xref: /freebsd/sys/kern/vfs_aio.c (revision e3aa18ad)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. John S. Dyson's name may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15  * bad that happens because of using this software isn't the responsibility
16  * of the author.  This software is distributed AS-IS.
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/malloc.h>
29 #include <sys/bio.h>
30 #include <sys/buf.h>
31 #include <sys/capsicum.h>
32 #include <sys/eventhandler.h>
33 #include <sys/sysproto.h>
34 #include <sys/filedesc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kthread.h>
38 #include <sys/fcntl.h>
39 #include <sys/file.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/unistd.h>
44 #include <sys/posix4.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/protosw.h>
50 #include <sys/rwlock.h>
51 #include <sys/sema.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syscall.h>
55 #include <sys/sysctl.h>
56 #include <sys/syslog.h>
57 #include <sys/sx.h>
58 #include <sys/taskqueue.h>
59 #include <sys/vnode.h>
60 #include <sys/conf.h>
61 #include <sys/event.h>
62 #include <sys/mount.h>
63 #include <geom/geom.h>
64 
65 #include <machine/atomic.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_extern.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 #include <vm/uma.h>
74 #include <sys/aio.h>
75 
76 /*
77  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
78  * overflow. (XXX will be removed soon.)
79  */
80 static u_long jobrefid;
81 
82 /*
83  * Counter for aio_fsync.
84  */
85 static uint64_t jobseqno;
86 
87 #ifndef MAX_AIO_PER_PROC
88 #define MAX_AIO_PER_PROC	32
89 #endif
90 
91 #ifndef MAX_AIO_QUEUE_PER_PROC
92 #define MAX_AIO_QUEUE_PER_PROC	256
93 #endif
94 
95 #ifndef MAX_AIO_QUEUE
96 #define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
97 #endif
98 
99 #ifndef MAX_BUF_AIO
100 #define MAX_BUF_AIO		16
101 #endif
102 
103 FEATURE(aio, "Asynchronous I/O");
104 SYSCTL_DECL(_p1003_1b);
105 
106 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
107 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list");
108 
109 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
110     "Async IO management");
111 
112 static int enable_aio_unsafe = 0;
113 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
114     "Permit asynchronous IO on all file types, not just known-safe types");
115 
116 static unsigned int unsafe_warningcnt = 1;
117 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
118     &unsafe_warningcnt, 0,
119     "Warnings that will be triggered upon failed IO requests on unsafe files");
120 
121 static int max_aio_procs = MAX_AIO_PROCS;
122 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
123     "Maximum number of kernel processes to use for handling async IO ");
124 
125 static int num_aio_procs = 0;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
127     "Number of presently active kernel processes for async IO");
128 
129 /*
130  * The code will adjust the actual number of AIO processes towards this
131  * number when it gets a chance.
132  */
133 static int target_aio_procs = TARGET_AIO_PROCS;
134 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
135     0,
136     "Preferred number of ready kernel processes for async IO");
137 
138 static int max_queue_count = MAX_AIO_QUEUE;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
140     "Maximum number of aio requests to queue, globally");
141 
142 static int num_queue_count = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
144     "Number of queued aio requests");
145 
146 static int num_buf_aio = 0;
147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
148     "Number of aio requests presently handled by the buf subsystem");
149 
150 static int num_unmapped_aio = 0;
151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
152     0,
153     "Number of aio requests presently handled by unmapped I/O buffers");
154 
155 /* Number of async I/O processes in the process of being started */
156 /* XXX This should be local to aio_aqueue() */
157 static int num_aio_resv_start = 0;
158 
159 static int aiod_lifetime;
160 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
161     "Maximum lifetime for idle aiod");
162 
163 static int max_aio_per_proc = MAX_AIO_PER_PROC;
164 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
165     0,
166     "Maximum active aio requests per process");
167 
168 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
169 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
170     &max_aio_queue_per_proc, 0,
171     "Maximum queued aio requests per process");
172 
173 static int max_buf_aio = MAX_BUF_AIO;
174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
175     "Maximum buf aio requests per process");
176 
177 /*
178  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
179  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
180  * vfs.aio.aio_listio_max.
181  */
182 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
183     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
184     0, "Maximum aio requests for a single lio_listio call");
185 
186 #ifdef COMPAT_FREEBSD6
187 typedef struct oaiocb {
188 	int	aio_fildes;		/* File descriptor */
189 	off_t	aio_offset;		/* File offset for I/O */
190 	volatile void *aio_buf;         /* I/O buffer in process space */
191 	size_t	aio_nbytes;		/* Number of bytes for I/O */
192 	struct	osigevent aio_sigevent;	/* Signal to deliver */
193 	int	aio_lio_opcode;		/* LIO opcode */
194 	int	aio_reqprio;		/* Request priority -- ignored */
195 	struct	__aiocb_private	_aiocb_private;
196 } oaiocb_t;
197 #endif
198 
199 /*
200  * Below is a key of locks used to protect each member of struct kaiocb
201  * aioliojob and kaioinfo and any backends.
202  *
203  * * - need not protected
204  * a - locked by kaioinfo lock
205  * b - locked by backend lock, the backend lock can be null in some cases,
206  *     for example, BIO belongs to this type, in this case, proc lock is
207  *     reused.
208  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
209  */
210 
211 /*
212  * If the routine that services an AIO request blocks while running in an
213  * AIO kernel process it can starve other I/O requests.  BIO requests
214  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
215  * processes at all.  Socket I/O requests use a separate pool of
216  * kprocs and also force non-blocking I/O.  Other file I/O requests
217  * use the generic fo_read/fo_write operations which can block.  The
218  * fsync and mlock operations can also block while executing.  Ideally
219  * none of these requests would block while executing.
220  *
221  * Note that the service routines cannot toggle O_NONBLOCK in the file
222  * structure directly while handling a request due to races with
223  * userland threads.
224  */
225 
226 /* jobflags */
227 #define	KAIOCB_QUEUEING		0x01
228 #define	KAIOCB_CANCELLED	0x02
229 #define	KAIOCB_CANCELLING	0x04
230 #define	KAIOCB_CHECKSYNC	0x08
231 #define	KAIOCB_CLEARED		0x10
232 #define	KAIOCB_FINISHED		0x20
233 
234 /*
235  * AIO process info
236  */
237 #define AIOP_FREE	0x1			/* proc on free queue */
238 
239 struct aioproc {
240 	int	aioprocflags;			/* (c) AIO proc flags */
241 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
242 	struct	proc *aioproc;			/* (*) the AIO proc */
243 };
244 
245 /*
246  * data-structure for lio signal management
247  */
248 struct aioliojob {
249 	int	lioj_flags;			/* (a) listio flags */
250 	int	lioj_count;			/* (a) count of jobs */
251 	int	lioj_finished_count;		/* (a) count of finished jobs */
252 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
253 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
254 	struct	knlist klist;			/* (a) list of knotes */
255 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
256 };
257 
258 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
259 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
260 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
261 
262 /*
263  * per process aio data structure
264  */
265 struct kaioinfo {
266 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
267 	int	kaio_flags;		/* (a) per process kaio flags */
268 	int	kaio_active_count;	/* (c) number of currently used AIOs */
269 	int	kaio_count;		/* (a) size of AIO queue */
270 	int	kaio_buffer_count;	/* (a) number of bio buffers */
271 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
272 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
273 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
274 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
275 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
276 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
277 	struct	task kaio_task;		/* (*) task to kick aio processes */
278 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
279 };
280 
281 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
282 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
283 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
284 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
285 
286 #define KAIO_RUNDOWN	0x1	/* process is being run down */
287 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
288 
289 /*
290  * Operations used to interact with userland aio control blocks.
291  * Different ABIs provide their own operations.
292  */
293 struct aiocb_ops {
294 	int	(*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
295 	long	(*fetch_status)(struct aiocb *ujob);
296 	long	(*fetch_error)(struct aiocb *ujob);
297 	int	(*store_status)(struct aiocb *ujob, long status);
298 	int	(*store_error)(struct aiocb *ujob, long error);
299 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
300 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
301 };
302 
303 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
304 static struct sema aio_newproc_sem;
305 static struct mtx aio_job_mtx;
306 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
307 static struct unrhdr *aiod_unr;
308 
309 static void	aio_biocleanup(struct bio *bp);
310 void		aio_init_aioinfo(struct proc *p);
311 static int	aio_onceonly(void);
312 static int	aio_free_entry(struct kaiocb *job);
313 static void	aio_process_rw(struct kaiocb *job);
314 static void	aio_process_sync(struct kaiocb *job);
315 static void	aio_process_mlock(struct kaiocb *job);
316 static void	aio_schedule_fsync(void *context, int pending);
317 static int	aio_newproc(int *);
318 int		aio_aqueue(struct thread *td, struct aiocb *ujob,
319 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
320 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
321 static void	aio_biowakeup(struct bio *bp);
322 static void	aio_proc_rundown(void *arg, struct proc *p);
323 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
324 		    struct image_params *imgp);
325 static int	aio_qbio(struct proc *p, struct kaiocb *job);
326 static void	aio_daemon(void *param);
327 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
328 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
329 static int	aio_kick(struct proc *userp);
330 static void	aio_kick_nowait(struct proc *userp);
331 static void	aio_kick_helper(void *context, int pending);
332 static int	filt_aioattach(struct knote *kn);
333 static void	filt_aiodetach(struct knote *kn);
334 static int	filt_aio(struct knote *kn, long hint);
335 static int	filt_lioattach(struct knote *kn);
336 static void	filt_liodetach(struct knote *kn);
337 static int	filt_lio(struct knote *kn, long hint);
338 
339 /*
340  * Zones for:
341  * 	kaio	Per process async io info
342  *	aiop	async io process data
343  *	aiocb	async io jobs
344  *	aiolio	list io jobs
345  */
346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone;
347 
348 /* kqueue filters for aio */
349 static struct filterops aio_filtops = {
350 	.f_isfd = 0,
351 	.f_attach = filt_aioattach,
352 	.f_detach = filt_aiodetach,
353 	.f_event = filt_aio,
354 };
355 static struct filterops lio_filtops = {
356 	.f_isfd = 0,
357 	.f_attach = filt_lioattach,
358 	.f_detach = filt_liodetach,
359 	.f_event = filt_lio
360 };
361 
362 static eventhandler_tag exit_tag, exec_tag;
363 
364 TASKQUEUE_DEFINE_THREAD(aiod_kick);
365 
366 /*
367  * Main operations function for use as a kernel module.
368  */
369 static int
370 aio_modload(struct module *module, int cmd, void *arg)
371 {
372 	int error = 0;
373 
374 	switch (cmd) {
375 	case MOD_LOAD:
376 		aio_onceonly();
377 		break;
378 	case MOD_SHUTDOWN:
379 		break;
380 	default:
381 		error = EOPNOTSUPP;
382 		break;
383 	}
384 	return (error);
385 }
386 
387 static moduledata_t aio_mod = {
388 	"aio",
389 	&aio_modload,
390 	NULL
391 };
392 
393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
394 MODULE_VERSION(aio, 1);
395 
396 /*
397  * Startup initialization
398  */
399 static int
400 aio_onceonly(void)
401 {
402 
403 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
404 	    EVENTHANDLER_PRI_ANY);
405 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
406 	    NULL, EVENTHANDLER_PRI_ANY);
407 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
408 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
409 	TAILQ_INIT(&aio_freeproc);
410 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
411 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
412 	TAILQ_INIT(&aio_jobs);
413 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
414 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
415 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
416 	aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
417 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
418 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
419 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
420 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
421 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
422 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
423 	jobrefid = 1;
424 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
425 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
426 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
427 
428 	return (0);
429 }
430 
431 /*
432  * Init the per-process aioinfo structure.  The aioinfo limits are set
433  * per-process for user limit (resource) management.
434  */
435 void
436 aio_init_aioinfo(struct proc *p)
437 {
438 	struct kaioinfo *ki;
439 
440 	ki = uma_zalloc(kaio_zone, M_WAITOK);
441 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
442 	ki->kaio_flags = 0;
443 	ki->kaio_active_count = 0;
444 	ki->kaio_count = 0;
445 	ki->kaio_buffer_count = 0;
446 	TAILQ_INIT(&ki->kaio_all);
447 	TAILQ_INIT(&ki->kaio_done);
448 	TAILQ_INIT(&ki->kaio_jobqueue);
449 	TAILQ_INIT(&ki->kaio_liojoblist);
450 	TAILQ_INIT(&ki->kaio_syncqueue);
451 	TAILQ_INIT(&ki->kaio_syncready);
452 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
453 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
454 	PROC_LOCK(p);
455 	if (p->p_aioinfo == NULL) {
456 		p->p_aioinfo = ki;
457 		PROC_UNLOCK(p);
458 	} else {
459 		PROC_UNLOCK(p);
460 		mtx_destroy(&ki->kaio_mtx);
461 		uma_zfree(kaio_zone, ki);
462 	}
463 
464 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
465 		aio_newproc(NULL);
466 }
467 
468 static int
469 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
470 {
471 	struct thread *td;
472 	int error;
473 
474 	error = sigev_findtd(p, sigev, &td);
475 	if (error)
476 		return (error);
477 	if (!KSI_ONQ(ksi)) {
478 		ksiginfo_set_sigev(ksi, sigev);
479 		ksi->ksi_code = SI_ASYNCIO;
480 		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
481 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
482 	}
483 	PROC_UNLOCK(p);
484 	return (error);
485 }
486 
487 /*
488  * Free a job entry.  Wait for completion if it is currently active, but don't
489  * delay forever.  If we delay, we return a flag that says that we have to
490  * restart the queue scan.
491  */
492 static int
493 aio_free_entry(struct kaiocb *job)
494 {
495 	struct kaioinfo *ki;
496 	struct aioliojob *lj;
497 	struct proc *p;
498 
499 	p = job->userproc;
500 	MPASS(curproc == p);
501 	ki = p->p_aioinfo;
502 	MPASS(ki != NULL);
503 
504 	AIO_LOCK_ASSERT(ki, MA_OWNED);
505 	MPASS(job->jobflags & KAIOCB_FINISHED);
506 
507 	atomic_subtract_int(&num_queue_count, 1);
508 
509 	ki->kaio_count--;
510 	MPASS(ki->kaio_count >= 0);
511 
512 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
513 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
514 
515 	lj = job->lio;
516 	if (lj) {
517 		lj->lioj_count--;
518 		lj->lioj_finished_count--;
519 
520 		if (lj->lioj_count == 0) {
521 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
522 			/* lio is going away, we need to destroy any knotes */
523 			knlist_delete(&lj->klist, curthread, 1);
524 			PROC_LOCK(p);
525 			sigqueue_take(&lj->lioj_ksi);
526 			PROC_UNLOCK(p);
527 			uma_zfree(aiolio_zone, lj);
528 		}
529 	}
530 
531 	/* job is going away, we need to destroy any knotes */
532 	knlist_delete(&job->klist, curthread, 1);
533 	PROC_LOCK(p);
534 	sigqueue_take(&job->ksi);
535 	PROC_UNLOCK(p);
536 
537 	AIO_UNLOCK(ki);
538 
539 	/*
540 	 * The thread argument here is used to find the owning process
541 	 * and is also passed to fo_close() which may pass it to various
542 	 * places such as devsw close() routines.  Because of that, we
543 	 * need a thread pointer from the process owning the job that is
544 	 * persistent and won't disappear out from under us or move to
545 	 * another process.
546 	 *
547 	 * Currently, all the callers of this function call it to remove
548 	 * a kaiocb from the current process' job list either via a
549 	 * syscall or due to the current process calling exit() or
550 	 * execve().  Thus, we know that p == curproc.  We also know that
551 	 * curthread can't exit since we are curthread.
552 	 *
553 	 * Therefore, we use curthread as the thread to pass to
554 	 * knlist_delete().  This does mean that it is possible for the
555 	 * thread pointer at close time to differ from the thread pointer
556 	 * at open time, but this is already true of file descriptors in
557 	 * a multithreaded process.
558 	 */
559 	if (job->fd_file)
560 		fdrop(job->fd_file, curthread);
561 	crfree(job->cred);
562 	if (job->uiop != &job->uio)
563 		free(job->uiop, M_IOV);
564 	uma_zfree(aiocb_zone, job);
565 	AIO_LOCK(ki);
566 
567 	return (0);
568 }
569 
570 static void
571 aio_proc_rundown_exec(void *arg, struct proc *p,
572     struct image_params *imgp __unused)
573 {
574    	aio_proc_rundown(arg, p);
575 }
576 
577 static int
578 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
579 {
580 	aio_cancel_fn_t *func;
581 	int cancelled;
582 
583 	AIO_LOCK_ASSERT(ki, MA_OWNED);
584 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
585 		return (0);
586 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
587 	job->jobflags |= KAIOCB_CANCELLED;
588 
589 	func = job->cancel_fn;
590 
591 	/*
592 	 * If there is no cancel routine, just leave the job marked as
593 	 * cancelled.  The job should be in active use by a caller who
594 	 * should complete it normally or when it fails to install a
595 	 * cancel routine.
596 	 */
597 	if (func == NULL)
598 		return (0);
599 
600 	/*
601 	 * Set the CANCELLING flag so that aio_complete() will defer
602 	 * completions of this job.  This prevents the job from being
603 	 * freed out from under the cancel callback.  After the
604 	 * callback any deferred completion (whether from the callback
605 	 * or any other source) will be completed.
606 	 */
607 	job->jobflags |= KAIOCB_CANCELLING;
608 	AIO_UNLOCK(ki);
609 	func(job);
610 	AIO_LOCK(ki);
611 	job->jobflags &= ~KAIOCB_CANCELLING;
612 	if (job->jobflags & KAIOCB_FINISHED) {
613 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
614 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
615 		aio_bio_done_notify(p, job);
616 	} else {
617 		/*
618 		 * The cancel callback might have scheduled an
619 		 * operation to cancel this request, but it is
620 		 * only counted as cancelled if the request is
621 		 * cancelled when the callback returns.
622 		 */
623 		cancelled = 0;
624 	}
625 	return (cancelled);
626 }
627 
628 /*
629  * Rundown the jobs for a given process.
630  */
631 static void
632 aio_proc_rundown(void *arg, struct proc *p)
633 {
634 	struct kaioinfo *ki;
635 	struct aioliojob *lj;
636 	struct kaiocb *job, *jobn;
637 
638 	KASSERT(curthread->td_proc == p,
639 	    ("%s: called on non-curproc", __func__));
640 	ki = p->p_aioinfo;
641 	if (ki == NULL)
642 		return;
643 
644 	AIO_LOCK(ki);
645 	ki->kaio_flags |= KAIO_RUNDOWN;
646 
647 restart:
648 
649 	/*
650 	 * Try to cancel all pending requests. This code simulates
651 	 * aio_cancel on all pending I/O requests.
652 	 */
653 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
654 		aio_cancel_job(p, ki, job);
655 	}
656 
657 	/* Wait for all running I/O to be finished */
658 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
659 		ki->kaio_flags |= KAIO_WAKEUP;
660 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
661 		goto restart;
662 	}
663 
664 	/* Free all completed I/O requests. */
665 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
666 		aio_free_entry(job);
667 
668 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
669 		if (lj->lioj_count == 0) {
670 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
671 			knlist_delete(&lj->klist, curthread, 1);
672 			PROC_LOCK(p);
673 			sigqueue_take(&lj->lioj_ksi);
674 			PROC_UNLOCK(p);
675 			uma_zfree(aiolio_zone, lj);
676 		} else {
677 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
678 			    lj->lioj_count, lj->lioj_finished_count);
679 		}
680 	}
681 	AIO_UNLOCK(ki);
682 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
683 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
684 	mtx_destroy(&ki->kaio_mtx);
685 	uma_zfree(kaio_zone, ki);
686 	p->p_aioinfo = NULL;
687 }
688 
689 /*
690  * Select a job to run (called by an AIO daemon).
691  */
692 static struct kaiocb *
693 aio_selectjob(struct aioproc *aiop)
694 {
695 	struct kaiocb *job;
696 	struct kaioinfo *ki;
697 	struct proc *userp;
698 
699 	mtx_assert(&aio_job_mtx, MA_OWNED);
700 restart:
701 	TAILQ_FOREACH(job, &aio_jobs, list) {
702 		userp = job->userproc;
703 		ki = userp->p_aioinfo;
704 
705 		if (ki->kaio_active_count < max_aio_per_proc) {
706 			TAILQ_REMOVE(&aio_jobs, job, list);
707 			if (!aio_clear_cancel_function(job))
708 				goto restart;
709 
710 			/* Account for currently active jobs. */
711 			ki->kaio_active_count++;
712 			break;
713 		}
714 	}
715 	return (job);
716 }
717 
718 /*
719  * Move all data to a permanent storage device.  This code
720  * simulates the fsync and fdatasync syscalls.
721  */
722 static int
723 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
724 {
725 	struct mount *mp;
726 	vm_object_t obj;
727 	int error;
728 
729 	for (;;) {
730 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
731 		if (error != 0)
732 			break;
733 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
734 		obj = vp->v_object;
735 		if (obj != NULL) {
736 			VM_OBJECT_WLOCK(obj);
737 			vm_object_page_clean(obj, 0, 0, 0);
738 			VM_OBJECT_WUNLOCK(obj);
739 		}
740 		if (op == LIO_DSYNC)
741 			error = VOP_FDATASYNC(vp, td);
742 		else
743 			error = VOP_FSYNC(vp, MNT_WAIT, td);
744 
745 		VOP_UNLOCK(vp);
746 		vn_finished_write(mp);
747 		if (error != ERELOOKUP)
748 			break;
749 	}
750 	return (error);
751 }
752 
753 /*
754  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
755  * does the I/O request for the non-bio version of the operations.  The normal
756  * vn operations are used, and this code should work in all instances for every
757  * type of file, including pipes, sockets, fifos, and regular files.
758  *
759  * XXX I don't think it works well for socket, pipe, and fifo.
760  */
761 static void
762 aio_process_rw(struct kaiocb *job)
763 {
764 	struct ucred *td_savedcred;
765 	struct thread *td;
766 	struct file *fp;
767 	ssize_t cnt;
768 	long msgsnd_st, msgsnd_end;
769 	long msgrcv_st, msgrcv_end;
770 	long oublock_st, oublock_end;
771 	long inblock_st, inblock_end;
772 	int error, opcode;
773 
774 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
775 	    job->uaiocb.aio_lio_opcode == LIO_READV ||
776 	    job->uaiocb.aio_lio_opcode == LIO_WRITE ||
777 	    job->uaiocb.aio_lio_opcode == LIO_WRITEV,
778 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
779 
780 	aio_switch_vmspace(job);
781 	td = curthread;
782 	td_savedcred = td->td_ucred;
783 	td->td_ucred = job->cred;
784 	job->uiop->uio_td = td;
785 	fp = job->fd_file;
786 
787 	opcode = job->uaiocb.aio_lio_opcode;
788 	cnt = job->uiop->uio_resid;
789 
790 	msgrcv_st = td->td_ru.ru_msgrcv;
791 	msgsnd_st = td->td_ru.ru_msgsnd;
792 	inblock_st = td->td_ru.ru_inblock;
793 	oublock_st = td->td_ru.ru_oublock;
794 
795 	/*
796 	 * aio_aqueue() acquires a reference to the file that is
797 	 * released in aio_free_entry().
798 	 */
799 	if (opcode == LIO_READ || opcode == LIO_READV) {
800 		if (job->uiop->uio_resid == 0)
801 			error = 0;
802 		else
803 			error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET,
804 			    td);
805 	} else {
806 		if (fp->f_type == DTYPE_VNODE)
807 			bwillwrite();
808 		error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td);
809 	}
810 	msgrcv_end = td->td_ru.ru_msgrcv;
811 	msgsnd_end = td->td_ru.ru_msgsnd;
812 	inblock_end = td->td_ru.ru_inblock;
813 	oublock_end = td->td_ru.ru_oublock;
814 
815 	job->msgrcv = msgrcv_end - msgrcv_st;
816 	job->msgsnd = msgsnd_end - msgsnd_st;
817 	job->inblock = inblock_end - inblock_st;
818 	job->outblock = oublock_end - oublock_st;
819 
820 	if (error != 0 && job->uiop->uio_resid != cnt) {
821 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
822 			error = 0;
823 		if (error == EPIPE && (opcode & LIO_WRITE)) {
824 			PROC_LOCK(job->userproc);
825 			kern_psignal(job->userproc, SIGPIPE);
826 			PROC_UNLOCK(job->userproc);
827 		}
828 	}
829 
830 	cnt -= job->uiop->uio_resid;
831 	td->td_ucred = td_savedcred;
832 	if (error)
833 		aio_complete(job, -1, error);
834 	else
835 		aio_complete(job, cnt, 0);
836 }
837 
838 static void
839 aio_process_sync(struct kaiocb *job)
840 {
841 	struct thread *td = curthread;
842 	struct ucred *td_savedcred = td->td_ucred;
843 	struct file *fp = job->fd_file;
844 	int error = 0;
845 
846 	KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
847 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
848 
849 	td->td_ucred = job->cred;
850 	if (fp->f_vnode != NULL) {
851 		error = aio_fsync_vnode(td, fp->f_vnode,
852 		    job->uaiocb.aio_lio_opcode);
853 	}
854 	td->td_ucred = td_savedcred;
855 	if (error)
856 		aio_complete(job, -1, error);
857 	else
858 		aio_complete(job, 0, 0);
859 }
860 
861 static void
862 aio_process_mlock(struct kaiocb *job)
863 {
864 	struct aiocb *cb = &job->uaiocb;
865 	int error;
866 
867 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
868 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
869 
870 	aio_switch_vmspace(job);
871 	error = kern_mlock(job->userproc, job->cred,
872 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
873 	aio_complete(job, error != 0 ? -1 : 0, error);
874 }
875 
876 static void
877 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
878 {
879 	struct aioliojob *lj;
880 	struct kaioinfo *ki;
881 	struct kaiocb *sjob, *sjobn;
882 	int lj_done;
883 	bool schedule_fsync;
884 
885 	ki = userp->p_aioinfo;
886 	AIO_LOCK_ASSERT(ki, MA_OWNED);
887 	lj = job->lio;
888 	lj_done = 0;
889 	if (lj) {
890 		lj->lioj_finished_count++;
891 		if (lj->lioj_count == lj->lioj_finished_count)
892 			lj_done = 1;
893 	}
894 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
895 	MPASS(job->jobflags & KAIOCB_FINISHED);
896 
897 	if (ki->kaio_flags & KAIO_RUNDOWN)
898 		goto notification_done;
899 
900 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
901 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
902 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
903 
904 	KNOTE_LOCKED(&job->klist, 1);
905 
906 	if (lj_done) {
907 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
908 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
909 			KNOTE_LOCKED(&lj->klist, 1);
910 		}
911 		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
912 		    == LIOJ_SIGNAL &&
913 		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
914 		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
915 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
916 			    true);
917 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
918 		}
919 	}
920 
921 notification_done:
922 	if (job->jobflags & KAIOCB_CHECKSYNC) {
923 		schedule_fsync = false;
924 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
925 			if (job->fd_file != sjob->fd_file ||
926 			    job->seqno >= sjob->seqno)
927 				continue;
928 			if (--sjob->pending > 0)
929 				continue;
930 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
931 			if (!aio_clear_cancel_function_locked(sjob))
932 				continue;
933 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
934 			schedule_fsync = true;
935 		}
936 		if (schedule_fsync)
937 			taskqueue_enqueue(taskqueue_aiod_kick,
938 			    &ki->kaio_sync_task);
939 	}
940 	if (ki->kaio_flags & KAIO_WAKEUP) {
941 		ki->kaio_flags &= ~KAIO_WAKEUP;
942 		wakeup(&userp->p_aioinfo);
943 	}
944 }
945 
946 static void
947 aio_schedule_fsync(void *context, int pending)
948 {
949 	struct kaioinfo *ki;
950 	struct kaiocb *job;
951 
952 	ki = context;
953 	AIO_LOCK(ki);
954 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
955 		job = TAILQ_FIRST(&ki->kaio_syncready);
956 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
957 		AIO_UNLOCK(ki);
958 		aio_schedule(job, aio_process_sync);
959 		AIO_LOCK(ki);
960 	}
961 	AIO_UNLOCK(ki);
962 }
963 
964 bool
965 aio_cancel_cleared(struct kaiocb *job)
966 {
967 
968 	/*
969 	 * The caller should hold the same queue lock held when
970 	 * aio_clear_cancel_function() was called and set this flag
971 	 * ensuring this check sees an up-to-date value.  However,
972 	 * there is no way to assert that.
973 	 */
974 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
975 }
976 
977 static bool
978 aio_clear_cancel_function_locked(struct kaiocb *job)
979 {
980 
981 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
982 	MPASS(job->cancel_fn != NULL);
983 	if (job->jobflags & KAIOCB_CANCELLING) {
984 		job->jobflags |= KAIOCB_CLEARED;
985 		return (false);
986 	}
987 	job->cancel_fn = NULL;
988 	return (true);
989 }
990 
991 bool
992 aio_clear_cancel_function(struct kaiocb *job)
993 {
994 	struct kaioinfo *ki;
995 	bool ret;
996 
997 	ki = job->userproc->p_aioinfo;
998 	AIO_LOCK(ki);
999 	ret = aio_clear_cancel_function_locked(job);
1000 	AIO_UNLOCK(ki);
1001 	return (ret);
1002 }
1003 
1004 static bool
1005 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1006 {
1007 
1008 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1009 	if (job->jobflags & KAIOCB_CANCELLED)
1010 		return (false);
1011 	job->cancel_fn = func;
1012 	return (true);
1013 }
1014 
1015 bool
1016 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1017 {
1018 	struct kaioinfo *ki;
1019 	bool ret;
1020 
1021 	ki = job->userproc->p_aioinfo;
1022 	AIO_LOCK(ki);
1023 	ret = aio_set_cancel_function_locked(job, func);
1024 	AIO_UNLOCK(ki);
1025 	return (ret);
1026 }
1027 
1028 void
1029 aio_complete(struct kaiocb *job, long status, int error)
1030 {
1031 	struct kaioinfo *ki;
1032 	struct proc *userp;
1033 
1034 	job->uaiocb._aiocb_private.error = error;
1035 	job->uaiocb._aiocb_private.status = status;
1036 
1037 	userp = job->userproc;
1038 	ki = userp->p_aioinfo;
1039 
1040 	AIO_LOCK(ki);
1041 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1042 	    ("duplicate aio_complete"));
1043 	job->jobflags |= KAIOCB_FINISHED;
1044 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1045 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1046 		aio_bio_done_notify(userp, job);
1047 	}
1048 	AIO_UNLOCK(ki);
1049 }
1050 
1051 void
1052 aio_cancel(struct kaiocb *job)
1053 {
1054 
1055 	aio_complete(job, -1, ECANCELED);
1056 }
1057 
1058 void
1059 aio_switch_vmspace(struct kaiocb *job)
1060 {
1061 
1062 	vmspace_switch_aio(job->userproc->p_vmspace);
1063 }
1064 
1065 /*
1066  * The AIO daemon, most of the actual work is done in aio_process_*,
1067  * but the setup (and address space mgmt) is done in this routine.
1068  */
1069 static void
1070 aio_daemon(void *_id)
1071 {
1072 	struct kaiocb *job;
1073 	struct aioproc *aiop;
1074 	struct kaioinfo *ki;
1075 	struct proc *p;
1076 	struct vmspace *myvm;
1077 	struct thread *td = curthread;
1078 	int id = (intptr_t)_id;
1079 
1080 	/*
1081 	 * Grab an extra reference on the daemon's vmspace so that it
1082 	 * doesn't get freed by jobs that switch to a different
1083 	 * vmspace.
1084 	 */
1085 	p = td->td_proc;
1086 	myvm = vmspace_acquire_ref(p);
1087 
1088 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1089 
1090 	/*
1091 	 * Allocate and ready the aio control info.  There is one aiop structure
1092 	 * per daemon.
1093 	 */
1094 	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1095 	aiop->aioproc = p;
1096 	aiop->aioprocflags = 0;
1097 
1098 	/*
1099 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1100 	 * and creating too many daemons.)
1101 	 */
1102 	sema_post(&aio_newproc_sem);
1103 
1104 	mtx_lock(&aio_job_mtx);
1105 	for (;;) {
1106 		/*
1107 		 * Take daemon off of free queue
1108 		 */
1109 		if (aiop->aioprocflags & AIOP_FREE) {
1110 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1111 			aiop->aioprocflags &= ~AIOP_FREE;
1112 		}
1113 
1114 		/*
1115 		 * Check for jobs.
1116 		 */
1117 		while ((job = aio_selectjob(aiop)) != NULL) {
1118 			mtx_unlock(&aio_job_mtx);
1119 
1120 			ki = job->userproc->p_aioinfo;
1121 			job->handle_fn(job);
1122 
1123 			mtx_lock(&aio_job_mtx);
1124 			/* Decrement the active job count. */
1125 			ki->kaio_active_count--;
1126 		}
1127 
1128 		/*
1129 		 * Disconnect from user address space.
1130 		 */
1131 		if (p->p_vmspace != myvm) {
1132 			mtx_unlock(&aio_job_mtx);
1133 			vmspace_switch_aio(myvm);
1134 			mtx_lock(&aio_job_mtx);
1135 			/*
1136 			 * We have to restart to avoid race, we only sleep if
1137 			 * no job can be selected.
1138 			 */
1139 			continue;
1140 		}
1141 
1142 		mtx_assert(&aio_job_mtx, MA_OWNED);
1143 
1144 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1145 		aiop->aioprocflags |= AIOP_FREE;
1146 
1147 		/*
1148 		 * If daemon is inactive for a long time, allow it to exit,
1149 		 * thereby freeing resources.
1150 		 */
1151 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1152 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1153 		    (aiop->aioprocflags & AIOP_FREE) &&
1154 		    num_aio_procs > target_aio_procs)
1155 			break;
1156 	}
1157 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1158 	num_aio_procs--;
1159 	mtx_unlock(&aio_job_mtx);
1160 	uma_zfree(aiop_zone, aiop);
1161 	free_unr(aiod_unr, id);
1162 	vmspace_free(myvm);
1163 
1164 	KASSERT(p->p_vmspace == myvm,
1165 	    ("AIOD: bad vmspace for exiting daemon"));
1166 	KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1167 	    ("AIOD: bad vm refcnt for exiting daemon: %d",
1168 	    refcount_load(&myvm->vm_refcnt)));
1169 	kproc_exit(0);
1170 }
1171 
1172 /*
1173  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1174  * AIO daemon modifies its environment itself.
1175  */
1176 static int
1177 aio_newproc(int *start)
1178 {
1179 	int error;
1180 	struct proc *p;
1181 	int id;
1182 
1183 	id = alloc_unr(aiod_unr);
1184 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1185 		RFNOWAIT, 0, "aiod%d", id);
1186 	if (error == 0) {
1187 		/*
1188 		 * Wait until daemon is started.
1189 		 */
1190 		sema_wait(&aio_newproc_sem);
1191 		mtx_lock(&aio_job_mtx);
1192 		num_aio_procs++;
1193 		if (start != NULL)
1194 			(*start)--;
1195 		mtx_unlock(&aio_job_mtx);
1196 	} else {
1197 		free_unr(aiod_unr, id);
1198 	}
1199 	return (error);
1200 }
1201 
1202 /*
1203  * Try the high-performance, low-overhead bio method for eligible
1204  * VCHR devices.  This method doesn't use an aio helper thread, and
1205  * thus has very low overhead.
1206  *
1207  * Assumes that the caller, aio_aqueue(), has incremented the file
1208  * structure's reference count, preventing its deallocation for the
1209  * duration of this call.
1210  */
1211 static int
1212 aio_qbio(struct proc *p, struct kaiocb *job)
1213 {
1214 	struct aiocb *cb;
1215 	struct file *fp;
1216 	struct buf *pbuf;
1217 	struct vnode *vp;
1218 	struct cdevsw *csw;
1219 	struct cdev *dev;
1220 	struct kaioinfo *ki;
1221 	struct bio **bios = NULL;
1222 	off_t offset;
1223 	int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1224 	vm_prot_t prot;
1225 	bool use_unmapped;
1226 
1227 	cb = &job->uaiocb;
1228 	fp = job->fd_file;
1229 	opcode = cb->aio_lio_opcode;
1230 
1231 	if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1232 	    opcode == LIO_READ || opcode == LIO_READV))
1233 		return (-1);
1234 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1235 		return (-1);
1236 
1237 	vp = fp->f_vnode;
1238 	if (vp->v_type != VCHR)
1239 		return (-1);
1240 	if (vp->v_bufobj.bo_bsize == 0)
1241 		return (-1);
1242 
1243 	bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1244 	iovcnt = job->uiop->uio_iovcnt;
1245 	if (iovcnt > max_buf_aio)
1246 		return (-1);
1247 	for (i = 0; i < iovcnt; i++) {
1248 		if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1249 			return (-1);
1250 		if (job->uiop->uio_iov[i].iov_len > maxphys) {
1251 			error = -1;
1252 			return (-1);
1253 		}
1254 	}
1255 	offset = cb->aio_offset;
1256 
1257 	ref = 0;
1258 	csw = devvn_refthread(vp, &dev, &ref);
1259 	if (csw == NULL)
1260 		return (ENXIO);
1261 
1262 	if ((csw->d_flags & D_DISK) == 0) {
1263 		error = -1;
1264 		goto unref;
1265 	}
1266 	if (job->uiop->uio_resid > dev->si_iosize_max) {
1267 		error = -1;
1268 		goto unref;
1269 	}
1270 
1271 	ki = p->p_aioinfo;
1272 	job->error = 0;
1273 
1274 	use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1275 	if (!use_unmapped) {
1276 		AIO_LOCK(ki);
1277 		if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1278 			AIO_UNLOCK(ki);
1279 			error = EAGAIN;
1280 			goto unref;
1281 		}
1282 		ki->kaio_buffer_count += iovcnt;
1283 		AIO_UNLOCK(ki);
1284 	}
1285 
1286 	bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1287 	atomic_store_int(&job->nbio, iovcnt);
1288 	for (i = 0; i < iovcnt; i++) {
1289 		struct vm_page** pages;
1290 		struct bio *bp;
1291 		void *buf;
1292 		size_t nbytes;
1293 		int npages;
1294 
1295 		buf = job->uiop->uio_iov[i].iov_base;
1296 		nbytes = job->uiop->uio_iov[i].iov_len;
1297 
1298 		bios[i] = g_alloc_bio();
1299 		bp = bios[i];
1300 
1301 		poff = (vm_offset_t)buf & PAGE_MASK;
1302 		if (use_unmapped) {
1303 			pbuf = NULL;
1304 			pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1305 			    nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1306 		} else {
1307 			pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1308 			BUF_KERNPROC(pbuf);
1309 			pages = pbuf->b_pages;
1310 		}
1311 
1312 		bp->bio_length = nbytes;
1313 		bp->bio_bcount = nbytes;
1314 		bp->bio_done = aio_biowakeup;
1315 		bp->bio_offset = offset;
1316 		bp->bio_cmd = bio_cmd;
1317 		bp->bio_dev = dev;
1318 		bp->bio_caller1 = job;
1319 		bp->bio_caller2 = pbuf;
1320 
1321 		prot = VM_PROT_READ;
1322 		if (opcode == LIO_READ || opcode == LIO_READV)
1323 			prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1324 		npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1325 		    (vm_offset_t)buf, bp->bio_length, prot, pages,
1326 		    atop(maxphys) + 1);
1327 		if (npages < 0) {
1328 			if (pbuf != NULL)
1329 				uma_zfree(pbuf_zone, pbuf);
1330 			else
1331 				free(pages, M_TEMP);
1332 			error = EFAULT;
1333 			g_destroy_bio(bp);
1334 			i--;
1335 			goto destroy_bios;
1336 		}
1337 		if (pbuf != NULL) {
1338 			pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1339 			bp->bio_data = pbuf->b_data + poff;
1340 			pbuf->b_npages = npages;
1341 			atomic_add_int(&num_buf_aio, 1);
1342 		} else {
1343 			bp->bio_ma = pages;
1344 			bp->bio_ma_n = npages;
1345 			bp->bio_ma_offset = poff;
1346 			bp->bio_data = unmapped_buf;
1347 			bp->bio_flags |= BIO_UNMAPPED;
1348 			atomic_add_int(&num_unmapped_aio, 1);
1349 		}
1350 
1351 		offset += nbytes;
1352 	}
1353 
1354 	/* Perform transfer. */
1355 	for (i = 0; i < iovcnt; i++)
1356 		csw->d_strategy(bios[i]);
1357 	free(bios, M_TEMP);
1358 
1359 	dev_relthread(dev, ref);
1360 	return (0);
1361 
1362 destroy_bios:
1363 	for (; i >= 0; i--)
1364 		aio_biocleanup(bios[i]);
1365 	free(bios, M_TEMP);
1366 unref:
1367 	dev_relthread(dev, ref);
1368 	return (error);
1369 }
1370 
1371 #ifdef COMPAT_FREEBSD6
1372 static int
1373 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1374 {
1375 
1376 	/*
1377 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1378 	 * supported by AIO with the old sigevent structure.
1379 	 */
1380 	nsig->sigev_notify = osig->sigev_notify;
1381 	switch (nsig->sigev_notify) {
1382 	case SIGEV_NONE:
1383 		break;
1384 	case SIGEV_SIGNAL:
1385 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1386 		break;
1387 	case SIGEV_KEVENT:
1388 		nsig->sigev_notify_kqueue =
1389 		    osig->__sigev_u.__sigev_notify_kqueue;
1390 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1391 		break;
1392 	default:
1393 		return (EINVAL);
1394 	}
1395 	return (0);
1396 }
1397 
1398 static int
1399 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1400     int type __unused)
1401 {
1402 	struct oaiocb *ojob;
1403 	struct aiocb *kcb = &kjob->uaiocb;
1404 	int error;
1405 
1406 	bzero(kcb, sizeof(struct aiocb));
1407 	error = copyin(ujob, kcb, sizeof(struct oaiocb));
1408 	if (error)
1409 		return (error);
1410 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1411 	ojob = (struct oaiocb *)kcb;
1412 	return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1413 }
1414 #endif
1415 
1416 static int
1417 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1418 {
1419 	struct aiocb *kcb = &kjob->uaiocb;
1420 	int error;
1421 
1422 	error = copyin(ujob, kcb, sizeof(struct aiocb));
1423 	if (error)
1424 		return (error);
1425 	if (type == LIO_NOP)
1426 		type = kcb->aio_lio_opcode;
1427 	if (type & LIO_VECTORED) {
1428 		/* malloc a uio and copy in the iovec */
1429 		error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1430 		    kcb->aio_iovcnt, &kjob->uiop);
1431 	}
1432 
1433 	return (error);
1434 }
1435 
1436 static long
1437 aiocb_fetch_status(struct aiocb *ujob)
1438 {
1439 
1440 	return (fuword(&ujob->_aiocb_private.status));
1441 }
1442 
1443 static long
1444 aiocb_fetch_error(struct aiocb *ujob)
1445 {
1446 
1447 	return (fuword(&ujob->_aiocb_private.error));
1448 }
1449 
1450 static int
1451 aiocb_store_status(struct aiocb *ujob, long status)
1452 {
1453 
1454 	return (suword(&ujob->_aiocb_private.status, status));
1455 }
1456 
1457 static int
1458 aiocb_store_error(struct aiocb *ujob, long error)
1459 {
1460 
1461 	return (suword(&ujob->_aiocb_private.error, error));
1462 }
1463 
1464 static int
1465 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1466 {
1467 
1468 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1469 }
1470 
1471 static int
1472 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1473 {
1474 
1475 	return (suword(ujobp, (long)ujob));
1476 }
1477 
1478 static struct aiocb_ops aiocb_ops = {
1479 	.aio_copyin = aiocb_copyin,
1480 	.fetch_status = aiocb_fetch_status,
1481 	.fetch_error = aiocb_fetch_error,
1482 	.store_status = aiocb_store_status,
1483 	.store_error = aiocb_store_error,
1484 	.store_kernelinfo = aiocb_store_kernelinfo,
1485 	.store_aiocb = aiocb_store_aiocb,
1486 };
1487 
1488 #ifdef COMPAT_FREEBSD6
1489 static struct aiocb_ops aiocb_ops_osigevent = {
1490 	.aio_copyin = aiocb_copyin_old_sigevent,
1491 	.fetch_status = aiocb_fetch_status,
1492 	.fetch_error = aiocb_fetch_error,
1493 	.store_status = aiocb_store_status,
1494 	.store_error = aiocb_store_error,
1495 	.store_kernelinfo = aiocb_store_kernelinfo,
1496 	.store_aiocb = aiocb_store_aiocb,
1497 };
1498 #endif
1499 
1500 /*
1501  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1502  * technique is done in this code.
1503  */
1504 int
1505 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1506     int type, struct aiocb_ops *ops)
1507 {
1508 	struct proc *p = td->td_proc;
1509 	struct file *fp = NULL;
1510 	struct kaiocb *job;
1511 	struct kaioinfo *ki;
1512 	struct kevent kev;
1513 	int opcode;
1514 	int error;
1515 	int fd, kqfd;
1516 	int jid;
1517 	u_short evflags;
1518 
1519 	if (p->p_aioinfo == NULL)
1520 		aio_init_aioinfo(p);
1521 
1522 	ki = p->p_aioinfo;
1523 
1524 	ops->store_status(ujob, -1);
1525 	ops->store_error(ujob, 0);
1526 	ops->store_kernelinfo(ujob, -1);
1527 
1528 	if (num_queue_count >= max_queue_count ||
1529 	    ki->kaio_count >= max_aio_queue_per_proc) {
1530 		error = EAGAIN;
1531 		goto err1;
1532 	}
1533 
1534 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1535 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1536 
1537 	error = ops->aio_copyin(ujob, job, type);
1538 	if (error)
1539 		goto err2;
1540 
1541 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1542 		error = EINVAL;
1543 		goto err2;
1544 	}
1545 
1546 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1547 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1548 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1549 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1550 		error = EINVAL;
1551 		goto err2;
1552 	}
1553 
1554 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1555 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1556 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1557 		error = EINVAL;
1558 		goto err2;
1559 	}
1560 
1561 	/* Get the opcode. */
1562 	if (type == LIO_NOP) {
1563 		switch (job->uaiocb.aio_lio_opcode) {
1564 		case LIO_WRITE:
1565 		case LIO_WRITEV:
1566 		case LIO_NOP:
1567 		case LIO_READ:
1568 		case LIO_READV:
1569 			opcode = job->uaiocb.aio_lio_opcode;
1570 			break;
1571 		default:
1572 			error = EINVAL;
1573 			goto err2;
1574 		}
1575 	} else
1576 		opcode = job->uaiocb.aio_lio_opcode = type;
1577 
1578 	ksiginfo_init(&job->ksi);
1579 
1580 	/* Save userspace address of the job info. */
1581 	job->ujob = ujob;
1582 
1583 	/*
1584 	 * Validate the opcode and fetch the file object for the specified
1585 	 * file descriptor.
1586 	 *
1587 	 * XXXRW: Moved the opcode validation up here so that we don't
1588 	 * retrieve a file descriptor without knowing what the capabiltity
1589 	 * should be.
1590 	 */
1591 	fd = job->uaiocb.aio_fildes;
1592 	switch (opcode) {
1593 	case LIO_WRITE:
1594 	case LIO_WRITEV:
1595 		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1596 		break;
1597 	case LIO_READ:
1598 	case LIO_READV:
1599 		error = fget_read(td, fd, &cap_pread_rights, &fp);
1600 		break;
1601 	case LIO_SYNC:
1602 	case LIO_DSYNC:
1603 		error = fget(td, fd, &cap_fsync_rights, &fp);
1604 		break;
1605 	case LIO_MLOCK:
1606 		break;
1607 	case LIO_NOP:
1608 		error = fget(td, fd, &cap_no_rights, &fp);
1609 		break;
1610 	default:
1611 		error = EINVAL;
1612 	}
1613 	if (error)
1614 		goto err3;
1615 
1616 	if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1617 		error = EINVAL;
1618 		goto err3;
1619 	}
1620 
1621 	if ((opcode == LIO_READ || opcode == LIO_READV ||
1622 	    opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1623 	    job->uaiocb.aio_offset < 0 &&
1624 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1625 		error = EINVAL;
1626 		goto err3;
1627 	}
1628 
1629 	if (fp != NULL && fp->f_ops == &path_fileops) {
1630 		error = EBADF;
1631 		goto err3;
1632 	}
1633 
1634 	job->fd_file = fp;
1635 
1636 	mtx_lock(&aio_job_mtx);
1637 	jid = jobrefid++;
1638 	job->seqno = jobseqno++;
1639 	mtx_unlock(&aio_job_mtx);
1640 	error = ops->store_kernelinfo(ujob, jid);
1641 	if (error) {
1642 		error = EINVAL;
1643 		goto err3;
1644 	}
1645 	job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1646 
1647 	if (opcode == LIO_NOP) {
1648 		fdrop(fp, td);
1649 		MPASS(job->uiop == &job->uio || job->uiop == NULL);
1650 		uma_zfree(aiocb_zone, job);
1651 		return (0);
1652 	}
1653 
1654 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1655 		goto no_kqueue;
1656 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1657 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1658 		error = EINVAL;
1659 		goto err3;
1660 	}
1661 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1662 	memset(&kev, 0, sizeof(kev));
1663 	kev.ident = (uintptr_t)job->ujob;
1664 	kev.filter = EVFILT_AIO;
1665 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1666 	kev.data = (intptr_t)job;
1667 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1668 	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1669 	if (error)
1670 		goto err3;
1671 
1672 no_kqueue:
1673 
1674 	ops->store_error(ujob, EINPROGRESS);
1675 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1676 	job->userproc = p;
1677 	job->cred = crhold(td->td_ucred);
1678 	job->jobflags = KAIOCB_QUEUEING;
1679 	job->lio = lj;
1680 
1681 	if (opcode & LIO_VECTORED) {
1682 		/* Use the uio copied in by aio_copyin */
1683 		MPASS(job->uiop != &job->uio && job->uiop != NULL);
1684 	} else {
1685 		/* Setup the inline uio */
1686 		job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1687 		job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1688 		job->uio.uio_iov = job->iov;
1689 		job->uio.uio_iovcnt = 1;
1690 		job->uio.uio_resid = job->uaiocb.aio_nbytes;
1691 		job->uio.uio_segflg = UIO_USERSPACE;
1692 		job->uiop = &job->uio;
1693 	}
1694 	switch (opcode & (LIO_READ | LIO_WRITE)) {
1695 	case LIO_READ:
1696 		job->uiop->uio_rw = UIO_READ;
1697 		break;
1698 	case LIO_WRITE:
1699 		job->uiop->uio_rw = UIO_WRITE;
1700 		break;
1701 	}
1702 	job->uiop->uio_offset = job->uaiocb.aio_offset;
1703 	job->uiop->uio_td = td;
1704 
1705 	if (opcode == LIO_MLOCK) {
1706 		aio_schedule(job, aio_process_mlock);
1707 		error = 0;
1708 	} else if (fp->f_ops->fo_aio_queue == NULL)
1709 		error = aio_queue_file(fp, job);
1710 	else
1711 		error = fo_aio_queue(fp, job);
1712 	if (error)
1713 		goto err4;
1714 
1715 	AIO_LOCK(ki);
1716 	job->jobflags &= ~KAIOCB_QUEUEING;
1717 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1718 	ki->kaio_count++;
1719 	if (lj)
1720 		lj->lioj_count++;
1721 	atomic_add_int(&num_queue_count, 1);
1722 	if (job->jobflags & KAIOCB_FINISHED) {
1723 		/*
1724 		 * The queue callback completed the request synchronously.
1725 		 * The bulk of the completion is deferred in that case
1726 		 * until this point.
1727 		 */
1728 		aio_bio_done_notify(p, job);
1729 	} else
1730 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1731 	AIO_UNLOCK(ki);
1732 	return (0);
1733 
1734 err4:
1735 	crfree(job->cred);
1736 err3:
1737 	if (fp)
1738 		fdrop(fp, td);
1739 	knlist_delete(&job->klist, curthread, 0);
1740 err2:
1741 	if (job->uiop != &job->uio)
1742 		free(job->uiop, M_IOV);
1743 	uma_zfree(aiocb_zone, job);
1744 err1:
1745 	ops->store_error(ujob, error);
1746 	return (error);
1747 }
1748 
1749 static void
1750 aio_cancel_daemon_job(struct kaiocb *job)
1751 {
1752 
1753 	mtx_lock(&aio_job_mtx);
1754 	if (!aio_cancel_cleared(job))
1755 		TAILQ_REMOVE(&aio_jobs, job, list);
1756 	mtx_unlock(&aio_job_mtx);
1757 	aio_cancel(job);
1758 }
1759 
1760 void
1761 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1762 {
1763 
1764 	mtx_lock(&aio_job_mtx);
1765 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1766 		mtx_unlock(&aio_job_mtx);
1767 		aio_cancel(job);
1768 		return;
1769 	}
1770 	job->handle_fn = func;
1771 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1772 	aio_kick_nowait(job->userproc);
1773 	mtx_unlock(&aio_job_mtx);
1774 }
1775 
1776 static void
1777 aio_cancel_sync(struct kaiocb *job)
1778 {
1779 	struct kaioinfo *ki;
1780 
1781 	ki = job->userproc->p_aioinfo;
1782 	AIO_LOCK(ki);
1783 	if (!aio_cancel_cleared(job))
1784 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1785 	AIO_UNLOCK(ki);
1786 	aio_cancel(job);
1787 }
1788 
1789 int
1790 aio_queue_file(struct file *fp, struct kaiocb *job)
1791 {
1792 	struct kaioinfo *ki;
1793 	struct kaiocb *job2;
1794 	struct vnode *vp;
1795 	struct mount *mp;
1796 	int error;
1797 	bool safe;
1798 
1799 	ki = job->userproc->p_aioinfo;
1800 	error = aio_qbio(job->userproc, job);
1801 	if (error >= 0)
1802 		return (error);
1803 	safe = false;
1804 	if (fp->f_type == DTYPE_VNODE) {
1805 		vp = fp->f_vnode;
1806 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1807 			mp = fp->f_vnode->v_mount;
1808 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1809 				safe = true;
1810 		}
1811 	}
1812 	if (!(safe || enable_aio_unsafe)) {
1813 		counted_warning(&unsafe_warningcnt,
1814 		    "is attempting to use unsafe AIO requests");
1815 		return (EOPNOTSUPP);
1816 	}
1817 
1818 	if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1819 		aio_schedule(job, aio_process_rw);
1820 		error = 0;
1821 	} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1822 		AIO_LOCK(ki);
1823 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1824 			if (job2->fd_file == job->fd_file &&
1825 			    ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1826 			    job2->seqno < job->seqno) {
1827 				job2->jobflags |= KAIOCB_CHECKSYNC;
1828 				job->pending++;
1829 			}
1830 		}
1831 		if (job->pending != 0) {
1832 			if (!aio_set_cancel_function_locked(job,
1833 				aio_cancel_sync)) {
1834 				AIO_UNLOCK(ki);
1835 				aio_cancel(job);
1836 				return (0);
1837 			}
1838 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1839 			AIO_UNLOCK(ki);
1840 			return (0);
1841 		}
1842 		AIO_UNLOCK(ki);
1843 		aio_schedule(job, aio_process_sync);
1844 		error = 0;
1845 	} else {
1846 		error = EINVAL;
1847 	}
1848 	return (error);
1849 }
1850 
1851 static void
1852 aio_kick_nowait(struct proc *userp)
1853 {
1854 	struct kaioinfo *ki = userp->p_aioinfo;
1855 	struct aioproc *aiop;
1856 
1857 	mtx_assert(&aio_job_mtx, MA_OWNED);
1858 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1859 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1860 		aiop->aioprocflags &= ~AIOP_FREE;
1861 		wakeup(aiop->aioproc);
1862 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1863 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1864 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1865 	}
1866 }
1867 
1868 static int
1869 aio_kick(struct proc *userp)
1870 {
1871 	struct kaioinfo *ki = userp->p_aioinfo;
1872 	struct aioproc *aiop;
1873 	int error, ret = 0;
1874 
1875 	mtx_assert(&aio_job_mtx, MA_OWNED);
1876 retryproc:
1877 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1878 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1879 		aiop->aioprocflags &= ~AIOP_FREE;
1880 		wakeup(aiop->aioproc);
1881 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1882 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1883 		num_aio_resv_start++;
1884 		mtx_unlock(&aio_job_mtx);
1885 		error = aio_newproc(&num_aio_resv_start);
1886 		mtx_lock(&aio_job_mtx);
1887 		if (error) {
1888 			num_aio_resv_start--;
1889 			goto retryproc;
1890 		}
1891 	} else {
1892 		ret = -1;
1893 	}
1894 	return (ret);
1895 }
1896 
1897 static void
1898 aio_kick_helper(void *context, int pending)
1899 {
1900 	struct proc *userp = context;
1901 
1902 	mtx_lock(&aio_job_mtx);
1903 	while (--pending >= 0) {
1904 		if (aio_kick(userp))
1905 			break;
1906 	}
1907 	mtx_unlock(&aio_job_mtx);
1908 }
1909 
1910 /*
1911  * Support the aio_return system call, as a side-effect, kernel resources are
1912  * released.
1913  */
1914 static int
1915 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1916 {
1917 	struct proc *p = td->td_proc;
1918 	struct kaiocb *job;
1919 	struct kaioinfo *ki;
1920 	long status, error;
1921 
1922 	ki = p->p_aioinfo;
1923 	if (ki == NULL)
1924 		return (EINVAL);
1925 	AIO_LOCK(ki);
1926 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1927 		if (job->ujob == ujob)
1928 			break;
1929 	}
1930 	if (job != NULL) {
1931 		MPASS(job->jobflags & KAIOCB_FINISHED);
1932 		status = job->uaiocb._aiocb_private.status;
1933 		error = job->uaiocb._aiocb_private.error;
1934 		td->td_retval[0] = status;
1935 		td->td_ru.ru_oublock += job->outblock;
1936 		td->td_ru.ru_inblock += job->inblock;
1937 		td->td_ru.ru_msgsnd += job->msgsnd;
1938 		td->td_ru.ru_msgrcv += job->msgrcv;
1939 		aio_free_entry(job);
1940 		AIO_UNLOCK(ki);
1941 		ops->store_error(ujob, error);
1942 		ops->store_status(ujob, status);
1943 	} else {
1944 		error = EINVAL;
1945 		AIO_UNLOCK(ki);
1946 	}
1947 	return (error);
1948 }
1949 
1950 int
1951 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1952 {
1953 
1954 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1955 }
1956 
1957 /*
1958  * Allow a process to wakeup when any of the I/O requests are completed.
1959  */
1960 static int
1961 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1962     struct timespec *ts)
1963 {
1964 	struct proc *p = td->td_proc;
1965 	struct timeval atv;
1966 	struct kaioinfo *ki;
1967 	struct kaiocb *firstjob, *job;
1968 	int error, i, timo;
1969 
1970 	timo = 0;
1971 	if (ts) {
1972 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1973 			return (EINVAL);
1974 
1975 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1976 		if (itimerfix(&atv))
1977 			return (EINVAL);
1978 		timo = tvtohz(&atv);
1979 	}
1980 
1981 	ki = p->p_aioinfo;
1982 	if (ki == NULL)
1983 		return (EAGAIN);
1984 
1985 	if (njoblist == 0)
1986 		return (0);
1987 
1988 	AIO_LOCK(ki);
1989 	for (;;) {
1990 		firstjob = NULL;
1991 		error = 0;
1992 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1993 			for (i = 0; i < njoblist; i++) {
1994 				if (job->ujob == ujoblist[i]) {
1995 					if (firstjob == NULL)
1996 						firstjob = job;
1997 					if (job->jobflags & KAIOCB_FINISHED)
1998 						goto RETURN;
1999 				}
2000 			}
2001 		}
2002 		/* All tasks were finished. */
2003 		if (firstjob == NULL)
2004 			break;
2005 
2006 		ki->kaio_flags |= KAIO_WAKEUP;
2007 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2008 		    "aiospn", timo);
2009 		if (error == ERESTART)
2010 			error = EINTR;
2011 		if (error)
2012 			break;
2013 	}
2014 RETURN:
2015 	AIO_UNLOCK(ki);
2016 	return (error);
2017 }
2018 
2019 int
2020 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2021 {
2022 	struct timespec ts, *tsp;
2023 	struct aiocb **ujoblist;
2024 	int error;
2025 
2026 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2027 		return (EINVAL);
2028 
2029 	if (uap->timeout) {
2030 		/* Get timespec struct. */
2031 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2032 			return (error);
2033 		tsp = &ts;
2034 	} else
2035 		tsp = NULL;
2036 
2037 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
2038 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2039 	if (error == 0)
2040 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2041 	free(ujoblist, M_AIOS);
2042 	return (error);
2043 }
2044 
2045 /*
2046  * aio_cancel cancels any non-bio aio operations not currently in progress.
2047  */
2048 int
2049 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2050 {
2051 	struct proc *p = td->td_proc;
2052 	struct kaioinfo *ki;
2053 	struct kaiocb *job, *jobn;
2054 	struct file *fp;
2055 	int error;
2056 	int cancelled = 0;
2057 	int notcancelled = 0;
2058 	struct vnode *vp;
2059 
2060 	/* Lookup file object. */
2061 	error = fget(td, uap->fd, &cap_no_rights, &fp);
2062 	if (error)
2063 		return (error);
2064 
2065 	ki = p->p_aioinfo;
2066 	if (ki == NULL)
2067 		goto done;
2068 
2069 	if (fp->f_type == DTYPE_VNODE) {
2070 		vp = fp->f_vnode;
2071 		if (vn_isdisk(vp)) {
2072 			fdrop(fp, td);
2073 			td->td_retval[0] = AIO_NOTCANCELED;
2074 			return (0);
2075 		}
2076 	}
2077 
2078 	AIO_LOCK(ki);
2079 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2080 		if ((uap->fd == job->uaiocb.aio_fildes) &&
2081 		    ((uap->aiocbp == NULL) ||
2082 		     (uap->aiocbp == job->ujob))) {
2083 			if (aio_cancel_job(p, ki, job)) {
2084 				cancelled++;
2085 			} else {
2086 				notcancelled++;
2087 			}
2088 			if (uap->aiocbp != NULL)
2089 				break;
2090 		}
2091 	}
2092 	AIO_UNLOCK(ki);
2093 
2094 done:
2095 	fdrop(fp, td);
2096 
2097 	if (uap->aiocbp != NULL) {
2098 		if (cancelled) {
2099 			td->td_retval[0] = AIO_CANCELED;
2100 			return (0);
2101 		}
2102 	}
2103 
2104 	if (notcancelled) {
2105 		td->td_retval[0] = AIO_NOTCANCELED;
2106 		return (0);
2107 	}
2108 
2109 	if (cancelled) {
2110 		td->td_retval[0] = AIO_CANCELED;
2111 		return (0);
2112 	}
2113 
2114 	td->td_retval[0] = AIO_ALLDONE;
2115 
2116 	return (0);
2117 }
2118 
2119 /*
2120  * aio_error is implemented in the kernel level for compatibility purposes
2121  * only.  For a user mode async implementation, it would be best to do it in
2122  * a userland subroutine.
2123  */
2124 static int
2125 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2126 {
2127 	struct proc *p = td->td_proc;
2128 	struct kaiocb *job;
2129 	struct kaioinfo *ki;
2130 	int status;
2131 
2132 	ki = p->p_aioinfo;
2133 	if (ki == NULL) {
2134 		td->td_retval[0] = EINVAL;
2135 		return (0);
2136 	}
2137 
2138 	AIO_LOCK(ki);
2139 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2140 		if (job->ujob == ujob) {
2141 			if (job->jobflags & KAIOCB_FINISHED)
2142 				td->td_retval[0] =
2143 					job->uaiocb._aiocb_private.error;
2144 			else
2145 				td->td_retval[0] = EINPROGRESS;
2146 			AIO_UNLOCK(ki);
2147 			return (0);
2148 		}
2149 	}
2150 	AIO_UNLOCK(ki);
2151 
2152 	/*
2153 	 * Hack for failure of aio_aqueue.
2154 	 */
2155 	status = ops->fetch_status(ujob);
2156 	if (status == -1) {
2157 		td->td_retval[0] = ops->fetch_error(ujob);
2158 		return (0);
2159 	}
2160 
2161 	td->td_retval[0] = EINVAL;
2162 	return (0);
2163 }
2164 
2165 int
2166 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2167 {
2168 
2169 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2170 }
2171 
2172 /* syscall - asynchronous read from a file (REALTIME) */
2173 #ifdef COMPAT_FREEBSD6
2174 int
2175 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2176 {
2177 
2178 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2179 	    &aiocb_ops_osigevent));
2180 }
2181 #endif
2182 
2183 int
2184 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2185 {
2186 
2187 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2188 }
2189 
2190 int
2191 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2192 {
2193 
2194 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2195 }
2196 
2197 /* syscall - asynchronous write to a file (REALTIME) */
2198 #ifdef COMPAT_FREEBSD6
2199 int
2200 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2201 {
2202 
2203 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2204 	    &aiocb_ops_osigevent));
2205 }
2206 #endif
2207 
2208 int
2209 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2210 {
2211 
2212 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2213 }
2214 
2215 int
2216 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2217 {
2218 
2219 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2220 }
2221 
2222 int
2223 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2224 {
2225 
2226 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2227 }
2228 
2229 static int
2230 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2231     struct aiocb **acb_list, int nent, struct sigevent *sig,
2232     struct aiocb_ops *ops)
2233 {
2234 	struct proc *p = td->td_proc;
2235 	struct aiocb *job;
2236 	struct kaioinfo *ki;
2237 	struct aioliojob *lj;
2238 	struct kevent kev;
2239 	int error;
2240 	int nagain, nerror;
2241 	int i;
2242 
2243 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2244 		return (EINVAL);
2245 
2246 	if (nent < 0 || nent > max_aio_queue_per_proc)
2247 		return (EINVAL);
2248 
2249 	if (p->p_aioinfo == NULL)
2250 		aio_init_aioinfo(p);
2251 
2252 	ki = p->p_aioinfo;
2253 
2254 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2255 	lj->lioj_flags = 0;
2256 	lj->lioj_count = 0;
2257 	lj->lioj_finished_count = 0;
2258 	lj->lioj_signal.sigev_notify = SIGEV_NONE;
2259 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2260 	ksiginfo_init(&lj->lioj_ksi);
2261 
2262 	/*
2263 	 * Setup signal.
2264 	 */
2265 	if (sig && (mode == LIO_NOWAIT)) {
2266 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2267 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2268 			/* Assume only new style KEVENT */
2269 			memset(&kev, 0, sizeof(kev));
2270 			kev.filter = EVFILT_LIO;
2271 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2272 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2273 			kev.data = (intptr_t)lj;
2274 			/* pass user defined sigval data */
2275 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2276 			error = kqfd_register(
2277 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2278 			    M_WAITOK);
2279 			if (error) {
2280 				uma_zfree(aiolio_zone, lj);
2281 				return (error);
2282 			}
2283 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2284 			;
2285 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2286 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2287 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2288 					uma_zfree(aiolio_zone, lj);
2289 					return EINVAL;
2290 				}
2291 				lj->lioj_flags |= LIOJ_SIGNAL;
2292 		} else {
2293 			uma_zfree(aiolio_zone, lj);
2294 			return EINVAL;
2295 		}
2296 	}
2297 
2298 	AIO_LOCK(ki);
2299 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2300 	/*
2301 	 * Add extra aiocb count to avoid the lio to be freed
2302 	 * by other threads doing aio_waitcomplete or aio_return,
2303 	 * and prevent event from being sent until we have queued
2304 	 * all tasks.
2305 	 */
2306 	lj->lioj_count = 1;
2307 	AIO_UNLOCK(ki);
2308 
2309 	/*
2310 	 * Get pointers to the list of I/O requests.
2311 	 */
2312 	nagain = 0;
2313 	nerror = 0;
2314 	for (i = 0; i < nent; i++) {
2315 		job = acb_list[i];
2316 		if (job != NULL) {
2317 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2318 			if (error == EAGAIN)
2319 				nagain++;
2320 			else if (error != 0)
2321 				nerror++;
2322 		}
2323 	}
2324 
2325 	error = 0;
2326 	AIO_LOCK(ki);
2327 	if (mode == LIO_WAIT) {
2328 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2329 			ki->kaio_flags |= KAIO_WAKEUP;
2330 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2331 			    PRIBIO | PCATCH, "aiospn", 0);
2332 			if (error == ERESTART)
2333 				error = EINTR;
2334 			if (error)
2335 				break;
2336 		}
2337 	} else {
2338 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2339 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2340 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2341 				KNOTE_LOCKED(&lj->klist, 1);
2342 			}
2343 			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2344 			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2345 			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2346 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2347 				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2348 				    lj->lioj_count != 1);
2349 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2350 			}
2351 		}
2352 	}
2353 	lj->lioj_count--;
2354 	if (lj->lioj_count == 0) {
2355 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2356 		knlist_delete(&lj->klist, curthread, 1);
2357 		PROC_LOCK(p);
2358 		sigqueue_take(&lj->lioj_ksi);
2359 		PROC_UNLOCK(p);
2360 		AIO_UNLOCK(ki);
2361 		uma_zfree(aiolio_zone, lj);
2362 	} else
2363 		AIO_UNLOCK(ki);
2364 
2365 	if (nerror)
2366 		return (EIO);
2367 	else if (nagain)
2368 		return (EAGAIN);
2369 	else
2370 		return (error);
2371 }
2372 
2373 /* syscall - list directed I/O (REALTIME) */
2374 #ifdef COMPAT_FREEBSD6
2375 int
2376 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2377 {
2378 	struct aiocb **acb_list;
2379 	struct sigevent *sigp, sig;
2380 	struct osigevent osig;
2381 	int error, nent;
2382 
2383 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2384 		return (EINVAL);
2385 
2386 	nent = uap->nent;
2387 	if (nent < 0 || nent > max_aio_queue_per_proc)
2388 		return (EINVAL);
2389 
2390 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2391 		error = copyin(uap->sig, &osig, sizeof(osig));
2392 		if (error)
2393 			return (error);
2394 		error = convert_old_sigevent(&osig, &sig);
2395 		if (error)
2396 			return (error);
2397 		sigp = &sig;
2398 	} else
2399 		sigp = NULL;
2400 
2401 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2402 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2403 	if (error == 0)
2404 		error = kern_lio_listio(td, uap->mode,
2405 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2406 		    &aiocb_ops_osigevent);
2407 	free(acb_list, M_LIO);
2408 	return (error);
2409 }
2410 #endif
2411 
2412 /* syscall - list directed I/O (REALTIME) */
2413 int
2414 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2415 {
2416 	struct aiocb **acb_list;
2417 	struct sigevent *sigp, sig;
2418 	int error, nent;
2419 
2420 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2421 		return (EINVAL);
2422 
2423 	nent = uap->nent;
2424 	if (nent < 0 || nent > max_aio_queue_per_proc)
2425 		return (EINVAL);
2426 
2427 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2428 		error = copyin(uap->sig, &sig, sizeof(sig));
2429 		if (error)
2430 			return (error);
2431 		sigp = &sig;
2432 	} else
2433 		sigp = NULL;
2434 
2435 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2436 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2437 	if (error == 0)
2438 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2439 		    nent, sigp, &aiocb_ops);
2440 	free(acb_list, M_LIO);
2441 	return (error);
2442 }
2443 
2444 static void
2445 aio_biocleanup(struct bio *bp)
2446 {
2447 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2448 	struct kaioinfo *ki;
2449 	struct buf *pbuf = (struct buf *)bp->bio_caller2;
2450 
2451 	/* Release mapping into kernel space. */
2452 	if (pbuf != NULL) {
2453 		MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2454 		pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2455 		vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2456 		uma_zfree(pbuf_zone, pbuf);
2457 		atomic_subtract_int(&num_buf_aio, 1);
2458 		ki = job->userproc->p_aioinfo;
2459 		AIO_LOCK(ki);
2460 		ki->kaio_buffer_count--;
2461 		AIO_UNLOCK(ki);
2462 	} else {
2463 		MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2464 		vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2465 		free(bp->bio_ma, M_TEMP);
2466 		atomic_subtract_int(&num_unmapped_aio, 1);
2467 	}
2468 	g_destroy_bio(bp);
2469 }
2470 
2471 static void
2472 aio_biowakeup(struct bio *bp)
2473 {
2474 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2475 	size_t nbytes;
2476 	long bcount = bp->bio_bcount;
2477 	long resid = bp->bio_resid;
2478 	int opcode, nblks;
2479 	int bio_error = bp->bio_error;
2480 	uint16_t flags = bp->bio_flags;
2481 
2482 	opcode = job->uaiocb.aio_lio_opcode;
2483 
2484 	aio_biocleanup(bp);
2485 
2486 	nbytes =bcount - resid;
2487 	atomic_add_acq_long(&job->nbytes, nbytes);
2488 	nblks = btodb(nbytes);
2489 	/*
2490 	 * If multiple bios experienced an error, the job will reflect the
2491 	 * error of whichever failed bio completed last.
2492 	 */
2493 	if (flags & BIO_ERROR)
2494 		atomic_set_int(&job->error, bio_error);
2495 	if (opcode & LIO_WRITE)
2496 		atomic_add_int(&job->outblock, nblks);
2497 	else
2498 		atomic_add_int(&job->inblock, nblks);
2499 	atomic_subtract_int(&job->nbio, 1);
2500 
2501 
2502 	if (atomic_load_int(&job->nbio) == 0) {
2503 		if (atomic_load_int(&job->error))
2504 			aio_complete(job, -1, job->error);
2505 		else
2506 			aio_complete(job, atomic_load_long(&job->nbytes), 0);
2507 	}
2508 }
2509 
2510 /* syscall - wait for the next completion of an aio request */
2511 static int
2512 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2513     struct timespec *ts, struct aiocb_ops *ops)
2514 {
2515 	struct proc *p = td->td_proc;
2516 	struct timeval atv;
2517 	struct kaioinfo *ki;
2518 	struct kaiocb *job;
2519 	struct aiocb *ujob;
2520 	long error, status;
2521 	int timo;
2522 
2523 	ops->store_aiocb(ujobp, NULL);
2524 
2525 	if (ts == NULL) {
2526 		timo = 0;
2527 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2528 		timo = -1;
2529 	} else {
2530 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2531 			return (EINVAL);
2532 
2533 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2534 		if (itimerfix(&atv))
2535 			return (EINVAL);
2536 		timo = tvtohz(&atv);
2537 	}
2538 
2539 	if (p->p_aioinfo == NULL)
2540 		aio_init_aioinfo(p);
2541 	ki = p->p_aioinfo;
2542 
2543 	error = 0;
2544 	job = NULL;
2545 	AIO_LOCK(ki);
2546 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2547 		if (timo == -1) {
2548 			error = EWOULDBLOCK;
2549 			break;
2550 		}
2551 		ki->kaio_flags |= KAIO_WAKEUP;
2552 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2553 		    "aiowc", timo);
2554 		if (timo && error == ERESTART)
2555 			error = EINTR;
2556 		if (error)
2557 			break;
2558 	}
2559 
2560 	if (job != NULL) {
2561 		MPASS(job->jobflags & KAIOCB_FINISHED);
2562 		ujob = job->ujob;
2563 		status = job->uaiocb._aiocb_private.status;
2564 		error = job->uaiocb._aiocb_private.error;
2565 		td->td_retval[0] = status;
2566 		td->td_ru.ru_oublock += job->outblock;
2567 		td->td_ru.ru_inblock += job->inblock;
2568 		td->td_ru.ru_msgsnd += job->msgsnd;
2569 		td->td_ru.ru_msgrcv += job->msgrcv;
2570 		aio_free_entry(job);
2571 		AIO_UNLOCK(ki);
2572 		ops->store_aiocb(ujobp, ujob);
2573 		ops->store_error(ujob, error);
2574 		ops->store_status(ujob, status);
2575 	} else
2576 		AIO_UNLOCK(ki);
2577 
2578 	return (error);
2579 }
2580 
2581 int
2582 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2583 {
2584 	struct timespec ts, *tsp;
2585 	int error;
2586 
2587 	if (uap->timeout) {
2588 		/* Get timespec struct. */
2589 		error = copyin(uap->timeout, &ts, sizeof(ts));
2590 		if (error)
2591 			return (error);
2592 		tsp = &ts;
2593 	} else
2594 		tsp = NULL;
2595 
2596 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2597 }
2598 
2599 static int
2600 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2601     struct aiocb_ops *ops)
2602 {
2603 	int listop;
2604 
2605 	switch (op) {
2606 	case O_SYNC:
2607 		listop = LIO_SYNC;
2608 		break;
2609 	case O_DSYNC:
2610 		listop = LIO_DSYNC;
2611 		break;
2612 	default:
2613 		return (EINVAL);
2614 	}
2615 
2616 	return (aio_aqueue(td, ujob, NULL, listop, ops));
2617 }
2618 
2619 int
2620 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2621 {
2622 
2623 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2624 }
2625 
2626 /* kqueue attach function */
2627 static int
2628 filt_aioattach(struct knote *kn)
2629 {
2630 	struct kaiocb *job;
2631 
2632 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2633 
2634 	/*
2635 	 * The job pointer must be validated before using it, so
2636 	 * registration is restricted to the kernel; the user cannot
2637 	 * set EV_FLAG1.
2638 	 */
2639 	if ((kn->kn_flags & EV_FLAG1) == 0)
2640 		return (EPERM);
2641 	kn->kn_ptr.p_aio = job;
2642 	kn->kn_flags &= ~EV_FLAG1;
2643 
2644 	knlist_add(&job->klist, kn, 0);
2645 
2646 	return (0);
2647 }
2648 
2649 /* kqueue detach function */
2650 static void
2651 filt_aiodetach(struct knote *kn)
2652 {
2653 	struct knlist *knl;
2654 
2655 	knl = &kn->kn_ptr.p_aio->klist;
2656 	knl->kl_lock(knl->kl_lockarg);
2657 	if (!knlist_empty(knl))
2658 		knlist_remove(knl, kn, 1);
2659 	knl->kl_unlock(knl->kl_lockarg);
2660 }
2661 
2662 /* kqueue filter function */
2663 /*ARGSUSED*/
2664 static int
2665 filt_aio(struct knote *kn, long hint)
2666 {
2667 	struct kaiocb *job = kn->kn_ptr.p_aio;
2668 
2669 	kn->kn_data = job->uaiocb._aiocb_private.error;
2670 	if (!(job->jobflags & KAIOCB_FINISHED))
2671 		return (0);
2672 	kn->kn_flags |= EV_EOF;
2673 	return (1);
2674 }
2675 
2676 /* kqueue attach function */
2677 static int
2678 filt_lioattach(struct knote *kn)
2679 {
2680 	struct aioliojob *lj;
2681 
2682 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2683 
2684 	/*
2685 	 * The aioliojob pointer must be validated before using it, so
2686 	 * registration is restricted to the kernel; the user cannot
2687 	 * set EV_FLAG1.
2688 	 */
2689 	if ((kn->kn_flags & EV_FLAG1) == 0)
2690 		return (EPERM);
2691 	kn->kn_ptr.p_lio = lj;
2692 	kn->kn_flags &= ~EV_FLAG1;
2693 
2694 	knlist_add(&lj->klist, kn, 0);
2695 
2696 	return (0);
2697 }
2698 
2699 /* kqueue detach function */
2700 static void
2701 filt_liodetach(struct knote *kn)
2702 {
2703 	struct knlist *knl;
2704 
2705 	knl = &kn->kn_ptr.p_lio->klist;
2706 	knl->kl_lock(knl->kl_lockarg);
2707 	if (!knlist_empty(knl))
2708 		knlist_remove(knl, kn, 1);
2709 	knl->kl_unlock(knl->kl_lockarg);
2710 }
2711 
2712 /* kqueue filter function */
2713 /*ARGSUSED*/
2714 static int
2715 filt_lio(struct knote *kn, long hint)
2716 {
2717 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2718 
2719 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2720 }
2721 
2722 #ifdef COMPAT_FREEBSD32
2723 #include <sys/mount.h>
2724 #include <sys/socket.h>
2725 #include <sys/sysent.h>
2726 #include <compat/freebsd32/freebsd32.h>
2727 #include <compat/freebsd32/freebsd32_proto.h>
2728 #include <compat/freebsd32/freebsd32_signal.h>
2729 #include <compat/freebsd32/freebsd32_syscall.h>
2730 #include <compat/freebsd32/freebsd32_util.h>
2731 
2732 struct __aiocb_private32 {
2733 	int32_t	status;
2734 	int32_t	error;
2735 	uint32_t kernelinfo;
2736 };
2737 
2738 #ifdef COMPAT_FREEBSD6
2739 typedef struct oaiocb32 {
2740 	int	aio_fildes;		/* File descriptor */
2741 	uint64_t aio_offset __packed;	/* File offset for I/O */
2742 	uint32_t aio_buf;		/* I/O buffer in process space */
2743 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2744 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2745 	int	aio_lio_opcode;		/* LIO opcode */
2746 	int	aio_reqprio;		/* Request priority -- ignored */
2747 	struct	__aiocb_private32 _aiocb_private;
2748 } oaiocb32_t;
2749 #endif
2750 
2751 typedef struct aiocb32 {
2752 	int32_t	aio_fildes;		/* File descriptor */
2753 	uint64_t aio_offset __packed;	/* File offset for I/O */
2754 	uint32_t aio_buf;	/* I/O buffer in process space */
2755 	uint32_t aio_nbytes;	/* Number of bytes for I/O */
2756 	int	__spare__[2];
2757 	uint32_t __spare2__;
2758 	int	aio_lio_opcode;		/* LIO opcode */
2759 	int	aio_reqprio;		/* Request priority -- ignored */
2760 	struct	__aiocb_private32 _aiocb_private;
2761 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2762 } aiocb32_t;
2763 
2764 #ifdef COMPAT_FREEBSD6
2765 static int
2766 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2767 {
2768 
2769 	/*
2770 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2771 	 * supported by AIO with the old sigevent structure.
2772 	 */
2773 	CP(*osig, *nsig, sigev_notify);
2774 	switch (nsig->sigev_notify) {
2775 	case SIGEV_NONE:
2776 		break;
2777 	case SIGEV_SIGNAL:
2778 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2779 		break;
2780 	case SIGEV_KEVENT:
2781 		nsig->sigev_notify_kqueue =
2782 		    osig->__sigev_u.__sigev_notify_kqueue;
2783 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2784 		break;
2785 	default:
2786 		return (EINVAL);
2787 	}
2788 	return (0);
2789 }
2790 
2791 static int
2792 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2793     int type __unused)
2794 {
2795 	struct oaiocb32 job32;
2796 	struct aiocb *kcb = &kjob->uaiocb;
2797 	int error;
2798 
2799 	bzero(kcb, sizeof(struct aiocb));
2800 	error = copyin(ujob, &job32, sizeof(job32));
2801 	if (error)
2802 		return (error);
2803 
2804 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2805 
2806 	CP(job32, *kcb, aio_fildes);
2807 	CP(job32, *kcb, aio_offset);
2808 	PTRIN_CP(job32, *kcb, aio_buf);
2809 	CP(job32, *kcb, aio_nbytes);
2810 	CP(job32, *kcb, aio_lio_opcode);
2811 	CP(job32, *kcb, aio_reqprio);
2812 	CP(job32, *kcb, _aiocb_private.status);
2813 	CP(job32, *kcb, _aiocb_private.error);
2814 	PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
2815 	return (convert_old_sigevent32(&job32.aio_sigevent,
2816 	    &kcb->aio_sigevent));
2817 }
2818 #endif
2819 
2820 static int
2821 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2822 {
2823 	struct aiocb32 job32;
2824 	struct aiocb *kcb = &kjob->uaiocb;
2825 	struct iovec32 *iov32;
2826 	int error;
2827 
2828 	error = copyin(ujob, &job32, sizeof(job32));
2829 	if (error)
2830 		return (error);
2831 	CP(job32, *kcb, aio_fildes);
2832 	CP(job32, *kcb, aio_offset);
2833 	CP(job32, *kcb, aio_lio_opcode);
2834 	if (type == LIO_NOP)
2835 		type = kcb->aio_lio_opcode;
2836 	if (type & LIO_VECTORED) {
2837 		iov32 = PTRIN(job32.aio_iov);
2838 		CP(job32, *kcb, aio_iovcnt);
2839 		/* malloc a uio and copy in the iovec */
2840 		error = freebsd32_copyinuio(iov32,
2841 		    kcb->aio_iovcnt, &kjob->uiop);
2842 		if (error)
2843 			return (error);
2844 	} else {
2845 		PTRIN_CP(job32, *kcb, aio_buf);
2846 		CP(job32, *kcb, aio_nbytes);
2847 	}
2848 	CP(job32, *kcb, aio_reqprio);
2849 	CP(job32, *kcb, _aiocb_private.status);
2850 	CP(job32, *kcb, _aiocb_private.error);
2851 	PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
2852 	error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2853 
2854 	return (error);
2855 }
2856 
2857 static long
2858 aiocb32_fetch_status(struct aiocb *ujob)
2859 {
2860 	struct aiocb32 *ujob32;
2861 
2862 	ujob32 = (struct aiocb32 *)ujob;
2863 	return (fuword32(&ujob32->_aiocb_private.status));
2864 }
2865 
2866 static long
2867 aiocb32_fetch_error(struct aiocb *ujob)
2868 {
2869 	struct aiocb32 *ujob32;
2870 
2871 	ujob32 = (struct aiocb32 *)ujob;
2872 	return (fuword32(&ujob32->_aiocb_private.error));
2873 }
2874 
2875 static int
2876 aiocb32_store_status(struct aiocb *ujob, long status)
2877 {
2878 	struct aiocb32 *ujob32;
2879 
2880 	ujob32 = (struct aiocb32 *)ujob;
2881 	return (suword32(&ujob32->_aiocb_private.status, status));
2882 }
2883 
2884 static int
2885 aiocb32_store_error(struct aiocb *ujob, long error)
2886 {
2887 	struct aiocb32 *ujob32;
2888 
2889 	ujob32 = (struct aiocb32 *)ujob;
2890 	return (suword32(&ujob32->_aiocb_private.error, error));
2891 }
2892 
2893 static int
2894 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2895 {
2896 	struct aiocb32 *ujob32;
2897 
2898 	ujob32 = (struct aiocb32 *)ujob;
2899 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2900 }
2901 
2902 static int
2903 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2904 {
2905 
2906 	return (suword32(ujobp, (long)ujob));
2907 }
2908 
2909 static struct aiocb_ops aiocb32_ops = {
2910 	.aio_copyin = aiocb32_copyin,
2911 	.fetch_status = aiocb32_fetch_status,
2912 	.fetch_error = aiocb32_fetch_error,
2913 	.store_status = aiocb32_store_status,
2914 	.store_error = aiocb32_store_error,
2915 	.store_kernelinfo = aiocb32_store_kernelinfo,
2916 	.store_aiocb = aiocb32_store_aiocb,
2917 };
2918 
2919 #ifdef COMPAT_FREEBSD6
2920 static struct aiocb_ops aiocb32_ops_osigevent = {
2921 	.aio_copyin = aiocb32_copyin_old_sigevent,
2922 	.fetch_status = aiocb32_fetch_status,
2923 	.fetch_error = aiocb32_fetch_error,
2924 	.store_status = aiocb32_store_status,
2925 	.store_error = aiocb32_store_error,
2926 	.store_kernelinfo = aiocb32_store_kernelinfo,
2927 	.store_aiocb = aiocb32_store_aiocb,
2928 };
2929 #endif
2930 
2931 int
2932 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2933 {
2934 
2935 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2936 }
2937 
2938 int
2939 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2940 {
2941 	struct timespec32 ts32;
2942 	struct timespec ts, *tsp;
2943 	struct aiocb **ujoblist;
2944 	uint32_t *ujoblist32;
2945 	int error, i;
2946 
2947 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2948 		return (EINVAL);
2949 
2950 	if (uap->timeout) {
2951 		/* Get timespec struct. */
2952 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2953 			return (error);
2954 		CP(ts32, ts, tv_sec);
2955 		CP(ts32, ts, tv_nsec);
2956 		tsp = &ts;
2957 	} else
2958 		tsp = NULL;
2959 
2960 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
2961 	ujoblist32 = (uint32_t *)ujoblist;
2962 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2963 	    sizeof(ujoblist32[0]));
2964 	if (error == 0) {
2965 		for (i = uap->nent - 1; i >= 0; i--)
2966 			ujoblist[i] = PTRIN(ujoblist32[i]);
2967 
2968 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2969 	}
2970 	free(ujoblist, M_AIOS);
2971 	return (error);
2972 }
2973 
2974 int
2975 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2976 {
2977 
2978 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2979 }
2980 
2981 #ifdef COMPAT_FREEBSD6
2982 int
2983 freebsd6_freebsd32_aio_read(struct thread *td,
2984     struct freebsd6_freebsd32_aio_read_args *uap)
2985 {
2986 
2987 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2988 	    &aiocb32_ops_osigevent));
2989 }
2990 #endif
2991 
2992 int
2993 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2994 {
2995 
2996 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2997 	    &aiocb32_ops));
2998 }
2999 
3000 int
3001 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
3002 {
3003 
3004 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
3005 	    &aiocb32_ops));
3006 }
3007 
3008 #ifdef COMPAT_FREEBSD6
3009 int
3010 freebsd6_freebsd32_aio_write(struct thread *td,
3011     struct freebsd6_freebsd32_aio_write_args *uap)
3012 {
3013 
3014 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3015 	    &aiocb32_ops_osigevent));
3016 }
3017 #endif
3018 
3019 int
3020 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
3021 {
3022 
3023 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3024 	    &aiocb32_ops));
3025 }
3026 
3027 int
3028 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
3029 {
3030 
3031 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3032 	    &aiocb32_ops));
3033 }
3034 
3035 int
3036 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3037 {
3038 
3039 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3040 	    &aiocb32_ops));
3041 }
3042 
3043 int
3044 freebsd32_aio_waitcomplete(struct thread *td,
3045     struct freebsd32_aio_waitcomplete_args *uap)
3046 {
3047 	struct timespec32 ts32;
3048 	struct timespec ts, *tsp;
3049 	int error;
3050 
3051 	if (uap->timeout) {
3052 		/* Get timespec struct. */
3053 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3054 		if (error)
3055 			return (error);
3056 		CP(ts32, ts, tv_sec);
3057 		CP(ts32, ts, tv_nsec);
3058 		tsp = &ts;
3059 	} else
3060 		tsp = NULL;
3061 
3062 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3063 	    &aiocb32_ops));
3064 }
3065 
3066 int
3067 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3068 {
3069 
3070 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3071 	    &aiocb32_ops));
3072 }
3073 
3074 #ifdef COMPAT_FREEBSD6
3075 int
3076 freebsd6_freebsd32_lio_listio(struct thread *td,
3077     struct freebsd6_freebsd32_lio_listio_args *uap)
3078 {
3079 	struct aiocb **acb_list;
3080 	struct sigevent *sigp, sig;
3081 	struct osigevent32 osig;
3082 	uint32_t *acb_list32;
3083 	int error, i, nent;
3084 
3085 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3086 		return (EINVAL);
3087 
3088 	nent = uap->nent;
3089 	if (nent < 0 || nent > max_aio_queue_per_proc)
3090 		return (EINVAL);
3091 
3092 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3093 		error = copyin(uap->sig, &osig, sizeof(osig));
3094 		if (error)
3095 			return (error);
3096 		error = convert_old_sigevent32(&osig, &sig);
3097 		if (error)
3098 			return (error);
3099 		sigp = &sig;
3100 	} else
3101 		sigp = NULL;
3102 
3103 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3104 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3105 	if (error) {
3106 		free(acb_list32, M_LIO);
3107 		return (error);
3108 	}
3109 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3110 	for (i = 0; i < nent; i++)
3111 		acb_list[i] = PTRIN(acb_list32[i]);
3112 	free(acb_list32, M_LIO);
3113 
3114 	error = kern_lio_listio(td, uap->mode,
3115 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3116 	    &aiocb32_ops_osigevent);
3117 	free(acb_list, M_LIO);
3118 	return (error);
3119 }
3120 #endif
3121 
3122 int
3123 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3124 {
3125 	struct aiocb **acb_list;
3126 	struct sigevent *sigp, sig;
3127 	struct sigevent32 sig32;
3128 	uint32_t *acb_list32;
3129 	int error, i, nent;
3130 
3131 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3132 		return (EINVAL);
3133 
3134 	nent = uap->nent;
3135 	if (nent < 0 || nent > max_aio_queue_per_proc)
3136 		return (EINVAL);
3137 
3138 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3139 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3140 		if (error)
3141 			return (error);
3142 		error = convert_sigevent32(&sig32, &sig);
3143 		if (error)
3144 			return (error);
3145 		sigp = &sig;
3146 	} else
3147 		sigp = NULL;
3148 
3149 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3150 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3151 	if (error) {
3152 		free(acb_list32, M_LIO);
3153 		return (error);
3154 	}
3155 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3156 	for (i = 0; i < nent; i++)
3157 		acb_list[i] = PTRIN(acb_list32[i]);
3158 	free(acb_list32, M_LIO);
3159 
3160 	error = kern_lio_listio(td, uap->mode,
3161 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3162 	    &aiocb32_ops);
3163 	free(acb_list, M_LIO);
3164 	return (error);
3165 }
3166 
3167 #endif
3168