xref: /freebsd/sys/kern/uipc_usrreq.c (revision 1edb7116)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * UNIX Domain (Local) Sockets
37  *
38  * This is an implementation of UNIX (local) domain sockets.  Each socket has
39  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
40  * may be connected to 0 or 1 other socket.  Datagram sockets may be
41  * connected to 0, 1, or many other sockets.  Sockets may be created and
42  * connected in pairs (socketpair(2)), or bound/connected to using the file
43  * system name space.  For most purposes, only the receive socket buffer is
44  * used, as sending on one socket delivers directly to the receive socket
45  * buffer of a second socket.
46  *
47  * The implementation is substantially complicated by the fact that
48  * "ancillary data", such as file descriptors or credentials, may be passed
49  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
50  * over other UNIX domain sockets requires the implementation of a simple
51  * garbage collector to find and tear down cycles of disconnected sockets.
52  *
53  * TODO:
54  *	RDM
55  *	rethink name space problems
56  *	need a proper out-of-band
57  */
58 
59 #include <sys/cdefs.h>
60 #include "opt_ddb.h"
61 
62 #include <sys/param.h>
63 #include <sys/capsicum.h>
64 #include <sys/domain.h>
65 #include <sys/eventhandler.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/filedesc.h>
69 #include <sys/kernel.h>
70 #include <sys/lock.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/mount.h>
74 #include <sys/mutex.h>
75 #include <sys/namei.h>
76 #include <sys/proc.h>
77 #include <sys/protosw.h>
78 #include <sys/queue.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/stat.h>
85 #include <sys/sx.h>
86 #include <sys/sysctl.h>
87 #include <sys/systm.h>
88 #include <sys/taskqueue.h>
89 #include <sys/un.h>
90 #include <sys/unpcb.h>
91 #include <sys/vnode.h>
92 
93 #include <net/vnet.h>
94 
95 #ifdef DDB
96 #include <ddb/ddb.h>
97 #endif
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/uma.h>
102 
103 MALLOC_DECLARE(M_FILECAPS);
104 
105 static struct domain localdomain;
106 
107 static uma_zone_t	unp_zone;
108 static unp_gen_t	unp_gencnt;	/* (l) */
109 static u_int		unp_count;	/* (l) Count of local sockets. */
110 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
111 static int		unp_rights;	/* (g) File descriptors in flight. */
112 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
113 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
114 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
115 
116 struct unp_defer {
117 	SLIST_ENTRY(unp_defer) ud_link;
118 	struct file *ud_fp;
119 };
120 static SLIST_HEAD(, unp_defer) unp_defers;
121 static int unp_defers_count;
122 
123 static const struct sockaddr	sun_noname = {
124 	.sa_len = sizeof(sun_noname),
125 	.sa_family = AF_LOCAL,
126 };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct timeout_task unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_maxdgram = 8*1024;	/* support 8KB syslog msgs */
158 static u_long	unpdg_recvspace = 16*1024;
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
163     "Local domain");
164 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
165     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "SOCK_SEQPACKET");
173 
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
175 	   &unpst_sendspace, 0, "Default stream send space.");
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
177 	   &unpst_recvspace, 0, "Default stream receive space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
179 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpdg_recvspace, 0, "Default datagram receive space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
183 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
186 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
187     "File descriptors in flight.");
188 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
189     &unp_defers_count, 0,
190     "File descriptors deferred to taskqueue for close.");
191 
192 /*
193  * Locking and synchronization:
194  *
195  * Several types of locks exist in the local domain socket implementation:
196  * - a global linkage lock
197  * - a global connection list lock
198  * - the mtxpool lock
199  * - per-unpcb mutexes
200  *
201  * The linkage lock protects the global socket lists, the generation number
202  * counter and garbage collector state.
203  *
204  * The connection list lock protects the list of referring sockets in a datagram
205  * socket PCB.  This lock is also overloaded to protect a global list of
206  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
207  * messages.  To avoid recursion, such references are released by a dedicated
208  * thread.
209  *
210  * The mtxpool lock protects the vnode from being modified while referenced.
211  * Lock ordering rules require that it be acquired before any PCB locks.
212  *
213  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
214  * unpcb.  This includes the unp_conn field, which either links two connected
215  * PCBs together (for connected socket types) or points at the destination
216  * socket (for connectionless socket types).  The operations of creating or
217  * destroying a connection therefore involve locking multiple PCBs.  To avoid
218  * lock order reversals, in some cases this involves dropping a PCB lock and
219  * using a reference counter to maintain liveness.
220  *
221  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
222  * allocated in pr_attach() and freed in pr_detach().  The validity of that
223  * pointer is an invariant, so no lock is required to dereference the so_pcb
224  * pointer if a valid socket reference is held by the caller.  In practice,
225  * this is always true during operations performed on a socket.  Each unpcb
226  * has a back-pointer to its socket, unp_socket, which will be stable under
227  * the same circumstances.
228  *
229  * This pointer may only be safely dereferenced as long as a valid reference
230  * to the unpcb is held.  Typically, this reference will be from the socket,
231  * or from another unpcb when the referring unpcb's lock is held (in order
232  * that the reference not be invalidated during use).  For example, to follow
233  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
234  * that detach is not run clearing unp_socket.
235  *
236  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
237  * protocols, bind() is a non-atomic operation, and connect() requires
238  * potential sleeping in the protocol, due to potentially waiting on local or
239  * distributed file systems.  We try to separate "lookup" operations, which
240  * may sleep, and the IPC operations themselves, which typically can occur
241  * with relative atomicity as locks can be held over the entire operation.
242  *
243  * Another tricky issue is simultaneous multi-threaded or multi-process
244  * access to a single UNIX domain socket.  These are handled by the flags
245  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
246  * binding, both of which involve dropping UNIX domain socket locks in order
247  * to perform namei() and other file system operations.
248  */
249 static struct rwlock	unp_link_rwlock;
250 static struct mtx	unp_defers_lock;
251 
252 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
253 					    "unp_link_rwlock")
254 
255 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
256 					    RA_LOCKED)
257 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
258 					    RA_UNLOCKED)
259 
260 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
261 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
262 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
263 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
265 					    RA_WLOCKED)
266 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
267 
268 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
269 					    "unp_defer", NULL, MTX_DEF)
270 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
271 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
272 
273 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
274 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
275 
276 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
277 					    "unp", "unp",	\
278 					    MTX_DUPOK|MTX_DEF)
279 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
280 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
281 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
282 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
283 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
284 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
285 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
286 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
287 
288 static int	uipc_connect2(struct socket *, struct socket *);
289 static int	uipc_ctloutput(struct socket *, struct sockopt *);
290 static int	unp_connect(struct socket *, struct sockaddr *,
291 		    struct thread *);
292 static int	unp_connectat(int, struct socket *, struct sockaddr *,
293 		    struct thread *, bool);
294 static void	unp_connect2(struct socket *so, struct socket *so2);
295 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
296 static void	unp_dispose(struct socket *so);
297 static void	unp_shutdown(struct unpcb *);
298 static void	unp_drop(struct unpcb *);
299 static void	unp_gc(__unused void *, int);
300 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
301 static void	unp_discard(struct file *);
302 static void	unp_freerights(struct filedescent **, int);
303 static int	unp_internalize(struct mbuf **, struct thread *,
304 		    struct mbuf **, u_int *, u_int *);
305 static void	unp_internalize_fp(struct file *);
306 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
307 static int	unp_externalize_fp(struct file *);
308 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *,
309 		    int, struct mbuf **, u_int *, u_int *);
310 static void	unp_process_defers(void * __unused, int);
311 
312 static void
313 unp_pcb_hold(struct unpcb *unp)
314 {
315 	u_int old __unused;
316 
317 	old = refcount_acquire(&unp->unp_refcount);
318 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
319 }
320 
321 static __result_use_check bool
322 unp_pcb_rele(struct unpcb *unp)
323 {
324 	bool ret;
325 
326 	UNP_PCB_LOCK_ASSERT(unp);
327 
328 	if ((ret = refcount_release(&unp->unp_refcount))) {
329 		UNP_PCB_UNLOCK(unp);
330 		UNP_PCB_LOCK_DESTROY(unp);
331 		uma_zfree(unp_zone, unp);
332 	}
333 	return (ret);
334 }
335 
336 static void
337 unp_pcb_rele_notlast(struct unpcb *unp)
338 {
339 	bool ret __unused;
340 
341 	ret = refcount_release(&unp->unp_refcount);
342 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
343 }
344 
345 static void
346 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
347 {
348 	UNP_PCB_UNLOCK_ASSERT(unp);
349 	UNP_PCB_UNLOCK_ASSERT(unp2);
350 
351 	if (unp == unp2) {
352 		UNP_PCB_LOCK(unp);
353 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
354 		UNP_PCB_LOCK(unp);
355 		UNP_PCB_LOCK(unp2);
356 	} else {
357 		UNP_PCB_LOCK(unp2);
358 		UNP_PCB_LOCK(unp);
359 	}
360 }
361 
362 static void
363 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
364 {
365 	UNP_PCB_UNLOCK(unp);
366 	if (unp != unp2)
367 		UNP_PCB_UNLOCK(unp2);
368 }
369 
370 /*
371  * Try to lock the connected peer of an already locked socket.  In some cases
372  * this requires that we unlock the current socket.  The pairbusy counter is
373  * used to block concurrent connection attempts while the lock is dropped.  The
374  * caller must be careful to revalidate PCB state.
375  */
376 static struct unpcb *
377 unp_pcb_lock_peer(struct unpcb *unp)
378 {
379 	struct unpcb *unp2;
380 
381 	UNP_PCB_LOCK_ASSERT(unp);
382 	unp2 = unp->unp_conn;
383 	if (unp2 == NULL)
384 		return (NULL);
385 	if (__predict_false(unp == unp2))
386 		return (unp);
387 
388 	UNP_PCB_UNLOCK_ASSERT(unp2);
389 
390 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
391 		return (unp2);
392 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
393 		UNP_PCB_LOCK(unp2);
394 		return (unp2);
395 	}
396 	unp->unp_pairbusy++;
397 	unp_pcb_hold(unp2);
398 	UNP_PCB_UNLOCK(unp);
399 
400 	UNP_PCB_LOCK(unp2);
401 	UNP_PCB_LOCK(unp);
402 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
403 	    ("%s: socket %p was reconnected", __func__, unp));
404 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
405 		unp->unp_flags &= ~UNP_WAITING;
406 		wakeup(unp);
407 	}
408 	if (unp_pcb_rele(unp2)) {
409 		/* unp2 is unlocked. */
410 		return (NULL);
411 	}
412 	if (unp->unp_conn == NULL) {
413 		UNP_PCB_UNLOCK(unp2);
414 		return (NULL);
415 	}
416 	return (unp2);
417 }
418 
419 static void
420 uipc_abort(struct socket *so)
421 {
422 	struct unpcb *unp, *unp2;
423 
424 	unp = sotounpcb(so);
425 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
426 	UNP_PCB_UNLOCK_ASSERT(unp);
427 
428 	UNP_PCB_LOCK(unp);
429 	unp2 = unp->unp_conn;
430 	if (unp2 != NULL) {
431 		unp_pcb_hold(unp2);
432 		UNP_PCB_UNLOCK(unp);
433 		unp_drop(unp2);
434 	} else
435 		UNP_PCB_UNLOCK(unp);
436 }
437 
438 static int
439 uipc_attach(struct socket *so, int proto, struct thread *td)
440 {
441 	u_long sendspace, recvspace;
442 	struct unpcb *unp;
443 	int error;
444 	bool locked;
445 
446 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
447 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
448 		switch (so->so_type) {
449 		case SOCK_STREAM:
450 			sendspace = unpst_sendspace;
451 			recvspace = unpst_recvspace;
452 			break;
453 
454 		case SOCK_DGRAM:
455 			STAILQ_INIT(&so->so_rcv.uxdg_mb);
456 			STAILQ_INIT(&so->so_snd.uxdg_mb);
457 			TAILQ_INIT(&so->so_rcv.uxdg_conns);
458 			/*
459 			 * Since send buffer is either bypassed or is a part
460 			 * of one-to-many receive buffer, we assign both space
461 			 * limits to unpdg_recvspace.
462 			 */
463 			sendspace = recvspace = unpdg_recvspace;
464 			break;
465 
466 		case SOCK_SEQPACKET:
467 			sendspace = unpsp_sendspace;
468 			recvspace = unpsp_recvspace;
469 			break;
470 
471 		default:
472 			panic("uipc_attach");
473 		}
474 		error = soreserve(so, sendspace, recvspace);
475 		if (error)
476 			return (error);
477 	}
478 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
479 	if (unp == NULL)
480 		return (ENOBUFS);
481 	LIST_INIT(&unp->unp_refs);
482 	UNP_PCB_LOCK_INIT(unp);
483 	unp->unp_socket = so;
484 	so->so_pcb = unp;
485 	refcount_init(&unp->unp_refcount, 1);
486 
487 	if ((locked = UNP_LINK_WOWNED()) == false)
488 		UNP_LINK_WLOCK();
489 
490 	unp->unp_gencnt = ++unp_gencnt;
491 	unp->unp_ino = ++unp_ino;
492 	unp_count++;
493 	switch (so->so_type) {
494 	case SOCK_STREAM:
495 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
496 		break;
497 
498 	case SOCK_DGRAM:
499 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
500 		break;
501 
502 	case SOCK_SEQPACKET:
503 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
504 		break;
505 
506 	default:
507 		panic("uipc_attach");
508 	}
509 
510 	if (locked == false)
511 		UNP_LINK_WUNLOCK();
512 
513 	return (0);
514 }
515 
516 static int
517 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
518 {
519 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
520 	struct vattr vattr;
521 	int error, namelen;
522 	struct nameidata nd;
523 	struct unpcb *unp;
524 	struct vnode *vp;
525 	struct mount *mp;
526 	cap_rights_t rights;
527 	char *buf;
528 
529 	if (nam->sa_family != AF_UNIX)
530 		return (EAFNOSUPPORT);
531 
532 	unp = sotounpcb(so);
533 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
534 
535 	if (soun->sun_len > sizeof(struct sockaddr_un))
536 		return (EINVAL);
537 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
538 	if (namelen <= 0)
539 		return (EINVAL);
540 
541 	/*
542 	 * We don't allow simultaneous bind() calls on a single UNIX domain
543 	 * socket, so flag in-progress operations, and return an error if an
544 	 * operation is already in progress.
545 	 *
546 	 * Historically, we have not allowed a socket to be rebound, so this
547 	 * also returns an error.  Not allowing re-binding simplifies the
548 	 * implementation and avoids a great many possible failure modes.
549 	 */
550 	UNP_PCB_LOCK(unp);
551 	if (unp->unp_vnode != NULL) {
552 		UNP_PCB_UNLOCK(unp);
553 		return (EINVAL);
554 	}
555 	if (unp->unp_flags & UNP_BINDING) {
556 		UNP_PCB_UNLOCK(unp);
557 		return (EALREADY);
558 	}
559 	unp->unp_flags |= UNP_BINDING;
560 	UNP_PCB_UNLOCK(unp);
561 
562 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
563 	bcopy(soun->sun_path, buf, namelen);
564 	buf[namelen] = 0;
565 
566 restart:
567 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
568 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
569 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
570 	error = namei(&nd);
571 	if (error)
572 		goto error;
573 	vp = nd.ni_vp;
574 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
575 		NDFREE_PNBUF(&nd);
576 		if (nd.ni_dvp == vp)
577 			vrele(nd.ni_dvp);
578 		else
579 			vput(nd.ni_dvp);
580 		if (vp != NULL) {
581 			vrele(vp);
582 			error = EADDRINUSE;
583 			goto error;
584 		}
585 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
586 		if (error)
587 			goto error;
588 		goto restart;
589 	}
590 	VATTR_NULL(&vattr);
591 	vattr.va_type = VSOCK;
592 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
593 #ifdef MAC
594 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
595 	    &vattr);
596 #endif
597 	if (error == 0)
598 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
599 	NDFREE_PNBUF(&nd);
600 	if (error) {
601 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
602 		vn_finished_write(mp);
603 		if (error == ERELOOKUP)
604 			goto restart;
605 		goto error;
606 	}
607 	vp = nd.ni_vp;
608 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
609 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
610 
611 	UNP_PCB_LOCK(unp);
612 	VOP_UNP_BIND(vp, unp);
613 	unp->unp_vnode = vp;
614 	unp->unp_addr = soun;
615 	unp->unp_flags &= ~UNP_BINDING;
616 	UNP_PCB_UNLOCK(unp);
617 	vref(vp);
618 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
619 	vn_finished_write(mp);
620 	free(buf, M_TEMP);
621 	return (0);
622 
623 error:
624 	UNP_PCB_LOCK(unp);
625 	unp->unp_flags &= ~UNP_BINDING;
626 	UNP_PCB_UNLOCK(unp);
627 	free(buf, M_TEMP);
628 	return (error);
629 }
630 
631 static int
632 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
633 {
634 
635 	return (uipc_bindat(AT_FDCWD, so, nam, td));
636 }
637 
638 static int
639 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
640 {
641 	int error;
642 
643 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
644 	error = unp_connect(so, nam, td);
645 	return (error);
646 }
647 
648 static int
649 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
650     struct thread *td)
651 {
652 	int error;
653 
654 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
655 	error = unp_connectat(fd, so, nam, td, false);
656 	return (error);
657 }
658 
659 static void
660 uipc_close(struct socket *so)
661 {
662 	struct unpcb *unp, *unp2;
663 	struct vnode *vp = NULL;
664 	struct mtx *vplock;
665 
666 	unp = sotounpcb(so);
667 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
668 
669 	vplock = NULL;
670 	if ((vp = unp->unp_vnode) != NULL) {
671 		vplock = mtx_pool_find(mtxpool_sleep, vp);
672 		mtx_lock(vplock);
673 	}
674 	UNP_PCB_LOCK(unp);
675 	if (vp && unp->unp_vnode == NULL) {
676 		mtx_unlock(vplock);
677 		vp = NULL;
678 	}
679 	if (vp != NULL) {
680 		VOP_UNP_DETACH(vp);
681 		unp->unp_vnode = NULL;
682 	}
683 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
684 		unp_disconnect(unp, unp2);
685 	else
686 		UNP_PCB_UNLOCK(unp);
687 	if (vp) {
688 		mtx_unlock(vplock);
689 		vrele(vp);
690 	}
691 }
692 
693 static int
694 uipc_connect2(struct socket *so1, struct socket *so2)
695 {
696 	struct unpcb *unp, *unp2;
697 
698 	if (so1->so_type != so2->so_type)
699 		return (EPROTOTYPE);
700 
701 	unp = so1->so_pcb;
702 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
703 	unp2 = so2->so_pcb;
704 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
705 	unp_pcb_lock_pair(unp, unp2);
706 	unp_connect2(so1, so2);
707 	unp_pcb_unlock_pair(unp, unp2);
708 
709 	return (0);
710 }
711 
712 static void
713 uipc_detach(struct socket *so)
714 {
715 	struct unpcb *unp, *unp2;
716 	struct mtx *vplock;
717 	struct vnode *vp;
718 	int local_unp_rights;
719 
720 	unp = sotounpcb(so);
721 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
722 
723 	vp = NULL;
724 	vplock = NULL;
725 
726 	if (!SOLISTENING(so))
727 		unp_dispose(so);
728 
729 	UNP_LINK_WLOCK();
730 	LIST_REMOVE(unp, unp_link);
731 	if (unp->unp_gcflag & UNPGC_DEAD)
732 		LIST_REMOVE(unp, unp_dead);
733 	unp->unp_gencnt = ++unp_gencnt;
734 	--unp_count;
735 	UNP_LINK_WUNLOCK();
736 
737 	UNP_PCB_UNLOCK_ASSERT(unp);
738  restart:
739 	if ((vp = unp->unp_vnode) != NULL) {
740 		vplock = mtx_pool_find(mtxpool_sleep, vp);
741 		mtx_lock(vplock);
742 	}
743 	UNP_PCB_LOCK(unp);
744 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
745 		if (vplock)
746 			mtx_unlock(vplock);
747 		UNP_PCB_UNLOCK(unp);
748 		goto restart;
749 	}
750 	if ((vp = unp->unp_vnode) != NULL) {
751 		VOP_UNP_DETACH(vp);
752 		unp->unp_vnode = NULL;
753 	}
754 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
755 		unp_disconnect(unp, unp2);
756 	else
757 		UNP_PCB_UNLOCK(unp);
758 
759 	UNP_REF_LIST_LOCK();
760 	while (!LIST_EMPTY(&unp->unp_refs)) {
761 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
762 
763 		unp_pcb_hold(ref);
764 		UNP_REF_LIST_UNLOCK();
765 
766 		MPASS(ref != unp);
767 		UNP_PCB_UNLOCK_ASSERT(ref);
768 		unp_drop(ref);
769 		UNP_REF_LIST_LOCK();
770 	}
771 	UNP_REF_LIST_UNLOCK();
772 
773 	UNP_PCB_LOCK(unp);
774 	local_unp_rights = unp_rights;
775 	unp->unp_socket->so_pcb = NULL;
776 	unp->unp_socket = NULL;
777 	free(unp->unp_addr, M_SONAME);
778 	unp->unp_addr = NULL;
779 	if (!unp_pcb_rele(unp))
780 		UNP_PCB_UNLOCK(unp);
781 	if (vp) {
782 		mtx_unlock(vplock);
783 		vrele(vp);
784 	}
785 	if (local_unp_rights)
786 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
787 
788 	switch (so->so_type) {
789 	case SOCK_DGRAM:
790 		/*
791 		 * Everything should have been unlinked/freed by unp_dispose()
792 		 * and/or unp_disconnect().
793 		 */
794 		MPASS(so->so_rcv.uxdg_peeked == NULL);
795 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
796 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
797 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
798 	}
799 }
800 
801 static int
802 uipc_disconnect(struct socket *so)
803 {
804 	struct unpcb *unp, *unp2;
805 
806 	unp = sotounpcb(so);
807 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
808 
809 	UNP_PCB_LOCK(unp);
810 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
811 		unp_disconnect(unp, unp2);
812 	else
813 		UNP_PCB_UNLOCK(unp);
814 	return (0);
815 }
816 
817 static int
818 uipc_listen(struct socket *so, int backlog, struct thread *td)
819 {
820 	struct unpcb *unp;
821 	int error;
822 
823 	MPASS(so->so_type != SOCK_DGRAM);
824 
825 	/*
826 	 * Synchronize with concurrent connection attempts.
827 	 */
828 	error = 0;
829 	unp = sotounpcb(so);
830 	UNP_PCB_LOCK(unp);
831 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
832 		error = EINVAL;
833 	else if (unp->unp_vnode == NULL)
834 		error = EDESTADDRREQ;
835 	if (error != 0) {
836 		UNP_PCB_UNLOCK(unp);
837 		return (error);
838 	}
839 
840 	SOCK_LOCK(so);
841 	error = solisten_proto_check(so);
842 	if (error == 0) {
843 		cru2xt(td, &unp->unp_peercred);
844 		solisten_proto(so, backlog);
845 	}
846 	SOCK_UNLOCK(so);
847 	UNP_PCB_UNLOCK(unp);
848 	return (error);
849 }
850 
851 static int
852 uipc_peeraddr(struct socket *so, struct sockaddr *ret)
853 {
854 	struct unpcb *unp, *unp2;
855 	const struct sockaddr *sa;
856 
857 	unp = sotounpcb(so);
858 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
859 
860 	UNP_PCB_LOCK(unp);
861 	unp2 = unp_pcb_lock_peer(unp);
862 	if (unp2 != NULL) {
863 		if (unp2->unp_addr != NULL)
864 			sa = (struct sockaddr *)unp2->unp_addr;
865 		else
866 			sa = &sun_noname;
867 		bcopy(sa, ret, sa->sa_len);
868 		unp_pcb_unlock_pair(unp, unp2);
869 	} else {
870 		UNP_PCB_UNLOCK(unp);
871 		sa = &sun_noname;
872 		bcopy(sa, ret, sa->sa_len);
873 	}
874 	return (0);
875 }
876 
877 static int
878 uipc_rcvd(struct socket *so, int flags)
879 {
880 	struct unpcb *unp, *unp2;
881 	struct socket *so2;
882 	u_int mbcnt, sbcc;
883 
884 	unp = sotounpcb(so);
885 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
886 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
887 	    ("%s: socktype %d", __func__, so->so_type));
888 
889 	/*
890 	 * Adjust backpressure on sender and wakeup any waiting to write.
891 	 *
892 	 * The unp lock is acquired to maintain the validity of the unp_conn
893 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
894 	 * static as long as we don't permit unp2 to disconnect from unp,
895 	 * which is prevented by the lock on unp.  We cache values from
896 	 * so_rcv to avoid holding the so_rcv lock over the entire
897 	 * transaction on the remote so_snd.
898 	 */
899 	SOCKBUF_LOCK(&so->so_rcv);
900 	mbcnt = so->so_rcv.sb_mbcnt;
901 	sbcc = sbavail(&so->so_rcv);
902 	SOCKBUF_UNLOCK(&so->so_rcv);
903 	/*
904 	 * There is a benign race condition at this point.  If we're planning to
905 	 * clear SB_STOP, but uipc_send is called on the connected socket at
906 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
907 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
908 	 * full.  The race is benign because the only ill effect is to allow the
909 	 * sockbuf to exceed its size limit, and the size limits are not
910 	 * strictly guaranteed anyway.
911 	 */
912 	UNP_PCB_LOCK(unp);
913 	unp2 = unp->unp_conn;
914 	if (unp2 == NULL) {
915 		UNP_PCB_UNLOCK(unp);
916 		return (0);
917 	}
918 	so2 = unp2->unp_socket;
919 	SOCKBUF_LOCK(&so2->so_snd);
920 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
921 		so2->so_snd.sb_flags &= ~SB_STOP;
922 	sowwakeup_locked(so2);
923 	UNP_PCB_UNLOCK(unp);
924 	return (0);
925 }
926 
927 static int
928 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
929     struct mbuf *control, struct thread *td)
930 {
931 	struct unpcb *unp, *unp2;
932 	struct socket *so2;
933 	u_int mbcnt, sbcc;
934 	int error;
935 
936 	unp = sotounpcb(so);
937 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
938 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
939 	    ("%s: socktype %d", __func__, so->so_type));
940 
941 	error = 0;
942 	if (flags & PRUS_OOB) {
943 		error = EOPNOTSUPP;
944 		goto release;
945 	}
946 	if (control != NULL &&
947 	    (error = unp_internalize(&control, td, NULL, NULL, NULL)))
948 		goto release;
949 
950 	unp2 = NULL;
951 	if ((so->so_state & SS_ISCONNECTED) == 0) {
952 		if (nam != NULL) {
953 			if ((error = unp_connect(so, nam, td)) != 0)
954 				goto out;
955 		} else {
956 			error = ENOTCONN;
957 			goto out;
958 		}
959 	}
960 
961 	UNP_PCB_LOCK(unp);
962 	if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
963 		UNP_PCB_UNLOCK(unp);
964 		error = ENOTCONN;
965 		goto out;
966 	} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
967 		unp_pcb_unlock_pair(unp, unp2);
968 		error = EPIPE;
969 		goto out;
970 	}
971 	UNP_PCB_UNLOCK(unp);
972 	if ((so2 = unp2->unp_socket) == NULL) {
973 		UNP_PCB_UNLOCK(unp2);
974 		error = ENOTCONN;
975 		goto out;
976 	}
977 	SOCKBUF_LOCK(&so2->so_rcv);
978 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
979 		/*
980 		 * Credentials are passed only once on SOCK_STREAM and
981 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
982 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
983 		 */
984 		control = unp_addsockcred(td, control, unp2->unp_flags, NULL,
985 		    NULL, NULL);
986 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
987 	}
988 
989 	/*
990 	 * Send to paired receive port and wake up readers.  Don't
991 	 * check for space available in the receive buffer if we're
992 	 * attaching ancillary data; Unix domain sockets only check
993 	 * for space in the sending sockbuf, and that check is
994 	 * performed one level up the stack.  At that level we cannot
995 	 * precisely account for the amount of buffer space used
996 	 * (e.g., because control messages are not yet internalized).
997 	 */
998 	switch (so->so_type) {
999 	case SOCK_STREAM:
1000 		if (control != NULL) {
1001 			sbappendcontrol_locked(&so2->so_rcv,
1002 			    m->m_len > 0 ?  m : NULL, control, flags);
1003 			control = NULL;
1004 		} else
1005 			sbappend_locked(&so2->so_rcv, m, flags);
1006 		break;
1007 
1008 	case SOCK_SEQPACKET:
1009 		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1010 		    &sun_noname, m, control))
1011 			control = NULL;
1012 		break;
1013 	}
1014 
1015 	mbcnt = so2->so_rcv.sb_mbcnt;
1016 	sbcc = sbavail(&so2->so_rcv);
1017 	if (sbcc)
1018 		sorwakeup_locked(so2);
1019 	else
1020 		SOCKBUF_UNLOCK(&so2->so_rcv);
1021 
1022 	/*
1023 	 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1024 	 * it would be possible for uipc_rcvd to be called at this
1025 	 * point, drain the receiving sockbuf, clear SB_STOP, and then
1026 	 * we would set SB_STOP below.  That could lead to an empty
1027 	 * sockbuf having SB_STOP set
1028 	 */
1029 	SOCKBUF_LOCK(&so->so_snd);
1030 	if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1031 		so->so_snd.sb_flags |= SB_STOP;
1032 	SOCKBUF_UNLOCK(&so->so_snd);
1033 	UNP_PCB_UNLOCK(unp2);
1034 	m = NULL;
1035 out:
1036 	/*
1037 	 * PRUS_EOF is equivalent to pr_send followed by pr_shutdown.
1038 	 */
1039 	if (flags & PRUS_EOF) {
1040 		UNP_PCB_LOCK(unp);
1041 		socantsendmore(so);
1042 		unp_shutdown(unp);
1043 		UNP_PCB_UNLOCK(unp);
1044 	}
1045 	if (control != NULL && error != 0)
1046 		unp_scan(control, unp_freerights);
1047 
1048 release:
1049 	if (control != NULL)
1050 		m_freem(control);
1051 	/*
1052 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1053 	 * for freeing memory.
1054 	 */
1055 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1056 		m_freem(m);
1057 	return (error);
1058 }
1059 
1060 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1061 static inline bool
1062 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1063 {
1064 	u_int bleft, mleft;
1065 
1066 	/*
1067 	 * Negative space may happen if send(2) is followed by
1068 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1069 	 */
1070 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1071 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1072 		return (false);
1073 
1074 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1075 		return (false);
1076 
1077 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1078 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1079 
1080 	return (bleft >= cc && mleft >= mbcnt);
1081 }
1082 
1083 /*
1084  * PF_UNIX/SOCK_DGRAM send
1085  *
1086  * Allocate a record consisting of 3 mbufs in the sequence of
1087  * from -> control -> data and append it to the socket buffer.
1088  *
1089  * The first mbuf carries sender's name and is a pkthdr that stores
1090  * overall length of datagram, its memory consumption and control length.
1091  */
1092 #define	ctllen	PH_loc.thirtytwo[1]
1093 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1094     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1095 static int
1096 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1097     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1098 {
1099 	struct unpcb *unp, *unp2;
1100 	const struct sockaddr *from;
1101 	struct socket *so2;
1102 	struct sockbuf *sb;
1103 	struct mbuf *f, *clast;
1104 	u_int cc, ctl, mbcnt;
1105 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1106 	int error;
1107 
1108 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1109 
1110 	error = 0;
1111 	f = NULL;
1112 	ctl = 0;
1113 
1114 	if (__predict_false(flags & MSG_OOB)) {
1115 		error = EOPNOTSUPP;
1116 		goto out;
1117 	}
1118 	if (m == NULL) {
1119 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1120 			error = EMSGSIZE;
1121 			goto out;
1122 		}
1123 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1124 		if (__predict_false(m == NULL)) {
1125 			error = EFAULT;
1126 			goto out;
1127 		}
1128 		f = m_gethdr(M_WAITOK, MT_SONAME);
1129 		cc = m->m_pkthdr.len;
1130 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1131 		if (c != NULL &&
1132 		    (error = unp_internalize(&c, td, &clast, &ctl, &mbcnt)))
1133 			goto out;
1134 	} else {
1135 		/* pr_sosend() with mbuf usually is a kernel thread. */
1136 
1137 		M_ASSERTPKTHDR(m);
1138 		if (__predict_false(c != NULL))
1139 			panic("%s: control from a kernel thread", __func__);
1140 
1141 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1142 			error = EMSGSIZE;
1143 			goto out;
1144 		}
1145 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1146 			error = ENOBUFS;
1147 			goto out;
1148 		}
1149 		/* Condition the foreign mbuf to our standards. */
1150 		m_clrprotoflags(m);
1151 		m_tag_delete_chain(m, NULL);
1152 		m->m_pkthdr.rcvif = NULL;
1153 		m->m_pkthdr.flowid = 0;
1154 		m->m_pkthdr.csum_flags = 0;
1155 		m->m_pkthdr.fibnum = 0;
1156 		m->m_pkthdr.rsstype = 0;
1157 
1158 		cc = m->m_pkthdr.len;
1159 		mbcnt = MSIZE;
1160 		for (struct mbuf *mb = m; mb != NULL; mb = mb->m_next) {
1161 			mbcnt += MSIZE;
1162 			if (mb->m_flags & M_EXT)
1163 				mbcnt += mb->m_ext.ext_size;
1164 		}
1165 	}
1166 
1167 	unp = sotounpcb(so);
1168 	MPASS(unp);
1169 
1170 	/*
1171 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1172 	 * and avoid this lock, which is not only extraneous, but also being
1173 	 * released, thus still leaving possibility for a race.  We can easily
1174 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1175 	 * is more difficult to invent something to handle so_error.
1176 	 */
1177 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1178 	if (error)
1179 		goto out2;
1180 	SOCK_SENDBUF_LOCK(so);
1181 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1182 		SOCK_SENDBUF_UNLOCK(so);
1183 		error = EPIPE;
1184 		goto out3;
1185 	}
1186 	if (so->so_error != 0) {
1187 		error = so->so_error;
1188 		so->so_error = 0;
1189 		SOCK_SENDBUF_UNLOCK(so);
1190 		goto out3;
1191 	}
1192 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
1193 		SOCK_SENDBUF_UNLOCK(so);
1194 		error = EDESTADDRREQ;
1195 		goto out3;
1196 	}
1197 	SOCK_SENDBUF_UNLOCK(so);
1198 
1199 	if (addr != NULL) {
1200 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
1201 			goto out3;
1202 		UNP_PCB_LOCK_ASSERT(unp);
1203 		unp2 = unp->unp_conn;
1204 		UNP_PCB_LOCK_ASSERT(unp2);
1205 	} else {
1206 		UNP_PCB_LOCK(unp);
1207 		unp2 = unp_pcb_lock_peer(unp);
1208 		if (unp2 == NULL) {
1209 			UNP_PCB_UNLOCK(unp);
1210 			error = ENOTCONN;
1211 			goto out3;
1212 		}
1213 	}
1214 
1215 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
1216 		c = unp_addsockcred(td, c, unp2->unp_flags, &clast, &ctl,
1217 		    &mbcnt);
1218 	if (unp->unp_addr != NULL)
1219 		from = (struct sockaddr *)unp->unp_addr;
1220 	else
1221 		from = &sun_noname;
1222 	f->m_len = from->sa_len;
1223 	MPASS(from->sa_len <= MLEN);
1224 	bcopy(from, mtod(f, void *), from->sa_len);
1225 	ctl += f->m_len;
1226 
1227 	/*
1228 	 * Concatenate mbufs: from -> control -> data.
1229 	 * Save overall cc and mbcnt in "from" mbuf.
1230 	 */
1231 	if (c != NULL) {
1232 #ifdef INVARIANTS
1233 		struct mbuf *mc;
1234 
1235 		for (mc = c; mc->m_next != NULL; mc = mc->m_next);
1236 		MPASS(mc == clast);
1237 #endif
1238 		f->m_next = c;
1239 		clast->m_next = m;
1240 		c = NULL;
1241 	} else
1242 		f->m_next = m;
1243 	m = NULL;
1244 #ifdef INVARIANTS
1245 	dcc = dctl = dmbcnt = 0;
1246 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
1247 		if (mb->m_type == MT_DATA)
1248 			dcc += mb->m_len;
1249 		else
1250 			dctl += mb->m_len;
1251 		dmbcnt += MSIZE;
1252 		if (mb->m_flags & M_EXT)
1253 			dmbcnt += mb->m_ext.ext_size;
1254 	}
1255 	MPASS(dcc == cc);
1256 	MPASS(dctl == ctl);
1257 	MPASS(dmbcnt == mbcnt);
1258 #endif
1259 	f->m_pkthdr.len = cc + ctl;
1260 	f->m_pkthdr.memlen = mbcnt;
1261 	f->m_pkthdr.ctllen = ctl;
1262 
1263 	/*
1264 	 * Destination socket buffer selection.
1265 	 *
1266 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
1267 	 * destination address is supplied, create a temporary connection for
1268 	 * the run time of the function (see call to unp_connectat() above and
1269 	 * to unp_disconnect() below).  We distinguish them by condition of
1270 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
1271 	 * that condition, since, again, through the run time of this code we
1272 	 * are always connected.  For such "unconnected" sends, the destination
1273 	 * buffer would be the receive buffer of destination socket so2.
1274 	 *
1275 	 * For connected sends, data lands on the send buffer of the sender's
1276 	 * socket "so".  Then, if we just added the very first datagram
1277 	 * on this send buffer, we need to add the send buffer on to the
1278 	 * receiving socket's buffer list.  We put ourselves on top of the
1279 	 * list.  Such logic gives infrequent senders priority over frequent
1280 	 * senders.
1281 	 *
1282 	 * Note on byte count management. As long as event methods kevent(2),
1283 	 * select(2) are not protocol specific (yet), we need to maintain
1284 	 * meaningful values on the receive buffer.  So, the receive buffer
1285 	 * would accumulate counters from all connected buffers potentially
1286 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
1287 	 */
1288 	so2 = unp2->unp_socket;
1289 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
1290 	SOCK_RECVBUF_LOCK(so2);
1291 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
1292 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
1293 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
1294 			    uxdg_clist);
1295 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
1296 		sb->uxdg_cc += cc + ctl;
1297 		sb->uxdg_ctl += ctl;
1298 		sb->uxdg_mbcnt += mbcnt;
1299 		so2->so_rcv.sb_acc += cc + ctl;
1300 		so2->so_rcv.sb_ccc += cc + ctl;
1301 		so2->so_rcv.sb_ctl += ctl;
1302 		so2->so_rcv.sb_mbcnt += mbcnt;
1303 		sorwakeup_locked(so2);
1304 		f = NULL;
1305 	} else {
1306 		soroverflow_locked(so2);
1307 		error = ENOBUFS;
1308 		if (f->m_next->m_type == MT_CONTROL) {
1309 			c = f->m_next;
1310 			f->m_next = NULL;
1311 		}
1312 	}
1313 
1314 	if (addr != NULL)
1315 		unp_disconnect(unp, unp2);
1316 	else
1317 		unp_pcb_unlock_pair(unp, unp2);
1318 
1319 	td->td_ru.ru_msgsnd++;
1320 
1321 out3:
1322 	SOCK_IO_SEND_UNLOCK(so);
1323 out2:
1324 	if (c)
1325 		unp_scan(c, unp_freerights);
1326 out:
1327 	if (f)
1328 		m_freem(f);
1329 	if (c)
1330 		m_freem(c);
1331 	if (m)
1332 		m_freem(m);
1333 
1334 	return (error);
1335 }
1336 
1337 /*
1338  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
1339  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
1340  * and needs to be linked onto uxdg_peeked of receive socket buffer.
1341  */
1342 static int
1343 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
1344     struct uio *uio, struct mbuf **controlp, int *flagsp)
1345 {
1346 	ssize_t len = 0;
1347 	int error;
1348 
1349 	so->so_rcv.uxdg_peeked = m;
1350 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
1351 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
1352 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
1353 	SOCK_RECVBUF_UNLOCK(so);
1354 
1355 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1356 	if (psa != NULL)
1357 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1358 
1359 	m = m->m_next;
1360 	KASSERT(m, ("%s: no data or control after soname", __func__));
1361 
1362 	/*
1363 	 * With MSG_PEEK the control isn't executed, just copied.
1364 	 */
1365 	while (m != NULL && m->m_type == MT_CONTROL) {
1366 		if (controlp != NULL) {
1367 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
1368 			controlp = &(*controlp)->m_next;
1369 		}
1370 		m = m->m_next;
1371 	}
1372 	KASSERT(m == NULL || m->m_type == MT_DATA,
1373 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1374 	while (m != NULL && uio->uio_resid > 0) {
1375 		len = uio->uio_resid;
1376 		if (len > m->m_len)
1377 			len = m->m_len;
1378 		error = uiomove(mtod(m, char *), (int)len, uio);
1379 		if (error) {
1380 			SOCK_IO_RECV_UNLOCK(so);
1381 			return (error);
1382 		}
1383 		if (len == m->m_len)
1384 			m = m->m_next;
1385 	}
1386 	SOCK_IO_RECV_UNLOCK(so);
1387 
1388 	if (flagsp != NULL) {
1389 		if (m != NULL) {
1390 			if (*flagsp & MSG_TRUNC) {
1391 				/* Report real length of the packet */
1392 				uio->uio_resid -= m_length(m, NULL) - len;
1393 			}
1394 			*flagsp |= MSG_TRUNC;
1395 		} else
1396 			*flagsp &= ~MSG_TRUNC;
1397 	}
1398 
1399 	return (0);
1400 }
1401 
1402 /*
1403  * PF_UNIX/SOCK_DGRAM receive
1404  */
1405 static int
1406 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1407     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1408 {
1409 	struct sockbuf *sb = NULL;
1410 	struct mbuf *m;
1411 	int flags, error;
1412 	ssize_t len = 0;
1413 	bool nonblock;
1414 
1415 	MPASS(mp0 == NULL);
1416 
1417 	if (psa != NULL)
1418 		*psa = NULL;
1419 	if (controlp != NULL)
1420 		*controlp = NULL;
1421 
1422 	flags = flagsp != NULL ? *flagsp : 0;
1423 	nonblock = (so->so_state & SS_NBIO) ||
1424 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1425 
1426 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1427 	if (__predict_false(error))
1428 		return (error);
1429 
1430 	/*
1431 	 * Loop blocking while waiting for a datagram.  Prioritize connected
1432 	 * peers over unconnected sends.  Set sb to selected socket buffer
1433 	 * containing an mbuf on exit from the wait loop.  A datagram that
1434 	 * had already been peeked at has top priority.
1435 	 */
1436 	SOCK_RECVBUF_LOCK(so);
1437 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
1438 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
1439 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
1440 		if (so->so_error) {
1441 			error = so->so_error;
1442 			if (!(flags & MSG_PEEK))
1443 				so->so_error = 0;
1444 			SOCK_RECVBUF_UNLOCK(so);
1445 			SOCK_IO_RECV_UNLOCK(so);
1446 			return (error);
1447 		}
1448 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1449 		    uio->uio_resid == 0) {
1450 			SOCK_RECVBUF_UNLOCK(so);
1451 			SOCK_IO_RECV_UNLOCK(so);
1452 			return (0);
1453 		}
1454 		if (nonblock) {
1455 			SOCK_RECVBUF_UNLOCK(so);
1456 			SOCK_IO_RECV_UNLOCK(so);
1457 			return (EWOULDBLOCK);
1458 		}
1459 		error = sbwait(so, SO_RCV);
1460 		if (error) {
1461 			SOCK_RECVBUF_UNLOCK(so);
1462 			SOCK_IO_RECV_UNLOCK(so);
1463 			return (error);
1464 		}
1465 	}
1466 
1467 	if (sb == NULL)
1468 		sb = &so->so_rcv;
1469 	else if (m == NULL)
1470 		m = STAILQ_FIRST(&sb->uxdg_mb);
1471 	else
1472 		MPASS(m == so->so_rcv.uxdg_peeked);
1473 
1474 	MPASS(sb->uxdg_cc > 0);
1475 	M_ASSERTPKTHDR(m);
1476 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1477 
1478 	if (uio->uio_td)
1479 		uio->uio_td->td_ru.ru_msgrcv++;
1480 
1481 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
1482 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
1483 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
1484 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
1485 	} else
1486 		so->so_rcv.uxdg_peeked = NULL;
1487 
1488 	sb->uxdg_cc -= m->m_pkthdr.len;
1489 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
1490 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
1491 
1492 	if (__predict_false(flags & MSG_PEEK))
1493 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
1494 
1495 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
1496 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
1497 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
1498 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
1499 	SOCK_RECVBUF_UNLOCK(so);
1500 
1501 	if (psa != NULL)
1502 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1503 	m = m_free(m);
1504 	KASSERT(m, ("%s: no data or control after soname", __func__));
1505 
1506 	/*
1507 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1508 	 * queue.
1509 	 *
1510 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1511 	 * in the first mbuf chain on the socket buffer.  We call into the
1512 	 * unp_externalize() to perform externalization (or freeing if
1513 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
1514 	 * without MT_DATA mbufs.
1515 	 */
1516 	while (m != NULL && m->m_type == MT_CONTROL) {
1517 		struct mbuf *cm;
1518 
1519 		/* XXXGL: unp_externalize() is also dom_externalize() KBI and
1520 		 * it frees whole chain, so we must disconnect the mbuf.
1521 		 */
1522 		cm = m; m = m->m_next; cm->m_next = NULL;
1523 		error = unp_externalize(cm, controlp, flags);
1524 		if (error != 0) {
1525 			SOCK_IO_RECV_UNLOCK(so);
1526 			unp_scan(m, unp_freerights);
1527 			m_freem(m);
1528 			return (error);
1529 		}
1530 		if (controlp != NULL) {
1531 			while (*controlp != NULL)
1532 				controlp = &(*controlp)->m_next;
1533 		}
1534 	}
1535 	KASSERT(m == NULL || m->m_type == MT_DATA,
1536 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1537 	while (m != NULL && uio->uio_resid > 0) {
1538 		len = uio->uio_resid;
1539 		if (len > m->m_len)
1540 			len = m->m_len;
1541 		error = uiomove(mtod(m, char *), (int)len, uio);
1542 		if (error) {
1543 			SOCK_IO_RECV_UNLOCK(so);
1544 			m_freem(m);
1545 			return (error);
1546 		}
1547 		if (len == m->m_len)
1548 			m = m_free(m);
1549 		else {
1550 			m->m_data += len;
1551 			m->m_len -= len;
1552 		}
1553 	}
1554 	SOCK_IO_RECV_UNLOCK(so);
1555 
1556 	if (m != NULL) {
1557 		if (flagsp != NULL) {
1558 			if (flags & MSG_TRUNC) {
1559 				/* Report real length of the packet */
1560 				uio->uio_resid -= m_length(m, NULL);
1561 			}
1562 			*flagsp |= MSG_TRUNC;
1563 		}
1564 		m_freem(m);
1565 	} else if (flagsp != NULL)
1566 		*flagsp &= ~MSG_TRUNC;
1567 
1568 	return (0);
1569 }
1570 
1571 static bool
1572 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1573 {
1574 	struct mbuf *mb, *n;
1575 	struct sockbuf *sb;
1576 
1577 	SOCK_LOCK(so);
1578 	if (SOLISTENING(so)) {
1579 		SOCK_UNLOCK(so);
1580 		return (false);
1581 	}
1582 	mb = NULL;
1583 	sb = &so->so_rcv;
1584 	SOCKBUF_LOCK(sb);
1585 	if (sb->sb_fnrdy != NULL) {
1586 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1587 			if (mb == m) {
1588 				*errorp = sbready(sb, m, count);
1589 				break;
1590 			}
1591 			mb = mb->m_next;
1592 			if (mb == NULL) {
1593 				mb = n;
1594 				if (mb != NULL)
1595 					n = mb->m_nextpkt;
1596 			}
1597 		}
1598 	}
1599 	SOCKBUF_UNLOCK(sb);
1600 	SOCK_UNLOCK(so);
1601 	return (mb != NULL);
1602 }
1603 
1604 static int
1605 uipc_ready(struct socket *so, struct mbuf *m, int count)
1606 {
1607 	struct unpcb *unp, *unp2;
1608 	struct socket *so2;
1609 	int error, i;
1610 
1611 	unp = sotounpcb(so);
1612 
1613 	KASSERT(so->so_type == SOCK_STREAM,
1614 	    ("%s: unexpected socket type for %p", __func__, so));
1615 
1616 	UNP_PCB_LOCK(unp);
1617 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1618 		UNP_PCB_UNLOCK(unp);
1619 		so2 = unp2->unp_socket;
1620 		SOCKBUF_LOCK(&so2->so_rcv);
1621 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1622 			sorwakeup_locked(so2);
1623 		else
1624 			SOCKBUF_UNLOCK(&so2->so_rcv);
1625 		UNP_PCB_UNLOCK(unp2);
1626 		return (error);
1627 	}
1628 	UNP_PCB_UNLOCK(unp);
1629 
1630 	/*
1631 	 * The receiving socket has been disconnected, but may still be valid.
1632 	 * In this case, the now-ready mbufs are still present in its socket
1633 	 * buffer, so perform an exhaustive search before giving up and freeing
1634 	 * the mbufs.
1635 	 */
1636 	UNP_LINK_RLOCK();
1637 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1638 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1639 			break;
1640 	}
1641 	UNP_LINK_RUNLOCK();
1642 
1643 	if (unp == NULL) {
1644 		for (i = 0; i < count; i++)
1645 			m = m_free(m);
1646 		error = ECONNRESET;
1647 	}
1648 	return (error);
1649 }
1650 
1651 static int
1652 uipc_sense(struct socket *so, struct stat *sb)
1653 {
1654 	struct unpcb *unp;
1655 
1656 	unp = sotounpcb(so);
1657 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1658 
1659 	sb->st_blksize = so->so_snd.sb_hiwat;
1660 	sb->st_dev = NODEV;
1661 	sb->st_ino = unp->unp_ino;
1662 	return (0);
1663 }
1664 
1665 static int
1666 uipc_shutdown(struct socket *so, enum shutdown_how how)
1667 {
1668 	struct unpcb *unp = sotounpcb(so);
1669 	int error;
1670 
1671 	SOCK_LOCK(so);
1672 	if (SOLISTENING(so)) {
1673 		if (how != SHUT_WR) {
1674 			so->so_error = ECONNABORTED;
1675 			solisten_wakeup(so);    /* unlocks so */
1676 		} else
1677 			SOCK_UNLOCK(so);
1678 		return (ENOTCONN);
1679 	} else if ((so->so_state &
1680 	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
1681 		/*
1682 		 * POSIX mandates us to just return ENOTCONN when shutdown(2) is
1683 		 * invoked on a datagram sockets, however historically we would
1684 		 * actually tear socket down.  This is known to be leveraged by
1685 		 * some applications to unblock process waiting in recv(2) by
1686 		 * other process that it shares that socket with.  Try to meet
1687 		 * both backward-compatibility and POSIX requirements by forcing
1688 		 * ENOTCONN but still flushing buffers and performing wakeup(9).
1689 		 *
1690 		 * XXXGL: it remains unknown what applications expect this
1691 		 * behavior and is this isolated to unix/dgram or inet/dgram or
1692 		 * both.  See: D10351, D3039.
1693 		 */
1694 		error = ENOTCONN;
1695 		if (so->so_type != SOCK_DGRAM) {
1696 			SOCK_UNLOCK(so);
1697 			return (error);
1698 		}
1699 	} else
1700 		error = 0;
1701 	SOCK_UNLOCK(so);
1702 
1703 	switch (how) {
1704 	case SHUT_RD:
1705 		socantrcvmore(so);
1706 		unp_dispose(so);
1707 		break;
1708 	case SHUT_RDWR:
1709 		socantrcvmore(so);
1710 		unp_dispose(so);
1711 		/* FALLTHROUGH */
1712 	case SHUT_WR:
1713 		UNP_PCB_LOCK(unp);
1714 		socantsendmore(so);
1715 		unp_shutdown(unp);
1716 		UNP_PCB_UNLOCK(unp);
1717 	}
1718 	wakeup(&so->so_timeo);
1719 
1720 	return (error);
1721 }
1722 
1723 static int
1724 uipc_sockaddr(struct socket *so, struct sockaddr *ret)
1725 {
1726 	struct unpcb *unp;
1727 	const struct sockaddr *sa;
1728 
1729 	unp = sotounpcb(so);
1730 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1731 
1732 	UNP_PCB_LOCK(unp);
1733 	if (unp->unp_addr != NULL)
1734 		sa = (struct sockaddr *) unp->unp_addr;
1735 	else
1736 		sa = &sun_noname;
1737 	bcopy(sa, ret, sa->sa_len);
1738 	UNP_PCB_UNLOCK(unp);
1739 	return (0);
1740 }
1741 
1742 static int
1743 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1744 {
1745 	struct unpcb *unp;
1746 	struct xucred xu;
1747 	int error, optval;
1748 
1749 	if (sopt->sopt_level != SOL_LOCAL)
1750 		return (EINVAL);
1751 
1752 	unp = sotounpcb(so);
1753 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1754 	error = 0;
1755 	switch (sopt->sopt_dir) {
1756 	case SOPT_GET:
1757 		switch (sopt->sopt_name) {
1758 		case LOCAL_PEERCRED:
1759 			UNP_PCB_LOCK(unp);
1760 			if (unp->unp_flags & UNP_HAVEPC)
1761 				xu = unp->unp_peercred;
1762 			else {
1763 				if (so->so_type == SOCK_STREAM)
1764 					error = ENOTCONN;
1765 				else
1766 					error = EINVAL;
1767 			}
1768 			UNP_PCB_UNLOCK(unp);
1769 			if (error == 0)
1770 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1771 			break;
1772 
1773 		case LOCAL_CREDS:
1774 			/* Unlocked read. */
1775 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1776 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1777 			break;
1778 
1779 		case LOCAL_CREDS_PERSISTENT:
1780 			/* Unlocked read. */
1781 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1782 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1783 			break;
1784 
1785 		default:
1786 			error = EOPNOTSUPP;
1787 			break;
1788 		}
1789 		break;
1790 
1791 	case SOPT_SET:
1792 		switch (sopt->sopt_name) {
1793 		case LOCAL_CREDS:
1794 		case LOCAL_CREDS_PERSISTENT:
1795 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1796 					    sizeof(optval));
1797 			if (error)
1798 				break;
1799 
1800 #define	OPTSET(bit, exclusive) do {					\
1801 	UNP_PCB_LOCK(unp);						\
1802 	if (optval) {							\
1803 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1804 			UNP_PCB_UNLOCK(unp);				\
1805 			error = EINVAL;					\
1806 			break;						\
1807 		}							\
1808 		unp->unp_flags |= (bit);				\
1809 	} else								\
1810 		unp->unp_flags &= ~(bit);				\
1811 	UNP_PCB_UNLOCK(unp);						\
1812 } while (0)
1813 
1814 			switch (sopt->sopt_name) {
1815 			case LOCAL_CREDS:
1816 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1817 				break;
1818 
1819 			case LOCAL_CREDS_PERSISTENT:
1820 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1821 				break;
1822 
1823 			default:
1824 				break;
1825 			}
1826 			break;
1827 #undef	OPTSET
1828 		default:
1829 			error = ENOPROTOOPT;
1830 			break;
1831 		}
1832 		break;
1833 
1834 	default:
1835 		error = EOPNOTSUPP;
1836 		break;
1837 	}
1838 	return (error);
1839 }
1840 
1841 static int
1842 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1843 {
1844 
1845 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
1846 }
1847 
1848 static int
1849 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1850     struct thread *td, bool return_locked)
1851 {
1852 	struct mtx *vplock;
1853 	struct sockaddr_un *soun;
1854 	struct vnode *vp;
1855 	struct socket *so2;
1856 	struct unpcb *unp, *unp2, *unp3;
1857 	struct nameidata nd;
1858 	char buf[SOCK_MAXADDRLEN];
1859 	struct sockaddr *sa;
1860 	cap_rights_t rights;
1861 	int error, len;
1862 	bool connreq;
1863 
1864 	if (nam->sa_family != AF_UNIX)
1865 		return (EAFNOSUPPORT);
1866 	if (nam->sa_len > sizeof(struct sockaddr_un))
1867 		return (EINVAL);
1868 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1869 	if (len <= 0)
1870 		return (EINVAL);
1871 	soun = (struct sockaddr_un *)nam;
1872 	bcopy(soun->sun_path, buf, len);
1873 	buf[len] = 0;
1874 
1875 	error = 0;
1876 	unp = sotounpcb(so);
1877 	UNP_PCB_LOCK(unp);
1878 	for (;;) {
1879 		/*
1880 		 * Wait for connection state to stabilize.  If a connection
1881 		 * already exists, give up.  For datagram sockets, which permit
1882 		 * multiple consecutive connect(2) calls, upper layers are
1883 		 * responsible for disconnecting in advance of a subsequent
1884 		 * connect(2), but this is not synchronized with PCB connection
1885 		 * state.
1886 		 *
1887 		 * Also make sure that no threads are currently attempting to
1888 		 * lock the peer socket, to ensure that unp_conn cannot
1889 		 * transition between two valid sockets while locks are dropped.
1890 		 */
1891 		if (SOLISTENING(so))
1892 			error = EOPNOTSUPP;
1893 		else if (unp->unp_conn != NULL)
1894 			error = EISCONN;
1895 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1896 			error = EALREADY;
1897 		}
1898 		if (error != 0) {
1899 			UNP_PCB_UNLOCK(unp);
1900 			return (error);
1901 		}
1902 		if (unp->unp_pairbusy > 0) {
1903 			unp->unp_flags |= UNP_WAITING;
1904 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1905 			continue;
1906 		}
1907 		break;
1908 	}
1909 	unp->unp_flags |= UNP_CONNECTING;
1910 	UNP_PCB_UNLOCK(unp);
1911 
1912 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1913 	if (connreq)
1914 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1915 	else
1916 		sa = NULL;
1917 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1918 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1919 	error = namei(&nd);
1920 	if (error)
1921 		vp = NULL;
1922 	else
1923 		vp = nd.ni_vp;
1924 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1925 	if (error)
1926 		goto bad;
1927 	NDFREE_PNBUF(&nd);
1928 
1929 	if (vp->v_type != VSOCK) {
1930 		error = ENOTSOCK;
1931 		goto bad;
1932 	}
1933 #ifdef MAC
1934 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1935 	if (error)
1936 		goto bad;
1937 #endif
1938 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1939 	if (error)
1940 		goto bad;
1941 
1942 	unp = sotounpcb(so);
1943 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1944 
1945 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1946 	mtx_lock(vplock);
1947 	VOP_UNP_CONNECT(vp, &unp2);
1948 	if (unp2 == NULL) {
1949 		error = ECONNREFUSED;
1950 		goto bad2;
1951 	}
1952 	so2 = unp2->unp_socket;
1953 	if (so->so_type != so2->so_type) {
1954 		error = EPROTOTYPE;
1955 		goto bad2;
1956 	}
1957 	if (connreq) {
1958 		if (SOLISTENING(so2)) {
1959 			CURVNET_SET(so2->so_vnet);
1960 			so2 = sonewconn(so2, 0);
1961 			CURVNET_RESTORE();
1962 		} else
1963 			so2 = NULL;
1964 		if (so2 == NULL) {
1965 			error = ECONNREFUSED;
1966 			goto bad2;
1967 		}
1968 		unp3 = sotounpcb(so2);
1969 		unp_pcb_lock_pair(unp2, unp3);
1970 		if (unp2->unp_addr != NULL) {
1971 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1972 			unp3->unp_addr = (struct sockaddr_un *) sa;
1973 			sa = NULL;
1974 		}
1975 
1976 		unp_copy_peercred(td, unp3, unp, unp2);
1977 
1978 		UNP_PCB_UNLOCK(unp2);
1979 		unp2 = unp3;
1980 
1981 		/*
1982 		 * It is safe to block on the PCB lock here since unp2 is
1983 		 * nascent and cannot be connected to any other sockets.
1984 		 */
1985 		UNP_PCB_LOCK(unp);
1986 #ifdef MAC
1987 		mac_socketpeer_set_from_socket(so, so2);
1988 		mac_socketpeer_set_from_socket(so2, so);
1989 #endif
1990 	} else {
1991 		unp_pcb_lock_pair(unp, unp2);
1992 	}
1993 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1994 	    sotounpcb(so2) == unp2,
1995 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1996 	unp_connect2(so, so2);
1997 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1998 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1999 	unp->unp_flags &= ~UNP_CONNECTING;
2000 	if (!return_locked)
2001 		unp_pcb_unlock_pair(unp, unp2);
2002 bad2:
2003 	mtx_unlock(vplock);
2004 bad:
2005 	if (vp != NULL) {
2006 		/*
2007 		 * If we are returning locked (called via uipc_sosend_dgram()),
2008 		 * we need to be sure that vput() won't sleep.  This is
2009 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2010 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2011 		 */
2012 		MPASS(!(return_locked && connreq));
2013 		vput(vp);
2014 	}
2015 	free(sa, M_SONAME);
2016 	if (__predict_false(error)) {
2017 		UNP_PCB_LOCK(unp);
2018 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2019 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2020 		unp->unp_flags &= ~UNP_CONNECTING;
2021 		UNP_PCB_UNLOCK(unp);
2022 	}
2023 	return (error);
2024 }
2025 
2026 /*
2027  * Set socket peer credentials at connection time.
2028  *
2029  * The client's PCB credentials are copied from its process structure.  The
2030  * server's PCB credentials are copied from the socket on which it called
2031  * listen(2).  uipc_listen cached that process's credentials at the time.
2032  */
2033 void
2034 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2035     struct unpcb *server_unp, struct unpcb *listen_unp)
2036 {
2037 	cru2xt(td, &client_unp->unp_peercred);
2038 	client_unp->unp_flags |= UNP_HAVEPC;
2039 
2040 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
2041 	    sizeof(server_unp->unp_peercred));
2042 	server_unp->unp_flags |= UNP_HAVEPC;
2043 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
2044 }
2045 
2046 static void
2047 unp_connect2(struct socket *so, struct socket *so2)
2048 {
2049 	struct unpcb *unp;
2050 	struct unpcb *unp2;
2051 
2052 	MPASS(so2->so_type == so->so_type);
2053 	unp = sotounpcb(so);
2054 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
2055 	unp2 = sotounpcb(so2);
2056 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
2057 
2058 	UNP_PCB_LOCK_ASSERT(unp);
2059 	UNP_PCB_LOCK_ASSERT(unp2);
2060 	KASSERT(unp->unp_conn == NULL,
2061 	    ("%s: socket %p is already connected", __func__, unp));
2062 
2063 	unp->unp_conn = unp2;
2064 	unp_pcb_hold(unp2);
2065 	unp_pcb_hold(unp);
2066 	switch (so->so_type) {
2067 	case SOCK_DGRAM:
2068 		UNP_REF_LIST_LOCK();
2069 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2070 		UNP_REF_LIST_UNLOCK();
2071 		soisconnected(so);
2072 		break;
2073 
2074 	case SOCK_STREAM:
2075 	case SOCK_SEQPACKET:
2076 		KASSERT(unp2->unp_conn == NULL,
2077 		    ("%s: socket %p is already connected", __func__, unp2));
2078 		unp2->unp_conn = unp;
2079 		soisconnected(so);
2080 		soisconnected(so2);
2081 		break;
2082 
2083 	default:
2084 		panic("unp_connect2");
2085 	}
2086 }
2087 
2088 static void
2089 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
2090 {
2091 	struct socket *so, *so2;
2092 	struct mbuf *m = NULL;
2093 #ifdef INVARIANTS
2094 	struct unpcb *unptmp;
2095 #endif
2096 
2097 	UNP_PCB_LOCK_ASSERT(unp);
2098 	UNP_PCB_LOCK_ASSERT(unp2);
2099 	KASSERT(unp->unp_conn == unp2,
2100 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
2101 
2102 	unp->unp_conn = NULL;
2103 	so = unp->unp_socket;
2104 	so2 = unp2->unp_socket;
2105 	switch (unp->unp_socket->so_type) {
2106 	case SOCK_DGRAM:
2107 		/*
2108 		 * Remove our send socket buffer from the peer's receive buffer.
2109 		 * Move the data to the receive buffer only if it is empty.
2110 		 * This is a protection against a scenario where a peer
2111 		 * connects, floods and disconnects, effectively blocking
2112 		 * sendto() from unconnected sockets.
2113 		 */
2114 		SOCK_RECVBUF_LOCK(so2);
2115 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
2116 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
2117 			    uxdg_clist);
2118 			if (__predict_true((so2->so_rcv.sb_state &
2119 			    SBS_CANTRCVMORE) == 0) &&
2120 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
2121 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
2122 				    &so->so_snd.uxdg_mb);
2123 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
2124 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
2125 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
2126 			} else {
2127 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
2128 				STAILQ_INIT(&so->so_snd.uxdg_mb);
2129 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
2130 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
2131 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
2132 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
2133 			}
2134 			/* Note: so may reconnect. */
2135 			so->so_snd.uxdg_cc = 0;
2136 			so->so_snd.uxdg_ctl = 0;
2137 			so->so_snd.uxdg_mbcnt = 0;
2138 		}
2139 		SOCK_RECVBUF_UNLOCK(so2);
2140 		UNP_REF_LIST_LOCK();
2141 #ifdef INVARIANTS
2142 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
2143 			if (unptmp == unp)
2144 				break;
2145 		}
2146 		KASSERT(unptmp != NULL,
2147 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
2148 #endif
2149 		LIST_REMOVE(unp, unp_reflink);
2150 		UNP_REF_LIST_UNLOCK();
2151 		if (so) {
2152 			SOCK_LOCK(so);
2153 			so->so_state &= ~SS_ISCONNECTED;
2154 			SOCK_UNLOCK(so);
2155 		}
2156 		break;
2157 
2158 	case SOCK_STREAM:
2159 	case SOCK_SEQPACKET:
2160 		if (so)
2161 			soisdisconnected(so);
2162 		MPASS(unp2->unp_conn == unp);
2163 		unp2->unp_conn = NULL;
2164 		if (so2)
2165 			soisdisconnected(so2);
2166 		break;
2167 	}
2168 
2169 	if (unp == unp2) {
2170 		unp_pcb_rele_notlast(unp);
2171 		if (!unp_pcb_rele(unp))
2172 			UNP_PCB_UNLOCK(unp);
2173 	} else {
2174 		if (!unp_pcb_rele(unp))
2175 			UNP_PCB_UNLOCK(unp);
2176 		if (!unp_pcb_rele(unp2))
2177 			UNP_PCB_UNLOCK(unp2);
2178 	}
2179 
2180 	if (m != NULL) {
2181 		unp_scan(m, unp_freerights);
2182 		m_freem(m);
2183 	}
2184 }
2185 
2186 /*
2187  * unp_pcblist() walks the global list of struct unpcb's to generate a
2188  * pointer list, bumping the refcount on each unpcb.  It then copies them out
2189  * sequentially, validating the generation number on each to see if it has
2190  * been detached.  All of this is necessary because copyout() may sleep on
2191  * disk I/O.
2192  */
2193 static int
2194 unp_pcblist(SYSCTL_HANDLER_ARGS)
2195 {
2196 	struct unpcb *unp, **unp_list;
2197 	unp_gen_t gencnt;
2198 	struct xunpgen *xug;
2199 	struct unp_head *head;
2200 	struct xunpcb *xu;
2201 	u_int i;
2202 	int error, n;
2203 
2204 	switch ((intptr_t)arg1) {
2205 	case SOCK_STREAM:
2206 		head = &unp_shead;
2207 		break;
2208 
2209 	case SOCK_DGRAM:
2210 		head = &unp_dhead;
2211 		break;
2212 
2213 	case SOCK_SEQPACKET:
2214 		head = &unp_sphead;
2215 		break;
2216 
2217 	default:
2218 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
2219 	}
2220 
2221 	/*
2222 	 * The process of preparing the PCB list is too time-consuming and
2223 	 * resource-intensive to repeat twice on every request.
2224 	 */
2225 	if (req->oldptr == NULL) {
2226 		n = unp_count;
2227 		req->oldidx = 2 * (sizeof *xug)
2228 			+ (n + n/8) * sizeof(struct xunpcb);
2229 		return (0);
2230 	}
2231 
2232 	if (req->newptr != NULL)
2233 		return (EPERM);
2234 
2235 	/*
2236 	 * OK, now we're committed to doing something.
2237 	 */
2238 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
2239 	UNP_LINK_RLOCK();
2240 	gencnt = unp_gencnt;
2241 	n = unp_count;
2242 	UNP_LINK_RUNLOCK();
2243 
2244 	xug->xug_len = sizeof *xug;
2245 	xug->xug_count = n;
2246 	xug->xug_gen = gencnt;
2247 	xug->xug_sogen = so_gencnt;
2248 	error = SYSCTL_OUT(req, xug, sizeof *xug);
2249 	if (error) {
2250 		free(xug, M_TEMP);
2251 		return (error);
2252 	}
2253 
2254 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
2255 
2256 	UNP_LINK_RLOCK();
2257 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
2258 	     unp = LIST_NEXT(unp, unp_link)) {
2259 		UNP_PCB_LOCK(unp);
2260 		if (unp->unp_gencnt <= gencnt) {
2261 			if (cr_cansee(req->td->td_ucred,
2262 			    unp->unp_socket->so_cred)) {
2263 				UNP_PCB_UNLOCK(unp);
2264 				continue;
2265 			}
2266 			unp_list[i++] = unp;
2267 			unp_pcb_hold(unp);
2268 		}
2269 		UNP_PCB_UNLOCK(unp);
2270 	}
2271 	UNP_LINK_RUNLOCK();
2272 	n = i;			/* In case we lost some during malloc. */
2273 
2274 	error = 0;
2275 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
2276 	for (i = 0; i < n; i++) {
2277 		unp = unp_list[i];
2278 		UNP_PCB_LOCK(unp);
2279 		if (unp_pcb_rele(unp))
2280 			continue;
2281 
2282 		if (unp->unp_gencnt <= gencnt) {
2283 			xu->xu_len = sizeof *xu;
2284 			xu->xu_unpp = (uintptr_t)unp;
2285 			/*
2286 			 * XXX - need more locking here to protect against
2287 			 * connect/disconnect races for SMP.
2288 			 */
2289 			if (unp->unp_addr != NULL)
2290 				bcopy(unp->unp_addr, &xu->xu_addr,
2291 				      unp->unp_addr->sun_len);
2292 			else
2293 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
2294 			if (unp->unp_conn != NULL &&
2295 			    unp->unp_conn->unp_addr != NULL)
2296 				bcopy(unp->unp_conn->unp_addr,
2297 				      &xu->xu_caddr,
2298 				      unp->unp_conn->unp_addr->sun_len);
2299 			else
2300 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
2301 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
2302 			xu->unp_conn = (uintptr_t)unp->unp_conn;
2303 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
2304 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
2305 			xu->unp_gencnt = unp->unp_gencnt;
2306 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
2307 			UNP_PCB_UNLOCK(unp);
2308 			error = SYSCTL_OUT(req, xu, sizeof *xu);
2309 		} else {
2310 			UNP_PCB_UNLOCK(unp);
2311 		}
2312 	}
2313 	free(xu, M_TEMP);
2314 	if (!error) {
2315 		/*
2316 		 * Give the user an updated idea of our state.  If the
2317 		 * generation differs from what we told her before, she knows
2318 		 * that something happened while we were processing this
2319 		 * request, and it might be necessary to retry.
2320 		 */
2321 		xug->xug_gen = unp_gencnt;
2322 		xug->xug_sogen = so_gencnt;
2323 		xug->xug_count = unp_count;
2324 		error = SYSCTL_OUT(req, xug, sizeof *xug);
2325 	}
2326 	free(unp_list, M_TEMP);
2327 	free(xug, M_TEMP);
2328 	return (error);
2329 }
2330 
2331 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
2332     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2333     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
2334     "List of active local datagram sockets");
2335 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
2336     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2337     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
2338     "List of active local stream sockets");
2339 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
2340     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2341     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
2342     "List of active local seqpacket sockets");
2343 
2344 static void
2345 unp_shutdown(struct unpcb *unp)
2346 {
2347 	struct unpcb *unp2;
2348 	struct socket *so;
2349 
2350 	UNP_PCB_LOCK_ASSERT(unp);
2351 
2352 	unp2 = unp->unp_conn;
2353 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
2354 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
2355 		so = unp2->unp_socket;
2356 		if (so != NULL)
2357 			socantrcvmore(so);
2358 	}
2359 }
2360 
2361 static void
2362 unp_drop(struct unpcb *unp)
2363 {
2364 	struct socket *so;
2365 	struct unpcb *unp2;
2366 
2367 	/*
2368 	 * Regardless of whether the socket's peer dropped the connection
2369 	 * with this socket by aborting or disconnecting, POSIX requires
2370 	 * that ECONNRESET is returned.
2371 	 */
2372 
2373 	UNP_PCB_LOCK(unp);
2374 	so = unp->unp_socket;
2375 	if (so)
2376 		so->so_error = ECONNRESET;
2377 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
2378 		/* Last reference dropped in unp_disconnect(). */
2379 		unp_pcb_rele_notlast(unp);
2380 		unp_disconnect(unp, unp2);
2381 	} else if (!unp_pcb_rele(unp)) {
2382 		UNP_PCB_UNLOCK(unp);
2383 	}
2384 }
2385 
2386 static void
2387 unp_freerights(struct filedescent **fdep, int fdcount)
2388 {
2389 	struct file *fp;
2390 	int i;
2391 
2392 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2393 
2394 	for (i = 0; i < fdcount; i++) {
2395 		fp = fdep[i]->fde_file;
2396 		filecaps_free(&fdep[i]->fde_caps);
2397 		unp_discard(fp);
2398 	}
2399 	free(fdep[0], M_FILECAPS);
2400 }
2401 
2402 static int
2403 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2404 {
2405 	struct thread *td = curthread;		/* XXX */
2406 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2407 	int i;
2408 	int *fdp;
2409 	struct filedesc *fdesc = td->td_proc->p_fd;
2410 	struct filedescent **fdep;
2411 	void *data;
2412 	socklen_t clen = control->m_len, datalen;
2413 	int error, newfds;
2414 	u_int newlen;
2415 
2416 	UNP_LINK_UNLOCK_ASSERT();
2417 
2418 	error = 0;
2419 	if (controlp != NULL) /* controlp == NULL => free control messages */
2420 		*controlp = NULL;
2421 	while (cm != NULL) {
2422 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
2423 
2424 		data = CMSG_DATA(cm);
2425 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2426 		if (cm->cmsg_level == SOL_SOCKET
2427 		    && cm->cmsg_type == SCM_RIGHTS) {
2428 			newfds = datalen / sizeof(*fdep);
2429 			if (newfds == 0)
2430 				goto next;
2431 			fdep = data;
2432 
2433 			/* If we're not outputting the descriptors free them. */
2434 			if (error || controlp == NULL) {
2435 				unp_freerights(fdep, newfds);
2436 				goto next;
2437 			}
2438 			FILEDESC_XLOCK(fdesc);
2439 
2440 			/*
2441 			 * Now change each pointer to an fd in the global
2442 			 * table to an integer that is the index to the local
2443 			 * fd table entry that we set up to point to the
2444 			 * global one we are transferring.
2445 			 */
2446 			newlen = newfds * sizeof(int);
2447 			*controlp = sbcreatecontrol(NULL, newlen,
2448 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2449 
2450 			fdp = (int *)
2451 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2452 			if ((error = fdallocn(td, 0, fdp, newfds))) {
2453 				FILEDESC_XUNLOCK(fdesc);
2454 				unp_freerights(fdep, newfds);
2455 				m_freem(*controlp);
2456 				*controlp = NULL;
2457 				goto next;
2458 			}
2459 			for (i = 0; i < newfds; i++, fdp++) {
2460 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2461 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2462 				    &fdep[i]->fde_caps);
2463 				unp_externalize_fp(fdep[i]->fde_file);
2464 			}
2465 
2466 			/*
2467 			 * The new type indicates that the mbuf data refers to
2468 			 * kernel resources that may need to be released before
2469 			 * the mbuf is freed.
2470 			 */
2471 			m_chtype(*controlp, MT_EXTCONTROL);
2472 			FILEDESC_XUNLOCK(fdesc);
2473 			free(fdep[0], M_FILECAPS);
2474 		} else {
2475 			/* We can just copy anything else across. */
2476 			if (error || controlp == NULL)
2477 				goto next;
2478 			*controlp = sbcreatecontrol(NULL, datalen,
2479 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
2480 			bcopy(data,
2481 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2482 			    datalen);
2483 		}
2484 		controlp = &(*controlp)->m_next;
2485 
2486 next:
2487 		if (CMSG_SPACE(datalen) < clen) {
2488 			clen -= CMSG_SPACE(datalen);
2489 			cm = (struct cmsghdr *)
2490 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2491 		} else {
2492 			clen = 0;
2493 			cm = NULL;
2494 		}
2495 	}
2496 
2497 	m_freem(control);
2498 	return (error);
2499 }
2500 
2501 static void
2502 unp_zone_change(void *tag)
2503 {
2504 
2505 	uma_zone_set_max(unp_zone, maxsockets);
2506 }
2507 
2508 #ifdef INVARIANTS
2509 static void
2510 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2511 {
2512 	struct unpcb *unp;
2513 
2514 	unp = mem;
2515 
2516 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2517 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2518 	KASSERT(unp->unp_socket == NULL,
2519 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2520 	KASSERT(unp->unp_vnode == NULL,
2521 	    ("%s: unpcb %p has vnode references", __func__, unp));
2522 	KASSERT(unp->unp_conn == NULL,
2523 	    ("%s: unpcb %p is still connected", __func__, unp));
2524 	KASSERT(unp->unp_addr == NULL,
2525 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2526 }
2527 #endif
2528 
2529 static void
2530 unp_init(void *arg __unused)
2531 {
2532 	uma_dtor dtor;
2533 
2534 #ifdef INVARIANTS
2535 	dtor = unp_zdtor;
2536 #else
2537 	dtor = NULL;
2538 #endif
2539 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2540 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2541 	uma_zone_set_max(unp_zone, maxsockets);
2542 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2543 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2544 	    NULL, EVENTHANDLER_PRI_ANY);
2545 	LIST_INIT(&unp_dhead);
2546 	LIST_INIT(&unp_shead);
2547 	LIST_INIT(&unp_sphead);
2548 	SLIST_INIT(&unp_defers);
2549 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2550 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2551 	UNP_LINK_LOCK_INIT();
2552 	UNP_DEFERRED_LOCK_INIT();
2553 }
2554 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2555 
2556 static void
2557 unp_internalize_cleanup_rights(struct mbuf *control)
2558 {
2559 	struct cmsghdr *cp;
2560 	struct mbuf *m;
2561 	void *data;
2562 	socklen_t datalen;
2563 
2564 	for (m = control; m != NULL; m = m->m_next) {
2565 		cp = mtod(m, struct cmsghdr *);
2566 		if (cp->cmsg_level != SOL_SOCKET ||
2567 		    cp->cmsg_type != SCM_RIGHTS)
2568 			continue;
2569 		data = CMSG_DATA(cp);
2570 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2571 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2572 	}
2573 }
2574 
2575 static int
2576 unp_internalize(struct mbuf **controlp, struct thread *td,
2577     struct mbuf **clast, u_int *space, u_int *mbcnt)
2578 {
2579 	struct mbuf *control, **initial_controlp;
2580 	struct proc *p;
2581 	struct filedesc *fdesc;
2582 	struct bintime *bt;
2583 	struct cmsghdr *cm;
2584 	struct cmsgcred *cmcred;
2585 	struct filedescent *fde, **fdep, *fdev;
2586 	struct file *fp;
2587 	struct timeval *tv;
2588 	struct timespec *ts;
2589 	void *data;
2590 	socklen_t clen, datalen;
2591 	int i, j, error, *fdp, oldfds;
2592 	u_int newlen;
2593 
2594 	MPASS((*controlp)->m_next == NULL); /* COMPAT_OLDSOCK may violate */
2595 	UNP_LINK_UNLOCK_ASSERT();
2596 
2597 	p = td->td_proc;
2598 	fdesc = p->p_fd;
2599 	error = 0;
2600 	control = *controlp;
2601 	*controlp = NULL;
2602 	initial_controlp = controlp;
2603 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
2604 	    data = CMSG_DATA(cm);
2605 
2606 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
2607 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
2608 	    (char *)cm + cm->cmsg_len >= (char *)data;
2609 
2610 	    clen -= min(CMSG_SPACE(datalen), clen),
2611 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
2612 	    data = CMSG_DATA(cm)) {
2613 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
2614 		switch (cm->cmsg_type) {
2615 		case SCM_CREDS:
2616 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2617 			    SCM_CREDS, SOL_SOCKET, M_WAITOK);
2618 			cmcred = (struct cmsgcred *)
2619 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2620 			cmcred->cmcred_pid = p->p_pid;
2621 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2622 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2623 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2624 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2625 			    CMGROUP_MAX);
2626 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2627 				cmcred->cmcred_groups[i] =
2628 				    td->td_ucred->cr_groups[i];
2629 			break;
2630 
2631 		case SCM_RIGHTS:
2632 			oldfds = datalen / sizeof (int);
2633 			if (oldfds == 0)
2634 				continue;
2635 			/* On some machines sizeof pointer is bigger than
2636 			 * sizeof int, so we need to check if data fits into
2637 			 * single mbuf.  We could allocate several mbufs, and
2638 			 * unp_externalize() should even properly handle that.
2639 			 * But it is not worth to complicate the code for an
2640 			 * insane scenario of passing over 200 file descriptors
2641 			 * at once.
2642 			 */
2643 			newlen = oldfds * sizeof(fdep[0]);
2644 			if (CMSG_SPACE(newlen) > MCLBYTES) {
2645 				error = EMSGSIZE;
2646 				goto out;
2647 			}
2648 			/*
2649 			 * Check that all the FDs passed in refer to legal
2650 			 * files.  If not, reject the entire operation.
2651 			 */
2652 			fdp = data;
2653 			FILEDESC_SLOCK(fdesc);
2654 			for (i = 0; i < oldfds; i++, fdp++) {
2655 				fp = fget_noref(fdesc, *fdp);
2656 				if (fp == NULL) {
2657 					FILEDESC_SUNLOCK(fdesc);
2658 					error = EBADF;
2659 					goto out;
2660 				}
2661 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2662 					FILEDESC_SUNLOCK(fdesc);
2663 					error = EOPNOTSUPP;
2664 					goto out;
2665 				}
2666 			}
2667 
2668 			/*
2669 			 * Now replace the integer FDs with pointers to the
2670 			 * file structure and capability rights.
2671 			 */
2672 			*controlp = sbcreatecontrol(NULL, newlen,
2673 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2674 			fdp = data;
2675 			for (i = 0; i < oldfds; i++, fdp++) {
2676 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2677 					fdp = data;
2678 					for (j = 0; j < i; j++, fdp++) {
2679 						fdrop(fdesc->fd_ofiles[*fdp].
2680 						    fde_file, td);
2681 					}
2682 					FILEDESC_SUNLOCK(fdesc);
2683 					error = EBADF;
2684 					goto out;
2685 				}
2686 			}
2687 			fdp = data;
2688 			fdep = (struct filedescent **)
2689 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2690 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2691 			    M_WAITOK);
2692 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2693 				fde = &fdesc->fd_ofiles[*fdp];
2694 				fdep[i] = fdev;
2695 				fdep[i]->fde_file = fde->fde_file;
2696 				filecaps_copy(&fde->fde_caps,
2697 				    &fdep[i]->fde_caps, true);
2698 				unp_internalize_fp(fdep[i]->fde_file);
2699 			}
2700 			FILEDESC_SUNLOCK(fdesc);
2701 			break;
2702 
2703 		case SCM_TIMESTAMP:
2704 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2705 			    SCM_TIMESTAMP, SOL_SOCKET, M_WAITOK);
2706 			tv = (struct timeval *)
2707 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2708 			microtime(tv);
2709 			break;
2710 
2711 		case SCM_BINTIME:
2712 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2713 			    SCM_BINTIME, SOL_SOCKET, M_WAITOK);
2714 			bt = (struct bintime *)
2715 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2716 			bintime(bt);
2717 			break;
2718 
2719 		case SCM_REALTIME:
2720 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2721 			    SCM_REALTIME, SOL_SOCKET, M_WAITOK);
2722 			ts = (struct timespec *)
2723 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2724 			nanotime(ts);
2725 			break;
2726 
2727 		case SCM_MONOTONIC:
2728 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2729 			    SCM_MONOTONIC, SOL_SOCKET, M_WAITOK);
2730 			ts = (struct timespec *)
2731 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2732 			nanouptime(ts);
2733 			break;
2734 
2735 		default:
2736 			error = EINVAL;
2737 			goto out;
2738 		}
2739 
2740 		if (space != NULL) {
2741 			*space += (*controlp)->m_len;
2742 			*mbcnt += MSIZE;
2743 			if ((*controlp)->m_flags & M_EXT)
2744 				*mbcnt += (*controlp)->m_ext.ext_size;
2745 			*clast = *controlp;
2746 		}
2747 		controlp = &(*controlp)->m_next;
2748 	}
2749 	if (clen > 0)
2750 		error = EINVAL;
2751 
2752 out:
2753 	if (error != 0 && initial_controlp != NULL)
2754 		unp_internalize_cleanup_rights(*initial_controlp);
2755 	m_freem(control);
2756 	return (error);
2757 }
2758 
2759 static struct mbuf *
2760 unp_addsockcred(struct thread *td, struct mbuf *control, int mode,
2761     struct mbuf **clast, u_int *space, u_int *mbcnt)
2762 {
2763 	struct mbuf *m, *n, *n_prev;
2764 	const struct cmsghdr *cm;
2765 	int ngroups, i, cmsgtype;
2766 	size_t ctrlsz;
2767 
2768 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2769 	if (mode & UNP_WANTCRED_ALWAYS) {
2770 		ctrlsz = SOCKCRED2SIZE(ngroups);
2771 		cmsgtype = SCM_CREDS2;
2772 	} else {
2773 		ctrlsz = SOCKCREDSIZE(ngroups);
2774 		cmsgtype = SCM_CREDS;
2775 	}
2776 
2777 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
2778 	if (m == NULL)
2779 		return (control);
2780 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
2781 
2782 	if (mode & UNP_WANTCRED_ALWAYS) {
2783 		struct sockcred2 *sc;
2784 
2785 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2786 		sc->sc_version = 0;
2787 		sc->sc_pid = td->td_proc->p_pid;
2788 		sc->sc_uid = td->td_ucred->cr_ruid;
2789 		sc->sc_euid = td->td_ucred->cr_uid;
2790 		sc->sc_gid = td->td_ucred->cr_rgid;
2791 		sc->sc_egid = td->td_ucred->cr_gid;
2792 		sc->sc_ngroups = ngroups;
2793 		for (i = 0; i < sc->sc_ngroups; i++)
2794 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2795 	} else {
2796 		struct sockcred *sc;
2797 
2798 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2799 		sc->sc_uid = td->td_ucred->cr_ruid;
2800 		sc->sc_euid = td->td_ucred->cr_uid;
2801 		sc->sc_gid = td->td_ucred->cr_rgid;
2802 		sc->sc_egid = td->td_ucred->cr_gid;
2803 		sc->sc_ngroups = ngroups;
2804 		for (i = 0; i < sc->sc_ngroups; i++)
2805 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2806 	}
2807 
2808 	/*
2809 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2810 	 * created SCM_CREDS control message (struct sockcred) has another
2811 	 * format.
2812 	 */
2813 	if (control != NULL && cmsgtype == SCM_CREDS)
2814 		for (n = control, n_prev = NULL; n != NULL;) {
2815 			cm = mtod(n, struct cmsghdr *);
2816     			if (cm->cmsg_level == SOL_SOCKET &&
2817 			    cm->cmsg_type == SCM_CREDS) {
2818     				if (n_prev == NULL)
2819 					control = n->m_next;
2820 				else
2821 					n_prev->m_next = n->m_next;
2822 				if (space != NULL) {
2823 					MPASS(*space >= n->m_len);
2824 					*space -= n->m_len;
2825 					MPASS(*mbcnt >= MSIZE);
2826 					*mbcnt -= MSIZE;
2827 					if (n->m_flags & M_EXT) {
2828 						MPASS(*mbcnt >=
2829 						    n->m_ext.ext_size);
2830 						*mbcnt -= n->m_ext.ext_size;
2831 					}
2832 					MPASS(clast);
2833 					if (*clast == n) {
2834 						MPASS(n->m_next == NULL);
2835 						if (n_prev == NULL)
2836 							*clast = m;
2837 						else
2838 							*clast = n_prev;
2839 					}
2840 				}
2841 				n = m_free(n);
2842 			} else {
2843 				n_prev = n;
2844 				n = n->m_next;
2845 			}
2846 		}
2847 
2848 	/* Prepend it to the head. */
2849 	m->m_next = control;
2850 	if (space != NULL) {
2851 		*space += m->m_len;
2852 		*mbcnt += MSIZE;
2853 		if (control == NULL)
2854 			*clast = m;
2855 	}
2856 	return (m);
2857 }
2858 
2859 static struct unpcb *
2860 fptounp(struct file *fp)
2861 {
2862 	struct socket *so;
2863 
2864 	if (fp->f_type != DTYPE_SOCKET)
2865 		return (NULL);
2866 	if ((so = fp->f_data) == NULL)
2867 		return (NULL);
2868 	if (so->so_proto->pr_domain != &localdomain)
2869 		return (NULL);
2870 	return sotounpcb(so);
2871 }
2872 
2873 static void
2874 unp_discard(struct file *fp)
2875 {
2876 	struct unp_defer *dr;
2877 
2878 	if (unp_externalize_fp(fp)) {
2879 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2880 		dr->ud_fp = fp;
2881 		UNP_DEFERRED_LOCK();
2882 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2883 		UNP_DEFERRED_UNLOCK();
2884 		atomic_add_int(&unp_defers_count, 1);
2885 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2886 	} else
2887 		closef_nothread(fp);
2888 }
2889 
2890 static void
2891 unp_process_defers(void *arg __unused, int pending)
2892 {
2893 	struct unp_defer *dr;
2894 	SLIST_HEAD(, unp_defer) drl;
2895 	int count;
2896 
2897 	SLIST_INIT(&drl);
2898 	for (;;) {
2899 		UNP_DEFERRED_LOCK();
2900 		if (SLIST_FIRST(&unp_defers) == NULL) {
2901 			UNP_DEFERRED_UNLOCK();
2902 			break;
2903 		}
2904 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2905 		UNP_DEFERRED_UNLOCK();
2906 		count = 0;
2907 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2908 			SLIST_REMOVE_HEAD(&drl, ud_link);
2909 			closef_nothread(dr->ud_fp);
2910 			free(dr, M_TEMP);
2911 			count++;
2912 		}
2913 		atomic_add_int(&unp_defers_count, -count);
2914 	}
2915 }
2916 
2917 static void
2918 unp_internalize_fp(struct file *fp)
2919 {
2920 	struct unpcb *unp;
2921 
2922 	UNP_LINK_WLOCK();
2923 	if ((unp = fptounp(fp)) != NULL) {
2924 		unp->unp_file = fp;
2925 		unp->unp_msgcount++;
2926 	}
2927 	unp_rights++;
2928 	UNP_LINK_WUNLOCK();
2929 }
2930 
2931 static int
2932 unp_externalize_fp(struct file *fp)
2933 {
2934 	struct unpcb *unp;
2935 	int ret;
2936 
2937 	UNP_LINK_WLOCK();
2938 	if ((unp = fptounp(fp)) != NULL) {
2939 		unp->unp_msgcount--;
2940 		ret = 1;
2941 	} else
2942 		ret = 0;
2943 	unp_rights--;
2944 	UNP_LINK_WUNLOCK();
2945 	return (ret);
2946 }
2947 
2948 /*
2949  * unp_defer indicates whether additional work has been defered for a future
2950  * pass through unp_gc().  It is thread local and does not require explicit
2951  * synchronization.
2952  */
2953 static int	unp_marked;
2954 
2955 static void
2956 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2957 {
2958 	struct unpcb *unp;
2959 	struct file *fp;
2960 	int i;
2961 
2962 	/*
2963 	 * This function can only be called from the gc task.
2964 	 */
2965 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2966 	    ("%s: not on gc callout", __func__));
2967 	UNP_LINK_LOCK_ASSERT();
2968 
2969 	for (i = 0; i < fdcount; i++) {
2970 		fp = fdep[i]->fde_file;
2971 		if ((unp = fptounp(fp)) == NULL)
2972 			continue;
2973 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2974 			continue;
2975 		unp->unp_gcrefs--;
2976 	}
2977 }
2978 
2979 static void
2980 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2981 {
2982 	struct unpcb *unp;
2983 	struct file *fp;
2984 	int i;
2985 
2986 	/*
2987 	 * This function can only be called from the gc task.
2988 	 */
2989 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2990 	    ("%s: not on gc callout", __func__));
2991 	UNP_LINK_LOCK_ASSERT();
2992 
2993 	for (i = 0; i < fdcount; i++) {
2994 		fp = fdep[i]->fde_file;
2995 		if ((unp = fptounp(fp)) == NULL)
2996 			continue;
2997 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2998 			continue;
2999 		unp->unp_gcrefs++;
3000 		unp_marked++;
3001 	}
3002 }
3003 
3004 static void
3005 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
3006 {
3007 	struct sockbuf *sb;
3008 
3009 	SOCK_LOCK_ASSERT(so);
3010 
3011 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
3012 		return;
3013 
3014 	SOCK_RECVBUF_LOCK(so);
3015 	switch (so->so_type) {
3016 	case SOCK_DGRAM:
3017 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
3018 		unp_scan(so->so_rcv.uxdg_peeked, op);
3019 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
3020 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
3021 		break;
3022 	case SOCK_STREAM:
3023 	case SOCK_SEQPACKET:
3024 		unp_scan(so->so_rcv.sb_mb, op);
3025 		break;
3026 	}
3027 	SOCK_RECVBUF_UNLOCK(so);
3028 }
3029 
3030 static void
3031 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
3032 {
3033 	struct socket *so, *soa;
3034 
3035 	so = unp->unp_socket;
3036 	SOCK_LOCK(so);
3037 	if (SOLISTENING(so)) {
3038 		/*
3039 		 * Mark all sockets in our accept queue.
3040 		 */
3041 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
3042 			unp_scan_socket(soa, op);
3043 	} else {
3044 		/*
3045 		 * Mark all sockets we reference with RIGHTS.
3046 		 */
3047 		unp_scan_socket(so, op);
3048 	}
3049 	SOCK_UNLOCK(so);
3050 }
3051 
3052 static int unp_recycled;
3053 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
3054     "Number of unreachable sockets claimed by the garbage collector.");
3055 
3056 static int unp_taskcount;
3057 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
3058     "Number of times the garbage collector has run.");
3059 
3060 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
3061     "Number of active local sockets.");
3062 
3063 static void
3064 unp_gc(__unused void *arg, int pending)
3065 {
3066 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
3067 				    NULL };
3068 	struct unp_head **head;
3069 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
3070 	struct file *f, **unref;
3071 	struct unpcb *unp, *unptmp;
3072 	int i, total, unp_unreachable;
3073 
3074 	LIST_INIT(&unp_deadhead);
3075 	unp_taskcount++;
3076 	UNP_LINK_RLOCK();
3077 	/*
3078 	 * First determine which sockets may be in cycles.
3079 	 */
3080 	unp_unreachable = 0;
3081 
3082 	for (head = heads; *head != NULL; head++)
3083 		LIST_FOREACH(unp, *head, unp_link) {
3084 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
3085 			    ("%s: unp %p has unexpected gc flags 0x%x",
3086 			    __func__, unp, (unsigned int)unp->unp_gcflag));
3087 
3088 			f = unp->unp_file;
3089 
3090 			/*
3091 			 * Check for an unreachable socket potentially in a
3092 			 * cycle.  It must be in a queue as indicated by
3093 			 * msgcount, and this must equal the file reference
3094 			 * count.  Note that when msgcount is 0 the file is
3095 			 * NULL.
3096 			 */
3097 			if (f != NULL && unp->unp_msgcount != 0 &&
3098 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
3099 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
3100 				unp->unp_gcflag |= UNPGC_DEAD;
3101 				unp->unp_gcrefs = unp->unp_msgcount;
3102 				unp_unreachable++;
3103 			}
3104 		}
3105 
3106 	/*
3107 	 * Scan all sockets previously marked as potentially being in a cycle
3108 	 * and remove the references each socket holds on any UNPGC_DEAD
3109 	 * sockets in its queue.  After this step, all remaining references on
3110 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
3111 	 */
3112 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
3113 		unp_gc_scan(unp, unp_remove_dead_ref);
3114 
3115 	/*
3116 	 * If a socket still has a non-negative refcount, it cannot be in a
3117 	 * cycle.  In this case increment refcount of all children iteratively.
3118 	 * Stop the scan once we do a complete loop without discovering
3119 	 * a new reachable socket.
3120 	 */
3121 	do {
3122 		unp_marked = 0;
3123 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
3124 			if (unp->unp_gcrefs > 0) {
3125 				unp->unp_gcflag &= ~UNPGC_DEAD;
3126 				LIST_REMOVE(unp, unp_dead);
3127 				KASSERT(unp_unreachable > 0,
3128 				    ("%s: unp_unreachable underflow.",
3129 				    __func__));
3130 				unp_unreachable--;
3131 				unp_gc_scan(unp, unp_restore_undead_ref);
3132 			}
3133 	} while (unp_marked);
3134 
3135 	UNP_LINK_RUNLOCK();
3136 
3137 	if (unp_unreachable == 0)
3138 		return;
3139 
3140 	/*
3141 	 * Allocate space for a local array of dead unpcbs.
3142 	 * TODO: can this path be simplified by instead using the local
3143 	 * dead list at unp_deadhead, after taking out references
3144 	 * on the file object and/or unpcb and dropping the link lock?
3145 	 */
3146 	unref = malloc(unp_unreachable * sizeof(struct file *),
3147 	    M_TEMP, M_WAITOK);
3148 
3149 	/*
3150 	 * Iterate looking for sockets which have been specifically marked
3151 	 * as unreachable and store them locally.
3152 	 */
3153 	UNP_LINK_RLOCK();
3154 	total = 0;
3155 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
3156 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
3157 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
3158 		unp->unp_gcflag &= ~UNPGC_DEAD;
3159 		f = unp->unp_file;
3160 		if (unp->unp_msgcount == 0 || f == NULL ||
3161 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
3162 		    !fhold(f))
3163 			continue;
3164 		unref[total++] = f;
3165 		KASSERT(total <= unp_unreachable,
3166 		    ("%s: incorrect unreachable count.", __func__));
3167 	}
3168 	UNP_LINK_RUNLOCK();
3169 
3170 	/*
3171 	 * Now flush all sockets, free'ing rights.  This will free the
3172 	 * struct files associated with these sockets but leave each socket
3173 	 * with one remaining ref.
3174 	 */
3175 	for (i = 0; i < total; i++) {
3176 		struct socket *so;
3177 
3178 		so = unref[i]->f_data;
3179 		CURVNET_SET(so->so_vnet);
3180 		socantrcvmore(so);
3181 		unp_dispose(so);
3182 		CURVNET_RESTORE();
3183 	}
3184 
3185 	/*
3186 	 * And finally release the sockets so they can be reclaimed.
3187 	 */
3188 	for (i = 0; i < total; i++)
3189 		fdrop(unref[i], NULL);
3190 	unp_recycled += total;
3191 	free(unref, M_TEMP);
3192 }
3193 
3194 /*
3195  * Synchronize against unp_gc, which can trip over data as we are freeing it.
3196  */
3197 static void
3198 unp_dispose(struct socket *so)
3199 {
3200 	struct sockbuf *sb;
3201 	struct unpcb *unp;
3202 	struct mbuf *m;
3203 	int error __diagused;
3204 
3205 	MPASS(!SOLISTENING(so));
3206 
3207 	unp = sotounpcb(so);
3208 	UNP_LINK_WLOCK();
3209 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
3210 	UNP_LINK_WUNLOCK();
3211 
3212 	/*
3213 	 * Grab our special mbufs before calling sbrelease().
3214 	 */
3215 	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3216 	MPASS(!error);
3217 	SOCK_RECVBUF_LOCK(so);
3218 	switch (so->so_type) {
3219 	case SOCK_DGRAM:
3220 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
3221 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
3222 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
3223 			/* Note: socket of sb may reconnect. */
3224 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
3225 		}
3226 		sb = &so->so_rcv;
3227 		if (sb->uxdg_peeked != NULL) {
3228 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
3229 			    m_stailqpkt);
3230 			sb->uxdg_peeked = NULL;
3231 		}
3232 		m = STAILQ_FIRST(&sb->uxdg_mb);
3233 		STAILQ_INIT(&sb->uxdg_mb);
3234 		/* XXX: our shortened sbrelease() */
3235 		(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
3236 		    RLIM_INFINITY);
3237 		/*
3238 		 * XXXGL Mark sb with SBS_CANTRCVMORE.  This is needed to
3239 		 * prevent uipc_sosend_dgram() or unp_disconnect() adding more
3240 		 * data to the socket.
3241 		 * We came here either through shutdown(2) or from the final
3242 		 * sofree().  The sofree() case is simple as it guarantees
3243 		 * that no more sends will happen, however we can race with
3244 		 * unp_disconnect() from our peer.  The shutdown(2) case is
3245 		 * more exotic.  It would call into unp_dispose() only if
3246 		 * socket is SS_ISCONNECTED.  This is possible if we did
3247 		 * connect(2) on this socket and we also had it bound with
3248 		 * bind(2) and receive connections from other sockets.
3249 		 * Because uipc_shutdown() violates POSIX (see comment
3250 		 * there) we will end up here shutting down our receive side.
3251 		 * Of course this will have affect not only on the peer we
3252 		 * connect(2)ed to, but also on all of the peers who had
3253 		 * connect(2)ed to us.  Their sends would end up with ENOBUFS.
3254 		 */
3255 		sb->sb_state |= SBS_CANTRCVMORE;
3256 		break;
3257 	case SOCK_STREAM:
3258 	case SOCK_SEQPACKET:
3259 		sb = &so->so_rcv;
3260 		m = sbcut_locked(sb, sb->sb_ccc);
3261 		KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
3262 		    ("%s: ccc %u mb %p mbcnt %u", __func__,
3263 		    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
3264 		sbrelease_locked(so, SO_RCV);
3265 		break;
3266 	}
3267 	SOCK_RECVBUF_UNLOCK(so);
3268 	SOCK_IO_RECV_UNLOCK(so);
3269 
3270 	if (m != NULL) {
3271 		unp_scan(m, unp_freerights);
3272 		m_freem(m);
3273 	}
3274 }
3275 
3276 static void
3277 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
3278 {
3279 	struct mbuf *m;
3280 	struct cmsghdr *cm;
3281 	void *data;
3282 	socklen_t clen, datalen;
3283 
3284 	while (m0 != NULL) {
3285 		for (m = m0; m; m = m->m_next) {
3286 			if (m->m_type != MT_CONTROL)
3287 				continue;
3288 
3289 			cm = mtod(m, struct cmsghdr *);
3290 			clen = m->m_len;
3291 
3292 			while (cm != NULL) {
3293 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
3294 					break;
3295 
3296 				data = CMSG_DATA(cm);
3297 				datalen = (caddr_t)cm + cm->cmsg_len
3298 				    - (caddr_t)data;
3299 
3300 				if (cm->cmsg_level == SOL_SOCKET &&
3301 				    cm->cmsg_type == SCM_RIGHTS) {
3302 					(*op)(data, datalen /
3303 					    sizeof(struct filedescent *));
3304 				}
3305 
3306 				if (CMSG_SPACE(datalen) < clen) {
3307 					clen -= CMSG_SPACE(datalen);
3308 					cm = (struct cmsghdr *)
3309 					    ((caddr_t)cm + CMSG_SPACE(datalen));
3310 				} else {
3311 					clen = 0;
3312 					cm = NULL;
3313 				}
3314 			}
3315 		}
3316 		m0 = m0->m_nextpkt;
3317 	}
3318 }
3319 
3320 /*
3321  * Definitions of protocols supported in the LOCAL domain.
3322  */
3323 static struct protosw streamproto = {
3324 	.pr_type =		SOCK_STREAM,
3325 	.pr_flags =		PR_CONNREQUIRED | PR_WANTRCVD | PR_CAPATTACH,
3326 	.pr_ctloutput =		&uipc_ctloutput,
3327 	.pr_abort = 		uipc_abort,
3328 	.pr_accept =		uipc_peeraddr,
3329 	.pr_attach =		uipc_attach,
3330 	.pr_bind =		uipc_bind,
3331 	.pr_bindat =		uipc_bindat,
3332 	.pr_connect =		uipc_connect,
3333 	.pr_connectat =		uipc_connectat,
3334 	.pr_connect2 =		uipc_connect2,
3335 	.pr_detach =		uipc_detach,
3336 	.pr_disconnect =	uipc_disconnect,
3337 	.pr_listen =		uipc_listen,
3338 	.pr_peeraddr =		uipc_peeraddr,
3339 	.pr_rcvd =		uipc_rcvd,
3340 	.pr_send =		uipc_send,
3341 	.pr_ready =		uipc_ready,
3342 	.pr_sense =		uipc_sense,
3343 	.pr_shutdown =		uipc_shutdown,
3344 	.pr_sockaddr =		uipc_sockaddr,
3345 	.pr_soreceive =		soreceive_generic,
3346 	.pr_close =		uipc_close,
3347 };
3348 
3349 static struct protosw dgramproto = {
3350 	.pr_type =		SOCK_DGRAM,
3351 	.pr_flags =		PR_ATOMIC | PR_ADDR | PR_CAPATTACH | PR_SOCKBUF,
3352 	.pr_ctloutput =		&uipc_ctloutput,
3353 	.pr_abort = 		uipc_abort,
3354 	.pr_accept =		uipc_peeraddr,
3355 	.pr_attach =		uipc_attach,
3356 	.pr_bind =		uipc_bind,
3357 	.pr_bindat =		uipc_bindat,
3358 	.pr_connect =		uipc_connect,
3359 	.pr_connectat =		uipc_connectat,
3360 	.pr_connect2 =		uipc_connect2,
3361 	.pr_detach =		uipc_detach,
3362 	.pr_disconnect =	uipc_disconnect,
3363 	.pr_peeraddr =		uipc_peeraddr,
3364 	.pr_sosend =		uipc_sosend_dgram,
3365 	.pr_sense =		uipc_sense,
3366 	.pr_shutdown =		uipc_shutdown,
3367 	.pr_sockaddr =		uipc_sockaddr,
3368 	.pr_soreceive =		uipc_soreceive_dgram,
3369 	.pr_close =		uipc_close,
3370 };
3371 
3372 static struct protosw seqpacketproto = {
3373 	.pr_type =		SOCK_SEQPACKET,
3374 	/*
3375 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
3376 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
3377 	 * that supports both atomic record writes and control data.
3378 	 */
3379 	.pr_flags =		PR_ADDR | PR_ATOMIC | PR_CONNREQUIRED |
3380 				PR_WANTRCVD | PR_CAPATTACH,
3381 	.pr_ctloutput =		&uipc_ctloutput,
3382 	.pr_abort =		uipc_abort,
3383 	.pr_accept =		uipc_peeraddr,
3384 	.pr_attach =		uipc_attach,
3385 	.pr_bind =		uipc_bind,
3386 	.pr_bindat =		uipc_bindat,
3387 	.pr_connect =		uipc_connect,
3388 	.pr_connectat =		uipc_connectat,
3389 	.pr_connect2 =		uipc_connect2,
3390 	.pr_detach =		uipc_detach,
3391 	.pr_disconnect =	uipc_disconnect,
3392 	.pr_listen =		uipc_listen,
3393 	.pr_peeraddr =		uipc_peeraddr,
3394 	.pr_rcvd =		uipc_rcvd,
3395 	.pr_send =		uipc_send,
3396 	.pr_sense =		uipc_sense,
3397 	.pr_shutdown =		uipc_shutdown,
3398 	.pr_sockaddr =		uipc_sockaddr,
3399 	.pr_soreceive =		soreceive_generic,	/* XXX: or...? */
3400 	.pr_close =		uipc_close,
3401 };
3402 
3403 static struct domain localdomain = {
3404 	.dom_family =		AF_LOCAL,
3405 	.dom_name =		"local",
3406 	.dom_externalize =	unp_externalize,
3407 	.dom_nprotosw =		3,
3408 	.dom_protosw =		{
3409 		&streamproto,
3410 		&dgramproto,
3411 		&seqpacketproto,
3412 	}
3413 };
3414 DOMAIN_SET(local);
3415 
3416 /*
3417  * A helper function called by VFS before socket-type vnode reclamation.
3418  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
3419  * use count.
3420  */
3421 void
3422 vfs_unp_reclaim(struct vnode *vp)
3423 {
3424 	struct unpcb *unp;
3425 	int active;
3426 	struct mtx *vplock;
3427 
3428 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
3429 	KASSERT(vp->v_type == VSOCK,
3430 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
3431 
3432 	active = 0;
3433 	vplock = mtx_pool_find(mtxpool_sleep, vp);
3434 	mtx_lock(vplock);
3435 	VOP_UNP_CONNECT(vp, &unp);
3436 	if (unp == NULL)
3437 		goto done;
3438 	UNP_PCB_LOCK(unp);
3439 	if (unp->unp_vnode == vp) {
3440 		VOP_UNP_DETACH(vp);
3441 		unp->unp_vnode = NULL;
3442 		active = 1;
3443 	}
3444 	UNP_PCB_UNLOCK(unp);
3445  done:
3446 	mtx_unlock(vplock);
3447 	if (active)
3448 		vunref(vp);
3449 }
3450 
3451 #ifdef DDB
3452 static void
3453 db_print_indent(int indent)
3454 {
3455 	int i;
3456 
3457 	for (i = 0; i < indent; i++)
3458 		db_printf(" ");
3459 }
3460 
3461 static void
3462 db_print_unpflags(int unp_flags)
3463 {
3464 	int comma;
3465 
3466 	comma = 0;
3467 	if (unp_flags & UNP_HAVEPC) {
3468 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
3469 		comma = 1;
3470 	}
3471 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
3472 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
3473 		comma = 1;
3474 	}
3475 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
3476 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
3477 		comma = 1;
3478 	}
3479 	if (unp_flags & UNP_CONNECTING) {
3480 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
3481 		comma = 1;
3482 	}
3483 	if (unp_flags & UNP_BINDING) {
3484 		db_printf("%sUNP_BINDING", comma ? ", " : "");
3485 		comma = 1;
3486 	}
3487 }
3488 
3489 static void
3490 db_print_xucred(int indent, struct xucred *xu)
3491 {
3492 	int comma, i;
3493 
3494 	db_print_indent(indent);
3495 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
3496 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
3497 	db_print_indent(indent);
3498 	db_printf("cr_groups: ");
3499 	comma = 0;
3500 	for (i = 0; i < xu->cr_ngroups; i++) {
3501 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
3502 		comma = 1;
3503 	}
3504 	db_printf("\n");
3505 }
3506 
3507 static void
3508 db_print_unprefs(int indent, struct unp_head *uh)
3509 {
3510 	struct unpcb *unp;
3511 	int counter;
3512 
3513 	counter = 0;
3514 	LIST_FOREACH(unp, uh, unp_reflink) {
3515 		if (counter % 4 == 0)
3516 			db_print_indent(indent);
3517 		db_printf("%p  ", unp);
3518 		if (counter % 4 == 3)
3519 			db_printf("\n");
3520 		counter++;
3521 	}
3522 	if (counter != 0 && counter % 4 != 0)
3523 		db_printf("\n");
3524 }
3525 
3526 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
3527 {
3528 	struct unpcb *unp;
3529 
3530         if (!have_addr) {
3531                 db_printf("usage: show unpcb <addr>\n");
3532                 return;
3533         }
3534         unp = (struct unpcb *)addr;
3535 
3536 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
3537 	    unp->unp_vnode);
3538 
3539 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
3540 	    unp->unp_conn);
3541 
3542 	db_printf("unp_refs:\n");
3543 	db_print_unprefs(2, &unp->unp_refs);
3544 
3545 	/* XXXRW: Would be nice to print the full address, if any. */
3546 	db_printf("unp_addr: %p\n", unp->unp_addr);
3547 
3548 	db_printf("unp_gencnt: %llu\n",
3549 	    (unsigned long long)unp->unp_gencnt);
3550 
3551 	db_printf("unp_flags: %x (", unp->unp_flags);
3552 	db_print_unpflags(unp->unp_flags);
3553 	db_printf(")\n");
3554 
3555 	db_printf("unp_peercred:\n");
3556 	db_print_xucred(2, &unp->unp_peercred);
3557 
3558 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3559 }
3560 #endif
3561