xref: /freebsd/sys/kern/uipc_usrreq.c (revision da5137ab)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/eventhandler.h>
69 #include <sys/fcntl.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * See unpcb.h for the locking key.
110  */
111 
112 static uma_zone_t	unp_zone;
113 static unp_gen_t	unp_gencnt;	/* (l) */
114 static u_int		unp_count;	/* (l) Count of local sockets. */
115 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116 static int		unp_rights;	/* (g) File descriptors in flight. */
117 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120 
121 struct unp_defer {
122 	SLIST_ENTRY(unp_defer) ud_link;
123 	struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127 
128 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define	PIPSIZ	8192
156 #endif
157 static u_long	unpst_sendspace = PIPSIZ;
158 static u_long	unpst_recvspace = PIPSIZ;
159 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160 static u_long	unpdg_recvspace = 16*1024;	/* support 8KB syslog msgs */
161 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162 static u_long	unpsp_recvspace = PIPSIZ;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_sendspace, 0, "Default datagram send space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pru_attach() and freed in pru_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *);
296 static int	unp_connect2(struct socket *so, struct socket *so2, int);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_dispose_mbuf(struct mbuf *);
300 static void	unp_shutdown(struct unpcb *);
301 static void	unp_drop(struct unpcb *);
302 static void	unp_gc(__unused void *, int);
303 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
304 static void	unp_discard(struct file *);
305 static void	unp_freerights(struct filedescent **, int);
306 static int	unp_internalize(struct mbuf **, struct thread *);
307 static void	unp_internalize_fp(struct file *);
308 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
309 static int	unp_externalize_fp(struct file *);
310 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *, int);
311 static void	unp_process_defers(void * __unused, int);
312 
313 static void
314 unp_pcb_hold(struct unpcb *unp)
315 {
316 	u_int old __unused;
317 
318 	old = refcount_acquire(&unp->unp_refcount);
319 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
320 }
321 
322 static __result_use_check bool
323 unp_pcb_rele(struct unpcb *unp)
324 {
325 	bool ret;
326 
327 	UNP_PCB_LOCK_ASSERT(unp);
328 
329 	if ((ret = refcount_release(&unp->unp_refcount))) {
330 		UNP_PCB_UNLOCK(unp);
331 		UNP_PCB_LOCK_DESTROY(unp);
332 		uma_zfree(unp_zone, unp);
333 	}
334 	return (ret);
335 }
336 
337 static void
338 unp_pcb_rele_notlast(struct unpcb *unp)
339 {
340 	bool ret __unused;
341 
342 	ret = refcount_release(&unp->unp_refcount);
343 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
344 }
345 
346 static void
347 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
348 {
349 	UNP_PCB_UNLOCK_ASSERT(unp);
350 	UNP_PCB_UNLOCK_ASSERT(unp2);
351 
352 	if (unp == unp2) {
353 		UNP_PCB_LOCK(unp);
354 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static void
364 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
365 {
366 	UNP_PCB_UNLOCK(unp);
367 	if (unp != unp2)
368 		UNP_PCB_UNLOCK(unp2);
369 }
370 
371 /*
372  * Try to lock the connected peer of an already locked socket.  In some cases
373  * this requires that we unlock the current socket.  The pairbusy counter is
374  * used to block concurrent connection attempts while the lock is dropped.  The
375  * caller must be careful to revalidate PCB state.
376  */
377 static struct unpcb *
378 unp_pcb_lock_peer(struct unpcb *unp)
379 {
380 	struct unpcb *unp2;
381 
382 	UNP_PCB_LOCK_ASSERT(unp);
383 	unp2 = unp->unp_conn;
384 	if (unp2 == NULL)
385 		return (NULL);
386 	if (__predict_false(unp == unp2))
387 		return (unp);
388 
389 	UNP_PCB_UNLOCK_ASSERT(unp2);
390 
391 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
392 		return (unp2);
393 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
394 		UNP_PCB_LOCK(unp2);
395 		return (unp2);
396 	}
397 	unp->unp_pairbusy++;
398 	unp_pcb_hold(unp2);
399 	UNP_PCB_UNLOCK(unp);
400 
401 	UNP_PCB_LOCK(unp2);
402 	UNP_PCB_LOCK(unp);
403 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
404 	    ("%s: socket %p was reconnected", __func__, unp));
405 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
406 		unp->unp_flags &= ~UNP_WAITING;
407 		wakeup(unp);
408 	}
409 	if (unp_pcb_rele(unp2)) {
410 		/* unp2 is unlocked. */
411 		return (NULL);
412 	}
413 	if (unp->unp_conn == NULL) {
414 		UNP_PCB_UNLOCK(unp2);
415 		return (NULL);
416 	}
417 	return (unp2);
418 }
419 
420 /*
421  * Definitions of protocols supported in the LOCAL domain.
422  */
423 static struct domain localdomain;
424 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
425 static struct pr_usrreqs uipc_usrreqs_seqpacket;
426 static struct protosw localsw[] = {
427 {
428 	.pr_type =		SOCK_STREAM,
429 	.pr_domain =		&localdomain,
430 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS|
431 				    PR_CAPATTACH,
432 	.pr_ctloutput =		&uipc_ctloutput,
433 	.pr_usrreqs =		&uipc_usrreqs_stream
434 },
435 {
436 	.pr_type =		SOCK_DGRAM,
437 	.pr_domain =		&localdomain,
438 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS|PR_CAPATTACH,
439 	.pr_ctloutput =		&uipc_ctloutput,
440 	.pr_usrreqs =		&uipc_usrreqs_dgram
441 },
442 {
443 	.pr_type =		SOCK_SEQPACKET,
444 	.pr_domain =		&localdomain,
445 
446 	/*
447 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
448 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
449 	 * that supports both atomic record writes and control data.
450 	 */
451 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|
452 				    PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH,
453 	.pr_ctloutput =		&uipc_ctloutput,
454 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
455 },
456 };
457 
458 static struct domain localdomain = {
459 	.dom_family =		AF_LOCAL,
460 	.dom_name =		"local",
461 	.dom_externalize =	unp_externalize,
462 	.dom_dispose =		unp_dispose,
463 	.dom_protosw =		localsw,
464 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
465 };
466 DOMAIN_SET(local);
467 
468 static void
469 uipc_abort(struct socket *so)
470 {
471 	struct unpcb *unp, *unp2;
472 
473 	unp = sotounpcb(so);
474 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
475 	UNP_PCB_UNLOCK_ASSERT(unp);
476 
477 	UNP_PCB_LOCK(unp);
478 	unp2 = unp->unp_conn;
479 	if (unp2 != NULL) {
480 		unp_pcb_hold(unp2);
481 		UNP_PCB_UNLOCK(unp);
482 		unp_drop(unp2);
483 	} else
484 		UNP_PCB_UNLOCK(unp);
485 }
486 
487 static int
488 uipc_accept(struct socket *so, struct sockaddr **nam)
489 {
490 	struct unpcb *unp, *unp2;
491 	const struct sockaddr *sa;
492 
493 	/*
494 	 * Pass back name of connected socket, if it was bound and we are
495 	 * still connected (our peer may have closed already!).
496 	 */
497 	unp = sotounpcb(so);
498 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
499 
500 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
501 	UNP_PCB_LOCK(unp);
502 	unp2 = unp_pcb_lock_peer(unp);
503 	if (unp2 != NULL && unp2->unp_addr != NULL)
504 		sa = (struct sockaddr *)unp2->unp_addr;
505 	else
506 		sa = &sun_noname;
507 	bcopy(sa, *nam, sa->sa_len);
508 	if (unp2 != NULL)
509 		unp_pcb_unlock_pair(unp, unp2);
510 	else
511 		UNP_PCB_UNLOCK(unp);
512 	return (0);
513 }
514 
515 static int
516 uipc_attach(struct socket *so, int proto, struct thread *td)
517 {
518 	u_long sendspace, recvspace;
519 	struct unpcb *unp;
520 	int error;
521 	bool locked;
522 
523 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
524 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
525 		switch (so->so_type) {
526 		case SOCK_STREAM:
527 			sendspace = unpst_sendspace;
528 			recvspace = unpst_recvspace;
529 			break;
530 
531 		case SOCK_DGRAM:
532 			sendspace = unpdg_sendspace;
533 			recvspace = unpdg_recvspace;
534 			break;
535 
536 		case SOCK_SEQPACKET:
537 			sendspace = unpsp_sendspace;
538 			recvspace = unpsp_recvspace;
539 			break;
540 
541 		default:
542 			panic("uipc_attach");
543 		}
544 		error = soreserve(so, sendspace, recvspace);
545 		if (error)
546 			return (error);
547 	}
548 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
549 	if (unp == NULL)
550 		return (ENOBUFS);
551 	LIST_INIT(&unp->unp_refs);
552 	UNP_PCB_LOCK_INIT(unp);
553 	unp->unp_socket = so;
554 	so->so_pcb = unp;
555 	refcount_init(&unp->unp_refcount, 1);
556 
557 	if ((locked = UNP_LINK_WOWNED()) == false)
558 		UNP_LINK_WLOCK();
559 
560 	unp->unp_gencnt = ++unp_gencnt;
561 	unp->unp_ino = ++unp_ino;
562 	unp_count++;
563 	switch (so->so_type) {
564 	case SOCK_STREAM:
565 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
566 		break;
567 
568 	case SOCK_DGRAM:
569 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
570 		break;
571 
572 	case SOCK_SEQPACKET:
573 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
574 		break;
575 
576 	default:
577 		panic("uipc_attach");
578 	}
579 
580 	if (locked == false)
581 		UNP_LINK_WUNLOCK();
582 
583 	return (0);
584 }
585 
586 static int
587 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
588 {
589 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
590 	struct vattr vattr;
591 	int error, namelen;
592 	struct nameidata nd;
593 	struct unpcb *unp;
594 	struct vnode *vp;
595 	struct mount *mp;
596 	cap_rights_t rights;
597 	char *buf;
598 
599 	if (nam->sa_family != AF_UNIX)
600 		return (EAFNOSUPPORT);
601 
602 	unp = sotounpcb(so);
603 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
604 
605 	if (soun->sun_len > sizeof(struct sockaddr_un))
606 		return (EINVAL);
607 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
608 	if (namelen <= 0)
609 		return (EINVAL);
610 
611 	/*
612 	 * We don't allow simultaneous bind() calls on a single UNIX domain
613 	 * socket, so flag in-progress operations, and return an error if an
614 	 * operation is already in progress.
615 	 *
616 	 * Historically, we have not allowed a socket to be rebound, so this
617 	 * also returns an error.  Not allowing re-binding simplifies the
618 	 * implementation and avoids a great many possible failure modes.
619 	 */
620 	UNP_PCB_LOCK(unp);
621 	if (unp->unp_vnode != NULL) {
622 		UNP_PCB_UNLOCK(unp);
623 		return (EINVAL);
624 	}
625 	if (unp->unp_flags & UNP_BINDING) {
626 		UNP_PCB_UNLOCK(unp);
627 		return (EALREADY);
628 	}
629 	unp->unp_flags |= UNP_BINDING;
630 	UNP_PCB_UNLOCK(unp);
631 
632 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
633 	bcopy(soun->sun_path, buf, namelen);
634 	buf[namelen] = 0;
635 
636 restart:
637 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
638 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
639 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
640 	error = namei(&nd);
641 	if (error)
642 		goto error;
643 	vp = nd.ni_vp;
644 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
645 		NDFREE_PNBUF(&nd);
646 		if (nd.ni_dvp == vp)
647 			vrele(nd.ni_dvp);
648 		else
649 			vput(nd.ni_dvp);
650 		if (vp != NULL) {
651 			vrele(vp);
652 			error = EADDRINUSE;
653 			goto error;
654 		}
655 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
656 		if (error)
657 			goto error;
658 		goto restart;
659 	}
660 	VATTR_NULL(&vattr);
661 	vattr.va_type = VSOCK;
662 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
663 #ifdef MAC
664 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
665 	    &vattr);
666 #endif
667 	if (error == 0)
668 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
669 	NDFREE_PNBUF(&nd);
670 	if (error) {
671 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
672 		vn_finished_write(mp);
673 		if (error == ERELOOKUP)
674 			goto restart;
675 		goto error;
676 	}
677 	vp = nd.ni_vp;
678 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
679 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
680 
681 	UNP_PCB_LOCK(unp);
682 	VOP_UNP_BIND(vp, unp);
683 	unp->unp_vnode = vp;
684 	unp->unp_addr = soun;
685 	unp->unp_flags &= ~UNP_BINDING;
686 	UNP_PCB_UNLOCK(unp);
687 	vref(vp);
688 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
689 	vn_finished_write(mp);
690 	free(buf, M_TEMP);
691 	return (0);
692 
693 error:
694 	UNP_PCB_LOCK(unp);
695 	unp->unp_flags &= ~UNP_BINDING;
696 	UNP_PCB_UNLOCK(unp);
697 	free(buf, M_TEMP);
698 	return (error);
699 }
700 
701 static int
702 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
703 {
704 
705 	return (uipc_bindat(AT_FDCWD, so, nam, td));
706 }
707 
708 static int
709 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
710 {
711 	int error;
712 
713 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
714 	error = unp_connect(so, nam, td);
715 	return (error);
716 }
717 
718 static int
719 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
720     struct thread *td)
721 {
722 	int error;
723 
724 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
725 	error = unp_connectat(fd, so, nam, td);
726 	return (error);
727 }
728 
729 static void
730 uipc_close(struct socket *so)
731 {
732 	struct unpcb *unp, *unp2;
733 	struct vnode *vp = NULL;
734 	struct mtx *vplock;
735 
736 	unp = sotounpcb(so);
737 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
738 
739 	vplock = NULL;
740 	if ((vp = unp->unp_vnode) != NULL) {
741 		vplock = mtx_pool_find(mtxpool_sleep, vp);
742 		mtx_lock(vplock);
743 	}
744 	UNP_PCB_LOCK(unp);
745 	if (vp && unp->unp_vnode == NULL) {
746 		mtx_unlock(vplock);
747 		vp = NULL;
748 	}
749 	if (vp != NULL) {
750 		VOP_UNP_DETACH(vp);
751 		unp->unp_vnode = NULL;
752 	}
753 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
754 		unp_disconnect(unp, unp2);
755 	else
756 		UNP_PCB_UNLOCK(unp);
757 	if (vp) {
758 		mtx_unlock(vplock);
759 		vrele(vp);
760 	}
761 }
762 
763 static int
764 uipc_connect2(struct socket *so1, struct socket *so2)
765 {
766 	struct unpcb *unp, *unp2;
767 	int error;
768 
769 	unp = so1->so_pcb;
770 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
771 	unp2 = so2->so_pcb;
772 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
773 	unp_pcb_lock_pair(unp, unp2);
774 	error = unp_connect2(so1, so2, PRU_CONNECT2);
775 	unp_pcb_unlock_pair(unp, unp2);
776 	return (error);
777 }
778 
779 static void
780 uipc_detach(struct socket *so)
781 {
782 	struct unpcb *unp, *unp2;
783 	struct mtx *vplock;
784 	struct vnode *vp;
785 	int local_unp_rights;
786 
787 	unp = sotounpcb(so);
788 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
789 
790 	vp = NULL;
791 	vplock = NULL;
792 
793 	SOCK_LOCK(so);
794 	if (!SOLISTENING(so)) {
795 		/*
796 		 * Once the socket is removed from the global lists,
797 		 * uipc_ready() will not be able to locate its socket buffer, so
798 		 * clear the buffer now.  At this point internalized rights have
799 		 * already been disposed of.
800 		 */
801 		sbrelease(&so->so_rcv, so);
802 	}
803 	SOCK_UNLOCK(so);
804 
805 	UNP_LINK_WLOCK();
806 	LIST_REMOVE(unp, unp_link);
807 	if (unp->unp_gcflag & UNPGC_DEAD)
808 		LIST_REMOVE(unp, unp_dead);
809 	unp->unp_gencnt = ++unp_gencnt;
810 	--unp_count;
811 	UNP_LINK_WUNLOCK();
812 
813 	UNP_PCB_UNLOCK_ASSERT(unp);
814  restart:
815 	if ((vp = unp->unp_vnode) != NULL) {
816 		vplock = mtx_pool_find(mtxpool_sleep, vp);
817 		mtx_lock(vplock);
818 	}
819 	UNP_PCB_LOCK(unp);
820 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
821 		if (vplock)
822 			mtx_unlock(vplock);
823 		UNP_PCB_UNLOCK(unp);
824 		goto restart;
825 	}
826 	if ((vp = unp->unp_vnode) != NULL) {
827 		VOP_UNP_DETACH(vp);
828 		unp->unp_vnode = NULL;
829 	}
830 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
831 		unp_disconnect(unp, unp2);
832 	else
833 		UNP_PCB_UNLOCK(unp);
834 
835 	UNP_REF_LIST_LOCK();
836 	while (!LIST_EMPTY(&unp->unp_refs)) {
837 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
838 
839 		unp_pcb_hold(ref);
840 		UNP_REF_LIST_UNLOCK();
841 
842 		MPASS(ref != unp);
843 		UNP_PCB_UNLOCK_ASSERT(ref);
844 		unp_drop(ref);
845 		UNP_REF_LIST_LOCK();
846 	}
847 	UNP_REF_LIST_UNLOCK();
848 
849 	UNP_PCB_LOCK(unp);
850 	local_unp_rights = unp_rights;
851 	unp->unp_socket->so_pcb = NULL;
852 	unp->unp_socket = NULL;
853 	free(unp->unp_addr, M_SONAME);
854 	unp->unp_addr = NULL;
855 	if (!unp_pcb_rele(unp))
856 		UNP_PCB_UNLOCK(unp);
857 	if (vp) {
858 		mtx_unlock(vplock);
859 		vrele(vp);
860 	}
861 	if (local_unp_rights)
862 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
863 }
864 
865 static int
866 uipc_disconnect(struct socket *so)
867 {
868 	struct unpcb *unp, *unp2;
869 
870 	unp = sotounpcb(so);
871 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
872 
873 	UNP_PCB_LOCK(unp);
874 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
875 		unp_disconnect(unp, unp2);
876 	else
877 		UNP_PCB_UNLOCK(unp);
878 	return (0);
879 }
880 
881 static int
882 uipc_listen(struct socket *so, int backlog, struct thread *td)
883 {
884 	struct unpcb *unp;
885 	int error;
886 
887 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
888 		return (EOPNOTSUPP);
889 
890 	/*
891 	 * Synchronize with concurrent connection attempts.
892 	 */
893 	error = 0;
894 	unp = sotounpcb(so);
895 	UNP_PCB_LOCK(unp);
896 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
897 		error = EINVAL;
898 	else if (unp->unp_vnode == NULL)
899 		error = EDESTADDRREQ;
900 	if (error != 0) {
901 		UNP_PCB_UNLOCK(unp);
902 		return (error);
903 	}
904 
905 	SOCK_LOCK(so);
906 	error = solisten_proto_check(so);
907 	if (error == 0) {
908 		cru2xt(td, &unp->unp_peercred);
909 		solisten_proto(so, backlog);
910 	}
911 	SOCK_UNLOCK(so);
912 	UNP_PCB_UNLOCK(unp);
913 	return (error);
914 }
915 
916 static int
917 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
918 {
919 	struct unpcb *unp, *unp2;
920 	const struct sockaddr *sa;
921 
922 	unp = sotounpcb(so);
923 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
924 
925 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
926 	UNP_LINK_RLOCK();
927 	/*
928 	 * XXX: It seems that this test always fails even when connection is
929 	 * established.  So, this else clause is added as workaround to
930 	 * return PF_LOCAL sockaddr.
931 	 */
932 	unp2 = unp->unp_conn;
933 	if (unp2 != NULL) {
934 		UNP_PCB_LOCK(unp2);
935 		if (unp2->unp_addr != NULL)
936 			sa = (struct sockaddr *) unp2->unp_addr;
937 		else
938 			sa = &sun_noname;
939 		bcopy(sa, *nam, sa->sa_len);
940 		UNP_PCB_UNLOCK(unp2);
941 	} else {
942 		sa = &sun_noname;
943 		bcopy(sa, *nam, sa->sa_len);
944 	}
945 	UNP_LINK_RUNLOCK();
946 	return (0);
947 }
948 
949 static int
950 uipc_rcvd(struct socket *so, int flags)
951 {
952 	struct unpcb *unp, *unp2;
953 	struct socket *so2;
954 	u_int mbcnt, sbcc;
955 
956 	unp = sotounpcb(so);
957 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
958 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
959 	    ("%s: socktype %d", __func__, so->so_type));
960 
961 	/*
962 	 * Adjust backpressure on sender and wakeup any waiting to write.
963 	 *
964 	 * The unp lock is acquired to maintain the validity of the unp_conn
965 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
966 	 * static as long as we don't permit unp2 to disconnect from unp,
967 	 * which is prevented by the lock on unp.  We cache values from
968 	 * so_rcv to avoid holding the so_rcv lock over the entire
969 	 * transaction on the remote so_snd.
970 	 */
971 	SOCKBUF_LOCK(&so->so_rcv);
972 	mbcnt = so->so_rcv.sb_mbcnt;
973 	sbcc = sbavail(&so->so_rcv);
974 	SOCKBUF_UNLOCK(&so->so_rcv);
975 	/*
976 	 * There is a benign race condition at this point.  If we're planning to
977 	 * clear SB_STOP, but uipc_send is called on the connected socket at
978 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
979 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
980 	 * full.  The race is benign because the only ill effect is to allow the
981 	 * sockbuf to exceed its size limit, and the size limits are not
982 	 * strictly guaranteed anyway.
983 	 */
984 	UNP_PCB_LOCK(unp);
985 	unp2 = unp->unp_conn;
986 	if (unp2 == NULL) {
987 		UNP_PCB_UNLOCK(unp);
988 		return (0);
989 	}
990 	so2 = unp2->unp_socket;
991 	SOCKBUF_LOCK(&so2->so_snd);
992 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
993 		so2->so_snd.sb_flags &= ~SB_STOP;
994 	sowwakeup_locked(so2);
995 	UNP_PCB_UNLOCK(unp);
996 	return (0);
997 }
998 
999 static int
1000 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1001     struct mbuf *control, struct thread *td)
1002 {
1003 	struct unpcb *unp, *unp2;
1004 	struct socket *so2;
1005 	u_int mbcnt, sbcc;
1006 	int error;
1007 
1008 	unp = sotounpcb(so);
1009 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1010 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1011 	    so->so_type == SOCK_SEQPACKET,
1012 	    ("%s: socktype %d", __func__, so->so_type));
1013 
1014 	error = 0;
1015 	if (flags & PRUS_OOB) {
1016 		error = EOPNOTSUPP;
1017 		goto release;
1018 	}
1019 	if (control != NULL && (error = unp_internalize(&control, td)))
1020 		goto release;
1021 
1022 	unp2 = NULL;
1023 	switch (so->so_type) {
1024 	case SOCK_DGRAM:
1025 	{
1026 		const struct sockaddr *from;
1027 
1028 		if (nam != NULL) {
1029 			error = unp_connect(so, nam, td);
1030 			if (error != 0)
1031 				break;
1032 		}
1033 		UNP_PCB_LOCK(unp);
1034 
1035 		/*
1036 		 * Because connect() and send() are non-atomic in a sendto()
1037 		 * with a target address, it's possible that the socket will
1038 		 * have disconnected before the send() can run.  In that case
1039 		 * return the slightly counter-intuitive but otherwise
1040 		 * correct error that the socket is not connected.
1041 		 */
1042 		unp2 = unp_pcb_lock_peer(unp);
1043 		if (unp2 == NULL) {
1044 			UNP_PCB_UNLOCK(unp);
1045 			error = ENOTCONN;
1046 			break;
1047 		}
1048 
1049 		if (unp2->unp_flags & UNP_WANTCRED_MASK)
1050 			control = unp_addsockcred(td, control,
1051 			    unp2->unp_flags);
1052 		if (unp->unp_addr != NULL)
1053 			from = (struct sockaddr *)unp->unp_addr;
1054 		else
1055 			from = &sun_noname;
1056 		so2 = unp2->unp_socket;
1057 		SOCKBUF_LOCK(&so2->so_rcv);
1058 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1059 		    control)) {
1060 			sorwakeup_locked(so2);
1061 			m = NULL;
1062 			control = NULL;
1063 		} else {
1064 			soroverflow_locked(so2);
1065 			error = (so->so_state & SS_NBIO) ? EAGAIN : ENOBUFS;
1066 		}
1067 		if (nam != NULL)
1068 			unp_disconnect(unp, unp2);
1069 		else
1070 			unp_pcb_unlock_pair(unp, unp2);
1071 		break;
1072 	}
1073 
1074 	case SOCK_SEQPACKET:
1075 	case SOCK_STREAM:
1076 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1077 			if (nam != NULL) {
1078 				error = unp_connect(so, nam, td);
1079 				if (error != 0)
1080 					break;
1081 			} else {
1082 				error = ENOTCONN;
1083 				break;
1084 			}
1085 		}
1086 
1087 		UNP_PCB_LOCK(unp);
1088 		if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
1089 			UNP_PCB_UNLOCK(unp);
1090 			error = ENOTCONN;
1091 			break;
1092 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1093 			unp_pcb_unlock_pair(unp, unp2);
1094 			error = EPIPE;
1095 			break;
1096 		}
1097 		UNP_PCB_UNLOCK(unp);
1098 		if ((so2 = unp2->unp_socket) == NULL) {
1099 			UNP_PCB_UNLOCK(unp2);
1100 			error = ENOTCONN;
1101 			break;
1102 		}
1103 		SOCKBUF_LOCK(&so2->so_rcv);
1104 		if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1105 			/*
1106 			 * Credentials are passed only once on SOCK_STREAM and
1107 			 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1108 			 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1109 			 */
1110 			control = unp_addsockcred(td, control, unp2->unp_flags);
1111 			unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1112 		}
1113 
1114 		/*
1115 		 * Send to paired receive port and wake up readers.  Don't
1116 		 * check for space available in the receive buffer if we're
1117 		 * attaching ancillary data; Unix domain sockets only check
1118 		 * for space in the sending sockbuf, and that check is
1119 		 * performed one level up the stack.  At that level we cannot
1120 		 * precisely account for the amount of buffer space used
1121 		 * (e.g., because control messages are not yet internalized).
1122 		 */
1123 		switch (so->so_type) {
1124 		case SOCK_STREAM:
1125 			if (control != NULL) {
1126 				sbappendcontrol_locked(&so2->so_rcv, m,
1127 				    control, flags);
1128 				control = NULL;
1129 			} else
1130 				sbappend_locked(&so2->so_rcv, m, flags);
1131 			break;
1132 
1133 		case SOCK_SEQPACKET:
1134 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1135 			    &sun_noname, m, control))
1136 				control = NULL;
1137 			break;
1138 		}
1139 
1140 		mbcnt = so2->so_rcv.sb_mbcnt;
1141 		sbcc = sbavail(&so2->so_rcv);
1142 		if (sbcc)
1143 			sorwakeup_locked(so2);
1144 		else
1145 			SOCKBUF_UNLOCK(&so2->so_rcv);
1146 
1147 		/*
1148 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1149 		 * it would be possible for uipc_rcvd to be called at this
1150 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1151 		 * we would set SB_STOP below.  That could lead to an empty
1152 		 * sockbuf having SB_STOP set
1153 		 */
1154 		SOCKBUF_LOCK(&so->so_snd);
1155 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1156 			so->so_snd.sb_flags |= SB_STOP;
1157 		SOCKBUF_UNLOCK(&so->so_snd);
1158 		UNP_PCB_UNLOCK(unp2);
1159 		m = NULL;
1160 		break;
1161 	}
1162 
1163 	/*
1164 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1165 	 */
1166 	if (flags & PRUS_EOF) {
1167 		UNP_PCB_LOCK(unp);
1168 		socantsendmore(so);
1169 		unp_shutdown(unp);
1170 		UNP_PCB_UNLOCK(unp);
1171 	}
1172 	if (control != NULL && error != 0)
1173 		unp_dispose_mbuf(control);
1174 
1175 release:
1176 	if (control != NULL)
1177 		m_freem(control);
1178 	/*
1179 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1180 	 * for freeing memory.
1181 	 */
1182 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1183 		m_freem(m);
1184 	return (error);
1185 }
1186 
1187 static bool
1188 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1189 {
1190 	struct mbuf *mb, *n;
1191 	struct sockbuf *sb;
1192 
1193 	SOCK_LOCK(so);
1194 	if (SOLISTENING(so)) {
1195 		SOCK_UNLOCK(so);
1196 		return (false);
1197 	}
1198 	mb = NULL;
1199 	sb = &so->so_rcv;
1200 	SOCKBUF_LOCK(sb);
1201 	if (sb->sb_fnrdy != NULL) {
1202 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1203 			if (mb == m) {
1204 				*errorp = sbready(sb, m, count);
1205 				break;
1206 			}
1207 			mb = mb->m_next;
1208 			if (mb == NULL) {
1209 				mb = n;
1210 				if (mb != NULL)
1211 					n = mb->m_nextpkt;
1212 			}
1213 		}
1214 	}
1215 	SOCKBUF_UNLOCK(sb);
1216 	SOCK_UNLOCK(so);
1217 	return (mb != NULL);
1218 }
1219 
1220 static int
1221 uipc_ready(struct socket *so, struct mbuf *m, int count)
1222 {
1223 	struct unpcb *unp, *unp2;
1224 	struct socket *so2;
1225 	int error, i;
1226 
1227 	unp = sotounpcb(so);
1228 
1229 	KASSERT(so->so_type == SOCK_STREAM,
1230 	    ("%s: unexpected socket type for %p", __func__, so));
1231 
1232 	UNP_PCB_LOCK(unp);
1233 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1234 		UNP_PCB_UNLOCK(unp);
1235 		so2 = unp2->unp_socket;
1236 		SOCKBUF_LOCK(&so2->so_rcv);
1237 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1238 			sorwakeup_locked(so2);
1239 		else
1240 			SOCKBUF_UNLOCK(&so2->so_rcv);
1241 		UNP_PCB_UNLOCK(unp2);
1242 		return (error);
1243 	}
1244 	UNP_PCB_UNLOCK(unp);
1245 
1246 	/*
1247 	 * The receiving socket has been disconnected, but may still be valid.
1248 	 * In this case, the now-ready mbufs are still present in its socket
1249 	 * buffer, so perform an exhaustive search before giving up and freeing
1250 	 * the mbufs.
1251 	 */
1252 	UNP_LINK_RLOCK();
1253 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1254 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1255 			break;
1256 	}
1257 	UNP_LINK_RUNLOCK();
1258 
1259 	if (unp == NULL) {
1260 		for (i = 0; i < count; i++)
1261 			m = m_free(m);
1262 		error = ECONNRESET;
1263 	}
1264 	return (error);
1265 }
1266 
1267 static int
1268 uipc_sense(struct socket *so, struct stat *sb)
1269 {
1270 	struct unpcb *unp;
1271 
1272 	unp = sotounpcb(so);
1273 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1274 
1275 	sb->st_blksize = so->so_snd.sb_hiwat;
1276 	sb->st_dev = NODEV;
1277 	sb->st_ino = unp->unp_ino;
1278 	return (0);
1279 }
1280 
1281 static int
1282 uipc_shutdown(struct socket *so)
1283 {
1284 	struct unpcb *unp;
1285 
1286 	unp = sotounpcb(so);
1287 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1288 
1289 	UNP_PCB_LOCK(unp);
1290 	socantsendmore(so);
1291 	unp_shutdown(unp);
1292 	UNP_PCB_UNLOCK(unp);
1293 	return (0);
1294 }
1295 
1296 static int
1297 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1298 {
1299 	struct unpcb *unp;
1300 	const struct sockaddr *sa;
1301 
1302 	unp = sotounpcb(so);
1303 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1304 
1305 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1306 	UNP_PCB_LOCK(unp);
1307 	if (unp->unp_addr != NULL)
1308 		sa = (struct sockaddr *) unp->unp_addr;
1309 	else
1310 		sa = &sun_noname;
1311 	bcopy(sa, *nam, sa->sa_len);
1312 	UNP_PCB_UNLOCK(unp);
1313 	return (0);
1314 }
1315 
1316 static struct pr_usrreqs uipc_usrreqs_dgram = {
1317 	.pru_abort = 		uipc_abort,
1318 	.pru_accept =		uipc_accept,
1319 	.pru_attach =		uipc_attach,
1320 	.pru_bind =		uipc_bind,
1321 	.pru_bindat =		uipc_bindat,
1322 	.pru_connect =		uipc_connect,
1323 	.pru_connectat =	uipc_connectat,
1324 	.pru_connect2 =		uipc_connect2,
1325 	.pru_detach =		uipc_detach,
1326 	.pru_disconnect =	uipc_disconnect,
1327 	.pru_listen =		uipc_listen,
1328 	.pru_peeraddr =		uipc_peeraddr,
1329 	.pru_rcvd =		uipc_rcvd,
1330 	.pru_send =		uipc_send,
1331 	.pru_sense =		uipc_sense,
1332 	.pru_shutdown =		uipc_shutdown,
1333 	.pru_sockaddr =		uipc_sockaddr,
1334 	.pru_soreceive =	soreceive_dgram,
1335 	.pru_close =		uipc_close,
1336 };
1337 
1338 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1339 	.pru_abort =		uipc_abort,
1340 	.pru_accept =		uipc_accept,
1341 	.pru_attach =		uipc_attach,
1342 	.pru_bind =		uipc_bind,
1343 	.pru_bindat =		uipc_bindat,
1344 	.pru_connect =		uipc_connect,
1345 	.pru_connectat =	uipc_connectat,
1346 	.pru_connect2 =		uipc_connect2,
1347 	.pru_detach =		uipc_detach,
1348 	.pru_disconnect =	uipc_disconnect,
1349 	.pru_listen =		uipc_listen,
1350 	.pru_peeraddr =		uipc_peeraddr,
1351 	.pru_rcvd =		uipc_rcvd,
1352 	.pru_send =		uipc_send,
1353 	.pru_sense =		uipc_sense,
1354 	.pru_shutdown =		uipc_shutdown,
1355 	.pru_sockaddr =		uipc_sockaddr,
1356 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1357 	.pru_close =		uipc_close,
1358 };
1359 
1360 static struct pr_usrreqs uipc_usrreqs_stream = {
1361 	.pru_abort = 		uipc_abort,
1362 	.pru_accept =		uipc_accept,
1363 	.pru_attach =		uipc_attach,
1364 	.pru_bind =		uipc_bind,
1365 	.pru_bindat =		uipc_bindat,
1366 	.pru_connect =		uipc_connect,
1367 	.pru_connectat =	uipc_connectat,
1368 	.pru_connect2 =		uipc_connect2,
1369 	.pru_detach =		uipc_detach,
1370 	.pru_disconnect =	uipc_disconnect,
1371 	.pru_listen =		uipc_listen,
1372 	.pru_peeraddr =		uipc_peeraddr,
1373 	.pru_rcvd =		uipc_rcvd,
1374 	.pru_send =		uipc_send,
1375 	.pru_ready =		uipc_ready,
1376 	.pru_sense =		uipc_sense,
1377 	.pru_shutdown =		uipc_shutdown,
1378 	.pru_sockaddr =		uipc_sockaddr,
1379 	.pru_soreceive =	soreceive_generic,
1380 	.pru_close =		uipc_close,
1381 };
1382 
1383 static int
1384 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1385 {
1386 	struct unpcb *unp;
1387 	struct xucred xu;
1388 	int error, optval;
1389 
1390 	if (sopt->sopt_level != SOL_LOCAL)
1391 		return (EINVAL);
1392 
1393 	unp = sotounpcb(so);
1394 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1395 	error = 0;
1396 	switch (sopt->sopt_dir) {
1397 	case SOPT_GET:
1398 		switch (sopt->sopt_name) {
1399 		case LOCAL_PEERCRED:
1400 			UNP_PCB_LOCK(unp);
1401 			if (unp->unp_flags & UNP_HAVEPC)
1402 				xu = unp->unp_peercred;
1403 			else {
1404 				if (so->so_type == SOCK_STREAM)
1405 					error = ENOTCONN;
1406 				else
1407 					error = EINVAL;
1408 			}
1409 			UNP_PCB_UNLOCK(unp);
1410 			if (error == 0)
1411 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1412 			break;
1413 
1414 		case LOCAL_CREDS:
1415 			/* Unlocked read. */
1416 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1417 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1418 			break;
1419 
1420 		case LOCAL_CREDS_PERSISTENT:
1421 			/* Unlocked read. */
1422 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1423 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1424 			break;
1425 
1426 		case LOCAL_CONNWAIT:
1427 			/* Unlocked read. */
1428 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1429 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1430 			break;
1431 
1432 		default:
1433 			error = EOPNOTSUPP;
1434 			break;
1435 		}
1436 		break;
1437 
1438 	case SOPT_SET:
1439 		switch (sopt->sopt_name) {
1440 		case LOCAL_CREDS:
1441 		case LOCAL_CREDS_PERSISTENT:
1442 		case LOCAL_CONNWAIT:
1443 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1444 					    sizeof(optval));
1445 			if (error)
1446 				break;
1447 
1448 #define	OPTSET(bit, exclusive) do {					\
1449 	UNP_PCB_LOCK(unp);						\
1450 	if (optval) {							\
1451 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1452 			UNP_PCB_UNLOCK(unp);				\
1453 			error = EINVAL;					\
1454 			break;						\
1455 		}							\
1456 		unp->unp_flags |= (bit);				\
1457 	} else								\
1458 		unp->unp_flags &= ~(bit);				\
1459 	UNP_PCB_UNLOCK(unp);						\
1460 } while (0)
1461 
1462 			switch (sopt->sopt_name) {
1463 			case LOCAL_CREDS:
1464 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1465 				break;
1466 
1467 			case LOCAL_CREDS_PERSISTENT:
1468 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1469 				break;
1470 
1471 			case LOCAL_CONNWAIT:
1472 				OPTSET(UNP_CONNWAIT, 0);
1473 				break;
1474 
1475 			default:
1476 				break;
1477 			}
1478 			break;
1479 #undef	OPTSET
1480 		default:
1481 			error = ENOPROTOOPT;
1482 			break;
1483 		}
1484 		break;
1485 
1486 	default:
1487 		error = EOPNOTSUPP;
1488 		break;
1489 	}
1490 	return (error);
1491 }
1492 
1493 static int
1494 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1495 {
1496 
1497 	return (unp_connectat(AT_FDCWD, so, nam, td));
1498 }
1499 
1500 static int
1501 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1502     struct thread *td)
1503 {
1504 	struct mtx *vplock;
1505 	struct sockaddr_un *soun;
1506 	struct vnode *vp;
1507 	struct socket *so2;
1508 	struct unpcb *unp, *unp2, *unp3;
1509 	struct nameidata nd;
1510 	char buf[SOCK_MAXADDRLEN];
1511 	struct sockaddr *sa;
1512 	cap_rights_t rights;
1513 	int error, len;
1514 	bool connreq;
1515 
1516 	if (nam->sa_family != AF_UNIX)
1517 		return (EAFNOSUPPORT);
1518 	if (nam->sa_len > sizeof(struct sockaddr_un))
1519 		return (EINVAL);
1520 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1521 	if (len <= 0)
1522 		return (EINVAL);
1523 	soun = (struct sockaddr_un *)nam;
1524 	bcopy(soun->sun_path, buf, len);
1525 	buf[len] = 0;
1526 
1527 	error = 0;
1528 	unp = sotounpcb(so);
1529 	UNP_PCB_LOCK(unp);
1530 	for (;;) {
1531 		/*
1532 		 * Wait for connection state to stabilize.  If a connection
1533 		 * already exists, give up.  For datagram sockets, which permit
1534 		 * multiple consecutive connect(2) calls, upper layers are
1535 		 * responsible for disconnecting in advance of a subsequent
1536 		 * connect(2), but this is not synchronized with PCB connection
1537 		 * state.
1538 		 *
1539 		 * Also make sure that no threads are currently attempting to
1540 		 * lock the peer socket, to ensure that unp_conn cannot
1541 		 * transition between two valid sockets while locks are dropped.
1542 		 */
1543 		if (SOLISTENING(so))
1544 			error = EOPNOTSUPP;
1545 		else if (unp->unp_conn != NULL)
1546 			error = EISCONN;
1547 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1548 			error = EALREADY;
1549 		}
1550 		if (error != 0) {
1551 			UNP_PCB_UNLOCK(unp);
1552 			return (error);
1553 		}
1554 		if (unp->unp_pairbusy > 0) {
1555 			unp->unp_flags |= UNP_WAITING;
1556 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1557 			continue;
1558 		}
1559 		break;
1560 	}
1561 	unp->unp_flags |= UNP_CONNECTING;
1562 	UNP_PCB_UNLOCK(unp);
1563 
1564 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1565 	if (connreq)
1566 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1567 	else
1568 		sa = NULL;
1569 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1570 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1571 	error = namei(&nd);
1572 	if (error)
1573 		vp = NULL;
1574 	else
1575 		vp = nd.ni_vp;
1576 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1577 	NDFREE_NOTHING(&nd);
1578 	if (error)
1579 		goto bad;
1580 
1581 	if (vp->v_type != VSOCK) {
1582 		error = ENOTSOCK;
1583 		goto bad;
1584 	}
1585 #ifdef MAC
1586 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1587 	if (error)
1588 		goto bad;
1589 #endif
1590 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1591 	if (error)
1592 		goto bad;
1593 
1594 	unp = sotounpcb(so);
1595 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1596 
1597 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1598 	mtx_lock(vplock);
1599 	VOP_UNP_CONNECT(vp, &unp2);
1600 	if (unp2 == NULL) {
1601 		error = ECONNREFUSED;
1602 		goto bad2;
1603 	}
1604 	so2 = unp2->unp_socket;
1605 	if (so->so_type != so2->so_type) {
1606 		error = EPROTOTYPE;
1607 		goto bad2;
1608 	}
1609 	if (connreq) {
1610 		if (SOLISTENING(so2)) {
1611 			CURVNET_SET(so2->so_vnet);
1612 			so2 = sonewconn(so2, 0);
1613 			CURVNET_RESTORE();
1614 		} else
1615 			so2 = NULL;
1616 		if (so2 == NULL) {
1617 			error = ECONNREFUSED;
1618 			goto bad2;
1619 		}
1620 		unp3 = sotounpcb(so2);
1621 		unp_pcb_lock_pair(unp2, unp3);
1622 		if (unp2->unp_addr != NULL) {
1623 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1624 			unp3->unp_addr = (struct sockaddr_un *) sa;
1625 			sa = NULL;
1626 		}
1627 
1628 		unp_copy_peercred(td, unp3, unp, unp2);
1629 
1630 		UNP_PCB_UNLOCK(unp2);
1631 		unp2 = unp3;
1632 
1633 		/*
1634 		 * It is safe to block on the PCB lock here since unp2 is
1635 		 * nascent and cannot be connected to any other sockets.
1636 		 */
1637 		UNP_PCB_LOCK(unp);
1638 #ifdef MAC
1639 		mac_socketpeer_set_from_socket(so, so2);
1640 		mac_socketpeer_set_from_socket(so2, so);
1641 #endif
1642 	} else {
1643 		unp_pcb_lock_pair(unp, unp2);
1644 	}
1645 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1646 	    sotounpcb(so2) == unp2,
1647 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1648 	error = unp_connect2(so, so2, PRU_CONNECT);
1649 	unp_pcb_unlock_pair(unp, unp2);
1650 bad2:
1651 	mtx_unlock(vplock);
1652 bad:
1653 	if (vp != NULL) {
1654 		vput(vp);
1655 	}
1656 	free(sa, M_SONAME);
1657 	UNP_PCB_LOCK(unp);
1658 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1659 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1660 	unp->unp_flags &= ~UNP_CONNECTING;
1661 	UNP_PCB_UNLOCK(unp);
1662 	return (error);
1663 }
1664 
1665 /*
1666  * Set socket peer credentials at connection time.
1667  *
1668  * The client's PCB credentials are copied from its process structure.  The
1669  * server's PCB credentials are copied from the socket on which it called
1670  * listen(2).  uipc_listen cached that process's credentials at the time.
1671  */
1672 void
1673 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1674     struct unpcb *server_unp, struct unpcb *listen_unp)
1675 {
1676 	cru2xt(td, &client_unp->unp_peercred);
1677 	client_unp->unp_flags |= UNP_HAVEPC;
1678 
1679 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1680 	    sizeof(server_unp->unp_peercred));
1681 	server_unp->unp_flags |= UNP_HAVEPC;
1682 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
1683 }
1684 
1685 static int
1686 unp_connect2(struct socket *so, struct socket *so2, int req)
1687 {
1688 	struct unpcb *unp;
1689 	struct unpcb *unp2;
1690 
1691 	unp = sotounpcb(so);
1692 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1693 	unp2 = sotounpcb(so2);
1694 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1695 
1696 	UNP_PCB_LOCK_ASSERT(unp);
1697 	UNP_PCB_LOCK_ASSERT(unp2);
1698 	KASSERT(unp->unp_conn == NULL,
1699 	    ("%s: socket %p is already connected", __func__, unp));
1700 
1701 	if (so2->so_type != so->so_type)
1702 		return (EPROTOTYPE);
1703 	unp->unp_conn = unp2;
1704 	unp_pcb_hold(unp2);
1705 	unp_pcb_hold(unp);
1706 	switch (so->so_type) {
1707 	case SOCK_DGRAM:
1708 		UNP_REF_LIST_LOCK();
1709 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1710 		UNP_REF_LIST_UNLOCK();
1711 		soisconnected(so);
1712 		break;
1713 
1714 	case SOCK_STREAM:
1715 	case SOCK_SEQPACKET:
1716 		KASSERT(unp2->unp_conn == NULL,
1717 		    ("%s: socket %p is already connected", __func__, unp2));
1718 		unp2->unp_conn = unp;
1719 		if (req == PRU_CONNECT &&
1720 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1721 			soisconnecting(so);
1722 		else
1723 			soisconnected(so);
1724 		soisconnected(so2);
1725 		break;
1726 
1727 	default:
1728 		panic("unp_connect2");
1729 	}
1730 	return (0);
1731 }
1732 
1733 static void
1734 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1735 {
1736 	struct socket *so, *so2;
1737 #ifdef INVARIANTS
1738 	struct unpcb *unptmp;
1739 #endif
1740 
1741 	UNP_PCB_LOCK_ASSERT(unp);
1742 	UNP_PCB_LOCK_ASSERT(unp2);
1743 	KASSERT(unp->unp_conn == unp2,
1744 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
1745 
1746 	unp->unp_conn = NULL;
1747 	so = unp->unp_socket;
1748 	so2 = unp2->unp_socket;
1749 	switch (unp->unp_socket->so_type) {
1750 	case SOCK_DGRAM:
1751 		UNP_REF_LIST_LOCK();
1752 #ifdef INVARIANTS
1753 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
1754 			if (unptmp == unp)
1755 				break;
1756 		}
1757 		KASSERT(unptmp != NULL,
1758 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
1759 #endif
1760 		LIST_REMOVE(unp, unp_reflink);
1761 		UNP_REF_LIST_UNLOCK();
1762 		if (so) {
1763 			SOCK_LOCK(so);
1764 			so->so_state &= ~SS_ISCONNECTED;
1765 			SOCK_UNLOCK(so);
1766 		}
1767 		break;
1768 
1769 	case SOCK_STREAM:
1770 	case SOCK_SEQPACKET:
1771 		if (so)
1772 			soisdisconnected(so);
1773 		MPASS(unp2->unp_conn == unp);
1774 		unp2->unp_conn = NULL;
1775 		if (so2)
1776 			soisdisconnected(so2);
1777 		break;
1778 	}
1779 
1780 	if (unp == unp2) {
1781 		unp_pcb_rele_notlast(unp);
1782 		if (!unp_pcb_rele(unp))
1783 			UNP_PCB_UNLOCK(unp);
1784 	} else {
1785 		if (!unp_pcb_rele(unp))
1786 			UNP_PCB_UNLOCK(unp);
1787 		if (!unp_pcb_rele(unp2))
1788 			UNP_PCB_UNLOCK(unp2);
1789 	}
1790 }
1791 
1792 /*
1793  * unp_pcblist() walks the global list of struct unpcb's to generate a
1794  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1795  * sequentially, validating the generation number on each to see if it has
1796  * been detached.  All of this is necessary because copyout() may sleep on
1797  * disk I/O.
1798  */
1799 static int
1800 unp_pcblist(SYSCTL_HANDLER_ARGS)
1801 {
1802 	struct unpcb *unp, **unp_list;
1803 	unp_gen_t gencnt;
1804 	struct xunpgen *xug;
1805 	struct unp_head *head;
1806 	struct xunpcb *xu;
1807 	u_int i;
1808 	int error, n;
1809 
1810 	switch ((intptr_t)arg1) {
1811 	case SOCK_STREAM:
1812 		head = &unp_shead;
1813 		break;
1814 
1815 	case SOCK_DGRAM:
1816 		head = &unp_dhead;
1817 		break;
1818 
1819 	case SOCK_SEQPACKET:
1820 		head = &unp_sphead;
1821 		break;
1822 
1823 	default:
1824 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1825 	}
1826 
1827 	/*
1828 	 * The process of preparing the PCB list is too time-consuming and
1829 	 * resource-intensive to repeat twice on every request.
1830 	 */
1831 	if (req->oldptr == NULL) {
1832 		n = unp_count;
1833 		req->oldidx = 2 * (sizeof *xug)
1834 			+ (n + n/8) * sizeof(struct xunpcb);
1835 		return (0);
1836 	}
1837 
1838 	if (req->newptr != NULL)
1839 		return (EPERM);
1840 
1841 	/*
1842 	 * OK, now we're committed to doing something.
1843 	 */
1844 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1845 	UNP_LINK_RLOCK();
1846 	gencnt = unp_gencnt;
1847 	n = unp_count;
1848 	UNP_LINK_RUNLOCK();
1849 
1850 	xug->xug_len = sizeof *xug;
1851 	xug->xug_count = n;
1852 	xug->xug_gen = gencnt;
1853 	xug->xug_sogen = so_gencnt;
1854 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1855 	if (error) {
1856 		free(xug, M_TEMP);
1857 		return (error);
1858 	}
1859 
1860 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1861 
1862 	UNP_LINK_RLOCK();
1863 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1864 	     unp = LIST_NEXT(unp, unp_link)) {
1865 		UNP_PCB_LOCK(unp);
1866 		if (unp->unp_gencnt <= gencnt) {
1867 			if (cr_cansee(req->td->td_ucred,
1868 			    unp->unp_socket->so_cred)) {
1869 				UNP_PCB_UNLOCK(unp);
1870 				continue;
1871 			}
1872 			unp_list[i++] = unp;
1873 			unp_pcb_hold(unp);
1874 		}
1875 		UNP_PCB_UNLOCK(unp);
1876 	}
1877 	UNP_LINK_RUNLOCK();
1878 	n = i;			/* In case we lost some during malloc. */
1879 
1880 	error = 0;
1881 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1882 	for (i = 0; i < n; i++) {
1883 		unp = unp_list[i];
1884 		UNP_PCB_LOCK(unp);
1885 		if (unp_pcb_rele(unp))
1886 			continue;
1887 
1888 		if (unp->unp_gencnt <= gencnt) {
1889 			xu->xu_len = sizeof *xu;
1890 			xu->xu_unpp = (uintptr_t)unp;
1891 			/*
1892 			 * XXX - need more locking here to protect against
1893 			 * connect/disconnect races for SMP.
1894 			 */
1895 			if (unp->unp_addr != NULL)
1896 				bcopy(unp->unp_addr, &xu->xu_addr,
1897 				      unp->unp_addr->sun_len);
1898 			else
1899 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1900 			if (unp->unp_conn != NULL &&
1901 			    unp->unp_conn->unp_addr != NULL)
1902 				bcopy(unp->unp_conn->unp_addr,
1903 				      &xu->xu_caddr,
1904 				      unp->unp_conn->unp_addr->sun_len);
1905 			else
1906 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1907 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1908 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1909 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1910 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1911 			xu->unp_gencnt = unp->unp_gencnt;
1912 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1913 			UNP_PCB_UNLOCK(unp);
1914 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1915 		} else {
1916 			UNP_PCB_UNLOCK(unp);
1917 		}
1918 	}
1919 	free(xu, M_TEMP);
1920 	if (!error) {
1921 		/*
1922 		 * Give the user an updated idea of our state.  If the
1923 		 * generation differs from what we told her before, she knows
1924 		 * that something happened while we were processing this
1925 		 * request, and it might be necessary to retry.
1926 		 */
1927 		xug->xug_gen = unp_gencnt;
1928 		xug->xug_sogen = so_gencnt;
1929 		xug->xug_count = unp_count;
1930 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1931 	}
1932 	free(unp_list, M_TEMP);
1933 	free(xug, M_TEMP);
1934 	return (error);
1935 }
1936 
1937 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1938     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1939     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1940     "List of active local datagram sockets");
1941 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1942     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1943     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1944     "List of active local stream sockets");
1945 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1946     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1947     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1948     "List of active local seqpacket sockets");
1949 
1950 static void
1951 unp_shutdown(struct unpcb *unp)
1952 {
1953 	struct unpcb *unp2;
1954 	struct socket *so;
1955 
1956 	UNP_PCB_LOCK_ASSERT(unp);
1957 
1958 	unp2 = unp->unp_conn;
1959 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1960 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1961 		so = unp2->unp_socket;
1962 		if (so != NULL)
1963 			socantrcvmore(so);
1964 	}
1965 }
1966 
1967 static void
1968 unp_drop(struct unpcb *unp)
1969 {
1970 	struct socket *so;
1971 	struct unpcb *unp2;
1972 
1973 	/*
1974 	 * Regardless of whether the socket's peer dropped the connection
1975 	 * with this socket by aborting or disconnecting, POSIX requires
1976 	 * that ECONNRESET is returned.
1977 	 */
1978 
1979 	UNP_PCB_LOCK(unp);
1980 	so = unp->unp_socket;
1981 	if (so)
1982 		so->so_error = ECONNRESET;
1983 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1984 		/* Last reference dropped in unp_disconnect(). */
1985 		unp_pcb_rele_notlast(unp);
1986 		unp_disconnect(unp, unp2);
1987 	} else if (!unp_pcb_rele(unp)) {
1988 		UNP_PCB_UNLOCK(unp);
1989 	}
1990 }
1991 
1992 static void
1993 unp_freerights(struct filedescent **fdep, int fdcount)
1994 {
1995 	struct file *fp;
1996 	int i;
1997 
1998 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1999 
2000 	for (i = 0; i < fdcount; i++) {
2001 		fp = fdep[i]->fde_file;
2002 		filecaps_free(&fdep[i]->fde_caps);
2003 		unp_discard(fp);
2004 	}
2005 	free(fdep[0], M_FILECAPS);
2006 }
2007 
2008 static int
2009 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2010 {
2011 	struct thread *td = curthread;		/* XXX */
2012 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2013 	int i;
2014 	int *fdp;
2015 	struct filedesc *fdesc = td->td_proc->p_fd;
2016 	struct filedescent **fdep;
2017 	void *data;
2018 	socklen_t clen = control->m_len, datalen;
2019 	int error, newfds;
2020 	u_int newlen;
2021 
2022 	UNP_LINK_UNLOCK_ASSERT();
2023 
2024 	error = 0;
2025 	if (controlp != NULL) /* controlp == NULL => free control messages */
2026 		*controlp = NULL;
2027 	while (cm != NULL) {
2028 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2029 			error = EINVAL;
2030 			break;
2031 		}
2032 		data = CMSG_DATA(cm);
2033 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2034 		if (cm->cmsg_level == SOL_SOCKET
2035 		    && cm->cmsg_type == SCM_RIGHTS) {
2036 			newfds = datalen / sizeof(*fdep);
2037 			if (newfds == 0)
2038 				goto next;
2039 			fdep = data;
2040 
2041 			/* If we're not outputting the descriptors free them. */
2042 			if (error || controlp == NULL) {
2043 				unp_freerights(fdep, newfds);
2044 				goto next;
2045 			}
2046 			FILEDESC_XLOCK(fdesc);
2047 
2048 			/*
2049 			 * Now change each pointer to an fd in the global
2050 			 * table to an integer that is the index to the local
2051 			 * fd table entry that we set up to point to the
2052 			 * global one we are transferring.
2053 			 */
2054 			newlen = newfds * sizeof(int);
2055 			*controlp = sbcreatecontrol(NULL, newlen,
2056 			    SCM_RIGHTS, SOL_SOCKET);
2057 			if (*controlp == NULL) {
2058 				FILEDESC_XUNLOCK(fdesc);
2059 				error = E2BIG;
2060 				unp_freerights(fdep, newfds);
2061 				goto next;
2062 			}
2063 
2064 			fdp = (int *)
2065 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2066 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2067 				FILEDESC_XUNLOCK(fdesc);
2068 				error = EMSGSIZE;
2069 				unp_freerights(fdep, newfds);
2070 				m_freem(*controlp);
2071 				*controlp = NULL;
2072 				goto next;
2073 			}
2074 			for (i = 0; i < newfds; i++, fdp++) {
2075 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2076 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2077 				    &fdep[i]->fde_caps);
2078 				unp_externalize_fp(fdep[i]->fde_file);
2079 			}
2080 
2081 			/*
2082 			 * The new type indicates that the mbuf data refers to
2083 			 * kernel resources that may need to be released before
2084 			 * the mbuf is freed.
2085 			 */
2086 			m_chtype(*controlp, MT_EXTCONTROL);
2087 			FILEDESC_XUNLOCK(fdesc);
2088 			free(fdep[0], M_FILECAPS);
2089 		} else {
2090 			/* We can just copy anything else across. */
2091 			if (error || controlp == NULL)
2092 				goto next;
2093 			*controlp = sbcreatecontrol(NULL, datalen,
2094 			    cm->cmsg_type, cm->cmsg_level);
2095 			if (*controlp == NULL) {
2096 				error = ENOBUFS;
2097 				goto next;
2098 			}
2099 			bcopy(data,
2100 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2101 			    datalen);
2102 		}
2103 		controlp = &(*controlp)->m_next;
2104 
2105 next:
2106 		if (CMSG_SPACE(datalen) < clen) {
2107 			clen -= CMSG_SPACE(datalen);
2108 			cm = (struct cmsghdr *)
2109 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2110 		} else {
2111 			clen = 0;
2112 			cm = NULL;
2113 		}
2114 	}
2115 
2116 	m_freem(control);
2117 	return (error);
2118 }
2119 
2120 static void
2121 unp_zone_change(void *tag)
2122 {
2123 
2124 	uma_zone_set_max(unp_zone, maxsockets);
2125 }
2126 
2127 #ifdef INVARIANTS
2128 static void
2129 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2130 {
2131 	struct unpcb *unp;
2132 
2133 	unp = mem;
2134 
2135 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2136 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2137 	KASSERT(unp->unp_socket == NULL,
2138 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2139 	KASSERT(unp->unp_vnode == NULL,
2140 	    ("%s: unpcb %p has vnode references", __func__, unp));
2141 	KASSERT(unp->unp_conn == NULL,
2142 	    ("%s: unpcb %p is still connected", __func__, unp));
2143 	KASSERT(unp->unp_addr == NULL,
2144 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2145 }
2146 #endif
2147 
2148 static void
2149 unp_init(void *arg __unused)
2150 {
2151 	uma_dtor dtor;
2152 
2153 #ifdef INVARIANTS
2154 	dtor = unp_zdtor;
2155 #else
2156 	dtor = NULL;
2157 #endif
2158 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2159 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2160 	uma_zone_set_max(unp_zone, maxsockets);
2161 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2162 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2163 	    NULL, EVENTHANDLER_PRI_ANY);
2164 	LIST_INIT(&unp_dhead);
2165 	LIST_INIT(&unp_shead);
2166 	LIST_INIT(&unp_sphead);
2167 	SLIST_INIT(&unp_defers);
2168 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2169 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2170 	UNP_LINK_LOCK_INIT();
2171 	UNP_DEFERRED_LOCK_INIT();
2172 }
2173 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2174 
2175 static void
2176 unp_internalize_cleanup_rights(struct mbuf *control)
2177 {
2178 	struct cmsghdr *cp;
2179 	struct mbuf *m;
2180 	void *data;
2181 	socklen_t datalen;
2182 
2183 	for (m = control; m != NULL; m = m->m_next) {
2184 		cp = mtod(m, struct cmsghdr *);
2185 		if (cp->cmsg_level != SOL_SOCKET ||
2186 		    cp->cmsg_type != SCM_RIGHTS)
2187 			continue;
2188 		data = CMSG_DATA(cp);
2189 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2190 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2191 	}
2192 }
2193 
2194 static int
2195 unp_internalize(struct mbuf **controlp, struct thread *td)
2196 {
2197 	struct mbuf *control, **initial_controlp;
2198 	struct proc *p;
2199 	struct filedesc *fdesc;
2200 	struct bintime *bt;
2201 	struct cmsghdr *cm;
2202 	struct cmsgcred *cmcred;
2203 	struct filedescent *fde, **fdep, *fdev;
2204 	struct file *fp;
2205 	struct timeval *tv;
2206 	struct timespec *ts;
2207 	void *data;
2208 	socklen_t clen, datalen;
2209 	int i, j, error, *fdp, oldfds;
2210 	u_int newlen;
2211 
2212 	UNP_LINK_UNLOCK_ASSERT();
2213 
2214 	p = td->td_proc;
2215 	fdesc = p->p_fd;
2216 	error = 0;
2217 	control = *controlp;
2218 	clen = control->m_len;
2219 	*controlp = NULL;
2220 	initial_controlp = controlp;
2221 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2222 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2223 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2224 			error = EINVAL;
2225 			goto out;
2226 		}
2227 		data = CMSG_DATA(cm);
2228 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2229 
2230 		switch (cm->cmsg_type) {
2231 		/*
2232 		 * Fill in credential information.
2233 		 */
2234 		case SCM_CREDS:
2235 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2236 			    SCM_CREDS, SOL_SOCKET);
2237 			if (*controlp == NULL) {
2238 				error = ENOBUFS;
2239 				goto out;
2240 			}
2241 			cmcred = (struct cmsgcred *)
2242 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2243 			cmcred->cmcred_pid = p->p_pid;
2244 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2245 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2246 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2247 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2248 			    CMGROUP_MAX);
2249 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2250 				cmcred->cmcred_groups[i] =
2251 				    td->td_ucred->cr_groups[i];
2252 			break;
2253 
2254 		case SCM_RIGHTS:
2255 			oldfds = datalen / sizeof (int);
2256 			if (oldfds == 0)
2257 				break;
2258 			/*
2259 			 * Check that all the FDs passed in refer to legal
2260 			 * files.  If not, reject the entire operation.
2261 			 */
2262 			fdp = data;
2263 			FILEDESC_SLOCK(fdesc);
2264 			for (i = 0; i < oldfds; i++, fdp++) {
2265 				fp = fget_noref(fdesc, *fdp);
2266 				if (fp == NULL) {
2267 					FILEDESC_SUNLOCK(fdesc);
2268 					error = EBADF;
2269 					goto out;
2270 				}
2271 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2272 					FILEDESC_SUNLOCK(fdesc);
2273 					error = EOPNOTSUPP;
2274 					goto out;
2275 				}
2276 			}
2277 
2278 			/*
2279 			 * Now replace the integer FDs with pointers to the
2280 			 * file structure and capability rights.
2281 			 */
2282 			newlen = oldfds * sizeof(fdep[0]);
2283 			*controlp = sbcreatecontrol(NULL, newlen,
2284 			    SCM_RIGHTS, SOL_SOCKET);
2285 			if (*controlp == NULL) {
2286 				FILEDESC_SUNLOCK(fdesc);
2287 				error = E2BIG;
2288 				goto out;
2289 			}
2290 			fdp = data;
2291 			for (i = 0; i < oldfds; i++, fdp++) {
2292 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2293 					fdp = data;
2294 					for (j = 0; j < i; j++, fdp++) {
2295 						fdrop(fdesc->fd_ofiles[*fdp].
2296 						    fde_file, td);
2297 					}
2298 					FILEDESC_SUNLOCK(fdesc);
2299 					error = EBADF;
2300 					goto out;
2301 				}
2302 			}
2303 			fdp = data;
2304 			fdep = (struct filedescent **)
2305 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2306 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2307 			    M_WAITOK);
2308 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2309 				fde = &fdesc->fd_ofiles[*fdp];
2310 				fdep[i] = fdev;
2311 				fdep[i]->fde_file = fde->fde_file;
2312 				filecaps_copy(&fde->fde_caps,
2313 				    &fdep[i]->fde_caps, true);
2314 				unp_internalize_fp(fdep[i]->fde_file);
2315 			}
2316 			FILEDESC_SUNLOCK(fdesc);
2317 			break;
2318 
2319 		case SCM_TIMESTAMP:
2320 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2321 			    SCM_TIMESTAMP, SOL_SOCKET);
2322 			if (*controlp == NULL) {
2323 				error = ENOBUFS;
2324 				goto out;
2325 			}
2326 			tv = (struct timeval *)
2327 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2328 			microtime(tv);
2329 			break;
2330 
2331 		case SCM_BINTIME:
2332 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2333 			    SCM_BINTIME, SOL_SOCKET);
2334 			if (*controlp == NULL) {
2335 				error = ENOBUFS;
2336 				goto out;
2337 			}
2338 			bt = (struct bintime *)
2339 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2340 			bintime(bt);
2341 			break;
2342 
2343 		case SCM_REALTIME:
2344 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2345 			    SCM_REALTIME, SOL_SOCKET);
2346 			if (*controlp == NULL) {
2347 				error = ENOBUFS;
2348 				goto out;
2349 			}
2350 			ts = (struct timespec *)
2351 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2352 			nanotime(ts);
2353 			break;
2354 
2355 		case SCM_MONOTONIC:
2356 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2357 			    SCM_MONOTONIC, SOL_SOCKET);
2358 			if (*controlp == NULL) {
2359 				error = ENOBUFS;
2360 				goto out;
2361 			}
2362 			ts = (struct timespec *)
2363 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2364 			nanouptime(ts);
2365 			break;
2366 
2367 		default:
2368 			error = EINVAL;
2369 			goto out;
2370 		}
2371 
2372 		if (*controlp != NULL)
2373 			controlp = &(*controlp)->m_next;
2374 		if (CMSG_SPACE(datalen) < clen) {
2375 			clen -= CMSG_SPACE(datalen);
2376 			cm = (struct cmsghdr *)
2377 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2378 		} else {
2379 			clen = 0;
2380 			cm = NULL;
2381 		}
2382 	}
2383 
2384 out:
2385 	if (error != 0 && initial_controlp != NULL)
2386 		unp_internalize_cleanup_rights(*initial_controlp);
2387 	m_freem(control);
2388 	return (error);
2389 }
2390 
2391 static struct mbuf *
2392 unp_addsockcred(struct thread *td, struct mbuf *control, int mode)
2393 {
2394 	struct mbuf *m, *n, *n_prev;
2395 	const struct cmsghdr *cm;
2396 	int ngroups, i, cmsgtype;
2397 	size_t ctrlsz;
2398 
2399 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2400 	if (mode & UNP_WANTCRED_ALWAYS) {
2401 		ctrlsz = SOCKCRED2SIZE(ngroups);
2402 		cmsgtype = SCM_CREDS2;
2403 	} else {
2404 		ctrlsz = SOCKCREDSIZE(ngroups);
2405 		cmsgtype = SCM_CREDS;
2406 	}
2407 
2408 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET);
2409 	if (m == NULL)
2410 		return (control);
2411 
2412 	if (mode & UNP_WANTCRED_ALWAYS) {
2413 		struct sockcred2 *sc;
2414 
2415 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2416 		sc->sc_version = 0;
2417 		sc->sc_pid = td->td_proc->p_pid;
2418 		sc->sc_uid = td->td_ucred->cr_ruid;
2419 		sc->sc_euid = td->td_ucred->cr_uid;
2420 		sc->sc_gid = td->td_ucred->cr_rgid;
2421 		sc->sc_egid = td->td_ucred->cr_gid;
2422 		sc->sc_ngroups = ngroups;
2423 		for (i = 0; i < sc->sc_ngroups; i++)
2424 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2425 	} else {
2426 		struct sockcred *sc;
2427 
2428 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2429 		sc->sc_uid = td->td_ucred->cr_ruid;
2430 		sc->sc_euid = td->td_ucred->cr_uid;
2431 		sc->sc_gid = td->td_ucred->cr_rgid;
2432 		sc->sc_egid = td->td_ucred->cr_gid;
2433 		sc->sc_ngroups = ngroups;
2434 		for (i = 0; i < sc->sc_ngroups; i++)
2435 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2436 	}
2437 
2438 	/*
2439 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2440 	 * created SCM_CREDS control message (struct sockcred) has another
2441 	 * format.
2442 	 */
2443 	if (control != NULL && cmsgtype == SCM_CREDS)
2444 		for (n = control, n_prev = NULL; n != NULL;) {
2445 			cm = mtod(n, struct cmsghdr *);
2446     			if (cm->cmsg_level == SOL_SOCKET &&
2447 			    cm->cmsg_type == SCM_CREDS) {
2448     				if (n_prev == NULL)
2449 					control = n->m_next;
2450 				else
2451 					n_prev->m_next = n->m_next;
2452 				n = m_free(n);
2453 			} else {
2454 				n_prev = n;
2455 				n = n->m_next;
2456 			}
2457 		}
2458 
2459 	/* Prepend it to the head. */
2460 	m->m_next = control;
2461 	return (m);
2462 }
2463 
2464 static struct unpcb *
2465 fptounp(struct file *fp)
2466 {
2467 	struct socket *so;
2468 
2469 	if (fp->f_type != DTYPE_SOCKET)
2470 		return (NULL);
2471 	if ((so = fp->f_data) == NULL)
2472 		return (NULL);
2473 	if (so->so_proto->pr_domain != &localdomain)
2474 		return (NULL);
2475 	return sotounpcb(so);
2476 }
2477 
2478 static void
2479 unp_discard(struct file *fp)
2480 {
2481 	struct unp_defer *dr;
2482 
2483 	if (unp_externalize_fp(fp)) {
2484 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2485 		dr->ud_fp = fp;
2486 		UNP_DEFERRED_LOCK();
2487 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2488 		UNP_DEFERRED_UNLOCK();
2489 		atomic_add_int(&unp_defers_count, 1);
2490 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2491 	} else
2492 		closef_nothread(fp);
2493 }
2494 
2495 static void
2496 unp_process_defers(void *arg __unused, int pending)
2497 {
2498 	struct unp_defer *dr;
2499 	SLIST_HEAD(, unp_defer) drl;
2500 	int count;
2501 
2502 	SLIST_INIT(&drl);
2503 	for (;;) {
2504 		UNP_DEFERRED_LOCK();
2505 		if (SLIST_FIRST(&unp_defers) == NULL) {
2506 			UNP_DEFERRED_UNLOCK();
2507 			break;
2508 		}
2509 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2510 		UNP_DEFERRED_UNLOCK();
2511 		count = 0;
2512 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2513 			SLIST_REMOVE_HEAD(&drl, ud_link);
2514 			closef_nothread(dr->ud_fp);
2515 			free(dr, M_TEMP);
2516 			count++;
2517 		}
2518 		atomic_add_int(&unp_defers_count, -count);
2519 	}
2520 }
2521 
2522 static void
2523 unp_internalize_fp(struct file *fp)
2524 {
2525 	struct unpcb *unp;
2526 
2527 	UNP_LINK_WLOCK();
2528 	if ((unp = fptounp(fp)) != NULL) {
2529 		unp->unp_file = fp;
2530 		unp->unp_msgcount++;
2531 	}
2532 	unp_rights++;
2533 	UNP_LINK_WUNLOCK();
2534 }
2535 
2536 static int
2537 unp_externalize_fp(struct file *fp)
2538 {
2539 	struct unpcb *unp;
2540 	int ret;
2541 
2542 	UNP_LINK_WLOCK();
2543 	if ((unp = fptounp(fp)) != NULL) {
2544 		unp->unp_msgcount--;
2545 		ret = 1;
2546 	} else
2547 		ret = 0;
2548 	unp_rights--;
2549 	UNP_LINK_WUNLOCK();
2550 	return (ret);
2551 }
2552 
2553 /*
2554  * unp_defer indicates whether additional work has been defered for a future
2555  * pass through unp_gc().  It is thread local and does not require explicit
2556  * synchronization.
2557  */
2558 static int	unp_marked;
2559 
2560 static void
2561 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2562 {
2563 	struct unpcb *unp;
2564 	struct file *fp;
2565 	int i;
2566 
2567 	/*
2568 	 * This function can only be called from the gc task.
2569 	 */
2570 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2571 	    ("%s: not on gc callout", __func__));
2572 	UNP_LINK_LOCK_ASSERT();
2573 
2574 	for (i = 0; i < fdcount; i++) {
2575 		fp = fdep[i]->fde_file;
2576 		if ((unp = fptounp(fp)) == NULL)
2577 			continue;
2578 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2579 			continue;
2580 		unp->unp_gcrefs--;
2581 	}
2582 }
2583 
2584 static void
2585 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2586 {
2587 	struct unpcb *unp;
2588 	struct file *fp;
2589 	int i;
2590 
2591 	/*
2592 	 * This function can only be called from the gc task.
2593 	 */
2594 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2595 	    ("%s: not on gc callout", __func__));
2596 	UNP_LINK_LOCK_ASSERT();
2597 
2598 	for (i = 0; i < fdcount; i++) {
2599 		fp = fdep[i]->fde_file;
2600 		if ((unp = fptounp(fp)) == NULL)
2601 			continue;
2602 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2603 			continue;
2604 		unp->unp_gcrefs++;
2605 		unp_marked++;
2606 	}
2607 }
2608 
2609 static void
2610 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2611 {
2612 	struct socket *so, *soa;
2613 
2614 	so = unp->unp_socket;
2615 	SOCK_LOCK(so);
2616 	if (SOLISTENING(so)) {
2617 		/*
2618 		 * Mark all sockets in our accept queue.
2619 		 */
2620 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2621 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2622 				continue;
2623 			SOCKBUF_LOCK(&soa->so_rcv);
2624 			unp_scan(soa->so_rcv.sb_mb, op);
2625 			SOCKBUF_UNLOCK(&soa->so_rcv);
2626 		}
2627 	} else {
2628 		/*
2629 		 * Mark all sockets we reference with RIGHTS.
2630 		 */
2631 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2632 			SOCKBUF_LOCK(&so->so_rcv);
2633 			unp_scan(so->so_rcv.sb_mb, op);
2634 			SOCKBUF_UNLOCK(&so->so_rcv);
2635 		}
2636 	}
2637 	SOCK_UNLOCK(so);
2638 }
2639 
2640 static int unp_recycled;
2641 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2642     "Number of unreachable sockets claimed by the garbage collector.");
2643 
2644 static int unp_taskcount;
2645 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2646     "Number of times the garbage collector has run.");
2647 
2648 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2649     "Number of active local sockets.");
2650 
2651 static void
2652 unp_gc(__unused void *arg, int pending)
2653 {
2654 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2655 				    NULL };
2656 	struct unp_head **head;
2657 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2658 	struct file *f, **unref;
2659 	struct unpcb *unp, *unptmp;
2660 	int i, total, unp_unreachable;
2661 
2662 	LIST_INIT(&unp_deadhead);
2663 	unp_taskcount++;
2664 	UNP_LINK_RLOCK();
2665 	/*
2666 	 * First determine which sockets may be in cycles.
2667 	 */
2668 	unp_unreachable = 0;
2669 
2670 	for (head = heads; *head != NULL; head++)
2671 		LIST_FOREACH(unp, *head, unp_link) {
2672 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2673 			    ("%s: unp %p has unexpected gc flags 0x%x",
2674 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2675 
2676 			f = unp->unp_file;
2677 
2678 			/*
2679 			 * Check for an unreachable socket potentially in a
2680 			 * cycle.  It must be in a queue as indicated by
2681 			 * msgcount, and this must equal the file reference
2682 			 * count.  Note that when msgcount is 0 the file is
2683 			 * NULL.
2684 			 */
2685 			if (f != NULL && unp->unp_msgcount != 0 &&
2686 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
2687 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2688 				unp->unp_gcflag |= UNPGC_DEAD;
2689 				unp->unp_gcrefs = unp->unp_msgcount;
2690 				unp_unreachable++;
2691 			}
2692 		}
2693 
2694 	/*
2695 	 * Scan all sockets previously marked as potentially being in a cycle
2696 	 * and remove the references each socket holds on any UNPGC_DEAD
2697 	 * sockets in its queue.  After this step, all remaining references on
2698 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2699 	 */
2700 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2701 		unp_gc_scan(unp, unp_remove_dead_ref);
2702 
2703 	/*
2704 	 * If a socket still has a non-negative refcount, it cannot be in a
2705 	 * cycle.  In this case increment refcount of all children iteratively.
2706 	 * Stop the scan once we do a complete loop without discovering
2707 	 * a new reachable socket.
2708 	 */
2709 	do {
2710 		unp_marked = 0;
2711 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2712 			if (unp->unp_gcrefs > 0) {
2713 				unp->unp_gcflag &= ~UNPGC_DEAD;
2714 				LIST_REMOVE(unp, unp_dead);
2715 				KASSERT(unp_unreachable > 0,
2716 				    ("%s: unp_unreachable underflow.",
2717 				    __func__));
2718 				unp_unreachable--;
2719 				unp_gc_scan(unp, unp_restore_undead_ref);
2720 			}
2721 	} while (unp_marked);
2722 
2723 	UNP_LINK_RUNLOCK();
2724 
2725 	if (unp_unreachable == 0)
2726 		return;
2727 
2728 	/*
2729 	 * Allocate space for a local array of dead unpcbs.
2730 	 * TODO: can this path be simplified by instead using the local
2731 	 * dead list at unp_deadhead, after taking out references
2732 	 * on the file object and/or unpcb and dropping the link lock?
2733 	 */
2734 	unref = malloc(unp_unreachable * sizeof(struct file *),
2735 	    M_TEMP, M_WAITOK);
2736 
2737 	/*
2738 	 * Iterate looking for sockets which have been specifically marked
2739 	 * as unreachable and store them locally.
2740 	 */
2741 	UNP_LINK_RLOCK();
2742 	total = 0;
2743 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2744 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2745 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2746 		unp->unp_gcflag &= ~UNPGC_DEAD;
2747 		f = unp->unp_file;
2748 		if (unp->unp_msgcount == 0 || f == NULL ||
2749 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
2750 		    !fhold(f))
2751 			continue;
2752 		unref[total++] = f;
2753 		KASSERT(total <= unp_unreachable,
2754 		    ("%s: incorrect unreachable count.", __func__));
2755 	}
2756 	UNP_LINK_RUNLOCK();
2757 
2758 	/*
2759 	 * Now flush all sockets, free'ing rights.  This will free the
2760 	 * struct files associated with these sockets but leave each socket
2761 	 * with one remaining ref.
2762 	 */
2763 	for (i = 0; i < total; i++) {
2764 		struct socket *so;
2765 
2766 		so = unref[i]->f_data;
2767 		CURVNET_SET(so->so_vnet);
2768 		sorflush(so);
2769 		CURVNET_RESTORE();
2770 	}
2771 
2772 	/*
2773 	 * And finally release the sockets so they can be reclaimed.
2774 	 */
2775 	for (i = 0; i < total; i++)
2776 		fdrop(unref[i], NULL);
2777 	unp_recycled += total;
2778 	free(unref, M_TEMP);
2779 }
2780 
2781 static void
2782 unp_dispose_mbuf(struct mbuf *m)
2783 {
2784 
2785 	if (m)
2786 		unp_scan(m, unp_freerights);
2787 }
2788 
2789 /*
2790  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2791  */
2792 static void
2793 unp_dispose(struct socket *so)
2794 {
2795 	struct unpcb *unp;
2796 
2797 	unp = sotounpcb(so);
2798 	UNP_LINK_WLOCK();
2799 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2800 	UNP_LINK_WUNLOCK();
2801 	if (!SOLISTENING(so))
2802 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2803 }
2804 
2805 static void
2806 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2807 {
2808 	struct mbuf *m;
2809 	struct cmsghdr *cm;
2810 	void *data;
2811 	socklen_t clen, datalen;
2812 
2813 	while (m0 != NULL) {
2814 		for (m = m0; m; m = m->m_next) {
2815 			if (m->m_type != MT_CONTROL)
2816 				continue;
2817 
2818 			cm = mtod(m, struct cmsghdr *);
2819 			clen = m->m_len;
2820 
2821 			while (cm != NULL) {
2822 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2823 					break;
2824 
2825 				data = CMSG_DATA(cm);
2826 				datalen = (caddr_t)cm + cm->cmsg_len
2827 				    - (caddr_t)data;
2828 
2829 				if (cm->cmsg_level == SOL_SOCKET &&
2830 				    cm->cmsg_type == SCM_RIGHTS) {
2831 					(*op)(data, datalen /
2832 					    sizeof(struct filedescent *));
2833 				}
2834 
2835 				if (CMSG_SPACE(datalen) < clen) {
2836 					clen -= CMSG_SPACE(datalen);
2837 					cm = (struct cmsghdr *)
2838 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2839 				} else {
2840 					clen = 0;
2841 					cm = NULL;
2842 				}
2843 			}
2844 		}
2845 		m0 = m0->m_nextpkt;
2846 	}
2847 }
2848 
2849 /*
2850  * A helper function called by VFS before socket-type vnode reclamation.
2851  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2852  * use count.
2853  */
2854 void
2855 vfs_unp_reclaim(struct vnode *vp)
2856 {
2857 	struct unpcb *unp;
2858 	int active;
2859 	struct mtx *vplock;
2860 
2861 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2862 	KASSERT(vp->v_type == VSOCK,
2863 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2864 
2865 	active = 0;
2866 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2867 	mtx_lock(vplock);
2868 	VOP_UNP_CONNECT(vp, &unp);
2869 	if (unp == NULL)
2870 		goto done;
2871 	UNP_PCB_LOCK(unp);
2872 	if (unp->unp_vnode == vp) {
2873 		VOP_UNP_DETACH(vp);
2874 		unp->unp_vnode = NULL;
2875 		active = 1;
2876 	}
2877 	UNP_PCB_UNLOCK(unp);
2878  done:
2879 	mtx_unlock(vplock);
2880 	if (active)
2881 		vunref(vp);
2882 }
2883 
2884 #ifdef DDB
2885 static void
2886 db_print_indent(int indent)
2887 {
2888 	int i;
2889 
2890 	for (i = 0; i < indent; i++)
2891 		db_printf(" ");
2892 }
2893 
2894 static void
2895 db_print_unpflags(int unp_flags)
2896 {
2897 	int comma;
2898 
2899 	comma = 0;
2900 	if (unp_flags & UNP_HAVEPC) {
2901 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2902 		comma = 1;
2903 	}
2904 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
2905 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
2906 		comma = 1;
2907 	}
2908 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
2909 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
2910 		comma = 1;
2911 	}
2912 	if (unp_flags & UNP_CONNWAIT) {
2913 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2914 		comma = 1;
2915 	}
2916 	if (unp_flags & UNP_CONNECTING) {
2917 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2918 		comma = 1;
2919 	}
2920 	if (unp_flags & UNP_BINDING) {
2921 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2922 		comma = 1;
2923 	}
2924 }
2925 
2926 static void
2927 db_print_xucred(int indent, struct xucred *xu)
2928 {
2929 	int comma, i;
2930 
2931 	db_print_indent(indent);
2932 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2933 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2934 	db_print_indent(indent);
2935 	db_printf("cr_groups: ");
2936 	comma = 0;
2937 	for (i = 0; i < xu->cr_ngroups; i++) {
2938 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2939 		comma = 1;
2940 	}
2941 	db_printf("\n");
2942 }
2943 
2944 static void
2945 db_print_unprefs(int indent, struct unp_head *uh)
2946 {
2947 	struct unpcb *unp;
2948 	int counter;
2949 
2950 	counter = 0;
2951 	LIST_FOREACH(unp, uh, unp_reflink) {
2952 		if (counter % 4 == 0)
2953 			db_print_indent(indent);
2954 		db_printf("%p  ", unp);
2955 		if (counter % 4 == 3)
2956 			db_printf("\n");
2957 		counter++;
2958 	}
2959 	if (counter != 0 && counter % 4 != 0)
2960 		db_printf("\n");
2961 }
2962 
2963 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2964 {
2965 	struct unpcb *unp;
2966 
2967         if (!have_addr) {
2968                 db_printf("usage: show unpcb <addr>\n");
2969                 return;
2970         }
2971         unp = (struct unpcb *)addr;
2972 
2973 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2974 	    unp->unp_vnode);
2975 
2976 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2977 	    unp->unp_conn);
2978 
2979 	db_printf("unp_refs:\n");
2980 	db_print_unprefs(2, &unp->unp_refs);
2981 
2982 	/* XXXRW: Would be nice to print the full address, if any. */
2983 	db_printf("unp_addr: %p\n", unp->unp_addr);
2984 
2985 	db_printf("unp_gencnt: %llu\n",
2986 	    (unsigned long long)unp->unp_gencnt);
2987 
2988 	db_printf("unp_flags: %x (", unp->unp_flags);
2989 	db_print_unpflags(unp->unp_flags);
2990 	db_printf(")\n");
2991 
2992 	db_printf("unp_peercred:\n");
2993 	db_print_xucred(2, &unp->unp_peercred);
2994 
2995 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2996 }
2997 #endif
2998