xref: /freebsd/sys/kern/uipc_usrreq.c (revision 266f97b5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/eventhandler.h>
69 #include <sys/fcntl.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * See unpcb.h for the locking key.
110  */
111 
112 static uma_zone_t	unp_zone;
113 static unp_gen_t	unp_gencnt;	/* (l) */
114 static u_int		unp_count;	/* (l) Count of local sockets. */
115 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116 static int		unp_rights;	/* (g) File descriptors in flight. */
117 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120 
121 struct unp_defer {
122 	SLIST_ENTRY(unp_defer) ud_link;
123 	struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127 
128 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define	PIPSIZ	8192
156 #endif
157 static u_long	unpst_sendspace = PIPSIZ;
158 static u_long	unpst_recvspace = PIPSIZ;
159 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160 static u_long	unpdg_recvspace = 4*1024;
161 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162 static u_long	unpsp_recvspace = PIPSIZ;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_sendspace, 0, "Default datagram send space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pru_attach() and freed in pru_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *);
296 static int	unp_connect2(struct socket *so, struct socket *so2, int);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_dispose_mbuf(struct mbuf *);
300 static void	unp_shutdown(struct unpcb *);
301 static void	unp_drop(struct unpcb *);
302 static void	unp_gc(__unused void *, int);
303 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
304 static void	unp_discard(struct file *);
305 static void	unp_freerights(struct filedescent **, int);
306 static void	unp_init(void);
307 static int	unp_internalize(struct mbuf **, struct thread *);
308 static void	unp_internalize_fp(struct file *);
309 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
310 static int	unp_externalize_fp(struct file *);
311 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *, int);
312 static void	unp_process_defers(void * __unused, int);
313 
314 static void
315 unp_pcb_hold(struct unpcb *unp)
316 {
317 	u_int old __unused;
318 
319 	old = refcount_acquire(&unp->unp_refcount);
320 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
321 }
322 
323 static __result_use_check bool
324 unp_pcb_rele(struct unpcb *unp)
325 {
326 	bool ret;
327 
328 	UNP_PCB_LOCK_ASSERT(unp);
329 
330 	if ((ret = refcount_release(&unp->unp_refcount))) {
331 		UNP_PCB_UNLOCK(unp);
332 		UNP_PCB_LOCK_DESTROY(unp);
333 		uma_zfree(unp_zone, unp);
334 	}
335 	return (ret);
336 }
337 
338 static void
339 unp_pcb_rele_notlast(struct unpcb *unp)
340 {
341 	bool ret __unused;
342 
343 	ret = refcount_release(&unp->unp_refcount);
344 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
345 }
346 
347 static void
348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
349 {
350 	UNP_PCB_UNLOCK_ASSERT(unp);
351 	UNP_PCB_UNLOCK_ASSERT(unp2);
352 
353 	if (unp == unp2) {
354 		UNP_PCB_LOCK(unp);
355 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
356 		UNP_PCB_LOCK(unp);
357 		UNP_PCB_LOCK(unp2);
358 	} else {
359 		UNP_PCB_LOCK(unp2);
360 		UNP_PCB_LOCK(unp);
361 	}
362 }
363 
364 static void
365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
366 {
367 	UNP_PCB_UNLOCK(unp);
368 	if (unp != unp2)
369 		UNP_PCB_UNLOCK(unp2);
370 }
371 
372 /*
373  * Try to lock the connected peer of an already locked socket.  In some cases
374  * this requires that we unlock the current socket.  The pairbusy counter is
375  * used to block concurrent connection attempts while the lock is dropped.  The
376  * caller must be careful to revalidate PCB state.
377  */
378 static struct unpcb *
379 unp_pcb_lock_peer(struct unpcb *unp)
380 {
381 	struct unpcb *unp2;
382 
383 	UNP_PCB_LOCK_ASSERT(unp);
384 	unp2 = unp->unp_conn;
385 	if (unp2 == NULL)
386 		return (NULL);
387 	if (__predict_false(unp == unp2))
388 		return (unp);
389 
390 	UNP_PCB_UNLOCK_ASSERT(unp2);
391 
392 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
393 		return (unp2);
394 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
395 		UNP_PCB_LOCK(unp2);
396 		return (unp2);
397 	}
398 	unp->unp_pairbusy++;
399 	unp_pcb_hold(unp2);
400 	UNP_PCB_UNLOCK(unp);
401 
402 	UNP_PCB_LOCK(unp2);
403 	UNP_PCB_LOCK(unp);
404 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
405 	    ("%s: socket %p was reconnected", __func__, unp));
406 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
407 		unp->unp_flags &= ~UNP_WAITING;
408 		wakeup(unp);
409 	}
410 	if (unp_pcb_rele(unp2)) {
411 		/* unp2 is unlocked. */
412 		return (NULL);
413 	}
414 	if (unp->unp_conn == NULL) {
415 		UNP_PCB_UNLOCK(unp2);
416 		return (NULL);
417 	}
418 	return (unp2);
419 }
420 
421 /*
422  * Definitions of protocols supported in the LOCAL domain.
423  */
424 static struct domain localdomain;
425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
426 static struct pr_usrreqs uipc_usrreqs_seqpacket;
427 static struct protosw localsw[] = {
428 {
429 	.pr_type =		SOCK_STREAM,
430 	.pr_domain =		&localdomain,
431 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS|
432 				    PR_CAPATTACH,
433 	.pr_ctloutput =		&uipc_ctloutput,
434 	.pr_usrreqs =		&uipc_usrreqs_stream
435 },
436 {
437 	.pr_type =		SOCK_DGRAM,
438 	.pr_domain =		&localdomain,
439 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS|PR_CAPATTACH,
440 	.pr_ctloutput =		&uipc_ctloutput,
441 	.pr_usrreqs =		&uipc_usrreqs_dgram
442 },
443 {
444 	.pr_type =		SOCK_SEQPACKET,
445 	.pr_domain =		&localdomain,
446 
447 	/*
448 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
449 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
450 	 * that supports both atomic record writes and control data.
451 	 */
452 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|
453 				    PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH,
454 	.pr_ctloutput =		&uipc_ctloutput,
455 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
456 },
457 };
458 
459 static struct domain localdomain = {
460 	.dom_family =		AF_LOCAL,
461 	.dom_name =		"local",
462 	.dom_init =		unp_init,
463 	.dom_externalize =	unp_externalize,
464 	.dom_dispose =		unp_dispose,
465 	.dom_protosw =		localsw,
466 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
467 };
468 DOMAIN_SET(local);
469 
470 static void
471 uipc_abort(struct socket *so)
472 {
473 	struct unpcb *unp, *unp2;
474 
475 	unp = sotounpcb(so);
476 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
477 	UNP_PCB_UNLOCK_ASSERT(unp);
478 
479 	UNP_PCB_LOCK(unp);
480 	unp2 = unp->unp_conn;
481 	if (unp2 != NULL) {
482 		unp_pcb_hold(unp2);
483 		UNP_PCB_UNLOCK(unp);
484 		unp_drop(unp2);
485 	} else
486 		UNP_PCB_UNLOCK(unp);
487 }
488 
489 static int
490 uipc_accept(struct socket *so, struct sockaddr **nam)
491 {
492 	struct unpcb *unp, *unp2;
493 	const struct sockaddr *sa;
494 
495 	/*
496 	 * Pass back name of connected socket, if it was bound and we are
497 	 * still connected (our peer may have closed already!).
498 	 */
499 	unp = sotounpcb(so);
500 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
501 
502 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
503 	UNP_PCB_LOCK(unp);
504 	unp2 = unp_pcb_lock_peer(unp);
505 	if (unp2 != NULL && unp2->unp_addr != NULL)
506 		sa = (struct sockaddr *)unp2->unp_addr;
507 	else
508 		sa = &sun_noname;
509 	bcopy(sa, *nam, sa->sa_len);
510 	if (unp2 != NULL)
511 		unp_pcb_unlock_pair(unp, unp2);
512 	else
513 		UNP_PCB_UNLOCK(unp);
514 	return (0);
515 }
516 
517 static int
518 uipc_attach(struct socket *so, int proto, struct thread *td)
519 {
520 	u_long sendspace, recvspace;
521 	struct unpcb *unp;
522 	int error;
523 	bool locked;
524 
525 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
526 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
527 		switch (so->so_type) {
528 		case SOCK_STREAM:
529 			sendspace = unpst_sendspace;
530 			recvspace = unpst_recvspace;
531 			break;
532 
533 		case SOCK_DGRAM:
534 			sendspace = unpdg_sendspace;
535 			recvspace = unpdg_recvspace;
536 			break;
537 
538 		case SOCK_SEQPACKET:
539 			sendspace = unpsp_sendspace;
540 			recvspace = unpsp_recvspace;
541 			break;
542 
543 		default:
544 			panic("uipc_attach");
545 		}
546 		error = soreserve(so, sendspace, recvspace);
547 		if (error)
548 			return (error);
549 	}
550 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
551 	if (unp == NULL)
552 		return (ENOBUFS);
553 	LIST_INIT(&unp->unp_refs);
554 	UNP_PCB_LOCK_INIT(unp);
555 	unp->unp_socket = so;
556 	so->so_pcb = unp;
557 	refcount_init(&unp->unp_refcount, 1);
558 
559 	if ((locked = UNP_LINK_WOWNED()) == false)
560 		UNP_LINK_WLOCK();
561 
562 	unp->unp_gencnt = ++unp_gencnt;
563 	unp->unp_ino = ++unp_ino;
564 	unp_count++;
565 	switch (so->so_type) {
566 	case SOCK_STREAM:
567 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
568 		break;
569 
570 	case SOCK_DGRAM:
571 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
572 		break;
573 
574 	case SOCK_SEQPACKET:
575 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
576 		break;
577 
578 	default:
579 		panic("uipc_attach");
580 	}
581 
582 	if (locked == false)
583 		UNP_LINK_WUNLOCK();
584 
585 	return (0);
586 }
587 
588 static int
589 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
590 {
591 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
592 	struct vattr vattr;
593 	int error, namelen;
594 	struct nameidata nd;
595 	struct unpcb *unp;
596 	struct vnode *vp;
597 	struct mount *mp;
598 	cap_rights_t rights;
599 	char *buf;
600 
601 	if (nam->sa_family != AF_UNIX)
602 		return (EAFNOSUPPORT);
603 
604 	unp = sotounpcb(so);
605 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
606 
607 	if (soun->sun_len > sizeof(struct sockaddr_un))
608 		return (EINVAL);
609 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
610 	if (namelen <= 0)
611 		return (EINVAL);
612 
613 	/*
614 	 * We don't allow simultaneous bind() calls on a single UNIX domain
615 	 * socket, so flag in-progress operations, and return an error if an
616 	 * operation is already in progress.
617 	 *
618 	 * Historically, we have not allowed a socket to be rebound, so this
619 	 * also returns an error.  Not allowing re-binding simplifies the
620 	 * implementation and avoids a great many possible failure modes.
621 	 */
622 	UNP_PCB_LOCK(unp);
623 	if (unp->unp_vnode != NULL) {
624 		UNP_PCB_UNLOCK(unp);
625 		return (EINVAL);
626 	}
627 	if (unp->unp_flags & UNP_BINDING) {
628 		UNP_PCB_UNLOCK(unp);
629 		return (EALREADY);
630 	}
631 	unp->unp_flags |= UNP_BINDING;
632 	UNP_PCB_UNLOCK(unp);
633 
634 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
635 	bcopy(soun->sun_path, buf, namelen);
636 	buf[namelen] = 0;
637 
638 restart:
639 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
640 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
641 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
642 	error = namei(&nd);
643 	if (error)
644 		goto error;
645 	vp = nd.ni_vp;
646 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
647 		NDFREE(&nd, NDF_ONLY_PNBUF);
648 		if (nd.ni_dvp == vp)
649 			vrele(nd.ni_dvp);
650 		else
651 			vput(nd.ni_dvp);
652 		if (vp != NULL) {
653 			vrele(vp);
654 			error = EADDRINUSE;
655 			goto error;
656 		}
657 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
658 		if (error)
659 			goto error;
660 		goto restart;
661 	}
662 	VATTR_NULL(&vattr);
663 	vattr.va_type = VSOCK;
664 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
665 #ifdef MAC
666 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
667 	    &vattr);
668 #endif
669 	if (error == 0)
670 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
671 	NDFREE(&nd, NDF_ONLY_PNBUF);
672 	if (error) {
673 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
674 		vn_finished_write(mp);
675 		if (error == ERELOOKUP)
676 			goto restart;
677 		goto error;
678 	}
679 	vp = nd.ni_vp;
680 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
681 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
682 
683 	UNP_PCB_LOCK(unp);
684 	VOP_UNP_BIND(vp, unp);
685 	unp->unp_vnode = vp;
686 	unp->unp_addr = soun;
687 	unp->unp_flags &= ~UNP_BINDING;
688 	UNP_PCB_UNLOCK(unp);
689 	vref(vp);
690 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
691 	vn_finished_write(mp);
692 	free(buf, M_TEMP);
693 	return (0);
694 
695 error:
696 	UNP_PCB_LOCK(unp);
697 	unp->unp_flags &= ~UNP_BINDING;
698 	UNP_PCB_UNLOCK(unp);
699 	free(buf, M_TEMP);
700 	return (error);
701 }
702 
703 static int
704 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
705 {
706 
707 	return (uipc_bindat(AT_FDCWD, so, nam, td));
708 }
709 
710 static int
711 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
712 {
713 	int error;
714 
715 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
716 	error = unp_connect(so, nam, td);
717 	return (error);
718 }
719 
720 static int
721 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
722     struct thread *td)
723 {
724 	int error;
725 
726 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
727 	error = unp_connectat(fd, so, nam, td);
728 	return (error);
729 }
730 
731 static void
732 uipc_close(struct socket *so)
733 {
734 	struct unpcb *unp, *unp2;
735 	struct vnode *vp = NULL;
736 	struct mtx *vplock;
737 
738 	unp = sotounpcb(so);
739 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
740 
741 	vplock = NULL;
742 	if ((vp = unp->unp_vnode) != NULL) {
743 		vplock = mtx_pool_find(mtxpool_sleep, vp);
744 		mtx_lock(vplock);
745 	}
746 	UNP_PCB_LOCK(unp);
747 	if (vp && unp->unp_vnode == NULL) {
748 		mtx_unlock(vplock);
749 		vp = NULL;
750 	}
751 	if (vp != NULL) {
752 		VOP_UNP_DETACH(vp);
753 		unp->unp_vnode = NULL;
754 	}
755 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
756 		unp_disconnect(unp, unp2);
757 	else
758 		UNP_PCB_UNLOCK(unp);
759 	if (vp) {
760 		mtx_unlock(vplock);
761 		vrele(vp);
762 	}
763 }
764 
765 static int
766 uipc_connect2(struct socket *so1, struct socket *so2)
767 {
768 	struct unpcb *unp, *unp2;
769 	int error;
770 
771 	unp = so1->so_pcb;
772 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
773 	unp2 = so2->so_pcb;
774 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
775 	unp_pcb_lock_pair(unp, unp2);
776 	error = unp_connect2(so1, so2, PRU_CONNECT2);
777 	unp_pcb_unlock_pair(unp, unp2);
778 	return (error);
779 }
780 
781 static void
782 uipc_detach(struct socket *so)
783 {
784 	struct unpcb *unp, *unp2;
785 	struct mtx *vplock;
786 	struct vnode *vp;
787 	int local_unp_rights;
788 
789 	unp = sotounpcb(so);
790 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
791 
792 	vp = NULL;
793 	vplock = NULL;
794 
795 	SOCK_LOCK(so);
796 	if (!SOLISTENING(so)) {
797 		/*
798 		 * Once the socket is removed from the global lists,
799 		 * uipc_ready() will not be able to locate its socket buffer, so
800 		 * clear the buffer now.  At this point internalized rights have
801 		 * already been disposed of.
802 		 */
803 		sbrelease(&so->so_rcv, so);
804 	}
805 	SOCK_UNLOCK(so);
806 
807 	UNP_LINK_WLOCK();
808 	LIST_REMOVE(unp, unp_link);
809 	if (unp->unp_gcflag & UNPGC_DEAD)
810 		LIST_REMOVE(unp, unp_dead);
811 	unp->unp_gencnt = ++unp_gencnt;
812 	--unp_count;
813 	UNP_LINK_WUNLOCK();
814 
815 	UNP_PCB_UNLOCK_ASSERT(unp);
816  restart:
817 	if ((vp = unp->unp_vnode) != NULL) {
818 		vplock = mtx_pool_find(mtxpool_sleep, vp);
819 		mtx_lock(vplock);
820 	}
821 	UNP_PCB_LOCK(unp);
822 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
823 		if (vplock)
824 			mtx_unlock(vplock);
825 		UNP_PCB_UNLOCK(unp);
826 		goto restart;
827 	}
828 	if ((vp = unp->unp_vnode) != NULL) {
829 		VOP_UNP_DETACH(vp);
830 		unp->unp_vnode = NULL;
831 	}
832 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
833 		unp_disconnect(unp, unp2);
834 	else
835 		UNP_PCB_UNLOCK(unp);
836 
837 	UNP_REF_LIST_LOCK();
838 	while (!LIST_EMPTY(&unp->unp_refs)) {
839 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
840 
841 		unp_pcb_hold(ref);
842 		UNP_REF_LIST_UNLOCK();
843 
844 		MPASS(ref != unp);
845 		UNP_PCB_UNLOCK_ASSERT(ref);
846 		unp_drop(ref);
847 		UNP_REF_LIST_LOCK();
848 	}
849 	UNP_REF_LIST_UNLOCK();
850 
851 	UNP_PCB_LOCK(unp);
852 	local_unp_rights = unp_rights;
853 	unp->unp_socket->so_pcb = NULL;
854 	unp->unp_socket = NULL;
855 	free(unp->unp_addr, M_SONAME);
856 	unp->unp_addr = NULL;
857 	if (!unp_pcb_rele(unp))
858 		UNP_PCB_UNLOCK(unp);
859 	if (vp) {
860 		mtx_unlock(vplock);
861 		vrele(vp);
862 	}
863 	if (local_unp_rights)
864 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
865 }
866 
867 static int
868 uipc_disconnect(struct socket *so)
869 {
870 	struct unpcb *unp, *unp2;
871 
872 	unp = sotounpcb(so);
873 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
874 
875 	UNP_PCB_LOCK(unp);
876 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
877 		unp_disconnect(unp, unp2);
878 	else
879 		UNP_PCB_UNLOCK(unp);
880 	return (0);
881 }
882 
883 static int
884 uipc_listen(struct socket *so, int backlog, struct thread *td)
885 {
886 	struct unpcb *unp;
887 	int error;
888 
889 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
890 		return (EOPNOTSUPP);
891 
892 	/*
893 	 * Synchronize with concurrent connection attempts.
894 	 */
895 	error = 0;
896 	unp = sotounpcb(so);
897 	UNP_PCB_LOCK(unp);
898 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
899 		error = EINVAL;
900 	else if (unp->unp_vnode == NULL)
901 		error = EDESTADDRREQ;
902 	if (error != 0) {
903 		UNP_PCB_UNLOCK(unp);
904 		return (error);
905 	}
906 
907 	SOCK_LOCK(so);
908 	error = solisten_proto_check(so);
909 	if (error == 0) {
910 		cru2xt(td, &unp->unp_peercred);
911 		solisten_proto(so, backlog);
912 	}
913 	SOCK_UNLOCK(so);
914 	UNP_PCB_UNLOCK(unp);
915 	return (error);
916 }
917 
918 static int
919 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
920 {
921 	struct unpcb *unp, *unp2;
922 	const struct sockaddr *sa;
923 
924 	unp = sotounpcb(so);
925 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
926 
927 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
928 	UNP_LINK_RLOCK();
929 	/*
930 	 * XXX: It seems that this test always fails even when connection is
931 	 * established.  So, this else clause is added as workaround to
932 	 * return PF_LOCAL sockaddr.
933 	 */
934 	unp2 = unp->unp_conn;
935 	if (unp2 != NULL) {
936 		UNP_PCB_LOCK(unp2);
937 		if (unp2->unp_addr != NULL)
938 			sa = (struct sockaddr *) unp2->unp_addr;
939 		else
940 			sa = &sun_noname;
941 		bcopy(sa, *nam, sa->sa_len);
942 		UNP_PCB_UNLOCK(unp2);
943 	} else {
944 		sa = &sun_noname;
945 		bcopy(sa, *nam, sa->sa_len);
946 	}
947 	UNP_LINK_RUNLOCK();
948 	return (0);
949 }
950 
951 static int
952 uipc_rcvd(struct socket *so, int flags)
953 {
954 	struct unpcb *unp, *unp2;
955 	struct socket *so2;
956 	u_int mbcnt, sbcc;
957 
958 	unp = sotounpcb(so);
959 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
960 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
961 	    ("%s: socktype %d", __func__, so->so_type));
962 
963 	/*
964 	 * Adjust backpressure on sender and wakeup any waiting to write.
965 	 *
966 	 * The unp lock is acquired to maintain the validity of the unp_conn
967 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
968 	 * static as long as we don't permit unp2 to disconnect from unp,
969 	 * which is prevented by the lock on unp.  We cache values from
970 	 * so_rcv to avoid holding the so_rcv lock over the entire
971 	 * transaction on the remote so_snd.
972 	 */
973 	SOCKBUF_LOCK(&so->so_rcv);
974 	mbcnt = so->so_rcv.sb_mbcnt;
975 	sbcc = sbavail(&so->so_rcv);
976 	SOCKBUF_UNLOCK(&so->so_rcv);
977 	/*
978 	 * There is a benign race condition at this point.  If we're planning to
979 	 * clear SB_STOP, but uipc_send is called on the connected socket at
980 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
981 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
982 	 * full.  The race is benign because the only ill effect is to allow the
983 	 * sockbuf to exceed its size limit, and the size limits are not
984 	 * strictly guaranteed anyway.
985 	 */
986 	UNP_PCB_LOCK(unp);
987 	unp2 = unp->unp_conn;
988 	if (unp2 == NULL) {
989 		UNP_PCB_UNLOCK(unp);
990 		return (0);
991 	}
992 	so2 = unp2->unp_socket;
993 	SOCKBUF_LOCK(&so2->so_snd);
994 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
995 		so2->so_snd.sb_flags &= ~SB_STOP;
996 	sowwakeup_locked(so2);
997 	UNP_PCB_UNLOCK(unp);
998 	return (0);
999 }
1000 
1001 static int
1002 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1003     struct mbuf *control, struct thread *td)
1004 {
1005 	struct unpcb *unp, *unp2;
1006 	struct socket *so2;
1007 	u_int mbcnt, sbcc;
1008 	int error;
1009 
1010 	unp = sotounpcb(so);
1011 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1012 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1013 	    so->so_type == SOCK_SEQPACKET,
1014 	    ("%s: socktype %d", __func__, so->so_type));
1015 
1016 	error = 0;
1017 	if (flags & PRUS_OOB) {
1018 		error = EOPNOTSUPP;
1019 		goto release;
1020 	}
1021 	if (control != NULL && (error = unp_internalize(&control, td)))
1022 		goto release;
1023 
1024 	unp2 = NULL;
1025 	switch (so->so_type) {
1026 	case SOCK_DGRAM:
1027 	{
1028 		const struct sockaddr *from;
1029 
1030 		if (nam != NULL) {
1031 			error = unp_connect(so, nam, td);
1032 			if (error != 0)
1033 				break;
1034 		}
1035 		UNP_PCB_LOCK(unp);
1036 
1037 		/*
1038 		 * Because connect() and send() are non-atomic in a sendto()
1039 		 * with a target address, it's possible that the socket will
1040 		 * have disconnected before the send() can run.  In that case
1041 		 * return the slightly counter-intuitive but otherwise
1042 		 * correct error that the socket is not connected.
1043 		 */
1044 		unp2 = unp_pcb_lock_peer(unp);
1045 		if (unp2 == NULL) {
1046 			UNP_PCB_UNLOCK(unp);
1047 			error = ENOTCONN;
1048 			break;
1049 		}
1050 
1051 		if (unp2->unp_flags & UNP_WANTCRED_MASK)
1052 			control = unp_addsockcred(td, control,
1053 			    unp2->unp_flags);
1054 		if (unp->unp_addr != NULL)
1055 			from = (struct sockaddr *)unp->unp_addr;
1056 		else
1057 			from = &sun_noname;
1058 		so2 = unp2->unp_socket;
1059 		SOCKBUF_LOCK(&so2->so_rcv);
1060 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1061 		    control)) {
1062 			sorwakeup_locked(so2);
1063 			m = NULL;
1064 			control = NULL;
1065 		} else {
1066 			soroverflow_locked(so2);
1067 			error = ENOBUFS;
1068 		}
1069 		if (nam != NULL)
1070 			unp_disconnect(unp, unp2);
1071 		else
1072 			unp_pcb_unlock_pair(unp, unp2);
1073 		break;
1074 	}
1075 
1076 	case SOCK_SEQPACKET:
1077 	case SOCK_STREAM:
1078 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1079 			if (nam != NULL) {
1080 				error = unp_connect(so, nam, td);
1081 				if (error != 0)
1082 					break;
1083 			} else {
1084 				error = ENOTCONN;
1085 				break;
1086 			}
1087 		}
1088 
1089 		UNP_PCB_LOCK(unp);
1090 		if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
1091 			UNP_PCB_UNLOCK(unp);
1092 			error = ENOTCONN;
1093 			break;
1094 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1095 			unp_pcb_unlock_pair(unp, unp2);
1096 			error = EPIPE;
1097 			break;
1098 		}
1099 		UNP_PCB_UNLOCK(unp);
1100 		if ((so2 = unp2->unp_socket) == NULL) {
1101 			UNP_PCB_UNLOCK(unp2);
1102 			error = ENOTCONN;
1103 			break;
1104 		}
1105 		SOCKBUF_LOCK(&so2->so_rcv);
1106 		if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1107 			/*
1108 			 * Credentials are passed only once on SOCK_STREAM and
1109 			 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1110 			 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1111 			 */
1112 			control = unp_addsockcred(td, control, unp2->unp_flags);
1113 			unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1114 		}
1115 
1116 		/*
1117 		 * Send to paired receive port and wake up readers.  Don't
1118 		 * check for space available in the receive buffer if we're
1119 		 * attaching ancillary data; Unix domain sockets only check
1120 		 * for space in the sending sockbuf, and that check is
1121 		 * performed one level up the stack.  At that level we cannot
1122 		 * precisely account for the amount of buffer space used
1123 		 * (e.g., because control messages are not yet internalized).
1124 		 */
1125 		switch (so->so_type) {
1126 		case SOCK_STREAM:
1127 			if (control != NULL) {
1128 				sbappendcontrol_locked(&so2->so_rcv, m,
1129 				    control, flags);
1130 				control = NULL;
1131 			} else
1132 				sbappend_locked(&so2->so_rcv, m, flags);
1133 			break;
1134 
1135 		case SOCK_SEQPACKET:
1136 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1137 			    &sun_noname, m, control))
1138 				control = NULL;
1139 			break;
1140 		}
1141 
1142 		mbcnt = so2->so_rcv.sb_mbcnt;
1143 		sbcc = sbavail(&so2->so_rcv);
1144 		if (sbcc)
1145 			sorwakeup_locked(so2);
1146 		else
1147 			SOCKBUF_UNLOCK(&so2->so_rcv);
1148 
1149 		/*
1150 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1151 		 * it would be possible for uipc_rcvd to be called at this
1152 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1153 		 * we would set SB_STOP below.  That could lead to an empty
1154 		 * sockbuf having SB_STOP set
1155 		 */
1156 		SOCKBUF_LOCK(&so->so_snd);
1157 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1158 			so->so_snd.sb_flags |= SB_STOP;
1159 		SOCKBUF_UNLOCK(&so->so_snd);
1160 		UNP_PCB_UNLOCK(unp2);
1161 		m = NULL;
1162 		break;
1163 	}
1164 
1165 	/*
1166 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1167 	 */
1168 	if (flags & PRUS_EOF) {
1169 		UNP_PCB_LOCK(unp);
1170 		socantsendmore(so);
1171 		unp_shutdown(unp);
1172 		UNP_PCB_UNLOCK(unp);
1173 	}
1174 	if (control != NULL && error != 0)
1175 		unp_dispose_mbuf(control);
1176 
1177 release:
1178 	if (control != NULL)
1179 		m_freem(control);
1180 	/*
1181 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1182 	 * for freeing memory.
1183 	 */
1184 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1185 		m_freem(m);
1186 	return (error);
1187 }
1188 
1189 static bool
1190 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1191 {
1192 	struct mbuf *mb, *n;
1193 	struct sockbuf *sb;
1194 
1195 	SOCK_LOCK(so);
1196 	if (SOLISTENING(so)) {
1197 		SOCK_UNLOCK(so);
1198 		return (false);
1199 	}
1200 	mb = NULL;
1201 	sb = &so->so_rcv;
1202 	SOCKBUF_LOCK(sb);
1203 	if (sb->sb_fnrdy != NULL) {
1204 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1205 			if (mb == m) {
1206 				*errorp = sbready(sb, m, count);
1207 				break;
1208 			}
1209 			mb = mb->m_next;
1210 			if (mb == NULL) {
1211 				mb = n;
1212 				if (mb != NULL)
1213 					n = mb->m_nextpkt;
1214 			}
1215 		}
1216 	}
1217 	SOCKBUF_UNLOCK(sb);
1218 	SOCK_UNLOCK(so);
1219 	return (mb != NULL);
1220 }
1221 
1222 static int
1223 uipc_ready(struct socket *so, struct mbuf *m, int count)
1224 {
1225 	struct unpcb *unp, *unp2;
1226 	struct socket *so2;
1227 	int error, i;
1228 
1229 	unp = sotounpcb(so);
1230 
1231 	KASSERT(so->so_type == SOCK_STREAM,
1232 	    ("%s: unexpected socket type for %p", __func__, so));
1233 
1234 	UNP_PCB_LOCK(unp);
1235 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1236 		UNP_PCB_UNLOCK(unp);
1237 		so2 = unp2->unp_socket;
1238 		SOCKBUF_LOCK(&so2->so_rcv);
1239 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1240 			sorwakeup_locked(so2);
1241 		else
1242 			SOCKBUF_UNLOCK(&so2->so_rcv);
1243 		UNP_PCB_UNLOCK(unp2);
1244 		return (error);
1245 	}
1246 	UNP_PCB_UNLOCK(unp);
1247 
1248 	/*
1249 	 * The receiving socket has been disconnected, but may still be valid.
1250 	 * In this case, the now-ready mbufs are still present in its socket
1251 	 * buffer, so perform an exhaustive search before giving up and freeing
1252 	 * the mbufs.
1253 	 */
1254 	UNP_LINK_RLOCK();
1255 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1256 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1257 			break;
1258 	}
1259 	UNP_LINK_RUNLOCK();
1260 
1261 	if (unp == NULL) {
1262 		for (i = 0; i < count; i++)
1263 			m = m_free(m);
1264 		error = ECONNRESET;
1265 	}
1266 	return (error);
1267 }
1268 
1269 static int
1270 uipc_sense(struct socket *so, struct stat *sb)
1271 {
1272 	struct unpcb *unp;
1273 
1274 	unp = sotounpcb(so);
1275 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1276 
1277 	sb->st_blksize = so->so_snd.sb_hiwat;
1278 	sb->st_dev = NODEV;
1279 	sb->st_ino = unp->unp_ino;
1280 	return (0);
1281 }
1282 
1283 static int
1284 uipc_shutdown(struct socket *so)
1285 {
1286 	struct unpcb *unp;
1287 
1288 	unp = sotounpcb(so);
1289 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1290 
1291 	UNP_PCB_LOCK(unp);
1292 	socantsendmore(so);
1293 	unp_shutdown(unp);
1294 	UNP_PCB_UNLOCK(unp);
1295 	return (0);
1296 }
1297 
1298 static int
1299 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1300 {
1301 	struct unpcb *unp;
1302 	const struct sockaddr *sa;
1303 
1304 	unp = sotounpcb(so);
1305 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1306 
1307 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1308 	UNP_PCB_LOCK(unp);
1309 	if (unp->unp_addr != NULL)
1310 		sa = (struct sockaddr *) unp->unp_addr;
1311 	else
1312 		sa = &sun_noname;
1313 	bcopy(sa, *nam, sa->sa_len);
1314 	UNP_PCB_UNLOCK(unp);
1315 	return (0);
1316 }
1317 
1318 static struct pr_usrreqs uipc_usrreqs_dgram = {
1319 	.pru_abort = 		uipc_abort,
1320 	.pru_accept =		uipc_accept,
1321 	.pru_attach =		uipc_attach,
1322 	.pru_bind =		uipc_bind,
1323 	.pru_bindat =		uipc_bindat,
1324 	.pru_connect =		uipc_connect,
1325 	.pru_connectat =	uipc_connectat,
1326 	.pru_connect2 =		uipc_connect2,
1327 	.pru_detach =		uipc_detach,
1328 	.pru_disconnect =	uipc_disconnect,
1329 	.pru_listen =		uipc_listen,
1330 	.pru_peeraddr =		uipc_peeraddr,
1331 	.pru_rcvd =		uipc_rcvd,
1332 	.pru_send =		uipc_send,
1333 	.pru_sense =		uipc_sense,
1334 	.pru_shutdown =		uipc_shutdown,
1335 	.pru_sockaddr =		uipc_sockaddr,
1336 	.pru_soreceive =	soreceive_dgram,
1337 	.pru_close =		uipc_close,
1338 };
1339 
1340 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1341 	.pru_abort =		uipc_abort,
1342 	.pru_accept =		uipc_accept,
1343 	.pru_attach =		uipc_attach,
1344 	.pru_bind =		uipc_bind,
1345 	.pru_bindat =		uipc_bindat,
1346 	.pru_connect =		uipc_connect,
1347 	.pru_connectat =	uipc_connectat,
1348 	.pru_connect2 =		uipc_connect2,
1349 	.pru_detach =		uipc_detach,
1350 	.pru_disconnect =	uipc_disconnect,
1351 	.pru_listen =		uipc_listen,
1352 	.pru_peeraddr =		uipc_peeraddr,
1353 	.pru_rcvd =		uipc_rcvd,
1354 	.pru_send =		uipc_send,
1355 	.pru_sense =		uipc_sense,
1356 	.pru_shutdown =		uipc_shutdown,
1357 	.pru_sockaddr =		uipc_sockaddr,
1358 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1359 	.pru_close =		uipc_close,
1360 };
1361 
1362 static struct pr_usrreqs uipc_usrreqs_stream = {
1363 	.pru_abort = 		uipc_abort,
1364 	.pru_accept =		uipc_accept,
1365 	.pru_attach =		uipc_attach,
1366 	.pru_bind =		uipc_bind,
1367 	.pru_bindat =		uipc_bindat,
1368 	.pru_connect =		uipc_connect,
1369 	.pru_connectat =	uipc_connectat,
1370 	.pru_connect2 =		uipc_connect2,
1371 	.pru_detach =		uipc_detach,
1372 	.pru_disconnect =	uipc_disconnect,
1373 	.pru_listen =		uipc_listen,
1374 	.pru_peeraddr =		uipc_peeraddr,
1375 	.pru_rcvd =		uipc_rcvd,
1376 	.pru_send =		uipc_send,
1377 	.pru_ready =		uipc_ready,
1378 	.pru_sense =		uipc_sense,
1379 	.pru_shutdown =		uipc_shutdown,
1380 	.pru_sockaddr =		uipc_sockaddr,
1381 	.pru_soreceive =	soreceive_generic,
1382 	.pru_close =		uipc_close,
1383 };
1384 
1385 static int
1386 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1387 {
1388 	struct unpcb *unp;
1389 	struct xucred xu;
1390 	int error, optval;
1391 
1392 	if (sopt->sopt_level != SOL_LOCAL)
1393 		return (EINVAL);
1394 
1395 	unp = sotounpcb(so);
1396 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1397 	error = 0;
1398 	switch (sopt->sopt_dir) {
1399 	case SOPT_GET:
1400 		switch (sopt->sopt_name) {
1401 		case LOCAL_PEERCRED:
1402 			UNP_PCB_LOCK(unp);
1403 			if (unp->unp_flags & UNP_HAVEPC)
1404 				xu = unp->unp_peercred;
1405 			else {
1406 				if (so->so_type == SOCK_STREAM)
1407 					error = ENOTCONN;
1408 				else
1409 					error = EINVAL;
1410 			}
1411 			UNP_PCB_UNLOCK(unp);
1412 			if (error == 0)
1413 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1414 			break;
1415 
1416 		case LOCAL_CREDS:
1417 			/* Unlocked read. */
1418 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1419 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1420 			break;
1421 
1422 		case LOCAL_CREDS_PERSISTENT:
1423 			/* Unlocked read. */
1424 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1425 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1426 			break;
1427 
1428 		case LOCAL_CONNWAIT:
1429 			/* Unlocked read. */
1430 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1431 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1432 			break;
1433 
1434 		default:
1435 			error = EOPNOTSUPP;
1436 			break;
1437 		}
1438 		break;
1439 
1440 	case SOPT_SET:
1441 		switch (sopt->sopt_name) {
1442 		case LOCAL_CREDS:
1443 		case LOCAL_CREDS_PERSISTENT:
1444 		case LOCAL_CONNWAIT:
1445 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1446 					    sizeof(optval));
1447 			if (error)
1448 				break;
1449 
1450 #define	OPTSET(bit, exclusive) do {					\
1451 	UNP_PCB_LOCK(unp);						\
1452 	if (optval) {							\
1453 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1454 			UNP_PCB_UNLOCK(unp);				\
1455 			error = EINVAL;					\
1456 			break;						\
1457 		}							\
1458 		unp->unp_flags |= (bit);				\
1459 	} else								\
1460 		unp->unp_flags &= ~(bit);				\
1461 	UNP_PCB_UNLOCK(unp);						\
1462 } while (0)
1463 
1464 			switch (sopt->sopt_name) {
1465 			case LOCAL_CREDS:
1466 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1467 				break;
1468 
1469 			case LOCAL_CREDS_PERSISTENT:
1470 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1471 				break;
1472 
1473 			case LOCAL_CONNWAIT:
1474 				OPTSET(UNP_CONNWAIT, 0);
1475 				break;
1476 
1477 			default:
1478 				break;
1479 			}
1480 			break;
1481 #undef	OPTSET
1482 		default:
1483 			error = ENOPROTOOPT;
1484 			break;
1485 		}
1486 		break;
1487 
1488 	default:
1489 		error = EOPNOTSUPP;
1490 		break;
1491 	}
1492 	return (error);
1493 }
1494 
1495 static int
1496 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1497 {
1498 
1499 	return (unp_connectat(AT_FDCWD, so, nam, td));
1500 }
1501 
1502 static int
1503 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1504     struct thread *td)
1505 {
1506 	struct mtx *vplock;
1507 	struct sockaddr_un *soun;
1508 	struct vnode *vp;
1509 	struct socket *so2;
1510 	struct unpcb *unp, *unp2, *unp3;
1511 	struct nameidata nd;
1512 	char buf[SOCK_MAXADDRLEN];
1513 	struct sockaddr *sa;
1514 	cap_rights_t rights;
1515 	int error, len;
1516 	bool connreq;
1517 
1518 	if (nam->sa_family != AF_UNIX)
1519 		return (EAFNOSUPPORT);
1520 	if (nam->sa_len > sizeof(struct sockaddr_un))
1521 		return (EINVAL);
1522 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1523 	if (len <= 0)
1524 		return (EINVAL);
1525 	soun = (struct sockaddr_un *)nam;
1526 	bcopy(soun->sun_path, buf, len);
1527 	buf[len] = 0;
1528 
1529 	error = 0;
1530 	unp = sotounpcb(so);
1531 	UNP_PCB_LOCK(unp);
1532 	for (;;) {
1533 		/*
1534 		 * Wait for connection state to stabilize.  If a connection
1535 		 * already exists, give up.  For datagram sockets, which permit
1536 		 * multiple consecutive connect(2) calls, upper layers are
1537 		 * responsible for disconnecting in advance of a subsequent
1538 		 * connect(2), but this is not synchronized with PCB connection
1539 		 * state.
1540 		 *
1541 		 * Also make sure that no threads are currently attempting to
1542 		 * lock the peer socket, to ensure that unp_conn cannot
1543 		 * transition between two valid sockets while locks are dropped.
1544 		 */
1545 		if (SOLISTENING(so))
1546 			error = EOPNOTSUPP;
1547 		else if (unp->unp_conn != NULL)
1548 			error = EISCONN;
1549 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1550 			error = EALREADY;
1551 		}
1552 		if (error != 0) {
1553 			UNP_PCB_UNLOCK(unp);
1554 			return (error);
1555 		}
1556 		if (unp->unp_pairbusy > 0) {
1557 			unp->unp_flags |= UNP_WAITING;
1558 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1559 			continue;
1560 		}
1561 		break;
1562 	}
1563 	unp->unp_flags |= UNP_CONNECTING;
1564 	UNP_PCB_UNLOCK(unp);
1565 
1566 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1567 	if (connreq)
1568 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1569 	else
1570 		sa = NULL;
1571 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1572 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1573 	error = namei(&nd);
1574 	if (error)
1575 		vp = NULL;
1576 	else
1577 		vp = nd.ni_vp;
1578 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1579 	NDFREE_NOTHING(&nd);
1580 	if (error)
1581 		goto bad;
1582 
1583 	if (vp->v_type != VSOCK) {
1584 		error = ENOTSOCK;
1585 		goto bad;
1586 	}
1587 #ifdef MAC
1588 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1589 	if (error)
1590 		goto bad;
1591 #endif
1592 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1593 	if (error)
1594 		goto bad;
1595 
1596 	unp = sotounpcb(so);
1597 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1598 
1599 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1600 	mtx_lock(vplock);
1601 	VOP_UNP_CONNECT(vp, &unp2);
1602 	if (unp2 == NULL) {
1603 		error = ECONNREFUSED;
1604 		goto bad2;
1605 	}
1606 	so2 = unp2->unp_socket;
1607 	if (so->so_type != so2->so_type) {
1608 		error = EPROTOTYPE;
1609 		goto bad2;
1610 	}
1611 	if (connreq) {
1612 		if (SOLISTENING(so2)) {
1613 			CURVNET_SET(so2->so_vnet);
1614 			so2 = sonewconn(so2, 0);
1615 			CURVNET_RESTORE();
1616 		} else
1617 			so2 = NULL;
1618 		if (so2 == NULL) {
1619 			error = ECONNREFUSED;
1620 			goto bad2;
1621 		}
1622 		unp3 = sotounpcb(so2);
1623 		unp_pcb_lock_pair(unp2, unp3);
1624 		if (unp2->unp_addr != NULL) {
1625 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1626 			unp3->unp_addr = (struct sockaddr_un *) sa;
1627 			sa = NULL;
1628 		}
1629 
1630 		unp_copy_peercred(td, unp3, unp, unp2);
1631 
1632 		UNP_PCB_UNLOCK(unp2);
1633 		unp2 = unp3;
1634 
1635 		/*
1636 		 * It is safe to block on the PCB lock here since unp2 is
1637 		 * nascent and cannot be connected to any other sockets.
1638 		 */
1639 		UNP_PCB_LOCK(unp);
1640 #ifdef MAC
1641 		mac_socketpeer_set_from_socket(so, so2);
1642 		mac_socketpeer_set_from_socket(so2, so);
1643 #endif
1644 	} else {
1645 		unp_pcb_lock_pair(unp, unp2);
1646 	}
1647 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1648 	    sotounpcb(so2) == unp2,
1649 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1650 	error = unp_connect2(so, so2, PRU_CONNECT);
1651 	unp_pcb_unlock_pair(unp, unp2);
1652 bad2:
1653 	mtx_unlock(vplock);
1654 bad:
1655 	if (vp != NULL) {
1656 		vput(vp);
1657 	}
1658 	free(sa, M_SONAME);
1659 	UNP_PCB_LOCK(unp);
1660 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1661 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1662 	unp->unp_flags &= ~UNP_CONNECTING;
1663 	UNP_PCB_UNLOCK(unp);
1664 	return (error);
1665 }
1666 
1667 /*
1668  * Set socket peer credentials at connection time.
1669  *
1670  * The client's PCB credentials are copied from its process structure.  The
1671  * server's PCB credentials are copied from the socket on which it called
1672  * listen(2).  uipc_listen cached that process's credentials at the time.
1673  */
1674 void
1675 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1676     struct unpcb *server_unp, struct unpcb *listen_unp)
1677 {
1678 	cru2xt(td, &client_unp->unp_peercred);
1679 	client_unp->unp_flags |= UNP_HAVEPC;
1680 
1681 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1682 	    sizeof(server_unp->unp_peercred));
1683 	server_unp->unp_flags |= UNP_HAVEPC;
1684 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
1685 }
1686 
1687 static int
1688 unp_connect2(struct socket *so, struct socket *so2, int req)
1689 {
1690 	struct unpcb *unp;
1691 	struct unpcb *unp2;
1692 
1693 	unp = sotounpcb(so);
1694 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1695 	unp2 = sotounpcb(so2);
1696 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1697 
1698 	UNP_PCB_LOCK_ASSERT(unp);
1699 	UNP_PCB_LOCK_ASSERT(unp2);
1700 	KASSERT(unp->unp_conn == NULL,
1701 	    ("%s: socket %p is already connected", __func__, unp));
1702 
1703 	if (so2->so_type != so->so_type)
1704 		return (EPROTOTYPE);
1705 	unp->unp_conn = unp2;
1706 	unp_pcb_hold(unp2);
1707 	unp_pcb_hold(unp);
1708 	switch (so->so_type) {
1709 	case SOCK_DGRAM:
1710 		UNP_REF_LIST_LOCK();
1711 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1712 		UNP_REF_LIST_UNLOCK();
1713 		soisconnected(so);
1714 		break;
1715 
1716 	case SOCK_STREAM:
1717 	case SOCK_SEQPACKET:
1718 		KASSERT(unp2->unp_conn == NULL,
1719 		    ("%s: socket %p is already connected", __func__, unp2));
1720 		unp2->unp_conn = unp;
1721 		if (req == PRU_CONNECT &&
1722 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1723 			soisconnecting(so);
1724 		else
1725 			soisconnected(so);
1726 		soisconnected(so2);
1727 		break;
1728 
1729 	default:
1730 		panic("unp_connect2");
1731 	}
1732 	return (0);
1733 }
1734 
1735 static void
1736 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1737 {
1738 	struct socket *so, *so2;
1739 #ifdef INVARIANTS
1740 	struct unpcb *unptmp;
1741 #endif
1742 
1743 	UNP_PCB_LOCK_ASSERT(unp);
1744 	UNP_PCB_LOCK_ASSERT(unp2);
1745 	KASSERT(unp->unp_conn == unp2,
1746 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
1747 
1748 	unp->unp_conn = NULL;
1749 	so = unp->unp_socket;
1750 	so2 = unp2->unp_socket;
1751 	switch (unp->unp_socket->so_type) {
1752 	case SOCK_DGRAM:
1753 		UNP_REF_LIST_LOCK();
1754 #ifdef INVARIANTS
1755 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
1756 			if (unptmp == unp)
1757 				break;
1758 		}
1759 		KASSERT(unptmp != NULL,
1760 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
1761 #endif
1762 		LIST_REMOVE(unp, unp_reflink);
1763 		UNP_REF_LIST_UNLOCK();
1764 		if (so) {
1765 			SOCK_LOCK(so);
1766 			so->so_state &= ~SS_ISCONNECTED;
1767 			SOCK_UNLOCK(so);
1768 		}
1769 		break;
1770 
1771 	case SOCK_STREAM:
1772 	case SOCK_SEQPACKET:
1773 		if (so)
1774 			soisdisconnected(so);
1775 		MPASS(unp2->unp_conn == unp);
1776 		unp2->unp_conn = NULL;
1777 		if (so2)
1778 			soisdisconnected(so2);
1779 		break;
1780 	}
1781 
1782 	if (unp == unp2) {
1783 		unp_pcb_rele_notlast(unp);
1784 		if (!unp_pcb_rele(unp))
1785 			UNP_PCB_UNLOCK(unp);
1786 	} else {
1787 		if (!unp_pcb_rele(unp))
1788 			UNP_PCB_UNLOCK(unp);
1789 		if (!unp_pcb_rele(unp2))
1790 			UNP_PCB_UNLOCK(unp2);
1791 	}
1792 }
1793 
1794 /*
1795  * unp_pcblist() walks the global list of struct unpcb's to generate a
1796  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1797  * sequentially, validating the generation number on each to see if it has
1798  * been detached.  All of this is necessary because copyout() may sleep on
1799  * disk I/O.
1800  */
1801 static int
1802 unp_pcblist(SYSCTL_HANDLER_ARGS)
1803 {
1804 	struct unpcb *unp, **unp_list;
1805 	unp_gen_t gencnt;
1806 	struct xunpgen *xug;
1807 	struct unp_head *head;
1808 	struct xunpcb *xu;
1809 	u_int i;
1810 	int error, n;
1811 
1812 	switch ((intptr_t)arg1) {
1813 	case SOCK_STREAM:
1814 		head = &unp_shead;
1815 		break;
1816 
1817 	case SOCK_DGRAM:
1818 		head = &unp_dhead;
1819 		break;
1820 
1821 	case SOCK_SEQPACKET:
1822 		head = &unp_sphead;
1823 		break;
1824 
1825 	default:
1826 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1827 	}
1828 
1829 	/*
1830 	 * The process of preparing the PCB list is too time-consuming and
1831 	 * resource-intensive to repeat twice on every request.
1832 	 */
1833 	if (req->oldptr == NULL) {
1834 		n = unp_count;
1835 		req->oldidx = 2 * (sizeof *xug)
1836 			+ (n + n/8) * sizeof(struct xunpcb);
1837 		return (0);
1838 	}
1839 
1840 	if (req->newptr != NULL)
1841 		return (EPERM);
1842 
1843 	/*
1844 	 * OK, now we're committed to doing something.
1845 	 */
1846 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1847 	UNP_LINK_RLOCK();
1848 	gencnt = unp_gencnt;
1849 	n = unp_count;
1850 	UNP_LINK_RUNLOCK();
1851 
1852 	xug->xug_len = sizeof *xug;
1853 	xug->xug_count = n;
1854 	xug->xug_gen = gencnt;
1855 	xug->xug_sogen = so_gencnt;
1856 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1857 	if (error) {
1858 		free(xug, M_TEMP);
1859 		return (error);
1860 	}
1861 
1862 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1863 
1864 	UNP_LINK_RLOCK();
1865 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1866 	     unp = LIST_NEXT(unp, unp_link)) {
1867 		UNP_PCB_LOCK(unp);
1868 		if (unp->unp_gencnt <= gencnt) {
1869 			if (cr_cansee(req->td->td_ucred,
1870 			    unp->unp_socket->so_cred)) {
1871 				UNP_PCB_UNLOCK(unp);
1872 				continue;
1873 			}
1874 			unp_list[i++] = unp;
1875 			unp_pcb_hold(unp);
1876 		}
1877 		UNP_PCB_UNLOCK(unp);
1878 	}
1879 	UNP_LINK_RUNLOCK();
1880 	n = i;			/* In case we lost some during malloc. */
1881 
1882 	error = 0;
1883 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1884 	for (i = 0; i < n; i++) {
1885 		unp = unp_list[i];
1886 		UNP_PCB_LOCK(unp);
1887 		if (unp_pcb_rele(unp))
1888 			continue;
1889 
1890 		if (unp->unp_gencnt <= gencnt) {
1891 			xu->xu_len = sizeof *xu;
1892 			xu->xu_unpp = (uintptr_t)unp;
1893 			/*
1894 			 * XXX - need more locking here to protect against
1895 			 * connect/disconnect races for SMP.
1896 			 */
1897 			if (unp->unp_addr != NULL)
1898 				bcopy(unp->unp_addr, &xu->xu_addr,
1899 				      unp->unp_addr->sun_len);
1900 			else
1901 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1902 			if (unp->unp_conn != NULL &&
1903 			    unp->unp_conn->unp_addr != NULL)
1904 				bcopy(unp->unp_conn->unp_addr,
1905 				      &xu->xu_caddr,
1906 				      unp->unp_conn->unp_addr->sun_len);
1907 			else
1908 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1909 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1910 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1911 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1912 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1913 			xu->unp_gencnt = unp->unp_gencnt;
1914 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1915 			UNP_PCB_UNLOCK(unp);
1916 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1917 		} else {
1918 			UNP_PCB_UNLOCK(unp);
1919 		}
1920 	}
1921 	free(xu, M_TEMP);
1922 	if (!error) {
1923 		/*
1924 		 * Give the user an updated idea of our state.  If the
1925 		 * generation differs from what we told her before, she knows
1926 		 * that something happened while we were processing this
1927 		 * request, and it might be necessary to retry.
1928 		 */
1929 		xug->xug_gen = unp_gencnt;
1930 		xug->xug_sogen = so_gencnt;
1931 		xug->xug_count = unp_count;
1932 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1933 	}
1934 	free(unp_list, M_TEMP);
1935 	free(xug, M_TEMP);
1936 	return (error);
1937 }
1938 
1939 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1940     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1941     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1942     "List of active local datagram sockets");
1943 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1944     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1945     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1946     "List of active local stream sockets");
1947 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1948     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1949     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1950     "List of active local seqpacket sockets");
1951 
1952 static void
1953 unp_shutdown(struct unpcb *unp)
1954 {
1955 	struct unpcb *unp2;
1956 	struct socket *so;
1957 
1958 	UNP_PCB_LOCK_ASSERT(unp);
1959 
1960 	unp2 = unp->unp_conn;
1961 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1962 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1963 		so = unp2->unp_socket;
1964 		if (so != NULL)
1965 			socantrcvmore(so);
1966 	}
1967 }
1968 
1969 static void
1970 unp_drop(struct unpcb *unp)
1971 {
1972 	struct socket *so;
1973 	struct unpcb *unp2;
1974 
1975 	/*
1976 	 * Regardless of whether the socket's peer dropped the connection
1977 	 * with this socket by aborting or disconnecting, POSIX requires
1978 	 * that ECONNRESET is returned.
1979 	 */
1980 
1981 	UNP_PCB_LOCK(unp);
1982 	so = unp->unp_socket;
1983 	if (so)
1984 		so->so_error = ECONNRESET;
1985 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1986 		/* Last reference dropped in unp_disconnect(). */
1987 		unp_pcb_rele_notlast(unp);
1988 		unp_disconnect(unp, unp2);
1989 	} else if (!unp_pcb_rele(unp)) {
1990 		UNP_PCB_UNLOCK(unp);
1991 	}
1992 }
1993 
1994 static void
1995 unp_freerights(struct filedescent **fdep, int fdcount)
1996 {
1997 	struct file *fp;
1998 	int i;
1999 
2000 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2001 
2002 	for (i = 0; i < fdcount; i++) {
2003 		fp = fdep[i]->fde_file;
2004 		filecaps_free(&fdep[i]->fde_caps);
2005 		unp_discard(fp);
2006 	}
2007 	free(fdep[0], M_FILECAPS);
2008 }
2009 
2010 static int
2011 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2012 {
2013 	struct thread *td = curthread;		/* XXX */
2014 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2015 	int i;
2016 	int *fdp;
2017 	struct filedesc *fdesc = td->td_proc->p_fd;
2018 	struct filedescent **fdep;
2019 	void *data;
2020 	socklen_t clen = control->m_len, datalen;
2021 	int error, newfds;
2022 	u_int newlen;
2023 
2024 	UNP_LINK_UNLOCK_ASSERT();
2025 
2026 	error = 0;
2027 	if (controlp != NULL) /* controlp == NULL => free control messages */
2028 		*controlp = NULL;
2029 	while (cm != NULL) {
2030 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2031 			error = EINVAL;
2032 			break;
2033 		}
2034 		data = CMSG_DATA(cm);
2035 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2036 		if (cm->cmsg_level == SOL_SOCKET
2037 		    && cm->cmsg_type == SCM_RIGHTS) {
2038 			newfds = datalen / sizeof(*fdep);
2039 			if (newfds == 0)
2040 				goto next;
2041 			fdep = data;
2042 
2043 			/* If we're not outputting the descriptors free them. */
2044 			if (error || controlp == NULL) {
2045 				unp_freerights(fdep, newfds);
2046 				goto next;
2047 			}
2048 			FILEDESC_XLOCK(fdesc);
2049 
2050 			/*
2051 			 * Now change each pointer to an fd in the global
2052 			 * table to an integer that is the index to the local
2053 			 * fd table entry that we set up to point to the
2054 			 * global one we are transferring.
2055 			 */
2056 			newlen = newfds * sizeof(int);
2057 			*controlp = sbcreatecontrol(NULL, newlen,
2058 			    SCM_RIGHTS, SOL_SOCKET);
2059 			if (*controlp == NULL) {
2060 				FILEDESC_XUNLOCK(fdesc);
2061 				error = E2BIG;
2062 				unp_freerights(fdep, newfds);
2063 				goto next;
2064 			}
2065 
2066 			fdp = (int *)
2067 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2068 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2069 				FILEDESC_XUNLOCK(fdesc);
2070 				error = EMSGSIZE;
2071 				unp_freerights(fdep, newfds);
2072 				m_freem(*controlp);
2073 				*controlp = NULL;
2074 				goto next;
2075 			}
2076 			for (i = 0; i < newfds; i++, fdp++) {
2077 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2078 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2079 				    &fdep[i]->fde_caps);
2080 				unp_externalize_fp(fdep[i]->fde_file);
2081 			}
2082 
2083 			/*
2084 			 * The new type indicates that the mbuf data refers to
2085 			 * kernel resources that may need to be released before
2086 			 * the mbuf is freed.
2087 			 */
2088 			m_chtype(*controlp, MT_EXTCONTROL);
2089 			FILEDESC_XUNLOCK(fdesc);
2090 			free(fdep[0], M_FILECAPS);
2091 		} else {
2092 			/* We can just copy anything else across. */
2093 			if (error || controlp == NULL)
2094 				goto next;
2095 			*controlp = sbcreatecontrol(NULL, datalen,
2096 			    cm->cmsg_type, cm->cmsg_level);
2097 			if (*controlp == NULL) {
2098 				error = ENOBUFS;
2099 				goto next;
2100 			}
2101 			bcopy(data,
2102 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2103 			    datalen);
2104 		}
2105 		controlp = &(*controlp)->m_next;
2106 
2107 next:
2108 		if (CMSG_SPACE(datalen) < clen) {
2109 			clen -= CMSG_SPACE(datalen);
2110 			cm = (struct cmsghdr *)
2111 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2112 		} else {
2113 			clen = 0;
2114 			cm = NULL;
2115 		}
2116 	}
2117 
2118 	m_freem(control);
2119 	return (error);
2120 }
2121 
2122 static void
2123 unp_zone_change(void *tag)
2124 {
2125 
2126 	uma_zone_set_max(unp_zone, maxsockets);
2127 }
2128 
2129 #ifdef INVARIANTS
2130 static void
2131 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2132 {
2133 	struct unpcb *unp;
2134 
2135 	unp = mem;
2136 
2137 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2138 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2139 	KASSERT(unp->unp_socket == NULL,
2140 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2141 	KASSERT(unp->unp_vnode == NULL,
2142 	    ("%s: unpcb %p has vnode references", __func__, unp));
2143 	KASSERT(unp->unp_conn == NULL,
2144 	    ("%s: unpcb %p is still connected", __func__, unp));
2145 	KASSERT(unp->unp_addr == NULL,
2146 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2147 }
2148 #endif
2149 
2150 static void
2151 unp_init(void)
2152 {
2153 	uma_dtor dtor;
2154 
2155 #ifdef VIMAGE
2156 	if (!IS_DEFAULT_VNET(curvnet))
2157 		return;
2158 #endif
2159 
2160 #ifdef INVARIANTS
2161 	dtor = unp_zdtor;
2162 #else
2163 	dtor = NULL;
2164 #endif
2165 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2166 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2167 	uma_zone_set_max(unp_zone, maxsockets);
2168 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2169 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2170 	    NULL, EVENTHANDLER_PRI_ANY);
2171 	LIST_INIT(&unp_dhead);
2172 	LIST_INIT(&unp_shead);
2173 	LIST_INIT(&unp_sphead);
2174 	SLIST_INIT(&unp_defers);
2175 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2176 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2177 	UNP_LINK_LOCK_INIT();
2178 	UNP_DEFERRED_LOCK_INIT();
2179 }
2180 
2181 static void
2182 unp_internalize_cleanup_rights(struct mbuf *control)
2183 {
2184 	struct cmsghdr *cp;
2185 	struct mbuf *m;
2186 	void *data;
2187 	socklen_t datalen;
2188 
2189 	for (m = control; m != NULL; m = m->m_next) {
2190 		cp = mtod(m, struct cmsghdr *);
2191 		if (cp->cmsg_level != SOL_SOCKET ||
2192 		    cp->cmsg_type != SCM_RIGHTS)
2193 			continue;
2194 		data = CMSG_DATA(cp);
2195 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2196 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2197 	}
2198 }
2199 
2200 static int
2201 unp_internalize(struct mbuf **controlp, struct thread *td)
2202 {
2203 	struct mbuf *control, **initial_controlp;
2204 	struct proc *p;
2205 	struct filedesc *fdesc;
2206 	struct bintime *bt;
2207 	struct cmsghdr *cm;
2208 	struct cmsgcred *cmcred;
2209 	struct filedescent *fde, **fdep, *fdev;
2210 	struct file *fp;
2211 	struct timeval *tv;
2212 	struct timespec *ts;
2213 	void *data;
2214 	socklen_t clen, datalen;
2215 	int i, j, error, *fdp, oldfds;
2216 	u_int newlen;
2217 
2218 	UNP_LINK_UNLOCK_ASSERT();
2219 
2220 	p = td->td_proc;
2221 	fdesc = p->p_fd;
2222 	error = 0;
2223 	control = *controlp;
2224 	clen = control->m_len;
2225 	*controlp = NULL;
2226 	initial_controlp = controlp;
2227 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2228 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2229 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2230 			error = EINVAL;
2231 			goto out;
2232 		}
2233 		data = CMSG_DATA(cm);
2234 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2235 
2236 		switch (cm->cmsg_type) {
2237 		/*
2238 		 * Fill in credential information.
2239 		 */
2240 		case SCM_CREDS:
2241 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2242 			    SCM_CREDS, SOL_SOCKET);
2243 			if (*controlp == NULL) {
2244 				error = ENOBUFS;
2245 				goto out;
2246 			}
2247 			cmcred = (struct cmsgcred *)
2248 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2249 			cmcred->cmcred_pid = p->p_pid;
2250 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2251 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2252 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2253 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2254 			    CMGROUP_MAX);
2255 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2256 				cmcred->cmcred_groups[i] =
2257 				    td->td_ucred->cr_groups[i];
2258 			break;
2259 
2260 		case SCM_RIGHTS:
2261 			oldfds = datalen / sizeof (int);
2262 			if (oldfds == 0)
2263 				break;
2264 			/*
2265 			 * Check that all the FDs passed in refer to legal
2266 			 * files.  If not, reject the entire operation.
2267 			 */
2268 			fdp = data;
2269 			FILEDESC_SLOCK(fdesc);
2270 			for (i = 0; i < oldfds; i++, fdp++) {
2271 				fp = fget_locked(fdesc, *fdp);
2272 				if (fp == NULL) {
2273 					FILEDESC_SUNLOCK(fdesc);
2274 					error = EBADF;
2275 					goto out;
2276 				}
2277 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2278 					FILEDESC_SUNLOCK(fdesc);
2279 					error = EOPNOTSUPP;
2280 					goto out;
2281 				}
2282 			}
2283 
2284 			/*
2285 			 * Now replace the integer FDs with pointers to the
2286 			 * file structure and capability rights.
2287 			 */
2288 			newlen = oldfds * sizeof(fdep[0]);
2289 			*controlp = sbcreatecontrol(NULL, newlen,
2290 			    SCM_RIGHTS, SOL_SOCKET);
2291 			if (*controlp == NULL) {
2292 				FILEDESC_SUNLOCK(fdesc);
2293 				error = E2BIG;
2294 				goto out;
2295 			}
2296 			fdp = data;
2297 			for (i = 0; i < oldfds; i++, fdp++) {
2298 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2299 					fdp = data;
2300 					for (j = 0; j < i; j++, fdp++) {
2301 						fdrop(fdesc->fd_ofiles[*fdp].
2302 						    fde_file, td);
2303 					}
2304 					FILEDESC_SUNLOCK(fdesc);
2305 					error = EBADF;
2306 					goto out;
2307 				}
2308 			}
2309 			fdp = data;
2310 			fdep = (struct filedescent **)
2311 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2312 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2313 			    M_WAITOK);
2314 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2315 				fde = &fdesc->fd_ofiles[*fdp];
2316 				fdep[i] = fdev;
2317 				fdep[i]->fde_file = fde->fde_file;
2318 				filecaps_copy(&fde->fde_caps,
2319 				    &fdep[i]->fde_caps, true);
2320 				unp_internalize_fp(fdep[i]->fde_file);
2321 			}
2322 			FILEDESC_SUNLOCK(fdesc);
2323 			break;
2324 
2325 		case SCM_TIMESTAMP:
2326 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2327 			    SCM_TIMESTAMP, SOL_SOCKET);
2328 			if (*controlp == NULL) {
2329 				error = ENOBUFS;
2330 				goto out;
2331 			}
2332 			tv = (struct timeval *)
2333 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2334 			microtime(tv);
2335 			break;
2336 
2337 		case SCM_BINTIME:
2338 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2339 			    SCM_BINTIME, SOL_SOCKET);
2340 			if (*controlp == NULL) {
2341 				error = ENOBUFS;
2342 				goto out;
2343 			}
2344 			bt = (struct bintime *)
2345 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2346 			bintime(bt);
2347 			break;
2348 
2349 		case SCM_REALTIME:
2350 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2351 			    SCM_REALTIME, SOL_SOCKET);
2352 			if (*controlp == NULL) {
2353 				error = ENOBUFS;
2354 				goto out;
2355 			}
2356 			ts = (struct timespec *)
2357 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2358 			nanotime(ts);
2359 			break;
2360 
2361 		case SCM_MONOTONIC:
2362 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2363 			    SCM_MONOTONIC, SOL_SOCKET);
2364 			if (*controlp == NULL) {
2365 				error = ENOBUFS;
2366 				goto out;
2367 			}
2368 			ts = (struct timespec *)
2369 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2370 			nanouptime(ts);
2371 			break;
2372 
2373 		default:
2374 			error = EINVAL;
2375 			goto out;
2376 		}
2377 
2378 		if (*controlp != NULL)
2379 			controlp = &(*controlp)->m_next;
2380 		if (CMSG_SPACE(datalen) < clen) {
2381 			clen -= CMSG_SPACE(datalen);
2382 			cm = (struct cmsghdr *)
2383 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2384 		} else {
2385 			clen = 0;
2386 			cm = NULL;
2387 		}
2388 	}
2389 
2390 out:
2391 	if (error != 0 && initial_controlp != NULL)
2392 		unp_internalize_cleanup_rights(*initial_controlp);
2393 	m_freem(control);
2394 	return (error);
2395 }
2396 
2397 static struct mbuf *
2398 unp_addsockcred(struct thread *td, struct mbuf *control, int mode)
2399 {
2400 	struct mbuf *m, *n, *n_prev;
2401 	const struct cmsghdr *cm;
2402 	int ngroups, i, cmsgtype;
2403 	size_t ctrlsz;
2404 
2405 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2406 	if (mode & UNP_WANTCRED_ALWAYS) {
2407 		ctrlsz = SOCKCRED2SIZE(ngroups);
2408 		cmsgtype = SCM_CREDS2;
2409 	} else {
2410 		ctrlsz = SOCKCREDSIZE(ngroups);
2411 		cmsgtype = SCM_CREDS;
2412 	}
2413 
2414 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET);
2415 	if (m == NULL)
2416 		return (control);
2417 
2418 	if (mode & UNP_WANTCRED_ALWAYS) {
2419 		struct sockcred2 *sc;
2420 
2421 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2422 		sc->sc_version = 0;
2423 		sc->sc_pid = td->td_proc->p_pid;
2424 		sc->sc_uid = td->td_ucred->cr_ruid;
2425 		sc->sc_euid = td->td_ucred->cr_uid;
2426 		sc->sc_gid = td->td_ucred->cr_rgid;
2427 		sc->sc_egid = td->td_ucred->cr_gid;
2428 		sc->sc_ngroups = ngroups;
2429 		for (i = 0; i < sc->sc_ngroups; i++)
2430 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2431 	} else {
2432 		struct sockcred *sc;
2433 
2434 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2435 		sc->sc_uid = td->td_ucred->cr_ruid;
2436 		sc->sc_euid = td->td_ucred->cr_uid;
2437 		sc->sc_gid = td->td_ucred->cr_rgid;
2438 		sc->sc_egid = td->td_ucred->cr_gid;
2439 		sc->sc_ngroups = ngroups;
2440 		for (i = 0; i < sc->sc_ngroups; i++)
2441 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2442 	}
2443 
2444 	/*
2445 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2446 	 * created SCM_CREDS control message (struct sockcred) has another
2447 	 * format.
2448 	 */
2449 	if (control != NULL && cmsgtype == SCM_CREDS)
2450 		for (n = control, n_prev = NULL; n != NULL;) {
2451 			cm = mtod(n, struct cmsghdr *);
2452     			if (cm->cmsg_level == SOL_SOCKET &&
2453 			    cm->cmsg_type == SCM_CREDS) {
2454     				if (n_prev == NULL)
2455 					control = n->m_next;
2456 				else
2457 					n_prev->m_next = n->m_next;
2458 				n = m_free(n);
2459 			} else {
2460 				n_prev = n;
2461 				n = n->m_next;
2462 			}
2463 		}
2464 
2465 	/* Prepend it to the head. */
2466 	m->m_next = control;
2467 	return (m);
2468 }
2469 
2470 static struct unpcb *
2471 fptounp(struct file *fp)
2472 {
2473 	struct socket *so;
2474 
2475 	if (fp->f_type != DTYPE_SOCKET)
2476 		return (NULL);
2477 	if ((so = fp->f_data) == NULL)
2478 		return (NULL);
2479 	if (so->so_proto->pr_domain != &localdomain)
2480 		return (NULL);
2481 	return sotounpcb(so);
2482 }
2483 
2484 static void
2485 unp_discard(struct file *fp)
2486 {
2487 	struct unp_defer *dr;
2488 
2489 	if (unp_externalize_fp(fp)) {
2490 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2491 		dr->ud_fp = fp;
2492 		UNP_DEFERRED_LOCK();
2493 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2494 		UNP_DEFERRED_UNLOCK();
2495 		atomic_add_int(&unp_defers_count, 1);
2496 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2497 	} else
2498 		closef_nothread(fp);
2499 }
2500 
2501 static void
2502 unp_process_defers(void *arg __unused, int pending)
2503 {
2504 	struct unp_defer *dr;
2505 	SLIST_HEAD(, unp_defer) drl;
2506 	int count;
2507 
2508 	SLIST_INIT(&drl);
2509 	for (;;) {
2510 		UNP_DEFERRED_LOCK();
2511 		if (SLIST_FIRST(&unp_defers) == NULL) {
2512 			UNP_DEFERRED_UNLOCK();
2513 			break;
2514 		}
2515 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2516 		UNP_DEFERRED_UNLOCK();
2517 		count = 0;
2518 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2519 			SLIST_REMOVE_HEAD(&drl, ud_link);
2520 			closef_nothread(dr->ud_fp);
2521 			free(dr, M_TEMP);
2522 			count++;
2523 		}
2524 		atomic_add_int(&unp_defers_count, -count);
2525 	}
2526 }
2527 
2528 static void
2529 unp_internalize_fp(struct file *fp)
2530 {
2531 	struct unpcb *unp;
2532 
2533 	UNP_LINK_WLOCK();
2534 	if ((unp = fptounp(fp)) != NULL) {
2535 		unp->unp_file = fp;
2536 		unp->unp_msgcount++;
2537 	}
2538 	unp_rights++;
2539 	UNP_LINK_WUNLOCK();
2540 }
2541 
2542 static int
2543 unp_externalize_fp(struct file *fp)
2544 {
2545 	struct unpcb *unp;
2546 	int ret;
2547 
2548 	UNP_LINK_WLOCK();
2549 	if ((unp = fptounp(fp)) != NULL) {
2550 		unp->unp_msgcount--;
2551 		ret = 1;
2552 	} else
2553 		ret = 0;
2554 	unp_rights--;
2555 	UNP_LINK_WUNLOCK();
2556 	return (ret);
2557 }
2558 
2559 /*
2560  * unp_defer indicates whether additional work has been defered for a future
2561  * pass through unp_gc().  It is thread local and does not require explicit
2562  * synchronization.
2563  */
2564 static int	unp_marked;
2565 
2566 static void
2567 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2568 {
2569 	struct unpcb *unp;
2570 	struct file *fp;
2571 	int i;
2572 
2573 	/*
2574 	 * This function can only be called from the gc task.
2575 	 */
2576 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2577 	    ("%s: not on gc callout", __func__));
2578 	UNP_LINK_LOCK_ASSERT();
2579 
2580 	for (i = 0; i < fdcount; i++) {
2581 		fp = fdep[i]->fde_file;
2582 		if ((unp = fptounp(fp)) == NULL)
2583 			continue;
2584 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2585 			continue;
2586 		unp->unp_gcrefs--;
2587 	}
2588 }
2589 
2590 static void
2591 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2592 {
2593 	struct unpcb *unp;
2594 	struct file *fp;
2595 	int i;
2596 
2597 	/*
2598 	 * This function can only be called from the gc task.
2599 	 */
2600 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2601 	    ("%s: not on gc callout", __func__));
2602 	UNP_LINK_LOCK_ASSERT();
2603 
2604 	for (i = 0; i < fdcount; i++) {
2605 		fp = fdep[i]->fde_file;
2606 		if ((unp = fptounp(fp)) == NULL)
2607 			continue;
2608 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2609 			continue;
2610 		unp->unp_gcrefs++;
2611 		unp_marked++;
2612 	}
2613 }
2614 
2615 static void
2616 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2617 {
2618 	struct socket *so, *soa;
2619 
2620 	so = unp->unp_socket;
2621 	SOCK_LOCK(so);
2622 	if (SOLISTENING(so)) {
2623 		/*
2624 		 * Mark all sockets in our accept queue.
2625 		 */
2626 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2627 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2628 				continue;
2629 			SOCKBUF_LOCK(&soa->so_rcv);
2630 			unp_scan(soa->so_rcv.sb_mb, op);
2631 			SOCKBUF_UNLOCK(&soa->so_rcv);
2632 		}
2633 	} else {
2634 		/*
2635 		 * Mark all sockets we reference with RIGHTS.
2636 		 */
2637 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2638 			SOCKBUF_LOCK(&so->so_rcv);
2639 			unp_scan(so->so_rcv.sb_mb, op);
2640 			SOCKBUF_UNLOCK(&so->so_rcv);
2641 		}
2642 	}
2643 	SOCK_UNLOCK(so);
2644 }
2645 
2646 static int unp_recycled;
2647 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2648     "Number of unreachable sockets claimed by the garbage collector.");
2649 
2650 static int unp_taskcount;
2651 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2652     "Number of times the garbage collector has run.");
2653 
2654 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2655     "Number of active local sockets.");
2656 
2657 static void
2658 unp_gc(__unused void *arg, int pending)
2659 {
2660 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2661 				    NULL };
2662 	struct unp_head **head;
2663 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2664 	struct file *f, **unref;
2665 	struct unpcb *unp, *unptmp;
2666 	int i, total, unp_unreachable;
2667 
2668 	LIST_INIT(&unp_deadhead);
2669 	unp_taskcount++;
2670 	UNP_LINK_RLOCK();
2671 	/*
2672 	 * First determine which sockets may be in cycles.
2673 	 */
2674 	unp_unreachable = 0;
2675 
2676 	for (head = heads; *head != NULL; head++)
2677 		LIST_FOREACH(unp, *head, unp_link) {
2678 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2679 			    ("%s: unp %p has unexpected gc flags 0x%x",
2680 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2681 
2682 			f = unp->unp_file;
2683 
2684 			/*
2685 			 * Check for an unreachable socket potentially in a
2686 			 * cycle.  It must be in a queue as indicated by
2687 			 * msgcount, and this must equal the file reference
2688 			 * count.  Note that when msgcount is 0 the file is
2689 			 * NULL.
2690 			 */
2691 			if (f != NULL && unp->unp_msgcount != 0 &&
2692 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
2693 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2694 				unp->unp_gcflag |= UNPGC_DEAD;
2695 				unp->unp_gcrefs = unp->unp_msgcount;
2696 				unp_unreachable++;
2697 			}
2698 		}
2699 
2700 	/*
2701 	 * Scan all sockets previously marked as potentially being in a cycle
2702 	 * and remove the references each socket holds on any UNPGC_DEAD
2703 	 * sockets in its queue.  After this step, all remaining references on
2704 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2705 	 */
2706 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2707 		unp_gc_scan(unp, unp_remove_dead_ref);
2708 
2709 	/*
2710 	 * If a socket still has a non-negative refcount, it cannot be in a
2711 	 * cycle.  In this case increment refcount of all children iteratively.
2712 	 * Stop the scan once we do a complete loop without discovering
2713 	 * a new reachable socket.
2714 	 */
2715 	do {
2716 		unp_marked = 0;
2717 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2718 			if (unp->unp_gcrefs > 0) {
2719 				unp->unp_gcflag &= ~UNPGC_DEAD;
2720 				LIST_REMOVE(unp, unp_dead);
2721 				KASSERT(unp_unreachable > 0,
2722 				    ("%s: unp_unreachable underflow.",
2723 				    __func__));
2724 				unp_unreachable--;
2725 				unp_gc_scan(unp, unp_restore_undead_ref);
2726 			}
2727 	} while (unp_marked);
2728 
2729 	UNP_LINK_RUNLOCK();
2730 
2731 	if (unp_unreachable == 0)
2732 		return;
2733 
2734 	/*
2735 	 * Allocate space for a local array of dead unpcbs.
2736 	 * TODO: can this path be simplified by instead using the local
2737 	 * dead list at unp_deadhead, after taking out references
2738 	 * on the file object and/or unpcb and dropping the link lock?
2739 	 */
2740 	unref = malloc(unp_unreachable * sizeof(struct file *),
2741 	    M_TEMP, M_WAITOK);
2742 
2743 	/*
2744 	 * Iterate looking for sockets which have been specifically marked
2745 	 * as unreachable and store them locally.
2746 	 */
2747 	UNP_LINK_RLOCK();
2748 	total = 0;
2749 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2750 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2751 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2752 		unp->unp_gcflag &= ~UNPGC_DEAD;
2753 		f = unp->unp_file;
2754 		if (unp->unp_msgcount == 0 || f == NULL ||
2755 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
2756 		    !fhold(f))
2757 			continue;
2758 		unref[total++] = f;
2759 		KASSERT(total <= unp_unreachable,
2760 		    ("%s: incorrect unreachable count.", __func__));
2761 	}
2762 	UNP_LINK_RUNLOCK();
2763 
2764 	/*
2765 	 * Now flush all sockets, free'ing rights.  This will free the
2766 	 * struct files associated with these sockets but leave each socket
2767 	 * with one remaining ref.
2768 	 */
2769 	for (i = 0; i < total; i++) {
2770 		struct socket *so;
2771 
2772 		so = unref[i]->f_data;
2773 		CURVNET_SET(so->so_vnet);
2774 		sorflush(so);
2775 		CURVNET_RESTORE();
2776 	}
2777 
2778 	/*
2779 	 * And finally release the sockets so they can be reclaimed.
2780 	 */
2781 	for (i = 0; i < total; i++)
2782 		fdrop(unref[i], NULL);
2783 	unp_recycled += total;
2784 	free(unref, M_TEMP);
2785 }
2786 
2787 static void
2788 unp_dispose_mbuf(struct mbuf *m)
2789 {
2790 
2791 	if (m)
2792 		unp_scan(m, unp_freerights);
2793 }
2794 
2795 /*
2796  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2797  */
2798 static void
2799 unp_dispose(struct socket *so)
2800 {
2801 	struct unpcb *unp;
2802 
2803 	unp = sotounpcb(so);
2804 	UNP_LINK_WLOCK();
2805 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2806 	UNP_LINK_WUNLOCK();
2807 	if (!SOLISTENING(so))
2808 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2809 }
2810 
2811 static void
2812 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2813 {
2814 	struct mbuf *m;
2815 	struct cmsghdr *cm;
2816 	void *data;
2817 	socklen_t clen, datalen;
2818 
2819 	while (m0 != NULL) {
2820 		for (m = m0; m; m = m->m_next) {
2821 			if (m->m_type != MT_CONTROL)
2822 				continue;
2823 
2824 			cm = mtod(m, struct cmsghdr *);
2825 			clen = m->m_len;
2826 
2827 			while (cm != NULL) {
2828 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2829 					break;
2830 
2831 				data = CMSG_DATA(cm);
2832 				datalen = (caddr_t)cm + cm->cmsg_len
2833 				    - (caddr_t)data;
2834 
2835 				if (cm->cmsg_level == SOL_SOCKET &&
2836 				    cm->cmsg_type == SCM_RIGHTS) {
2837 					(*op)(data, datalen /
2838 					    sizeof(struct filedescent *));
2839 				}
2840 
2841 				if (CMSG_SPACE(datalen) < clen) {
2842 					clen -= CMSG_SPACE(datalen);
2843 					cm = (struct cmsghdr *)
2844 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2845 				} else {
2846 					clen = 0;
2847 					cm = NULL;
2848 				}
2849 			}
2850 		}
2851 		m0 = m0->m_nextpkt;
2852 	}
2853 }
2854 
2855 /*
2856  * A helper function called by VFS before socket-type vnode reclamation.
2857  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2858  * use count.
2859  */
2860 void
2861 vfs_unp_reclaim(struct vnode *vp)
2862 {
2863 	struct unpcb *unp;
2864 	int active;
2865 	struct mtx *vplock;
2866 
2867 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2868 	KASSERT(vp->v_type == VSOCK,
2869 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2870 
2871 	active = 0;
2872 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2873 	mtx_lock(vplock);
2874 	VOP_UNP_CONNECT(vp, &unp);
2875 	if (unp == NULL)
2876 		goto done;
2877 	UNP_PCB_LOCK(unp);
2878 	if (unp->unp_vnode == vp) {
2879 		VOP_UNP_DETACH(vp);
2880 		unp->unp_vnode = NULL;
2881 		active = 1;
2882 	}
2883 	UNP_PCB_UNLOCK(unp);
2884  done:
2885 	mtx_unlock(vplock);
2886 	if (active)
2887 		vunref(vp);
2888 }
2889 
2890 #ifdef DDB
2891 static void
2892 db_print_indent(int indent)
2893 {
2894 	int i;
2895 
2896 	for (i = 0; i < indent; i++)
2897 		db_printf(" ");
2898 }
2899 
2900 static void
2901 db_print_unpflags(int unp_flags)
2902 {
2903 	int comma;
2904 
2905 	comma = 0;
2906 	if (unp_flags & UNP_HAVEPC) {
2907 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2908 		comma = 1;
2909 	}
2910 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
2911 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
2912 		comma = 1;
2913 	}
2914 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
2915 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
2916 		comma = 1;
2917 	}
2918 	if (unp_flags & UNP_CONNWAIT) {
2919 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2920 		comma = 1;
2921 	}
2922 	if (unp_flags & UNP_CONNECTING) {
2923 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2924 		comma = 1;
2925 	}
2926 	if (unp_flags & UNP_BINDING) {
2927 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2928 		comma = 1;
2929 	}
2930 }
2931 
2932 static void
2933 db_print_xucred(int indent, struct xucred *xu)
2934 {
2935 	int comma, i;
2936 
2937 	db_print_indent(indent);
2938 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2939 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2940 	db_print_indent(indent);
2941 	db_printf("cr_groups: ");
2942 	comma = 0;
2943 	for (i = 0; i < xu->cr_ngroups; i++) {
2944 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2945 		comma = 1;
2946 	}
2947 	db_printf("\n");
2948 }
2949 
2950 static void
2951 db_print_unprefs(int indent, struct unp_head *uh)
2952 {
2953 	struct unpcb *unp;
2954 	int counter;
2955 
2956 	counter = 0;
2957 	LIST_FOREACH(unp, uh, unp_reflink) {
2958 		if (counter % 4 == 0)
2959 			db_print_indent(indent);
2960 		db_printf("%p  ", unp);
2961 		if (counter % 4 == 3)
2962 			db_printf("\n");
2963 		counter++;
2964 	}
2965 	if (counter != 0 && counter % 4 != 0)
2966 		db_printf("\n");
2967 }
2968 
2969 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2970 {
2971 	struct unpcb *unp;
2972 
2973         if (!have_addr) {
2974                 db_printf("usage: show unpcb <addr>\n");
2975                 return;
2976         }
2977         unp = (struct unpcb *)addr;
2978 
2979 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2980 	    unp->unp_vnode);
2981 
2982 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2983 	    unp->unp_conn);
2984 
2985 	db_printf("unp_refs:\n");
2986 	db_print_unprefs(2, &unp->unp_refs);
2987 
2988 	/* XXXRW: Would be nice to print the full address, if any. */
2989 	db_printf("unp_addr: %p\n", unp->unp_addr);
2990 
2991 	db_printf("unp_gencnt: %llu\n",
2992 	    (unsigned long long)unp->unp_gencnt);
2993 
2994 	db_printf("unp_flags: %x (", unp->unp_flags);
2995 	db_print_unpflags(unp->unp_flags);
2996 	db_printf(")\n");
2997 
2998 	db_printf("unp_peercred:\n");
2999 	db_print_xucred(2, &unp->unp_peercred);
3000 
3001 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3002 }
3003 #endif
3004