  */
96 
97 #include <sys/cdefs.h>
98 __FBSDID("$FreeBSD$");
99 
100 #include "opt_inet.h"
101 #include "opt_inet6.h"
102 #include "opt_mac.h"
103 #include "opt_zero.h"
104 #include "opt_compat.h"
105 
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/fcntl.h>
109 #include <sys/limits.h>
110 #include <sys/lock.h>
111 #include <sys/mac.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/mutex.h>
115 #include <sys/domain.h>
116 #include <sys/file.h>			/* for struct knote */
117 #include <sys/kernel.h>
118 #include <sys/event.h>
119 #include <sys/eventhandler.h>
120 #include <sys/poll.h>
121 #include <sys/proc.h>
122 #include <sys/protosw.h>
123 #include <sys/socket.h>
124 #include <sys/socketvar.h>
125 #include <sys/resourcevar.h>
126 #include <net/route.h>
127 #include <sys/signalvar.h>
128 #include <sys/stat.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131 #include <sys/uio.h>
132 #include <sys/jail.h>
133 
134 #include <security/mac/mac_framework.h>
135 
136 #include <vm/uma.h>
137 
138 #ifdef COMPAT_IA32
139 #include <sys/mount.h>
140 #include <sys/sysent.h>
141 #include <compat/freebsd32/freebsd32.h>
142 #endif
143 
144 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
145 		    int flags);
146 
147 static void	filt_sordetach(struct knote *kn);
148 static int	filt_soread(struct knote *kn, long hint);
149 static void	filt_sowdetach(struct knote *kn);
150 static int	filt_sowrite(struct knote *kn, long hint);
151 static int	filt_solisten(struct knote *kn, long hint);
152 
153 static struct filterops solisten_filtops =
154 	{ 1, NULL, filt_sordetach, filt_solisten };
155 static struct filterops soread_filtops =
156 	{ 1, NULL, filt_sordetach, filt_soread };
157 static struct filterops sowrite_filtops =
158 	{ 1, NULL, filt_sowdetach, filt_sowrite };
159 
160 uma_zone_t socket_zone;
161 so_gen_t	so_gencnt;	/* generation count for sockets */
162 
163 int	maxsockets;
164 
165 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
166 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
167 
168 static int somaxconn = SOMAXCONN;
169 static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
170 /* XXX: we dont have SYSCTL_USHORT */
171 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
172     0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
173     "queue size");
174 static int numopensockets;
175 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
176     &numopensockets, 0, "Number of open sockets");
177 #ifdef ZERO_COPY_SOCKETS
178 /* These aren't static because they're used in other files. */
179 int so_zero_copy_send = 1;
180 int so_zero_copy_receive = 1;
181 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
182     "Zero copy controls");
183 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
184     &so_zero_copy_receive, 0, "Enable zero copy receive");
185 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
186     &so_zero_copy_send, 0, "Enable zero copy send");
187 #endif /* ZERO_COPY_SOCKETS */
188 
189 /*
190  * accept_mtx locks down per-socket fields relating to accept queues.  See
191  * socketvar.h for an annotation of the protected fields of struct socket.
192  */
193 struct mtx accept_mtx;
194 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
195 
196 /*
197  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
198  * so_gencnt field.
199  */
200 static struct mtx so_global_mtx;
201 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
202 
203 /*
204  * General IPC sysctl name space, used by sockets and a variety of other IPC
205  * types.
206  */
207 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
208 
209 /*
210  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
211  * of the change so that they can update their dependent limits as required.
212  */
213 static int
214 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
215 {
216 	int error, newmaxsockets;
217 
218 	newmaxsockets = maxsockets;
219 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
220 	if (error == 0 && req->newptr) {
221 		if (newmaxsockets > maxsockets) {
222 			maxsockets = newmaxsockets;
223 			if (maxsockets > ((maxfiles / 4) * 3)) {
224 				maxfiles = (maxsockets * 5) / 4;
225 				maxfilesperproc = (maxfiles * 9) / 10;
226 			}
227 			EVENTHANDLER_INVOKE(maxsockets_change);
228 		} else
229 			error = EINVAL;
230 	}
231 	return (error);
232 }
233 
234 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
235     &maxsockets, 0, sysctl_maxsockets, "IU",
236     "Maximum number of sockets avaliable");
237 
238 /*
239  * Initialise maxsockets.  This SYSINIT must be run after
240  * tunable_mbinit().
241  */
242 static void
243 init_maxsockets(void *ignored)
244 {
245 
246 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
247 	maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
248 }
249 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
250 
251 /*
252  * Socket operation routines.  These routines are called by the routines in
253  * sys_socket.c or from a system process, and implement the semantics of
254  * socket operations by switching out to the protocol specific routines.
255  */
256 
257 /*
258  * Get a socket structure from our zone, and initialize it.  Note that it
259  * would probably be better to allocate socket and PCB at the same time, but
260  * I'm not convinced that all the protocols can be easily modified to do
261  * this.
262  *
263  * soalloc() returns a socket with a ref count of 0.
264  */
265 static struct socket *
266 soalloc(void)
267 {
268 	struct socket *so;
269 
270 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
271 	if (so == NULL)
272 		return (NULL);
273 #ifdef MAC
274 	if (mac_socket_init(so, M_NOWAIT) != 0) {
275 		uma_zfree(socket_zone, so);
276 		return (NULL);
277 	}
278 #endif
279 	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
280 	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
281 	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
282 	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
283 	TAILQ_INIT(&so->so_aiojobq);
284 	mtx_lock(&so_global_mtx);
285 	so->so_gencnt = ++so_gencnt;
286 	++numopensockets;
287 	mtx_unlock(&so_global_mtx);
288 	return (so);
289 }
290 
291 /*
292  * Free the storage associated with a socket at the socket layer, tear down
293  * locks, labels, etc.  All protocol state is assumed already to have been
294  * torn down (and possibly never set up) by the caller.
295  */
296 static void
297 sodealloc(struct socket *so)
298 {
299 
300 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
301 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
302 
303 	mtx_lock(&so_global_mtx);
304 	so->so_gencnt = ++so_gencnt;
305 	--numopensockets;	/* Could be below, but faster here. */
306 	mtx_unlock(&so_global_mtx);
307 	if (so->so_rcv.sb_hiwat)
308 		(void)chgsbsize(so->so_cred->cr_uidinfo,
309 		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
310 	if (so->so_snd.sb_hiwat)
311 		(void)chgsbsize(so->so_cred->cr_uidinfo,
312 		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
313 #ifdef INET
314 	/* remove acccept filter if one is present. */
315 	if (so->so_accf != NULL)
316 		do_setopt_accept_filter(so, NULL);
317 #endif
318 #ifdef MAC
319 	mac_socket_destroy(so);
320 #endif
321 	crfree(so->so_cred);
322 	sx_destroy(&so->so_snd.sb_sx);
323 	sx_destroy(&so->so_rcv.sb_sx);
324 	SOCKBUF_LOCK_DESTROY(&so->so_snd);
325 	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
326 	uma_zfree(socket_zone, so);
327 }
328 
329 /*
330  * socreate returns a socket with a ref count of 1.  The socket should be
331  * closed with soclose().
332  */
333 int
334 socreate(int dom, struct socket **aso, int type, int proto,
335     struct ucred *cred, struct thread *td)
336 {
337 	struct protosw *prp;
338 	struct socket *so;
339 	int error;
340 
341 	if (proto)
342 		prp = pffindproto(dom, proto, type);
343 	else
344 		prp = pffindtype(dom, type);
345 
346 	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
347 	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
348 		return (EPROTONOSUPPORT);
349 
350 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
351 		return (EPROTONOSUPPORT);
352 
353 	if (prp->pr_type != type)
354 		return (EPROTOTYPE);
355 	so = soalloc();
356 	if (so == NULL)
357 		return (ENOBUFS);
358 
359 	TAILQ_INIT(&so->so_incomp);
360 	TAILQ_INIT(&so->so_comp);
361 	so->so_type = type;
362 	so->so_cred = crhold(cred);
363 	if ((prp->pr_domain->dom_family == PF_INET) ||
364 	    (prp->pr_domain->dom_family == PF_ROUTE))
365 		so->so_fibnum = td->td_proc->p_fibnum;
366 	else
367 		so->so_fibnum = 0;
368 	so->so_proto = prp;
369 #ifdef MAC
370 	mac_socket_create(cred, so);
371 #endif
372 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
373 	    NULL, NULL, NULL);
374 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
375 	    NULL, NULL, NULL);
376 	so->so_count = 1;
377 	/*
378 	 * Auto-sizing of socket buffers is managed by the protocols and
379 	 * the appropriate flags must be set in the pru_attach function.
380 	 */
381 	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
382 	if (error) {
383 		KASSERT(so->so_count == 1, ("socreate: so_count %d",
384 		    so->so_count));
385 		so->so_count = 0;
386 		sodealloc(so);
387 		return (error);
388 	}
389 	*aso = so;
390 	return (0);
391 }
392 
393 #ifdef REGRESSION
394 static int regression_sonewconn_earlytest = 1;
395 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
396     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
397 #endif
398 
399 /*
400  * When an attempt at a new connection is noted on a socket which accepts
401  * connections, sonewconn is called.  If the connection is possible (subject
402  * to space constraints, etc.) then we allocate a new structure, propoerly
403  * linked into the data structure of the original socket, and return this.
404  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
405  *
406  * Note: the ref count on the socket is 0 on return.
407  */
408 struct socket *
409 sonewconn(struct socket *head, int connstatus)
410 {
411 	struct socket *so;
412 	int over;
413 
414 	ACCEPT_LOCK();
415 	over = (head->so_qlen > 3 * head->so_qlimit / 2);
416 	ACCEPT_UNLOCK();
417 #ifdef REGRESSION
418 	if (regression_sonewconn_earlytest && over)
419 #else
420 	if (over)
421 #endif
422 		return (NULL);
423 	so = soalloc();
424 	if (so == NULL)
425 		return (NULL);
426 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
427 		connstatus = 0;
428 	so->so_head = head;
429 	so->so_type = head->so_type;
430 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
431 	so->so_linger = head->so_linger;
432 	so->so_state = head->so_state | SS_NOFDREF;
433 	so->so_proto = head->so_proto;
434 	so->so_cred = crhold(head->so_cred);
435 #ifdef MAC
436 	SOCK_LOCK(head);
437 	mac_socket_newconn(head, so);
438 	SOCK_UNLOCK(head);
439 #endif
440 	knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
441 	    NULL, NULL, NULL);
442 	knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
443 	    NULL, NULL, NULL);
444 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
445 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
446 		sodealloc(so);
447 		return (NULL);
448 	}
449 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
450 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
451 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
452 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
453 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
454 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
455 	so->so_state |= connstatus;
456 	ACCEPT_LOCK();
457 	if (connstatus) {
458 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
459 		so->so_qstate |= SQ_COMP;
460 		head->so_qlen++;
461 	} else {
462 		/*
463 		 * Keep removing sockets from the head until there's room for
464 		 * us to insert on the tail.  In pre-locking revisions, this
465 		 * was a simple if(), but as we could be racing with other
466 		 * threads and soabort() requires dropping locks, we must
467 		 * loop waiting for the condition to be true.
468 		 */
469 		while (head->so_incqlen > head->so_qlimit) {
470 			struct socket *sp;
471 			sp = TAILQ_FIRST(&head->so_incomp);
472 			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
473 			head->so_incqlen--;
474 			sp->so_qstate &= ~SQ_INCOMP;
475 			sp->so_head = NULL;
476 			ACCEPT_UNLOCK();
477 			soabort(sp);
478 			ACCEPT_LOCK();
479 		}
480 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
481 		so->so_qstate |= SQ_INCOMP;
482 		head->so_incqlen++;
483 	}
484 	ACCEPT_UNLOCK();
485 	if (connstatus) {
486 		sorwakeup(head);
487 		wakeup_one(&head->so_timeo);
488 	}
489 	return (so);
490 }
491 
492 int
493 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
494 {
495 
496 	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
497 }
498 
499 /*
500  * solisten() transitions a socket from a non-listening state to a listening
501  * state, but can also be used to update the listen queue depth on an
502  * existing listen socket.  The protocol will call back into the sockets
503  * layer using solisten_proto_check() and solisten_proto() to check and set
504  * socket-layer listen state.  Call backs are used so that the protocol can
505  * acquire both protocol and socket layer locks in whatever order is required
506  * by the protocol.
507  *
508  * Protocol implementors are advised to hold the socket lock across the
509  * socket-layer test and set to avoid races at the socket layer.
510  */
511 int
512 solisten(struct socket *so, int backlog, struct thread *td)
513 {
514 
515 	return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
516 }
517 
518 int
519 solisten_proto_check(struct socket *so)
520 {
521 
522 	SOCK_LOCK_ASSERT(so);
523 
524 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
525 	    SS_ISDISCONNECTING))
526 		return (EINVAL);
527 	return (0);
528 }
529 
530 void
531 solisten_proto(struct socket *so, int backlog)
532 {
533 
534 	SOCK_LOCK_ASSERT(so);
535 
536 	if (backlog < 0 || backlog > somaxconn)
537 		backlog = somaxconn;
538 	so->so_qlimit = backlog;
539 	so->so_options |= SO_ACCEPTCONN;
540 }
541 
542 /*
543  * Attempt to free a socket.  This should really be sotryfree().
544  *
545  * sofree() will succeed if:
546  *
547  * - There are no outstanding file descriptor references or related consumers
548  *   (so_count == 0).
549  *
550  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
551  *
552  * - The protocol does not have an outstanding strong reference on the socket
553  *   (SS_PROTOREF).
554  *
555  * - The socket is not in a completed connection queue, so a process has been
556  *   notified that it is present.  If it is removed, the user process may
557  *   block in accept() despite select() saying the socket was ready.
558  *
559  * Otherwise, it will quietly abort so that a future call to sofree(), when
560  * conditions are right, can succeed.
561  */
562 void
563 sofree(struct socket *so)
564 {
565 	struct protosw *pr = so->so_proto;
566 	struct socket *head;
567 
568 	ACCEPT_LOCK_ASSERT();
569 	SOCK_LOCK_ASSERT(so);
570 
571 	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
572 	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
573 		SOCK_UNLOCK(so);
574 		ACCEPT_UNLOCK();
575 		return;
576 	}
577 
578 	head = so->so_head;
579 	if (head != NULL) {
580 		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
581 		    (so->so_qstate & SQ_INCOMP) != 0,
582 		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
583 		    "SQ_INCOMP"));
584 		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
585 		    (so->so_qstate & SQ_INCOMP) == 0,
586 		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
587 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
588 		head->so_incqlen--;
589 		so->so_qstate &= ~SQ_INCOMP;
590 		so->so_head = NULL;
591 	}
592 	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
593 	    (so->so_qstate & SQ_INCOMP) == 0,
594 	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
595 	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
596 	if (so->so_options & SO_ACCEPTCONN) {
597 		KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
598 		KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
599 	}
600 	SOCK_UNLOCK(so);
601 	ACCEPT_UNLOCK();
602 
603 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
604 		(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
605 	if (pr->pr_usrreqs->pru_detach != NULL)
606 		(*pr->pr_usrreqs->pru_detach)(so);
607 
608 	/*
609 	 * From this point on, we assume that no other references to this
610 	 * socket exist anywhere else in the stack.  Therefore, no locks need
611 	 * to be acquired or held.
612 	 *
613 	 * We used to do a lot of socket buffer and socket locking here, as
614 	 * well as invoke sorflush() and perform wakeups.  The direct call to
615 	 * dom_dispose() and sbrelease_internal() are an inlining of what was
616 	 * necessary from sorflush().
617 	 *
618 	 * Notice that the socket buffer and kqueue state are torn down
619 	 * before calling pru_detach.  This means that protocols shold not
620 	 * assume they can perform socket wakeups, etc, in their detach code.
621 	 */
622 	sbdestroy(&so->so_snd, so);
623 	sbdestroy(&so->so_rcv, so);
624 	knlist_destroy(&so->so_rcv.sb_sel.si_note);
625 	knlist_destroy(&so->so_snd.sb_sel.si_note);
626 	sodealloc(so);
627 }
628 
629 /*
630  * Close a socket on last file table reference removal.  Initiate disconnect
631  * if connected.  Free socket when disconnect complete.
632  *
633  * This function will sorele() the socket.  Note that soclose() may be called
634  * prior to the ref count reaching zero.  The actual socket structure will
635  * not be freed until the ref count reaches zero.
636  */
637 int
638 soclose(struct socket *so)
639 {
640 	int error = 0;
641 
642 	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
643 
644 	funsetown(&so->so_sigio);
645 	if (so->so_state & SS_ISCONNECTED) {
646 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
647 			error = sodisconnect(so);
648 			if (error)
649 				goto drop;
650 		}
651 		if (so->so_options & SO_LINGER) {
652 			if ((so->so_state & SS_ISDISCONNECTING) &&
653 			    (so->so_state & SS_NBIO))
654 				goto drop;
655 			while (so->so_state & SS_ISCONNECTED) {
656 				error = tsleep(&so->so_timeo,
657 				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
658 				if (error)
659 					break;
660 			}
661 		}
662 	}
663 
664 drop:
665 	if (so->so_proto->pr_usrreqs->pru_close != NULL)
666 		(*so->so_proto->pr_usrreqs->pru_close)(so);
667 	if (so->so_options & SO_ACCEPTCONN) {
668 		struct socket *sp;
669 		ACCEPT_LOCK();
670 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
671 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
672 			so->so_incqlen--;
673 			sp->so_qstate &= ~SQ_INCOMP;
674 			sp->so_head = NULL;
675 			ACCEPT_UNLOCK();
676 			soabort(sp);
677 			ACCEPT_LOCK();
678 		}
679 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
680 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
681 			so->so_qlen--;
682 			sp->so_qstate &= ~SQ_COMP;
683 			sp->so_head = NULL;
684 			ACCEPT_UNLOCK();
685 			soabort(sp);
686 			ACCEPT_LOCK();
687 		}
688 		ACCEPT_UNLOCK();
689 	}
690 	ACCEPT_LOCK();
691 	SOCK_LOCK(so);
692 	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
693 	so->so_state |= SS_NOFDREF;
694 	sorele(so);
695 	return (error);
696 }
697 
698 /*
699  * soabort() is used to abruptly tear down a connection, such as when a
700  * resource limit is reached (listen queue depth exceeded), or if a listen
701  * socket is closed while there are sockets waiting to be accepted.
702  *
703  * This interface is tricky, because it is called on an unreferenced socket,
704  * and must be called only by a thread that has actually removed the socket
705  * from the listen queue it was on, or races with other threads are risked.
706  *
707  * This interface will call into the protocol code, so must not be called
708  * with any socket locks held.  Protocols do call it while holding their own
709  * recursible protocol mutexes, but this is something that should be subject
710  * to review in the future.
711  */
712 void
713 soabort(struct socket *so)
714 {
715 
716 	/*
717 	 * In as much as is possible, assert that no references to this
718 	 * socket are held.  This is not quite the same as asserting that the
719 	 * current thread is responsible for arranging for no references, but
720 	 * is as close as we can get for now.
721 	 */
722 	KASSERT(so->so_count == 0, ("soabort: so_count"));
723 	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
724 	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
725 	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
726 	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
727 
728 	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
729 		(*so->so_proto->pr_usrreqs->pru_abort)(so);
730 	ACCEPT_LOCK();
731 	SOCK_LOCK(so);
732 	sofree(so);
733 }
734 
735 int
736 soaccept(struct socket *so, struct sockaddr **nam)
737 {
738 	int error;
739 
740 	SOCK_LOCK(so);
741 	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
742 	so->so_state &= ~SS_NOFDREF;
743 	SOCK_UNLOCK(so);
744 	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
745 	return (error);
746 }
747 
748 int
749 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
750 {
751 	int error;
752 
753 	if (so->so_options & SO_ACCEPTCONN)
754 		return (EOPNOTSUPP);
755 	/*
756 	 * If protocol is connection-based, can only connect once.
757 	 * Otherwise, if connected, try to disconnect first.  This allows
758 	 * user to disconnect by connecting to, e.g., a null address.
759 	 */
760 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
761 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
762 	    (error = sodisconnect(so)))) {
763 		error = EISCONN;
764 	} else {
765 		/*
766 		 * Prevent accumulated error from previous connection from
767 		 * biting us.
768 		 */
769 		so->so_error = 0;
770 		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
771 	}
772 
773 	return (error);
774 }
775 
776 int
777 soconnect2(struct socket *so1, struct socket *so2)
778 {
779 
780 	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
781 }
782 
783 int
784 sodisconnect(struct socket *so)
785 {
786 	int error;
787 
788 	if ((so->so_state & SS_ISCONNECTED) == 0)
789 		return (ENOTCONN);
790 	if (so->so_state & SS_ISDISCONNECTING)
791 		return (EALREADY);
792 	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
793 	return (error);
794 }
795 
796 #ifdef ZERO_COPY_SOCKETS
797 struct so_zerocopy_stats{
798 	int size_ok;
799 	int align_ok;
800 	int found_ifp;
801 };
802 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
803 #include <netinet/in.h>
804 #include <net/route.h>
805 #include <netinet/in_pcb.h>
806 #include <vm/vm.h>
807 #include <vm/vm_page.h>
808 #include <vm/vm_object.h>
809 
810 /*
811  * sosend_copyin() is only used if zero copy sockets are enabled.  Otherwise
812  * sosend_dgram() and sosend_generic() use m_uiotombuf().
813  *
814  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
815  * all of the data referenced by the uio.  If desired, it uses zero-copy.
816  * *space will be updated to reflect data copied in.
817  *
818  * NB: If atomic I/O is requested, the caller must already have checked that
819  * space can hold resid bytes.
820  *
821  * NB: In the event of an error, the caller may need to free the partial
822  * chain pointed to by *mpp.  The contents of both *uio and *space may be
823  * modified even in the case of an error.
824  */
825 static int
826 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
827     int flags)
828 {
829 	struct mbuf *m, **mp, *top;
830 	long len, resid;
831 	int error;
832 #ifdef ZERO_COPY_SOCKETS
833 	int cow_send;
834 #endif
835 
836 	*retmp = top = NULL;
837 	mp = &top;
838 	len = 0;
839 	resid = uio->uio_resid;
840 	error = 0;
841 	do {
842 #ifdef ZERO_COPY_SOCKETS
843 		cow_send = 0;
844 #endif /* ZERO_COPY_SOCKETS */
845 		if (resid >= MINCLSIZE) {
846 #ifdef ZERO_COPY_SOCKETS
847 			if (top == NULL) {
848 				m = m_gethdr(M_WAITOK, MT_DATA);
849 				m->m_pkthdr.len = 0;
850 				m->m_pkthdr.rcvif = NULL;
851 			} else
852 				m = m_get(M_WAITOK, MT_DATA);
853 			if (so_zero_copy_send &&
854 			    resid>=PAGE_SIZE &&
855 			    *space>=PAGE_SIZE &&
856 			    uio->uio_iov->iov_len>=PAGE_SIZE) {
857 				so_zerocp_stats.size_ok++;
858 				so_zerocp_stats.align_ok++;
859 				cow_send = socow_setup(m, uio);
860 				len = cow_send;
861 			}
862 			if (!cow_send) {
863 				m_clget(m, M_WAITOK);
864 				len = min(min(MCLBYTES, resid), *space);
865 			}
866 #else /* ZERO_COPY_SOCKETS */
867 			if (top == NULL) {
868 				m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
869 				m->m_pkthdr.len = 0;
870 				m->m_pkthdr.rcvif = NULL;
871 			} else
872 				m = m_getcl(M_WAIT, MT_DATA, 0);
873 			len = min(min(MCLBYTES, resid), *space);
874 #endif /* ZERO_COPY_SOCKETS */
875 		} else {
876 			if (top == NULL) {
877 				m = m_gethdr(M_WAIT, MT_DATA);
878 				m->m_pkthdr.len = 0;
879 				m->m_pkthdr.rcvif = NULL;
880 
881 				len = min(min(MHLEN, resid), *space);
882 				/*
883 				 * For datagram protocols, leave room
884 				 * for protocol headers in first mbuf.
885 				 */
886 				if (atomic && m && len < MHLEN)
887 					MH_ALIGN(m, len);
888 			} else {
889 				m = m_get(M_WAIT, MT_DATA);
890 				len = min(min(MLEN, resid), *space);
891 			}
892 		}
893 		if (m == NULL) {
894 			error = ENOBUFS;
895 			goto out;
896 		}
897 
898 		*space -= len;
899 #ifdef ZERO_COPY_SOCKETS
900 		if (cow_send)
901 			error = 0;
902 		else
903 #endif /* ZERO_COPY_SOCKETS */
904 		error = uiomove(mtod(m, void *), (int)len, uio);
905 		resid = uio->uio_resid;
906 		m->m_len = len;
907 		*mp = m;
908 		top->m_pkthdr.len += len;
909 		if (error)
910 			goto out;
911 		mp = &m->m_next;
912 		if (resid <= 0) {
913 			if (flags & MSG_EOR)
914 				top->m_flags |= M_EOR;
915 			break;
916 		}
917 	} while (*space > 0 && atomic);
918 out:
919 	*retmp = top;
920 	return (error);
921 }
922 #endif /*ZERO_COPY_SOCKETS*/
923 
924 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
925 
926 int
927 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
928     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
929 {
930 	long space, resid;
931 	int clen = 0, error, dontroute;
932 #ifdef ZERO_COPY_SOCKETS
933 	int atomic = sosendallatonce(so) || top;
934 #endif
935 
936 	KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
937 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
938 	    ("sodgram_send: !PR_ATOMIC"));
939 
940 	if (uio != NULL)
941 		resid = uio->uio_resid;
942 	else
943 		resid = top->m_pkthdr.len;
944 	/*
945 	 * In theory resid should be unsigned.  However, space must be
946 	 * signed, as it might be less than 0 if we over-committed, and we
947 	 * must use a signed comparison of space and resid.  On the other
948 	 * hand, a negative resid causes us to loop sending 0-length
949 	 * segments to the protocol.
950 	 *
951 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
952 	 * type sockets since that's an error.
953 	 */
954 	if (resid < 0) {
955 		error = EINVAL;
956 		goto out;
957 	}
958 
959 	dontroute =
960 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
961 	if (td != NULL)
962 		td->td_ru.ru_msgsnd++;
963 	if (control != NULL)
964 		clen = control->m_len;
965 
966 	SOCKBUF_LOCK(&so->so_snd);
967 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
968 		SOCKBUF_UNLOCK(&so->so_snd);
969 		error = EPIPE;
970 		goto out;
971 	}
972 	if (so->so_error) {
973 		error = so->so_error;
974 		so->so_error = 0;
975 		SOCKBUF_UNLOCK(&so->so_snd);
976 		goto out;
977 	}
978 	if ((so->so_state & SS_ISCONNECTED) == 0) {
979 		/*
980 		 * `sendto' and `sendmsg' is allowed on a connection-based
981 		 * socket if it supports implied connect.  Return ENOTCONN if
982 		 * not connected and no address is supplied.
983 		 */
984 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
985 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
986 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
987 			    !(resid == 0 && clen != 0)) {
988 				SOCKBUF_UNLOCK(&so->so_snd);
989 				error = ENOTCONN;
990 				goto out;
991 			}
992 		} else if (addr == NULL) {
993 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
994 				error = ENOTCONN;
995 			else
996 				error = EDESTADDRREQ;
997 			SOCKBUF_UNLOCK(&so->so_snd);
998 			goto out;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1004 	 * problem and need fixing.
1005 	 */
1006 	space = sbspace(&so->so_snd);
1007 	if (flags & MSG_OOB)
1008 		space += 1024;
1009 	space -= clen;
1010 	SOCKBUF_UNLOCK(&so->so_snd);
1011 	if (resid > space) {
1012 		error = EMSGSIZE;
1013 		goto out;
1014 	}
1015 	if (uio == NULL) {
1016 		resid = 0;
1017 		if (flags & MSG_EOR)
1018 			top->m_flags |= M_EOR;
1019 	} else {
1020 #ifdef ZERO_COPY_SOCKETS
1021 		error = sosend_copyin(uio, &top, atomic, &space, flags);
1022 		if (error)
1023 			goto out;
1024 #else
1025 		/*
1026 		 * Copy the data from userland into a mbuf chain.
1027 		 * If no data is to be copied in, a single empty mbuf
1028 		 * is returned.
1029 		 */
1030 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1031 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1032 		if (top == NULL) {
1033 			error = EFAULT;	/* only possible error */
1034 			goto out;
1035 		}
1036 		space -= resid - uio->uio_resid;
1037 #endif
1038 		resid = uio->uio_resid;
1039 	}
1040 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1041 	/*
1042 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1043 	 * than with.
1044 	 */
1045 	if (dontroute) {
1046 		SOCK_LOCK(so);
1047 		so->so_options |= SO_DONTROUTE;
1048 		SOCK_UNLOCK(so);
1049 	}
1050 	/*
1051 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1052 	 * of date.  We could have recieved a reset packet in an interrupt or
1053 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1054 	 * probably recheck again inside the locking protection here, but
1055 	 * there are probably other places that this also happens.  We must
1056 	 * rethink this.
1057 	 */
1058 	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1059 	    (flags & MSG_OOB) ? PRUS_OOB :
1060 	/*
1061 	 * If the user set MSG_EOF, the protocol understands this flag and
1062 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1063 	 */
1064 	    ((flags & MSG_EOF) &&
1065 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1066 	     (resid <= 0)) ?
1067 		PRUS_EOF :
1068 		/* If there is more to send set PRUS_MORETOCOME */
1069 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1070 		top, addr, control, td);
1071 	if (dontroute) {
1072 		SOCK_LOCK(so);
1073 		so->so_options &= ~SO_DONTROUTE;
1074 		SOCK_UNLOCK(so);
1075 	}
1076 	clen = 0;
1077 	control = NULL;
1078 	top = NULL;
1079 out:
1080 	if (top != NULL)
1081 		m_freem(top);
1082 	if (control != NULL)
1083 		m_freem(control);
1084 	return (error);
1085 }
1086 
1087 /*
1088  * Send on a socket.  If send must go all at once and message is larger than
1089  * send buffering, then hard error.  Lock against other senders.  If must go
1090  * all at once and not enough room now, then inform user that this would
1091  * block and do nothing.  Otherwise, if nonblocking, send as much as
1092  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1093  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1094  * in mbuf chain must be small enough to send all at once.
1095  *
1096  * Returns nonzero on error, timeout or signal; callers must check for short
1097  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1098  * on return.
1099  */
1100 int
1101 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1102     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1103 {
1104 	long space, resid;
1105 	int clen = 0, error, dontroute;
1106 	int atomic = sosendallatonce(so) || top;
1107 
1108 	if (uio != NULL)
1109 		resid = uio->uio_resid;
1110 	else
1111 		resid = top->m_pkthdr.len;
1112 	/*
1113 	 * In theory resid should be unsigned.  However, space must be
1114 	 * signed, as it might be less than 0 if we over-committed, and we
1115 	 * must use a signed comparison of space and resid.  On the other
1116 	 * hand, a negative resid causes us to loop sending 0-length
1117 	 * segments to the protocol.
1118 	 *
1119 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1120 	 * type sockets since that's an error.
1121 	 */
1122 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1123 		error = EINVAL;
1124 		goto out;
1125 	}
1126 
1127 	dontroute =
1128 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1129 	    (so->so_proto->pr_flags & PR_ATOMIC);
1130 	if (td != NULL)
1131 		td->td_ru.ru_msgsnd++;
1132 	if (control != NULL)
1133 		clen = control->m_len;
1134 
1135 	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1136 	if (error)
1137 		goto out;
1138 
1139 restart:
1140 	do {
1141 		SOCKBUF_LOCK(&so->so_snd);
1142 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1143 			SOCKBUF_UNLOCK(&so->so_snd);
1144 			error = EPIPE;
1145 			goto release;
1146 		}
1147 		if (so->so_error) {
1148 			error = so->so_error;
1149 			so->so_error = 0;
1150 			SOCKBUF_UNLOCK(&so->so_snd);
1151 			goto release;
1152 		}
1153 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1154 			/*
1155 			 * `sendto' and `sendmsg' is allowed on a connection-
1156 			 * based socket if it supports implied connect.
1157 			 * Return ENOTCONN if not connected and no address is
1158 			 * supplied.
1159 			 */
1160 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1161 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1162 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1163 				    !(resid == 0 && clen != 0)) {
1164 					SOCKBUF_UNLOCK(&so->so_snd);
1165 					error = ENOTCONN;
1166 					goto release;
1167 				}
1168 			} else if (addr == NULL) {
1169 				SOCKBUF_UNLOCK(&so->so_snd);
1170 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1171 					error = ENOTCONN;
1172 				else
1173 					error = EDESTADDRREQ;
1174 				goto release;
1175 			}
1176 		}
1177 		space = sbspace(&so->so_snd);
1178 		if (flags & MSG_OOB)
1179 			space += 1024;
1180 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1181 		    clen > so->so_snd.sb_hiwat) {
1182 			SOCKBUF_UNLOCK(&so->so_snd);
1183 			error = EMSGSIZE;
1184 			goto release;
1185 		}
1186 		if (space < resid + clen &&
1187 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1188 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1189 				SOCKBUF_UNLOCK(&so->so_snd);
1190 				error = EWOULDBLOCK;
1191 				goto release;
1192 			}
1193 			error = sbwait(&so->so_snd);
1194 			SOCKBUF_UNLOCK(&so->so_snd);
1195 			if (error)
1196 				goto release;
1197 			goto restart;
1198 		}
1199 		SOCKBUF_UNLOCK(&so->so_snd);
1200 		space -= clen;
1201 		do {
1202 			if (uio == NULL) {
1203 				resid = 0;
1204 				if (flags & MSG_EOR)
1205 					top->m_flags |= M_EOR;
1206 			} else {
1207 #ifdef ZERO_COPY_SOCKETS
1208 				error = sosend_copyin(uio, &top, atomic,
1209 				    &space, flags);
1210 				if (error != 0)
1211 					goto release;
1212 #else
1213 				/*
1214 				 * Copy the data from userland into a mbuf
1215 				 * chain.  If no data is to be copied in,
1216 				 * a single empty mbuf is returned.
1217 				 */
1218 				top = m_uiotombuf(uio, M_WAITOK, space,
1219 				    (atomic ? max_hdr : 0),
1220 				    (atomic ? M_PKTHDR : 0) |
1221 				    ((flags & MSG_EOR) ? M_EOR : 0));
1222 				if (top == NULL) {
1223 					error = EFAULT; /* only possible error */
1224 					goto release;
1225 				}
1226 				space -= resid - uio->uio_resid;
1227 #endif
1228 				resid = uio->uio_resid;
1229 			}
1230 			if (dontroute) {
1231 				SOCK_LOCK(so);
1232 				so->so_options |= SO_DONTROUTE;
1233 				SOCK_UNLOCK(so);
1234 			}
1235 			/*
1236 			 * XXX all the SBS_CANTSENDMORE checks previously
1237 			 * done could be out of date.  We could have recieved
1238 			 * a reset packet in an interrupt or maybe we slept
1239 			 * while doing page faults in uiomove() etc.  We
1240 			 * could probably recheck again inside the locking
1241 			 * protection here, but there are probably other
1242 			 * places that this also happens.  We must rethink
1243 			 * this.
1244 			 */
1245 			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1246 			    (flags & MSG_OOB) ? PRUS_OOB :
1247 			/*
1248 			 * If the user set MSG_EOF, the protocol understands
1249 			 * this flag and nothing left to send then use
1250 			 * PRU_SEND_EOF instead of PRU_SEND.
1251 			 */
1252 			    ((flags & MSG_EOF) &&
1253 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1254 			     (resid <= 0)) ?
1255 				PRUS_EOF :
1256 			/* If there is more to send set PRUS_MORETOCOME. */
1257 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1258 			    top, addr, control, td);
1259 			if (dontroute) {
1260 				SOCK_LOCK(so);
1261 				so->so_options &= ~SO_DONTROUTE;
1262 				SOCK_UNLOCK(so);
1263 			}
1264 			clen = 0;
1265 			control = NULL;
1266 			top = NULL;
1267 			if (error)
1268 				goto release;
1269 		} while (resid && space > 0);
1270 	} while (resid);
1271 
1272 release:
1273 	sbunlock(&so->so_snd);
1274 out:
1275 	if (top != NULL)
1276 		m_freem(top);
1277 	if (control != NULL)
1278 		m_freem(control);
1279 	return (error);
1280 }
1281 
1282 int
1283 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1284     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1285 {
1286 
1287 	return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1288 	    control, flags, td));
1289 }
1290 
1291 /*
1292  * The part of soreceive() that implements reading non-inline out-of-band
1293  * data from a socket.  For more complete comments, see soreceive(), from
1294  * which this code originated.
1295  *
1296  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1297  * unable to return an mbuf chain to the caller.
1298  */
1299 static int
1300 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1301 {
1302 	struct protosw *pr = so->so_proto;
1303 	struct mbuf *m;
1304 	int error;
1305 
1306 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1307 
1308 	m = m_get(M_WAIT, MT_DATA);
1309 	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1310 	if (error)
1311 		goto bad;
1312 	do {
1313 #ifdef ZERO_COPY_SOCKETS
1314 		if (so_zero_copy_receive) {
1315 			int disposable;
1316 
1317 			if ((m->m_flags & M_EXT)
1318 			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1319 				disposable = 1;
1320 			else
1321 				disposable = 0;
1322 
1323 			error = uiomoveco(mtod(m, void *),
1324 					  min(uio->uio_resid, m->m_len),
1325 					  uio, disposable);
1326 		} else
1327 #endif /* ZERO_COPY_SOCKETS */
1328 		error = uiomove(mtod(m, void *),
1329 		    (int) min(uio->uio_resid, m->m_len), uio);
1330 		m = m_free(m);
1331 	} while (uio->uio_resid && error == 0 && m);
1332 bad:
1333 	if (m != NULL)
1334 		m_freem(m);
1335 	return (error);
1336 }
1337 
1338 /*
1339  * Following replacement or removal of the first mbuf on the first mbuf chain
1340  * of a socket buffer, push necessary state changes back into the socket
1341  * buffer so that other consumers see the values consistently.  'nextrecord'
1342  * is the callers locally stored value of the original value of
1343  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1344  * NOTE: 'nextrecord' may be NULL.
1345  */
1346 static __inline void
1347 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1348 {
1349 
1350 	SOCKBUF_LOCK_ASSERT(sb);
1351 	/*
1352 	 * First, update for the new value of nextrecord.  If necessary, make
1353 	 * it the first record.
1354 	 */
1355 	if (sb->sb_mb != NULL)
1356 		sb->sb_mb->m_nextpkt = nextrecord;
1357 	else
1358 		sb->sb_mb = nextrecord;
1359 
1360         /*
1361          * Now update any dependent socket buffer fields to reflect the new
1362          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1363 	 * addition of a second clause that takes care of the case where
1364 	 * sb_mb has been updated, but remains the last record.
1365          */
1366         if (sb->sb_mb == NULL) {
1367                 sb->sb_mbtail = NULL;
1368                 sb->sb_lastrecord = NULL;
1369         } else if (sb->sb_mb->m_nextpkt == NULL)
1370                 sb->sb_lastrecord = sb->sb_mb;
1371 }
1372 
1373 
1374 /*
1375  * Implement receive operations on a socket.  We depend on the way that
1376  * records are added to the sockbuf by sbappend.  In particular, each record
1377  * (mbufs linked through m_next) must begin with an address if the protocol
1378  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1379  * data, and then zero or more mbufs of data.  In order to allow parallelism
1380  * between network receive and copying to user space, as well as avoid
1381  * sleeping with a mutex held, we release the socket buffer mutex during the
1382  * user space copy.  Although the sockbuf is locked, new data may still be
1383  * appended, and thus we must maintain consistency of the sockbuf during that
1384  * time.
1385  *
1386  * The caller may receive the data as a single mbuf chain by supplying an
1387  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1388  * the count in uio_resid.
1389  */
1390 int
1391 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1392     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1393 {
1394 	struct mbuf *m, **mp;
1395 	int flags, len, error, offset;
1396 	struct protosw *pr = so->so_proto;
1397 	struct mbuf *nextrecord;
1398 	int moff, type = 0;
1399 	int orig_resid = uio->uio_resid;
1400 
1401 	mp = mp0;
1402 	if (psa != NULL)
1403 		*psa = NULL;
1404 	if (controlp != NULL)
1405 		*controlp = NULL;
1406 	if (flagsp != NULL)
1407 		flags = *flagsp &~ MSG_EOR;
1408 	else
1409 		flags = 0;
1410 	if (flags & MSG_OOB)
1411 		return (soreceive_rcvoob(so, uio, flags));
1412 	if (mp != NULL)
1413 		*mp = NULL;
1414 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1415 	    && uio->uio_resid)
1416 		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1417 
1418 	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1419 	if (error)
1420 		return (error);
1421 
1422 restart:
1423 	SOCKBUF_LOCK(&so->so_rcv);
1424 	m = so->so_rcv.sb_mb;
1425 	/*
1426 	 * If we have less data than requested, block awaiting more (subject
1427 	 * to any timeout) if:
1428 	 *   1. the current count is less than the low water mark, or
1429 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1430 	 *	receive operation at once if we block (resid <= hiwat).
1431 	 *   3. MSG_DONTWAIT is not set
1432 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1433 	 * we have to do the receive in sections, and thus risk returning a
1434 	 * short count if a timeout or signal occurs after we start.
1435 	 */
1436 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1437 	    so->so_rcv.sb_cc < uio->uio_resid) &&
1438 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1439 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1440 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1441 		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1442 		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1443 		    m, so->so_rcv.sb_cc));
1444 		if (so->so_error) {
1445 			if (m != NULL)
1446 				goto dontblock;
1447 			error = so->so_error;
1448 			if ((flags & MSG_PEEK) == 0)
1449 				so->so_error = 0;
1450 			SOCKBUF_UNLOCK(&so->so_rcv);
1451 			goto release;
1452 		}
1453 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1454 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1455 			if (m == NULL) {
1456 				SOCKBUF_UNLOCK(&so->so_rcv);
1457 				goto release;
1458 			} else
1459 				goto dontblock;
1460 		}
1461 		for (; m != NULL; m = m->m_next)
1462 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1463 				m = so->so_rcv.sb_mb;
1464 				goto dontblock;
1465 			}
1466 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1467 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1468 			SOCKBUF_UNLOCK(&so->so_rcv);
1469 			error = ENOTCONN;
1470 			goto release;
1471 		}
1472 		if (uio->uio_resid == 0) {
1473 			SOCKBUF_UNLOCK(&so->so_rcv);
1474 			goto release;
1475 		}
1476 		if ((so->so_state & SS_NBIO) ||
1477 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1478 			SOCKBUF_UNLOCK(&so->so_rcv);
1479 			error = EWOULDBLOCK;
1480 			goto release;
1481 		}
1482 		SBLASTRECORDCHK(&so->so_rcv);
1483 		SBLASTMBUFCHK(&so->so_rcv);
1484 		error = sbwait(&so->so_rcv);
1485 		SOCKBUF_UNLOCK(&so->so_rcv);
1486 		if (error)
1487 			goto release;
1488 		goto restart;
1489 	}
1490 dontblock:
1491 	/*
1492 	 * From this point onward, we maintain 'nextrecord' as a cache of the
1493 	 * pointer to the next record in the socket buffer.  We must keep the
1494 	 * various socket buffer pointers and local stack versions of the
1495 	 * pointers in sync, pushing out modifications before dropping the
1496 	 * socket buffer mutex, and re-reading them when picking it up.
1497 	 *
1498 	 * Otherwise, we will race with the network stack appending new data
1499 	 * or records onto the socket buffer by using inconsistent/stale
1500 	 * versions of the field, possibly resulting in socket buffer
1501 	 * corruption.
1502 	 *
1503 	 * By holding the high-level sblock(), we prevent simultaneous
1504 	 * readers from pulling off the front of the socket buffer.
1505 	 */
1506 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1507 	if (uio->uio_td)
1508 		uio->uio_td->td_ru.ru_msgrcv++;
1509 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1510 	SBLASTRECORDCHK(&so->so_rcv);
1511 	SBLASTMBUFCHK(&so->so_rcv);
1512 	nextrecord = m->m_nextpkt;
1513 	if (pr->pr_flags & PR_ADDR) {
1514 		KASSERT(m->m_type == MT_SONAME,
1515 		    ("m->m_type == %d", m->m_type));
1516 		orig_resid = 0;
1517 		if (psa != NULL)
1518 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1519 			    M_NOWAIT);
1520 		if (flags & MSG_PEEK) {
1521 			m = m->m_next;
1522 		} else {
1523 			sbfree(&so->so_rcv, m);
1524 			so->so_rcv.sb_mb = m_free(m);
1525 			m = so->so_rcv.sb_mb;
1526 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1527 		}
1528 	}
1529 
1530 	/*
1531 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1532 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1533 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1534 	 * perform externalization (or freeing if controlp == NULL).
1535 	 */
1536 	if (m != NULL && m->m_type == MT_CONTROL) {
1537 		struct mbuf *cm = NULL, *cmn;
1538 		struct mbuf **cme = &cm;
1539 
1540 		do {
1541 			if (flags & MSG_PEEK) {
1542 				if (controlp != NULL) {
1543 					*controlp = m_copy(m, 0, m->m_len);
1544 					controlp = &(*controlp)->m_next;
1545 				}
1546 				m = m->m_next;
1547 			} else {
1548 				sbfree(&so->so_rcv, m);
1549 				so->so_rcv.sb_mb = m->m_next;
1550 				m->m_next = NULL;
1551 				*cme = m;
1552 				cme = &(*cme)->m_next;
1553 				m = so->so_rcv.sb_mb;
1554 			}
1555 		} while (m != NULL && m->m_type == MT_CONTROL);
1556 		if ((flags & MSG_PEEK) == 0)
1557 			sockbuf_pushsync(&so->so_rcv, nextrecord);
1558 		while (cm != NULL) {
1559 			cmn = cm->m_next;
1560 			cm->m_next = NULL;
1561 			if (pr->pr_domain->dom_externalize != NULL) {
1562 				SOCKBUF_UNLOCK(&so->so_rcv);
1563 				error = (*pr->pr_domain->dom_externalize)
1564 				    (cm, controlp);
1565 				SOCKBUF_LOCK(&so->so_rcv);
1566 			} else if (controlp != NULL)
1567 				*controlp = cm;
1568 			else
1569 				m_freem(cm);
1570 			if (controlp != NULL) {
1571 				orig_resid = 0;
1572 				while (*controlp != NULL)
1573 					controlp = &(*controlp)->m_next;
1574 			}
1575 			cm = cmn;
1576 		}
1577 		if (m != NULL)
1578 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1579 		else
1580 			nextrecord = so->so_rcv.sb_mb;
1581 		orig_resid = 0;
1582 	}
1583 	if (m != NULL) {
1584 		if ((flags & MSG_PEEK) == 0) {
1585 			KASSERT(m->m_nextpkt == nextrecord,
1586 			    ("soreceive: post-control, nextrecord !sync"));
1587 			if (nextrecord == NULL) {
1588 				KASSERT(so->so_rcv.sb_mb == m,
1589 				    ("soreceive: post-control, sb_mb!=m"));
1590 				KASSERT(so->so_rcv.sb_lastrecord == m,
1591 				    ("soreceive: post-control, lastrecord!=m"));
1592 			}
1593 		}
1594 		type = m->m_type;
1595 		if (type == MT_OOBDATA)
1596 			flags |= MSG_OOB;
1597 	} else {
1598 		if ((flags & MSG_PEEK) == 0) {
1599 			KASSERT(so->so_rcv.sb_mb == nextrecord,
1600 			    ("soreceive: sb_mb != nextrecord"));
1601 			if (so->so_rcv.sb_mb == NULL) {
1602 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1603 				    ("soreceive: sb_lastercord != NULL"));
1604 			}
1605 		}
1606 	}
1607 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1608 	SBLASTRECORDCHK(&so->so_rcv);
1609 	SBLASTMBUFCHK(&so->so_rcv);
1610 
1611 	/*
1612 	 * Now continue to read any data mbufs off of the head of the socket
1613 	 * buffer until the read request is satisfied.  Note that 'type' is
1614 	 * used to store the type of any mbuf reads that have happened so far
1615 	 * such that soreceive() can stop reading if the type changes, which
1616 	 * causes soreceive() to return only one of regular data and inline
1617 	 * out-of-band data in a single socket receive operation.
1618 	 */
1619 	moff = 0;
1620 	offset = 0;
1621 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1622 		/*
1623 		 * If the type of mbuf has changed since the last mbuf
1624 		 * examined ('type'), end the receive operation.
1625 	 	 */
1626 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1627 		if (m->m_type == MT_OOBDATA) {
1628 			if (type != MT_OOBDATA)
1629 				break;
1630 		} else if (type == MT_OOBDATA)
1631 			break;
1632 		else
1633 		    KASSERT(m->m_type == MT_DATA,
1634 			("m->m_type == %d", m->m_type));
1635 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1636 		len = uio->uio_resid;
1637 		if (so->so_oobmark && len > so->so_oobmark - offset)
1638 			len = so->so_oobmark - offset;
1639 		if (len > m->m_len - moff)
1640 			len = m->m_len - moff;
1641 		/*
1642 		 * If mp is set, just pass back the mbufs.  Otherwise copy
1643 		 * them out via the uio, then free.  Sockbuf must be
1644 		 * consistent here (points to current mbuf, it points to next
1645 		 * record) when we drop priority; we must note any additions
1646 		 * to the sockbuf when we block interrupts again.
1647 		 */
1648 		if (mp == NULL) {
1649 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1650 			SBLASTRECORDCHK(&so->so_rcv);
1651 			SBLASTMBUFCHK(&so->so_rcv);
1652 			SOCKBUF_UNLOCK(&so->so_rcv);
1653 #ifdef ZERO_COPY_SOCKETS
1654 			if (so_zero_copy_receive) {
1655 				int disposable;
1656 
1657 				if ((m->m_flags & M_EXT)
1658 				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1659 					disposable = 1;
1660 				else
1661 					disposable = 0;
1662 
1663 				error = uiomoveco(mtod(m, char *) + moff,
1664 						  (int)len, uio,
1665 						  disposable);
1666 			} else
1667 #endif /* ZERO_COPY_SOCKETS */
1668 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1669 			SOCKBUF_LOCK(&so->so_rcv);
1670 			if (error) {
1671 				/*
1672 				 * The MT_SONAME mbuf has already been removed
1673 				 * from the record, so it is necessary to
1674 				 * remove the data mbufs, if any, to preserve
1675 				 * the invariant in the case of PR_ADDR that
1676 				 * requires MT_SONAME mbufs at the head of
1677 				 * each record.
1678 				 */
1679 				if (m && pr->pr_flags & PR_ATOMIC &&
1680 				    ((flags & MSG_PEEK) == 0))
1681 					(void)sbdroprecord_locked(&so->so_rcv);
1682 				SOCKBUF_UNLOCK(&so->so_rcv);
1683 				goto release;
1684 			}
1685 		} else
1686 			uio->uio_resid -= len;
1687 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1688 		if (len == m->m_len - moff) {
1689 			if (m->m_flags & M_EOR)
1690 				flags |= MSG_EOR;
1691 			if (flags & MSG_PEEK) {
1692 				m = m->m_next;
1693 				moff = 0;
1694 			} else {
1695 				nextrecord = m->m_nextpkt;
1696 				sbfree(&so->so_rcv, m);
1697 				if (mp != NULL) {
1698 					*mp = m;
1699 					mp = &m->m_next;
1700 					so->so_rcv.sb_mb = m = m->m_next;
1701 					*mp = NULL;
1702 				} else {
1703 					so->so_rcv.sb_mb = m_free(m);
1704 					m = so->so_rcv.sb_mb;
1705 				}
1706 				sockbuf_pushsync(&so->so_rcv, nextrecord);
1707 				SBLASTRECORDCHK(&so->so_rcv);
1708 				SBLASTMBUFCHK(&so->so_rcv);
1709 			}
1710 		} else {
1711 			if (flags & MSG_PEEK)
1712 				moff += len;
1713 			else {
1714 				if (mp != NULL) {
1715 					int copy_flag;
1716 
1717 					if (flags & MSG_DONTWAIT)
1718 						copy_flag = M_DONTWAIT;
1719 					else
1720 						copy_flag = M_WAIT;
1721 					if (copy_flag == M_WAIT)
1722 						SOCKBUF_UNLOCK(&so->so_rcv);
1723 					*mp = m_copym(m, 0, len, copy_flag);
1724 					if (copy_flag == M_WAIT)
1725 						SOCKBUF_LOCK(&so->so_rcv);
1726  					if (*mp == NULL) {
1727  						/*
1728  						 * m_copym() couldn't
1729 						 * allocate an mbuf.  Adjust
1730 						 * uio_resid back (it was
1731 						 * adjusted down by len
1732 						 * bytes, which we didn't end
1733 						 * up "copying" over).
1734  						 */
1735  						uio->uio_resid += len;
1736  						break;
1737  					}
1738 				}
1739 				m->m_data += len;
1740 				m->m_len -= len;
1741 				so->so_rcv.sb_cc -= len;
1742 			}
1743 		}
1744 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1745 		if (so->so_oobmark) {
1746 			if ((flags & MSG_PEEK) == 0) {
1747 				so->so_oobmark -= len;
1748 				if (so->so_oobmark == 0) {
1749 					so->so_rcv.sb_state |= SBS_RCVATMARK;
1750 					break;
1751 				}
1752 			} else {
1753 				offset += len;
1754 				if (offset == so->so_oobmark)
1755 					break;
1756 			}
1757 		}
1758 		if (flags & MSG_EOR)
1759 			break;
1760 		/*
1761 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1762 		 * must not quit until "uio->uio_resid == 0" or an error
1763 		 * termination.  If a signal/timeout occurs, return with a
1764 		 * short count but without error.  Keep sockbuf locked
1765 		 * against other readers.
1766 		 */
1767 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1768 		    !sosendallatonce(so) && nextrecord == NULL) {
1769 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1770 			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1771 				break;
1772 			/*
1773 			 * Notify the protocol that some data has been
1774 			 * drained before blocking.
1775 			 */
1776 			if (pr->pr_flags & PR_WANTRCVD) {
1777 				SOCKBUF_UNLOCK(&so->so_rcv);
1778 				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1779 				SOCKBUF_LOCK(&so->so_rcv);
1780 			}
1781 			SBLASTRECORDCHK(&so->so_rcv);
1782 			SBLASTMBUFCHK(&so->so_rcv);
1783 			error = sbwait(&so->so_rcv);
1784 			if (error) {
1785 				SOCKBUF_UNLOCK(&so->so_rcv);
1786 				goto release;
1787 			}
1788 			m = so->so_rcv.sb_mb;
1789 			if (m != NULL)
1790 				nextrecord = m->m_nextpkt;
1791 		}
1792 	}
1793 
1794 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1795 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1796 		flags |= MSG_TRUNC;
1797 		if ((flags & MSG_PEEK) == 0)
1798 			(void) sbdroprecord_locked(&so->so_rcv);
1799 	}
1800 	if ((flags & MSG_PEEK) == 0) {
1801 		if (m == NULL) {
1802 			/*
1803 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1804 			 * part makes sure sb_lastrecord is up-to-date if
1805 			 * there is still data in the socket buffer.
1806 			 */
1807 			so->so_rcv.sb_mb = nextrecord;
1808 			if (so->so_rcv.sb_mb == NULL) {
1809 				so->so_rcv.sb_mbtail = NULL;
1810 				so->so_rcv.sb_lastrecord = NULL;
1811 			} else if (nextrecord->m_nextpkt == NULL)
1812 				so->so_rcv.sb_lastrecord = nextrecord;
1813 		}
1814 		SBLASTRECORDCHK(&so->so_rcv);
1815 		SBLASTMBUFCHK(&so->so_rcv);
1816 		/*
1817 		 * If soreceive() is being done from the socket callback,
1818 		 * then don't need to generate ACK to peer to update window,
1819 		 * since ACK will be generated on return to TCP.
1820 		 */
1821 		if (!(flags & MSG_SOCALLBCK) &&
1822 		    (pr->pr_flags & PR_WANTRCVD)) {
1823 			SOCKBUF_UNLOCK(&so->so_rcv);
1824 			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1825 			SOCKBUF_LOCK(&so->so_rcv);
1826 		}
1827 	}
1828 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1829 	if (orig_resid == uio->uio_resid && orig_resid &&
1830 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1831 		SOCKBUF_UNLOCK(&so->so_rcv);
1832 		goto restart;
1833 	}
1834 	SOCKBUF_UNLOCK(&so->so_rcv);
1835 
1836 	if (flagsp != NULL)
1837 		*flagsp |= flags;
1838 release:
1839 	sbunlock(&so->so_rcv);
1840 	return (error);
1841 }
1842 
1843 /*
1844  * Optimized version of soreceive() for simple datagram cases from userspace.
1845  * Unlike in the stream case, we're able to drop a datagram if copyout()
1846  * fails, and because we handle datagrams atomically, we don't need to use a
1847  * sleep lock to prevent I/O interlacing.
1848  */
1849 int
1850 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1851     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1852 {
1853 	struct mbuf *m, *m2;
1854 	int flags, len, error;
1855 	struct protosw *pr = so->so_proto;
1856 	struct mbuf *nextrecord;
1857 
1858 	if (psa != NULL)
1859 		*psa = NULL;
1860 	if (controlp != NULL)
1861 		*controlp = NULL;
1862 	if (flagsp != NULL)
1863 		flags = *flagsp &~ MSG_EOR;
1864 	else
1865 		flags = 0;
1866 
1867 	/*
1868 	 * For any complicated cases, fall back to the full
1869 	 * soreceive_generic().
1870 	 */
1871 	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
1872 		return (soreceive_generic(so, psa, uio, mp0, controlp,
1873 		    flagsp));
1874 
1875 	/*
1876 	 * Enforce restrictions on use.
1877 	 */
1878 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
1879 	    ("soreceive_dgram: wantrcvd"));
1880 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
1881 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
1882 	    ("soreceive_dgram: SBS_RCVATMARK"));
1883 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
1884 	    ("soreceive_dgram: P_CONNREQUIRED"));
1885 
1886 	/*
1887 	 * Loop blocking while waiting for a datagram.
1888 	 */
1889 	SOCKBUF_LOCK(&so->so_rcv);
1890 	while ((m = so->so_rcv.sb_mb) == NULL) {
1891 		KASSERT(so->so_rcv.sb_cc == 0,
1892 		    ("soreceive_dgram: sb_mb NULL but sb_cc %u",
1893 		    so->so_rcv.sb_cc));
1894 		if (so->so_error) {
1895 			error = so->so_error;
1896 			so->so_error = 0;
1897 			SOCKBUF_UNLOCK(&so->so_rcv);
1898 			return (error);
1899 		}
1900 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1901 		    uio->uio_resid == 0) {
1902 			SOCKBUF_UNLOCK(&so->so_rcv);
1903 			return (0);
1904 		}
1905 		if ((so->so_state & SS_NBIO) ||
1906 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1907 			SOCKBUF_UNLOCK(&so->so_rcv);
1908 			return (EWOULDBLOCK);
1909 		}
1910 		SBLASTRECORDCHK(&so->so_rcv);
1911 		SBLASTMBUFCHK(&so->so_rcv);
1912 		error = sbwait(&so->so_rcv);
1913 		if (error) {
1914 			SOCKBUF_UNLOCK(&so->so_rcv);
1915 			return (error);
1916 		}
1917 	}
1918 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1919 
1920 	if (uio->uio_td)
1921 		uio->uio_td->td_ru.ru_msgrcv++;
1922 	SBLASTRECORDCHK(&so->so_rcv);
1923 	SBLASTMBUFCHK(&so->so_rcv);
1924 	nextrecord = m->m_nextpkt;
1925 	if (nextrecord == NULL) {
1926 		KASSERT(so->so_rcv.sb_lastrecord == m,
1927 		    ("soreceive_dgram: lastrecord != m"));
1928 	}
1929 
1930 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
1931 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
1932 
1933 	/*
1934 	 * Pull 'm' and its chain off the front of the packet queue.
1935 	 */
1936 	so->so_rcv.sb_mb = NULL;
1937 	sockbuf_pushsync(&so->so_rcv, nextrecord);
1938 
1939 	/*
1940 	 * Walk 'm's chain and free that many bytes from the socket buffer.
1941 	 */
1942 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
1943 		sbfree(&so->so_rcv, m2);
1944 
1945 	/*
1946 	 * Do a few last checks before we let go of the lock.
1947 	 */
1948 	SBLASTRECORDCHK(&so->so_rcv);
1949 	SBLASTMBUFCHK(&so->so_rcv);
1950 	SOCKBUF_UNLOCK(&so->so_rcv);
1951 
1952 	if (pr->pr_flags & PR_ADDR) {
1953 		KASSERT(m->m_type == MT_SONAME,
1954 		    ("m->m_type == %d", m->m_type));
1955 		if (psa != NULL)
1956 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1957 			    M_NOWAIT);
1958 		m = m_free(m);
1959 	}
1960 	if (m == NULL) {
1961 		/* XXXRW: Can this happen? */
1962 		return (0);
1963 	}
1964 
1965 	/*
1966 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1967 	 * queue.
1968 	 *
1969 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1970 	 * in the first mbuf chain on the socket buffer.  We call into the
1971 	 * protocol to perform externalization (or freeing if controlp ==
1972 	 * NULL).
1973 	 */
1974 	if (m->m_type == MT_CONTROL) {
1975 		struct mbuf *cm = NULL, *cmn;
1976 		struct mbuf **cme = &cm;
1977 
1978 		do {
1979 			m2 = m->m_next;
1980 			m->m_next = NULL;
1981 			*cme = m;
1982 			cme = &(*cme)->m_next;
1983 			m = m2;
1984 		} while (m != NULL && m->m_type == MT_CONTROL);
1985 		while (cm != NULL) {
1986 			cmn = cm->m_next;
1987 			cm->m_next = NULL;
1988 			if (pr->pr_domain->dom_externalize != NULL) {
1989 				error = (*pr->pr_domain->dom_externalize)
1990 				    (cm, controlp);
1991 			} else if (controlp != NULL)
1992 				*controlp = cm;
1993 			else
1994 				m_freem(cm);
1995 			if (controlp != NULL) {
1996 				while (*controlp != NULL)
1997 					controlp = &(*controlp)->m_next;
1998 			}
1999 			cm = cmn;
2000 		}
2001 	}
2002 	KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
2003 
2004 	while (m != NULL && uio->uio_resid > 0) {
2005 		len = uio->uio_resid;
2006 		if (len > m->m_len)
2007 			len = m->m_len;
2008 		error = uiomove(mtod(m, char *), (int)len, uio);
2009 		if (error) {
2010 			m_freem(m);
2011 			return (error);
2012 		}
2013 		m = m_free(m);
2014 	}
2015 	if (m != NULL)
2016 		flags |= MSG_TRUNC;
2017 	m_freem(m);
2018 	if (flagsp != NULL)
2019 		*flagsp |= flags;
2020 	return (0);
2021 }
2022 
2023 int
2024 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2025     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2026 {
2027 
2028 	return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2029 	    controlp, flagsp));
2030 }
2031 
2032 int
2033 soshutdown(struct socket *so, int how)
2034 {
2035 	struct protosw *pr = so->so_proto;
2036 
2037 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2038 		return (EINVAL);
2039 	if (pr->pr_usrreqs->pru_flush != NULL) {
2040 	        (*pr->pr_usrreqs->pru_flush)(so, how);
2041 	}
2042 	if (how != SHUT_WR)
2043 		sorflush(so);
2044 	if (how != SHUT_RD)
2045 		return ((*pr->pr_usrreqs->pru_shutdown)(so));
2046 	return (0);
2047 }
2048 
2049 void
2050 sorflush(struct socket *so)
2051 {
2052 	struct sockbuf *sb = &so->so_rcv;
2053 	struct protosw *pr = so->so_proto;
2054 	struct sockbuf asb;
2055 
2056 	/*
2057 	 * In order to avoid calling dom_dispose with the socket buffer mutex
2058 	 * held, and in order to generally avoid holding the lock for a long
2059 	 * time, we make a copy of the socket buffer and clear the original
2060 	 * (except locks, state).  The new socket buffer copy won't have
2061 	 * initialized locks so we can only call routines that won't use or
2062 	 * assert those locks.
2063 	 *
2064 	 * Dislodge threads currently blocked in receive and wait to acquire
2065 	 * a lock against other simultaneous readers before clearing the
2066 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2067 	 * despite any existing socket disposition on interruptable waiting.
2068 	 */
2069 	socantrcvmore(so);
2070 	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2071 
2072 	/*
2073 	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2074 	 * and mutex data unchanged.
2075 	 */
2076 	SOCKBUF_LOCK(sb);
2077 	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2078 	bcopy(&sb->sb_startzero, &asb.sb_startzero,
2079 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2080 	bzero(&sb->sb_startzero,
2081 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2082 	SOCKBUF_UNLOCK(sb);
2083 	sbunlock(sb);
2084 
2085 	/*
2086 	 * Dispose of special rights and flush the socket buffer.  Don't call
2087 	 * any unsafe routines (that rely on locks being initialized) on asb.
2088 	 */
2089 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2090 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
2091 	sbrelease_internal(&asb, so);
2092 }
2093 
2094 /*
2095  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2096  * additional variant to handle the case where the option value needs to be
2097  * some kind of integer, but not a specific size.  In addition to their use
2098  * here, these functions are also called by the protocol-level pr_ctloutput()
2099  * routines.
2100  */
2101 int
2102 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2103 {
2104 	size_t	valsize;
2105 
2106 	/*
2107 	 * If the user gives us more than we wanted, we ignore it, but if we
2108 	 * don't get the minimum length the caller wants, we return EINVAL.
2109 	 * On success, sopt->sopt_valsize is set to however much we actually
2110 	 * retrieved.
2111 	 */
2112 	if ((valsize = sopt->sopt_valsize) < minlen)
2113 		return EINVAL;
2114 	if (valsize > len)
2115 		sopt->sopt_valsize = valsize = len;
2116 
2117 	if (sopt->sopt_td != NULL)
2118 		return (copyin(sopt->sopt_val, buf, valsize));
2119 
2120 	bcopy(sopt->sopt_val, buf, valsize);
2121 	return (0);
2122 }
2123 
2124 /*
2125  * Kernel version of setsockopt(2).
2126  *
2127  * XXX: optlen is size_t, not socklen_t
2128  */
2129 int
2130 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2131     size_t optlen)
2132 {
2133 	struct sockopt sopt;
2134 
2135 	sopt.sopt_level = level;
2136 	sopt.sopt_name = optname;
2137 	sopt.sopt_dir = SOPT_SET;
2138 	sopt.sopt_val = optval;
2139 	sopt.sopt_valsize = optlen;
2140 	sopt.sopt_td = NULL;
2141 	return (sosetopt(so, &sopt));
2142 }
2143 
2144 int
2145 sosetopt(struct socket *so, struct sockopt *sopt)
2146 {
2147 	int	error, optval;
2148 	struct	linger l;
2149 	struct	timeval tv;
2150 	u_long  val;
2151 #ifdef MAC
2152 	struct mac extmac;
2153 #endif
2154 
2155 	error = 0;
2156 	if (sopt->sopt_level != SOL_SOCKET) {
2157 		if (so->so_proto && so->so_proto->pr_ctloutput)
2158 			return ((*so->so_proto->pr_ctloutput)
2159 				  (so, sopt));
2160 		error = ENOPROTOOPT;
2161 	} else {
2162 		switch (sopt->sopt_name) {
2163 #ifdef INET
2164 		case SO_ACCEPTFILTER:
2165 			error = do_setopt_accept_filter(so, sopt);
2166 			if (error)
2167 				goto bad;
2168 			break;
2169 #endif
2170 		case SO_LINGER:
2171 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2172 			if (error)
2173 				goto bad;
2174 
2175 			SOCK_LOCK(so);
2176 			so->so_linger = l.l_linger;
2177 			if (l.l_onoff)
2178 				so->so_options |= SO_LINGER;
2179 			else
2180 				so->so_options &= ~SO_LINGER;
2181 			SOCK_UNLOCK(so);
2182 			break;
2183 
2184 		case SO_DEBUG:
2185 		case SO_KEEPALIVE:
2186 		case SO_DONTROUTE:
2187 		case SO_USELOOPBACK:
2188 		case SO_BROADCAST:
2189 		case SO_REUSEADDR:
2190 		case SO_REUSEPORT:
2191 		case SO_OOBINLINE:
2192 		case SO_TIMESTAMP:
2193 		case SO_BINTIME:
2194 		case SO_NOSIGPIPE:
2195 		case SO_NO_DDP:
2196 		case SO_NO_OFFLOAD:
2197 			error = sooptcopyin(sopt, &optval, sizeof optval,
2198 					    sizeof optval);
2199 			if (error)
2200 				goto bad;
2201 			SOCK_LOCK(so);
2202 			if (optval)
2203 				so->so_options |= sopt->sopt_name;
2204 			else
2205 				so->so_options &= ~sopt->sopt_name;
2206 			SOCK_UNLOCK(so);
2207 			break;
2208 
2209 		case SO_SETFIB:
2210 			error = sooptcopyin(sopt, &optval, sizeof optval,
2211 					    sizeof optval);
2212 			if (optval < 1 || optval > rt_numfibs) {
2213 				error = EINVAL;
2214 				goto bad;
2215 			}
2216 			if ((so->so_proto->pr_domain->dom_family == PF_INET) ||
2217 			    (so->so_proto->pr_domain->dom_family == PF_ROUTE)) {
2218 				so->so_fibnum = optval;
2219 				/* Note: ignore error */
2220 				if (so->so_proto && so->so_proto->pr_ctloutput)
2221 					(*so->so_proto->pr_ctloutput)(so, sopt);
2222 			} else {
2223 				so->so_fibnum = 0;
2224 			}
2225 			break;
2226 		case SO_SNDBUF:
2227 		case SO_RCVBUF:
2228 		case SO_SNDLOWAT:
2229 		case SO_RCVLOWAT:
2230 			error = sooptcopyin(sopt, &optval, sizeof optval,
2231 					    sizeof optval);
2232 			if (error)
2233 				goto bad;
2234 
2235 			/*
2236 			 * Values < 1 make no sense for any of these options,
2237 			 * so disallow them.
2238 			 */
2239 			if (optval < 1) {
2240 				error = EINVAL;
2241 				goto bad;
2242 			}
2243 
2244 			switch (sopt->sopt_name) {
2245 			case SO_SNDBUF:
2246 			case SO_RCVBUF:
2247 				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2248 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2249 				    so, curthread) == 0) {
2250 					error = ENOBUFS;
2251 					goto bad;
2252 				}
2253 				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2254 				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2255 				break;
2256 
2257 			/*
2258 			 * Make sure the low-water is never greater than the
2259 			 * high-water.
2260 			 */
2261 			case SO_SNDLOWAT:
2262 				SOCKBUF_LOCK(&so->so_snd);
2263 				so->so_snd.sb_lowat =
2264 				    (optval > so->so_snd.sb_hiwat) ?
2265 				    so->so_snd.sb_hiwat : optval;
2266 				SOCKBUF_UNLOCK(&so->so_snd);
2267 				break;
2268 			case SO_RCVLOWAT:
2269 				SOCKBUF_LOCK(&so->so_rcv);
2270 				so->so_rcv.sb_lowat =
2271 				    (optval > so->so_rcv.sb_hiwat) ?
2272 				    so->so_rcv.sb_hiwat : optval;
2273 				SOCKBUF_UNLOCK(&so->so_rcv);
2274 				break;
2275 			}
2276 			break;
2277 
2278 		case SO_SNDTIMEO:
2279 		case SO_RCVTIMEO:
2280 #ifdef COMPAT_IA32
2281 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2282 				struct timeval32 tv32;
2283 
2284 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2285 				    sizeof tv32);
2286 				CP(tv32, tv, tv_sec);
2287 				CP(tv32, tv, tv_usec);
2288 			} else
2289 #endif
2290 				error = sooptcopyin(sopt, &tv, sizeof tv,
2291 				    sizeof tv);
2292 			if (error)
2293 				goto bad;
2294 
2295 			/* assert(hz > 0); */
2296 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2297 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2298 				error = EDOM;
2299 				goto bad;
2300 			}
2301 			/* assert(tick > 0); */
2302 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2303 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
2304 			if (val > INT_MAX) {
2305 				error = EDOM;
2306 				goto bad;
2307 			}
2308 			if (val == 0 && tv.tv_usec != 0)
2309 				val = 1;
2310 
2311 			switch (sopt->sopt_name) {
2312 			case SO_SNDTIMEO:
2313 				so->so_snd.sb_timeo = val;
2314 				break;
2315 			case SO_RCVTIMEO:
2316 				so->so_rcv.sb_timeo = val;
2317 				break;
2318 			}
2319 			break;
2320 
2321 		case SO_LABEL:
2322 #ifdef MAC
2323 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2324 			    sizeof extmac);
2325 			if (error)
2326 				goto bad;
2327 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2328 			    so, &extmac);
2329 #else
2330 			error = EOPNOTSUPP;
2331 #endif
2332 			break;
2333 
2334 		default:
2335 			error = ENOPROTOOPT;
2336 			break;
2337 		}
2338 		if (error == 0 && so->so_proto != NULL &&
2339 		    so->so_proto->pr_ctloutput != NULL) {
2340 			(void) ((*so->so_proto->pr_ctloutput)
2341 				  (so, sopt));
2342 		}
2343 	}
2344 bad:
2345 	return (error);
2346 }
2347 
2348 /*
2349  * Helper routine for getsockopt.
2350  */
2351 int
2352 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2353 {
2354 	int	error;
2355 	size_t	valsize;
2356 
2357 	error = 0;
2358 
2359 	/*
2360 	 * Documented get behavior is that we always return a value, possibly
2361 	 * truncated to fit in the user's buffer.  Traditional behavior is
2362 	 * that we always tell the user precisely how much we copied, rather
2363 	 * than something useful like the total amount we had available for
2364 	 * her.  Note that this interface is not idempotent; the entire
2365 	 * answer must generated ahead of time.
2366 	 */
2367 	valsize = min(len, sopt->sopt_valsize);
2368 	sopt->sopt_valsize = valsize;
2369 	if (sopt->sopt_val != NULL) {
2370 		if (sopt->sopt_td != NULL)
2371 			error = copyout(buf, sopt->sopt_val, valsize);
2372 		else
2373 			bcopy(buf, sopt->sopt_val, valsize);
2374 	}
2375 	return (error);
2376 }
2377 
2378 int
2379 sogetopt(struct socket *so, struct sockopt *sopt)
2380 {
2381 	int	error, optval;
2382 	struct	linger l;
2383 	struct	timeval tv;
2384 #ifdef MAC
2385 	struct mac extmac;
2386 #endif
2387 
2388 	error = 0;
2389 	if (sopt->sopt_level != SOL_SOCKET) {
2390 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2391 			return ((*so->so_proto->pr_ctloutput)
2392 				  (so, sopt));
2393 		} else
2394 			return (ENOPROTOOPT);
2395 	} else {
2396 		switch (sopt->sopt_name) {
2397 #ifdef INET
2398 		case SO_ACCEPTFILTER:
2399 			error = do_getopt_accept_filter(so, sopt);
2400 			break;
2401 #endif
2402 		case SO_LINGER:
2403 			SOCK_LOCK(so);
2404 			l.l_onoff = so->so_options & SO_LINGER;
2405 			l.l_linger = so->so_linger;
2406 			SOCK_UNLOCK(so);
2407 			error = sooptcopyout(sopt, &l, sizeof l);
2408 			break;
2409 
2410 		case SO_USELOOPBACK:
2411 		case SO_DONTROUTE:
2412 		case SO_DEBUG:
2413 		case SO_KEEPALIVE:
2414 		case SO_REUSEADDR:
2415 		case SO_REUSEPORT:
2416 		case SO_BROADCAST:
2417 		case SO_OOBINLINE:
2418 		case SO_ACCEPTCONN:
2419 		case SO_TIMESTAMP:
2420 		case SO_BINTIME:
2421 		case SO_NOSIGPIPE:
2422 			optval = so->so_options & sopt->sopt_name;
2423 integer:
2424 			error = sooptcopyout(sopt, &optval, sizeof optval);
2425 			break;
2426 
2427 		case SO_TYPE:
2428 			optval = so->so_type;
2429 			goto integer;
2430 
2431 		case SO_ERROR:
2432 			SOCK_LOCK(so);
2433 			optval = so->so_error;
2434 			so->so_error = 0;
2435 			SOCK_UNLOCK(so);
2436 			goto integer;
2437 
2438 		case SO_SNDBUF:
2439 			optval = so->so_snd.sb_hiwat;
2440 			goto integer;
2441 
2442 		case SO_RCVBUF:
2443 			optval = so->so_rcv.sb_hiwat;
2444 			goto integer;
2445 
2446 		case SO_SNDLOWAT:
2447 			optval = so->so_snd.sb_lowat;
2448 			goto integer;
2449 
2450 		case SO_RCVLOWAT:
2451 			optval = so->so_rcv.sb_lowat;
2452 			goto integer;
2453 
2454 		case SO_SNDTIMEO:
2455 		case SO_RCVTIMEO:
2456 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2457 				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2458 
2459 			tv.tv_sec = optval / hz;
2460 			tv.tv_usec = (optval % hz) * tick;
2461 #ifdef COMPAT_IA32
2462 			if (SV_CURPROC_FLAG(SV_ILP32)) {
2463 				struct timeval32 tv32;
2464 
2465 				CP(tv, tv32, tv_sec);
2466 				CP(tv, tv32, tv_usec);
2467 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2468 			} else
2469 #endif
2470 				error = sooptcopyout(sopt, &tv, sizeof tv);
2471 			break;
2472 
2473 		case SO_LABEL:
2474 #ifdef MAC
2475 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2476 			    sizeof(extmac));
2477 			if (error)
2478 				return (error);
2479 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2480 			    so, &extmac);
2481 			if (error)
2482 				return (error);
2483 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2484 #else
2485 			error = EOPNOTSUPP;
2486 #endif
2487 			break;
2488 
2489 		case SO_PEERLABEL:
2490 #ifdef MAC
2491 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2492 			    sizeof(extmac));
2493 			if (error)
2494 				return (error);
2495 			error = mac_getsockopt_peerlabel(
2496 			    sopt->sopt_td->td_ucred, so, &extmac);
2497 			if (error)
2498 				return (error);
2499 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2500 #else
2501 			error = EOPNOTSUPP;
2502 #endif
2503 			break;
2504 
2505 		case SO_LISTENQLIMIT:
2506 			optval = so->so_qlimit;
2507 			goto integer;
2508 
2509 		case SO_LISTENQLEN:
2510 			optval = so->so_qlen;
2511 			goto integer;
2512 
2513 		case SO_LISTENINCQLEN:
2514 			optval = so->so_incqlen;
2515 			goto integer;
2516 
2517 		default:
2518 			error = ENOPROTOOPT;
2519 			break;
2520 		}
2521 		return (error);
2522 	}
2523 }
2524 
2525 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2526 int
2527 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2528 {
2529 	struct mbuf *m, *m_prev;
2530 	int sopt_size = sopt->sopt_valsize;
2531 
2532 	MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2533 	if (m == NULL)
2534 		return ENOBUFS;
2535 	if (sopt_size > MLEN) {
2536 		MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2537 		if ((m->m_flags & M_EXT) == 0) {
2538 			m_free(m);
2539 			return ENOBUFS;
2540 		}
2541 		m->m_len = min(MCLBYTES, sopt_size);
2542 	} else {
2543 		m->m_len = min(MLEN, sopt_size);
2544 	}
2545 	sopt_size -= m->m_len;
2546 	*mp = m;
2547 	m_prev = m;
2548 
2549 	while (sopt_size) {
2550 		MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2551 		if (m == NULL) {
2552 			m_freem(*mp);
2553 			return ENOBUFS;
2554 		}
2555 		if (sopt_size > MLEN) {
2556 			MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2557 			    M_DONTWAIT);
2558 			if ((m->m_flags & M_EXT) == 0) {
2559 				m_freem(m);
2560 				m_freem(*mp);
2561 				return ENOBUFS;
2562 			}
2563 			m->m_len = min(MCLBYTES, sopt_size);
2564 		} else {
2565 			m->m_len = min(MLEN, sopt_size);
2566 		}
2567 		sopt_size -= m->m_len;
2568 		m_prev->m_next = m;
2569 		m_prev = m;
2570 	}
2571 	return (0);
2572 }
2573 
2574 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2575 int
2576 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2577 {
2578 	struct mbuf *m0 = m;
2579 
2580 	if (sopt->sopt_val == NULL)
2581 		return (0);
2582 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2583 		if (sopt->sopt_td != NULL) {
2584 			int error;
2585 
2586 			error = copyin(sopt->sopt_val, mtod(m, char *),
2587 				       m->m_len);
2588 			if (error != 0) {
2589 				m_freem(m0);
2590 				return(error);
2591 			}
2592 		} else
2593 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2594 		sopt->sopt_valsize -= m->m_len;
2595 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2596 		m = m->m_next;
2597 	}
2598 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2599 		panic("ip6_sooptmcopyin");
2600 	return (0);
2601 }
2602 
2603 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2604 int
2605 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2606 {
2607 	struct mbuf *m0 = m;
2608 	size_t valsize = 0;
2609 
2610 	if (sopt->sopt_val == NULL)
2611 		return (0);
2612 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2613 		if (sopt->sopt_td != NULL) {
2614 			int error;
2615 
2616 			error = copyout(mtod(m, char *), sopt->sopt_val,
2617 				       m->m_len);
2618 			if (error != 0) {
2619 				m_freem(m0);
2620 				return(error);
2621 			}
2622 		} else
2623 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2624 	       sopt->sopt_valsize -= m->m_len;
2625 	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2626 	       valsize += m->m_len;
2627 	       m = m->m_next;
2628 	}
2629 	if (m != NULL) {
2630 		/* enough soopt buffer should be given from user-land */
2631 		m_freem(m0);
2632 		return(EINVAL);
2633 	}
2634 	sopt->sopt_valsize = valsize;
2635 	return (0);
2636 }
2637 
2638 /*
2639  * sohasoutofband(): protocol notifies socket layer of the arrival of new
2640  * out-of-band data, which will then notify socket consumers.
2641  */
2642 void
2643 sohasoutofband(struct socket *so)
2644 {
2645 
2646 	if (so->so_sigio != NULL)
2647 		pgsigio(&so->so_sigio, SIGURG, 0);
2648 	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2649 }
2650 
2651 int
2652 sopoll(struct socket *so, int events, struct ucred *active_cred,
2653     struct thread *td)
2654 {
2655 
2656 	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
2657 	    td));
2658 }
2659 
2660 int
2661 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
2662     struct thread *td)
2663 {
2664 	int revents = 0;
2665 
2666 	SOCKBUF_LOCK(&so->so_snd);
2667 	SOCKBUF_LOCK(&so->so_rcv);
2668 	if (events & (POLLIN | POLLRDNORM))
2669 		if (soreadable(so))
2670 			revents |= events & (POLLIN | POLLRDNORM);
2671 
2672 	if (events & POLLINIGNEOF)
2673 		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2674 		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2675 			revents |= POLLINIGNEOF;
2676 
2677 	if (events & (POLLOUT | POLLWRNORM))
2678 		if (sowriteable(so))
2679 			revents |= events & (POLLOUT | POLLWRNORM);
2680 
2681 	if (events & (POLLPRI | POLLRDBAND))
2682 		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2683 			revents |= events & (POLLPRI | POLLRDBAND);
2684 
2685 	if (revents == 0) {
2686 		if (events &
2687 		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2688 		     POLLRDBAND)) {
2689 			selrecord(td, &so->so_rcv.sb_sel);
2690 			so->so_rcv.sb_flags |= SB_SEL;
2691 		}
2692 
2693 		if (events & (POLLOUT | POLLWRNORM)) {
2694 			selrecord(td, &so->so_snd.sb_sel);
2695 			so->so_snd.sb_flags |= SB_SEL;
2696 		}
2697 	}
2698 
2699 	SOCKBUF_UNLOCK(&so->so_rcv);
2700 	SOCKBUF_UNLOCK(&so->so_snd);
2701 	return (revents);
2702 }
2703 
2704 int
2705 soo_kqfilter(struct file *fp, struct knote *kn)
2706 {
2707 	struct socket *so = kn->kn_fp->f_data;
2708 	struct sockbuf *sb;
2709 
2710 	switch (kn->kn_filter) {
2711 	case EVFILT_READ:
2712 		if (so->so_options & SO_ACCEPTCONN)
2713 			kn->kn_fop = &solisten_filtops;
2714 		else
2715 			kn->kn_fop = &soread_filtops;
2716 		sb = &so->so_rcv;
2717 		break;
2718 	case EVFILT_WRITE:
2719 		kn->kn_fop = &sowrite_filtops;
2720 		sb = &so->so_snd;
2721 		break;
2722 	default:
2723 		return (EINVAL);
2724 	}
2725 
2726 	SOCKBUF_LOCK(sb);
2727 	knlist_add(&sb->sb_sel.si_note, kn, 1);
2728 	sb->sb_flags |= SB_KNOTE;
2729 	SOCKBUF_UNLOCK(sb);
2730 	return (0);
2731 }
2732 
2733 /*
2734  * Some routines that return EOPNOTSUPP for entry points that are not
2735  * supported by a protocol.  Fill in as needed.
2736  */
2737 int
2738 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2739 {
2740 
2741 	return EOPNOTSUPP;
2742 }
2743 
2744 int
2745 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
2746 {
2747 
2748 	return EOPNOTSUPP;
2749 }
2750 
2751 int
2752 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2753 {
2754 
2755 	return EOPNOTSUPP;
2756 }
2757 
2758 int
2759 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
2760 {
2761 
2762 	return EOPNOTSUPP;
2763 }
2764 
2765 int
2766 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2767 {
2768 
2769 	return EOPNOTSUPP;
2770 }
2771 
2772 int
2773 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2774     struct ifnet *ifp, struct thread *td)
2775 {
2776 
2777 	return EOPNOTSUPP;
2778 }
2779 
2780 int
2781 pru_disconnect_notsupp(struct socket *so)
2782 {
2783 
2784 	return EOPNOTSUPP;
2785 }
2786 
2787 int
2788 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
2789 {
2790 
2791 	return EOPNOTSUPP;
2792 }
2793 
2794 int
2795 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2796 {
2797 
2798 	return EOPNOTSUPP;
2799 }
2800 
2801 int
2802 pru_rcvd_notsupp(struct socket *so, int flags)
2803 {
2804 
2805 	return EOPNOTSUPP;
2806 }
2807 
2808 int
2809 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2810 {
2811 
2812 	return EOPNOTSUPP;
2813 }
2814 
2815 int
2816 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2817     struct sockaddr *addr, struct mbuf *control, struct thread *td)
2818 {
2819 
2820 	return EOPNOTSUPP;
2821 }
2822 
2823 /*
2824  * This isn't really a ``null'' operation, but it's the default one and
2825  * doesn't do anything destructive.
2826  */
2827 int
2828 pru_sense_null(struct socket *so, struct stat *sb)
2829 {
2830 
2831 	sb->st_blksize = so->so_snd.sb_hiwat;
2832 	return 0;
2833 }
2834 
2835 int
2836 pru_shutdown_notsupp(struct socket *so)
2837 {
2838 
2839 	return EOPNOTSUPP;
2840 }
2841 
2842 int
2843 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2844 {
2845 
2846 	return EOPNOTSUPP;
2847 }
2848 
2849 int
2850 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2851     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2852 {
2853 
2854 	return EOPNOTSUPP;
2855 }
2856 
2857 int
2858 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2859     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2860 {
2861 
2862 	return EOPNOTSUPP;
2863 }
2864 
2865 int
2866 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
2867     struct thread *td)
2868 {
2869 
2870 	return EOPNOTSUPP;
2871 }
2872 
2873 static void
2874 filt_sordetach(struct knote *kn)
2875 {
2876 	struct socket *so = kn->kn_fp->f_data;
2877 
2878 	SOCKBUF_LOCK(&so->so_rcv);
2879 	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
2880 	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
2881 		so->so_rcv.sb_flags &= ~SB_KNOTE;
2882 	SOCKBUF_UNLOCK(&so->so_rcv);
2883 }
2884 
2885 /*ARGSUSED*/
2886 static int
2887 filt_soread(struct knote *kn, long hint)
2888 {
2889 	struct socket *so;
2890 
2891 	so = kn->kn_fp->f_data;
2892 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2893 
2894 	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2895 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2896 		kn->kn_flags |= EV_EOF;
2897 		kn->kn_fflags = so->so_error;
2898 		return (1);
2899 	} else if (so->so_error)	/* temporary udp error */
2900 		return (1);
2901 	else if (kn->kn_sfflags & NOTE_LOWAT)
2902 		return (kn->kn_data >= kn->kn_sdata);
2903 	else
2904 		return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2905 }
2906 
2907 static void
2908 filt_sowdetach(struct knote *kn)
2909 {
2910 	struct socket *so = kn->kn_fp->f_data;
2911 
2912 	SOCKBUF_LOCK(&so->so_snd);
2913 	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
2914 	if (knlist_empty(&so->so_snd.sb_sel.si_note))
2915 		so->so_snd.sb_flags &= ~SB_KNOTE;
2916 	SOCKBUF_UNLOCK(&so->so_snd);
2917 }
2918 
2919 /*ARGSUSED*/
2920 static int
2921 filt_sowrite(struct knote *kn, long hint)
2922 {
2923 	struct socket *so;
2924 
2925 	so = kn->kn_fp->f_data;
2926 	SOCKBUF_LOCK_ASSERT(&so->so_snd);
2927 	kn->kn_data = sbspace(&so->so_snd);
2928 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2929 		kn->kn_flags |= EV_EOF;
2930 		kn->kn_fflags = so->so_error;
2931 		return (1);
2932 	} else if (so->so_error)	/* temporary udp error */
2933 		return (1);
2934 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2935 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2936 		return (0);
2937 	else if (kn->kn_sfflags & NOTE_LOWAT)
2938 		return (kn->kn_data >= kn->kn_sdata);
2939 	else
2940 		return (kn->kn_data >= so->so_snd.sb_lowat);
2941 }
2942 
2943 /*ARGSUSED*/
2944 static int
2945 filt_solisten(struct knote *kn, long hint)
2946 {
2947 	struct socket *so = kn->kn_fp->f_data;
2948 
2949 	kn->kn_data = so->so_qlen;
2950 	return (! TAILQ_EMPTY(&so->so_comp));
2951 }
2952 
2953 int
2954 socheckuid(struct socket *so, uid_t uid)
2955 {
2956 
2957 	if (so == NULL)
2958 		return (EPERM);
2959 	if (so->so_cred->cr_uid != uid)
2960 		return (EPERM);
2961 	return (0);
2962 }
2963 
2964 static int
2965 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
2966 {
2967 	int error;
2968 	int val;
2969 
2970 	val = somaxconn;
2971 	error = sysctl_handle_int(oidp, &val, 0, req);
2972 	if (error || !req->newptr )
2973 		return (error);
2974 
2975 	if (val < 1 || val > USHRT_MAX)
2976 		return (EINVAL);
2977 
2978 	somaxconn = val;
2979 	return (0);
2980 }
2981 
2982 /*
2983  * These functions are used by protocols to notify the socket layer (and its
2984  * consumers) of state changes in the sockets driven by protocol-side events.
2985  */
2986 
2987 /*
2988  * Procedures to manipulate state flags of socket and do appropriate wakeups.
2989  *
2990  * Normal sequence from the active (originating) side is that
2991  * soisconnecting() is called during processing of connect() call, resulting
2992  * in an eventual call to soisconnected() if/when the connection is
2993  * established.  When the connection is torn down soisdisconnecting() is
2994  * called during processing of disconnect() call, and soisdisconnected() is
2995  * called when the connection to the peer is totally severed.  The semantics
2996  * of these routines are such that connectionless protocols can call
2997  * soisconnected() and soisdisconnected() only, bypassing the in-progress
2998  * calls when setting up a ``connection'' takes no time.
2999  *
3000  * From the passive side, a socket is created with two queues of sockets:
3001  * so_incomp for connections in progress and so_comp for connections already
3002  * made and awaiting user acceptance.  As a protocol is preparing incoming
3003  * connections, it creates a socket structure queued on so_incomp by calling
3004  * sonewconn().  When the connection is established, soisconnected() is
3005  * called, and transfers the socket structure to so_comp, making it available
3006  * to accept().
3007  *
3008  * If a socket is closed with sockets on either so_incomp or so_comp, these
3009  * sockets are dropped.
3010  *
3011  * If higher-level protocols are implemented in the kernel, the wakeups done
3012  * here will sometimes cause software-interrupt process scheduling.
3013  */
3014 void
3015 soisconnecting(struct socket *so)
3016 {
3017 
3018 	SOCK_LOCK(so);
3019 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3020 	so->so_state |= SS_ISCONNECTING;
3021 	SOCK_UNLOCK(so);
3022 }
3023 
3024 void
3025 soisconnected(struct socket *so)
3026 {
3027 	struct socket *head;
3028 
3029 	ACCEPT_LOCK();
3030 	SOCK_LOCK(so);
3031 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3032 	so->so_state |= SS_ISCONNECTED;
3033 	head = so->so_head;
3034 	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3035 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3036 			SOCK_UNLOCK(so);
3037 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3038 			head->so_incqlen--;
3039 			so->so_qstate &= ~SQ_INCOMP;
3040 			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3041 			head->so_qlen++;
3042 			so->so_qstate |= SQ_COMP;
3043 			ACCEPT_UNLOCK();
3044 			sorwakeup(head);
3045 			wakeup_one(&head->so_timeo);
3046 		} else {
3047 			ACCEPT_UNLOCK();
3048 			so->so_upcall =
3049 			    head->so_accf->so_accept_filter->accf_callback;
3050 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
3051 			so->so_rcv.sb_flags |= SB_UPCALL;
3052 			so->so_options &= ~SO_ACCEPTFILTER;
3053 			SOCK_UNLOCK(so);
3054 			so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
3055 		}
3056 		return;
3057 	}
3058 	SOCK_UNLOCK(so);
3059 	ACCEPT_UNLOCK();
3060 	wakeup(&so->so_timeo);
3061 	sorwakeup(so);
3062 	sowwakeup(so);
3063 }
3064 
3065 void
3066 soisdisconnecting(struct socket *so)
3067 {
3068 
3069 	/*
3070 	 * Note: This code assumes that SOCK_LOCK(so) and
3071 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3072 	 */
3073 	SOCKBUF_LOCK(&so->so_rcv);
3074 	so->so_state &= ~SS_ISCONNECTING;
3075 	so->so_state |= SS_ISDISCONNECTING;
3076 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3077 	sorwakeup_locked(so);
3078 	SOCKBUF_LOCK(&so->so_snd);
3079 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3080 	sowwakeup_locked(so);
3081 	wakeup(&so->so_timeo);
3082 }
3083 
3084 void
3085 soisdisconnected(struct socket *so)
3086 {
3087 
3088 	/*
3089 	 * Note: This code assumes that SOCK_LOCK(so) and
3090 	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3091 	 */
3092 	SOCKBUF_LOCK(&so->so_rcv);
3093 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3094 	so->so_state |= SS_ISDISCONNECTED;
3095 	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3096 	sorwakeup_locked(so);
3097 	SOCKBUF_LOCK(&so->so_snd);
3098 	so->so_snd.sb_state |= SBS_CANTSENDMORE;
3099 	sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3100 	sowwakeup_locked(so);
3101 	wakeup(&so->so_timeo);
3102 }
3103 
3104 /*
3105  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3106  */
3107 struct sockaddr *
3108 sodupsockaddr(const struct sockaddr *sa, int mflags)
3109 {
3110 	struct sockaddr *sa2;
3111 
3112 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3113 	if (sa2)
3114 		bcopy(sa, sa2, sa->sa_len);
3115 	return sa2;
3116 }
3117 
3118 /*
3119  * Create an external-format (``xsocket'') structure using the information in
3120  * the kernel-format socket structure pointed to by so.  This is done to
3121  * reduce the spew of irrelevant information over this interface, to isolate
3122  * user code from changes in the kernel structure, and potentially to provide
3123  * information-hiding if we decide that some of this information should be
3124  * hidden from users.
3125  */
3126 void
3127 sotoxsocket(struct socket *so, struct xsocket *xso)
3128 {
3129 
3130 	xso->xso_len = sizeof *xso;
3131 	xso->xso_so = so;
3132 	xso->so_type = so->so_type;
3133 	xso->so_options = so->so_options;
3134 	xso->so_linger = so->so_linger;
3135 	xso->so_state = so->so_state;
3136 	xso->so_pcb = so->so_pcb;
3137 	xso->xso_protocol = so->so_proto->pr_protocol;
3138 	xso->xso_family = so->so_proto->pr_domain->dom_family;
3139 	xso->so_qlen = so->so_qlen;
3140 	xso->so_incqlen = so->so_incqlen;
3141 	xso->so_qlimit = so->so_qlimit;
3142 	xso->so_timeo = so->so_timeo;
3143 	xso->so_error = so->so_error;
3144 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3145 	xso->so_oobmark = so->so_oobmark;
3146 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3147 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3148 	xso->so_uid = so->so_cred->cr_uid;
3149 }
3150 
3151 
3152 /*
3153  * Socket accessor functions to provide external consumers with
3154  * a safe interface to socket state
3155  *
3156  */
3157 
3158 void
3159 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3160 {
3161 
3162 	TAILQ_FOREACH(so, &so->so_comp, so_list)
3163 		func(so, arg);
3164 }
3165 
3166 struct sockbuf *
3167 so_sockbuf_rcv(struct socket *so)
3168 {
3169 
3170 	return (&so->so_rcv);
3171 }
3172 
3173 struct sockbuf *
3174 so_sockbuf_snd(struct socket *so)
3175 {
3176 
3177 	return (&so->so_snd);
3178 }
3179 
3180 int
3181 so_state_get(const struct socket *so)
3182 {
3183 
3184 	return (so->so_state);
3185 }
3186 
3187 void
3188 so_state_set(struct socket *so, int val)
3189 {
3190 
3191 	so->so_state = val;
3192 }
3193 
3194 int
3195 so_options_get(const struct socket *so)
3196 {
3197 
3198 	return (so->so_options);
3199 }
3200 
3201 void
3202 so_options_set(struct socket *so, int val)
3203 {
3204 
3205 	so->so_options = val;
3206 }
3207 
3208 int
3209 so_error_get(const struct socket *so)
3210 {
3211 
3212 	return (so->so_error);
3213 }
3214 
3215 void
3216 so_error_set(struct socket *so, int val)
3217 {
3218 
3219 	so->so_error = val;
3220 }
3221 
3222 int
3223 so_linger_get(const struct socket *so)
3224 {
3225 
3226 	return (so->so_linger);
3227 }
3228 
3229 void
3230 so_linger_set(struct socket *so, int val)
3231 {
3232 
3233 	so->so_linger = val;
3234 }
3235 
3236 struct protosw *
3237 so_protosw_get(const struct socket *so)
3238 {
3239 
3240 	return (so->so_proto);
3241 }
3242 
3243 void
3244 so_protosw_set(struct socket *so, struct protosw *val)
3245 {
3246 
3247 	so->so_proto = val;
3248 }
3249 
3250 void
3251 so_sorwakeup(struct socket *so)
3252 {
3253 
3254 	sorwakeup(so);
3255 }
3256 
3257 void
3258 so_sowwakeup(struct socket *so)
3259 {
3260 
3261 	sowwakeup(so);
3262 }
3263 
3264 void
3265 so_sorwakeup_locked(struct socket *so)
3266 {
3267 
3268 	sorwakeup_locked(so);
3269 }
3270 
3271 void
3272 so_sowwakeup_locked(struct socket *so)
3273 {
3274 
3275 	sowwakeup_locked(so);
3276 }
3277 
3278 void
3279 so_lock(struct socket *so)
3280 {
3281 	SOCK_LOCK(so);
3282 }
3283 
3284 void
3285 so_unlock(struct socket *so)
3286 {
3287 	SOCK_UNLOCK(so);
3288 }
3289