xref: /freebsd/sys/kern/uipc_usrreq.c (revision 2b833162)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  * Copyright (c) 2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
35  */
36 
37 /*
38  * UNIX Domain (Local) Sockets
39  *
40  * This is an implementation of UNIX (local) domain sockets.  Each socket has
41  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
42  * may be connected to 0 or 1 other socket.  Datagram sockets may be
43  * connected to 0, 1, or many other sockets.  Sockets may be created and
44  * connected in pairs (socketpair(2)), or bound/connected to using the file
45  * system name space.  For most purposes, only the receive socket buffer is
46  * used, as sending on one socket delivers directly to the receive socket
47  * buffer of a second socket.
48  *
49  * The implementation is substantially complicated by the fact that
50  * "ancillary data", such as file descriptors or credentials, may be passed
51  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
52  * over other UNIX domain sockets requires the implementation of a simple
53  * garbage collector to find and tear down cycles of disconnected sockets.
54  *
55  * TODO:
56  *	RDM
57  *	rethink name space problems
58  *	need a proper out-of-band
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_ddb.h"
65 
66 #include <sys/param.h>
67 #include <sys/capsicum.h>
68 #include <sys/domain.h>
69 #include <sys/eventhandler.h>
70 #include <sys/fcntl.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/mount.h>
78 #include <sys/mutex.h>
79 #include <sys/namei.h>
80 #include <sys/proc.h>
81 #include <sys/protosw.h>
82 #include <sys/queue.h>
83 #include <sys/resourcevar.h>
84 #include <sys/rwlock.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/stat.h>
89 #include <sys/sx.h>
90 #include <sys/sysctl.h>
91 #include <sys/systm.h>
92 #include <sys/taskqueue.h>
93 #include <sys/un.h>
94 #include <sys/unpcb.h>
95 #include <sys/vnode.h>
96 
97 #include <net/vnet.h>
98 
99 #ifdef DDB
100 #include <ddb/ddb.h>
101 #endif
102 
103 #include <security/mac/mac_framework.h>
104 
105 #include <vm/uma.h>
106 
107 MALLOC_DECLARE(M_FILECAPS);
108 
109 static struct domain localdomain;
110 
111 static uma_zone_t	unp_zone;
112 static unp_gen_t	unp_gencnt;	/* (l) */
113 static u_int		unp_count;	/* (l) Count of local sockets. */
114 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
115 static int		unp_rights;	/* (g) File descriptors in flight. */
116 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
117 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
118 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
119 
120 struct unp_defer {
121 	SLIST_ENTRY(unp_defer) ud_link;
122 	struct file *ud_fp;
123 };
124 static SLIST_HEAD(, unp_defer) unp_defers;
125 static int unp_defers_count;
126 
127 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
128 
129 /*
130  * Garbage collection of cyclic file descriptor/socket references occurs
131  * asynchronously in a taskqueue context in order to avoid recursion and
132  * reentrance in the UNIX domain socket, file descriptor, and socket layer
133  * code.  See unp_gc() for a full description.
134  */
135 static struct timeout_task unp_gc_task;
136 
137 /*
138  * The close of unix domain sockets attached as SCM_RIGHTS is
139  * postponed to the taskqueue, to avoid arbitrary recursion depth.
140  * The attached sockets might have another sockets attached.
141  */
142 static struct task	unp_defer_task;
143 
144 /*
145  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
146  * stream sockets, although the total for sender and receiver is actually
147  * only PIPSIZ.
148  *
149  * Datagram sockets really use the sendspace as the maximum datagram size,
150  * and don't really want to reserve the sendspace.  Their recvspace should be
151  * large enough for at least one max-size datagram plus address.
152  */
153 #ifndef PIPSIZ
154 #define	PIPSIZ	8192
155 #endif
156 static u_long	unpst_sendspace = PIPSIZ;
157 static u_long	unpst_recvspace = PIPSIZ;
158 static u_long	unpdg_maxdgram = 2*1024;
159 static u_long	unpdg_recvspace = 16*1024;	/* support 8KB syslog msgs */
160 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
161 static u_long	unpsp_recvspace = PIPSIZ;
162 
163 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
164     "Local domain");
165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
166     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
167     "SOCK_STREAM");
168 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
169     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170     "SOCK_DGRAM");
171 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
172     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
173     "SOCK_SEQPACKET");
174 
175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
176 	   &unpst_sendspace, 0, "Default stream send space.");
177 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
178 	   &unpst_recvspace, 0, "Default stream receive space.");
179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
180 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
181 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
182 	   &unpdg_recvspace, 0, "Default datagram receive space.");
183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
184 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
185 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
186 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
187 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
188     "File descriptors in flight.");
189 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
190     &unp_defers_count, 0,
191     "File descriptors deferred to taskqueue for close.");
192 
193 /*
194  * Locking and synchronization:
195  *
196  * Several types of locks exist in the local domain socket implementation:
197  * - a global linkage lock
198  * - a global connection list lock
199  * - the mtxpool lock
200  * - per-unpcb mutexes
201  *
202  * The linkage lock protects the global socket lists, the generation number
203  * counter and garbage collector state.
204  *
205  * The connection list lock protects the list of referring sockets in a datagram
206  * socket PCB.  This lock is also overloaded to protect a global list of
207  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
208  * messages.  To avoid recursion, such references are released by a dedicated
209  * thread.
210  *
211  * The mtxpool lock protects the vnode from being modified while referenced.
212  * Lock ordering rules require that it be acquired before any PCB locks.
213  *
214  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
215  * unpcb.  This includes the unp_conn field, which either links two connected
216  * PCBs together (for connected socket types) or points at the destination
217  * socket (for connectionless socket types).  The operations of creating or
218  * destroying a connection therefore involve locking multiple PCBs.  To avoid
219  * lock order reversals, in some cases this involves dropping a PCB lock and
220  * using a reference counter to maintain liveness.
221  *
222  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
223  * allocated in pr_attach() and freed in pr_detach().  The validity of that
224  * pointer is an invariant, so no lock is required to dereference the so_pcb
225  * pointer if a valid socket reference is held by the caller.  In practice,
226  * this is always true during operations performed on a socket.  Each unpcb
227  * has a back-pointer to its socket, unp_socket, which will be stable under
228  * the same circumstances.
229  *
230  * This pointer may only be safely dereferenced as long as a valid reference
231  * to the unpcb is held.  Typically, this reference will be from the socket,
232  * or from another unpcb when the referring unpcb's lock is held (in order
233  * that the reference not be invalidated during use).  For example, to follow
234  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
235  * that detach is not run clearing unp_socket.
236  *
237  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
238  * protocols, bind() is a non-atomic operation, and connect() requires
239  * potential sleeping in the protocol, due to potentially waiting on local or
240  * distributed file systems.  We try to separate "lookup" operations, which
241  * may sleep, and the IPC operations themselves, which typically can occur
242  * with relative atomicity as locks can be held over the entire operation.
243  *
244  * Another tricky issue is simultaneous multi-threaded or multi-process
245  * access to a single UNIX domain socket.  These are handled by the flags
246  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
247  * binding, both of which involve dropping UNIX domain socket locks in order
248  * to perform namei() and other file system operations.
249  */
250 static struct rwlock	unp_link_rwlock;
251 static struct mtx	unp_defers_lock;
252 
253 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
254 					    "unp_link_rwlock")
255 
256 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
257 					    RA_LOCKED)
258 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
259 					    RA_UNLOCKED)
260 
261 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
262 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
263 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
264 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
265 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
266 					    RA_WLOCKED)
267 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
268 
269 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
270 					    "unp_defer", NULL, MTX_DEF)
271 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
272 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
273 
274 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
275 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
276 
277 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
278 					    "unp", "unp",	\
279 					    MTX_DUPOK|MTX_DEF)
280 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
281 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
283 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
284 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
285 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
286 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
287 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
288 
289 static int	uipc_connect2(struct socket *, struct socket *);
290 static int	uipc_ctloutput(struct socket *, struct sockopt *);
291 static int	unp_connect(struct socket *, struct sockaddr *,
292 		    struct thread *);
293 static int	unp_connectat(int, struct socket *, struct sockaddr *,
294 		    struct thread *, bool);
295 typedef enum { PRU_CONNECT, PRU_CONNECT2 } conn2_how;
296 static void	unp_connect2(struct socket *so, struct socket *so2, conn2_how);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_shutdown(struct unpcb *);
300 static void	unp_drop(struct unpcb *);
301 static void	unp_gc(__unused void *, int);
302 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
303 static void	unp_discard(struct file *);
304 static void	unp_freerights(struct filedescent **, int);
305 static int	unp_internalize(struct mbuf **, struct thread *,
306 		    struct mbuf **, u_int *, u_int *);
307 static void	unp_internalize_fp(struct file *);
308 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
309 static int	unp_externalize_fp(struct file *);
310 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *,
311 		    int, struct mbuf **, u_int *, u_int *);
312 static void	unp_process_defers(void * __unused, int);
313 
314 static void
315 unp_pcb_hold(struct unpcb *unp)
316 {
317 	u_int old __unused;
318 
319 	old = refcount_acquire(&unp->unp_refcount);
320 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
321 }
322 
323 static __result_use_check bool
324 unp_pcb_rele(struct unpcb *unp)
325 {
326 	bool ret;
327 
328 	UNP_PCB_LOCK_ASSERT(unp);
329 
330 	if ((ret = refcount_release(&unp->unp_refcount))) {
331 		UNP_PCB_UNLOCK(unp);
332 		UNP_PCB_LOCK_DESTROY(unp);
333 		uma_zfree(unp_zone, unp);
334 	}
335 	return (ret);
336 }
337 
338 static void
339 unp_pcb_rele_notlast(struct unpcb *unp)
340 {
341 	bool ret __unused;
342 
343 	ret = refcount_release(&unp->unp_refcount);
344 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
345 }
346 
347 static void
348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
349 {
350 	UNP_PCB_UNLOCK_ASSERT(unp);
351 	UNP_PCB_UNLOCK_ASSERT(unp2);
352 
353 	if (unp == unp2) {
354 		UNP_PCB_LOCK(unp);
355 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
356 		UNP_PCB_LOCK(unp);
357 		UNP_PCB_LOCK(unp2);
358 	} else {
359 		UNP_PCB_LOCK(unp2);
360 		UNP_PCB_LOCK(unp);
361 	}
362 }
363 
364 static void
365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
366 {
367 	UNP_PCB_UNLOCK(unp);
368 	if (unp != unp2)
369 		UNP_PCB_UNLOCK(unp2);
370 }
371 
372 /*
373  * Try to lock the connected peer of an already locked socket.  In some cases
374  * this requires that we unlock the current socket.  The pairbusy counter is
375  * used to block concurrent connection attempts while the lock is dropped.  The
376  * caller must be careful to revalidate PCB state.
377  */
378 static struct unpcb *
379 unp_pcb_lock_peer(struct unpcb *unp)
380 {
381 	struct unpcb *unp2;
382 
383 	UNP_PCB_LOCK_ASSERT(unp);
384 	unp2 = unp->unp_conn;
385 	if (unp2 == NULL)
386 		return (NULL);
387 	if (__predict_false(unp == unp2))
388 		return (unp);
389 
390 	UNP_PCB_UNLOCK_ASSERT(unp2);
391 
392 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
393 		return (unp2);
394 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
395 		UNP_PCB_LOCK(unp2);
396 		return (unp2);
397 	}
398 	unp->unp_pairbusy++;
399 	unp_pcb_hold(unp2);
400 	UNP_PCB_UNLOCK(unp);
401 
402 	UNP_PCB_LOCK(unp2);
403 	UNP_PCB_LOCK(unp);
404 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
405 	    ("%s: socket %p was reconnected", __func__, unp));
406 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
407 		unp->unp_flags &= ~UNP_WAITING;
408 		wakeup(unp);
409 	}
410 	if (unp_pcb_rele(unp2)) {
411 		/* unp2 is unlocked. */
412 		return (NULL);
413 	}
414 	if (unp->unp_conn == NULL) {
415 		UNP_PCB_UNLOCK(unp2);
416 		return (NULL);
417 	}
418 	return (unp2);
419 }
420 
421 static void
422 uipc_abort(struct socket *so)
423 {
424 	struct unpcb *unp, *unp2;
425 
426 	unp = sotounpcb(so);
427 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
428 	UNP_PCB_UNLOCK_ASSERT(unp);
429 
430 	UNP_PCB_LOCK(unp);
431 	unp2 = unp->unp_conn;
432 	if (unp2 != NULL) {
433 		unp_pcb_hold(unp2);
434 		UNP_PCB_UNLOCK(unp);
435 		unp_drop(unp2);
436 	} else
437 		UNP_PCB_UNLOCK(unp);
438 }
439 
440 static int
441 uipc_accept(struct socket *so, struct sockaddr **nam)
442 {
443 	struct unpcb *unp, *unp2;
444 	const struct sockaddr *sa;
445 
446 	/*
447 	 * Pass back name of connected socket, if it was bound and we are
448 	 * still connected (our peer may have closed already!).
449 	 */
450 	unp = sotounpcb(so);
451 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
452 
453 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
454 	UNP_PCB_LOCK(unp);
455 	unp2 = unp_pcb_lock_peer(unp);
456 	if (unp2 != NULL && unp2->unp_addr != NULL)
457 		sa = (struct sockaddr *)unp2->unp_addr;
458 	else
459 		sa = &sun_noname;
460 	bcopy(sa, *nam, sa->sa_len);
461 	if (unp2 != NULL)
462 		unp_pcb_unlock_pair(unp, unp2);
463 	else
464 		UNP_PCB_UNLOCK(unp);
465 	return (0);
466 }
467 
468 static int
469 uipc_attach(struct socket *so, int proto, struct thread *td)
470 {
471 	u_long sendspace, recvspace;
472 	struct unpcb *unp;
473 	int error;
474 	bool locked;
475 
476 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
477 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
478 		switch (so->so_type) {
479 		case SOCK_STREAM:
480 			sendspace = unpst_sendspace;
481 			recvspace = unpst_recvspace;
482 			break;
483 
484 		case SOCK_DGRAM:
485 			STAILQ_INIT(&so->so_rcv.uxdg_mb);
486 			STAILQ_INIT(&so->so_snd.uxdg_mb);
487 			TAILQ_INIT(&so->so_rcv.uxdg_conns);
488 			/*
489 			 * Since send buffer is either bypassed or is a part
490 			 * of one-to-many receive buffer, we assign both space
491 			 * limits to unpdg_recvspace.
492 			 */
493 			sendspace = recvspace = unpdg_recvspace;
494 			break;
495 
496 		case SOCK_SEQPACKET:
497 			sendspace = unpsp_sendspace;
498 			recvspace = unpsp_recvspace;
499 			break;
500 
501 		default:
502 			panic("uipc_attach");
503 		}
504 		error = soreserve(so, sendspace, recvspace);
505 		if (error)
506 			return (error);
507 	}
508 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
509 	if (unp == NULL)
510 		return (ENOBUFS);
511 	LIST_INIT(&unp->unp_refs);
512 	UNP_PCB_LOCK_INIT(unp);
513 	unp->unp_socket = so;
514 	so->so_pcb = unp;
515 	refcount_init(&unp->unp_refcount, 1);
516 
517 	if ((locked = UNP_LINK_WOWNED()) == false)
518 		UNP_LINK_WLOCK();
519 
520 	unp->unp_gencnt = ++unp_gencnt;
521 	unp->unp_ino = ++unp_ino;
522 	unp_count++;
523 	switch (so->so_type) {
524 	case SOCK_STREAM:
525 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
526 		break;
527 
528 	case SOCK_DGRAM:
529 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
530 		break;
531 
532 	case SOCK_SEQPACKET:
533 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
534 		break;
535 
536 	default:
537 		panic("uipc_attach");
538 	}
539 
540 	if (locked == false)
541 		UNP_LINK_WUNLOCK();
542 
543 	return (0);
544 }
545 
546 static int
547 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
548 {
549 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
550 	struct vattr vattr;
551 	int error, namelen;
552 	struct nameidata nd;
553 	struct unpcb *unp;
554 	struct vnode *vp;
555 	struct mount *mp;
556 	cap_rights_t rights;
557 	char *buf;
558 
559 	if (nam->sa_family != AF_UNIX)
560 		return (EAFNOSUPPORT);
561 
562 	unp = sotounpcb(so);
563 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
564 
565 	if (soun->sun_len > sizeof(struct sockaddr_un))
566 		return (EINVAL);
567 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
568 	if (namelen <= 0)
569 		return (EINVAL);
570 
571 	/*
572 	 * We don't allow simultaneous bind() calls on a single UNIX domain
573 	 * socket, so flag in-progress operations, and return an error if an
574 	 * operation is already in progress.
575 	 *
576 	 * Historically, we have not allowed a socket to be rebound, so this
577 	 * also returns an error.  Not allowing re-binding simplifies the
578 	 * implementation and avoids a great many possible failure modes.
579 	 */
580 	UNP_PCB_LOCK(unp);
581 	if (unp->unp_vnode != NULL) {
582 		UNP_PCB_UNLOCK(unp);
583 		return (EINVAL);
584 	}
585 	if (unp->unp_flags & UNP_BINDING) {
586 		UNP_PCB_UNLOCK(unp);
587 		return (EALREADY);
588 	}
589 	unp->unp_flags |= UNP_BINDING;
590 	UNP_PCB_UNLOCK(unp);
591 
592 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
593 	bcopy(soun->sun_path, buf, namelen);
594 	buf[namelen] = 0;
595 
596 restart:
597 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | NOCACHE,
598 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
599 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
600 	error = namei(&nd);
601 	if (error)
602 		goto error;
603 	vp = nd.ni_vp;
604 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
605 		NDFREE_PNBUF(&nd);
606 		if (nd.ni_dvp == vp)
607 			vrele(nd.ni_dvp);
608 		else
609 			vput(nd.ni_dvp);
610 		if (vp != NULL) {
611 			vrele(vp);
612 			error = EADDRINUSE;
613 			goto error;
614 		}
615 		error = vn_start_write(NULL, &mp, V_XSLEEP | V_PCATCH);
616 		if (error)
617 			goto error;
618 		goto restart;
619 	}
620 	VATTR_NULL(&vattr);
621 	vattr.va_type = VSOCK;
622 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
623 #ifdef MAC
624 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
625 	    &vattr);
626 #endif
627 	if (error == 0)
628 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
629 	NDFREE_PNBUF(&nd);
630 	if (error) {
631 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
632 		vn_finished_write(mp);
633 		if (error == ERELOOKUP)
634 			goto restart;
635 		goto error;
636 	}
637 	vp = nd.ni_vp;
638 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
639 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
640 
641 	UNP_PCB_LOCK(unp);
642 	VOP_UNP_BIND(vp, unp);
643 	unp->unp_vnode = vp;
644 	unp->unp_addr = soun;
645 	unp->unp_flags &= ~UNP_BINDING;
646 	UNP_PCB_UNLOCK(unp);
647 	vref(vp);
648 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
649 	vn_finished_write(mp);
650 	free(buf, M_TEMP);
651 	return (0);
652 
653 error:
654 	UNP_PCB_LOCK(unp);
655 	unp->unp_flags &= ~UNP_BINDING;
656 	UNP_PCB_UNLOCK(unp);
657 	free(buf, M_TEMP);
658 	return (error);
659 }
660 
661 static int
662 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
663 {
664 
665 	return (uipc_bindat(AT_FDCWD, so, nam, td));
666 }
667 
668 static int
669 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
670 {
671 	int error;
672 
673 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
674 	error = unp_connect(so, nam, td);
675 	return (error);
676 }
677 
678 static int
679 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
680     struct thread *td)
681 {
682 	int error;
683 
684 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
685 	error = unp_connectat(fd, so, nam, td, false);
686 	return (error);
687 }
688 
689 static void
690 uipc_close(struct socket *so)
691 {
692 	struct unpcb *unp, *unp2;
693 	struct vnode *vp = NULL;
694 	struct mtx *vplock;
695 
696 	unp = sotounpcb(so);
697 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
698 
699 	vplock = NULL;
700 	if ((vp = unp->unp_vnode) != NULL) {
701 		vplock = mtx_pool_find(mtxpool_sleep, vp);
702 		mtx_lock(vplock);
703 	}
704 	UNP_PCB_LOCK(unp);
705 	if (vp && unp->unp_vnode == NULL) {
706 		mtx_unlock(vplock);
707 		vp = NULL;
708 	}
709 	if (vp != NULL) {
710 		VOP_UNP_DETACH(vp);
711 		unp->unp_vnode = NULL;
712 	}
713 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
714 		unp_disconnect(unp, unp2);
715 	else
716 		UNP_PCB_UNLOCK(unp);
717 	if (vp) {
718 		mtx_unlock(vplock);
719 		vrele(vp);
720 	}
721 }
722 
723 static int
724 uipc_connect2(struct socket *so1, struct socket *so2)
725 {
726 	struct unpcb *unp, *unp2;
727 
728 	if (so1->so_type != so2->so_type)
729 		return (EPROTOTYPE);
730 
731 	unp = so1->so_pcb;
732 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
733 	unp2 = so2->so_pcb;
734 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
735 	unp_pcb_lock_pair(unp, unp2);
736 	unp_connect2(so1, so2, PRU_CONNECT2);
737 	unp_pcb_unlock_pair(unp, unp2);
738 
739 	return (0);
740 }
741 
742 static void
743 uipc_detach(struct socket *so)
744 {
745 	struct unpcb *unp, *unp2;
746 	struct mtx *vplock;
747 	struct vnode *vp;
748 	int local_unp_rights;
749 
750 	unp = sotounpcb(so);
751 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
752 
753 	vp = NULL;
754 	vplock = NULL;
755 
756 	UNP_LINK_WLOCK();
757 	LIST_REMOVE(unp, unp_link);
758 	if (unp->unp_gcflag & UNPGC_DEAD)
759 		LIST_REMOVE(unp, unp_dead);
760 	unp->unp_gencnt = ++unp_gencnt;
761 	--unp_count;
762 	UNP_LINK_WUNLOCK();
763 
764 	UNP_PCB_UNLOCK_ASSERT(unp);
765  restart:
766 	if ((vp = unp->unp_vnode) != NULL) {
767 		vplock = mtx_pool_find(mtxpool_sleep, vp);
768 		mtx_lock(vplock);
769 	}
770 	UNP_PCB_LOCK(unp);
771 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
772 		if (vplock)
773 			mtx_unlock(vplock);
774 		UNP_PCB_UNLOCK(unp);
775 		goto restart;
776 	}
777 	if ((vp = unp->unp_vnode) != NULL) {
778 		VOP_UNP_DETACH(vp);
779 		unp->unp_vnode = NULL;
780 	}
781 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
782 		unp_disconnect(unp, unp2);
783 	else
784 		UNP_PCB_UNLOCK(unp);
785 
786 	UNP_REF_LIST_LOCK();
787 	while (!LIST_EMPTY(&unp->unp_refs)) {
788 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
789 
790 		unp_pcb_hold(ref);
791 		UNP_REF_LIST_UNLOCK();
792 
793 		MPASS(ref != unp);
794 		UNP_PCB_UNLOCK_ASSERT(ref);
795 		unp_drop(ref);
796 		UNP_REF_LIST_LOCK();
797 	}
798 	UNP_REF_LIST_UNLOCK();
799 
800 	UNP_PCB_LOCK(unp);
801 	local_unp_rights = unp_rights;
802 	unp->unp_socket->so_pcb = NULL;
803 	unp->unp_socket = NULL;
804 	free(unp->unp_addr, M_SONAME);
805 	unp->unp_addr = NULL;
806 	if (!unp_pcb_rele(unp))
807 		UNP_PCB_UNLOCK(unp);
808 	if (vp) {
809 		mtx_unlock(vplock);
810 		vrele(vp);
811 	}
812 	if (local_unp_rights)
813 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
814 
815 	switch (so->so_type) {
816 	case SOCK_DGRAM:
817 		/*
818 		 * Everything should have been unlinked/freed by unp_dispose()
819 		 * and/or unp_disconnect().
820 		 */
821 		MPASS(so->so_rcv.uxdg_peeked == NULL);
822 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
823 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
824 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
825 	}
826 }
827 
828 static int
829 uipc_disconnect(struct socket *so)
830 {
831 	struct unpcb *unp, *unp2;
832 
833 	unp = sotounpcb(so);
834 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
835 
836 	UNP_PCB_LOCK(unp);
837 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
838 		unp_disconnect(unp, unp2);
839 	else
840 		UNP_PCB_UNLOCK(unp);
841 	return (0);
842 }
843 
844 static int
845 uipc_listen(struct socket *so, int backlog, struct thread *td)
846 {
847 	struct unpcb *unp;
848 	int error;
849 
850 	MPASS(so->so_type != SOCK_DGRAM);
851 
852 	/*
853 	 * Synchronize with concurrent connection attempts.
854 	 */
855 	error = 0;
856 	unp = sotounpcb(so);
857 	UNP_PCB_LOCK(unp);
858 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
859 		error = EINVAL;
860 	else if (unp->unp_vnode == NULL)
861 		error = EDESTADDRREQ;
862 	if (error != 0) {
863 		UNP_PCB_UNLOCK(unp);
864 		return (error);
865 	}
866 
867 	SOCK_LOCK(so);
868 	error = solisten_proto_check(so);
869 	if (error == 0) {
870 		cru2xt(td, &unp->unp_peercred);
871 		solisten_proto(so, backlog);
872 	}
873 	SOCK_UNLOCK(so);
874 	UNP_PCB_UNLOCK(unp);
875 	return (error);
876 }
877 
878 static int
879 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
880 {
881 	struct unpcb *unp, *unp2;
882 	const struct sockaddr *sa;
883 
884 	unp = sotounpcb(so);
885 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
886 
887 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
888 	UNP_LINK_RLOCK();
889 	/*
890 	 * XXX: It seems that this test always fails even when connection is
891 	 * established.  So, this else clause is added as workaround to
892 	 * return PF_LOCAL sockaddr.
893 	 */
894 	unp2 = unp->unp_conn;
895 	if (unp2 != NULL) {
896 		UNP_PCB_LOCK(unp2);
897 		if (unp2->unp_addr != NULL)
898 			sa = (struct sockaddr *) unp2->unp_addr;
899 		else
900 			sa = &sun_noname;
901 		bcopy(sa, *nam, sa->sa_len);
902 		UNP_PCB_UNLOCK(unp2);
903 	} else {
904 		sa = &sun_noname;
905 		bcopy(sa, *nam, sa->sa_len);
906 	}
907 	UNP_LINK_RUNLOCK();
908 	return (0);
909 }
910 
911 static int
912 uipc_rcvd(struct socket *so, int flags)
913 {
914 	struct unpcb *unp, *unp2;
915 	struct socket *so2;
916 	u_int mbcnt, sbcc;
917 
918 	unp = sotounpcb(so);
919 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
920 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
921 	    ("%s: socktype %d", __func__, so->so_type));
922 
923 	/*
924 	 * Adjust backpressure on sender and wakeup any waiting to write.
925 	 *
926 	 * The unp lock is acquired to maintain the validity of the unp_conn
927 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
928 	 * static as long as we don't permit unp2 to disconnect from unp,
929 	 * which is prevented by the lock on unp.  We cache values from
930 	 * so_rcv to avoid holding the so_rcv lock over the entire
931 	 * transaction on the remote so_snd.
932 	 */
933 	SOCKBUF_LOCK(&so->so_rcv);
934 	mbcnt = so->so_rcv.sb_mbcnt;
935 	sbcc = sbavail(&so->so_rcv);
936 	SOCKBUF_UNLOCK(&so->so_rcv);
937 	/*
938 	 * There is a benign race condition at this point.  If we're planning to
939 	 * clear SB_STOP, but uipc_send is called on the connected socket at
940 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
941 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
942 	 * full.  The race is benign because the only ill effect is to allow the
943 	 * sockbuf to exceed its size limit, and the size limits are not
944 	 * strictly guaranteed anyway.
945 	 */
946 	UNP_PCB_LOCK(unp);
947 	unp2 = unp->unp_conn;
948 	if (unp2 == NULL) {
949 		UNP_PCB_UNLOCK(unp);
950 		return (0);
951 	}
952 	so2 = unp2->unp_socket;
953 	SOCKBUF_LOCK(&so2->so_snd);
954 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
955 		so2->so_snd.sb_flags &= ~SB_STOP;
956 	sowwakeup_locked(so2);
957 	UNP_PCB_UNLOCK(unp);
958 	return (0);
959 }
960 
961 static int
962 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
963     struct mbuf *control, struct thread *td)
964 {
965 	struct unpcb *unp, *unp2;
966 	struct socket *so2;
967 	u_int mbcnt, sbcc;
968 	int error;
969 
970 	unp = sotounpcb(so);
971 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
972 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
973 	    ("%s: socktype %d", __func__, so->so_type));
974 
975 	error = 0;
976 	if (flags & PRUS_OOB) {
977 		error = EOPNOTSUPP;
978 		goto release;
979 	}
980 	if (control != NULL &&
981 	    (error = unp_internalize(&control, td, NULL, NULL, NULL)))
982 		goto release;
983 
984 	unp2 = NULL;
985 	if ((so->so_state & SS_ISCONNECTED) == 0) {
986 		if (nam != NULL) {
987 			if ((error = unp_connect(so, nam, td)) != 0)
988 				goto out;
989 		} else {
990 			error = ENOTCONN;
991 			goto out;
992 		}
993 	}
994 
995 	UNP_PCB_LOCK(unp);
996 	if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
997 		UNP_PCB_UNLOCK(unp);
998 		error = ENOTCONN;
999 		goto out;
1000 	} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1001 		unp_pcb_unlock_pair(unp, unp2);
1002 		error = EPIPE;
1003 		goto out;
1004 	}
1005 	UNP_PCB_UNLOCK(unp);
1006 	if ((so2 = unp2->unp_socket) == NULL) {
1007 		UNP_PCB_UNLOCK(unp2);
1008 		error = ENOTCONN;
1009 		goto out;
1010 	}
1011 	SOCKBUF_LOCK(&so2->so_rcv);
1012 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1013 		/*
1014 		 * Credentials are passed only once on SOCK_STREAM and
1015 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1016 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1017 		 */
1018 		control = unp_addsockcred(td, control, unp2->unp_flags, NULL,
1019 		    NULL, NULL);
1020 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1021 	}
1022 
1023 	/*
1024 	 * Send to paired receive port and wake up readers.  Don't
1025 	 * check for space available in the receive buffer if we're
1026 	 * attaching ancillary data; Unix domain sockets only check
1027 	 * for space in the sending sockbuf, and that check is
1028 	 * performed one level up the stack.  At that level we cannot
1029 	 * precisely account for the amount of buffer space used
1030 	 * (e.g., because control messages are not yet internalized).
1031 	 */
1032 	switch (so->so_type) {
1033 	case SOCK_STREAM:
1034 		if (control != NULL) {
1035 			sbappendcontrol_locked(&so2->so_rcv, m,
1036 			    control, flags);
1037 			control = NULL;
1038 		} else
1039 			sbappend_locked(&so2->so_rcv, m, flags);
1040 		break;
1041 
1042 	case SOCK_SEQPACKET:
1043 		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1044 		    &sun_noname, m, control))
1045 			control = NULL;
1046 		break;
1047 	}
1048 
1049 	mbcnt = so2->so_rcv.sb_mbcnt;
1050 	sbcc = sbavail(&so2->so_rcv);
1051 	if (sbcc)
1052 		sorwakeup_locked(so2);
1053 	else
1054 		SOCKBUF_UNLOCK(&so2->so_rcv);
1055 
1056 	/*
1057 	 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1058 	 * it would be possible for uipc_rcvd to be called at this
1059 	 * point, drain the receiving sockbuf, clear SB_STOP, and then
1060 	 * we would set SB_STOP below.  That could lead to an empty
1061 	 * sockbuf having SB_STOP set
1062 	 */
1063 	SOCKBUF_LOCK(&so->so_snd);
1064 	if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1065 		so->so_snd.sb_flags |= SB_STOP;
1066 	SOCKBUF_UNLOCK(&so->so_snd);
1067 	UNP_PCB_UNLOCK(unp2);
1068 	m = NULL;
1069 out:
1070 	/*
1071 	 * PRUS_EOF is equivalent to pr_send followed by pr_shutdown.
1072 	 */
1073 	if (flags & PRUS_EOF) {
1074 		UNP_PCB_LOCK(unp);
1075 		socantsendmore(so);
1076 		unp_shutdown(unp);
1077 		UNP_PCB_UNLOCK(unp);
1078 	}
1079 	if (control != NULL && error != 0)
1080 		unp_scan(control, unp_freerights);
1081 
1082 release:
1083 	if (control != NULL)
1084 		m_freem(control);
1085 	/*
1086 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1087 	 * for freeing memory.
1088 	 */
1089 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1090 		m_freem(m);
1091 	return (error);
1092 }
1093 
1094 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1095 static inline bool
1096 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1097 {
1098 	u_int bleft, mleft;
1099 
1100 	/*
1101 	 * Negative space may happen if send(2) is followed by
1102 	 * setsockopt(SO_SNDBUF/SO_RCVBUF) that shrinks maximum.
1103 	 */
1104 	if (__predict_false(sb->sb_hiwat < sb->uxdg_cc ||
1105 	    sb->sb_mbmax < sb->uxdg_mbcnt))
1106 		return (false);
1107 
1108 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1109 		return (false);
1110 
1111 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1112 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1113 
1114 	return (bleft >= cc && mleft >= mbcnt);
1115 }
1116 
1117 /*
1118  * PF_UNIX/SOCK_DGRAM send
1119  *
1120  * Allocate a record consisting of 3 mbufs in the sequence of
1121  * from -> control -> data and append it to the socket buffer.
1122  *
1123  * The first mbuf carries sender's name and is a pkthdr that stores
1124  * overall length of datagram, its memory consumption and control length.
1125  */
1126 #define	ctllen	PH_loc.thirtytwo[1]
1127 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1128     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1129 static int
1130 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1131     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1132 {
1133 	struct unpcb *unp, *unp2;
1134 	const struct sockaddr *from;
1135 	struct socket *so2;
1136 	struct sockbuf *sb;
1137 	struct mbuf *f, *clast;
1138 	u_int cc, ctl, mbcnt;
1139 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1140 	int error;
1141 
1142 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1143 
1144 	error = 0;
1145 	f = NULL;
1146 	ctl = 0;
1147 
1148 	if (__predict_false(flags & MSG_OOB)) {
1149 		error = EOPNOTSUPP;
1150 		goto out;
1151 	}
1152 	if (m == NULL) {
1153 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1154 			error = EMSGSIZE;
1155 			goto out;
1156 		}
1157 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1158 		if (__predict_false(m == NULL)) {
1159 			error = EFAULT;
1160 			goto out;
1161 		}
1162 		f = m_gethdr(M_WAITOK, MT_SONAME);
1163 		cc = m->m_pkthdr.len;
1164 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1165 		if (c != NULL &&
1166 		    (error = unp_internalize(&c, td, &clast, &ctl, &mbcnt)))
1167 			goto out;
1168 	} else {
1169 		/* pr_sosend() with mbuf usually is a kernel thread. */
1170 
1171 		M_ASSERTPKTHDR(m);
1172 		if (__predict_false(c != NULL))
1173 			panic("%s: control from a kernel thread", __func__);
1174 
1175 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1176 			error = EMSGSIZE;
1177 			goto out;
1178 		}
1179 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1180 			error = ENOBUFS;
1181 			goto out;
1182 		}
1183 		/* Condition the foreign mbuf to our standards. */
1184 		m_clrprotoflags(m);
1185 		m_tag_delete_chain(m, NULL);
1186 		m->m_pkthdr.rcvif = NULL;
1187 		m->m_pkthdr.flowid = 0;
1188 		m->m_pkthdr.csum_flags = 0;
1189 		m->m_pkthdr.fibnum = 0;
1190 		m->m_pkthdr.rsstype = 0;
1191 
1192 		cc = m->m_pkthdr.len;
1193 		mbcnt = MSIZE;
1194 		for (struct mbuf *mb = m; mb != NULL; mb = mb->m_next) {
1195 			mbcnt += MSIZE;
1196 			if (mb->m_flags & M_EXT)
1197 				mbcnt += mb->m_ext.ext_size;
1198 		}
1199 	}
1200 
1201 	unp = sotounpcb(so);
1202 	MPASS(unp);
1203 
1204 	/*
1205 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1206 	 * and avoid this lock, which is not only extraneous, but also being
1207 	 * released, thus still leaving possibility for a race.  We can easily
1208 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1209 	 * is more difficult to invent something to handle so_error.
1210 	 */
1211 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1212 	if (error)
1213 		goto out2;
1214 	SOCK_SENDBUF_LOCK(so);
1215 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1216 		SOCK_SENDBUF_UNLOCK(so);
1217 		error = EPIPE;
1218 		goto out3;
1219 	}
1220 	if (so->so_error != 0) {
1221 		error = so->so_error;
1222 		so->so_error = 0;
1223 		SOCK_SENDBUF_UNLOCK(so);
1224 		goto out3;
1225 	}
1226 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
1227 		SOCK_SENDBUF_UNLOCK(so);
1228 		error = EDESTADDRREQ;
1229 		goto out3;
1230 	}
1231 	SOCK_SENDBUF_UNLOCK(so);
1232 
1233 	if (addr != NULL) {
1234 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
1235 			goto out3;
1236 		UNP_PCB_LOCK_ASSERT(unp);
1237 		unp2 = unp->unp_conn;
1238 		UNP_PCB_LOCK_ASSERT(unp2);
1239 	} else {
1240 		UNP_PCB_LOCK(unp);
1241 		unp2 = unp_pcb_lock_peer(unp);
1242 		if (unp2 == NULL) {
1243 			UNP_PCB_UNLOCK(unp);
1244 			error = ENOTCONN;
1245 			goto out3;
1246 		}
1247 	}
1248 
1249 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
1250 		c = unp_addsockcred(td, c, unp2->unp_flags, &clast, &ctl,
1251 		    &mbcnt);
1252 	if (unp->unp_addr != NULL)
1253 		from = (struct sockaddr *)unp->unp_addr;
1254 	else
1255 		from = &sun_noname;
1256 	f->m_len = from->sa_len;
1257 	MPASS(from->sa_len <= MLEN);
1258 	bcopy(from, mtod(f, void *), from->sa_len);
1259 	ctl += f->m_len;
1260 
1261 	/*
1262 	 * Concatenate mbufs: from -> control -> data.
1263 	 * Save overall cc and mbcnt in "from" mbuf.
1264 	 */
1265 	if (c != NULL) {
1266 #ifdef INVARIANTS
1267 		struct mbuf *mc;
1268 
1269 		for (mc = c; mc->m_next != NULL; mc = mc->m_next);
1270 		MPASS(mc == clast);
1271 #endif
1272 		f->m_next = c;
1273 		clast->m_next = m;
1274 		c = NULL;
1275 	} else
1276 		f->m_next = m;
1277 	m = NULL;
1278 #ifdef INVARIANTS
1279 	dcc = dctl = dmbcnt = 0;
1280 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
1281 		if (mb->m_type == MT_DATA)
1282 			dcc += mb->m_len;
1283 		else
1284 			dctl += mb->m_len;
1285 		dmbcnt += MSIZE;
1286 		if (mb->m_flags & M_EXT)
1287 			dmbcnt += mb->m_ext.ext_size;
1288 	}
1289 	MPASS(dcc == cc);
1290 	MPASS(dctl == ctl);
1291 	MPASS(dmbcnt == mbcnt);
1292 #endif
1293 	f->m_pkthdr.len = cc + ctl;
1294 	f->m_pkthdr.memlen = mbcnt;
1295 	f->m_pkthdr.ctllen = ctl;
1296 
1297 	/*
1298 	 * Destination socket buffer selection.
1299 	 *
1300 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
1301 	 * destination address is supplied, create a temporary connection for
1302 	 * the run time of the function (see call to unp_connectat() above and
1303 	 * to unp_disconnect() below).  We distinguish them by condition of
1304 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
1305 	 * that condition, since, again, through the run time of this code we
1306 	 * are always connected.  For such "unconnected" sends, the destination
1307 	 * buffer would be the receive buffer of destination socket so2.
1308 	 *
1309 	 * For connected sends, data lands on the send buffer of the sender's
1310 	 * socket "so".  Then, if we just added the very first datagram
1311 	 * on this send buffer, we need to add the send buffer on to the
1312 	 * receiving socket's buffer list.  We put ourselves on top of the
1313 	 * list.  Such logic gives infrequent senders priority over frequent
1314 	 * senders.
1315 	 *
1316 	 * Note on byte count management. As long as event methods kevent(2),
1317 	 * select(2) are not protocol specific (yet), we need to maintain
1318 	 * meaningful values on the receive buffer.  So, the receive buffer
1319 	 * would accumulate counters from all connected buffers potentially
1320 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
1321 	 */
1322 	so2 = unp2->unp_socket;
1323 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
1324 	SOCK_RECVBUF_LOCK(so2);
1325 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
1326 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
1327 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
1328 			    uxdg_clist);
1329 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
1330 		sb->uxdg_cc += cc + ctl;
1331 		sb->uxdg_ctl += ctl;
1332 		sb->uxdg_mbcnt += mbcnt;
1333 		so2->so_rcv.sb_acc += cc + ctl;
1334 		so2->so_rcv.sb_ccc += cc + ctl;
1335 		so2->so_rcv.sb_ctl += ctl;
1336 		so2->so_rcv.sb_mbcnt += mbcnt;
1337 		sorwakeup_locked(so2);
1338 		f = NULL;
1339 	} else {
1340 		soroverflow_locked(so2);
1341 		error = ENOBUFS;
1342 		if (f->m_next->m_type == MT_CONTROL)
1343 			unp_scan(f->m_next, unp_freerights);
1344 	}
1345 
1346 	if (addr != NULL)
1347 		unp_disconnect(unp, unp2);
1348 	else
1349 		unp_pcb_unlock_pair(unp, unp2);
1350 
1351 	td->td_ru.ru_msgsnd++;
1352 
1353 out3:
1354 	SOCK_IO_SEND_UNLOCK(so);
1355 out2:
1356 	if (c)
1357 		unp_scan(c, unp_freerights);
1358 out:
1359 	if (f)
1360 		m_freem(f);
1361 	if (c)
1362 		m_freem(c);
1363 	if (m)
1364 		m_freem(m);
1365 
1366 	return (error);
1367 }
1368 
1369 /*
1370  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
1371  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
1372  * and needs to be linked onto uxdg_peeked of receive socket buffer.
1373  */
1374 static int
1375 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
1376     struct uio *uio, struct mbuf **controlp, int *flagsp)
1377 {
1378 	ssize_t len = 0;
1379 	int error;
1380 
1381 	so->so_rcv.uxdg_peeked = m;
1382 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
1383 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
1384 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
1385 	SOCK_RECVBUF_UNLOCK(so);
1386 
1387 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1388 	if (psa != NULL)
1389 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1390 
1391 	m = m->m_next;
1392 	KASSERT(m, ("%s: no data or control after soname", __func__));
1393 
1394 	/*
1395 	 * With MSG_PEEK the control isn't executed, just copied.
1396 	 */
1397 	while (m != NULL && m->m_type == MT_CONTROL) {
1398 		if (controlp != NULL) {
1399 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
1400 			controlp = &(*controlp)->m_next;
1401 		}
1402 		m = m->m_next;
1403 	}
1404 	KASSERT(m == NULL || m->m_type == MT_DATA,
1405 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1406 	while (m != NULL && uio->uio_resid > 0) {
1407 		len = uio->uio_resid;
1408 		if (len > m->m_len)
1409 			len = m->m_len;
1410 		error = uiomove(mtod(m, char *), (int)len, uio);
1411 		if (error) {
1412 			SOCK_IO_RECV_UNLOCK(so);
1413 			return (error);
1414 		}
1415 		if (len == m->m_len)
1416 			m = m->m_next;
1417 	}
1418 	SOCK_IO_RECV_UNLOCK(so);
1419 
1420 	if (flagsp != NULL) {
1421 		if (m != NULL) {
1422 			if (*flagsp & MSG_TRUNC) {
1423 				/* Report real length of the packet */
1424 				uio->uio_resid -= m_length(m, NULL) - len;
1425 			}
1426 			*flagsp |= MSG_TRUNC;
1427 		} else
1428 			*flagsp &= ~MSG_TRUNC;
1429 	}
1430 
1431 	return (0);
1432 }
1433 
1434 /*
1435  * PF_UNIX/SOCK_DGRAM receive
1436  */
1437 static int
1438 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1439     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1440 {
1441 	struct sockbuf *sb = NULL;
1442 	struct mbuf *m;
1443 	int flags, error;
1444 	ssize_t len = 0;
1445 	bool nonblock;
1446 
1447 	MPASS(mp0 == NULL);
1448 
1449 	if (psa != NULL)
1450 		*psa = NULL;
1451 	if (controlp != NULL)
1452 		*controlp = NULL;
1453 
1454 	flags = flagsp != NULL ? *flagsp : 0;
1455 	nonblock = (so->so_state & SS_NBIO) ||
1456 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1457 
1458 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1459 	if (__predict_false(error))
1460 		return (error);
1461 
1462 	/*
1463 	 * Loop blocking while waiting for a datagram.  Prioritize connected
1464 	 * peers over unconnected sends.  Set sb to selected socket buffer
1465 	 * containing an mbuf on exit from the wait loop.  A datagram that
1466 	 * had already been peeked at has top priority.
1467 	 */
1468 	SOCK_RECVBUF_LOCK(so);
1469 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
1470 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
1471 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
1472 		if (so->so_error) {
1473 			error = so->so_error;
1474 			so->so_error = 0;
1475 			SOCK_RECVBUF_UNLOCK(so);
1476 			SOCK_IO_RECV_UNLOCK(so);
1477 			return (error);
1478 		}
1479 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1480 		    uio->uio_resid == 0) {
1481 			SOCK_RECVBUF_UNLOCK(so);
1482 			SOCK_IO_RECV_UNLOCK(so);
1483 			return (0);
1484 		}
1485 		if (nonblock) {
1486 			SOCK_RECVBUF_UNLOCK(so);
1487 			SOCK_IO_RECV_UNLOCK(so);
1488 			return (EWOULDBLOCK);
1489 		}
1490 		error = sbwait(so, SO_RCV);
1491 		if (error) {
1492 			SOCK_RECVBUF_UNLOCK(so);
1493 			SOCK_IO_RECV_UNLOCK(so);
1494 			return (error);
1495 		}
1496 	}
1497 
1498 	if (sb == NULL)
1499 		sb = &so->so_rcv;
1500 	else if (m == NULL)
1501 		m = STAILQ_FIRST(&sb->uxdg_mb);
1502 	else
1503 		MPASS(m == so->so_rcv.uxdg_peeked);
1504 
1505 	MPASS(sb->uxdg_cc > 0);
1506 	M_ASSERTPKTHDR(m);
1507 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1508 
1509 	if (uio->uio_td)
1510 		uio->uio_td->td_ru.ru_msgrcv++;
1511 
1512 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
1513 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
1514 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
1515 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
1516 	} else
1517 		so->so_rcv.uxdg_peeked = NULL;
1518 
1519 	sb->uxdg_cc -= m->m_pkthdr.len;
1520 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
1521 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
1522 
1523 	if (__predict_false(flags & MSG_PEEK))
1524 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
1525 
1526 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
1527 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
1528 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
1529 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
1530 	SOCK_RECVBUF_UNLOCK(so);
1531 
1532 	if (psa != NULL)
1533 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1534 	m = m_free(m);
1535 	KASSERT(m, ("%s: no data or control after soname", __func__));
1536 
1537 	/*
1538 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1539 	 * queue.
1540 	 *
1541 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1542 	 * in the first mbuf chain on the socket buffer.  We call into the
1543 	 * unp_externalize() to perform externalization (or freeing if
1544 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
1545 	 * without MT_DATA mbufs.
1546 	 */
1547 	while (m != NULL && m->m_type == MT_CONTROL) {
1548 		struct mbuf *cm;
1549 
1550 		/* XXXGL: unp_externalize() is also dom_externalize() KBI and
1551 		 * it frees whole chain, so we must disconnect the mbuf.
1552 		 */
1553 		cm = m; m = m->m_next; cm->m_next = NULL;
1554 		error = unp_externalize(cm, controlp, flags);
1555 		if (error != 0) {
1556 			SOCK_IO_RECV_UNLOCK(so);
1557 			unp_scan(m, unp_freerights);
1558 			m_freem(m);
1559 			return (error);
1560 		}
1561 		if (controlp != NULL) {
1562 			while (*controlp != NULL)
1563 				controlp = &(*controlp)->m_next;
1564 		}
1565 	}
1566 	KASSERT(m == NULL || m->m_type == MT_DATA,
1567 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1568 	while (m != NULL && uio->uio_resid > 0) {
1569 		len = uio->uio_resid;
1570 		if (len > m->m_len)
1571 			len = m->m_len;
1572 		error = uiomove(mtod(m, char *), (int)len, uio);
1573 		if (error) {
1574 			SOCK_IO_RECV_UNLOCK(so);
1575 			m_freem(m);
1576 			return (error);
1577 		}
1578 		if (len == m->m_len)
1579 			m = m_free(m);
1580 		else {
1581 			m->m_data += len;
1582 			m->m_len -= len;
1583 		}
1584 	}
1585 	SOCK_IO_RECV_UNLOCK(so);
1586 
1587 	if (m != NULL) {
1588 		if (flagsp != NULL) {
1589 			if (flags & MSG_TRUNC) {
1590 				/* Report real length of the packet */
1591 				uio->uio_resid -= m_length(m, NULL);
1592 			}
1593 			*flagsp |= MSG_TRUNC;
1594 		}
1595 		m_freem(m);
1596 	} else if (flagsp != NULL)
1597 		*flagsp &= ~MSG_TRUNC;
1598 
1599 	return (0);
1600 }
1601 
1602 static bool
1603 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1604 {
1605 	struct mbuf *mb, *n;
1606 	struct sockbuf *sb;
1607 
1608 	SOCK_LOCK(so);
1609 	if (SOLISTENING(so)) {
1610 		SOCK_UNLOCK(so);
1611 		return (false);
1612 	}
1613 	mb = NULL;
1614 	sb = &so->so_rcv;
1615 	SOCKBUF_LOCK(sb);
1616 	if (sb->sb_fnrdy != NULL) {
1617 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1618 			if (mb == m) {
1619 				*errorp = sbready(sb, m, count);
1620 				break;
1621 			}
1622 			mb = mb->m_next;
1623 			if (mb == NULL) {
1624 				mb = n;
1625 				if (mb != NULL)
1626 					n = mb->m_nextpkt;
1627 			}
1628 		}
1629 	}
1630 	SOCKBUF_UNLOCK(sb);
1631 	SOCK_UNLOCK(so);
1632 	return (mb != NULL);
1633 }
1634 
1635 static int
1636 uipc_ready(struct socket *so, struct mbuf *m, int count)
1637 {
1638 	struct unpcb *unp, *unp2;
1639 	struct socket *so2;
1640 	int error, i;
1641 
1642 	unp = sotounpcb(so);
1643 
1644 	KASSERT(so->so_type == SOCK_STREAM,
1645 	    ("%s: unexpected socket type for %p", __func__, so));
1646 
1647 	UNP_PCB_LOCK(unp);
1648 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1649 		UNP_PCB_UNLOCK(unp);
1650 		so2 = unp2->unp_socket;
1651 		SOCKBUF_LOCK(&so2->so_rcv);
1652 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1653 			sorwakeup_locked(so2);
1654 		else
1655 			SOCKBUF_UNLOCK(&so2->so_rcv);
1656 		UNP_PCB_UNLOCK(unp2);
1657 		return (error);
1658 	}
1659 	UNP_PCB_UNLOCK(unp);
1660 
1661 	/*
1662 	 * The receiving socket has been disconnected, but may still be valid.
1663 	 * In this case, the now-ready mbufs are still present in its socket
1664 	 * buffer, so perform an exhaustive search before giving up and freeing
1665 	 * the mbufs.
1666 	 */
1667 	UNP_LINK_RLOCK();
1668 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1669 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1670 			break;
1671 	}
1672 	UNP_LINK_RUNLOCK();
1673 
1674 	if (unp == NULL) {
1675 		for (i = 0; i < count; i++)
1676 			m = m_free(m);
1677 		error = ECONNRESET;
1678 	}
1679 	return (error);
1680 }
1681 
1682 static int
1683 uipc_sense(struct socket *so, struct stat *sb)
1684 {
1685 	struct unpcb *unp;
1686 
1687 	unp = sotounpcb(so);
1688 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1689 
1690 	sb->st_blksize = so->so_snd.sb_hiwat;
1691 	sb->st_dev = NODEV;
1692 	sb->st_ino = unp->unp_ino;
1693 	return (0);
1694 }
1695 
1696 static int
1697 uipc_shutdown(struct socket *so)
1698 {
1699 	struct unpcb *unp;
1700 
1701 	unp = sotounpcb(so);
1702 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1703 
1704 	UNP_PCB_LOCK(unp);
1705 	socantsendmore(so);
1706 	unp_shutdown(unp);
1707 	UNP_PCB_UNLOCK(unp);
1708 	return (0);
1709 }
1710 
1711 static int
1712 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1713 {
1714 	struct unpcb *unp;
1715 	const struct sockaddr *sa;
1716 
1717 	unp = sotounpcb(so);
1718 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1719 
1720 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1721 	UNP_PCB_LOCK(unp);
1722 	if (unp->unp_addr != NULL)
1723 		sa = (struct sockaddr *) unp->unp_addr;
1724 	else
1725 		sa = &sun_noname;
1726 	bcopy(sa, *nam, sa->sa_len);
1727 	UNP_PCB_UNLOCK(unp);
1728 	return (0);
1729 }
1730 
1731 static int
1732 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1733 {
1734 	struct unpcb *unp;
1735 	struct xucred xu;
1736 	int error, optval;
1737 
1738 	if (sopt->sopt_level != SOL_LOCAL)
1739 		return (EINVAL);
1740 
1741 	unp = sotounpcb(so);
1742 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1743 	error = 0;
1744 	switch (sopt->sopt_dir) {
1745 	case SOPT_GET:
1746 		switch (sopt->sopt_name) {
1747 		case LOCAL_PEERCRED:
1748 			UNP_PCB_LOCK(unp);
1749 			if (unp->unp_flags & UNP_HAVEPC)
1750 				xu = unp->unp_peercred;
1751 			else {
1752 				if (so->so_type == SOCK_STREAM)
1753 					error = ENOTCONN;
1754 				else
1755 					error = EINVAL;
1756 			}
1757 			UNP_PCB_UNLOCK(unp);
1758 			if (error == 0)
1759 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1760 			break;
1761 
1762 		case LOCAL_CREDS:
1763 			/* Unlocked read. */
1764 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1765 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1766 			break;
1767 
1768 		case LOCAL_CREDS_PERSISTENT:
1769 			/* Unlocked read. */
1770 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1771 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1772 			break;
1773 
1774 		case LOCAL_CONNWAIT:
1775 			/* Unlocked read. */
1776 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1777 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1778 			break;
1779 
1780 		default:
1781 			error = EOPNOTSUPP;
1782 			break;
1783 		}
1784 		break;
1785 
1786 	case SOPT_SET:
1787 		switch (sopt->sopt_name) {
1788 		case LOCAL_CREDS:
1789 		case LOCAL_CREDS_PERSISTENT:
1790 		case LOCAL_CONNWAIT:
1791 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1792 					    sizeof(optval));
1793 			if (error)
1794 				break;
1795 
1796 #define	OPTSET(bit, exclusive) do {					\
1797 	UNP_PCB_LOCK(unp);						\
1798 	if (optval) {							\
1799 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1800 			UNP_PCB_UNLOCK(unp);				\
1801 			error = EINVAL;					\
1802 			break;						\
1803 		}							\
1804 		unp->unp_flags |= (bit);				\
1805 	} else								\
1806 		unp->unp_flags &= ~(bit);				\
1807 	UNP_PCB_UNLOCK(unp);						\
1808 } while (0)
1809 
1810 			switch (sopt->sopt_name) {
1811 			case LOCAL_CREDS:
1812 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1813 				break;
1814 
1815 			case LOCAL_CREDS_PERSISTENT:
1816 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1817 				break;
1818 
1819 			case LOCAL_CONNWAIT:
1820 				OPTSET(UNP_CONNWAIT, 0);
1821 				break;
1822 
1823 			default:
1824 				break;
1825 			}
1826 			break;
1827 #undef	OPTSET
1828 		default:
1829 			error = ENOPROTOOPT;
1830 			break;
1831 		}
1832 		break;
1833 
1834 	default:
1835 		error = EOPNOTSUPP;
1836 		break;
1837 	}
1838 	return (error);
1839 }
1840 
1841 static int
1842 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1843 {
1844 
1845 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
1846 }
1847 
1848 static int
1849 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1850     struct thread *td, bool return_locked)
1851 {
1852 	struct mtx *vplock;
1853 	struct sockaddr_un *soun;
1854 	struct vnode *vp;
1855 	struct socket *so2;
1856 	struct unpcb *unp, *unp2, *unp3;
1857 	struct nameidata nd;
1858 	char buf[SOCK_MAXADDRLEN];
1859 	struct sockaddr *sa;
1860 	cap_rights_t rights;
1861 	int error, len;
1862 	bool connreq;
1863 
1864 	if (nam->sa_family != AF_UNIX)
1865 		return (EAFNOSUPPORT);
1866 	if (nam->sa_len > sizeof(struct sockaddr_un))
1867 		return (EINVAL);
1868 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1869 	if (len <= 0)
1870 		return (EINVAL);
1871 	soun = (struct sockaddr_un *)nam;
1872 	bcopy(soun->sun_path, buf, len);
1873 	buf[len] = 0;
1874 
1875 	error = 0;
1876 	unp = sotounpcb(so);
1877 	UNP_PCB_LOCK(unp);
1878 	for (;;) {
1879 		/*
1880 		 * Wait for connection state to stabilize.  If a connection
1881 		 * already exists, give up.  For datagram sockets, which permit
1882 		 * multiple consecutive connect(2) calls, upper layers are
1883 		 * responsible for disconnecting in advance of a subsequent
1884 		 * connect(2), but this is not synchronized with PCB connection
1885 		 * state.
1886 		 *
1887 		 * Also make sure that no threads are currently attempting to
1888 		 * lock the peer socket, to ensure that unp_conn cannot
1889 		 * transition between two valid sockets while locks are dropped.
1890 		 */
1891 		if (SOLISTENING(so))
1892 			error = EOPNOTSUPP;
1893 		else if (unp->unp_conn != NULL)
1894 			error = EISCONN;
1895 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1896 			error = EALREADY;
1897 		}
1898 		if (error != 0) {
1899 			UNP_PCB_UNLOCK(unp);
1900 			return (error);
1901 		}
1902 		if (unp->unp_pairbusy > 0) {
1903 			unp->unp_flags |= UNP_WAITING;
1904 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1905 			continue;
1906 		}
1907 		break;
1908 	}
1909 	unp->unp_flags |= UNP_CONNECTING;
1910 	UNP_PCB_UNLOCK(unp);
1911 
1912 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1913 	if (connreq)
1914 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1915 	else
1916 		sa = NULL;
1917 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1918 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1919 	error = namei(&nd);
1920 	if (error)
1921 		vp = NULL;
1922 	else
1923 		vp = nd.ni_vp;
1924 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1925 	if (error)
1926 		goto bad;
1927 	NDFREE_PNBUF(&nd);
1928 
1929 	if (vp->v_type != VSOCK) {
1930 		error = ENOTSOCK;
1931 		goto bad;
1932 	}
1933 #ifdef MAC
1934 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1935 	if (error)
1936 		goto bad;
1937 #endif
1938 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1939 	if (error)
1940 		goto bad;
1941 
1942 	unp = sotounpcb(so);
1943 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1944 
1945 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1946 	mtx_lock(vplock);
1947 	VOP_UNP_CONNECT(vp, &unp2);
1948 	if (unp2 == NULL) {
1949 		error = ECONNREFUSED;
1950 		goto bad2;
1951 	}
1952 	so2 = unp2->unp_socket;
1953 	if (so->so_type != so2->so_type) {
1954 		error = EPROTOTYPE;
1955 		goto bad2;
1956 	}
1957 	if (connreq) {
1958 		if (SOLISTENING(so2)) {
1959 			CURVNET_SET(so2->so_vnet);
1960 			so2 = sonewconn(so2, 0);
1961 			CURVNET_RESTORE();
1962 		} else
1963 			so2 = NULL;
1964 		if (so2 == NULL) {
1965 			error = ECONNREFUSED;
1966 			goto bad2;
1967 		}
1968 		unp3 = sotounpcb(so2);
1969 		unp_pcb_lock_pair(unp2, unp3);
1970 		if (unp2->unp_addr != NULL) {
1971 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1972 			unp3->unp_addr = (struct sockaddr_un *) sa;
1973 			sa = NULL;
1974 		}
1975 
1976 		unp_copy_peercred(td, unp3, unp, unp2);
1977 
1978 		UNP_PCB_UNLOCK(unp2);
1979 		unp2 = unp3;
1980 
1981 		/*
1982 		 * It is safe to block on the PCB lock here since unp2 is
1983 		 * nascent and cannot be connected to any other sockets.
1984 		 */
1985 		UNP_PCB_LOCK(unp);
1986 #ifdef MAC
1987 		mac_socketpeer_set_from_socket(so, so2);
1988 		mac_socketpeer_set_from_socket(so2, so);
1989 #endif
1990 	} else {
1991 		unp_pcb_lock_pair(unp, unp2);
1992 	}
1993 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1994 	    sotounpcb(so2) == unp2,
1995 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1996 	unp_connect2(so, so2, PRU_CONNECT);
1997 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1998 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1999 	unp->unp_flags &= ~UNP_CONNECTING;
2000 	if (!return_locked)
2001 		unp_pcb_unlock_pair(unp, unp2);
2002 bad2:
2003 	mtx_unlock(vplock);
2004 bad:
2005 	if (vp != NULL) {
2006 		/*
2007 		 * If we are returning locked (called via uipc_sosend_dgram()),
2008 		 * we need to be sure that vput() won't sleep.  This is
2009 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2010 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2011 		 */
2012 		MPASS(!(return_locked && connreq));
2013 		vput(vp);
2014 	}
2015 	free(sa, M_SONAME);
2016 	if (__predict_false(error)) {
2017 		UNP_PCB_LOCK(unp);
2018 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2019 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2020 		unp->unp_flags &= ~UNP_CONNECTING;
2021 		UNP_PCB_UNLOCK(unp);
2022 	}
2023 	return (error);
2024 }
2025 
2026 /*
2027  * Set socket peer credentials at connection time.
2028  *
2029  * The client's PCB credentials are copied from its process structure.  The
2030  * server's PCB credentials are copied from the socket on which it called
2031  * listen(2).  uipc_listen cached that process's credentials at the time.
2032  */
2033 void
2034 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2035     struct unpcb *server_unp, struct unpcb *listen_unp)
2036 {
2037 	cru2xt(td, &client_unp->unp_peercred);
2038 	client_unp->unp_flags |= UNP_HAVEPC;
2039 
2040 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
2041 	    sizeof(server_unp->unp_peercred));
2042 	server_unp->unp_flags |= UNP_HAVEPC;
2043 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
2044 }
2045 
2046 static void
2047 unp_connect2(struct socket *so, struct socket *so2, conn2_how req)
2048 {
2049 	struct unpcb *unp;
2050 	struct unpcb *unp2;
2051 
2052 	MPASS(so2->so_type == so->so_type);
2053 	unp = sotounpcb(so);
2054 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
2055 	unp2 = sotounpcb(so2);
2056 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
2057 
2058 	UNP_PCB_LOCK_ASSERT(unp);
2059 	UNP_PCB_LOCK_ASSERT(unp2);
2060 	KASSERT(unp->unp_conn == NULL,
2061 	    ("%s: socket %p is already connected", __func__, unp));
2062 
2063 	unp->unp_conn = unp2;
2064 	unp_pcb_hold(unp2);
2065 	unp_pcb_hold(unp);
2066 	switch (so->so_type) {
2067 	case SOCK_DGRAM:
2068 		UNP_REF_LIST_LOCK();
2069 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2070 		UNP_REF_LIST_UNLOCK();
2071 		soisconnected(so);
2072 		break;
2073 
2074 	case SOCK_STREAM:
2075 	case SOCK_SEQPACKET:
2076 		KASSERT(unp2->unp_conn == NULL,
2077 		    ("%s: socket %p is already connected", __func__, unp2));
2078 		unp2->unp_conn = unp;
2079 		if (req == PRU_CONNECT &&
2080 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
2081 			soisconnecting(so);
2082 		else
2083 			soisconnected(so);
2084 		soisconnected(so2);
2085 		break;
2086 
2087 	default:
2088 		panic("unp_connect2");
2089 	}
2090 }
2091 
2092 static void
2093 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
2094 {
2095 	struct socket *so, *so2;
2096 	struct mbuf *m = NULL;
2097 #ifdef INVARIANTS
2098 	struct unpcb *unptmp;
2099 #endif
2100 
2101 	UNP_PCB_LOCK_ASSERT(unp);
2102 	UNP_PCB_LOCK_ASSERT(unp2);
2103 	KASSERT(unp->unp_conn == unp2,
2104 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
2105 
2106 	unp->unp_conn = NULL;
2107 	so = unp->unp_socket;
2108 	so2 = unp2->unp_socket;
2109 	switch (unp->unp_socket->so_type) {
2110 	case SOCK_DGRAM:
2111 		/*
2112 		 * Remove our send socket buffer from the peer's receive buffer.
2113 		 * Move the data to the receive buffer only if it is empty.
2114 		 * This is a protection against a scenario where a peer
2115 		 * connects, floods and disconnects, effectively blocking
2116 		 * sendto() from unconnected sockets.
2117 		 */
2118 		SOCK_RECVBUF_LOCK(so2);
2119 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
2120 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
2121 			    uxdg_clist);
2122 			if (__predict_true((so2->so_rcv.sb_state &
2123 			    SBS_CANTRCVMORE) == 0) &&
2124 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
2125 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
2126 				    &so->so_snd.uxdg_mb);
2127 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
2128 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
2129 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
2130 			} else {
2131 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
2132 				STAILQ_INIT(&so->so_snd.uxdg_mb);
2133 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
2134 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
2135 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
2136 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
2137 			}
2138 			/* Note: so may reconnect. */
2139 			so->so_snd.uxdg_cc = 0;
2140 			so->so_snd.uxdg_ctl = 0;
2141 			so->so_snd.uxdg_mbcnt = 0;
2142 		}
2143 		SOCK_RECVBUF_UNLOCK(so2);
2144 		UNP_REF_LIST_LOCK();
2145 #ifdef INVARIANTS
2146 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
2147 			if (unptmp == unp)
2148 				break;
2149 		}
2150 		KASSERT(unptmp != NULL,
2151 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
2152 #endif
2153 		LIST_REMOVE(unp, unp_reflink);
2154 		UNP_REF_LIST_UNLOCK();
2155 		if (so) {
2156 			SOCK_LOCK(so);
2157 			so->so_state &= ~SS_ISCONNECTED;
2158 			SOCK_UNLOCK(so);
2159 		}
2160 		break;
2161 
2162 	case SOCK_STREAM:
2163 	case SOCK_SEQPACKET:
2164 		if (so)
2165 			soisdisconnected(so);
2166 		MPASS(unp2->unp_conn == unp);
2167 		unp2->unp_conn = NULL;
2168 		if (so2)
2169 			soisdisconnected(so2);
2170 		break;
2171 	}
2172 
2173 	if (unp == unp2) {
2174 		unp_pcb_rele_notlast(unp);
2175 		if (!unp_pcb_rele(unp))
2176 			UNP_PCB_UNLOCK(unp);
2177 	} else {
2178 		if (!unp_pcb_rele(unp))
2179 			UNP_PCB_UNLOCK(unp);
2180 		if (!unp_pcb_rele(unp2))
2181 			UNP_PCB_UNLOCK(unp2);
2182 	}
2183 
2184 	if (m != NULL) {
2185 		unp_scan(m, unp_freerights);
2186 		m_freem(m);
2187 	}
2188 }
2189 
2190 /*
2191  * unp_pcblist() walks the global list of struct unpcb's to generate a
2192  * pointer list, bumping the refcount on each unpcb.  It then copies them out
2193  * sequentially, validating the generation number on each to see if it has
2194  * been detached.  All of this is necessary because copyout() may sleep on
2195  * disk I/O.
2196  */
2197 static int
2198 unp_pcblist(SYSCTL_HANDLER_ARGS)
2199 {
2200 	struct unpcb *unp, **unp_list;
2201 	unp_gen_t gencnt;
2202 	struct xunpgen *xug;
2203 	struct unp_head *head;
2204 	struct xunpcb *xu;
2205 	u_int i;
2206 	int error, n;
2207 
2208 	switch ((intptr_t)arg1) {
2209 	case SOCK_STREAM:
2210 		head = &unp_shead;
2211 		break;
2212 
2213 	case SOCK_DGRAM:
2214 		head = &unp_dhead;
2215 		break;
2216 
2217 	case SOCK_SEQPACKET:
2218 		head = &unp_sphead;
2219 		break;
2220 
2221 	default:
2222 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
2223 	}
2224 
2225 	/*
2226 	 * The process of preparing the PCB list is too time-consuming and
2227 	 * resource-intensive to repeat twice on every request.
2228 	 */
2229 	if (req->oldptr == NULL) {
2230 		n = unp_count;
2231 		req->oldidx = 2 * (sizeof *xug)
2232 			+ (n + n/8) * sizeof(struct xunpcb);
2233 		return (0);
2234 	}
2235 
2236 	if (req->newptr != NULL)
2237 		return (EPERM);
2238 
2239 	/*
2240 	 * OK, now we're committed to doing something.
2241 	 */
2242 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
2243 	UNP_LINK_RLOCK();
2244 	gencnt = unp_gencnt;
2245 	n = unp_count;
2246 	UNP_LINK_RUNLOCK();
2247 
2248 	xug->xug_len = sizeof *xug;
2249 	xug->xug_count = n;
2250 	xug->xug_gen = gencnt;
2251 	xug->xug_sogen = so_gencnt;
2252 	error = SYSCTL_OUT(req, xug, sizeof *xug);
2253 	if (error) {
2254 		free(xug, M_TEMP);
2255 		return (error);
2256 	}
2257 
2258 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
2259 
2260 	UNP_LINK_RLOCK();
2261 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
2262 	     unp = LIST_NEXT(unp, unp_link)) {
2263 		UNP_PCB_LOCK(unp);
2264 		if (unp->unp_gencnt <= gencnt) {
2265 			if (cr_cansee(req->td->td_ucred,
2266 			    unp->unp_socket->so_cred)) {
2267 				UNP_PCB_UNLOCK(unp);
2268 				continue;
2269 			}
2270 			unp_list[i++] = unp;
2271 			unp_pcb_hold(unp);
2272 		}
2273 		UNP_PCB_UNLOCK(unp);
2274 	}
2275 	UNP_LINK_RUNLOCK();
2276 	n = i;			/* In case we lost some during malloc. */
2277 
2278 	error = 0;
2279 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
2280 	for (i = 0; i < n; i++) {
2281 		unp = unp_list[i];
2282 		UNP_PCB_LOCK(unp);
2283 		if (unp_pcb_rele(unp))
2284 			continue;
2285 
2286 		if (unp->unp_gencnt <= gencnt) {
2287 			xu->xu_len = sizeof *xu;
2288 			xu->xu_unpp = (uintptr_t)unp;
2289 			/*
2290 			 * XXX - need more locking here to protect against
2291 			 * connect/disconnect races for SMP.
2292 			 */
2293 			if (unp->unp_addr != NULL)
2294 				bcopy(unp->unp_addr, &xu->xu_addr,
2295 				      unp->unp_addr->sun_len);
2296 			else
2297 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
2298 			if (unp->unp_conn != NULL &&
2299 			    unp->unp_conn->unp_addr != NULL)
2300 				bcopy(unp->unp_conn->unp_addr,
2301 				      &xu->xu_caddr,
2302 				      unp->unp_conn->unp_addr->sun_len);
2303 			else
2304 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
2305 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
2306 			xu->unp_conn = (uintptr_t)unp->unp_conn;
2307 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
2308 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
2309 			xu->unp_gencnt = unp->unp_gencnt;
2310 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
2311 			UNP_PCB_UNLOCK(unp);
2312 			error = SYSCTL_OUT(req, xu, sizeof *xu);
2313 		} else {
2314 			UNP_PCB_UNLOCK(unp);
2315 		}
2316 	}
2317 	free(xu, M_TEMP);
2318 	if (!error) {
2319 		/*
2320 		 * Give the user an updated idea of our state.  If the
2321 		 * generation differs from what we told her before, she knows
2322 		 * that something happened while we were processing this
2323 		 * request, and it might be necessary to retry.
2324 		 */
2325 		xug->xug_gen = unp_gencnt;
2326 		xug->xug_sogen = so_gencnt;
2327 		xug->xug_count = unp_count;
2328 		error = SYSCTL_OUT(req, xug, sizeof *xug);
2329 	}
2330 	free(unp_list, M_TEMP);
2331 	free(xug, M_TEMP);
2332 	return (error);
2333 }
2334 
2335 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
2336     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2337     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
2338     "List of active local datagram sockets");
2339 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
2340     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2341     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
2342     "List of active local stream sockets");
2343 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
2344     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2345     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
2346     "List of active local seqpacket sockets");
2347 
2348 static void
2349 unp_shutdown(struct unpcb *unp)
2350 {
2351 	struct unpcb *unp2;
2352 	struct socket *so;
2353 
2354 	UNP_PCB_LOCK_ASSERT(unp);
2355 
2356 	unp2 = unp->unp_conn;
2357 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
2358 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
2359 		so = unp2->unp_socket;
2360 		if (so != NULL)
2361 			socantrcvmore(so);
2362 	}
2363 }
2364 
2365 static void
2366 unp_drop(struct unpcb *unp)
2367 {
2368 	struct socket *so;
2369 	struct unpcb *unp2;
2370 
2371 	/*
2372 	 * Regardless of whether the socket's peer dropped the connection
2373 	 * with this socket by aborting or disconnecting, POSIX requires
2374 	 * that ECONNRESET is returned.
2375 	 */
2376 
2377 	UNP_PCB_LOCK(unp);
2378 	so = unp->unp_socket;
2379 	if (so)
2380 		so->so_error = ECONNRESET;
2381 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
2382 		/* Last reference dropped in unp_disconnect(). */
2383 		unp_pcb_rele_notlast(unp);
2384 		unp_disconnect(unp, unp2);
2385 	} else if (!unp_pcb_rele(unp)) {
2386 		UNP_PCB_UNLOCK(unp);
2387 	}
2388 }
2389 
2390 static void
2391 unp_freerights(struct filedescent **fdep, int fdcount)
2392 {
2393 	struct file *fp;
2394 	int i;
2395 
2396 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2397 
2398 	for (i = 0; i < fdcount; i++) {
2399 		fp = fdep[i]->fde_file;
2400 		filecaps_free(&fdep[i]->fde_caps);
2401 		unp_discard(fp);
2402 	}
2403 	free(fdep[0], M_FILECAPS);
2404 }
2405 
2406 static int
2407 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2408 {
2409 	struct thread *td = curthread;		/* XXX */
2410 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2411 	int i;
2412 	int *fdp;
2413 	struct filedesc *fdesc = td->td_proc->p_fd;
2414 	struct filedescent **fdep;
2415 	void *data;
2416 	socklen_t clen = control->m_len, datalen;
2417 	int error, newfds;
2418 	u_int newlen;
2419 
2420 	UNP_LINK_UNLOCK_ASSERT();
2421 
2422 	error = 0;
2423 	if (controlp != NULL) /* controlp == NULL => free control messages */
2424 		*controlp = NULL;
2425 	while (cm != NULL) {
2426 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
2427 
2428 		data = CMSG_DATA(cm);
2429 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2430 		if (cm->cmsg_level == SOL_SOCKET
2431 		    && cm->cmsg_type == SCM_RIGHTS) {
2432 			newfds = datalen / sizeof(*fdep);
2433 			if (newfds == 0)
2434 				goto next;
2435 			fdep = data;
2436 
2437 			/* If we're not outputting the descriptors free them. */
2438 			if (error || controlp == NULL) {
2439 				unp_freerights(fdep, newfds);
2440 				goto next;
2441 			}
2442 			FILEDESC_XLOCK(fdesc);
2443 
2444 			/*
2445 			 * Now change each pointer to an fd in the global
2446 			 * table to an integer that is the index to the local
2447 			 * fd table entry that we set up to point to the
2448 			 * global one we are transferring.
2449 			 */
2450 			newlen = newfds * sizeof(int);
2451 			*controlp = sbcreatecontrol(NULL, newlen,
2452 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2453 
2454 			fdp = (int *)
2455 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2456 			if ((error = fdallocn(td, 0, fdp, newfds))) {
2457 				FILEDESC_XUNLOCK(fdesc);
2458 				unp_freerights(fdep, newfds);
2459 				m_freem(*controlp);
2460 				*controlp = NULL;
2461 				goto next;
2462 			}
2463 			for (i = 0; i < newfds; i++, fdp++) {
2464 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2465 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2466 				    &fdep[i]->fde_caps);
2467 				unp_externalize_fp(fdep[i]->fde_file);
2468 			}
2469 
2470 			/*
2471 			 * The new type indicates that the mbuf data refers to
2472 			 * kernel resources that may need to be released before
2473 			 * the mbuf is freed.
2474 			 */
2475 			m_chtype(*controlp, MT_EXTCONTROL);
2476 			FILEDESC_XUNLOCK(fdesc);
2477 			free(fdep[0], M_FILECAPS);
2478 		} else {
2479 			/* We can just copy anything else across. */
2480 			if (error || controlp == NULL)
2481 				goto next;
2482 			*controlp = sbcreatecontrol(NULL, datalen,
2483 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
2484 			bcopy(data,
2485 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2486 			    datalen);
2487 		}
2488 		controlp = &(*controlp)->m_next;
2489 
2490 next:
2491 		if (CMSG_SPACE(datalen) < clen) {
2492 			clen -= CMSG_SPACE(datalen);
2493 			cm = (struct cmsghdr *)
2494 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2495 		} else {
2496 			clen = 0;
2497 			cm = NULL;
2498 		}
2499 	}
2500 
2501 	m_freem(control);
2502 	return (error);
2503 }
2504 
2505 static void
2506 unp_zone_change(void *tag)
2507 {
2508 
2509 	uma_zone_set_max(unp_zone, maxsockets);
2510 }
2511 
2512 #ifdef INVARIANTS
2513 static void
2514 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2515 {
2516 	struct unpcb *unp;
2517 
2518 	unp = mem;
2519 
2520 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2521 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2522 	KASSERT(unp->unp_socket == NULL,
2523 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2524 	KASSERT(unp->unp_vnode == NULL,
2525 	    ("%s: unpcb %p has vnode references", __func__, unp));
2526 	KASSERT(unp->unp_conn == NULL,
2527 	    ("%s: unpcb %p is still connected", __func__, unp));
2528 	KASSERT(unp->unp_addr == NULL,
2529 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2530 }
2531 #endif
2532 
2533 static void
2534 unp_init(void *arg __unused)
2535 {
2536 	uma_dtor dtor;
2537 
2538 #ifdef INVARIANTS
2539 	dtor = unp_zdtor;
2540 #else
2541 	dtor = NULL;
2542 #endif
2543 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2544 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2545 	uma_zone_set_max(unp_zone, maxsockets);
2546 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2547 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2548 	    NULL, EVENTHANDLER_PRI_ANY);
2549 	LIST_INIT(&unp_dhead);
2550 	LIST_INIT(&unp_shead);
2551 	LIST_INIT(&unp_sphead);
2552 	SLIST_INIT(&unp_defers);
2553 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2554 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2555 	UNP_LINK_LOCK_INIT();
2556 	UNP_DEFERRED_LOCK_INIT();
2557 }
2558 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2559 
2560 static void
2561 unp_internalize_cleanup_rights(struct mbuf *control)
2562 {
2563 	struct cmsghdr *cp;
2564 	struct mbuf *m;
2565 	void *data;
2566 	socklen_t datalen;
2567 
2568 	for (m = control; m != NULL; m = m->m_next) {
2569 		cp = mtod(m, struct cmsghdr *);
2570 		if (cp->cmsg_level != SOL_SOCKET ||
2571 		    cp->cmsg_type != SCM_RIGHTS)
2572 			continue;
2573 		data = CMSG_DATA(cp);
2574 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2575 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2576 	}
2577 }
2578 
2579 static int
2580 unp_internalize(struct mbuf **controlp, struct thread *td,
2581     struct mbuf **clast, u_int *space, u_int *mbcnt)
2582 {
2583 	struct mbuf *control, **initial_controlp;
2584 	struct proc *p;
2585 	struct filedesc *fdesc;
2586 	struct bintime *bt;
2587 	struct cmsghdr *cm;
2588 	struct cmsgcred *cmcred;
2589 	struct filedescent *fde, **fdep, *fdev;
2590 	struct file *fp;
2591 	struct timeval *tv;
2592 	struct timespec *ts;
2593 	void *data;
2594 	socklen_t clen, datalen;
2595 	int i, j, error, *fdp, oldfds;
2596 	u_int newlen;
2597 
2598 	MPASS((*controlp)->m_next == NULL); /* COMPAT_OLDSOCK may violate */
2599 	UNP_LINK_UNLOCK_ASSERT();
2600 
2601 	p = td->td_proc;
2602 	fdesc = p->p_fd;
2603 	error = 0;
2604 	control = *controlp;
2605 	*controlp = NULL;
2606 	initial_controlp = controlp;
2607 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
2608 	    data = CMSG_DATA(cm);
2609 
2610 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
2611 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
2612 	    (char *)cm + cm->cmsg_len >= (char *)data;
2613 
2614 	    clen -= min(CMSG_SPACE(datalen), clen),
2615 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
2616 	    data = CMSG_DATA(cm)) {
2617 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
2618 		switch (cm->cmsg_type) {
2619 		case SCM_CREDS:
2620 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2621 			    SCM_CREDS, SOL_SOCKET, M_WAITOK);
2622 			cmcred = (struct cmsgcred *)
2623 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2624 			cmcred->cmcred_pid = p->p_pid;
2625 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2626 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2627 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2628 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2629 			    CMGROUP_MAX);
2630 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2631 				cmcred->cmcred_groups[i] =
2632 				    td->td_ucred->cr_groups[i];
2633 			break;
2634 
2635 		case SCM_RIGHTS:
2636 			oldfds = datalen / sizeof (int);
2637 			if (oldfds == 0)
2638 				continue;
2639 			/* On some machines sizeof pointer is bigger than
2640 			 * sizeof int, so we need to check if data fits into
2641 			 * single mbuf.  We could allocate several mbufs, and
2642 			 * unp_externalize() should even properly handle that.
2643 			 * But it is not worth to complicate the code for an
2644 			 * insane scenario of passing over 200 file descriptors
2645 			 * at once.
2646 			 */
2647 			newlen = oldfds * sizeof(fdep[0]);
2648 			if (CMSG_SPACE(newlen) > MCLBYTES) {
2649 				error = EMSGSIZE;
2650 				goto out;
2651 			}
2652 			/*
2653 			 * Check that all the FDs passed in refer to legal
2654 			 * files.  If not, reject the entire operation.
2655 			 */
2656 			fdp = data;
2657 			FILEDESC_SLOCK(fdesc);
2658 			for (i = 0; i < oldfds; i++, fdp++) {
2659 				fp = fget_noref(fdesc, *fdp);
2660 				if (fp == NULL) {
2661 					FILEDESC_SUNLOCK(fdesc);
2662 					error = EBADF;
2663 					goto out;
2664 				}
2665 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2666 					FILEDESC_SUNLOCK(fdesc);
2667 					error = EOPNOTSUPP;
2668 					goto out;
2669 				}
2670 			}
2671 
2672 			/*
2673 			 * Now replace the integer FDs with pointers to the
2674 			 * file structure and capability rights.
2675 			 */
2676 			*controlp = sbcreatecontrol(NULL, newlen,
2677 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2678 			fdp = data;
2679 			for (i = 0; i < oldfds; i++, fdp++) {
2680 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2681 					fdp = data;
2682 					for (j = 0; j < i; j++, fdp++) {
2683 						fdrop(fdesc->fd_ofiles[*fdp].
2684 						    fde_file, td);
2685 					}
2686 					FILEDESC_SUNLOCK(fdesc);
2687 					error = EBADF;
2688 					goto out;
2689 				}
2690 			}
2691 			fdp = data;
2692 			fdep = (struct filedescent **)
2693 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2694 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2695 			    M_WAITOK);
2696 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2697 				fde = &fdesc->fd_ofiles[*fdp];
2698 				fdep[i] = fdev;
2699 				fdep[i]->fde_file = fde->fde_file;
2700 				filecaps_copy(&fde->fde_caps,
2701 				    &fdep[i]->fde_caps, true);
2702 				unp_internalize_fp(fdep[i]->fde_file);
2703 			}
2704 			FILEDESC_SUNLOCK(fdesc);
2705 			break;
2706 
2707 		case SCM_TIMESTAMP:
2708 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2709 			    SCM_TIMESTAMP, SOL_SOCKET, M_WAITOK);
2710 			tv = (struct timeval *)
2711 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2712 			microtime(tv);
2713 			break;
2714 
2715 		case SCM_BINTIME:
2716 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2717 			    SCM_BINTIME, SOL_SOCKET, M_WAITOK);
2718 			bt = (struct bintime *)
2719 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2720 			bintime(bt);
2721 			break;
2722 
2723 		case SCM_REALTIME:
2724 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2725 			    SCM_REALTIME, SOL_SOCKET, M_WAITOK);
2726 			ts = (struct timespec *)
2727 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2728 			nanotime(ts);
2729 			break;
2730 
2731 		case SCM_MONOTONIC:
2732 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2733 			    SCM_MONOTONIC, SOL_SOCKET, M_WAITOK);
2734 			ts = (struct timespec *)
2735 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2736 			nanouptime(ts);
2737 			break;
2738 
2739 		default:
2740 			error = EINVAL;
2741 			goto out;
2742 		}
2743 
2744 		if (space != NULL) {
2745 			*space += (*controlp)->m_len;
2746 			*mbcnt += MSIZE;
2747 			if ((*controlp)->m_flags & M_EXT)
2748 				*mbcnt += (*controlp)->m_ext.ext_size;
2749 			*clast = *controlp;
2750 		}
2751 		controlp = &(*controlp)->m_next;
2752 	}
2753 	if (clen > 0)
2754 		error = EINVAL;
2755 
2756 out:
2757 	if (error != 0 && initial_controlp != NULL)
2758 		unp_internalize_cleanup_rights(*initial_controlp);
2759 	m_freem(control);
2760 	return (error);
2761 }
2762 
2763 static struct mbuf *
2764 unp_addsockcred(struct thread *td, struct mbuf *control, int mode,
2765     struct mbuf **clast, u_int *space, u_int *mbcnt)
2766 {
2767 	struct mbuf *m, *n, *n_prev;
2768 	const struct cmsghdr *cm;
2769 	int ngroups, i, cmsgtype;
2770 	size_t ctrlsz;
2771 
2772 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2773 	if (mode & UNP_WANTCRED_ALWAYS) {
2774 		ctrlsz = SOCKCRED2SIZE(ngroups);
2775 		cmsgtype = SCM_CREDS2;
2776 	} else {
2777 		ctrlsz = SOCKCREDSIZE(ngroups);
2778 		cmsgtype = SCM_CREDS;
2779 	}
2780 
2781 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
2782 	if (m == NULL)
2783 		return (control);
2784 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
2785 
2786 	if (mode & UNP_WANTCRED_ALWAYS) {
2787 		struct sockcred2 *sc;
2788 
2789 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2790 		sc->sc_version = 0;
2791 		sc->sc_pid = td->td_proc->p_pid;
2792 		sc->sc_uid = td->td_ucred->cr_ruid;
2793 		sc->sc_euid = td->td_ucred->cr_uid;
2794 		sc->sc_gid = td->td_ucred->cr_rgid;
2795 		sc->sc_egid = td->td_ucred->cr_gid;
2796 		sc->sc_ngroups = ngroups;
2797 		for (i = 0; i < sc->sc_ngroups; i++)
2798 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2799 	} else {
2800 		struct sockcred *sc;
2801 
2802 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2803 		sc->sc_uid = td->td_ucred->cr_ruid;
2804 		sc->sc_euid = td->td_ucred->cr_uid;
2805 		sc->sc_gid = td->td_ucred->cr_rgid;
2806 		sc->sc_egid = td->td_ucred->cr_gid;
2807 		sc->sc_ngroups = ngroups;
2808 		for (i = 0; i < sc->sc_ngroups; i++)
2809 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2810 	}
2811 
2812 	/*
2813 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2814 	 * created SCM_CREDS control message (struct sockcred) has another
2815 	 * format.
2816 	 */
2817 	if (control != NULL && cmsgtype == SCM_CREDS)
2818 		for (n = control, n_prev = NULL; n != NULL;) {
2819 			cm = mtod(n, struct cmsghdr *);
2820     			if (cm->cmsg_level == SOL_SOCKET &&
2821 			    cm->cmsg_type == SCM_CREDS) {
2822     				if (n_prev == NULL)
2823 					control = n->m_next;
2824 				else
2825 					n_prev->m_next = n->m_next;
2826 				if (space != NULL) {
2827 					MPASS(*space >= n->m_len);
2828 					*space -= n->m_len;
2829 					MPASS(*mbcnt >= MSIZE);
2830 					*mbcnt -= MSIZE;
2831 					if (n->m_flags & M_EXT) {
2832 						MPASS(*mbcnt >=
2833 						    n->m_ext.ext_size);
2834 						*mbcnt -= n->m_ext.ext_size;
2835 					}
2836 					MPASS(clast);
2837 					if (*clast == n) {
2838 						MPASS(n->m_next == NULL);
2839 						if (n_prev == NULL)
2840 							*clast = m;
2841 						else
2842 							*clast = n_prev;
2843 					}
2844 				}
2845 				n = m_free(n);
2846 			} else {
2847 				n_prev = n;
2848 				n = n->m_next;
2849 			}
2850 		}
2851 
2852 	/* Prepend it to the head. */
2853 	m->m_next = control;
2854 	if (space != NULL) {
2855 		*space += m->m_len;
2856 		*mbcnt += MSIZE;
2857 		if (control == NULL)
2858 			*clast = m;
2859 	}
2860 	return (m);
2861 }
2862 
2863 static struct unpcb *
2864 fptounp(struct file *fp)
2865 {
2866 	struct socket *so;
2867 
2868 	if (fp->f_type != DTYPE_SOCKET)
2869 		return (NULL);
2870 	if ((so = fp->f_data) == NULL)
2871 		return (NULL);
2872 	if (so->so_proto->pr_domain != &localdomain)
2873 		return (NULL);
2874 	return sotounpcb(so);
2875 }
2876 
2877 static void
2878 unp_discard(struct file *fp)
2879 {
2880 	struct unp_defer *dr;
2881 
2882 	if (unp_externalize_fp(fp)) {
2883 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2884 		dr->ud_fp = fp;
2885 		UNP_DEFERRED_LOCK();
2886 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2887 		UNP_DEFERRED_UNLOCK();
2888 		atomic_add_int(&unp_defers_count, 1);
2889 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2890 	} else
2891 		closef_nothread(fp);
2892 }
2893 
2894 static void
2895 unp_process_defers(void *arg __unused, int pending)
2896 {
2897 	struct unp_defer *dr;
2898 	SLIST_HEAD(, unp_defer) drl;
2899 	int count;
2900 
2901 	SLIST_INIT(&drl);
2902 	for (;;) {
2903 		UNP_DEFERRED_LOCK();
2904 		if (SLIST_FIRST(&unp_defers) == NULL) {
2905 			UNP_DEFERRED_UNLOCK();
2906 			break;
2907 		}
2908 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2909 		UNP_DEFERRED_UNLOCK();
2910 		count = 0;
2911 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2912 			SLIST_REMOVE_HEAD(&drl, ud_link);
2913 			closef_nothread(dr->ud_fp);
2914 			free(dr, M_TEMP);
2915 			count++;
2916 		}
2917 		atomic_add_int(&unp_defers_count, -count);
2918 	}
2919 }
2920 
2921 static void
2922 unp_internalize_fp(struct file *fp)
2923 {
2924 	struct unpcb *unp;
2925 
2926 	UNP_LINK_WLOCK();
2927 	if ((unp = fptounp(fp)) != NULL) {
2928 		unp->unp_file = fp;
2929 		unp->unp_msgcount++;
2930 	}
2931 	unp_rights++;
2932 	UNP_LINK_WUNLOCK();
2933 }
2934 
2935 static int
2936 unp_externalize_fp(struct file *fp)
2937 {
2938 	struct unpcb *unp;
2939 	int ret;
2940 
2941 	UNP_LINK_WLOCK();
2942 	if ((unp = fptounp(fp)) != NULL) {
2943 		unp->unp_msgcount--;
2944 		ret = 1;
2945 	} else
2946 		ret = 0;
2947 	unp_rights--;
2948 	UNP_LINK_WUNLOCK();
2949 	return (ret);
2950 }
2951 
2952 /*
2953  * unp_defer indicates whether additional work has been defered for a future
2954  * pass through unp_gc().  It is thread local and does not require explicit
2955  * synchronization.
2956  */
2957 static int	unp_marked;
2958 
2959 static void
2960 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2961 {
2962 	struct unpcb *unp;
2963 	struct file *fp;
2964 	int i;
2965 
2966 	/*
2967 	 * This function can only be called from the gc task.
2968 	 */
2969 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2970 	    ("%s: not on gc callout", __func__));
2971 	UNP_LINK_LOCK_ASSERT();
2972 
2973 	for (i = 0; i < fdcount; i++) {
2974 		fp = fdep[i]->fde_file;
2975 		if ((unp = fptounp(fp)) == NULL)
2976 			continue;
2977 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2978 			continue;
2979 		unp->unp_gcrefs--;
2980 	}
2981 }
2982 
2983 static void
2984 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2985 {
2986 	struct unpcb *unp;
2987 	struct file *fp;
2988 	int i;
2989 
2990 	/*
2991 	 * This function can only be called from the gc task.
2992 	 */
2993 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2994 	    ("%s: not on gc callout", __func__));
2995 	UNP_LINK_LOCK_ASSERT();
2996 
2997 	for (i = 0; i < fdcount; i++) {
2998 		fp = fdep[i]->fde_file;
2999 		if ((unp = fptounp(fp)) == NULL)
3000 			continue;
3001 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
3002 			continue;
3003 		unp->unp_gcrefs++;
3004 		unp_marked++;
3005 	}
3006 }
3007 
3008 static void
3009 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
3010 {
3011 	struct sockbuf *sb;
3012 
3013 	SOCK_LOCK_ASSERT(so);
3014 
3015 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
3016 		return;
3017 
3018 	SOCK_RECVBUF_LOCK(so);
3019 	switch (so->so_type) {
3020 	case SOCK_DGRAM:
3021 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
3022 		unp_scan(so->so_rcv.uxdg_peeked, op);
3023 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
3024 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
3025 		break;
3026 	case SOCK_STREAM:
3027 	case SOCK_SEQPACKET:
3028 		unp_scan(so->so_rcv.sb_mb, op);
3029 		break;
3030 	}
3031 	SOCK_RECVBUF_UNLOCK(so);
3032 }
3033 
3034 static void
3035 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
3036 {
3037 	struct socket *so, *soa;
3038 
3039 	so = unp->unp_socket;
3040 	SOCK_LOCK(so);
3041 	if (SOLISTENING(so)) {
3042 		/*
3043 		 * Mark all sockets in our accept queue.
3044 		 */
3045 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
3046 			unp_scan_socket(soa, op);
3047 	} else {
3048 		/*
3049 		 * Mark all sockets we reference with RIGHTS.
3050 		 */
3051 		unp_scan_socket(so, op);
3052 	}
3053 	SOCK_UNLOCK(so);
3054 }
3055 
3056 static int unp_recycled;
3057 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
3058     "Number of unreachable sockets claimed by the garbage collector.");
3059 
3060 static int unp_taskcount;
3061 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
3062     "Number of times the garbage collector has run.");
3063 
3064 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
3065     "Number of active local sockets.");
3066 
3067 static void
3068 unp_gc(__unused void *arg, int pending)
3069 {
3070 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
3071 				    NULL };
3072 	struct unp_head **head;
3073 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
3074 	struct file *f, **unref;
3075 	struct unpcb *unp, *unptmp;
3076 	int i, total, unp_unreachable;
3077 
3078 	LIST_INIT(&unp_deadhead);
3079 	unp_taskcount++;
3080 	UNP_LINK_RLOCK();
3081 	/*
3082 	 * First determine which sockets may be in cycles.
3083 	 */
3084 	unp_unreachable = 0;
3085 
3086 	for (head = heads; *head != NULL; head++)
3087 		LIST_FOREACH(unp, *head, unp_link) {
3088 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
3089 			    ("%s: unp %p has unexpected gc flags 0x%x",
3090 			    __func__, unp, (unsigned int)unp->unp_gcflag));
3091 
3092 			f = unp->unp_file;
3093 
3094 			/*
3095 			 * Check for an unreachable socket potentially in a
3096 			 * cycle.  It must be in a queue as indicated by
3097 			 * msgcount, and this must equal the file reference
3098 			 * count.  Note that when msgcount is 0 the file is
3099 			 * NULL.
3100 			 */
3101 			if (f != NULL && unp->unp_msgcount != 0 &&
3102 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
3103 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
3104 				unp->unp_gcflag |= UNPGC_DEAD;
3105 				unp->unp_gcrefs = unp->unp_msgcount;
3106 				unp_unreachable++;
3107 			}
3108 		}
3109 
3110 	/*
3111 	 * Scan all sockets previously marked as potentially being in a cycle
3112 	 * and remove the references each socket holds on any UNPGC_DEAD
3113 	 * sockets in its queue.  After this step, all remaining references on
3114 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
3115 	 */
3116 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
3117 		unp_gc_scan(unp, unp_remove_dead_ref);
3118 
3119 	/*
3120 	 * If a socket still has a non-negative refcount, it cannot be in a
3121 	 * cycle.  In this case increment refcount of all children iteratively.
3122 	 * Stop the scan once we do a complete loop without discovering
3123 	 * a new reachable socket.
3124 	 */
3125 	do {
3126 		unp_marked = 0;
3127 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
3128 			if (unp->unp_gcrefs > 0) {
3129 				unp->unp_gcflag &= ~UNPGC_DEAD;
3130 				LIST_REMOVE(unp, unp_dead);
3131 				KASSERT(unp_unreachable > 0,
3132 				    ("%s: unp_unreachable underflow.",
3133 				    __func__));
3134 				unp_unreachable--;
3135 				unp_gc_scan(unp, unp_restore_undead_ref);
3136 			}
3137 	} while (unp_marked);
3138 
3139 	UNP_LINK_RUNLOCK();
3140 
3141 	if (unp_unreachable == 0)
3142 		return;
3143 
3144 	/*
3145 	 * Allocate space for a local array of dead unpcbs.
3146 	 * TODO: can this path be simplified by instead using the local
3147 	 * dead list at unp_deadhead, after taking out references
3148 	 * on the file object and/or unpcb and dropping the link lock?
3149 	 */
3150 	unref = malloc(unp_unreachable * sizeof(struct file *),
3151 	    M_TEMP, M_WAITOK);
3152 
3153 	/*
3154 	 * Iterate looking for sockets which have been specifically marked
3155 	 * as unreachable and store them locally.
3156 	 */
3157 	UNP_LINK_RLOCK();
3158 	total = 0;
3159 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
3160 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
3161 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
3162 		unp->unp_gcflag &= ~UNPGC_DEAD;
3163 		f = unp->unp_file;
3164 		if (unp->unp_msgcount == 0 || f == NULL ||
3165 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
3166 		    !fhold(f))
3167 			continue;
3168 		unref[total++] = f;
3169 		KASSERT(total <= unp_unreachable,
3170 		    ("%s: incorrect unreachable count.", __func__));
3171 	}
3172 	UNP_LINK_RUNLOCK();
3173 
3174 	/*
3175 	 * Now flush all sockets, free'ing rights.  This will free the
3176 	 * struct files associated with these sockets but leave each socket
3177 	 * with one remaining ref.
3178 	 */
3179 	for (i = 0; i < total; i++) {
3180 		struct socket *so;
3181 
3182 		so = unref[i]->f_data;
3183 		CURVNET_SET(so->so_vnet);
3184 		sorflush(so);
3185 		CURVNET_RESTORE();
3186 	}
3187 
3188 	/*
3189 	 * And finally release the sockets so they can be reclaimed.
3190 	 */
3191 	for (i = 0; i < total; i++)
3192 		fdrop(unref[i], NULL);
3193 	unp_recycled += total;
3194 	free(unref, M_TEMP);
3195 }
3196 
3197 /*
3198  * Synchronize against unp_gc, which can trip over data as we are freeing it.
3199  */
3200 static void
3201 unp_dispose(struct socket *so)
3202 {
3203 	struct sockbuf *sb;
3204 	struct unpcb *unp;
3205 	struct mbuf *m;
3206 
3207 	MPASS(!SOLISTENING(so));
3208 
3209 	unp = sotounpcb(so);
3210 	UNP_LINK_WLOCK();
3211 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
3212 	UNP_LINK_WUNLOCK();
3213 
3214 	/*
3215 	 * Grab our special mbufs before calling sbrelease().
3216 	 */
3217 	SOCK_RECVBUF_LOCK(so);
3218 	switch (so->so_type) {
3219 	case SOCK_DGRAM:
3220 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
3221 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
3222 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
3223 			/* Note: socket of sb may reconnect. */
3224 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
3225 		}
3226 		sb = &so->so_rcv;
3227 		if (sb->uxdg_peeked != NULL) {
3228 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
3229 			    m_stailqpkt);
3230 			sb->uxdg_peeked = NULL;
3231 		}
3232 		m = STAILQ_FIRST(&sb->uxdg_mb);
3233 		STAILQ_INIT(&sb->uxdg_mb);
3234 		/* XXX: our shortened sbrelease() */
3235 		(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
3236 		    RLIM_INFINITY);
3237 		/*
3238 		 * XXXGL Mark sb with SBS_CANTRCVMORE.  This is needed to
3239 		 * prevent uipc_sosend_dgram() or unp_disconnect() adding more
3240 		 * data to the socket.
3241 		 * We are now in dom_dispose and it could be a call from
3242 		 * soshutdown() or from the final sofree().  The sofree() case
3243 		 * is simple as it guarantees that no more sends will happen,
3244 		 * however we can race with unp_disconnect() from our peer.
3245 		 * The shutdown(2) case is more exotic.  It would call into
3246 		 * dom_dispose() only if socket is SS_ISCONNECTED.  This is
3247 		 * possible if we did connect(2) on this socket and we also
3248 		 * had it bound with bind(2) and receive connections from other
3249 		 * sockets.  Because soshutdown() violates POSIX (see comment
3250 		 * there) we will end up here shutting down our receive side.
3251 		 * Of course this will have affect not only on the peer we
3252 		 * connect(2)ed to, but also on all of the peers who had
3253 		 * connect(2)ed to us.  Their sends would end up with ENOBUFS.
3254 		 */
3255 		sb->sb_state |= SBS_CANTRCVMORE;
3256 		break;
3257 	case SOCK_STREAM:
3258 	case SOCK_SEQPACKET:
3259 		sb = &so->so_rcv;
3260 		m = sbcut_locked(sb, sb->sb_ccc);
3261 		KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
3262 		    ("%s: ccc %u mb %p mbcnt %u", __func__,
3263 		    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
3264 		sbrelease_locked(so, SO_RCV);
3265 		break;
3266 	}
3267 	SOCK_RECVBUF_UNLOCK(so);
3268 	if (SOCK_IO_RECV_OWNED(so))
3269 		SOCK_IO_RECV_UNLOCK(so);
3270 
3271 	if (m != NULL) {
3272 		unp_scan(m, unp_freerights);
3273 		m_freem(m);
3274 	}
3275 }
3276 
3277 static void
3278 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
3279 {
3280 	struct mbuf *m;
3281 	struct cmsghdr *cm;
3282 	void *data;
3283 	socklen_t clen, datalen;
3284 
3285 	while (m0 != NULL) {
3286 		for (m = m0; m; m = m->m_next) {
3287 			if (m->m_type != MT_CONTROL)
3288 				continue;
3289 
3290 			cm = mtod(m, struct cmsghdr *);
3291 			clen = m->m_len;
3292 
3293 			while (cm != NULL) {
3294 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
3295 					break;
3296 
3297 				data = CMSG_DATA(cm);
3298 				datalen = (caddr_t)cm + cm->cmsg_len
3299 				    - (caddr_t)data;
3300 
3301 				if (cm->cmsg_level == SOL_SOCKET &&
3302 				    cm->cmsg_type == SCM_RIGHTS) {
3303 					(*op)(data, datalen /
3304 					    sizeof(struct filedescent *));
3305 				}
3306 
3307 				if (CMSG_SPACE(datalen) < clen) {
3308 					clen -= CMSG_SPACE(datalen);
3309 					cm = (struct cmsghdr *)
3310 					    ((caddr_t)cm + CMSG_SPACE(datalen));
3311 				} else {
3312 					clen = 0;
3313 					cm = NULL;
3314 				}
3315 			}
3316 		}
3317 		m0 = m0->m_nextpkt;
3318 	}
3319 }
3320 
3321 /*
3322  * Definitions of protocols supported in the LOCAL domain.
3323  */
3324 static struct protosw streamproto = {
3325 	.pr_type =		SOCK_STREAM,
3326 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS|
3327 				    PR_CAPATTACH,
3328 	.pr_ctloutput =		&uipc_ctloutput,
3329 	.pr_abort = 		uipc_abort,
3330 	.pr_accept =		uipc_accept,
3331 	.pr_attach =		uipc_attach,
3332 	.pr_bind =		uipc_bind,
3333 	.pr_bindat =		uipc_bindat,
3334 	.pr_connect =		uipc_connect,
3335 	.pr_connectat =		uipc_connectat,
3336 	.pr_connect2 =		uipc_connect2,
3337 	.pr_detach =		uipc_detach,
3338 	.pr_disconnect =	uipc_disconnect,
3339 	.pr_listen =		uipc_listen,
3340 	.pr_peeraddr =		uipc_peeraddr,
3341 	.pr_rcvd =		uipc_rcvd,
3342 	.pr_send =		uipc_send,
3343 	.pr_ready =		uipc_ready,
3344 	.pr_sense =		uipc_sense,
3345 	.pr_shutdown =		uipc_shutdown,
3346 	.pr_sockaddr =		uipc_sockaddr,
3347 	.pr_soreceive =		soreceive_generic,
3348 	.pr_close =		uipc_close,
3349 };
3350 
3351 static struct protosw dgramproto = {
3352 	.pr_type =		SOCK_DGRAM,
3353 	.pr_flags =		PR_ATOMIC | PR_ADDR |PR_RIGHTS | PR_CAPATTACH |
3354 				    PR_SOCKBUF,
3355 	.pr_ctloutput =		&uipc_ctloutput,
3356 	.pr_abort = 		uipc_abort,
3357 	.pr_accept =		uipc_accept,
3358 	.pr_attach =		uipc_attach,
3359 	.pr_bind =		uipc_bind,
3360 	.pr_bindat =		uipc_bindat,
3361 	.pr_connect =		uipc_connect,
3362 	.pr_connectat =		uipc_connectat,
3363 	.pr_connect2 =		uipc_connect2,
3364 	.pr_detach =		uipc_detach,
3365 	.pr_disconnect =	uipc_disconnect,
3366 	.pr_peeraddr =		uipc_peeraddr,
3367 	.pr_sosend =		uipc_sosend_dgram,
3368 	.pr_sense =		uipc_sense,
3369 	.pr_shutdown =		uipc_shutdown,
3370 	.pr_sockaddr =		uipc_sockaddr,
3371 	.pr_soreceive =		uipc_soreceive_dgram,
3372 	.pr_close =		uipc_close,
3373 };
3374 
3375 static struct protosw seqpacketproto = {
3376 	.pr_type =		SOCK_SEQPACKET,
3377 	/*
3378 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
3379 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
3380 	 * that supports both atomic record writes and control data.
3381 	 */
3382 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|
3383 				    PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH,
3384 	.pr_ctloutput =		&uipc_ctloutput,
3385 	.pr_abort =		uipc_abort,
3386 	.pr_accept =		uipc_accept,
3387 	.pr_attach =		uipc_attach,
3388 	.pr_bind =		uipc_bind,
3389 	.pr_bindat =		uipc_bindat,
3390 	.pr_connect =		uipc_connect,
3391 	.pr_connectat =		uipc_connectat,
3392 	.pr_connect2 =		uipc_connect2,
3393 	.pr_detach =		uipc_detach,
3394 	.pr_disconnect =	uipc_disconnect,
3395 	.pr_listen =		uipc_listen,
3396 	.pr_peeraddr =		uipc_peeraddr,
3397 	.pr_rcvd =		uipc_rcvd,
3398 	.pr_send =		uipc_send,
3399 	.pr_sense =		uipc_sense,
3400 	.pr_shutdown =		uipc_shutdown,
3401 	.pr_sockaddr =		uipc_sockaddr,
3402 	.pr_soreceive =		soreceive_generic,	/* XXX: or...? */
3403 	.pr_close =		uipc_close,
3404 };
3405 
3406 static struct domain localdomain = {
3407 	.dom_family =		AF_LOCAL,
3408 	.dom_name =		"local",
3409 	.dom_externalize =	unp_externalize,
3410 	.dom_dispose =		unp_dispose,
3411 	.dom_nprotosw =		3,
3412 	.dom_protosw =		{
3413 		&streamproto,
3414 		&dgramproto,
3415 		&seqpacketproto,
3416 	}
3417 };
3418 DOMAIN_SET(local);
3419 
3420 /*
3421  * A helper function called by VFS before socket-type vnode reclamation.
3422  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
3423  * use count.
3424  */
3425 void
3426 vfs_unp_reclaim(struct vnode *vp)
3427 {
3428 	struct unpcb *unp;
3429 	int active;
3430 	struct mtx *vplock;
3431 
3432 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
3433 	KASSERT(vp->v_type == VSOCK,
3434 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
3435 
3436 	active = 0;
3437 	vplock = mtx_pool_find(mtxpool_sleep, vp);
3438 	mtx_lock(vplock);
3439 	VOP_UNP_CONNECT(vp, &unp);
3440 	if (unp == NULL)
3441 		goto done;
3442 	UNP_PCB_LOCK(unp);
3443 	if (unp->unp_vnode == vp) {
3444 		VOP_UNP_DETACH(vp);
3445 		unp->unp_vnode = NULL;
3446 		active = 1;
3447 	}
3448 	UNP_PCB_UNLOCK(unp);
3449  done:
3450 	mtx_unlock(vplock);
3451 	if (active)
3452 		vunref(vp);
3453 }
3454 
3455 #ifdef DDB
3456 static void
3457 db_print_indent(int indent)
3458 {
3459 	int i;
3460 
3461 	for (i = 0; i < indent; i++)
3462 		db_printf(" ");
3463 }
3464 
3465 static void
3466 db_print_unpflags(int unp_flags)
3467 {
3468 	int comma;
3469 
3470 	comma = 0;
3471 	if (unp_flags & UNP_HAVEPC) {
3472 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
3473 		comma = 1;
3474 	}
3475 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
3476 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
3477 		comma = 1;
3478 	}
3479 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
3480 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
3481 		comma = 1;
3482 	}
3483 	if (unp_flags & UNP_CONNWAIT) {
3484 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
3485 		comma = 1;
3486 	}
3487 	if (unp_flags & UNP_CONNECTING) {
3488 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
3489 		comma = 1;
3490 	}
3491 	if (unp_flags & UNP_BINDING) {
3492 		db_printf("%sUNP_BINDING", comma ? ", " : "");
3493 		comma = 1;
3494 	}
3495 }
3496 
3497 static void
3498 db_print_xucred(int indent, struct xucred *xu)
3499 {
3500 	int comma, i;
3501 
3502 	db_print_indent(indent);
3503 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
3504 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
3505 	db_print_indent(indent);
3506 	db_printf("cr_groups: ");
3507 	comma = 0;
3508 	for (i = 0; i < xu->cr_ngroups; i++) {
3509 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
3510 		comma = 1;
3511 	}
3512 	db_printf("\n");
3513 }
3514 
3515 static void
3516 db_print_unprefs(int indent, struct unp_head *uh)
3517 {
3518 	struct unpcb *unp;
3519 	int counter;
3520 
3521 	counter = 0;
3522 	LIST_FOREACH(unp, uh, unp_reflink) {
3523 		if (counter % 4 == 0)
3524 			db_print_indent(indent);
3525 		db_printf("%p  ", unp);
3526 		if (counter % 4 == 3)
3527 			db_printf("\n");
3528 		counter++;
3529 	}
3530 	if (counter != 0 && counter % 4 != 0)
3531 		db_printf("\n");
3532 }
3533 
3534 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
3535 {
3536 	struct unpcb *unp;
3537 
3538         if (!have_addr) {
3539                 db_printf("usage: show unpcb <addr>\n");
3540                 return;
3541         }
3542         unp = (struct unpcb *)addr;
3543 
3544 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
3545 	    unp->unp_vnode);
3546 
3547 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
3548 	    unp->unp_conn);
3549 
3550 	db_printf("unp_refs:\n");
3551 	db_print_unprefs(2, &unp->unp_refs);
3552 
3553 	/* XXXRW: Would be nice to print the full address, if any. */
3554 	db_printf("unp_addr: %p\n", unp->unp_addr);
3555 
3556 	db_printf("unp_gencnt: %llu\n",
3557 	    (unsigned long long)unp->unp_gencnt);
3558 
3559 	db_printf("unp_flags: %x (", unp->unp_flags);
3560 	db_print_unpflags(unp->unp_flags);
3561 	db_printf(")\n");
3562 
3563 	db_printf("unp_peercred:\n");
3564 	db_print_xucred(2, &unp->unp_peercred);
3565 
3566 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3567 }
3568 #endif
3569