xref: /freebsd/sys/kern/uipc_socket.c (revision bdd1243d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2004 The FreeBSD Foundation
7  * Copyright (c) 2004-2008 Robert N. M. Watson
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
35  */
36 
37 /*
38  * Comments on the socket life cycle:
39  *
40  * soalloc() sets of socket layer state for a socket, called only by
41  * socreate() and sonewconn().  Socket layer private.
42  *
43  * sodealloc() tears down socket layer state for a socket, called only by
44  * sofree() and sonewconn().  Socket layer private.
45  *
46  * pru_attach() associates protocol layer state with an allocated socket;
47  * called only once, may fail, aborting socket allocation.  This is called
48  * from socreate() and sonewconn().  Socket layer private.
49  *
50  * pru_detach() disassociates protocol layer state from an attached socket,
51  * and will be called exactly once for sockets in which pru_attach() has
52  * been successfully called.  If pru_attach() returned an error,
53  * pru_detach() will not be called.  Socket layer private.
54  *
55  * pru_abort() and pru_close() notify the protocol layer that the last
56  * consumer of a socket is starting to tear down the socket, and that the
57  * protocol should terminate the connection.  Historically, pru_abort() also
58  * detached protocol state from the socket state, but this is no longer the
59  * case.
60  *
61  * socreate() creates a socket and attaches protocol state.  This is a public
62  * interface that may be used by socket layer consumers to create new
63  * sockets.
64  *
65  * sonewconn() creates a socket and attaches protocol state.  This is a
66  * public interface  that may be used by protocols to create new sockets when
67  * a new connection is received and will be available for accept() on a
68  * listen socket.
69  *
70  * soclose() destroys a socket after possibly waiting for it to disconnect.
71  * This is a public interface that socket consumers should use to close and
72  * release a socket when done with it.
73  *
74  * soabort() destroys a socket without waiting for it to disconnect (used
75  * only for incoming connections that are already partially or fully
76  * connected).  This is used internally by the socket layer when clearing
77  * listen socket queues (due to overflow or close on the listen socket), but
78  * is also a public interface protocols may use to abort connections in
79  * their incomplete listen queues should they no longer be required.  Sockets
80  * placed in completed connection listen queues should not be aborted for
81  * reasons described in the comment above the soclose() implementation.  This
82  * is not a general purpose close routine, and except in the specific
83  * circumstances described here, should not be used.
84  *
85  * sofree() will free a socket and its protocol state if all references on
86  * the socket have been released, and is the public interface to attempt to
87  * free a socket when a reference is removed.  This is a socket layer private
88  * interface.
89  *
90  * NOTE: In addition to socreate() and soclose(), which provide a single
91  * socket reference to the consumer to be managed as required, there are two
92  * calls to explicitly manage socket references, soref(), and sorele().
93  * Currently, these are generally required only when transitioning a socket
94  * from a listen queue to a file descriptor, in order to prevent garbage
95  * collection of the socket at an untimely moment.  For a number of reasons,
96  * these interfaces are not preferred, and should be avoided.
97  *
98  * NOTE: With regard to VNETs the general rule is that callers do not set
99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
101  * and sorflush(), which are usually called from a pre-set VNET context.
102  * sopoll() currently does not need a VNET context to be set.
103  */
104 
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_inet.h"
109 #include "opt_inet6.h"
110 #include "opt_kern_tls.h"
111 #include "opt_sctp.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/capsicum.h>
116 #include <sys/fcntl.h>
117 #include <sys/limits.h>
118 #include <sys/lock.h>
119 #include <sys/mac.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/domain.h>
124 #include <sys/file.h>			/* for struct knote */
125 #include <sys/hhook.h>
126 #include <sys/kernel.h>
127 #include <sys/khelp.h>
128 #include <sys/ktls.h>
129 #include <sys/event.h>
130 #include <sys/eventhandler.h>
131 #include <sys/poll.h>
132 #include <sys/proc.h>
133 #include <sys/protosw.h>
134 #include <sys/sbuf.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/resourcevar.h>
138 #include <net/route.h>
139 #include <sys/signalvar.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152 
153 #include <net/vnet.h>
154 
155 #include <security/mac/mac_framework.h>
156 
157 #include <vm/uma.h>
158 
159 #ifdef COMPAT_FREEBSD32
160 #include <sys/mount.h>
161 #include <sys/sysent.h>
162 #include <compat/freebsd32/freebsd32.h>
163 #endif
164 
165 static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
166 		    int flags);
167 static void	so_rdknl_lock(void *);
168 static void	so_rdknl_unlock(void *);
169 static void	so_rdknl_assert_lock(void *, int);
170 static void	so_wrknl_lock(void *);
171 static void	so_wrknl_unlock(void *);
172 static void	so_wrknl_assert_lock(void *, int);
173 
174 static void	filt_sordetach(struct knote *kn);
175 static int	filt_soread(struct knote *kn, long hint);
176 static void	filt_sowdetach(struct knote *kn);
177 static int	filt_sowrite(struct knote *kn, long hint);
178 static int	filt_soempty(struct knote *kn, long hint);
179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
180 fo_kqfilter_t	soo_kqfilter;
181 
182 static struct filterops soread_filtops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_sordetach,
185 	.f_event = filt_soread,
186 };
187 static struct filterops sowrite_filtops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_sowdetach,
190 	.f_event = filt_sowrite,
191 };
192 static struct filterops soempty_filtops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_sowdetach,
195 	.f_event = filt_soempty,
196 };
197 
198 so_gen_t	so_gencnt;	/* generation count for sockets */
199 
200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
202 
203 #define	VNET_SO_ASSERT(so)						\
204 	VNET_ASSERT(curvnet != NULL,					\
205 	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
206 
207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
208 #define	V_socket_hhh		VNET(socket_hhh)
209 
210 /*
211  * Limit on the number of connections in the listen queue waiting
212  * for accept(2).
213  * NB: The original sysctl somaxconn is still available but hidden
214  * to prevent confusion about the actual purpose of this number.
215  */
216 static u_int somaxconn = SOMAXCONN;
217 
218 static int
219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
220 {
221 	int error;
222 	int val;
223 
224 	val = somaxconn;
225 	error = sysctl_handle_int(oidp, &val, 0, req);
226 	if (error || !req->newptr )
227 		return (error);
228 
229 	/*
230 	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
231 	 *   3 * so_qlimit / 2
232 	 * below, will not overflow.
233          */
234 
235 	if (val < 1 || val > UINT_MAX / 3)
236 		return (EINVAL);
237 
238 	somaxconn = val;
239 	return (0);
240 }
241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
243     sysctl_somaxconn, "I",
244     "Maximum listen socket pending connection accept queue size");
245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
247     sizeof(int), sysctl_somaxconn, "I",
248     "Maximum listen socket pending connection accept queue size (compat)");
249 
250 static int numopensockets;
251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
252     &numopensockets, 0, "Number of open sockets");
253 
254 /*
255  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
256  * so_gencnt field.
257  */
258 static struct mtx so_global_mtx;
259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
260 
261 /*
262  * General IPC sysctl name space, used by sockets and a variety of other IPC
263  * types.
264  */
265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
266     "IPC");
267 
268 /*
269  * Initialize the socket subsystem and set up the socket
270  * memory allocator.
271  */
272 static uma_zone_t socket_zone;
273 int	maxsockets;
274 
275 static void
276 socket_zone_change(void *tag)
277 {
278 
279 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
280 }
281 
282 static void
283 socket_hhook_register(int subtype)
284 {
285 
286 	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
287 	    &V_socket_hhh[subtype],
288 	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
289 		printf("%s: WARNING: unable to register hook\n", __func__);
290 }
291 
292 static void
293 socket_hhook_deregister(int subtype)
294 {
295 
296 	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
297 		printf("%s: WARNING: unable to deregister hook\n", __func__);
298 }
299 
300 static void
301 socket_init(void *tag)
302 {
303 
304 	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
305 	    NULL, NULL, UMA_ALIGN_PTR, 0);
306 	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
307 	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
308 	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
309 	    EVENTHANDLER_PRI_FIRST);
310 }
311 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
312 
313 static void
314 socket_vnet_init(const void *unused __unused)
315 {
316 	int i;
317 
318 	/* We expect a contiguous range */
319 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
320 		socket_hhook_register(i);
321 }
322 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
323     socket_vnet_init, NULL);
324 
325 static void
326 socket_vnet_uninit(const void *unused __unused)
327 {
328 	int i;
329 
330 	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
331 		socket_hhook_deregister(i);
332 }
333 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
334     socket_vnet_uninit, NULL);
335 
336 /*
337  * Initialise maxsockets.  This SYSINIT must be run after
338  * tunable_mbinit().
339  */
340 static void
341 init_maxsockets(void *ignored)
342 {
343 
344 	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
345 	maxsockets = imax(maxsockets, maxfiles);
346 }
347 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
348 
349 /*
350  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
351  * of the change so that they can update their dependent limits as required.
352  */
353 static int
354 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
355 {
356 	int error, newmaxsockets;
357 
358 	newmaxsockets = maxsockets;
359 	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
360 	if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
361 		if (newmaxsockets > maxsockets &&
362 		    newmaxsockets <= maxfiles) {
363 			maxsockets = newmaxsockets;
364 			EVENTHANDLER_INVOKE(maxsockets_change);
365 		} else
366 			error = EINVAL;
367 	}
368 	return (error);
369 }
370 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
371     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
372     sysctl_maxsockets, "IU",
373     "Maximum number of sockets available");
374 
375 /*
376  * Socket operation routines.  These routines are called by the routines in
377  * sys_socket.c or from a system process, and implement the semantics of
378  * socket operations by switching out to the protocol specific routines.
379  */
380 
381 /*
382  * Get a socket structure from our zone, and initialize it.  Note that it
383  * would probably be better to allocate socket and PCB at the same time, but
384  * I'm not convinced that all the protocols can be easily modified to do
385  * this.
386  *
387  * soalloc() returns a socket with a ref count of 0.
388  */
389 static struct socket *
390 soalloc(struct vnet *vnet)
391 {
392 	struct socket *so;
393 
394 	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
395 	if (so == NULL)
396 		return (NULL);
397 #ifdef MAC
398 	if (mac_socket_init(so, M_NOWAIT) != 0) {
399 		uma_zfree(socket_zone, so);
400 		return (NULL);
401 	}
402 #endif
403 	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
404 		uma_zfree(socket_zone, so);
405 		return (NULL);
406 	}
407 
408 	/*
409 	 * The socket locking protocol allows to lock 2 sockets at a time,
410 	 * however, the first one must be a listening socket.  WITNESS lacks
411 	 * a feature to change class of an existing lock, so we use DUPOK.
412 	 */
413 	mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
414 	mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
415 	mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
416 	so->so_rcv.sb_sel = &so->so_rdsel;
417 	so->so_snd.sb_sel = &so->so_wrsel;
418 	sx_init(&so->so_snd_sx, "so_snd_sx");
419 	sx_init(&so->so_rcv_sx, "so_rcv_sx");
420 	TAILQ_INIT(&so->so_snd.sb_aiojobq);
421 	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
422 	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
423 	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
424 #ifdef VIMAGE
425 	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
426 	    __func__, __LINE__, so));
427 	so->so_vnet = vnet;
428 #endif
429 	/* We shouldn't need the so_global_mtx */
430 	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
431 		/* Do we need more comprehensive error returns? */
432 		uma_zfree(socket_zone, so);
433 		return (NULL);
434 	}
435 	mtx_lock(&so_global_mtx);
436 	so->so_gencnt = ++so_gencnt;
437 	++numopensockets;
438 #ifdef VIMAGE
439 	vnet->vnet_sockcnt++;
440 #endif
441 	mtx_unlock(&so_global_mtx);
442 
443 	return (so);
444 }
445 
446 /*
447  * Free the storage associated with a socket at the socket layer, tear down
448  * locks, labels, etc.  All protocol state is assumed already to have been
449  * torn down (and possibly never set up) by the caller.
450  */
451 void
452 sodealloc(struct socket *so)
453 {
454 
455 	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
456 	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
457 
458 	mtx_lock(&so_global_mtx);
459 	so->so_gencnt = ++so_gencnt;
460 	--numopensockets;	/* Could be below, but faster here. */
461 #ifdef VIMAGE
462 	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
463 	    __func__, __LINE__, so));
464 	so->so_vnet->vnet_sockcnt--;
465 #endif
466 	mtx_unlock(&so_global_mtx);
467 #ifdef MAC
468 	mac_socket_destroy(so);
469 #endif
470 	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
471 
472 	khelp_destroy_osd(&so->osd);
473 	if (SOLISTENING(so)) {
474 		if (so->sol_accept_filter != NULL)
475 			accept_filt_setopt(so, NULL);
476 	} else {
477 		if (so->so_rcv.sb_hiwat)
478 			(void)chgsbsize(so->so_cred->cr_uidinfo,
479 			    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
480 		if (so->so_snd.sb_hiwat)
481 			(void)chgsbsize(so->so_cred->cr_uidinfo,
482 			    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
483 		sx_destroy(&so->so_snd_sx);
484 		sx_destroy(&so->so_rcv_sx);
485 		mtx_destroy(&so->so_snd_mtx);
486 		mtx_destroy(&so->so_rcv_mtx);
487 	}
488 	crfree(so->so_cred);
489 	mtx_destroy(&so->so_lock);
490 	uma_zfree(socket_zone, so);
491 }
492 
493 /*
494  * socreate returns a socket with a ref count of 1 and a file descriptor
495  * reference.  The socket should be closed with soclose().
496  */
497 int
498 socreate(int dom, struct socket **aso, int type, int proto,
499     struct ucred *cred, struct thread *td)
500 {
501 	struct protosw *prp;
502 	struct socket *so;
503 	int error;
504 
505 	/*
506 	 * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
507 	 * shim until all applications have been updated.
508 	 */
509 	if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
510 	    proto == IPPROTO_DIVERT)) {
511 		dom = PF_DIVERT;
512 		printf("%s uses obsolete way to create divert(4) socket\n",
513 		    td->td_proc->p_comm);
514 	}
515 
516 	prp = pffindproto(dom, type, proto);
517 	if (prp == NULL) {
518 		/* No support for domain. */
519 		if (pffinddomain(dom) == NULL)
520 			return (EAFNOSUPPORT);
521 		/* No support for socket type. */
522 		if (proto == 0 && type != 0)
523 			return (EPROTOTYPE);
524 		return (EPROTONOSUPPORT);
525 	}
526 
527 	MPASS(prp->pr_attach);
528 
529 	if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
530 		return (ECAPMODE);
531 
532 	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
533 		return (EPROTONOSUPPORT);
534 
535 	so = soalloc(CRED_TO_VNET(cred));
536 	if (so == NULL)
537 		return (ENOBUFS);
538 
539 	so->so_type = type;
540 	so->so_cred = crhold(cred);
541 	if ((prp->pr_domain->dom_family == PF_INET) ||
542 	    (prp->pr_domain->dom_family == PF_INET6) ||
543 	    (prp->pr_domain->dom_family == PF_ROUTE))
544 		so->so_fibnum = td->td_proc->p_fibnum;
545 	else
546 		so->so_fibnum = 0;
547 	so->so_proto = prp;
548 #ifdef MAC
549 	mac_socket_create(cred, so);
550 #endif
551 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
552 	    so_rdknl_assert_lock);
553 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
554 	    so_wrknl_assert_lock);
555 	if ((prp->pr_flags & PR_SOCKBUF) == 0) {
556 		so->so_snd.sb_mtx = &so->so_snd_mtx;
557 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
558 	}
559 	/*
560 	 * Auto-sizing of socket buffers is managed by the protocols and
561 	 * the appropriate flags must be set in the pru_attach function.
562 	 */
563 	CURVNET_SET(so->so_vnet);
564 	error = prp->pr_attach(so, proto, td);
565 	CURVNET_RESTORE();
566 	if (error) {
567 		sodealloc(so);
568 		return (error);
569 	}
570 	soref(so);
571 	*aso = so;
572 	return (0);
573 }
574 
575 #ifdef REGRESSION
576 static int regression_sonewconn_earlytest = 1;
577 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
578     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
579 #endif
580 
581 static int sooverprio = LOG_DEBUG;
582 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
583     &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
584 
585 static struct timeval overinterval = { 60, 0 };
586 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
587     &overinterval,
588     "Delay in seconds between warnings for listen socket overflows");
589 
590 /*
591  * When an attempt at a new connection is noted on a socket which supports
592  * accept(2), the protocol has two options:
593  * 1) Call legacy sonewconn() function, which would call protocol attach
594  *    method, same as used for socket(2).
595  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
596  *    and then call solisten_enqueue().
597  *
598  * Note: the ref count on the socket is 0 on return.
599  */
600 struct socket *
601 solisten_clone(struct socket *head)
602 {
603 	struct sbuf descrsb;
604 	struct socket *so;
605 	int len, overcount;
606 	u_int qlen;
607 	const char localprefix[] = "local:";
608 	char descrbuf[SUNPATHLEN + sizeof(localprefix)];
609 #if defined(INET6)
610 	char addrbuf[INET6_ADDRSTRLEN];
611 #elif defined(INET)
612 	char addrbuf[INET_ADDRSTRLEN];
613 #endif
614 	bool dolog, over;
615 
616 	SOLISTEN_LOCK(head);
617 	over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
618 #ifdef REGRESSION
619 	if (regression_sonewconn_earlytest && over) {
620 #else
621 	if (over) {
622 #endif
623 		head->sol_overcount++;
624 		dolog = (sooverprio >= 0) &&
625 			!!ratecheck(&head->sol_lastover, &overinterval);
626 
627 		/*
628 		 * If we're going to log, copy the overflow count and queue
629 		 * length from the listen socket before dropping the lock.
630 		 * Also, reset the overflow count.
631 		 */
632 		if (dolog) {
633 			overcount = head->sol_overcount;
634 			head->sol_overcount = 0;
635 			qlen = head->sol_qlen;
636 		}
637 		SOLISTEN_UNLOCK(head);
638 
639 		if (dolog) {
640 			/*
641 			 * Try to print something descriptive about the
642 			 * socket for the error message.
643 			 */
644 			sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
645 			    SBUF_FIXEDLEN);
646 			switch (head->so_proto->pr_domain->dom_family) {
647 #if defined(INET) || defined(INET6)
648 #ifdef INET
649 			case AF_INET:
650 #endif
651 #ifdef INET6
652 			case AF_INET6:
653 				if (head->so_proto->pr_domain->dom_family ==
654 				    AF_INET6 ||
655 				    (sotoinpcb(head)->inp_inc.inc_flags &
656 				    INC_ISIPV6)) {
657 					ip6_sprintf(addrbuf,
658 					    &sotoinpcb(head)->inp_inc.inc6_laddr);
659 					sbuf_printf(&descrsb, "[%s]", addrbuf);
660 				} else
661 #endif
662 				{
663 #ifdef INET
664 					inet_ntoa_r(
665 					    sotoinpcb(head)->inp_inc.inc_laddr,
666 					    addrbuf);
667 					sbuf_cat(&descrsb, addrbuf);
668 #endif
669 				}
670 				sbuf_printf(&descrsb, ":%hu (proto %u)",
671 				    ntohs(sotoinpcb(head)->inp_inc.inc_lport),
672 				    head->so_proto->pr_protocol);
673 				break;
674 #endif /* INET || INET6 */
675 			case AF_UNIX:
676 				sbuf_cat(&descrsb, localprefix);
677 				if (sotounpcb(head)->unp_addr != NULL)
678 					len =
679 					    sotounpcb(head)->unp_addr->sun_len -
680 					    offsetof(struct sockaddr_un,
681 					    sun_path);
682 				else
683 					len = 0;
684 				if (len > 0)
685 					sbuf_bcat(&descrsb,
686 					    sotounpcb(head)->unp_addr->sun_path,
687 					    len);
688 				else
689 					sbuf_cat(&descrsb, "(unknown)");
690 				break;
691 			}
692 
693 			/*
694 			 * If we can't print something more specific, at least
695 			 * print the domain name.
696 			 */
697 			if (sbuf_finish(&descrsb) != 0 ||
698 			    sbuf_len(&descrsb) <= 0) {
699 				sbuf_clear(&descrsb);
700 				sbuf_cat(&descrsb,
701 				    head->so_proto->pr_domain->dom_name ?:
702 				    "unknown");
703 				sbuf_finish(&descrsb);
704 			}
705 			KASSERT(sbuf_len(&descrsb) > 0,
706 			    ("%s: sbuf creation failed", __func__));
707 			/*
708 			 * Preserve the historic listen queue overflow log
709 			 * message, that starts with "sonewconn:".  It has
710 			 * been known to sysadmins for years and also test
711 			 * sys/kern/sonewconn_overflow checks for it.
712 			 */
713 			if (head->so_cred == 0) {
714 				log(LOG_PRI(sooverprio),
715 				    "sonewconn: pcb %p (%s): "
716 				    "Listen queue overflow: %i already in "
717 				    "queue awaiting acceptance (%d "
718 				    "occurrences)\n", head->so_pcb,
719 				    sbuf_data(&descrsb),
720 			    	qlen, overcount);
721 			} else {
722 				log(LOG_PRI(sooverprio),
723 				    "sonewconn: pcb %p (%s): "
724 				    "Listen queue overflow: "
725 				    "%i already in queue awaiting acceptance "
726 				    "(%d occurrences), euid %d, rgid %d, jail %s\n",
727 				    head->so_pcb, sbuf_data(&descrsb), qlen,
728 				    overcount, head->so_cred->cr_uid,
729 				    head->so_cred->cr_rgid,
730 				    head->so_cred->cr_prison ?
731 					head->so_cred->cr_prison->pr_name :
732 					"not_jailed");
733 			}
734 			sbuf_delete(&descrsb);
735 
736 			overcount = 0;
737 		}
738 
739 		return (NULL);
740 	}
741 	SOLISTEN_UNLOCK(head);
742 	VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
743 	    __func__, head));
744 	so = soalloc(head->so_vnet);
745 	if (so == NULL) {
746 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
747 		    "limit reached or out of memory\n",
748 		    __func__, head->so_pcb);
749 		return (NULL);
750 	}
751 	so->so_listen = head;
752 	so->so_type = head->so_type;
753 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
754 	so->so_linger = head->so_linger;
755 	so->so_state = head->so_state;
756 	so->so_fibnum = head->so_fibnum;
757 	so->so_proto = head->so_proto;
758 	so->so_cred = crhold(head->so_cred);
759 #ifdef MAC
760 	mac_socket_newconn(head, so);
761 #endif
762 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
763 	    so_rdknl_assert_lock);
764 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
765 	    so_wrknl_assert_lock);
766 	VNET_SO_ASSERT(head);
767 	if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
768 		sodealloc(so);
769 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
770 		    __func__, head->so_pcb);
771 		return (NULL);
772 	}
773 	so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
774 	so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
775 	so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
776 	so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
777 	so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
778 	so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
779 	if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
780 		so->so_snd.sb_mtx = &so->so_snd_mtx;
781 		so->so_rcv.sb_mtx = &so->so_rcv_mtx;
782 	}
783 
784 	return (so);
785 }
786 
787 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
788 struct socket *
789 sonewconn(struct socket *head, int connstatus)
790 {
791 	struct socket *so;
792 
793 	if ((so = solisten_clone(head)) == NULL)
794 		return (NULL);
795 
796 	if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
797 		sodealloc(so);
798 		log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
799 		    __func__, head->so_pcb);
800 		return (NULL);
801 	}
802 
803 	(void)solisten_enqueue(so, connstatus);
804 
805 	return (so);
806 }
807 
808 /*
809  * Enqueue socket cloned by solisten_clone() to the listen queue of the
810  * listener it has been cloned from.
811  *
812  * Return 'true' if socket landed on complete queue, otherwise 'false'.
813  */
814 bool
815 solisten_enqueue(struct socket *so, int connstatus)
816 {
817 	struct socket *head = so->so_listen;
818 
819 	MPASS(refcount_load(&so->so_count) == 0);
820 	refcount_init(&so->so_count, 1);
821 
822 	SOLISTEN_LOCK(head);
823 	if (head->sol_accept_filter != NULL)
824 		connstatus = 0;
825 	so->so_state |= connstatus;
826 	soref(head); /* A socket on (in)complete queue refs head. */
827 	if (connstatus) {
828 		TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
829 		so->so_qstate = SQ_COMP;
830 		head->sol_qlen++;
831 		solisten_wakeup(head);	/* unlocks */
832 		return (true);
833 	} else {
834 		/*
835 		 * Keep removing sockets from the head until there's room for
836 		 * us to insert on the tail.  In pre-locking revisions, this
837 		 * was a simple if(), but as we could be racing with other
838 		 * threads and soabort() requires dropping locks, we must
839 		 * loop waiting for the condition to be true.
840 		 */
841 		while (head->sol_incqlen > head->sol_qlimit) {
842 			struct socket *sp;
843 
844 			sp = TAILQ_FIRST(&head->sol_incomp);
845 			TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
846 			head->sol_incqlen--;
847 			SOCK_LOCK(sp);
848 			sp->so_qstate = SQ_NONE;
849 			sp->so_listen = NULL;
850 			SOCK_UNLOCK(sp);
851 			sorele_locked(head);	/* does SOLISTEN_UNLOCK, head stays */
852 			soabort(sp);
853 			SOLISTEN_LOCK(head);
854 		}
855 		TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
856 		so->so_qstate = SQ_INCOMP;
857 		head->sol_incqlen++;
858 		SOLISTEN_UNLOCK(head);
859 		return (false);
860 	}
861 }
862 
863 #if defined(SCTP) || defined(SCTP_SUPPORT)
864 /*
865  * Socket part of sctp_peeloff().  Detach a new socket from an
866  * association.  The new socket is returned with a reference.
867  *
868  * XXXGL: reduce copy-paste with solisten_clone().
869  */
870 struct socket *
871 sopeeloff(struct socket *head)
872 {
873 	struct socket *so;
874 
875 	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
876 	    __func__, __LINE__, head));
877 	so = soalloc(head->so_vnet);
878 	if (so == NULL) {
879 		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
880 		    "limit reached or out of memory\n",
881 		    __func__, head->so_pcb);
882 		return (NULL);
883 	}
884 	so->so_type = head->so_type;
885 	so->so_options = head->so_options;
886 	so->so_linger = head->so_linger;
887 	so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
888 	so->so_fibnum = head->so_fibnum;
889 	so->so_proto = head->so_proto;
890 	so->so_cred = crhold(head->so_cred);
891 #ifdef MAC
892 	mac_socket_newconn(head, so);
893 #endif
894 	knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
895 	    so_rdknl_assert_lock);
896 	knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
897 	    so_wrknl_assert_lock);
898 	VNET_SO_ASSERT(head);
899 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
900 		sodealloc(so);
901 		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
902 		    __func__, head->so_pcb);
903 		return (NULL);
904 	}
905 	if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
906 		sodealloc(so);
907 		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
908 		    __func__, head->so_pcb);
909 		return (NULL);
910 	}
911 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
912 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
913 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
914 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
915 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
916 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
917 
918 	soref(so);
919 
920 	return (so);
921 }
922 #endif	/* SCTP */
923 
924 int
925 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
926 {
927 	int error;
928 
929 	CURVNET_SET(so->so_vnet);
930 	error = so->so_proto->pr_bind(so, nam, td);
931 	CURVNET_RESTORE();
932 	return (error);
933 }
934 
935 int
936 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
937 {
938 	int error;
939 
940 	CURVNET_SET(so->so_vnet);
941 	error = so->so_proto->pr_bindat(fd, so, nam, td);
942 	CURVNET_RESTORE();
943 	return (error);
944 }
945 
946 /*
947  * solisten() transitions a socket from a non-listening state to a listening
948  * state, but can also be used to update the listen queue depth on an
949  * existing listen socket.  The protocol will call back into the sockets
950  * layer using solisten_proto_check() and solisten_proto() to check and set
951  * socket-layer listen state.  Call backs are used so that the protocol can
952  * acquire both protocol and socket layer locks in whatever order is required
953  * by the protocol.
954  *
955  * Protocol implementors are advised to hold the socket lock across the
956  * socket-layer test and set to avoid races at the socket layer.
957  */
958 int
959 solisten(struct socket *so, int backlog, struct thread *td)
960 {
961 	int error;
962 
963 	CURVNET_SET(so->so_vnet);
964 	error = so->so_proto->pr_listen(so, backlog, td);
965 	CURVNET_RESTORE();
966 	return (error);
967 }
968 
969 /*
970  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
971  * order to interlock with socket I/O.
972  */
973 int
974 solisten_proto_check(struct socket *so)
975 {
976 	SOCK_LOCK_ASSERT(so);
977 
978 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
979 	    SS_ISDISCONNECTING)) != 0)
980 		return (EINVAL);
981 
982 	/*
983 	 * Sleeping is not permitted here, so simply fail if userspace is
984 	 * attempting to transmit or receive on the socket.  This kind of
985 	 * transient failure is not ideal, but it should occur only if userspace
986 	 * is misusing the socket interfaces.
987 	 */
988 	if (!sx_try_xlock(&so->so_snd_sx))
989 		return (EAGAIN);
990 	if (!sx_try_xlock(&so->so_rcv_sx)) {
991 		sx_xunlock(&so->so_snd_sx);
992 		return (EAGAIN);
993 	}
994 	mtx_lock(&so->so_snd_mtx);
995 	mtx_lock(&so->so_rcv_mtx);
996 
997 	/* Interlock with soo_aio_queue() and KTLS. */
998 	if (!SOLISTENING(so)) {
999 		bool ktls;
1000 
1001 #ifdef KERN_TLS
1002 		ktls = so->so_snd.sb_tls_info != NULL ||
1003 		    so->so_rcv.sb_tls_info != NULL;
1004 #else
1005 		ktls = false;
1006 #endif
1007 		if (ktls ||
1008 		    (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1009 		    (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1010 			solisten_proto_abort(so);
1011 			return (EINVAL);
1012 		}
1013 	}
1014 
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Undo the setup done by solisten_proto_check().
1020  */
1021 void
1022 solisten_proto_abort(struct socket *so)
1023 {
1024 	mtx_unlock(&so->so_snd_mtx);
1025 	mtx_unlock(&so->so_rcv_mtx);
1026 	sx_xunlock(&so->so_snd_sx);
1027 	sx_xunlock(&so->so_rcv_sx);
1028 }
1029 
1030 void
1031 solisten_proto(struct socket *so, int backlog)
1032 {
1033 	int sbrcv_lowat, sbsnd_lowat;
1034 	u_int sbrcv_hiwat, sbsnd_hiwat;
1035 	short sbrcv_flags, sbsnd_flags;
1036 	sbintime_t sbrcv_timeo, sbsnd_timeo;
1037 
1038 	SOCK_LOCK_ASSERT(so);
1039 	KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1040 	    SS_ISDISCONNECTING)) == 0,
1041 	    ("%s: bad socket state %p", __func__, so));
1042 
1043 	if (SOLISTENING(so))
1044 		goto listening;
1045 
1046 	/*
1047 	 * Change this socket to listening state.
1048 	 */
1049 	sbrcv_lowat = so->so_rcv.sb_lowat;
1050 	sbsnd_lowat = so->so_snd.sb_lowat;
1051 	sbrcv_hiwat = so->so_rcv.sb_hiwat;
1052 	sbsnd_hiwat = so->so_snd.sb_hiwat;
1053 	sbrcv_flags = so->so_rcv.sb_flags;
1054 	sbsnd_flags = so->so_snd.sb_flags;
1055 	sbrcv_timeo = so->so_rcv.sb_timeo;
1056 	sbsnd_timeo = so->so_snd.sb_timeo;
1057 
1058 	sbdestroy(so, SO_SND);
1059 	sbdestroy(so, SO_RCV);
1060 
1061 #ifdef INVARIANTS
1062 	bzero(&so->so_rcv,
1063 	    sizeof(struct socket) - offsetof(struct socket, so_rcv));
1064 #endif
1065 
1066 	so->sol_sbrcv_lowat = sbrcv_lowat;
1067 	so->sol_sbsnd_lowat = sbsnd_lowat;
1068 	so->sol_sbrcv_hiwat = sbrcv_hiwat;
1069 	so->sol_sbsnd_hiwat = sbsnd_hiwat;
1070 	so->sol_sbrcv_flags = sbrcv_flags;
1071 	so->sol_sbsnd_flags = sbsnd_flags;
1072 	so->sol_sbrcv_timeo = sbrcv_timeo;
1073 	so->sol_sbsnd_timeo = sbsnd_timeo;
1074 
1075 	so->sol_qlen = so->sol_incqlen = 0;
1076 	TAILQ_INIT(&so->sol_incomp);
1077 	TAILQ_INIT(&so->sol_comp);
1078 
1079 	so->sol_accept_filter = NULL;
1080 	so->sol_accept_filter_arg = NULL;
1081 	so->sol_accept_filter_str = NULL;
1082 
1083 	so->sol_upcall = NULL;
1084 	so->sol_upcallarg = NULL;
1085 
1086 	so->so_options |= SO_ACCEPTCONN;
1087 
1088 listening:
1089 	if (backlog < 0 || backlog > somaxconn)
1090 		backlog = somaxconn;
1091 	so->sol_qlimit = backlog;
1092 
1093 	mtx_unlock(&so->so_snd_mtx);
1094 	mtx_unlock(&so->so_rcv_mtx);
1095 	sx_xunlock(&so->so_snd_sx);
1096 	sx_xunlock(&so->so_rcv_sx);
1097 }
1098 
1099 /*
1100  * Wakeup listeners/subsystems once we have a complete connection.
1101  * Enters with lock, returns unlocked.
1102  */
1103 void
1104 solisten_wakeup(struct socket *sol)
1105 {
1106 
1107 	if (sol->sol_upcall != NULL)
1108 		(void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1109 	else {
1110 		selwakeuppri(&sol->so_rdsel, PSOCK);
1111 		KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1112 	}
1113 	SOLISTEN_UNLOCK(sol);
1114 	wakeup_one(&sol->sol_comp);
1115 	if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1116 		pgsigio(&sol->so_sigio, SIGIO, 0);
1117 }
1118 
1119 /*
1120  * Return single connection off a listening socket queue.  Main consumer of
1121  * the function is kern_accept4().  Some modules, that do their own accept
1122  * management also use the function.  The socket reference held by the
1123  * listen queue is handed to the caller.
1124  *
1125  * Listening socket must be locked on entry and is returned unlocked on
1126  * return.
1127  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1128  */
1129 int
1130 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1131 {
1132 	struct socket *so;
1133 	int error;
1134 
1135 	SOLISTEN_LOCK_ASSERT(head);
1136 
1137 	while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1138 	    head->so_error == 0) {
1139 		error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1140 		    "accept", 0);
1141 		if (error != 0) {
1142 			SOLISTEN_UNLOCK(head);
1143 			return (error);
1144 		}
1145 	}
1146 	if (head->so_error) {
1147 		error = head->so_error;
1148 		head->so_error = 0;
1149 	} else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1150 		error = EWOULDBLOCK;
1151 	else
1152 		error = 0;
1153 	if (error) {
1154 		SOLISTEN_UNLOCK(head);
1155 		return (error);
1156 	}
1157 	so = TAILQ_FIRST(&head->sol_comp);
1158 	SOCK_LOCK(so);
1159 	KASSERT(so->so_qstate == SQ_COMP,
1160 	    ("%s: so %p not SQ_COMP", __func__, so));
1161 	head->sol_qlen--;
1162 	so->so_qstate = SQ_NONE;
1163 	so->so_listen = NULL;
1164 	TAILQ_REMOVE(&head->sol_comp, so, so_list);
1165 	if (flags & ACCEPT4_INHERIT)
1166 		so->so_state |= (head->so_state & SS_NBIO);
1167 	else
1168 		so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1169 	SOCK_UNLOCK(so);
1170 	sorele_locked(head);
1171 
1172 	*ret = so;
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Free socket upon release of the very last reference.
1178  */
1179 static void
1180 sofree(struct socket *so)
1181 {
1182 	struct protosw *pr = so->so_proto;
1183 
1184 	SOCK_LOCK_ASSERT(so);
1185 	KASSERT(refcount_load(&so->so_count) == 0,
1186 	    ("%s: so %p has references", __func__, so));
1187 	KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1188 	    ("%s: so %p is on listen queue", __func__, so));
1189 
1190 	SOCK_UNLOCK(so);
1191 
1192 	if (so->so_dtor != NULL)
1193 		so->so_dtor(so);
1194 
1195 	VNET_SO_ASSERT(so);
1196 	if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
1197 		MPASS(pr->pr_domain->dom_dispose != NULL);
1198 		(*pr->pr_domain->dom_dispose)(so);
1199 	}
1200 	if (pr->pr_detach != NULL)
1201 		pr->pr_detach(so);
1202 
1203 	/*
1204 	 * From this point on, we assume that no other references to this
1205 	 * socket exist anywhere else in the stack.  Therefore, no locks need
1206 	 * to be acquired or held.
1207 	 */
1208 	if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1209 		sbdestroy(so, SO_SND);
1210 		sbdestroy(so, SO_RCV);
1211 	}
1212 	seldrain(&so->so_rdsel);
1213 	seldrain(&so->so_wrsel);
1214 	knlist_destroy(&so->so_rdsel.si_note);
1215 	knlist_destroy(&so->so_wrsel.si_note);
1216 	sodealloc(so);
1217 }
1218 
1219 /*
1220  * Release a reference on a socket while holding the socket lock.
1221  * Unlocks the socket lock before returning.
1222  */
1223 void
1224 sorele_locked(struct socket *so)
1225 {
1226 	SOCK_LOCK_ASSERT(so);
1227 	if (refcount_release(&so->so_count))
1228 		sofree(so);
1229 	else
1230 		SOCK_UNLOCK(so);
1231 }
1232 
1233 /*
1234  * Close a socket on last file table reference removal.  Initiate disconnect
1235  * if connected.  Free socket when disconnect complete.
1236  *
1237  * This function will sorele() the socket.  Note that soclose() may be called
1238  * prior to the ref count reaching zero.  The actual socket structure will
1239  * not be freed until the ref count reaches zero.
1240  */
1241 int
1242 soclose(struct socket *so)
1243 {
1244 	struct accept_queue lqueue;
1245 	int error = 0;
1246 	bool listening, last __diagused;
1247 
1248 	CURVNET_SET(so->so_vnet);
1249 	funsetown(&so->so_sigio);
1250 	if (so->so_state & SS_ISCONNECTED) {
1251 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1252 			error = sodisconnect(so);
1253 			if (error) {
1254 				if (error == ENOTCONN)
1255 					error = 0;
1256 				goto drop;
1257 			}
1258 		}
1259 
1260 		if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1261 			if ((so->so_state & SS_ISDISCONNECTING) &&
1262 			    (so->so_state & SS_NBIO))
1263 				goto drop;
1264 			while (so->so_state & SS_ISCONNECTED) {
1265 				error = tsleep(&so->so_timeo,
1266 				    PSOCK | PCATCH, "soclos",
1267 				    so->so_linger * hz);
1268 				if (error)
1269 					break;
1270 			}
1271 		}
1272 	}
1273 
1274 drop:
1275 	if (so->so_proto->pr_close != NULL)
1276 		so->so_proto->pr_close(so);
1277 
1278 	SOCK_LOCK(so);
1279 	if ((listening = SOLISTENING(so))) {
1280 		struct socket *sp;
1281 
1282 		TAILQ_INIT(&lqueue);
1283 		TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1284 		TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1285 
1286 		so->sol_qlen = so->sol_incqlen = 0;
1287 
1288 		TAILQ_FOREACH(sp, &lqueue, so_list) {
1289 			SOCK_LOCK(sp);
1290 			sp->so_qstate = SQ_NONE;
1291 			sp->so_listen = NULL;
1292 			SOCK_UNLOCK(sp);
1293 			last = refcount_release(&so->so_count);
1294 			KASSERT(!last, ("%s: released last reference for %p",
1295 			    __func__, so));
1296 		}
1297 	}
1298 	sorele_locked(so);
1299 	if (listening) {
1300 		struct socket *sp, *tsp;
1301 
1302 		TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1303 			soabort(sp);
1304 	}
1305 	CURVNET_RESTORE();
1306 	return (error);
1307 }
1308 
1309 /*
1310  * soabort() is used to abruptly tear down a connection, such as when a
1311  * resource limit is reached (listen queue depth exceeded), or if a listen
1312  * socket is closed while there are sockets waiting to be accepted.
1313  *
1314  * This interface is tricky, because it is called on an unreferenced socket,
1315  * and must be called only by a thread that has actually removed the socket
1316  * from the listen queue it was on.  Likely this thread holds the last
1317  * reference on the socket and soabort() will proceed with sofree().  But
1318  * it might be not the last, as the sockets on the listen queues are seen
1319  * from the protocol side.
1320  *
1321  * This interface will call into the protocol code, so must not be called
1322  * with any socket locks held.  Protocols do call it while holding their own
1323  * recursible protocol mutexes, but this is something that should be subject
1324  * to review in the future.
1325  *
1326  * Usually socket should have a single reference left, but this is not a
1327  * requirement.  In the past, when we have had named references for file
1328  * descriptor and protocol, we asserted that none of them are being held.
1329  */
1330 void
1331 soabort(struct socket *so)
1332 {
1333 
1334 	VNET_SO_ASSERT(so);
1335 
1336 	if (so->so_proto->pr_abort != NULL)
1337 		so->so_proto->pr_abort(so);
1338 	SOCK_LOCK(so);
1339 	sorele_locked(so);
1340 }
1341 
1342 int
1343 soaccept(struct socket *so, struct sockaddr **nam)
1344 {
1345 	int error;
1346 
1347 	CURVNET_SET(so->so_vnet);
1348 	error = so->so_proto->pr_accept(so, nam);
1349 	CURVNET_RESTORE();
1350 	return (error);
1351 }
1352 
1353 int
1354 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
1355 {
1356 
1357 	return (soconnectat(AT_FDCWD, so, nam, td));
1358 }
1359 
1360 int
1361 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1362 {
1363 	int error;
1364 
1365 	CURVNET_SET(so->so_vnet);
1366 
1367 	/*
1368 	 * If protocol is connection-based, can only connect once.
1369 	 * Otherwise, if connected, try to disconnect first.  This allows
1370 	 * user to disconnect by connecting to, e.g., a null address.
1371 	 *
1372 	 * Note, this check is racy and may need to be re-evaluated at the
1373 	 * protocol layer.
1374 	 */
1375 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1376 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1377 	    (error = sodisconnect(so)))) {
1378 		error = EISCONN;
1379 	} else {
1380 		/*
1381 		 * Prevent accumulated error from previous connection from
1382 		 * biting us.
1383 		 */
1384 		so->so_error = 0;
1385 		if (fd == AT_FDCWD) {
1386 			error = so->so_proto->pr_connect(so, nam, td);
1387 		} else {
1388 			error = so->so_proto->pr_connectat(fd, so, nam, td);
1389 		}
1390 	}
1391 	CURVNET_RESTORE();
1392 
1393 	return (error);
1394 }
1395 
1396 int
1397 soconnect2(struct socket *so1, struct socket *so2)
1398 {
1399 	int error;
1400 
1401 	CURVNET_SET(so1->so_vnet);
1402 	error = so1->so_proto->pr_connect2(so1, so2);
1403 	CURVNET_RESTORE();
1404 	return (error);
1405 }
1406 
1407 int
1408 sodisconnect(struct socket *so)
1409 {
1410 	int error;
1411 
1412 	if ((so->so_state & SS_ISCONNECTED) == 0)
1413 		return (ENOTCONN);
1414 	if (so->so_state & SS_ISDISCONNECTING)
1415 		return (EALREADY);
1416 	VNET_SO_ASSERT(so);
1417 	error = so->so_proto->pr_disconnect(so);
1418 	return (error);
1419 }
1420 
1421 int
1422 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1423     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1424 {
1425 	long space;
1426 	ssize_t resid;
1427 	int clen = 0, error, dontroute;
1428 
1429 	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1430 	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1431 	    ("sosend_dgram: !PR_ATOMIC"));
1432 
1433 	if (uio != NULL)
1434 		resid = uio->uio_resid;
1435 	else
1436 		resid = top->m_pkthdr.len;
1437 	/*
1438 	 * In theory resid should be unsigned.  However, space must be
1439 	 * signed, as it might be less than 0 if we over-committed, and we
1440 	 * must use a signed comparison of space and resid.  On the other
1441 	 * hand, a negative resid causes us to loop sending 0-length
1442 	 * segments to the protocol.
1443 	 */
1444 	if (resid < 0) {
1445 		error = EINVAL;
1446 		goto out;
1447 	}
1448 
1449 	dontroute =
1450 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1451 	if (td != NULL)
1452 		td->td_ru.ru_msgsnd++;
1453 	if (control != NULL)
1454 		clen = control->m_len;
1455 
1456 	SOCKBUF_LOCK(&so->so_snd);
1457 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1458 		SOCKBUF_UNLOCK(&so->so_snd);
1459 		error = EPIPE;
1460 		goto out;
1461 	}
1462 	if (so->so_error) {
1463 		error = so->so_error;
1464 		so->so_error = 0;
1465 		SOCKBUF_UNLOCK(&so->so_snd);
1466 		goto out;
1467 	}
1468 	if ((so->so_state & SS_ISCONNECTED) == 0) {
1469 		/*
1470 		 * `sendto' and `sendmsg' is allowed on a connection-based
1471 		 * socket if it supports implied connect.  Return ENOTCONN if
1472 		 * not connected and no address is supplied.
1473 		 */
1474 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1475 		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1476 			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1477 			    !(resid == 0 && clen != 0)) {
1478 				SOCKBUF_UNLOCK(&so->so_snd);
1479 				error = ENOTCONN;
1480 				goto out;
1481 			}
1482 		} else if (addr == NULL) {
1483 			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1484 				error = ENOTCONN;
1485 			else
1486 				error = EDESTADDRREQ;
1487 			SOCKBUF_UNLOCK(&so->so_snd);
1488 			goto out;
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1494 	 * problem and need fixing.
1495 	 */
1496 	space = sbspace(&so->so_snd);
1497 	if (flags & MSG_OOB)
1498 		space += 1024;
1499 	space -= clen;
1500 	SOCKBUF_UNLOCK(&so->so_snd);
1501 	if (resid > space) {
1502 		error = EMSGSIZE;
1503 		goto out;
1504 	}
1505 	if (uio == NULL) {
1506 		resid = 0;
1507 		if (flags & MSG_EOR)
1508 			top->m_flags |= M_EOR;
1509 	} else {
1510 		/*
1511 		 * Copy the data from userland into a mbuf chain.
1512 		 * If no data is to be copied in, a single empty mbuf
1513 		 * is returned.
1514 		 */
1515 		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1516 		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1517 		if (top == NULL) {
1518 			error = EFAULT;	/* only possible error */
1519 			goto out;
1520 		}
1521 		space -= resid - uio->uio_resid;
1522 		resid = uio->uio_resid;
1523 	}
1524 	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1525 	/*
1526 	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1527 	 * than with.
1528 	 */
1529 	if (dontroute) {
1530 		SOCK_LOCK(so);
1531 		so->so_options |= SO_DONTROUTE;
1532 		SOCK_UNLOCK(so);
1533 	}
1534 	/*
1535 	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1536 	 * of date.  We could have received a reset packet in an interrupt or
1537 	 * maybe we slept while doing page faults in uiomove() etc.  We could
1538 	 * probably recheck again inside the locking protection here, but
1539 	 * there are probably other places that this also happens.  We must
1540 	 * rethink this.
1541 	 */
1542 	VNET_SO_ASSERT(so);
1543 	error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
1544 	/*
1545 	 * If the user set MSG_EOF, the protocol understands this flag and
1546 	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1547 	 */
1548 	    ((flags & MSG_EOF) &&
1549 	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1550 	     (resid <= 0)) ?
1551 		PRUS_EOF :
1552 		/* If there is more to send set PRUS_MORETOCOME */
1553 		(flags & MSG_MORETOCOME) ||
1554 		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1555 		top, addr, control, td);
1556 	if (dontroute) {
1557 		SOCK_LOCK(so);
1558 		so->so_options &= ~SO_DONTROUTE;
1559 		SOCK_UNLOCK(so);
1560 	}
1561 	clen = 0;
1562 	control = NULL;
1563 	top = NULL;
1564 out:
1565 	if (top != NULL)
1566 		m_freem(top);
1567 	if (control != NULL)
1568 		m_freem(control);
1569 	return (error);
1570 }
1571 
1572 /*
1573  * Send on a socket.  If send must go all at once and message is larger than
1574  * send buffering, then hard error.  Lock against other senders.  If must go
1575  * all at once and not enough room now, then inform user that this would
1576  * block and do nothing.  Otherwise, if nonblocking, send as much as
1577  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1578  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1579  * in mbuf chain must be small enough to send all at once.
1580  *
1581  * Returns nonzero on error, timeout or signal; callers must check for short
1582  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1583  * on return.
1584  */
1585 int
1586 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1587     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1588 {
1589 	long space;
1590 	ssize_t resid;
1591 	int clen = 0, error, dontroute;
1592 	int atomic = sosendallatonce(so) || top;
1593 	int pr_send_flag;
1594 #ifdef KERN_TLS
1595 	struct ktls_session *tls;
1596 	int tls_enq_cnt, tls_send_flag;
1597 	uint8_t tls_rtype;
1598 
1599 	tls = NULL;
1600 	tls_rtype = TLS_RLTYPE_APP;
1601 #endif
1602 	if (uio != NULL)
1603 		resid = uio->uio_resid;
1604 	else if ((top->m_flags & M_PKTHDR) != 0)
1605 		resid = top->m_pkthdr.len;
1606 	else
1607 		resid = m_length(top, NULL);
1608 	/*
1609 	 * In theory resid should be unsigned.  However, space must be
1610 	 * signed, as it might be less than 0 if we over-committed, and we
1611 	 * must use a signed comparison of space and resid.  On the other
1612 	 * hand, a negative resid causes us to loop sending 0-length
1613 	 * segments to the protocol.
1614 	 *
1615 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1616 	 * type sockets since that's an error.
1617 	 */
1618 	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1619 		error = EINVAL;
1620 		goto out;
1621 	}
1622 
1623 	dontroute =
1624 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1625 	    (so->so_proto->pr_flags & PR_ATOMIC);
1626 	if (td != NULL)
1627 		td->td_ru.ru_msgsnd++;
1628 	if (control != NULL)
1629 		clen = control->m_len;
1630 
1631 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1632 	if (error)
1633 		goto out;
1634 
1635 #ifdef KERN_TLS
1636 	tls_send_flag = 0;
1637 	tls = ktls_hold(so->so_snd.sb_tls_info);
1638 	if (tls != NULL) {
1639 		if (tls->mode == TCP_TLS_MODE_SW)
1640 			tls_send_flag = PRUS_NOTREADY;
1641 
1642 		if (control != NULL) {
1643 			struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1644 
1645 			if (clen >= sizeof(*cm) &&
1646 			    cm->cmsg_type == TLS_SET_RECORD_TYPE) {
1647 				tls_rtype = *((uint8_t *)CMSG_DATA(cm));
1648 				clen = 0;
1649 				m_freem(control);
1650 				control = NULL;
1651 				atomic = 1;
1652 			}
1653 		}
1654 
1655 		if (resid == 0 && !ktls_permit_empty_frames(tls)) {
1656 			error = EINVAL;
1657 			goto release;
1658 		}
1659 	}
1660 #endif
1661 
1662 restart:
1663 	do {
1664 		SOCKBUF_LOCK(&so->so_snd);
1665 		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1666 			SOCKBUF_UNLOCK(&so->so_snd);
1667 			error = EPIPE;
1668 			goto release;
1669 		}
1670 		if (so->so_error) {
1671 			error = so->so_error;
1672 			so->so_error = 0;
1673 			SOCKBUF_UNLOCK(&so->so_snd);
1674 			goto release;
1675 		}
1676 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1677 			/*
1678 			 * `sendto' and `sendmsg' is allowed on a connection-
1679 			 * based socket if it supports implied connect.
1680 			 * Return ENOTCONN if not connected and no address is
1681 			 * supplied.
1682 			 */
1683 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1684 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1685 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1686 				    !(resid == 0 && clen != 0)) {
1687 					SOCKBUF_UNLOCK(&so->so_snd);
1688 					error = ENOTCONN;
1689 					goto release;
1690 				}
1691 			} else if (addr == NULL) {
1692 				SOCKBUF_UNLOCK(&so->so_snd);
1693 				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1694 					error = ENOTCONN;
1695 				else
1696 					error = EDESTADDRREQ;
1697 				goto release;
1698 			}
1699 		}
1700 		space = sbspace(&so->so_snd);
1701 		if (flags & MSG_OOB)
1702 			space += 1024;
1703 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1704 		    clen > so->so_snd.sb_hiwat) {
1705 			SOCKBUF_UNLOCK(&so->so_snd);
1706 			error = EMSGSIZE;
1707 			goto release;
1708 		}
1709 		if (space < resid + clen &&
1710 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1711 			if ((so->so_state & SS_NBIO) ||
1712 			    (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
1713 				SOCKBUF_UNLOCK(&so->so_snd);
1714 				error = EWOULDBLOCK;
1715 				goto release;
1716 			}
1717 			error = sbwait(so, SO_SND);
1718 			SOCKBUF_UNLOCK(&so->so_snd);
1719 			if (error)
1720 				goto release;
1721 			goto restart;
1722 		}
1723 		SOCKBUF_UNLOCK(&so->so_snd);
1724 		space -= clen;
1725 		do {
1726 			if (uio == NULL) {
1727 				resid = 0;
1728 				if (flags & MSG_EOR)
1729 					top->m_flags |= M_EOR;
1730 #ifdef KERN_TLS
1731 				if (tls != NULL) {
1732 					ktls_frame(top, tls, &tls_enq_cnt,
1733 					    tls_rtype);
1734 					tls_rtype = TLS_RLTYPE_APP;
1735 				}
1736 #endif
1737 			} else {
1738 				/*
1739 				 * Copy the data from userland into a mbuf
1740 				 * chain.  If resid is 0, which can happen
1741 				 * only if we have control to send, then
1742 				 * a single empty mbuf is returned.  This
1743 				 * is a workaround to prevent protocol send
1744 				 * methods to panic.
1745 				 */
1746 #ifdef KERN_TLS
1747 				if (tls != NULL) {
1748 					top = m_uiotombuf(uio, M_WAITOK, space,
1749 					    tls->params.max_frame_len,
1750 					    M_EXTPG |
1751 					    ((flags & MSG_EOR) ? M_EOR : 0));
1752 					if (top != NULL) {
1753 						ktls_frame(top, tls,
1754 						    &tls_enq_cnt, tls_rtype);
1755 					}
1756 					tls_rtype = TLS_RLTYPE_APP;
1757 				} else
1758 #endif
1759 					top = m_uiotombuf(uio, M_WAITOK, space,
1760 					    (atomic ? max_hdr : 0),
1761 					    (atomic ? M_PKTHDR : 0) |
1762 					    ((flags & MSG_EOR) ? M_EOR : 0));
1763 				if (top == NULL) {
1764 					error = EFAULT; /* only possible error */
1765 					goto release;
1766 				}
1767 				space -= resid - uio->uio_resid;
1768 				resid = uio->uio_resid;
1769 			}
1770 			if (dontroute) {
1771 				SOCK_LOCK(so);
1772 				so->so_options |= SO_DONTROUTE;
1773 				SOCK_UNLOCK(so);
1774 			}
1775 			/*
1776 			 * XXX all the SBS_CANTSENDMORE checks previously
1777 			 * done could be out of date.  We could have received
1778 			 * a reset packet in an interrupt or maybe we slept
1779 			 * while doing page faults in uiomove() etc.  We
1780 			 * could probably recheck again inside the locking
1781 			 * protection here, but there are probably other
1782 			 * places that this also happens.  We must rethink
1783 			 * this.
1784 			 */
1785 			VNET_SO_ASSERT(so);
1786 
1787 			pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
1788 			/*
1789 			 * If the user set MSG_EOF, the protocol understands
1790 			 * this flag and nothing left to send then use
1791 			 * PRU_SEND_EOF instead of PRU_SEND.
1792 			 */
1793 			    ((flags & MSG_EOF) &&
1794 			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1795 			     (resid <= 0)) ?
1796 				PRUS_EOF :
1797 			/* If there is more to send set PRUS_MORETOCOME. */
1798 			    (flags & MSG_MORETOCOME) ||
1799 			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
1800 
1801 #ifdef KERN_TLS
1802 			pr_send_flag |= tls_send_flag;
1803 #endif
1804 
1805 			error = so->so_proto->pr_send(so, pr_send_flag, top,
1806 			    addr, control, td);
1807 
1808 			if (dontroute) {
1809 				SOCK_LOCK(so);
1810 				so->so_options &= ~SO_DONTROUTE;
1811 				SOCK_UNLOCK(so);
1812 			}
1813 
1814 #ifdef KERN_TLS
1815 			if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
1816 				if (error != 0) {
1817 					m_freem(top);
1818 					top = NULL;
1819 				} else {
1820 					soref(so);
1821 					ktls_enqueue(top, so, tls_enq_cnt);
1822 				}
1823 			}
1824 #endif
1825 			clen = 0;
1826 			control = NULL;
1827 			top = NULL;
1828 			if (error)
1829 				goto release;
1830 		} while (resid && space > 0);
1831 	} while (resid);
1832 
1833 release:
1834 	SOCK_IO_SEND_UNLOCK(so);
1835 out:
1836 #ifdef KERN_TLS
1837 	if (tls != NULL)
1838 		ktls_free(tls);
1839 #endif
1840 	if (top != NULL)
1841 		m_freem(top);
1842 	if (control != NULL)
1843 		m_freem(control);
1844 	return (error);
1845 }
1846 
1847 /*
1848  * Send to a socket from a kernel thread.
1849  *
1850  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
1851  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
1852  * to be set at all.  This function should just boil down to a static inline
1853  * calling the protocol method.
1854  */
1855 int
1856 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1857     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1858 {
1859 	int error;
1860 
1861 	CURVNET_SET(so->so_vnet);
1862 	error = so->so_proto->pr_sosend(so, addr, uio,
1863 	    top, control, flags, td);
1864 	CURVNET_RESTORE();
1865 	return (error);
1866 }
1867 
1868 /*
1869  * send(2), write(2) or aio_write(2) on a socket.
1870  */
1871 int
1872 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1873     struct mbuf *control, int flags, struct proc *userproc)
1874 {
1875 	struct thread *td;
1876 	ssize_t len;
1877 	int error;
1878 
1879 	td = uio->uio_td;
1880 	len = uio->uio_resid;
1881 	CURVNET_SET(so->so_vnet);
1882 	error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
1883 	    td);
1884 	CURVNET_RESTORE();
1885 	if (error != 0) {
1886 		/*
1887 		 * Clear transient errors for stream protocols if they made
1888 		 * some progress.  Make exclusion for aio(4) that would
1889 		 * schedule a new write in case of EWOULDBLOCK and clear
1890 		 * error itself.  See soaio_process_job().
1891 		 */
1892 		if (uio->uio_resid != len &&
1893 		    (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
1894 		    userproc == NULL &&
1895 		    (error == ERESTART || error == EINTR ||
1896 		    error == EWOULDBLOCK))
1897 			error = 0;
1898 		/* Generation of SIGPIPE can be controlled per socket. */
1899 		if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
1900 		    (flags & MSG_NOSIGNAL) == 0) {
1901 			if (userproc != NULL) {
1902 				/* aio(4) job */
1903 				PROC_LOCK(userproc);
1904 				kern_psignal(userproc, SIGPIPE);
1905 				PROC_UNLOCK(userproc);
1906 			} else {
1907 				PROC_LOCK(td->td_proc);
1908 				tdsignal(td, SIGPIPE);
1909 				PROC_UNLOCK(td->td_proc);
1910 			}
1911 		}
1912 	}
1913 	return (error);
1914 }
1915 
1916 /*
1917  * The part of soreceive() that implements reading non-inline out-of-band
1918  * data from a socket.  For more complete comments, see soreceive(), from
1919  * which this code originated.
1920  *
1921  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1922  * unable to return an mbuf chain to the caller.
1923  */
1924 static int
1925 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1926 {
1927 	struct protosw *pr = so->so_proto;
1928 	struct mbuf *m;
1929 	int error;
1930 
1931 	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1932 	VNET_SO_ASSERT(so);
1933 
1934 	m = m_get(M_WAITOK, MT_DATA);
1935 	error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
1936 	if (error)
1937 		goto bad;
1938 	do {
1939 		error = uiomove(mtod(m, void *),
1940 		    (int) min(uio->uio_resid, m->m_len), uio);
1941 		m = m_free(m);
1942 	} while (uio->uio_resid && error == 0 && m);
1943 bad:
1944 	if (m != NULL)
1945 		m_freem(m);
1946 	return (error);
1947 }
1948 
1949 /*
1950  * Following replacement or removal of the first mbuf on the first mbuf chain
1951  * of a socket buffer, push necessary state changes back into the socket
1952  * buffer so that other consumers see the values consistently.  'nextrecord'
1953  * is the callers locally stored value of the original value of
1954  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1955  * NOTE: 'nextrecord' may be NULL.
1956  */
1957 static __inline void
1958 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1959 {
1960 
1961 	SOCKBUF_LOCK_ASSERT(sb);
1962 	/*
1963 	 * First, update for the new value of nextrecord.  If necessary, make
1964 	 * it the first record.
1965 	 */
1966 	if (sb->sb_mb != NULL)
1967 		sb->sb_mb->m_nextpkt = nextrecord;
1968 	else
1969 		sb->sb_mb = nextrecord;
1970 
1971 	/*
1972 	 * Now update any dependent socket buffer fields to reflect the new
1973 	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1974 	 * addition of a second clause that takes care of the case where
1975 	 * sb_mb has been updated, but remains the last record.
1976 	 */
1977 	if (sb->sb_mb == NULL) {
1978 		sb->sb_mbtail = NULL;
1979 		sb->sb_lastrecord = NULL;
1980 	} else if (sb->sb_mb->m_nextpkt == NULL)
1981 		sb->sb_lastrecord = sb->sb_mb;
1982 }
1983 
1984 /*
1985  * Implement receive operations on a socket.  We depend on the way that
1986  * records are added to the sockbuf by sbappend.  In particular, each record
1987  * (mbufs linked through m_next) must begin with an address if the protocol
1988  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1989  * data, and then zero or more mbufs of data.  In order to allow parallelism
1990  * between network receive and copying to user space, as well as avoid
1991  * sleeping with a mutex held, we release the socket buffer mutex during the
1992  * user space copy.  Although the sockbuf is locked, new data may still be
1993  * appended, and thus we must maintain consistency of the sockbuf during that
1994  * time.
1995  *
1996  * The caller may receive the data as a single mbuf chain by supplying an
1997  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1998  * the count in uio_resid.
1999  */
2000 int
2001 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
2002     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2003 {
2004 	struct mbuf *m, **mp;
2005 	int flags, error, offset;
2006 	ssize_t len;
2007 	struct protosw *pr = so->so_proto;
2008 	struct mbuf *nextrecord;
2009 	int moff, type = 0;
2010 	ssize_t orig_resid = uio->uio_resid;
2011 	bool report_real_len = false;
2012 
2013 	mp = mp0;
2014 	if (psa != NULL)
2015 		*psa = NULL;
2016 	if (controlp != NULL)
2017 		*controlp = NULL;
2018 	if (flagsp != NULL) {
2019 		report_real_len = *flagsp & MSG_TRUNC;
2020 		*flagsp &= ~MSG_TRUNC;
2021 		flags = *flagsp &~ MSG_EOR;
2022 	} else
2023 		flags = 0;
2024 	if (flags & MSG_OOB)
2025 		return (soreceive_rcvoob(so, uio, flags));
2026 	if (mp != NULL)
2027 		*mp = NULL;
2028 	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
2029 	    && uio->uio_resid) {
2030 		VNET_SO_ASSERT(so);
2031 		pr->pr_rcvd(so, 0);
2032 	}
2033 
2034 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2035 	if (error)
2036 		return (error);
2037 
2038 restart:
2039 	SOCKBUF_LOCK(&so->so_rcv);
2040 	m = so->so_rcv.sb_mb;
2041 	/*
2042 	 * If we have less data than requested, block awaiting more (subject
2043 	 * to any timeout) if:
2044 	 *   1. the current count is less than the low water mark, or
2045 	 *   2. MSG_DONTWAIT is not set
2046 	 */
2047 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2048 	    sbavail(&so->so_rcv) < uio->uio_resid) &&
2049 	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2050 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2051 		KASSERT(m != NULL || !sbavail(&so->so_rcv),
2052 		    ("receive: m == %p sbavail == %u",
2053 		    m, sbavail(&so->so_rcv)));
2054 		if (so->so_error || so->so_rerror) {
2055 			if (m != NULL)
2056 				goto dontblock;
2057 			if (so->so_error)
2058 				error = so->so_error;
2059 			else
2060 				error = so->so_rerror;
2061 			if ((flags & MSG_PEEK) == 0) {
2062 				if (so->so_error)
2063 					so->so_error = 0;
2064 				else
2065 					so->so_rerror = 0;
2066 			}
2067 			SOCKBUF_UNLOCK(&so->so_rcv);
2068 			goto release;
2069 		}
2070 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2071 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2072 			if (m != NULL)
2073 				goto dontblock;
2074 #ifdef KERN_TLS
2075 			else if (so->so_rcv.sb_tlsdcc == 0 &&
2076 			    so->so_rcv.sb_tlscc == 0) {
2077 #else
2078 			else {
2079 #endif
2080 				SOCKBUF_UNLOCK(&so->so_rcv);
2081 				goto release;
2082 			}
2083 		}
2084 		for (; m != NULL; m = m->m_next)
2085 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
2086 				m = so->so_rcv.sb_mb;
2087 				goto dontblock;
2088 			}
2089 		if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2090 		    SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2091 		    (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2092 			SOCKBUF_UNLOCK(&so->so_rcv);
2093 			error = ENOTCONN;
2094 			goto release;
2095 		}
2096 		if (uio->uio_resid == 0 && !report_real_len) {
2097 			SOCKBUF_UNLOCK(&so->so_rcv);
2098 			goto release;
2099 		}
2100 		if ((so->so_state & SS_NBIO) ||
2101 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2102 			SOCKBUF_UNLOCK(&so->so_rcv);
2103 			error = EWOULDBLOCK;
2104 			goto release;
2105 		}
2106 		SBLASTRECORDCHK(&so->so_rcv);
2107 		SBLASTMBUFCHK(&so->so_rcv);
2108 		error = sbwait(so, SO_RCV);
2109 		SOCKBUF_UNLOCK(&so->so_rcv);
2110 		if (error)
2111 			goto release;
2112 		goto restart;
2113 	}
2114 dontblock:
2115 	/*
2116 	 * From this point onward, we maintain 'nextrecord' as a cache of the
2117 	 * pointer to the next record in the socket buffer.  We must keep the
2118 	 * various socket buffer pointers and local stack versions of the
2119 	 * pointers in sync, pushing out modifications before dropping the
2120 	 * socket buffer mutex, and re-reading them when picking it up.
2121 	 *
2122 	 * Otherwise, we will race with the network stack appending new data
2123 	 * or records onto the socket buffer by using inconsistent/stale
2124 	 * versions of the field, possibly resulting in socket buffer
2125 	 * corruption.
2126 	 *
2127 	 * By holding the high-level sblock(), we prevent simultaneous
2128 	 * readers from pulling off the front of the socket buffer.
2129 	 */
2130 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2131 	if (uio->uio_td)
2132 		uio->uio_td->td_ru.ru_msgrcv++;
2133 	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2134 	SBLASTRECORDCHK(&so->so_rcv);
2135 	SBLASTMBUFCHK(&so->so_rcv);
2136 	nextrecord = m->m_nextpkt;
2137 	if (pr->pr_flags & PR_ADDR) {
2138 		KASSERT(m->m_type == MT_SONAME,
2139 		    ("m->m_type == %d", m->m_type));
2140 		orig_resid = 0;
2141 		if (psa != NULL)
2142 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2143 			    M_NOWAIT);
2144 		if (flags & MSG_PEEK) {
2145 			m = m->m_next;
2146 		} else {
2147 			sbfree(&so->so_rcv, m);
2148 			so->so_rcv.sb_mb = m_free(m);
2149 			m = so->so_rcv.sb_mb;
2150 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2151 		}
2152 	}
2153 
2154 	/*
2155 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2156 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
2157 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
2158 	 * perform externalization (or freeing if controlp == NULL).
2159 	 */
2160 	if (m != NULL && m->m_type == MT_CONTROL) {
2161 		struct mbuf *cm = NULL, *cmn;
2162 		struct mbuf **cme = &cm;
2163 #ifdef KERN_TLS
2164 		struct cmsghdr *cmsg;
2165 		struct tls_get_record tgr;
2166 
2167 		/*
2168 		 * For MSG_TLSAPPDATA, check for an alert record.
2169 		 * If found, return ENXIO without removing
2170 		 * it from the receive queue.  This allows a subsequent
2171 		 * call without MSG_TLSAPPDATA to receive it.
2172 		 * Note that, for TLS, there should only be a single
2173 		 * control mbuf with the TLS_GET_RECORD message in it.
2174 		 */
2175 		if (flags & MSG_TLSAPPDATA) {
2176 			cmsg = mtod(m, struct cmsghdr *);
2177 			if (cmsg->cmsg_type == TLS_GET_RECORD &&
2178 			    cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2179 				memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2180 				if (__predict_false(tgr.tls_type ==
2181 				    TLS_RLTYPE_ALERT)) {
2182 					SOCKBUF_UNLOCK(&so->so_rcv);
2183 					error = ENXIO;
2184 					goto release;
2185 				}
2186 			}
2187 		}
2188 #endif
2189 
2190 		do {
2191 			if (flags & MSG_PEEK) {
2192 				if (controlp != NULL) {
2193 					*controlp = m_copym(m, 0, m->m_len,
2194 					    M_NOWAIT);
2195 					controlp = &(*controlp)->m_next;
2196 				}
2197 				m = m->m_next;
2198 			} else {
2199 				sbfree(&so->so_rcv, m);
2200 				so->so_rcv.sb_mb = m->m_next;
2201 				m->m_next = NULL;
2202 				*cme = m;
2203 				cme = &(*cme)->m_next;
2204 				m = so->so_rcv.sb_mb;
2205 			}
2206 		} while (m != NULL && m->m_type == MT_CONTROL);
2207 		if ((flags & MSG_PEEK) == 0)
2208 			sockbuf_pushsync(&so->so_rcv, nextrecord);
2209 		while (cm != NULL) {
2210 			cmn = cm->m_next;
2211 			cm->m_next = NULL;
2212 			if (pr->pr_domain->dom_externalize != NULL) {
2213 				SOCKBUF_UNLOCK(&so->so_rcv);
2214 				VNET_SO_ASSERT(so);
2215 				error = (*pr->pr_domain->dom_externalize)
2216 				    (cm, controlp, flags);
2217 				SOCKBUF_LOCK(&so->so_rcv);
2218 			} else if (controlp != NULL)
2219 				*controlp = cm;
2220 			else
2221 				m_freem(cm);
2222 			if (controlp != NULL) {
2223 				while (*controlp != NULL)
2224 					controlp = &(*controlp)->m_next;
2225 			}
2226 			cm = cmn;
2227 		}
2228 		if (m != NULL)
2229 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2230 		else
2231 			nextrecord = so->so_rcv.sb_mb;
2232 		orig_resid = 0;
2233 	}
2234 	if (m != NULL) {
2235 		if ((flags & MSG_PEEK) == 0) {
2236 			KASSERT(m->m_nextpkt == nextrecord,
2237 			    ("soreceive: post-control, nextrecord !sync"));
2238 			if (nextrecord == NULL) {
2239 				KASSERT(so->so_rcv.sb_mb == m,
2240 				    ("soreceive: post-control, sb_mb!=m"));
2241 				KASSERT(so->so_rcv.sb_lastrecord == m,
2242 				    ("soreceive: post-control, lastrecord!=m"));
2243 			}
2244 		}
2245 		type = m->m_type;
2246 		if (type == MT_OOBDATA)
2247 			flags |= MSG_OOB;
2248 	} else {
2249 		if ((flags & MSG_PEEK) == 0) {
2250 			KASSERT(so->so_rcv.sb_mb == nextrecord,
2251 			    ("soreceive: sb_mb != nextrecord"));
2252 			if (so->so_rcv.sb_mb == NULL) {
2253 				KASSERT(so->so_rcv.sb_lastrecord == NULL,
2254 				    ("soreceive: sb_lastercord != NULL"));
2255 			}
2256 		}
2257 	}
2258 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2259 	SBLASTRECORDCHK(&so->so_rcv);
2260 	SBLASTMBUFCHK(&so->so_rcv);
2261 
2262 	/*
2263 	 * Now continue to read any data mbufs off of the head of the socket
2264 	 * buffer until the read request is satisfied.  Note that 'type' is
2265 	 * used to store the type of any mbuf reads that have happened so far
2266 	 * such that soreceive() can stop reading if the type changes, which
2267 	 * causes soreceive() to return only one of regular data and inline
2268 	 * out-of-band data in a single socket receive operation.
2269 	 */
2270 	moff = 0;
2271 	offset = 0;
2272 	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2273 	    && error == 0) {
2274 		/*
2275 		 * If the type of mbuf has changed since the last mbuf
2276 		 * examined ('type'), end the receive operation.
2277 		 */
2278 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2279 		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2280 			if (type != m->m_type)
2281 				break;
2282 		} else if (type == MT_OOBDATA)
2283 			break;
2284 		else
2285 		    KASSERT(m->m_type == MT_DATA,
2286 			("m->m_type == %d", m->m_type));
2287 		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
2288 		len = uio->uio_resid;
2289 		if (so->so_oobmark && len > so->so_oobmark - offset)
2290 			len = so->so_oobmark - offset;
2291 		if (len > m->m_len - moff)
2292 			len = m->m_len - moff;
2293 		/*
2294 		 * If mp is set, just pass back the mbufs.  Otherwise copy
2295 		 * them out via the uio, then free.  Sockbuf must be
2296 		 * consistent here (points to current mbuf, it points to next
2297 		 * record) when we drop priority; we must note any additions
2298 		 * to the sockbuf when we block interrupts again.
2299 		 */
2300 		if (mp == NULL) {
2301 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2302 			SBLASTRECORDCHK(&so->so_rcv);
2303 			SBLASTMBUFCHK(&so->so_rcv);
2304 			SOCKBUF_UNLOCK(&so->so_rcv);
2305 			if ((m->m_flags & M_EXTPG) != 0)
2306 				error = m_unmapped_uiomove(m, moff, uio,
2307 				    (int)len);
2308 			else
2309 				error = uiomove(mtod(m, char *) + moff,
2310 				    (int)len, uio);
2311 			SOCKBUF_LOCK(&so->so_rcv);
2312 			if (error) {
2313 				/*
2314 				 * The MT_SONAME mbuf has already been removed
2315 				 * from the record, so it is necessary to
2316 				 * remove the data mbufs, if any, to preserve
2317 				 * the invariant in the case of PR_ADDR that
2318 				 * requires MT_SONAME mbufs at the head of
2319 				 * each record.
2320 				 */
2321 				if (pr->pr_flags & PR_ATOMIC &&
2322 				    ((flags & MSG_PEEK) == 0))
2323 					(void)sbdroprecord_locked(&so->so_rcv);
2324 				SOCKBUF_UNLOCK(&so->so_rcv);
2325 				goto release;
2326 			}
2327 		} else
2328 			uio->uio_resid -= len;
2329 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2330 		if (len == m->m_len - moff) {
2331 			if (m->m_flags & M_EOR)
2332 				flags |= MSG_EOR;
2333 			if (flags & MSG_PEEK) {
2334 				m = m->m_next;
2335 				moff = 0;
2336 			} else {
2337 				nextrecord = m->m_nextpkt;
2338 				sbfree(&so->so_rcv, m);
2339 				if (mp != NULL) {
2340 					m->m_nextpkt = NULL;
2341 					*mp = m;
2342 					mp = &m->m_next;
2343 					so->so_rcv.sb_mb = m = m->m_next;
2344 					*mp = NULL;
2345 				} else {
2346 					so->so_rcv.sb_mb = m_free(m);
2347 					m = so->so_rcv.sb_mb;
2348 				}
2349 				sockbuf_pushsync(&so->so_rcv, nextrecord);
2350 				SBLASTRECORDCHK(&so->so_rcv);
2351 				SBLASTMBUFCHK(&so->so_rcv);
2352 			}
2353 		} else {
2354 			if (flags & MSG_PEEK)
2355 				moff += len;
2356 			else {
2357 				if (mp != NULL) {
2358 					if (flags & MSG_DONTWAIT) {
2359 						*mp = m_copym(m, 0, len,
2360 						    M_NOWAIT);
2361 						if (*mp == NULL) {
2362 							/*
2363 							 * m_copym() couldn't
2364 							 * allocate an mbuf.
2365 							 * Adjust uio_resid back
2366 							 * (it was adjusted
2367 							 * down by len bytes,
2368 							 * which we didn't end
2369 							 * up "copying" over).
2370 							 */
2371 							uio->uio_resid += len;
2372 							break;
2373 						}
2374 					} else {
2375 						SOCKBUF_UNLOCK(&so->so_rcv);
2376 						*mp = m_copym(m, 0, len,
2377 						    M_WAITOK);
2378 						SOCKBUF_LOCK(&so->so_rcv);
2379 					}
2380 				}
2381 				sbcut_locked(&so->so_rcv, len);
2382 			}
2383 		}
2384 		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2385 		if (so->so_oobmark) {
2386 			if ((flags & MSG_PEEK) == 0) {
2387 				so->so_oobmark -= len;
2388 				if (so->so_oobmark == 0) {
2389 					so->so_rcv.sb_state |= SBS_RCVATMARK;
2390 					break;
2391 				}
2392 			} else {
2393 				offset += len;
2394 				if (offset == so->so_oobmark)
2395 					break;
2396 			}
2397 		}
2398 		if (flags & MSG_EOR)
2399 			break;
2400 		/*
2401 		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
2402 		 * must not quit until "uio->uio_resid == 0" or an error
2403 		 * termination.  If a signal/timeout occurs, return with a
2404 		 * short count but without error.  Keep sockbuf locked
2405 		 * against other readers.
2406 		 */
2407 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
2408 		    !sosendallatonce(so) && nextrecord == NULL) {
2409 			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2410 			if (so->so_error || so->so_rerror ||
2411 			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
2412 				break;
2413 			/*
2414 			 * Notify the protocol that some data has been
2415 			 * drained before blocking.
2416 			 */
2417 			if (pr->pr_flags & PR_WANTRCVD) {
2418 				SOCKBUF_UNLOCK(&so->so_rcv);
2419 				VNET_SO_ASSERT(so);
2420 				pr->pr_rcvd(so, flags);
2421 				SOCKBUF_LOCK(&so->so_rcv);
2422 			}
2423 			SBLASTRECORDCHK(&so->so_rcv);
2424 			SBLASTMBUFCHK(&so->so_rcv);
2425 			/*
2426 			 * We could receive some data while was notifying
2427 			 * the protocol. Skip blocking in this case.
2428 			 */
2429 			if (so->so_rcv.sb_mb == NULL) {
2430 				error = sbwait(so, SO_RCV);
2431 				if (error) {
2432 					SOCKBUF_UNLOCK(&so->so_rcv);
2433 					goto release;
2434 				}
2435 			}
2436 			m = so->so_rcv.sb_mb;
2437 			if (m != NULL)
2438 				nextrecord = m->m_nextpkt;
2439 		}
2440 	}
2441 
2442 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2443 	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
2444 		if (report_real_len)
2445 			uio->uio_resid -= m_length(m, NULL) - moff;
2446 		flags |= MSG_TRUNC;
2447 		if ((flags & MSG_PEEK) == 0)
2448 			(void) sbdroprecord_locked(&so->so_rcv);
2449 	}
2450 	if ((flags & MSG_PEEK) == 0) {
2451 		if (m == NULL) {
2452 			/*
2453 			 * First part is an inline SB_EMPTY_FIXUP().  Second
2454 			 * part makes sure sb_lastrecord is up-to-date if
2455 			 * there is still data in the socket buffer.
2456 			 */
2457 			so->so_rcv.sb_mb = nextrecord;
2458 			if (so->so_rcv.sb_mb == NULL) {
2459 				so->so_rcv.sb_mbtail = NULL;
2460 				so->so_rcv.sb_lastrecord = NULL;
2461 			} else if (nextrecord->m_nextpkt == NULL)
2462 				so->so_rcv.sb_lastrecord = nextrecord;
2463 		}
2464 		SBLASTRECORDCHK(&so->so_rcv);
2465 		SBLASTMBUFCHK(&so->so_rcv);
2466 		/*
2467 		 * If soreceive() is being done from the socket callback,
2468 		 * then don't need to generate ACK to peer to update window,
2469 		 * since ACK will be generated on return to TCP.
2470 		 */
2471 		if (!(flags & MSG_SOCALLBCK) &&
2472 		    (pr->pr_flags & PR_WANTRCVD)) {
2473 			SOCKBUF_UNLOCK(&so->so_rcv);
2474 			VNET_SO_ASSERT(so);
2475 			pr->pr_rcvd(so, flags);
2476 			SOCKBUF_LOCK(&so->so_rcv);
2477 		}
2478 	}
2479 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2480 	if (orig_resid == uio->uio_resid && orig_resid &&
2481 	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
2482 		SOCKBUF_UNLOCK(&so->so_rcv);
2483 		goto restart;
2484 	}
2485 	SOCKBUF_UNLOCK(&so->so_rcv);
2486 
2487 	if (flagsp != NULL)
2488 		*flagsp |= flags;
2489 release:
2490 	SOCK_IO_RECV_UNLOCK(so);
2491 	return (error);
2492 }
2493 
2494 /*
2495  * Optimized version of soreceive() for stream (TCP) sockets.
2496  */
2497 int
2498 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
2499     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2500 {
2501 	int len = 0, error = 0, flags, oresid;
2502 	struct sockbuf *sb;
2503 	struct mbuf *m, *n = NULL;
2504 
2505 	/* We only do stream sockets. */
2506 	if (so->so_type != SOCK_STREAM)
2507 		return (EINVAL);
2508 	if (psa != NULL)
2509 		*psa = NULL;
2510 	if (flagsp != NULL)
2511 		flags = *flagsp &~ MSG_EOR;
2512 	else
2513 		flags = 0;
2514 	if (controlp != NULL)
2515 		*controlp = NULL;
2516 	if (flags & MSG_OOB)
2517 		return (soreceive_rcvoob(so, uio, flags));
2518 	if (mp0 != NULL)
2519 		*mp0 = NULL;
2520 
2521 	sb = &so->so_rcv;
2522 
2523 #ifdef KERN_TLS
2524 	/*
2525 	 * KTLS store TLS records as records with a control message to
2526 	 * describe the framing.
2527 	 *
2528 	 * We check once here before acquiring locks to optimize the
2529 	 * common case.
2530 	 */
2531 	if (sb->sb_tls_info != NULL)
2532 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2533 		    flagsp));
2534 #endif
2535 
2536 	/* Prevent other readers from entering the socket. */
2537 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
2538 	if (error)
2539 		return (error);
2540 	SOCKBUF_LOCK(sb);
2541 
2542 #ifdef KERN_TLS
2543 	if (sb->sb_tls_info != NULL) {
2544 		SOCKBUF_UNLOCK(sb);
2545 		SOCK_IO_RECV_UNLOCK(so);
2546 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2547 		    flagsp));
2548 	}
2549 #endif
2550 
2551 	/* Easy one, no space to copyout anything. */
2552 	if (uio->uio_resid == 0) {
2553 		error = EINVAL;
2554 		goto out;
2555 	}
2556 	oresid = uio->uio_resid;
2557 
2558 	/* We will never ever get anything unless we are or were connected. */
2559 	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2560 		error = ENOTCONN;
2561 		goto out;
2562 	}
2563 
2564 restart:
2565 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2566 
2567 	/* Abort if socket has reported problems. */
2568 	if (so->so_error) {
2569 		if (sbavail(sb) > 0)
2570 			goto deliver;
2571 		if (oresid > uio->uio_resid)
2572 			goto out;
2573 		error = so->so_error;
2574 		if (!(flags & MSG_PEEK))
2575 			so->so_error = 0;
2576 		goto out;
2577 	}
2578 
2579 	/* Door is closed.  Deliver what is left, if any. */
2580 	if (sb->sb_state & SBS_CANTRCVMORE) {
2581 		if (sbavail(sb) > 0)
2582 			goto deliver;
2583 		else
2584 			goto out;
2585 	}
2586 
2587 	/* Socket buffer is empty and we shall not block. */
2588 	if (sbavail(sb) == 0 &&
2589 	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2590 		error = EAGAIN;
2591 		goto out;
2592 	}
2593 
2594 	/* Socket buffer got some data that we shall deliver now. */
2595 	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2596 	    ((so->so_state & SS_NBIO) ||
2597 	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2598 	     sbavail(sb) >= sb->sb_lowat ||
2599 	     sbavail(sb) >= uio->uio_resid ||
2600 	     sbavail(sb) >= sb->sb_hiwat) ) {
2601 		goto deliver;
2602 	}
2603 
2604 	/* On MSG_WAITALL we must wait until all data or error arrives. */
2605 	if ((flags & MSG_WAITALL) &&
2606 	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2607 		goto deliver;
2608 
2609 	/*
2610 	 * Wait and block until (more) data comes in.
2611 	 * NB: Drops the sockbuf lock during wait.
2612 	 */
2613 	error = sbwait(so, SO_RCV);
2614 	if (error)
2615 		goto out;
2616 	goto restart;
2617 
2618 deliver:
2619 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2620 	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2621 	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2622 
2623 	/* Statistics. */
2624 	if (uio->uio_td)
2625 		uio->uio_td->td_ru.ru_msgrcv++;
2626 
2627 	/* Fill uio until full or current end of socket buffer is reached. */
2628 	len = min(uio->uio_resid, sbavail(sb));
2629 	if (mp0 != NULL) {
2630 		/* Dequeue as many mbufs as possible. */
2631 		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2632 			if (*mp0 == NULL)
2633 				*mp0 = sb->sb_mb;
2634 			else
2635 				m_cat(*mp0, sb->sb_mb);
2636 			for (m = sb->sb_mb;
2637 			     m != NULL && m->m_len <= len;
2638 			     m = m->m_next) {
2639 				KASSERT(!(m->m_flags & M_NOTAVAIL),
2640 				    ("%s: m %p not available", __func__, m));
2641 				len -= m->m_len;
2642 				uio->uio_resid -= m->m_len;
2643 				sbfree(sb, m);
2644 				n = m;
2645 			}
2646 			n->m_next = NULL;
2647 			sb->sb_mb = m;
2648 			sb->sb_lastrecord = sb->sb_mb;
2649 			if (sb->sb_mb == NULL)
2650 				SB_EMPTY_FIXUP(sb);
2651 		}
2652 		/* Copy the remainder. */
2653 		if (len > 0) {
2654 			KASSERT(sb->sb_mb != NULL,
2655 			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2656 
2657 			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2658 			if (m == NULL)
2659 				len = 0;	/* Don't flush data from sockbuf. */
2660 			else
2661 				uio->uio_resid -= len;
2662 			if (*mp0 != NULL)
2663 				m_cat(*mp0, m);
2664 			else
2665 				*mp0 = m;
2666 			if (*mp0 == NULL) {
2667 				error = ENOBUFS;
2668 				goto out;
2669 			}
2670 		}
2671 	} else {
2672 		/* NB: Must unlock socket buffer as uiomove may sleep. */
2673 		SOCKBUF_UNLOCK(sb);
2674 		error = m_mbuftouio(uio, sb->sb_mb, len);
2675 		SOCKBUF_LOCK(sb);
2676 		if (error)
2677 			goto out;
2678 	}
2679 	SBLASTRECORDCHK(sb);
2680 	SBLASTMBUFCHK(sb);
2681 
2682 	/*
2683 	 * Remove the delivered data from the socket buffer unless we
2684 	 * were only peeking.
2685 	 */
2686 	if (!(flags & MSG_PEEK)) {
2687 		if (len > 0)
2688 			sbdrop_locked(sb, len);
2689 
2690 		/* Notify protocol that we drained some data. */
2691 		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2692 		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2693 		     !(flags & MSG_SOCALLBCK))) {
2694 			SOCKBUF_UNLOCK(sb);
2695 			VNET_SO_ASSERT(so);
2696 			so->so_proto->pr_rcvd(so, flags);
2697 			SOCKBUF_LOCK(sb);
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * For MSG_WAITALL we may have to loop again and wait for
2703 	 * more data to come in.
2704 	 */
2705 	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2706 		goto restart;
2707 out:
2708 	SBLASTRECORDCHK(sb);
2709 	SBLASTMBUFCHK(sb);
2710 	SOCKBUF_UNLOCK(sb);
2711 	SOCK_IO_RECV_UNLOCK(so);
2712 	return (error);
2713 }
2714 
2715 /*
2716  * Optimized version of soreceive() for simple datagram cases from userspace.
2717  * Unlike in the stream case, we're able to drop a datagram if copyout()
2718  * fails, and because we handle datagrams atomically, we don't need to use a
2719  * sleep lock to prevent I/O interlacing.
2720  */
2721 int
2722 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2723     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2724 {
2725 	struct mbuf *m, *m2;
2726 	int flags, error;
2727 	ssize_t len;
2728 	struct protosw *pr = so->so_proto;
2729 	struct mbuf *nextrecord;
2730 
2731 	if (psa != NULL)
2732 		*psa = NULL;
2733 	if (controlp != NULL)
2734 		*controlp = NULL;
2735 	if (flagsp != NULL)
2736 		flags = *flagsp &~ MSG_EOR;
2737 	else
2738 		flags = 0;
2739 
2740 	/*
2741 	 * For any complicated cases, fall back to the full
2742 	 * soreceive_generic().
2743 	 */
2744 	if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
2745 		return (soreceive_generic(so, psa, uio, mp0, controlp,
2746 		    flagsp));
2747 
2748 	/*
2749 	 * Enforce restrictions on use.
2750 	 */
2751 	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2752 	    ("soreceive_dgram: wantrcvd"));
2753 	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2754 	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2755 	    ("soreceive_dgram: SBS_RCVATMARK"));
2756 	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2757 	    ("soreceive_dgram: P_CONNREQUIRED"));
2758 
2759 	/*
2760 	 * Loop blocking while waiting for a datagram.
2761 	 */
2762 	SOCKBUF_LOCK(&so->so_rcv);
2763 	while ((m = so->so_rcv.sb_mb) == NULL) {
2764 		KASSERT(sbavail(&so->so_rcv) == 0,
2765 		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2766 		    sbavail(&so->so_rcv)));
2767 		if (so->so_error) {
2768 			error = so->so_error;
2769 			so->so_error = 0;
2770 			SOCKBUF_UNLOCK(&so->so_rcv);
2771 			return (error);
2772 		}
2773 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2774 		    uio->uio_resid == 0) {
2775 			SOCKBUF_UNLOCK(&so->so_rcv);
2776 			return (0);
2777 		}
2778 		if ((so->so_state & SS_NBIO) ||
2779 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2780 			SOCKBUF_UNLOCK(&so->so_rcv);
2781 			return (EWOULDBLOCK);
2782 		}
2783 		SBLASTRECORDCHK(&so->so_rcv);
2784 		SBLASTMBUFCHK(&so->so_rcv);
2785 		error = sbwait(so, SO_RCV);
2786 		if (error) {
2787 			SOCKBUF_UNLOCK(&so->so_rcv);
2788 			return (error);
2789 		}
2790 	}
2791 	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2792 
2793 	if (uio->uio_td)
2794 		uio->uio_td->td_ru.ru_msgrcv++;
2795 	SBLASTRECORDCHK(&so->so_rcv);
2796 	SBLASTMBUFCHK(&so->so_rcv);
2797 	nextrecord = m->m_nextpkt;
2798 	if (nextrecord == NULL) {
2799 		KASSERT(so->so_rcv.sb_lastrecord == m,
2800 		    ("soreceive_dgram: lastrecord != m"));
2801 	}
2802 
2803 	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2804 	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2805 
2806 	/*
2807 	 * Pull 'm' and its chain off the front of the packet queue.
2808 	 */
2809 	so->so_rcv.sb_mb = NULL;
2810 	sockbuf_pushsync(&so->so_rcv, nextrecord);
2811 
2812 	/*
2813 	 * Walk 'm's chain and free that many bytes from the socket buffer.
2814 	 */
2815 	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2816 		sbfree(&so->so_rcv, m2);
2817 
2818 	/*
2819 	 * Do a few last checks before we let go of the lock.
2820 	 */
2821 	SBLASTRECORDCHK(&so->so_rcv);
2822 	SBLASTMBUFCHK(&so->so_rcv);
2823 	SOCKBUF_UNLOCK(&so->so_rcv);
2824 
2825 	if (pr->pr_flags & PR_ADDR) {
2826 		KASSERT(m->m_type == MT_SONAME,
2827 		    ("m->m_type == %d", m->m_type));
2828 		if (psa != NULL)
2829 			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2830 			    M_NOWAIT);
2831 		m = m_free(m);
2832 	}
2833 	if (m == NULL) {
2834 		/* XXXRW: Can this happen? */
2835 		return (0);
2836 	}
2837 
2838 	/*
2839 	 * Packet to copyout() is now in 'm' and it is disconnected from the
2840 	 * queue.
2841 	 *
2842 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2843 	 * in the first mbuf chain on the socket buffer.  We call into the
2844 	 * protocol to perform externalization (or freeing if controlp ==
2845 	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2846 	 * MT_DATA mbufs.
2847 	 */
2848 	if (m->m_type == MT_CONTROL) {
2849 		struct mbuf *cm = NULL, *cmn;
2850 		struct mbuf **cme = &cm;
2851 
2852 		do {
2853 			m2 = m->m_next;
2854 			m->m_next = NULL;
2855 			*cme = m;
2856 			cme = &(*cme)->m_next;
2857 			m = m2;
2858 		} while (m != NULL && m->m_type == MT_CONTROL);
2859 		while (cm != NULL) {
2860 			cmn = cm->m_next;
2861 			cm->m_next = NULL;
2862 			if (pr->pr_domain->dom_externalize != NULL) {
2863 				error = (*pr->pr_domain->dom_externalize)
2864 				    (cm, controlp, flags);
2865 			} else if (controlp != NULL)
2866 				*controlp = cm;
2867 			else
2868 				m_freem(cm);
2869 			if (controlp != NULL) {
2870 				while (*controlp != NULL)
2871 					controlp = &(*controlp)->m_next;
2872 			}
2873 			cm = cmn;
2874 		}
2875 	}
2876 	KASSERT(m == NULL || m->m_type == MT_DATA,
2877 	    ("soreceive_dgram: !data"));
2878 	while (m != NULL && uio->uio_resid > 0) {
2879 		len = uio->uio_resid;
2880 		if (len > m->m_len)
2881 			len = m->m_len;
2882 		error = uiomove(mtod(m, char *), (int)len, uio);
2883 		if (error) {
2884 			m_freem(m);
2885 			return (error);
2886 		}
2887 		if (len == m->m_len)
2888 			m = m_free(m);
2889 		else {
2890 			m->m_data += len;
2891 			m->m_len -= len;
2892 		}
2893 	}
2894 	if (m != NULL) {
2895 		flags |= MSG_TRUNC;
2896 		m_freem(m);
2897 	}
2898 	if (flagsp != NULL)
2899 		*flagsp |= flags;
2900 	return (0);
2901 }
2902 
2903 int
2904 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2905     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2906 {
2907 	int error;
2908 
2909 	CURVNET_SET(so->so_vnet);
2910 	error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
2911 	CURVNET_RESTORE();
2912 	return (error);
2913 }
2914 
2915 int
2916 soshutdown(struct socket *so, int how)
2917 {
2918 	struct protosw *pr;
2919 	int error, soerror_enotconn;
2920 
2921 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2922 		return (EINVAL);
2923 
2924 	soerror_enotconn = 0;
2925 	SOCK_LOCK(so);
2926 	if ((so->so_state &
2927 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
2928 		/*
2929 		 * POSIX mandates us to return ENOTCONN when shutdown(2) is
2930 		 * invoked on a datagram sockets, however historically we would
2931 		 * actually tear socket down. This is known to be leveraged by
2932 		 * some applications to unblock process waiting in recvXXX(2)
2933 		 * by other process that it shares that socket with. Try to meet
2934 		 * both backward-compatibility and POSIX requirements by forcing
2935 		 * ENOTCONN but still asking protocol to perform pru_shutdown().
2936 		 */
2937 		if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
2938 			SOCK_UNLOCK(so);
2939 			return (ENOTCONN);
2940 		}
2941 		soerror_enotconn = 1;
2942 	}
2943 
2944 	if (SOLISTENING(so)) {
2945 		if (how != SHUT_WR) {
2946 			so->so_error = ECONNABORTED;
2947 			solisten_wakeup(so);	/* unlocks so */
2948 		} else {
2949 			SOCK_UNLOCK(so);
2950 		}
2951 		goto done;
2952 	}
2953 	SOCK_UNLOCK(so);
2954 
2955 	CURVNET_SET(so->so_vnet);
2956 	pr = so->so_proto;
2957 	if (pr->pr_flush != NULL)
2958 		pr->pr_flush(so, how);
2959 	if (how != SHUT_WR)
2960 		sorflush(so);
2961 	if (how != SHUT_RD) {
2962 		error = pr->pr_shutdown(so);
2963 		wakeup(&so->so_timeo);
2964 		CURVNET_RESTORE();
2965 		return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
2966 	}
2967 	wakeup(&so->so_timeo);
2968 	CURVNET_RESTORE();
2969 
2970 done:
2971 	return (soerror_enotconn ? ENOTCONN : 0);
2972 }
2973 
2974 void
2975 sorflush(struct socket *so)
2976 {
2977 	struct protosw *pr;
2978 	int error;
2979 
2980 	VNET_SO_ASSERT(so);
2981 
2982 	/*
2983 	 * Dislodge threads currently blocked in receive and wait to acquire
2984 	 * a lock against other simultaneous readers before clearing the
2985 	 * socket buffer.  Don't let our acquire be interrupted by a signal
2986 	 * despite any existing socket disposition on interruptable waiting.
2987 	 */
2988 	socantrcvmore(so);
2989 
2990 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
2991 	if (error != 0) {
2992 		KASSERT(SOLISTENING(so),
2993 		    ("%s: soiolock(%p) failed", __func__, so));
2994 		return;
2995 	}
2996 
2997 	pr = so->so_proto;
2998 	if (pr->pr_flags & PR_RIGHTS) {
2999 		MPASS(pr->pr_domain->dom_dispose != NULL);
3000 		(*pr->pr_domain->dom_dispose)(so);
3001 	} else {
3002 		sbrelease(so, SO_RCV);
3003 		SOCK_IO_RECV_UNLOCK(so);
3004 	}
3005 
3006 }
3007 
3008 /*
3009  * Wrapper for Socket established helper hook.
3010  * Parameters: socket, context of the hook point, hook id.
3011  */
3012 static int inline
3013 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3014 {
3015 	struct socket_hhook_data hhook_data = {
3016 		.so = so,
3017 		.hctx = hctx,
3018 		.m = NULL,
3019 		.status = 0
3020 	};
3021 
3022 	CURVNET_SET(so->so_vnet);
3023 	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3024 	CURVNET_RESTORE();
3025 
3026 	/* Ugly but needed, since hhooks return void for now */
3027 	return (hhook_data.status);
3028 }
3029 
3030 /*
3031  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3032  * additional variant to handle the case where the option value needs to be
3033  * some kind of integer, but not a specific size.  In addition to their use
3034  * here, these functions are also called by the protocol-level pr_ctloutput()
3035  * routines.
3036  */
3037 int
3038 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3039 {
3040 	size_t	valsize;
3041 
3042 	/*
3043 	 * If the user gives us more than we wanted, we ignore it, but if we
3044 	 * don't get the minimum length the caller wants, we return EINVAL.
3045 	 * On success, sopt->sopt_valsize is set to however much we actually
3046 	 * retrieved.
3047 	 */
3048 	if ((valsize = sopt->sopt_valsize) < minlen)
3049 		return EINVAL;
3050 	if (valsize > len)
3051 		sopt->sopt_valsize = valsize = len;
3052 
3053 	if (sopt->sopt_td != NULL)
3054 		return (copyin(sopt->sopt_val, buf, valsize));
3055 
3056 	bcopy(sopt->sopt_val, buf, valsize);
3057 	return (0);
3058 }
3059 
3060 /*
3061  * Kernel version of setsockopt(2).
3062  *
3063  * XXX: optlen is size_t, not socklen_t
3064  */
3065 int
3066 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3067     size_t optlen)
3068 {
3069 	struct sockopt sopt;
3070 
3071 	sopt.sopt_level = level;
3072 	sopt.sopt_name = optname;
3073 	sopt.sopt_dir = SOPT_SET;
3074 	sopt.sopt_val = optval;
3075 	sopt.sopt_valsize = optlen;
3076 	sopt.sopt_td = NULL;
3077 	return (sosetopt(so, &sopt));
3078 }
3079 
3080 int
3081 sosetopt(struct socket *so, struct sockopt *sopt)
3082 {
3083 	int	error, optval;
3084 	struct	linger l;
3085 	struct	timeval tv;
3086 	sbintime_t val, *valp;
3087 	uint32_t val32;
3088 #ifdef MAC
3089 	struct mac extmac;
3090 #endif
3091 
3092 	CURVNET_SET(so->so_vnet);
3093 	error = 0;
3094 	if (sopt->sopt_level != SOL_SOCKET) {
3095 		if (so->so_proto->pr_ctloutput != NULL)
3096 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3097 		else
3098 			error = ENOPROTOOPT;
3099 	} else {
3100 		switch (sopt->sopt_name) {
3101 		case SO_ACCEPTFILTER:
3102 			error = accept_filt_setopt(so, sopt);
3103 			if (error)
3104 				goto bad;
3105 			break;
3106 
3107 		case SO_LINGER:
3108 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3109 			if (error)
3110 				goto bad;
3111 			if (l.l_linger < 0 ||
3112 			    l.l_linger > USHRT_MAX ||
3113 			    l.l_linger > (INT_MAX / hz)) {
3114 				error = EDOM;
3115 				goto bad;
3116 			}
3117 			SOCK_LOCK(so);
3118 			so->so_linger = l.l_linger;
3119 			if (l.l_onoff)
3120 				so->so_options |= SO_LINGER;
3121 			else
3122 				so->so_options &= ~SO_LINGER;
3123 			SOCK_UNLOCK(so);
3124 			break;
3125 
3126 		case SO_DEBUG:
3127 		case SO_KEEPALIVE:
3128 		case SO_DONTROUTE:
3129 		case SO_USELOOPBACK:
3130 		case SO_BROADCAST:
3131 		case SO_REUSEADDR:
3132 		case SO_REUSEPORT:
3133 		case SO_REUSEPORT_LB:
3134 		case SO_OOBINLINE:
3135 		case SO_TIMESTAMP:
3136 		case SO_BINTIME:
3137 		case SO_NOSIGPIPE:
3138 		case SO_NO_DDP:
3139 		case SO_NO_OFFLOAD:
3140 		case SO_RERROR:
3141 			error = sooptcopyin(sopt, &optval, sizeof optval,
3142 			    sizeof optval);
3143 			if (error)
3144 				goto bad;
3145 			SOCK_LOCK(so);
3146 			if (optval)
3147 				so->so_options |= sopt->sopt_name;
3148 			else
3149 				so->so_options &= ~sopt->sopt_name;
3150 			SOCK_UNLOCK(so);
3151 			break;
3152 
3153 		case SO_SETFIB:
3154 			error = sooptcopyin(sopt, &optval, sizeof optval,
3155 			    sizeof optval);
3156 			if (error)
3157 				goto bad;
3158 
3159 			if (optval < 0 || optval >= rt_numfibs) {
3160 				error = EINVAL;
3161 				goto bad;
3162 			}
3163 			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
3164 			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
3165 			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
3166 				so->so_fibnum = optval;
3167 			else
3168 				so->so_fibnum = 0;
3169 			break;
3170 
3171 		case SO_USER_COOKIE:
3172 			error = sooptcopyin(sopt, &val32, sizeof val32,
3173 			    sizeof val32);
3174 			if (error)
3175 				goto bad;
3176 			so->so_user_cookie = val32;
3177 			break;
3178 
3179 		case SO_SNDBUF:
3180 		case SO_RCVBUF:
3181 		case SO_SNDLOWAT:
3182 		case SO_RCVLOWAT:
3183 			error = so->so_proto->pr_setsbopt(so, sopt);
3184 			if (error)
3185 				goto bad;
3186 			break;
3187 
3188 		case SO_SNDTIMEO:
3189 		case SO_RCVTIMEO:
3190 #ifdef COMPAT_FREEBSD32
3191 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3192 				struct timeval32 tv32;
3193 
3194 				error = sooptcopyin(sopt, &tv32, sizeof tv32,
3195 				    sizeof tv32);
3196 				CP(tv32, tv, tv_sec);
3197 				CP(tv32, tv, tv_usec);
3198 			} else
3199 #endif
3200 				error = sooptcopyin(sopt, &tv, sizeof tv,
3201 				    sizeof tv);
3202 			if (error)
3203 				goto bad;
3204 			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3205 			    tv.tv_usec >= 1000000) {
3206 				error = EDOM;
3207 				goto bad;
3208 			}
3209 			if (tv.tv_sec > INT32_MAX)
3210 				val = SBT_MAX;
3211 			else
3212 				val = tvtosbt(tv);
3213 			SOCK_LOCK(so);
3214 			valp = sopt->sopt_name == SO_SNDTIMEO ?
3215 			    (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3216 			    &so->so_snd.sb_timeo) :
3217 			    (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3218 			    &so->so_rcv.sb_timeo);
3219 			*valp = val;
3220 			SOCK_UNLOCK(so);
3221 			break;
3222 
3223 		case SO_LABEL:
3224 #ifdef MAC
3225 			error = sooptcopyin(sopt, &extmac, sizeof extmac,
3226 			    sizeof extmac);
3227 			if (error)
3228 				goto bad;
3229 			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3230 			    so, &extmac);
3231 #else
3232 			error = EOPNOTSUPP;
3233 #endif
3234 			break;
3235 
3236 		case SO_TS_CLOCK:
3237 			error = sooptcopyin(sopt, &optval, sizeof optval,
3238 			    sizeof optval);
3239 			if (error)
3240 				goto bad;
3241 			if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3242 				error = EINVAL;
3243 				goto bad;
3244 			}
3245 			so->so_ts_clock = optval;
3246 			break;
3247 
3248 		case SO_MAX_PACING_RATE:
3249 			error = sooptcopyin(sopt, &val32, sizeof(val32),
3250 			    sizeof(val32));
3251 			if (error)
3252 				goto bad;
3253 			so->so_max_pacing_rate = val32;
3254 			break;
3255 
3256 		default:
3257 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3258 				error = hhook_run_socket(so, sopt,
3259 				    HHOOK_SOCKET_OPT);
3260 			else
3261 				error = ENOPROTOOPT;
3262 			break;
3263 		}
3264 		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
3265 			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
3266 	}
3267 bad:
3268 	CURVNET_RESTORE();
3269 	return (error);
3270 }
3271 
3272 /*
3273  * Helper routine for getsockopt.
3274  */
3275 int
3276 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
3277 {
3278 	int	error;
3279 	size_t	valsize;
3280 
3281 	error = 0;
3282 
3283 	/*
3284 	 * Documented get behavior is that we always return a value, possibly
3285 	 * truncated to fit in the user's buffer.  Traditional behavior is
3286 	 * that we always tell the user precisely how much we copied, rather
3287 	 * than something useful like the total amount we had available for
3288 	 * her.  Note that this interface is not idempotent; the entire
3289 	 * answer must be generated ahead of time.
3290 	 */
3291 	valsize = min(len, sopt->sopt_valsize);
3292 	sopt->sopt_valsize = valsize;
3293 	if (sopt->sopt_val != NULL) {
3294 		if (sopt->sopt_td != NULL)
3295 			error = copyout(buf, sopt->sopt_val, valsize);
3296 		else
3297 			bcopy(buf, sopt->sopt_val, valsize);
3298 	}
3299 	return (error);
3300 }
3301 
3302 int
3303 sogetopt(struct socket *so, struct sockopt *sopt)
3304 {
3305 	int	error, optval;
3306 	struct	linger l;
3307 	struct	timeval tv;
3308 #ifdef MAC
3309 	struct mac extmac;
3310 #endif
3311 
3312 	CURVNET_SET(so->so_vnet);
3313 	error = 0;
3314 	if (sopt->sopt_level != SOL_SOCKET) {
3315 		if (so->so_proto->pr_ctloutput != NULL)
3316 			error = (*so->so_proto->pr_ctloutput)(so, sopt);
3317 		else
3318 			error = ENOPROTOOPT;
3319 		CURVNET_RESTORE();
3320 		return (error);
3321 	} else {
3322 		switch (sopt->sopt_name) {
3323 		case SO_ACCEPTFILTER:
3324 			error = accept_filt_getopt(so, sopt);
3325 			break;
3326 
3327 		case SO_LINGER:
3328 			SOCK_LOCK(so);
3329 			l.l_onoff = so->so_options & SO_LINGER;
3330 			l.l_linger = so->so_linger;
3331 			SOCK_UNLOCK(so);
3332 			error = sooptcopyout(sopt, &l, sizeof l);
3333 			break;
3334 
3335 		case SO_USELOOPBACK:
3336 		case SO_DONTROUTE:
3337 		case SO_DEBUG:
3338 		case SO_KEEPALIVE:
3339 		case SO_REUSEADDR:
3340 		case SO_REUSEPORT:
3341 		case SO_REUSEPORT_LB:
3342 		case SO_BROADCAST:
3343 		case SO_OOBINLINE:
3344 		case SO_ACCEPTCONN:
3345 		case SO_TIMESTAMP:
3346 		case SO_BINTIME:
3347 		case SO_NOSIGPIPE:
3348 		case SO_NO_DDP:
3349 		case SO_NO_OFFLOAD:
3350 		case SO_RERROR:
3351 			optval = so->so_options & sopt->sopt_name;
3352 integer:
3353 			error = sooptcopyout(sopt, &optval, sizeof optval);
3354 			break;
3355 
3356 		case SO_DOMAIN:
3357 			optval = so->so_proto->pr_domain->dom_family;
3358 			goto integer;
3359 
3360 		case SO_TYPE:
3361 			optval = so->so_type;
3362 			goto integer;
3363 
3364 		case SO_PROTOCOL:
3365 			optval = so->so_proto->pr_protocol;
3366 			goto integer;
3367 
3368 		case SO_ERROR:
3369 			SOCK_LOCK(so);
3370 			if (so->so_error) {
3371 				optval = so->so_error;
3372 				so->so_error = 0;
3373 			} else {
3374 				optval = so->so_rerror;
3375 				so->so_rerror = 0;
3376 			}
3377 			SOCK_UNLOCK(so);
3378 			goto integer;
3379 
3380 		case SO_SNDBUF:
3381 			optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
3382 			    so->so_snd.sb_hiwat;
3383 			goto integer;
3384 
3385 		case SO_RCVBUF:
3386 			optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
3387 			    so->so_rcv.sb_hiwat;
3388 			goto integer;
3389 
3390 		case SO_SNDLOWAT:
3391 			optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
3392 			    so->so_snd.sb_lowat;
3393 			goto integer;
3394 
3395 		case SO_RCVLOWAT:
3396 			optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
3397 			    so->so_rcv.sb_lowat;
3398 			goto integer;
3399 
3400 		case SO_SNDTIMEO:
3401 		case SO_RCVTIMEO:
3402 			SOCK_LOCK(so);
3403 			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
3404 			    (SOLISTENING(so) ? so->sol_sbsnd_timeo :
3405 			    so->so_snd.sb_timeo) :
3406 			    (SOLISTENING(so) ? so->sol_sbrcv_timeo :
3407 			    so->so_rcv.sb_timeo));
3408 			SOCK_UNLOCK(so);
3409 #ifdef COMPAT_FREEBSD32
3410 			if (SV_CURPROC_FLAG(SV_ILP32)) {
3411 				struct timeval32 tv32;
3412 
3413 				CP(tv, tv32, tv_sec);
3414 				CP(tv, tv32, tv_usec);
3415 				error = sooptcopyout(sopt, &tv32, sizeof tv32);
3416 			} else
3417 #endif
3418 				error = sooptcopyout(sopt, &tv, sizeof tv);
3419 			break;
3420 
3421 		case SO_LABEL:
3422 #ifdef MAC
3423 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3424 			    sizeof(extmac));
3425 			if (error)
3426 				goto bad;
3427 			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
3428 			    so, &extmac);
3429 			if (error)
3430 				goto bad;
3431 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3432 #else
3433 			error = EOPNOTSUPP;
3434 #endif
3435 			break;
3436 
3437 		case SO_PEERLABEL:
3438 #ifdef MAC
3439 			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
3440 			    sizeof(extmac));
3441 			if (error)
3442 				goto bad;
3443 			error = mac_getsockopt_peerlabel(
3444 			    sopt->sopt_td->td_ucred, so, &extmac);
3445 			if (error)
3446 				goto bad;
3447 			error = sooptcopyout(sopt, &extmac, sizeof extmac);
3448 #else
3449 			error = EOPNOTSUPP;
3450 #endif
3451 			break;
3452 
3453 		case SO_LISTENQLIMIT:
3454 			optval = SOLISTENING(so) ? so->sol_qlimit : 0;
3455 			goto integer;
3456 
3457 		case SO_LISTENQLEN:
3458 			optval = SOLISTENING(so) ? so->sol_qlen : 0;
3459 			goto integer;
3460 
3461 		case SO_LISTENINCQLEN:
3462 			optval = SOLISTENING(so) ? so->sol_incqlen : 0;
3463 			goto integer;
3464 
3465 		case SO_TS_CLOCK:
3466 			optval = so->so_ts_clock;
3467 			goto integer;
3468 
3469 		case SO_MAX_PACING_RATE:
3470 			optval = so->so_max_pacing_rate;
3471 			goto integer;
3472 
3473 		default:
3474 			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
3475 				error = hhook_run_socket(so, sopt,
3476 				    HHOOK_SOCKET_OPT);
3477 			else
3478 				error = ENOPROTOOPT;
3479 			break;
3480 		}
3481 	}
3482 #ifdef MAC
3483 bad:
3484 #endif
3485 	CURVNET_RESTORE();
3486 	return (error);
3487 }
3488 
3489 int
3490 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
3491 {
3492 	struct mbuf *m, *m_prev;
3493 	int sopt_size = sopt->sopt_valsize;
3494 
3495 	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3496 	if (m == NULL)
3497 		return ENOBUFS;
3498 	if (sopt_size > MLEN) {
3499 		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
3500 		if ((m->m_flags & M_EXT) == 0) {
3501 			m_free(m);
3502 			return ENOBUFS;
3503 		}
3504 		m->m_len = min(MCLBYTES, sopt_size);
3505 	} else {
3506 		m->m_len = min(MLEN, sopt_size);
3507 	}
3508 	sopt_size -= m->m_len;
3509 	*mp = m;
3510 	m_prev = m;
3511 
3512 	while (sopt_size) {
3513 		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
3514 		if (m == NULL) {
3515 			m_freem(*mp);
3516 			return ENOBUFS;
3517 		}
3518 		if (sopt_size > MLEN) {
3519 			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
3520 			    M_NOWAIT);
3521 			if ((m->m_flags & M_EXT) == 0) {
3522 				m_freem(m);
3523 				m_freem(*mp);
3524 				return ENOBUFS;
3525 			}
3526 			m->m_len = min(MCLBYTES, sopt_size);
3527 		} else {
3528 			m->m_len = min(MLEN, sopt_size);
3529 		}
3530 		sopt_size -= m->m_len;
3531 		m_prev->m_next = m;
3532 		m_prev = m;
3533 	}
3534 	return (0);
3535 }
3536 
3537 int
3538 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
3539 {
3540 	struct mbuf *m0 = m;
3541 
3542 	if (sopt->sopt_val == NULL)
3543 		return (0);
3544 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3545 		if (sopt->sopt_td != NULL) {
3546 			int error;
3547 
3548 			error = copyin(sopt->sopt_val, mtod(m, char *),
3549 			    m->m_len);
3550 			if (error != 0) {
3551 				m_freem(m0);
3552 				return(error);
3553 			}
3554 		} else
3555 			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
3556 		sopt->sopt_valsize -= m->m_len;
3557 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3558 		m = m->m_next;
3559 	}
3560 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
3561 		panic("ip6_sooptmcopyin");
3562 	return (0);
3563 }
3564 
3565 int
3566 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
3567 {
3568 	struct mbuf *m0 = m;
3569 	size_t valsize = 0;
3570 
3571 	if (sopt->sopt_val == NULL)
3572 		return (0);
3573 	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
3574 		if (sopt->sopt_td != NULL) {
3575 			int error;
3576 
3577 			error = copyout(mtod(m, char *), sopt->sopt_val,
3578 			    m->m_len);
3579 			if (error != 0) {
3580 				m_freem(m0);
3581 				return(error);
3582 			}
3583 		} else
3584 			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
3585 		sopt->sopt_valsize -= m->m_len;
3586 		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3587 		valsize += m->m_len;
3588 		m = m->m_next;
3589 	}
3590 	if (m != NULL) {
3591 		/* enough soopt buffer should be given from user-land */
3592 		m_freem(m0);
3593 		return(EINVAL);
3594 	}
3595 	sopt->sopt_valsize = valsize;
3596 	return (0);
3597 }
3598 
3599 /*
3600  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3601  * out-of-band data, which will then notify socket consumers.
3602  */
3603 void
3604 sohasoutofband(struct socket *so)
3605 {
3606 
3607 	if (so->so_sigio != NULL)
3608 		pgsigio(&so->so_sigio, SIGURG, 0);
3609 	selwakeuppri(&so->so_rdsel, PSOCK);
3610 }
3611 
3612 int
3613 sopoll(struct socket *so, int events, struct ucred *active_cred,
3614     struct thread *td)
3615 {
3616 
3617 	/*
3618 	 * We do not need to set or assert curvnet as long as everyone uses
3619 	 * sopoll_generic().
3620 	 */
3621 	return (so->so_proto->pr_sopoll(so, events, active_cred, td));
3622 }
3623 
3624 int
3625 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3626     struct thread *td)
3627 {
3628 	int revents;
3629 
3630 	SOCK_LOCK(so);
3631 	if (SOLISTENING(so)) {
3632 		if (!(events & (POLLIN | POLLRDNORM)))
3633 			revents = 0;
3634 		else if (!TAILQ_EMPTY(&so->sol_comp))
3635 			revents = events & (POLLIN | POLLRDNORM);
3636 		else if ((events & POLLINIGNEOF) == 0 && so->so_error)
3637 			revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
3638 		else {
3639 			selrecord(td, &so->so_rdsel);
3640 			revents = 0;
3641 		}
3642 	} else {
3643 		revents = 0;
3644 		SOCK_SENDBUF_LOCK(so);
3645 		SOCK_RECVBUF_LOCK(so);
3646 		if (events & (POLLIN | POLLRDNORM))
3647 			if (soreadabledata(so))
3648 				revents |= events & (POLLIN | POLLRDNORM);
3649 		if (events & (POLLOUT | POLLWRNORM))
3650 			if (sowriteable(so))
3651 				revents |= events & (POLLOUT | POLLWRNORM);
3652 		if (events & (POLLPRI | POLLRDBAND))
3653 			if (so->so_oobmark ||
3654 			    (so->so_rcv.sb_state & SBS_RCVATMARK))
3655 				revents |= events & (POLLPRI | POLLRDBAND);
3656 		if ((events & POLLINIGNEOF) == 0) {
3657 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3658 				revents |= events & (POLLIN | POLLRDNORM);
3659 				if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3660 					revents |= POLLHUP;
3661 			}
3662 		}
3663 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3664 			revents |= events & POLLRDHUP;
3665 		if (revents == 0) {
3666 			if (events &
3667 			    (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
3668 				selrecord(td, &so->so_rdsel);
3669 				so->so_rcv.sb_flags |= SB_SEL;
3670 			}
3671 			if (events & (POLLOUT | POLLWRNORM)) {
3672 				selrecord(td, &so->so_wrsel);
3673 				so->so_snd.sb_flags |= SB_SEL;
3674 			}
3675 		}
3676 		SOCK_RECVBUF_UNLOCK(so);
3677 		SOCK_SENDBUF_UNLOCK(so);
3678 	}
3679 	SOCK_UNLOCK(so);
3680 	return (revents);
3681 }
3682 
3683 int
3684 soo_kqfilter(struct file *fp, struct knote *kn)
3685 {
3686 	struct socket *so = kn->kn_fp->f_data;
3687 	struct sockbuf *sb;
3688 	sb_which which;
3689 	struct knlist *knl;
3690 
3691 	switch (kn->kn_filter) {
3692 	case EVFILT_READ:
3693 		kn->kn_fop = &soread_filtops;
3694 		knl = &so->so_rdsel.si_note;
3695 		sb = &so->so_rcv;
3696 		which = SO_RCV;
3697 		break;
3698 	case EVFILT_WRITE:
3699 		kn->kn_fop = &sowrite_filtops;
3700 		knl = &so->so_wrsel.si_note;
3701 		sb = &so->so_snd;
3702 		which = SO_SND;
3703 		break;
3704 	case EVFILT_EMPTY:
3705 		kn->kn_fop = &soempty_filtops;
3706 		knl = &so->so_wrsel.si_note;
3707 		sb = &so->so_snd;
3708 		which = SO_SND;
3709 		break;
3710 	default:
3711 		return (EINVAL);
3712 	}
3713 
3714 	SOCK_LOCK(so);
3715 	if (SOLISTENING(so)) {
3716 		knlist_add(knl, kn, 1);
3717 	} else {
3718 		SOCK_BUF_LOCK(so, which);
3719 		knlist_add(knl, kn, 1);
3720 		sb->sb_flags |= SB_KNOTE;
3721 		SOCK_BUF_UNLOCK(so, which);
3722 	}
3723 	SOCK_UNLOCK(so);
3724 	return (0);
3725 }
3726 
3727 static void
3728 filt_sordetach(struct knote *kn)
3729 {
3730 	struct socket *so = kn->kn_fp->f_data;
3731 
3732 	so_rdknl_lock(so);
3733 	knlist_remove(&so->so_rdsel.si_note, kn, 1);
3734 	if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
3735 		so->so_rcv.sb_flags &= ~SB_KNOTE;
3736 	so_rdknl_unlock(so);
3737 }
3738 
3739 /*ARGSUSED*/
3740 static int
3741 filt_soread(struct knote *kn, long hint)
3742 {
3743 	struct socket *so;
3744 
3745 	so = kn->kn_fp->f_data;
3746 
3747 	if (SOLISTENING(so)) {
3748 		SOCK_LOCK_ASSERT(so);
3749 		kn->kn_data = so->sol_qlen;
3750 		if (so->so_error) {
3751 			kn->kn_flags |= EV_EOF;
3752 			kn->kn_fflags = so->so_error;
3753 			return (1);
3754 		}
3755 		return (!TAILQ_EMPTY(&so->sol_comp));
3756 	}
3757 
3758 	SOCK_RECVBUF_LOCK_ASSERT(so);
3759 
3760 	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3761 	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3762 		kn->kn_flags |= EV_EOF;
3763 		kn->kn_fflags = so->so_error;
3764 		return (1);
3765 	} else if (so->so_error || so->so_rerror)
3766 		return (1);
3767 
3768 	if (kn->kn_sfflags & NOTE_LOWAT) {
3769 		if (kn->kn_data >= kn->kn_sdata)
3770 			return (1);
3771 	} else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3772 		return (1);
3773 
3774 	/* This hook returning non-zero indicates an event, not error */
3775 	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3776 }
3777 
3778 static void
3779 filt_sowdetach(struct knote *kn)
3780 {
3781 	struct socket *so = kn->kn_fp->f_data;
3782 
3783 	so_wrknl_lock(so);
3784 	knlist_remove(&so->so_wrsel.si_note, kn, 1);
3785 	if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
3786 		so->so_snd.sb_flags &= ~SB_KNOTE;
3787 	so_wrknl_unlock(so);
3788 }
3789 
3790 /*ARGSUSED*/
3791 static int
3792 filt_sowrite(struct knote *kn, long hint)
3793 {
3794 	struct socket *so;
3795 
3796 	so = kn->kn_fp->f_data;
3797 
3798 	if (SOLISTENING(so))
3799 		return (0);
3800 
3801 	SOCK_SENDBUF_LOCK_ASSERT(so);
3802 	kn->kn_data = sbspace(&so->so_snd);
3803 
3804 	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3805 
3806 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3807 		kn->kn_flags |= EV_EOF;
3808 		kn->kn_fflags = so->so_error;
3809 		return (1);
3810 	} else if (so->so_error)	/* temporary udp error */
3811 		return (1);
3812 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3813 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3814 		return (0);
3815 	else if (kn->kn_sfflags & NOTE_LOWAT)
3816 		return (kn->kn_data >= kn->kn_sdata);
3817 	else
3818 		return (kn->kn_data >= so->so_snd.sb_lowat);
3819 }
3820 
3821 static int
3822 filt_soempty(struct knote *kn, long hint)
3823 {
3824 	struct socket *so;
3825 
3826 	so = kn->kn_fp->f_data;
3827 
3828 	if (SOLISTENING(so))
3829 		return (1);
3830 
3831 	SOCK_SENDBUF_LOCK_ASSERT(so);
3832 	kn->kn_data = sbused(&so->so_snd);
3833 
3834 	if (kn->kn_data == 0)
3835 		return (1);
3836 	else
3837 		return (0);
3838 }
3839 
3840 int
3841 socheckuid(struct socket *so, uid_t uid)
3842 {
3843 
3844 	if (so == NULL)
3845 		return (EPERM);
3846 	if (so->so_cred->cr_uid != uid)
3847 		return (EPERM);
3848 	return (0);
3849 }
3850 
3851 /*
3852  * These functions are used by protocols to notify the socket layer (and its
3853  * consumers) of state changes in the sockets driven by protocol-side events.
3854  */
3855 
3856 /*
3857  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3858  *
3859  * Normal sequence from the active (originating) side is that
3860  * soisconnecting() is called during processing of connect() call, resulting
3861  * in an eventual call to soisconnected() if/when the connection is
3862  * established.  When the connection is torn down soisdisconnecting() is
3863  * called during processing of disconnect() call, and soisdisconnected() is
3864  * called when the connection to the peer is totally severed.  The semantics
3865  * of these routines are such that connectionless protocols can call
3866  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3867  * calls when setting up a ``connection'' takes no time.
3868  *
3869  * From the passive side, a socket is created with two queues of sockets:
3870  * so_incomp for connections in progress and so_comp for connections already
3871  * made and awaiting user acceptance.  As a protocol is preparing incoming
3872  * connections, it creates a socket structure queued on so_incomp by calling
3873  * sonewconn().  When the connection is established, soisconnected() is
3874  * called, and transfers the socket structure to so_comp, making it available
3875  * to accept().
3876  *
3877  * If a socket is closed with sockets on either so_incomp or so_comp, these
3878  * sockets are dropped.
3879  *
3880  * If higher-level protocols are implemented in the kernel, the wakeups done
3881  * here will sometimes cause software-interrupt process scheduling.
3882  */
3883 void
3884 soisconnecting(struct socket *so)
3885 {
3886 
3887 	SOCK_LOCK(so);
3888 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3889 	so->so_state |= SS_ISCONNECTING;
3890 	SOCK_UNLOCK(so);
3891 }
3892 
3893 void
3894 soisconnected(struct socket *so)
3895 {
3896 	bool last __diagused;
3897 
3898 	SOCK_LOCK(so);
3899 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3900 	so->so_state |= SS_ISCONNECTED;
3901 
3902 	if (so->so_qstate == SQ_INCOMP) {
3903 		struct socket *head = so->so_listen;
3904 		int ret;
3905 
3906 		KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
3907 		/*
3908 		 * Promoting a socket from incomplete queue to complete, we
3909 		 * need to go through reverse order of locking.  We first do
3910 		 * trylock, and if that doesn't succeed, we go the hard way
3911 		 * leaving a reference and rechecking consistency after proper
3912 		 * locking.
3913 		 */
3914 		if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
3915 			soref(head);
3916 			SOCK_UNLOCK(so);
3917 			SOLISTEN_LOCK(head);
3918 			SOCK_LOCK(so);
3919 			if (__predict_false(head != so->so_listen)) {
3920 				/*
3921 				 * The socket went off the listen queue,
3922 				 * should be lost race to close(2) of sol.
3923 				 * The socket is about to soabort().
3924 				 */
3925 				SOCK_UNLOCK(so);
3926 				sorele_locked(head);
3927 				return;
3928 			}
3929 			last = refcount_release(&head->so_count);
3930 			KASSERT(!last, ("%s: released last reference for %p",
3931 			    __func__, head));
3932 		}
3933 again:
3934 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3935 			TAILQ_REMOVE(&head->sol_incomp, so, so_list);
3936 			head->sol_incqlen--;
3937 			TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
3938 			head->sol_qlen++;
3939 			so->so_qstate = SQ_COMP;
3940 			SOCK_UNLOCK(so);
3941 			solisten_wakeup(head);	/* unlocks */
3942 		} else {
3943 			SOCK_RECVBUF_LOCK(so);
3944 			soupcall_set(so, SO_RCV,
3945 			    head->sol_accept_filter->accf_callback,
3946 			    head->sol_accept_filter_arg);
3947 			so->so_options &= ~SO_ACCEPTFILTER;
3948 			ret = head->sol_accept_filter->accf_callback(so,
3949 			    head->sol_accept_filter_arg, M_NOWAIT);
3950 			if (ret == SU_ISCONNECTED) {
3951 				soupcall_clear(so, SO_RCV);
3952 				SOCK_RECVBUF_UNLOCK(so);
3953 				goto again;
3954 			}
3955 			SOCK_RECVBUF_UNLOCK(so);
3956 			SOCK_UNLOCK(so);
3957 			SOLISTEN_UNLOCK(head);
3958 		}
3959 		return;
3960 	}
3961 	SOCK_UNLOCK(so);
3962 	wakeup(&so->so_timeo);
3963 	sorwakeup(so);
3964 	sowwakeup(so);
3965 }
3966 
3967 void
3968 soisdisconnecting(struct socket *so)
3969 {
3970 
3971 	SOCK_LOCK(so);
3972 	so->so_state &= ~SS_ISCONNECTING;
3973 	so->so_state |= SS_ISDISCONNECTING;
3974 
3975 	if (!SOLISTENING(so)) {
3976 		SOCK_RECVBUF_LOCK(so);
3977 		socantrcvmore_locked(so);
3978 		SOCK_SENDBUF_LOCK(so);
3979 		socantsendmore_locked(so);
3980 	}
3981 	SOCK_UNLOCK(so);
3982 	wakeup(&so->so_timeo);
3983 }
3984 
3985 void
3986 soisdisconnected(struct socket *so)
3987 {
3988 
3989 	SOCK_LOCK(so);
3990 
3991 	/*
3992 	 * There is at least one reader of so_state that does not
3993 	 * acquire socket lock, namely soreceive_generic().  Ensure
3994 	 * that it never sees all flags that track connection status
3995 	 * cleared, by ordering the update with a barrier semantic of
3996 	 * our release thread fence.
3997 	 */
3998 	so->so_state |= SS_ISDISCONNECTED;
3999 	atomic_thread_fence_rel();
4000 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4001 
4002 	if (!SOLISTENING(so)) {
4003 		SOCK_UNLOCK(so);
4004 		SOCK_RECVBUF_LOCK(so);
4005 		socantrcvmore_locked(so);
4006 		SOCK_SENDBUF_LOCK(so);
4007 		sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4008 		socantsendmore_locked(so);
4009 	} else
4010 		SOCK_UNLOCK(so);
4011 	wakeup(&so->so_timeo);
4012 }
4013 
4014 int
4015 soiolock(struct socket *so, struct sx *sx, int flags)
4016 {
4017 	int error;
4018 
4019 	KASSERT((flags & SBL_VALID) == flags,
4020 	    ("soiolock: invalid flags %#x", flags));
4021 
4022 	if ((flags & SBL_WAIT) != 0) {
4023 		if ((flags & SBL_NOINTR) != 0) {
4024 			sx_xlock(sx);
4025 		} else {
4026 			error = sx_xlock_sig(sx);
4027 			if (error != 0)
4028 				return (error);
4029 		}
4030 	} else if (!sx_try_xlock(sx)) {
4031 		return (EWOULDBLOCK);
4032 	}
4033 
4034 	if (__predict_false(SOLISTENING(so))) {
4035 		sx_xunlock(sx);
4036 		return (ENOTCONN);
4037 	}
4038 	return (0);
4039 }
4040 
4041 void
4042 soiounlock(struct sx *sx)
4043 {
4044 	sx_xunlock(sx);
4045 }
4046 
4047 /*
4048  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4049  */
4050 struct sockaddr *
4051 sodupsockaddr(const struct sockaddr *sa, int mflags)
4052 {
4053 	struct sockaddr *sa2;
4054 
4055 	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4056 	if (sa2)
4057 		bcopy(sa, sa2, sa->sa_len);
4058 	return sa2;
4059 }
4060 
4061 /*
4062  * Register per-socket destructor.
4063  */
4064 void
4065 sodtor_set(struct socket *so, so_dtor_t *func)
4066 {
4067 
4068 	SOCK_LOCK_ASSERT(so);
4069 	so->so_dtor = func;
4070 }
4071 
4072 /*
4073  * Register per-socket buffer upcalls.
4074  */
4075 void
4076 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4077 {
4078 	struct sockbuf *sb;
4079 
4080 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4081 
4082 	switch (which) {
4083 	case SO_RCV:
4084 		sb = &so->so_rcv;
4085 		break;
4086 	case SO_SND:
4087 		sb = &so->so_snd;
4088 		break;
4089 	}
4090 	SOCK_BUF_LOCK_ASSERT(so, which);
4091 	sb->sb_upcall = func;
4092 	sb->sb_upcallarg = arg;
4093 	sb->sb_flags |= SB_UPCALL;
4094 }
4095 
4096 void
4097 soupcall_clear(struct socket *so, sb_which which)
4098 {
4099 	struct sockbuf *sb;
4100 
4101 	KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4102 
4103 	switch (which) {
4104 	case SO_RCV:
4105 		sb = &so->so_rcv;
4106 		break;
4107 	case SO_SND:
4108 		sb = &so->so_snd;
4109 		break;
4110 	}
4111 	SOCK_BUF_LOCK_ASSERT(so, which);
4112 	KASSERT(sb->sb_upcall != NULL,
4113 	    ("%s: so %p no upcall to clear", __func__, so));
4114 	sb->sb_upcall = NULL;
4115 	sb->sb_upcallarg = NULL;
4116 	sb->sb_flags &= ~SB_UPCALL;
4117 }
4118 
4119 void
4120 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4121 {
4122 
4123 	SOLISTEN_LOCK_ASSERT(so);
4124 	so->sol_upcall = func;
4125 	so->sol_upcallarg = arg;
4126 }
4127 
4128 static void
4129 so_rdknl_lock(void *arg)
4130 {
4131 	struct socket *so = arg;
4132 
4133 retry:
4134 	if (SOLISTENING(so)) {
4135 		SOLISTEN_LOCK(so);
4136 	} else {
4137 		SOCK_RECVBUF_LOCK(so);
4138 		if (__predict_false(SOLISTENING(so))) {
4139 			SOCK_RECVBUF_UNLOCK(so);
4140 			goto retry;
4141 		}
4142 	}
4143 }
4144 
4145 static void
4146 so_rdknl_unlock(void *arg)
4147 {
4148 	struct socket *so = arg;
4149 
4150 	if (SOLISTENING(so))
4151 		SOLISTEN_UNLOCK(so);
4152 	else
4153 		SOCK_RECVBUF_UNLOCK(so);
4154 }
4155 
4156 static void
4157 so_rdknl_assert_lock(void *arg, int what)
4158 {
4159 	struct socket *so = arg;
4160 
4161 	if (what == LA_LOCKED) {
4162 		if (SOLISTENING(so))
4163 			SOLISTEN_LOCK_ASSERT(so);
4164 		else
4165 			SOCK_RECVBUF_LOCK_ASSERT(so);
4166 	} else {
4167 		if (SOLISTENING(so))
4168 			SOLISTEN_UNLOCK_ASSERT(so);
4169 		else
4170 			SOCK_RECVBUF_UNLOCK_ASSERT(so);
4171 	}
4172 }
4173 
4174 static void
4175 so_wrknl_lock(void *arg)
4176 {
4177 	struct socket *so = arg;
4178 
4179 retry:
4180 	if (SOLISTENING(so)) {
4181 		SOLISTEN_LOCK(so);
4182 	} else {
4183 		SOCK_SENDBUF_LOCK(so);
4184 		if (__predict_false(SOLISTENING(so))) {
4185 			SOCK_SENDBUF_UNLOCK(so);
4186 			goto retry;
4187 		}
4188 	}
4189 }
4190 
4191 static void
4192 so_wrknl_unlock(void *arg)
4193 {
4194 	struct socket *so = arg;
4195 
4196 	if (SOLISTENING(so))
4197 		SOLISTEN_UNLOCK(so);
4198 	else
4199 		SOCK_SENDBUF_UNLOCK(so);
4200 }
4201 
4202 static void
4203 so_wrknl_assert_lock(void *arg, int what)
4204 {
4205 	struct socket *so = arg;
4206 
4207 	if (what == LA_LOCKED) {
4208 		if (SOLISTENING(so))
4209 			SOLISTEN_LOCK_ASSERT(so);
4210 		else
4211 			SOCK_SENDBUF_LOCK_ASSERT(so);
4212 	} else {
4213 		if (SOLISTENING(so))
4214 			SOLISTEN_UNLOCK_ASSERT(so);
4215 		else
4216 			SOCK_SENDBUF_UNLOCK_ASSERT(so);
4217 	}
4218 }
4219 
4220 /*
4221  * Create an external-format (``xsocket'') structure using the information in
4222  * the kernel-format socket structure pointed to by so.  This is done to
4223  * reduce the spew of irrelevant information over this interface, to isolate
4224  * user code from changes in the kernel structure, and potentially to provide
4225  * information-hiding if we decide that some of this information should be
4226  * hidden from users.
4227  */
4228 void
4229 sotoxsocket(struct socket *so, struct xsocket *xso)
4230 {
4231 
4232 	bzero(xso, sizeof(*xso));
4233 	xso->xso_len = sizeof *xso;
4234 	xso->xso_so = (uintptr_t)so;
4235 	xso->so_type = so->so_type;
4236 	xso->so_options = so->so_options;
4237 	xso->so_linger = so->so_linger;
4238 	xso->so_state = so->so_state;
4239 	xso->so_pcb = (uintptr_t)so->so_pcb;
4240 	xso->xso_protocol = so->so_proto->pr_protocol;
4241 	xso->xso_family = so->so_proto->pr_domain->dom_family;
4242 	xso->so_timeo = so->so_timeo;
4243 	xso->so_error = so->so_error;
4244 	xso->so_uid = so->so_cred->cr_uid;
4245 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
4246 	if (SOLISTENING(so)) {
4247 		xso->so_qlen = so->sol_qlen;
4248 		xso->so_incqlen = so->sol_incqlen;
4249 		xso->so_qlimit = so->sol_qlimit;
4250 		xso->so_oobmark = 0;
4251 	} else {
4252 		xso->so_state |= so->so_qstate;
4253 		xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
4254 		xso->so_oobmark = so->so_oobmark;
4255 		sbtoxsockbuf(&so->so_snd, &xso->so_snd);
4256 		sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
4257 	}
4258 }
4259 
4260 struct sockbuf *
4261 so_sockbuf_rcv(struct socket *so)
4262 {
4263 
4264 	return (&so->so_rcv);
4265 }
4266 
4267 struct sockbuf *
4268 so_sockbuf_snd(struct socket *so)
4269 {
4270 
4271 	return (&so->so_snd);
4272 }
4273 
4274 int
4275 so_state_get(const struct socket *so)
4276 {
4277 
4278 	return (so->so_state);
4279 }
4280 
4281 void
4282 so_state_set(struct socket *so, int val)
4283 {
4284 
4285 	so->so_state = val;
4286 }
4287 
4288 int
4289 so_options_get(const struct socket *so)
4290 {
4291 
4292 	return (so->so_options);
4293 }
4294 
4295 void
4296 so_options_set(struct socket *so, int val)
4297 {
4298 
4299 	so->so_options = val;
4300 }
4301 
4302 int
4303 so_error_get(const struct socket *so)
4304 {
4305 
4306 	return (so->so_error);
4307 }
4308 
4309 void
4310 so_error_set(struct socket *so, int val)
4311 {
4312 
4313 	so->so_error = val;
4314 }
4315 
4316 int
4317 so_linger_get(const struct socket *so)
4318 {
4319 
4320 	return (so->so_linger);
4321 }
4322 
4323 void
4324 so_linger_set(struct socket *so, int val)
4325 {
4326 
4327 	KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
4328 	    ("%s: val %d out of range", __func__, val));
4329 
4330 	so->so_linger = val;
4331 }
4332 
4333 struct protosw *
4334 so_protosw_get(const struct socket *so)
4335 {
4336 
4337 	return (so->so_proto);
4338 }
4339 
4340 void
4341 so_protosw_set(struct socket *so, struct protosw *val)
4342 {
4343 
4344 	so->so_proto = val;
4345 }
4346 
4347 void
4348 so_sorwakeup(struct socket *so)
4349 {
4350 
4351 	sorwakeup(so);
4352 }
4353 
4354 void
4355 so_sowwakeup(struct socket *so)
4356 {
4357 
4358 	sowwakeup(so);
4359 }
4360 
4361 void
4362 so_sorwakeup_locked(struct socket *so)
4363 {
4364 
4365 	sorwakeup_locked(so);
4366 }
4367 
4368 void
4369 so_sowwakeup_locked(struct socket *so)
4370 {
4371 
4372 	sowwakeup_locked(so);
4373 }
4374 
4375 void
4376 so_lock(struct socket *so)
4377 {
4378 
4379 	SOCK_LOCK(so);
4380 }
4381 
4382 void
4383 so_unlock(struct socket *so)
4384 {
4385 
4386 	SOCK_UNLOCK(so);
4387 }
4388