xref: /freebsd/sys/kern/vfs_bio.c (revision 10ff414c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/asan.h>
53 #include <sys/bio.h>
54 #include <sys/bitset.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/buf.h>
58 #include <sys/devicestat.h>
59 #include <sys/eventhandler.h>
60 #include <sys/fail.h>
61 #include <sys/ktr.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/mutex.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/vmem.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/watchdog.h>
81 #include <geom/geom.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_map.h>
91 #include <vm/swap_pager.h>
92 
93 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
94 
95 struct	bio_ops bioops;		/* I/O operation notification */
96 
97 struct	buf_ops buf_ops_bio = {
98 	.bop_name	=	"buf_ops_bio",
99 	.bop_write	=	bufwrite,
100 	.bop_strategy	=	bufstrategy,
101 	.bop_sync	=	bufsync,
102 	.bop_bdflush	=	bufbdflush,
103 };
104 
105 struct bufqueue {
106 	struct mtx_padalign	bq_lock;
107 	TAILQ_HEAD(, buf)	bq_queue;
108 	uint8_t			bq_index;
109 	uint16_t		bq_subqueue;
110 	int			bq_len;
111 } __aligned(CACHE_LINE_SIZE);
112 
113 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
114 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
115 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
116 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
117 
118 struct bufdomain {
119 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
120 	struct bufqueue bd_dirtyq;
121 	struct bufqueue	*bd_cleanq;
122 	struct mtx_padalign bd_run_lock;
123 	/* Constants */
124 	long		bd_maxbufspace;
125 	long		bd_hibufspace;
126 	long 		bd_lobufspace;
127 	long 		bd_bufspacethresh;
128 	int		bd_hifreebuffers;
129 	int		bd_lofreebuffers;
130 	int		bd_hidirtybuffers;
131 	int		bd_lodirtybuffers;
132 	int		bd_dirtybufthresh;
133 	int		bd_lim;
134 	/* atomics */
135 	int		bd_wanted;
136 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
137 	int __aligned(CACHE_LINE_SIZE)	bd_running;
138 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
139 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
140 } __aligned(CACHE_LINE_SIZE);
141 
142 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
143 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
144 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
145 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
146 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
147 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
148 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
149 #define	BD_DOMAIN(bd)		(bd - bdomain)
150 
151 static char *buf;		/* buffer header pool */
152 static struct buf *
153 nbufp(unsigned i)
154 {
155 	return ((struct buf *)(buf + (sizeof(struct buf) +
156 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
157 }
158 
159 caddr_t __read_mostly unmapped_buf;
160 
161 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
162 struct proc *bufdaemonproc;
163 
164 static void vm_hold_free_pages(struct buf *bp, int newbsize);
165 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
166 		vm_offset_t to);
167 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
168 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
169 		vm_page_t m);
170 static void vfs_clean_pages_dirty_buf(struct buf *bp);
171 static void vfs_setdirty_range(struct buf *bp);
172 static void vfs_vmio_invalidate(struct buf *bp);
173 static void vfs_vmio_truncate(struct buf *bp, int npages);
174 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
175 static int vfs_bio_clcheck(struct vnode *vp, int size,
176 		daddr_t lblkno, daddr_t blkno);
177 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
178 		void (*)(struct buf *));
179 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
180 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
181 static void buf_daemon(void);
182 static __inline void bd_wakeup(void);
183 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
184 static void bufkva_reclaim(vmem_t *, int);
185 static void bufkva_free(struct buf *);
186 static int buf_import(void *, void **, int, int, int);
187 static void buf_release(void *, void **, int);
188 static void maxbcachebuf_adjust(void);
189 static inline struct bufdomain *bufdomain(struct buf *);
190 static void bq_remove(struct bufqueue *bq, struct buf *bp);
191 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
192 static int buf_recycle(struct bufdomain *, bool kva);
193 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
194 	    const char *lockname);
195 static void bd_init(struct bufdomain *bd);
196 static int bd_flushall(struct bufdomain *bd);
197 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
198 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
199 
200 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
201 int vmiodirenable = TRUE;
202 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
203     "Use the VM system for directory writes");
204 long runningbufspace;
205 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
206     "Amount of presently outstanding async buffer io");
207 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
208     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
209 static counter_u64_t bufkvaspace;
210 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
211     "Kernel virtual memory used for buffers");
212 static long maxbufspace;
213 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
214     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
215     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
216     "Maximum allowed value of bufspace (including metadata)");
217 static long bufmallocspace;
218 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
219     "Amount of malloced memory for buffers");
220 static long maxbufmallocspace;
221 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
222     0, "Maximum amount of malloced memory for buffers");
223 static long lobufspace;
224 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
225     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
226     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
227     "Minimum amount of buffers we want to have");
228 long hibufspace;
229 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
230     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
231     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
232     "Maximum allowed value of bufspace (excluding metadata)");
233 long bufspacethresh;
234 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
235     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
236     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
237     "Bufspace consumed before waking the daemon to free some");
238 static counter_u64_t buffreekvacnt;
239 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
240     "Number of times we have freed the KVA space from some buffer");
241 static counter_u64_t bufdefragcnt;
242 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
243     "Number of times we have had to repeat buffer allocation to defragment");
244 static long lorunningspace;
245 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
246     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
247     "Minimum preferred space used for in-progress I/O");
248 static long hirunningspace;
249 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
250     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
251     "Maximum amount of space to use for in-progress I/O");
252 int dirtybufferflushes;
253 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
254     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
255 int bdwriteskip;
256 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
257     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
258 int altbufferflushes;
259 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
260     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
261 static int recursiveflushes;
262 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
263     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
264 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
265 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
266     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
267     "Number of buffers that are dirty (has unwritten changes) at the moment");
268 static int lodirtybuffers;
269 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
270     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
271     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
272     "How many buffers we want to have free before bufdaemon can sleep");
273 static int hidirtybuffers;
274 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
275     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
276     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
277     "When the number of dirty buffers is considered severe");
278 int dirtybufthresh;
279 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
280     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
281     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
282     "Number of bdwrite to bawrite conversions to clear dirty buffers");
283 static int numfreebuffers;
284 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
285     "Number of free buffers");
286 static int lofreebuffers;
287 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
288     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
289     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
290    "Target number of free buffers");
291 static int hifreebuffers;
292 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
293     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
294     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
295    "Threshold for clean buffer recycling");
296 static counter_u64_t getnewbufcalls;
297 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
298    &getnewbufcalls, "Number of calls to getnewbuf");
299 static counter_u64_t getnewbufrestarts;
300 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
301     &getnewbufrestarts,
302     "Number of times getnewbuf has had to restart a buffer acquisition");
303 static counter_u64_t mappingrestarts;
304 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
305     &mappingrestarts,
306     "Number of times getblk has had to restart a buffer mapping for "
307     "unmapped buffer");
308 static counter_u64_t numbufallocfails;
309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
310     &numbufallocfails, "Number of times buffer allocations failed");
311 static int flushbufqtarget = 100;
312 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
313     "Amount of work to do in flushbufqueues when helping bufdaemon");
314 static counter_u64_t notbufdflushes;
315 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
316     "Number of dirty buffer flushes done by the bufdaemon helpers");
317 static long barrierwrites;
318 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
319     &barrierwrites, 0, "Number of barrier writes");
320 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
321     &unmapped_buf_allowed, 0,
322     "Permit the use of the unmapped i/o");
323 int maxbcachebuf = MAXBCACHEBUF;
324 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
325     "Maximum size of a buffer cache block");
326 
327 /*
328  * This lock synchronizes access to bd_request.
329  */
330 static struct mtx_padalign __exclusive_cache_line bdlock;
331 
332 /*
333  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
334  * waitrunningbufspace().
335  */
336 static struct mtx_padalign __exclusive_cache_line rbreqlock;
337 
338 /*
339  * Lock that protects bdirtywait.
340  */
341 static struct mtx_padalign __exclusive_cache_line bdirtylock;
342 
343 /*
344  * Wakeup point for bufdaemon, as well as indicator of whether it is already
345  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
346  * is idling.
347  */
348 static int bd_request;
349 
350 /*
351  * Request for the buf daemon to write more buffers than is indicated by
352  * lodirtybuf.  This may be necessary to push out excess dependencies or
353  * defragment the address space where a simple count of the number of dirty
354  * buffers is insufficient to characterize the demand for flushing them.
355  */
356 static int bd_speedupreq;
357 
358 /*
359  * Synchronization (sleep/wakeup) variable for active buffer space requests.
360  * Set when wait starts, cleared prior to wakeup().
361  * Used in runningbufwakeup() and waitrunningbufspace().
362  */
363 static int runningbufreq;
364 
365 /*
366  * Synchronization for bwillwrite() waiters.
367  */
368 static int bdirtywait;
369 
370 /*
371  * Definitions for the buffer free lists.
372  */
373 #define QUEUE_NONE	0	/* on no queue */
374 #define QUEUE_EMPTY	1	/* empty buffer headers */
375 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
376 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
377 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
378 
379 /* Maximum number of buffer domains. */
380 #define	BUF_DOMAINS	8
381 
382 struct bufdomainset bdlodirty;		/* Domains > lodirty */
383 struct bufdomainset bdhidirty;		/* Domains > hidirty */
384 
385 /* Configured number of clean queues. */
386 static int __read_mostly buf_domains;
387 
388 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
389 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
390 struct bufqueue __exclusive_cache_line bqempty;
391 
392 /*
393  * per-cpu empty buffer cache.
394  */
395 uma_zone_t buf_zone;
396 
397 /*
398  * Single global constant for BUF_WMESG, to avoid getting multiple references.
399  * buf_wmesg is referred from macros.
400  */
401 const char *buf_wmesg = BUF_WMESG;
402 
403 static int
404 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
405 {
406 	long value;
407 	int error;
408 
409 	value = *(long *)arg1;
410 	error = sysctl_handle_long(oidp, &value, 0, req);
411 	if (error != 0 || req->newptr == NULL)
412 		return (error);
413 	mtx_lock(&rbreqlock);
414 	if (arg1 == &hirunningspace) {
415 		if (value < lorunningspace)
416 			error = EINVAL;
417 		else
418 			hirunningspace = value;
419 	} else {
420 		KASSERT(arg1 == &lorunningspace,
421 		    ("%s: unknown arg1", __func__));
422 		if (value > hirunningspace)
423 			error = EINVAL;
424 		else
425 			lorunningspace = value;
426 	}
427 	mtx_unlock(&rbreqlock);
428 	return (error);
429 }
430 
431 static int
432 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
433 {
434 	int error;
435 	int value;
436 	int i;
437 
438 	value = *(int *)arg1;
439 	error = sysctl_handle_int(oidp, &value, 0, req);
440 	if (error != 0 || req->newptr == NULL)
441 		return (error);
442 	*(int *)arg1 = value;
443 	for (i = 0; i < buf_domains; i++)
444 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
445 		    value / buf_domains;
446 
447 	return (error);
448 }
449 
450 static int
451 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
452 {
453 	long value;
454 	int error;
455 	int i;
456 
457 	value = *(long *)arg1;
458 	error = sysctl_handle_long(oidp, &value, 0, req);
459 	if (error != 0 || req->newptr == NULL)
460 		return (error);
461 	*(long *)arg1 = value;
462 	for (i = 0; i < buf_domains; i++)
463 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
464 		    value / buf_domains;
465 
466 	return (error);
467 }
468 
469 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
470     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
471 static int
472 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
473 {
474 	long lvalue;
475 	int ivalue;
476 	int i;
477 
478 	lvalue = 0;
479 	for (i = 0; i < buf_domains; i++)
480 		lvalue += bdomain[i].bd_bufspace;
481 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
482 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
483 	if (lvalue > INT_MAX)
484 		/* On overflow, still write out a long to trigger ENOMEM. */
485 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
486 	ivalue = lvalue;
487 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
488 }
489 #else
490 static int
491 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
492 {
493 	long lvalue;
494 	int i;
495 
496 	lvalue = 0;
497 	for (i = 0; i < buf_domains; i++)
498 		lvalue += bdomain[i].bd_bufspace;
499 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
500 }
501 #endif
502 
503 static int
504 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
505 {
506 	int value;
507 	int i;
508 
509 	value = 0;
510 	for (i = 0; i < buf_domains; i++)
511 		value += bdomain[i].bd_numdirtybuffers;
512 	return (sysctl_handle_int(oidp, &value, 0, req));
513 }
514 
515 /*
516  *	bdirtywakeup:
517  *
518  *	Wakeup any bwillwrite() waiters.
519  */
520 static void
521 bdirtywakeup(void)
522 {
523 	mtx_lock(&bdirtylock);
524 	if (bdirtywait) {
525 		bdirtywait = 0;
526 		wakeup(&bdirtywait);
527 	}
528 	mtx_unlock(&bdirtylock);
529 }
530 
531 /*
532  *	bd_clear:
533  *
534  *	Clear a domain from the appropriate bitsets when dirtybuffers
535  *	is decremented.
536  */
537 static void
538 bd_clear(struct bufdomain *bd)
539 {
540 
541 	mtx_lock(&bdirtylock);
542 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
543 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
544 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
545 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
546 	mtx_unlock(&bdirtylock);
547 }
548 
549 /*
550  *	bd_set:
551  *
552  *	Set a domain in the appropriate bitsets when dirtybuffers
553  *	is incremented.
554  */
555 static void
556 bd_set(struct bufdomain *bd)
557 {
558 
559 	mtx_lock(&bdirtylock);
560 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
561 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
562 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
563 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
564 	mtx_unlock(&bdirtylock);
565 }
566 
567 /*
568  *	bdirtysub:
569  *
570  *	Decrement the numdirtybuffers count by one and wakeup any
571  *	threads blocked in bwillwrite().
572  */
573 static void
574 bdirtysub(struct buf *bp)
575 {
576 	struct bufdomain *bd;
577 	int num;
578 
579 	bd = bufdomain(bp);
580 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
581 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
582 		bdirtywakeup();
583 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
584 		bd_clear(bd);
585 }
586 
587 /*
588  *	bdirtyadd:
589  *
590  *	Increment the numdirtybuffers count by one and wakeup the buf
591  *	daemon if needed.
592  */
593 static void
594 bdirtyadd(struct buf *bp)
595 {
596 	struct bufdomain *bd;
597 	int num;
598 
599 	/*
600 	 * Only do the wakeup once as we cross the boundary.  The
601 	 * buf daemon will keep running until the condition clears.
602 	 */
603 	bd = bufdomain(bp);
604 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
605 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
606 		bd_wakeup();
607 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
608 		bd_set(bd);
609 }
610 
611 /*
612  *	bufspace_daemon_wakeup:
613  *
614  *	Wakeup the daemons responsible for freeing clean bufs.
615  */
616 static void
617 bufspace_daemon_wakeup(struct bufdomain *bd)
618 {
619 
620 	/*
621 	 * avoid the lock if the daemon is running.
622 	 */
623 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
624 		BD_RUN_LOCK(bd);
625 		atomic_store_int(&bd->bd_running, 1);
626 		wakeup(&bd->bd_running);
627 		BD_RUN_UNLOCK(bd);
628 	}
629 }
630 
631 /*
632  *	bufspace_daemon_wait:
633  *
634  *	Sleep until the domain falls below a limit or one second passes.
635  */
636 static void
637 bufspace_daemon_wait(struct bufdomain *bd)
638 {
639 	/*
640 	 * Re-check our limits and sleep.  bd_running must be
641 	 * cleared prior to checking the limits to avoid missed
642 	 * wakeups.  The waker will adjust one of bufspace or
643 	 * freebuffers prior to checking bd_running.
644 	 */
645 	BD_RUN_LOCK(bd);
646 	atomic_store_int(&bd->bd_running, 0);
647 	if (bd->bd_bufspace < bd->bd_bufspacethresh &&
648 	    bd->bd_freebuffers > bd->bd_lofreebuffers) {
649 		msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
650 		    "-", hz);
651 	} else {
652 		/* Avoid spurious wakeups while running. */
653 		atomic_store_int(&bd->bd_running, 1);
654 		BD_RUN_UNLOCK(bd);
655 	}
656 }
657 
658 /*
659  *	bufspace_adjust:
660  *
661  *	Adjust the reported bufspace for a KVA managed buffer, possibly
662  * 	waking any waiters.
663  */
664 static void
665 bufspace_adjust(struct buf *bp, int bufsize)
666 {
667 	struct bufdomain *bd;
668 	long space;
669 	int diff;
670 
671 	KASSERT((bp->b_flags & B_MALLOC) == 0,
672 	    ("bufspace_adjust: malloc buf %p", bp));
673 	bd = bufdomain(bp);
674 	diff = bufsize - bp->b_bufsize;
675 	if (diff < 0) {
676 		atomic_subtract_long(&bd->bd_bufspace, -diff);
677 	} else if (diff > 0) {
678 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
679 		/* Wake up the daemon on the transition. */
680 		if (space < bd->bd_bufspacethresh &&
681 		    space + diff >= bd->bd_bufspacethresh)
682 			bufspace_daemon_wakeup(bd);
683 	}
684 	bp->b_bufsize = bufsize;
685 }
686 
687 /*
688  *	bufspace_reserve:
689  *
690  *	Reserve bufspace before calling allocbuf().  metadata has a
691  *	different space limit than data.
692  */
693 static int
694 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
695 {
696 	long limit, new;
697 	long space;
698 
699 	if (metadata)
700 		limit = bd->bd_maxbufspace;
701 	else
702 		limit = bd->bd_hibufspace;
703 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
704 	new = space + size;
705 	if (new > limit) {
706 		atomic_subtract_long(&bd->bd_bufspace, size);
707 		return (ENOSPC);
708 	}
709 
710 	/* Wake up the daemon on the transition. */
711 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
712 		bufspace_daemon_wakeup(bd);
713 
714 	return (0);
715 }
716 
717 /*
718  *	bufspace_release:
719  *
720  *	Release reserved bufspace after bufspace_adjust() has consumed it.
721  */
722 static void
723 bufspace_release(struct bufdomain *bd, int size)
724 {
725 
726 	atomic_subtract_long(&bd->bd_bufspace, size);
727 }
728 
729 /*
730  *	bufspace_wait:
731  *
732  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
733  *	supplied.  bd_wanted must be set prior to polling for space.  The
734  *	operation must be re-tried on return.
735  */
736 static void
737 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
738     int slpflag, int slptimeo)
739 {
740 	struct thread *td;
741 	int error, fl, norunbuf;
742 
743 	if ((gbflags & GB_NOWAIT_BD) != 0)
744 		return;
745 
746 	td = curthread;
747 	BD_LOCK(bd);
748 	while (bd->bd_wanted) {
749 		if (vp != NULL && vp->v_type != VCHR &&
750 		    (td->td_pflags & TDP_BUFNEED) == 0) {
751 			BD_UNLOCK(bd);
752 			/*
753 			 * getblk() is called with a vnode locked, and
754 			 * some majority of the dirty buffers may as
755 			 * well belong to the vnode.  Flushing the
756 			 * buffers there would make a progress that
757 			 * cannot be achieved by the buf_daemon, that
758 			 * cannot lock the vnode.
759 			 */
760 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
761 			    (td->td_pflags & TDP_NORUNNINGBUF);
762 
763 			/*
764 			 * Play bufdaemon.  The getnewbuf() function
765 			 * may be called while the thread owns lock
766 			 * for another dirty buffer for the same
767 			 * vnode, which makes it impossible to use
768 			 * VOP_FSYNC() there, due to the buffer lock
769 			 * recursion.
770 			 */
771 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
772 			fl = buf_flush(vp, bd, flushbufqtarget);
773 			td->td_pflags &= norunbuf;
774 			BD_LOCK(bd);
775 			if (fl != 0)
776 				continue;
777 			if (bd->bd_wanted == 0)
778 				break;
779 		}
780 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
781 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
782 		if (error != 0)
783 			break;
784 	}
785 	BD_UNLOCK(bd);
786 }
787 
788 /*
789  *	bufspace_daemon:
790  *
791  *	buffer space management daemon.  Tries to maintain some marginal
792  *	amount of free buffer space so that requesting processes neither
793  *	block nor work to reclaim buffers.
794  */
795 static void
796 bufspace_daemon(void *arg)
797 {
798 	struct bufdomain *bd;
799 
800 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
801 	    SHUTDOWN_PRI_LAST + 100);
802 
803 	bd = arg;
804 	for (;;) {
805 		kthread_suspend_check();
806 
807 		/*
808 		 * Free buffers from the clean queue until we meet our
809 		 * targets.
810 		 *
811 		 * Theory of operation:  The buffer cache is most efficient
812 		 * when some free buffer headers and space are always
813 		 * available to getnewbuf().  This daemon attempts to prevent
814 		 * the excessive blocking and synchronization associated
815 		 * with shortfall.  It goes through three phases according
816 		 * demand:
817 		 *
818 		 * 1)	The daemon wakes up voluntarily once per-second
819 		 *	during idle periods when the counters are below
820 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
821 		 *
822 		 * 2)	The daemon wakes up as we cross the thresholds
823 		 *	ahead of any potential blocking.  This may bounce
824 		 *	slightly according to the rate of consumption and
825 		 *	release.
826 		 *
827 		 * 3)	The daemon and consumers are starved for working
828 		 *	clean buffers.  This is the 'bufspace' sleep below
829 		 *	which will inefficiently trade bufs with bqrelse
830 		 *	until we return to condition 2.
831 		 */
832 		while (bd->bd_bufspace > bd->bd_lobufspace ||
833 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
834 			if (buf_recycle(bd, false) != 0) {
835 				if (bd_flushall(bd))
836 					continue;
837 				/*
838 				 * Speedup dirty if we've run out of clean
839 				 * buffers.  This is possible in particular
840 				 * because softdep may held many bufs locked
841 				 * pending writes to other bufs which are
842 				 * marked for delayed write, exhausting
843 				 * clean space until they are written.
844 				 */
845 				bd_speedup();
846 				BD_LOCK(bd);
847 				if (bd->bd_wanted) {
848 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
849 					    PRIBIO|PDROP, "bufspace", hz/10);
850 				} else
851 					BD_UNLOCK(bd);
852 			}
853 			maybe_yield();
854 		}
855 		bufspace_daemon_wait(bd);
856 	}
857 }
858 
859 /*
860  *	bufmallocadjust:
861  *
862  *	Adjust the reported bufspace for a malloc managed buffer, possibly
863  *	waking any waiters.
864  */
865 static void
866 bufmallocadjust(struct buf *bp, int bufsize)
867 {
868 	int diff;
869 
870 	KASSERT((bp->b_flags & B_MALLOC) != 0,
871 	    ("bufmallocadjust: non-malloc buf %p", bp));
872 	diff = bufsize - bp->b_bufsize;
873 	if (diff < 0)
874 		atomic_subtract_long(&bufmallocspace, -diff);
875 	else
876 		atomic_add_long(&bufmallocspace, diff);
877 	bp->b_bufsize = bufsize;
878 }
879 
880 /*
881  *	runningwakeup:
882  *
883  *	Wake up processes that are waiting on asynchronous writes to fall
884  *	below lorunningspace.
885  */
886 static void
887 runningwakeup(void)
888 {
889 
890 	mtx_lock(&rbreqlock);
891 	if (runningbufreq) {
892 		runningbufreq = 0;
893 		wakeup(&runningbufreq);
894 	}
895 	mtx_unlock(&rbreqlock);
896 }
897 
898 /*
899  *	runningbufwakeup:
900  *
901  *	Decrement the outstanding write count according.
902  */
903 void
904 runningbufwakeup(struct buf *bp)
905 {
906 	long space, bspace;
907 
908 	bspace = bp->b_runningbufspace;
909 	if (bspace == 0)
910 		return;
911 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
912 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
913 	    space, bspace));
914 	bp->b_runningbufspace = 0;
915 	/*
916 	 * Only acquire the lock and wakeup on the transition from exceeding
917 	 * the threshold to falling below it.
918 	 */
919 	if (space < lorunningspace)
920 		return;
921 	if (space - bspace > lorunningspace)
922 		return;
923 	runningwakeup();
924 }
925 
926 /*
927  *	waitrunningbufspace()
928  *
929  *	runningbufspace is a measure of the amount of I/O currently
930  *	running.  This routine is used in async-write situations to
931  *	prevent creating huge backups of pending writes to a device.
932  *	Only asynchronous writes are governed by this function.
933  *
934  *	This does NOT turn an async write into a sync write.  It waits
935  *	for earlier writes to complete and generally returns before the
936  *	caller's write has reached the device.
937  */
938 void
939 waitrunningbufspace(void)
940 {
941 
942 	mtx_lock(&rbreqlock);
943 	while (runningbufspace > hirunningspace) {
944 		runningbufreq = 1;
945 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
946 	}
947 	mtx_unlock(&rbreqlock);
948 }
949 
950 /*
951  *	vfs_buf_test_cache:
952  *
953  *	Called when a buffer is extended.  This function clears the B_CACHE
954  *	bit if the newly extended portion of the buffer does not contain
955  *	valid data.
956  */
957 static __inline void
958 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
959     vm_offset_t size, vm_page_t m)
960 {
961 
962 	/*
963 	 * This function and its results are protected by higher level
964 	 * synchronization requiring vnode and buf locks to page in and
965 	 * validate pages.
966 	 */
967 	if (bp->b_flags & B_CACHE) {
968 		int base = (foff + off) & PAGE_MASK;
969 		if (vm_page_is_valid(m, base, size) == 0)
970 			bp->b_flags &= ~B_CACHE;
971 	}
972 }
973 
974 /* Wake up the buffer daemon if necessary */
975 static void
976 bd_wakeup(void)
977 {
978 
979 	mtx_lock(&bdlock);
980 	if (bd_request == 0) {
981 		bd_request = 1;
982 		wakeup(&bd_request);
983 	}
984 	mtx_unlock(&bdlock);
985 }
986 
987 /*
988  * Adjust the maxbcachbuf tunable.
989  */
990 static void
991 maxbcachebuf_adjust(void)
992 {
993 	int i;
994 
995 	/*
996 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
997 	 */
998 	i = 2;
999 	while (i * 2 <= maxbcachebuf)
1000 		i *= 2;
1001 	maxbcachebuf = i;
1002 	if (maxbcachebuf < MAXBSIZE)
1003 		maxbcachebuf = MAXBSIZE;
1004 	if (maxbcachebuf > maxphys)
1005 		maxbcachebuf = maxphys;
1006 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1007 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1008 }
1009 
1010 /*
1011  * bd_speedup - speedup the buffer cache flushing code
1012  */
1013 void
1014 bd_speedup(void)
1015 {
1016 	int needwake;
1017 
1018 	mtx_lock(&bdlock);
1019 	needwake = 0;
1020 	if (bd_speedupreq == 0 || bd_request == 0)
1021 		needwake = 1;
1022 	bd_speedupreq = 1;
1023 	bd_request = 1;
1024 	if (needwake)
1025 		wakeup(&bd_request);
1026 	mtx_unlock(&bdlock);
1027 }
1028 
1029 #ifdef __i386__
1030 #define	TRANSIENT_DENOM	5
1031 #else
1032 #define	TRANSIENT_DENOM 10
1033 #endif
1034 
1035 /*
1036  * Calculating buffer cache scaling values and reserve space for buffer
1037  * headers.  This is called during low level kernel initialization and
1038  * may be called more then once.  We CANNOT write to the memory area
1039  * being reserved at this time.
1040  */
1041 caddr_t
1042 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1043 {
1044 	int tuned_nbuf;
1045 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1046 
1047 	/*
1048 	 * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
1049 	 * this when sizing maps based on the amount of physical memory
1050 	 * available.
1051 	 */
1052 #if defined(KASAN)
1053 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1054 	    (KASAN_SHADOW_SCALE + 1);
1055 #elif defined(KMSAN)
1056 	physmem_est /= 3;
1057 
1058 	/*
1059 	 * KMSAN cannot reliably determine whether buffer data is initialized
1060 	 * unless it is updated through a KVA mapping.
1061 	 */
1062 	unmapped_buf_allowed = 0;
1063 #endif
1064 
1065 	/*
1066 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1067 	 * PAGE_SIZE is >= 1K)
1068 	 */
1069 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1070 
1071 	maxbcachebuf_adjust();
1072 	/*
1073 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1074 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1075 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1076 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1077 	 * the buffer cache we limit the eventual kva reservation to
1078 	 * maxbcache bytes.
1079 	 *
1080 	 * factor represents the 1/4 x ram conversion.
1081 	 */
1082 	if (nbuf == 0) {
1083 		int factor = 4 * BKVASIZE / 1024;
1084 
1085 		nbuf = 50;
1086 		if (physmem_est > 4096)
1087 			nbuf += min((physmem_est - 4096) / factor,
1088 			    65536 / factor);
1089 		if (physmem_est > 65536)
1090 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1091 			    32 * 1024 * 1024 / (factor * 5));
1092 
1093 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1094 			nbuf = maxbcache / BKVASIZE;
1095 		tuned_nbuf = 1;
1096 	} else
1097 		tuned_nbuf = 0;
1098 
1099 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1100 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1101 	if (nbuf > maxbuf) {
1102 		if (!tuned_nbuf)
1103 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1104 			    maxbuf);
1105 		nbuf = maxbuf;
1106 	}
1107 
1108 	/*
1109 	 * Ideal allocation size for the transient bio submap is 10%
1110 	 * of the maximal space buffer map.  This roughly corresponds
1111 	 * to the amount of the buffer mapped for typical UFS load.
1112 	 *
1113 	 * Clip the buffer map to reserve space for the transient
1114 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1115 	 * maximum buffer map extent on the platform.
1116 	 *
1117 	 * The fall-back to the maxbuf in case of maxbcache unset,
1118 	 * allows to not trim the buffer KVA for the architectures
1119 	 * with ample KVA space.
1120 	 */
1121 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1122 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1123 		buf_sz = (long)nbuf * BKVASIZE;
1124 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1125 		    (TRANSIENT_DENOM - 1)) {
1126 			/*
1127 			 * There is more KVA than memory.  Do not
1128 			 * adjust buffer map size, and assign the rest
1129 			 * of maxbuf to transient map.
1130 			 */
1131 			biotmap_sz = maxbuf_sz - buf_sz;
1132 		} else {
1133 			/*
1134 			 * Buffer map spans all KVA we could afford on
1135 			 * this platform.  Give 10% (20% on i386) of
1136 			 * the buffer map to the transient bio map.
1137 			 */
1138 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1139 			buf_sz -= biotmap_sz;
1140 		}
1141 		if (biotmap_sz / INT_MAX > maxphys)
1142 			bio_transient_maxcnt = INT_MAX;
1143 		else
1144 			bio_transient_maxcnt = biotmap_sz / maxphys;
1145 		/*
1146 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1147 		 * using the transient mapping.
1148 		 */
1149 		if (bio_transient_maxcnt > 1024)
1150 			bio_transient_maxcnt = 1024;
1151 		if (tuned_nbuf)
1152 			nbuf = buf_sz / BKVASIZE;
1153 	}
1154 
1155 	if (nswbuf == 0) {
1156 		nswbuf = min(nbuf / 4, 256);
1157 		if (nswbuf < NSWBUF_MIN)
1158 			nswbuf = NSWBUF_MIN;
1159 	}
1160 
1161 	/*
1162 	 * Reserve space for the buffer cache buffers
1163 	 */
1164 	buf = (char *)v;
1165 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1166 	    atop(maxbcachebuf)) * nbuf;
1167 
1168 	return (v);
1169 }
1170 
1171 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1172 void
1173 bufinit(void)
1174 {
1175 	struct buf *bp;
1176 	int i;
1177 
1178 	KASSERT(maxbcachebuf >= MAXBSIZE,
1179 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1180 	    MAXBSIZE));
1181 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1182 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1183 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1184 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1185 
1186 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
1187 
1188 	/* finally, initialize each buffer header and stick on empty q */
1189 	for (i = 0; i < nbuf; i++) {
1190 		bp = nbufp(i);
1191 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1192 		bp->b_flags = B_INVAL;
1193 		bp->b_rcred = NOCRED;
1194 		bp->b_wcred = NOCRED;
1195 		bp->b_qindex = QUEUE_NONE;
1196 		bp->b_domain = -1;
1197 		bp->b_subqueue = mp_maxid + 1;
1198 		bp->b_xflags = 0;
1199 		bp->b_data = bp->b_kvabase = unmapped_buf;
1200 		LIST_INIT(&bp->b_dep);
1201 		BUF_LOCKINIT(bp);
1202 		bq_insert(&bqempty, bp, false);
1203 	}
1204 
1205 	/*
1206 	 * maxbufspace is the absolute maximum amount of buffer space we are
1207 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1208 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1209 	 * used by most other requests.  The differential is required to
1210 	 * ensure that metadata deadlocks don't occur.
1211 	 *
1212 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1213 	 * this may result in KVM fragmentation which is not handled optimally
1214 	 * by the system. XXX This is less true with vmem.  We could use
1215 	 * PAGE_SIZE.
1216 	 */
1217 	maxbufspace = (long)nbuf * BKVASIZE;
1218 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1219 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1220 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1221 
1222 	/*
1223 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1224 	 * arbitrarily and may need further tuning. It corresponds to
1225 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1226 	 * which fits with many RAID controllers' tagged queuing limits.
1227 	 * The lower 1 MiB limit is the historical upper limit for
1228 	 * hirunningspace.
1229 	 */
1230 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1231 	    16 * 1024 * 1024), 1024 * 1024);
1232 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1233 
1234 	/*
1235 	 * Limit the amount of malloc memory since it is wired permanently into
1236 	 * the kernel space.  Even though this is accounted for in the buffer
1237 	 * allocation, we don't want the malloced region to grow uncontrolled.
1238 	 * The malloc scheme improves memory utilization significantly on
1239 	 * average (small) directories.
1240 	 */
1241 	maxbufmallocspace = hibufspace / 20;
1242 
1243 	/*
1244 	 * Reduce the chance of a deadlock occurring by limiting the number
1245 	 * of delayed-write dirty buffers we allow to stack up.
1246 	 */
1247 	hidirtybuffers = nbuf / 4 + 20;
1248 	dirtybufthresh = hidirtybuffers * 9 / 10;
1249 	/*
1250 	 * To support extreme low-memory systems, make sure hidirtybuffers
1251 	 * cannot eat up all available buffer space.  This occurs when our
1252 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1253 	 * buffer space assuming BKVASIZE'd buffers.
1254 	 */
1255 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1256 		hidirtybuffers >>= 1;
1257 	}
1258 	lodirtybuffers = hidirtybuffers / 2;
1259 
1260 	/*
1261 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1262 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1263 	 * are counted as free but will be unavailable to threads executing
1264 	 * on other cpus.
1265 	 *
1266 	 * hifreebuffers is the free target for the bufspace daemon.  This
1267 	 * should be set appropriately to limit work per-iteration.
1268 	 */
1269 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1270 	hifreebuffers = (3 * lofreebuffers) / 2;
1271 	numfreebuffers = nbuf;
1272 
1273 	/* Setup the kva and free list allocators. */
1274 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1275 	buf_zone = uma_zcache_create("buf free cache",
1276 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1277 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1278 
1279 	/*
1280 	 * Size the clean queue according to the amount of buffer space.
1281 	 * One queue per-256mb up to the max.  More queues gives better
1282 	 * concurrency but less accurate LRU.
1283 	 */
1284 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1285 	for (i = 0 ; i < buf_domains; i++) {
1286 		struct bufdomain *bd;
1287 
1288 		bd = &bdomain[i];
1289 		bd_init(bd);
1290 		bd->bd_freebuffers = nbuf / buf_domains;
1291 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1292 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1293 		bd->bd_bufspace = 0;
1294 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1295 		bd->bd_hibufspace = hibufspace / buf_domains;
1296 		bd->bd_lobufspace = lobufspace / buf_domains;
1297 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1298 		bd->bd_numdirtybuffers = 0;
1299 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1300 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1301 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1302 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1303 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1304 	}
1305 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1306 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1307 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1308 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1309 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1310 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1311 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1312 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1313 }
1314 
1315 #ifdef INVARIANTS
1316 static inline void
1317 vfs_buf_check_mapped(struct buf *bp)
1318 {
1319 
1320 	KASSERT(bp->b_kvabase != unmapped_buf,
1321 	    ("mapped buf: b_kvabase was not updated %p", bp));
1322 	KASSERT(bp->b_data != unmapped_buf,
1323 	    ("mapped buf: b_data was not updated %p", bp));
1324 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1325 	    maxphys, ("b_data + b_offset unmapped %p", bp));
1326 }
1327 
1328 static inline void
1329 vfs_buf_check_unmapped(struct buf *bp)
1330 {
1331 
1332 	KASSERT(bp->b_data == unmapped_buf,
1333 	    ("unmapped buf: corrupted b_data %p", bp));
1334 }
1335 
1336 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1337 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1338 #else
1339 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1340 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1341 #endif
1342 
1343 static int
1344 isbufbusy(struct buf *bp)
1345 {
1346 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1347 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1348 		return (1);
1349 	return (0);
1350 }
1351 
1352 /*
1353  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1354  */
1355 void
1356 bufshutdown(int show_busybufs)
1357 {
1358 	static int first_buf_printf = 1;
1359 	struct buf *bp;
1360 	int i, iter, nbusy, pbusy;
1361 #ifndef PREEMPTION
1362 	int subiter;
1363 #endif
1364 
1365 	/*
1366 	 * Sync filesystems for shutdown
1367 	 */
1368 	wdog_kern_pat(WD_LASTVAL);
1369 	kern_sync(curthread);
1370 
1371 	/*
1372 	 * With soft updates, some buffers that are
1373 	 * written will be remarked as dirty until other
1374 	 * buffers are written.
1375 	 */
1376 	for (iter = pbusy = 0; iter < 20; iter++) {
1377 		nbusy = 0;
1378 		for (i = nbuf - 1; i >= 0; i--) {
1379 			bp = nbufp(i);
1380 			if (isbufbusy(bp))
1381 				nbusy++;
1382 		}
1383 		if (nbusy == 0) {
1384 			if (first_buf_printf)
1385 				printf("All buffers synced.");
1386 			break;
1387 		}
1388 		if (first_buf_printf) {
1389 			printf("Syncing disks, buffers remaining... ");
1390 			first_buf_printf = 0;
1391 		}
1392 		printf("%d ", nbusy);
1393 		if (nbusy < pbusy)
1394 			iter = 0;
1395 		pbusy = nbusy;
1396 
1397 		wdog_kern_pat(WD_LASTVAL);
1398 		kern_sync(curthread);
1399 
1400 #ifdef PREEMPTION
1401 		/*
1402 		 * Spin for a while to allow interrupt threads to run.
1403 		 */
1404 		DELAY(50000 * iter);
1405 #else
1406 		/*
1407 		 * Context switch several times to allow interrupt
1408 		 * threads to run.
1409 		 */
1410 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1411 			thread_lock(curthread);
1412 			mi_switch(SW_VOL);
1413 			DELAY(1000);
1414 		}
1415 #endif
1416 	}
1417 	printf("\n");
1418 	/*
1419 	 * Count only busy local buffers to prevent forcing
1420 	 * a fsck if we're just a client of a wedged NFS server
1421 	 */
1422 	nbusy = 0;
1423 	for (i = nbuf - 1; i >= 0; i--) {
1424 		bp = nbufp(i);
1425 		if (isbufbusy(bp)) {
1426 #if 0
1427 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1428 			if (bp->b_dev == NULL) {
1429 				TAILQ_REMOVE(&mountlist,
1430 				    bp->b_vp->v_mount, mnt_list);
1431 				continue;
1432 			}
1433 #endif
1434 			nbusy++;
1435 			if (show_busybufs > 0) {
1436 				printf(
1437 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1438 				    nbusy, bp, bp->b_vp, bp->b_flags,
1439 				    (intmax_t)bp->b_blkno,
1440 				    (intmax_t)bp->b_lblkno);
1441 				BUF_LOCKPRINTINFO(bp);
1442 				if (show_busybufs > 1)
1443 					vn_printf(bp->b_vp,
1444 					    "vnode content: ");
1445 			}
1446 		}
1447 	}
1448 	if (nbusy) {
1449 		/*
1450 		 * Failed to sync all blocks. Indicate this and don't
1451 		 * unmount filesystems (thus forcing an fsck on reboot).
1452 		 */
1453 		printf("Giving up on %d buffers\n", nbusy);
1454 		DELAY(5000000);	/* 5 seconds */
1455 	} else {
1456 		if (!first_buf_printf)
1457 			printf("Final sync complete\n");
1458 		/*
1459 		 * Unmount filesystems
1460 		 */
1461 		if (!KERNEL_PANICKED())
1462 			vfs_unmountall();
1463 	}
1464 	swapoff_all();
1465 	DELAY(100000);		/* wait for console output to finish */
1466 }
1467 
1468 static void
1469 bpmap_qenter(struct buf *bp)
1470 {
1471 
1472 	BUF_CHECK_MAPPED(bp);
1473 
1474 	/*
1475 	 * bp->b_data is relative to bp->b_offset, but
1476 	 * bp->b_offset may be offset into the first page.
1477 	 */
1478 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1479 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1480 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1481 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1482 }
1483 
1484 static inline struct bufdomain *
1485 bufdomain(struct buf *bp)
1486 {
1487 
1488 	return (&bdomain[bp->b_domain]);
1489 }
1490 
1491 static struct bufqueue *
1492 bufqueue(struct buf *bp)
1493 {
1494 
1495 	switch (bp->b_qindex) {
1496 	case QUEUE_NONE:
1497 		/* FALLTHROUGH */
1498 	case QUEUE_SENTINEL:
1499 		return (NULL);
1500 	case QUEUE_EMPTY:
1501 		return (&bqempty);
1502 	case QUEUE_DIRTY:
1503 		return (&bufdomain(bp)->bd_dirtyq);
1504 	case QUEUE_CLEAN:
1505 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1506 	default:
1507 		break;
1508 	}
1509 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1510 }
1511 
1512 /*
1513  * Return the locked bufqueue that bp is a member of.
1514  */
1515 static struct bufqueue *
1516 bufqueue_acquire(struct buf *bp)
1517 {
1518 	struct bufqueue *bq, *nbq;
1519 
1520 	/*
1521 	 * bp can be pushed from a per-cpu queue to the
1522 	 * cleanq while we're waiting on the lock.  Retry
1523 	 * if the queues don't match.
1524 	 */
1525 	bq = bufqueue(bp);
1526 	BQ_LOCK(bq);
1527 	for (;;) {
1528 		nbq = bufqueue(bp);
1529 		if (bq == nbq)
1530 			break;
1531 		BQ_UNLOCK(bq);
1532 		BQ_LOCK(nbq);
1533 		bq = nbq;
1534 	}
1535 	return (bq);
1536 }
1537 
1538 /*
1539  *	binsfree:
1540  *
1541  *	Insert the buffer into the appropriate free list.  Requires a
1542  *	locked buffer on entry and buffer is unlocked before return.
1543  */
1544 static void
1545 binsfree(struct buf *bp, int qindex)
1546 {
1547 	struct bufdomain *bd;
1548 	struct bufqueue *bq;
1549 
1550 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1551 	    ("binsfree: Invalid qindex %d", qindex));
1552 	BUF_ASSERT_XLOCKED(bp);
1553 
1554 	/*
1555 	 * Handle delayed bremfree() processing.
1556 	 */
1557 	if (bp->b_flags & B_REMFREE) {
1558 		if (bp->b_qindex == qindex) {
1559 			bp->b_flags |= B_REUSE;
1560 			bp->b_flags &= ~B_REMFREE;
1561 			BUF_UNLOCK(bp);
1562 			return;
1563 		}
1564 		bq = bufqueue_acquire(bp);
1565 		bq_remove(bq, bp);
1566 		BQ_UNLOCK(bq);
1567 	}
1568 	bd = bufdomain(bp);
1569 	if (qindex == QUEUE_CLEAN) {
1570 		if (bd->bd_lim != 0)
1571 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1572 		else
1573 			bq = bd->bd_cleanq;
1574 	} else
1575 		bq = &bd->bd_dirtyq;
1576 	bq_insert(bq, bp, true);
1577 }
1578 
1579 /*
1580  * buf_free:
1581  *
1582  *	Free a buffer to the buf zone once it no longer has valid contents.
1583  */
1584 static void
1585 buf_free(struct buf *bp)
1586 {
1587 
1588 	if (bp->b_flags & B_REMFREE)
1589 		bremfreef(bp);
1590 	if (bp->b_vflags & BV_BKGRDINPROG)
1591 		panic("losing buffer 1");
1592 	if (bp->b_rcred != NOCRED) {
1593 		crfree(bp->b_rcred);
1594 		bp->b_rcred = NOCRED;
1595 	}
1596 	if (bp->b_wcred != NOCRED) {
1597 		crfree(bp->b_wcred);
1598 		bp->b_wcred = NOCRED;
1599 	}
1600 	if (!LIST_EMPTY(&bp->b_dep))
1601 		buf_deallocate(bp);
1602 	bufkva_free(bp);
1603 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1604 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1605 	BUF_UNLOCK(bp);
1606 	uma_zfree(buf_zone, bp);
1607 }
1608 
1609 /*
1610  * buf_import:
1611  *
1612  *	Import bufs into the uma cache from the buf list.  The system still
1613  *	expects a static array of bufs and much of the synchronization
1614  *	around bufs assumes type stable storage.  As a result, UMA is used
1615  *	only as a per-cpu cache of bufs still maintained on a global list.
1616  */
1617 static int
1618 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1619 {
1620 	struct buf *bp;
1621 	int i;
1622 
1623 	BQ_LOCK(&bqempty);
1624 	for (i = 0; i < cnt; i++) {
1625 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1626 		if (bp == NULL)
1627 			break;
1628 		bq_remove(&bqempty, bp);
1629 		store[i] = bp;
1630 	}
1631 	BQ_UNLOCK(&bqempty);
1632 
1633 	return (i);
1634 }
1635 
1636 /*
1637  * buf_release:
1638  *
1639  *	Release bufs from the uma cache back to the buffer queues.
1640  */
1641 static void
1642 buf_release(void *arg, void **store, int cnt)
1643 {
1644 	struct bufqueue *bq;
1645 	struct buf *bp;
1646         int i;
1647 
1648 	bq = &bqempty;
1649 	BQ_LOCK(bq);
1650         for (i = 0; i < cnt; i++) {
1651 		bp = store[i];
1652 		/* Inline bq_insert() to batch locking. */
1653 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1654 		bp->b_flags &= ~(B_AGE | B_REUSE);
1655 		bq->bq_len++;
1656 		bp->b_qindex = bq->bq_index;
1657 	}
1658 	BQ_UNLOCK(bq);
1659 }
1660 
1661 /*
1662  * buf_alloc:
1663  *
1664  *	Allocate an empty buffer header.
1665  */
1666 static struct buf *
1667 buf_alloc(struct bufdomain *bd)
1668 {
1669 	struct buf *bp;
1670 	int freebufs, error;
1671 
1672 	/*
1673 	 * We can only run out of bufs in the buf zone if the average buf
1674 	 * is less than BKVASIZE.  In this case the actual wait/block will
1675 	 * come from buf_reycle() failing to flush one of these small bufs.
1676 	 */
1677 	bp = NULL;
1678 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1679 	if (freebufs > 0)
1680 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1681 	if (bp == NULL) {
1682 		atomic_add_int(&bd->bd_freebuffers, 1);
1683 		bufspace_daemon_wakeup(bd);
1684 		counter_u64_add(numbufallocfails, 1);
1685 		return (NULL);
1686 	}
1687 	/*
1688 	 * Wake-up the bufspace daemon on transition below threshold.
1689 	 */
1690 	if (freebufs == bd->bd_lofreebuffers)
1691 		bufspace_daemon_wakeup(bd);
1692 
1693 	error = BUF_LOCK(bp, LK_EXCLUSIVE, NULL);
1694 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1695 	    error));
1696 	(void)error;
1697 
1698 	KASSERT(bp->b_vp == NULL,
1699 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1700 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1701 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1702 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1703 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1704 	KASSERT(bp->b_npages == 0,
1705 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1706 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1707 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1708 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1709 
1710 	bp->b_domain = BD_DOMAIN(bd);
1711 	bp->b_flags = 0;
1712 	bp->b_ioflags = 0;
1713 	bp->b_xflags = 0;
1714 	bp->b_vflags = 0;
1715 	bp->b_vp = NULL;
1716 	bp->b_blkno = bp->b_lblkno = 0;
1717 	bp->b_offset = NOOFFSET;
1718 	bp->b_iodone = 0;
1719 	bp->b_error = 0;
1720 	bp->b_resid = 0;
1721 	bp->b_bcount = 0;
1722 	bp->b_npages = 0;
1723 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1724 	bp->b_bufobj = NULL;
1725 	bp->b_data = bp->b_kvabase = unmapped_buf;
1726 	bp->b_fsprivate1 = NULL;
1727 	bp->b_fsprivate2 = NULL;
1728 	bp->b_fsprivate3 = NULL;
1729 	LIST_INIT(&bp->b_dep);
1730 
1731 	return (bp);
1732 }
1733 
1734 /*
1735  *	buf_recycle:
1736  *
1737  *	Free a buffer from the given bufqueue.  kva controls whether the
1738  *	freed buf must own some kva resources.  This is used for
1739  *	defragmenting.
1740  */
1741 static int
1742 buf_recycle(struct bufdomain *bd, bool kva)
1743 {
1744 	struct bufqueue *bq;
1745 	struct buf *bp, *nbp;
1746 
1747 	if (kva)
1748 		counter_u64_add(bufdefragcnt, 1);
1749 	nbp = NULL;
1750 	bq = bd->bd_cleanq;
1751 	BQ_LOCK(bq);
1752 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1753 	    ("buf_recycle: Locks don't match"));
1754 	nbp = TAILQ_FIRST(&bq->bq_queue);
1755 
1756 	/*
1757 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1758 	 * depending.
1759 	 */
1760 	while ((bp = nbp) != NULL) {
1761 		/*
1762 		 * Calculate next bp (we can only use it if we do not
1763 		 * release the bqlock).
1764 		 */
1765 		nbp = TAILQ_NEXT(bp, b_freelist);
1766 
1767 		/*
1768 		 * If we are defragging then we need a buffer with
1769 		 * some kva to reclaim.
1770 		 */
1771 		if (kva && bp->b_kvasize == 0)
1772 			continue;
1773 
1774 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1775 			continue;
1776 
1777 		/*
1778 		 * Implement a second chance algorithm for frequently
1779 		 * accessed buffers.
1780 		 */
1781 		if ((bp->b_flags & B_REUSE) != 0) {
1782 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1783 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1784 			bp->b_flags &= ~B_REUSE;
1785 			BUF_UNLOCK(bp);
1786 			continue;
1787 		}
1788 
1789 		/*
1790 		 * Skip buffers with background writes in progress.
1791 		 */
1792 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1793 			BUF_UNLOCK(bp);
1794 			continue;
1795 		}
1796 
1797 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1798 		    ("buf_recycle: inconsistent queue %d bp %p",
1799 		    bp->b_qindex, bp));
1800 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1801 		    ("getnewbuf: queue domain %d doesn't match request %d",
1802 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1803 		/*
1804 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1805 		 * the scan from this point on.
1806 		 */
1807 		bq_remove(bq, bp);
1808 		BQ_UNLOCK(bq);
1809 
1810 		/*
1811 		 * Requeue the background write buffer with error and
1812 		 * restart the scan.
1813 		 */
1814 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1815 			bqrelse(bp);
1816 			BQ_LOCK(bq);
1817 			nbp = TAILQ_FIRST(&bq->bq_queue);
1818 			continue;
1819 		}
1820 		bp->b_flags |= B_INVAL;
1821 		brelse(bp);
1822 		return (0);
1823 	}
1824 	bd->bd_wanted = 1;
1825 	BQ_UNLOCK(bq);
1826 
1827 	return (ENOBUFS);
1828 }
1829 
1830 /*
1831  *	bremfree:
1832  *
1833  *	Mark the buffer for removal from the appropriate free list.
1834  *
1835  */
1836 void
1837 bremfree(struct buf *bp)
1838 {
1839 
1840 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1841 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1842 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1843 	KASSERT(bp->b_qindex != QUEUE_NONE,
1844 	    ("bremfree: buffer %p not on a queue.", bp));
1845 	BUF_ASSERT_XLOCKED(bp);
1846 
1847 	bp->b_flags |= B_REMFREE;
1848 }
1849 
1850 /*
1851  *	bremfreef:
1852  *
1853  *	Force an immediate removal from a free list.  Used only in nfs when
1854  *	it abuses the b_freelist pointer.
1855  */
1856 void
1857 bremfreef(struct buf *bp)
1858 {
1859 	struct bufqueue *bq;
1860 
1861 	bq = bufqueue_acquire(bp);
1862 	bq_remove(bq, bp);
1863 	BQ_UNLOCK(bq);
1864 }
1865 
1866 static void
1867 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1868 {
1869 
1870 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1871 	TAILQ_INIT(&bq->bq_queue);
1872 	bq->bq_len = 0;
1873 	bq->bq_index = qindex;
1874 	bq->bq_subqueue = subqueue;
1875 }
1876 
1877 static void
1878 bd_init(struct bufdomain *bd)
1879 {
1880 	int i;
1881 
1882 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1883 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1884 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1885 	for (i = 0; i <= mp_maxid; i++)
1886 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1887 		    "bufq clean subqueue lock");
1888 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1889 }
1890 
1891 /*
1892  *	bq_remove:
1893  *
1894  *	Removes a buffer from the free list, must be called with the
1895  *	correct qlock held.
1896  */
1897 static void
1898 bq_remove(struct bufqueue *bq, struct buf *bp)
1899 {
1900 
1901 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1902 	    bp, bp->b_vp, bp->b_flags);
1903 	KASSERT(bp->b_qindex != QUEUE_NONE,
1904 	    ("bq_remove: buffer %p not on a queue.", bp));
1905 	KASSERT(bufqueue(bp) == bq,
1906 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1907 
1908 	BQ_ASSERT_LOCKED(bq);
1909 	if (bp->b_qindex != QUEUE_EMPTY) {
1910 		BUF_ASSERT_XLOCKED(bp);
1911 	}
1912 	KASSERT(bq->bq_len >= 1,
1913 	    ("queue %d underflow", bp->b_qindex));
1914 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1915 	bq->bq_len--;
1916 	bp->b_qindex = QUEUE_NONE;
1917 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1918 }
1919 
1920 static void
1921 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1922 {
1923 	struct buf *bp;
1924 
1925 	BQ_ASSERT_LOCKED(bq);
1926 	if (bq != bd->bd_cleanq) {
1927 		BD_LOCK(bd);
1928 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1929 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1930 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1931 			    b_freelist);
1932 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1933 		}
1934 		bd->bd_cleanq->bq_len += bq->bq_len;
1935 		bq->bq_len = 0;
1936 	}
1937 	if (bd->bd_wanted) {
1938 		bd->bd_wanted = 0;
1939 		wakeup(&bd->bd_wanted);
1940 	}
1941 	if (bq != bd->bd_cleanq)
1942 		BD_UNLOCK(bd);
1943 }
1944 
1945 static int
1946 bd_flushall(struct bufdomain *bd)
1947 {
1948 	struct bufqueue *bq;
1949 	int flushed;
1950 	int i;
1951 
1952 	if (bd->bd_lim == 0)
1953 		return (0);
1954 	flushed = 0;
1955 	for (i = 0; i <= mp_maxid; i++) {
1956 		bq = &bd->bd_subq[i];
1957 		if (bq->bq_len == 0)
1958 			continue;
1959 		BQ_LOCK(bq);
1960 		bd_flush(bd, bq);
1961 		BQ_UNLOCK(bq);
1962 		flushed++;
1963 	}
1964 
1965 	return (flushed);
1966 }
1967 
1968 static void
1969 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1970 {
1971 	struct bufdomain *bd;
1972 
1973 	if (bp->b_qindex != QUEUE_NONE)
1974 		panic("bq_insert: free buffer %p onto another queue?", bp);
1975 
1976 	bd = bufdomain(bp);
1977 	if (bp->b_flags & B_AGE) {
1978 		/* Place this buf directly on the real queue. */
1979 		if (bq->bq_index == QUEUE_CLEAN)
1980 			bq = bd->bd_cleanq;
1981 		BQ_LOCK(bq);
1982 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
1983 	} else {
1984 		BQ_LOCK(bq);
1985 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1986 	}
1987 	bp->b_flags &= ~(B_AGE | B_REUSE);
1988 	bq->bq_len++;
1989 	bp->b_qindex = bq->bq_index;
1990 	bp->b_subqueue = bq->bq_subqueue;
1991 
1992 	/*
1993 	 * Unlock before we notify so that we don't wakeup a waiter that
1994 	 * fails a trylock on the buf and sleeps again.
1995 	 */
1996 	if (unlock)
1997 		BUF_UNLOCK(bp);
1998 
1999 	if (bp->b_qindex == QUEUE_CLEAN) {
2000 		/*
2001 		 * Flush the per-cpu queue and notify any waiters.
2002 		 */
2003 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2004 		    bq->bq_len >= bd->bd_lim))
2005 			bd_flush(bd, bq);
2006 	}
2007 	BQ_UNLOCK(bq);
2008 }
2009 
2010 /*
2011  *	bufkva_free:
2012  *
2013  *	Free the kva allocation for a buffer.
2014  *
2015  */
2016 static void
2017 bufkva_free(struct buf *bp)
2018 {
2019 
2020 #ifdef INVARIANTS
2021 	if (bp->b_kvasize == 0) {
2022 		KASSERT(bp->b_kvabase == unmapped_buf &&
2023 		    bp->b_data == unmapped_buf,
2024 		    ("Leaked KVA space on %p", bp));
2025 	} else if (buf_mapped(bp))
2026 		BUF_CHECK_MAPPED(bp);
2027 	else
2028 		BUF_CHECK_UNMAPPED(bp);
2029 #endif
2030 	if (bp->b_kvasize == 0)
2031 		return;
2032 
2033 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2034 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2035 	counter_u64_add(buffreekvacnt, 1);
2036 	bp->b_data = bp->b_kvabase = unmapped_buf;
2037 	bp->b_kvasize = 0;
2038 }
2039 
2040 /*
2041  *	bufkva_alloc:
2042  *
2043  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2044  */
2045 static int
2046 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2047 {
2048 	vm_offset_t addr;
2049 	int error;
2050 
2051 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2052 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2053 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
2054 	KASSERT(maxsize <= maxbcachebuf,
2055 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2056 
2057 	bufkva_free(bp);
2058 
2059 	addr = 0;
2060 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2061 	if (error != 0) {
2062 		/*
2063 		 * Buffer map is too fragmented.  Request the caller
2064 		 * to defragment the map.
2065 		 */
2066 		return (error);
2067 	}
2068 	bp->b_kvabase = (caddr_t)addr;
2069 	bp->b_kvasize = maxsize;
2070 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2071 	if ((gbflags & GB_UNMAPPED) != 0) {
2072 		bp->b_data = unmapped_buf;
2073 		BUF_CHECK_UNMAPPED(bp);
2074 	} else {
2075 		bp->b_data = bp->b_kvabase;
2076 		BUF_CHECK_MAPPED(bp);
2077 	}
2078 	return (0);
2079 }
2080 
2081 /*
2082  *	bufkva_reclaim:
2083  *
2084  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2085  *	callback that fires to avoid returning failure.
2086  */
2087 static void
2088 bufkva_reclaim(vmem_t *vmem, int flags)
2089 {
2090 	bool done;
2091 	int q;
2092 	int i;
2093 
2094 	done = false;
2095 	for (i = 0; i < 5; i++) {
2096 		for (q = 0; q < buf_domains; q++)
2097 			if (buf_recycle(&bdomain[q], true) != 0)
2098 				done = true;
2099 		if (done)
2100 			break;
2101 	}
2102 	return;
2103 }
2104 
2105 /*
2106  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2107  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2108  * the buffer is valid and we do not have to do anything.
2109  */
2110 static void
2111 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2112     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2113 {
2114 	struct buf *rabp;
2115 	struct thread *td;
2116 	int i;
2117 
2118 	td = curthread;
2119 
2120 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2121 		if (inmem(vp, *rablkno))
2122 			continue;
2123 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2124 		if ((rabp->b_flags & B_CACHE) != 0) {
2125 			brelse(rabp);
2126 			continue;
2127 		}
2128 #ifdef RACCT
2129 		if (racct_enable) {
2130 			PROC_LOCK(curproc);
2131 			racct_add_buf(curproc, rabp, 0);
2132 			PROC_UNLOCK(curproc);
2133 		}
2134 #endif /* RACCT */
2135 		td->td_ru.ru_inblock++;
2136 		rabp->b_flags |= B_ASYNC;
2137 		rabp->b_flags &= ~B_INVAL;
2138 		if ((flags & GB_CKHASH) != 0) {
2139 			rabp->b_flags |= B_CKHASH;
2140 			rabp->b_ckhashcalc = ckhashfunc;
2141 		}
2142 		rabp->b_ioflags &= ~BIO_ERROR;
2143 		rabp->b_iocmd = BIO_READ;
2144 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2145 			rabp->b_rcred = crhold(cred);
2146 		vfs_busy_pages(rabp, 0);
2147 		BUF_KERNPROC(rabp);
2148 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2149 		bstrategy(rabp);
2150 	}
2151 }
2152 
2153 /*
2154  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2155  *
2156  * Get a buffer with the specified data.  Look in the cache first.  We
2157  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2158  * is set, the buffer is valid and we do not have to do anything, see
2159  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2160  *
2161  * Always return a NULL buffer pointer (in bpp) when returning an error.
2162  *
2163  * The blkno parameter is the logical block being requested. Normally
2164  * the mapping of logical block number to disk block address is done
2165  * by calling VOP_BMAP(). However, if the mapping is already known, the
2166  * disk block address can be passed using the dblkno parameter. If the
2167  * disk block address is not known, then the same value should be passed
2168  * for blkno and dblkno.
2169  */
2170 int
2171 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2172     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2173     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2174 {
2175 	struct buf *bp;
2176 	struct thread *td;
2177 	int error, readwait, rv;
2178 
2179 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2180 	td = curthread;
2181 	/*
2182 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2183 	 * are specified.
2184 	 */
2185 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2186 	if (error != 0) {
2187 		*bpp = NULL;
2188 		return (error);
2189 	}
2190 	KASSERT(blkno == bp->b_lblkno,
2191 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2192 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2193 	flags &= ~GB_NOSPARSE;
2194 	*bpp = bp;
2195 
2196 	/*
2197 	 * If not found in cache, do some I/O
2198 	 */
2199 	readwait = 0;
2200 	if ((bp->b_flags & B_CACHE) == 0) {
2201 #ifdef RACCT
2202 		if (racct_enable) {
2203 			PROC_LOCK(td->td_proc);
2204 			racct_add_buf(td->td_proc, bp, 0);
2205 			PROC_UNLOCK(td->td_proc);
2206 		}
2207 #endif /* RACCT */
2208 		td->td_ru.ru_inblock++;
2209 		bp->b_iocmd = BIO_READ;
2210 		bp->b_flags &= ~B_INVAL;
2211 		if ((flags & GB_CKHASH) != 0) {
2212 			bp->b_flags |= B_CKHASH;
2213 			bp->b_ckhashcalc = ckhashfunc;
2214 		}
2215 		if ((flags & GB_CVTENXIO) != 0)
2216 			bp->b_xflags |= BX_CVTENXIO;
2217 		bp->b_ioflags &= ~BIO_ERROR;
2218 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2219 			bp->b_rcred = crhold(cred);
2220 		vfs_busy_pages(bp, 0);
2221 		bp->b_iooffset = dbtob(bp->b_blkno);
2222 		bstrategy(bp);
2223 		++readwait;
2224 	}
2225 
2226 	/*
2227 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2228 	 */
2229 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2230 
2231 	rv = 0;
2232 	if (readwait) {
2233 		rv = bufwait(bp);
2234 		if (rv != 0) {
2235 			brelse(bp);
2236 			*bpp = NULL;
2237 		}
2238 	}
2239 	return (rv);
2240 }
2241 
2242 /*
2243  * Write, release buffer on completion.  (Done by iodone
2244  * if async).  Do not bother writing anything if the buffer
2245  * is invalid.
2246  *
2247  * Note that we set B_CACHE here, indicating that buffer is
2248  * fully valid and thus cacheable.  This is true even of NFS
2249  * now so we set it generally.  This could be set either here
2250  * or in biodone() since the I/O is synchronous.  We put it
2251  * here.
2252  */
2253 int
2254 bufwrite(struct buf *bp)
2255 {
2256 	int oldflags;
2257 	struct vnode *vp;
2258 	long space;
2259 	int vp_md;
2260 
2261 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2262 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2263 		bp->b_flags |= B_INVAL | B_RELBUF;
2264 		bp->b_flags &= ~B_CACHE;
2265 		brelse(bp);
2266 		return (ENXIO);
2267 	}
2268 	if (bp->b_flags & B_INVAL) {
2269 		brelse(bp);
2270 		return (0);
2271 	}
2272 
2273 	if (bp->b_flags & B_BARRIER)
2274 		atomic_add_long(&barrierwrites, 1);
2275 
2276 	oldflags = bp->b_flags;
2277 
2278 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2279 	    ("FFS background buffer should not get here %p", bp));
2280 
2281 	vp = bp->b_vp;
2282 	if (vp)
2283 		vp_md = vp->v_vflag & VV_MD;
2284 	else
2285 		vp_md = 0;
2286 
2287 	/*
2288 	 * Mark the buffer clean.  Increment the bufobj write count
2289 	 * before bundirty() call, to prevent other thread from seeing
2290 	 * empty dirty list and zero counter for writes in progress,
2291 	 * falsely indicating that the bufobj is clean.
2292 	 */
2293 	bufobj_wref(bp->b_bufobj);
2294 	bundirty(bp);
2295 
2296 	bp->b_flags &= ~B_DONE;
2297 	bp->b_ioflags &= ~BIO_ERROR;
2298 	bp->b_flags |= B_CACHE;
2299 	bp->b_iocmd = BIO_WRITE;
2300 
2301 	vfs_busy_pages(bp, 1);
2302 
2303 	/*
2304 	 * Normal bwrites pipeline writes
2305 	 */
2306 	bp->b_runningbufspace = bp->b_bufsize;
2307 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2308 
2309 #ifdef RACCT
2310 	if (racct_enable) {
2311 		PROC_LOCK(curproc);
2312 		racct_add_buf(curproc, bp, 1);
2313 		PROC_UNLOCK(curproc);
2314 	}
2315 #endif /* RACCT */
2316 	curthread->td_ru.ru_oublock++;
2317 	if (oldflags & B_ASYNC)
2318 		BUF_KERNPROC(bp);
2319 	bp->b_iooffset = dbtob(bp->b_blkno);
2320 	buf_track(bp, __func__);
2321 	bstrategy(bp);
2322 
2323 	if ((oldflags & B_ASYNC) == 0) {
2324 		int rtval = bufwait(bp);
2325 		brelse(bp);
2326 		return (rtval);
2327 	} else if (space > hirunningspace) {
2328 		/*
2329 		 * don't allow the async write to saturate the I/O
2330 		 * system.  We will not deadlock here because
2331 		 * we are blocking waiting for I/O that is already in-progress
2332 		 * to complete. We do not block here if it is the update
2333 		 * or syncer daemon trying to clean up as that can lead
2334 		 * to deadlock.
2335 		 */
2336 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2337 			waitrunningbufspace();
2338 	}
2339 
2340 	return (0);
2341 }
2342 
2343 void
2344 bufbdflush(struct bufobj *bo, struct buf *bp)
2345 {
2346 	struct buf *nbp;
2347 	struct bufdomain *bd;
2348 
2349 	bd = &bdomain[bo->bo_domain];
2350 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2351 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2352 		altbufferflushes++;
2353 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2354 		BO_LOCK(bo);
2355 		/*
2356 		 * Try to find a buffer to flush.
2357 		 */
2358 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2359 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2360 			    BUF_LOCK(nbp,
2361 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2362 				continue;
2363 			if (bp == nbp)
2364 				panic("bdwrite: found ourselves");
2365 			BO_UNLOCK(bo);
2366 			/* Don't countdeps with the bo lock held. */
2367 			if (buf_countdeps(nbp, 0)) {
2368 				BO_LOCK(bo);
2369 				BUF_UNLOCK(nbp);
2370 				continue;
2371 			}
2372 			if (nbp->b_flags & B_CLUSTEROK) {
2373 				vfs_bio_awrite(nbp);
2374 			} else {
2375 				bremfree(nbp);
2376 				bawrite(nbp);
2377 			}
2378 			dirtybufferflushes++;
2379 			break;
2380 		}
2381 		if (nbp == NULL)
2382 			BO_UNLOCK(bo);
2383 	}
2384 }
2385 
2386 /*
2387  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2388  * anything if the buffer is marked invalid.
2389  *
2390  * Note that since the buffer must be completely valid, we can safely
2391  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2392  * biodone() in order to prevent getblk from writing the buffer
2393  * out synchronously.
2394  */
2395 void
2396 bdwrite(struct buf *bp)
2397 {
2398 	struct thread *td = curthread;
2399 	struct vnode *vp;
2400 	struct bufobj *bo;
2401 
2402 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2403 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2404 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2405 	    ("Barrier request in delayed write %p", bp));
2406 
2407 	if (bp->b_flags & B_INVAL) {
2408 		brelse(bp);
2409 		return;
2410 	}
2411 
2412 	/*
2413 	 * If we have too many dirty buffers, don't create any more.
2414 	 * If we are wildly over our limit, then force a complete
2415 	 * cleanup. Otherwise, just keep the situation from getting
2416 	 * out of control. Note that we have to avoid a recursive
2417 	 * disaster and not try to clean up after our own cleanup!
2418 	 */
2419 	vp = bp->b_vp;
2420 	bo = bp->b_bufobj;
2421 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2422 		td->td_pflags |= TDP_INBDFLUSH;
2423 		BO_BDFLUSH(bo, bp);
2424 		td->td_pflags &= ~TDP_INBDFLUSH;
2425 	} else
2426 		recursiveflushes++;
2427 
2428 	bdirty(bp);
2429 	/*
2430 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2431 	 * true even of NFS now.
2432 	 */
2433 	bp->b_flags |= B_CACHE;
2434 
2435 	/*
2436 	 * This bmap keeps the system from needing to do the bmap later,
2437 	 * perhaps when the system is attempting to do a sync.  Since it
2438 	 * is likely that the indirect block -- or whatever other datastructure
2439 	 * that the filesystem needs is still in memory now, it is a good
2440 	 * thing to do this.  Note also, that if the pageout daemon is
2441 	 * requesting a sync -- there might not be enough memory to do
2442 	 * the bmap then...  So, this is important to do.
2443 	 */
2444 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2445 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2446 	}
2447 
2448 	buf_track(bp, __func__);
2449 
2450 	/*
2451 	 * Set the *dirty* buffer range based upon the VM system dirty
2452 	 * pages.
2453 	 *
2454 	 * Mark the buffer pages as clean.  We need to do this here to
2455 	 * satisfy the vnode_pager and the pageout daemon, so that it
2456 	 * thinks that the pages have been "cleaned".  Note that since
2457 	 * the pages are in a delayed write buffer -- the VFS layer
2458 	 * "will" see that the pages get written out on the next sync,
2459 	 * or perhaps the cluster will be completed.
2460 	 */
2461 	vfs_clean_pages_dirty_buf(bp);
2462 	bqrelse(bp);
2463 
2464 	/*
2465 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2466 	 * due to the softdep code.
2467 	 */
2468 }
2469 
2470 /*
2471  *	bdirty:
2472  *
2473  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2474  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2475  *	itself to properly update it in the dirty/clean lists.  We mark it
2476  *	B_DONE to ensure that any asynchronization of the buffer properly
2477  *	clears B_DONE ( else a panic will occur later ).
2478  *
2479  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2480  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2481  *	should only be called if the buffer is known-good.
2482  *
2483  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2484  *	count.
2485  *
2486  *	The buffer must be on QUEUE_NONE.
2487  */
2488 void
2489 bdirty(struct buf *bp)
2490 {
2491 
2492 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2493 	    bp, bp->b_vp, bp->b_flags);
2494 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2495 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2496 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2497 	bp->b_flags &= ~(B_RELBUF);
2498 	bp->b_iocmd = BIO_WRITE;
2499 
2500 	if ((bp->b_flags & B_DELWRI) == 0) {
2501 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2502 		reassignbuf(bp);
2503 		bdirtyadd(bp);
2504 	}
2505 }
2506 
2507 /*
2508  *	bundirty:
2509  *
2510  *	Clear B_DELWRI for buffer.
2511  *
2512  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2513  *	count.
2514  *
2515  *	The buffer must be on QUEUE_NONE.
2516  */
2517 
2518 void
2519 bundirty(struct buf *bp)
2520 {
2521 
2522 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2523 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2524 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2525 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2526 
2527 	if (bp->b_flags & B_DELWRI) {
2528 		bp->b_flags &= ~B_DELWRI;
2529 		reassignbuf(bp);
2530 		bdirtysub(bp);
2531 	}
2532 	/*
2533 	 * Since it is now being written, we can clear its deferred write flag.
2534 	 */
2535 	bp->b_flags &= ~B_DEFERRED;
2536 }
2537 
2538 /*
2539  *	bawrite:
2540  *
2541  *	Asynchronous write.  Start output on a buffer, but do not wait for
2542  *	it to complete.  The buffer is released when the output completes.
2543  *
2544  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2545  *	B_INVAL buffers.  Not us.
2546  */
2547 void
2548 bawrite(struct buf *bp)
2549 {
2550 
2551 	bp->b_flags |= B_ASYNC;
2552 	(void) bwrite(bp);
2553 }
2554 
2555 /*
2556  *	babarrierwrite:
2557  *
2558  *	Asynchronous barrier write.  Start output on a buffer, but do not
2559  *	wait for it to complete.  Place a write barrier after this write so
2560  *	that this buffer and all buffers written before it are committed to
2561  *	the disk before any buffers written after this write are committed
2562  *	to the disk.  The buffer is released when the output completes.
2563  */
2564 void
2565 babarrierwrite(struct buf *bp)
2566 {
2567 
2568 	bp->b_flags |= B_ASYNC | B_BARRIER;
2569 	(void) bwrite(bp);
2570 }
2571 
2572 /*
2573  *	bbarrierwrite:
2574  *
2575  *	Synchronous barrier write.  Start output on a buffer and wait for
2576  *	it to complete.  Place a write barrier after this write so that
2577  *	this buffer and all buffers written before it are committed to
2578  *	the disk before any buffers written after this write are committed
2579  *	to the disk.  The buffer is released when the output completes.
2580  */
2581 int
2582 bbarrierwrite(struct buf *bp)
2583 {
2584 
2585 	bp->b_flags |= B_BARRIER;
2586 	return (bwrite(bp));
2587 }
2588 
2589 /*
2590  *	bwillwrite:
2591  *
2592  *	Called prior to the locking of any vnodes when we are expecting to
2593  *	write.  We do not want to starve the buffer cache with too many
2594  *	dirty buffers so we block here.  By blocking prior to the locking
2595  *	of any vnodes we attempt to avoid the situation where a locked vnode
2596  *	prevents the various system daemons from flushing related buffers.
2597  */
2598 void
2599 bwillwrite(void)
2600 {
2601 
2602 	if (buf_dirty_count_severe()) {
2603 		mtx_lock(&bdirtylock);
2604 		while (buf_dirty_count_severe()) {
2605 			bdirtywait = 1;
2606 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2607 			    "flswai", 0);
2608 		}
2609 		mtx_unlock(&bdirtylock);
2610 	}
2611 }
2612 
2613 /*
2614  * Return true if we have too many dirty buffers.
2615  */
2616 int
2617 buf_dirty_count_severe(void)
2618 {
2619 
2620 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2621 }
2622 
2623 /*
2624  *	brelse:
2625  *
2626  *	Release a busy buffer and, if requested, free its resources.  The
2627  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2628  *	to be accessed later as a cache entity or reused for other purposes.
2629  */
2630 void
2631 brelse(struct buf *bp)
2632 {
2633 	struct mount *v_mnt;
2634 	int qindex;
2635 
2636 	/*
2637 	 * Many functions erroneously call brelse with a NULL bp under rare
2638 	 * error conditions. Simply return when called with a NULL bp.
2639 	 */
2640 	if (bp == NULL)
2641 		return;
2642 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2643 	    bp, bp->b_vp, bp->b_flags);
2644 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2645 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2646 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2647 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2648 
2649 	if (BUF_LOCKRECURSED(bp)) {
2650 		/*
2651 		 * Do not process, in particular, do not handle the
2652 		 * B_INVAL/B_RELBUF and do not release to free list.
2653 		 */
2654 		BUF_UNLOCK(bp);
2655 		return;
2656 	}
2657 
2658 	if (bp->b_flags & B_MANAGED) {
2659 		bqrelse(bp);
2660 		return;
2661 	}
2662 
2663 	if (LIST_EMPTY(&bp->b_dep)) {
2664 		bp->b_flags &= ~B_IOSTARTED;
2665 	} else {
2666 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2667 		    ("brelse: SU io not finished bp %p", bp));
2668 	}
2669 
2670 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2671 		BO_LOCK(bp->b_bufobj);
2672 		bp->b_vflags &= ~BV_BKGRDERR;
2673 		BO_UNLOCK(bp->b_bufobj);
2674 		bdirty(bp);
2675 	}
2676 
2677 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2678 	    (bp->b_flags & B_INVALONERR)) {
2679 		/*
2680 		 * Forced invalidation of dirty buffer contents, to be used
2681 		 * after a failed write in the rare case that the loss of the
2682 		 * contents is acceptable.  The buffer is invalidated and
2683 		 * freed.
2684 		 */
2685 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2686 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2687 	}
2688 
2689 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2690 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2691 	    !(bp->b_flags & B_INVAL)) {
2692 		/*
2693 		 * Failed write, redirty.  All errors except ENXIO (which
2694 		 * means the device is gone) are treated as being
2695 		 * transient.
2696 		 *
2697 		 * XXX Treating EIO as transient is not correct; the
2698 		 * contract with the local storage device drivers is that
2699 		 * they will only return EIO once the I/O is no longer
2700 		 * retriable.  Network I/O also respects this through the
2701 		 * guarantees of TCP and/or the internal retries of NFS.
2702 		 * ENOMEM might be transient, but we also have no way of
2703 		 * knowing when its ok to retry/reschedule.  In general,
2704 		 * this entire case should be made obsolete through better
2705 		 * error handling/recovery and resource scheduling.
2706 		 *
2707 		 * Do this also for buffers that failed with ENXIO, but have
2708 		 * non-empty dependencies - the soft updates code might need
2709 		 * to access the buffer to untangle them.
2710 		 *
2711 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2712 		 */
2713 		bp->b_ioflags &= ~BIO_ERROR;
2714 		bdirty(bp);
2715 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2716 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2717 		/*
2718 		 * Either a failed read I/O, or we were asked to free or not
2719 		 * cache the buffer, or we failed to write to a device that's
2720 		 * no longer present.
2721 		 */
2722 		bp->b_flags |= B_INVAL;
2723 		if (!LIST_EMPTY(&bp->b_dep))
2724 			buf_deallocate(bp);
2725 		if (bp->b_flags & B_DELWRI)
2726 			bdirtysub(bp);
2727 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2728 		if ((bp->b_flags & B_VMIO) == 0) {
2729 			allocbuf(bp, 0);
2730 			if (bp->b_vp)
2731 				brelvp(bp);
2732 		}
2733 	}
2734 
2735 	/*
2736 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2737 	 * is called with B_DELWRI set, the underlying pages may wind up
2738 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2739 	 * because pages associated with a B_DELWRI bp are marked clean.
2740 	 *
2741 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2742 	 * if B_DELWRI is set.
2743 	 */
2744 	if (bp->b_flags & B_DELWRI)
2745 		bp->b_flags &= ~B_RELBUF;
2746 
2747 	/*
2748 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2749 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2750 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2751 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2752 	 *
2753 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2754 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2755 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2756 	 *
2757 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2758 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2759 	 * the commit state and we cannot afford to lose the buffer. If the
2760 	 * buffer has a background write in progress, we need to keep it
2761 	 * around to prevent it from being reconstituted and starting a second
2762 	 * background write.
2763 	 */
2764 
2765 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2766 
2767 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2768 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2769 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2770 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2771 		vfs_vmio_invalidate(bp);
2772 		allocbuf(bp, 0);
2773 	}
2774 
2775 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2776 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2777 		allocbuf(bp, 0);
2778 		bp->b_flags &= ~B_NOREUSE;
2779 		if (bp->b_vp != NULL)
2780 			brelvp(bp);
2781 	}
2782 
2783 	/*
2784 	 * If the buffer has junk contents signal it and eventually
2785 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2786 	 * doesn't find it.
2787 	 */
2788 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2789 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2790 		bp->b_flags |= B_INVAL;
2791 	if (bp->b_flags & B_INVAL) {
2792 		if (bp->b_flags & B_DELWRI)
2793 			bundirty(bp);
2794 		if (bp->b_vp)
2795 			brelvp(bp);
2796 	}
2797 
2798 	buf_track(bp, __func__);
2799 
2800 	/* buffers with no memory */
2801 	if (bp->b_bufsize == 0) {
2802 		buf_free(bp);
2803 		return;
2804 	}
2805 	/* buffers with junk contents */
2806 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2807 	    (bp->b_ioflags & BIO_ERROR)) {
2808 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2809 		if (bp->b_vflags & BV_BKGRDINPROG)
2810 			panic("losing buffer 2");
2811 		qindex = QUEUE_CLEAN;
2812 		bp->b_flags |= B_AGE;
2813 	/* remaining buffers */
2814 	} else if (bp->b_flags & B_DELWRI)
2815 		qindex = QUEUE_DIRTY;
2816 	else
2817 		qindex = QUEUE_CLEAN;
2818 
2819 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2820 		panic("brelse: not dirty");
2821 
2822 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2823 	bp->b_xflags &= ~(BX_CVTENXIO);
2824 	/* binsfree unlocks bp. */
2825 	binsfree(bp, qindex);
2826 }
2827 
2828 /*
2829  * Release a buffer back to the appropriate queue but do not try to free
2830  * it.  The buffer is expected to be used again soon.
2831  *
2832  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2833  * biodone() to requeue an async I/O on completion.  It is also used when
2834  * known good buffers need to be requeued but we think we may need the data
2835  * again soon.
2836  *
2837  * XXX we should be able to leave the B_RELBUF hint set on completion.
2838  */
2839 void
2840 bqrelse(struct buf *bp)
2841 {
2842 	int qindex;
2843 
2844 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2845 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2846 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2847 
2848 	qindex = QUEUE_NONE;
2849 	if (BUF_LOCKRECURSED(bp)) {
2850 		/* do not release to free list */
2851 		BUF_UNLOCK(bp);
2852 		return;
2853 	}
2854 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2855 	bp->b_xflags &= ~(BX_CVTENXIO);
2856 
2857 	if (LIST_EMPTY(&bp->b_dep)) {
2858 		bp->b_flags &= ~B_IOSTARTED;
2859 	} else {
2860 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2861 		    ("bqrelse: SU io not finished bp %p", bp));
2862 	}
2863 
2864 	if (bp->b_flags & B_MANAGED) {
2865 		if (bp->b_flags & B_REMFREE)
2866 			bremfreef(bp);
2867 		goto out;
2868 	}
2869 
2870 	/* buffers with stale but valid contents */
2871 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2872 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2873 		BO_LOCK(bp->b_bufobj);
2874 		bp->b_vflags &= ~BV_BKGRDERR;
2875 		BO_UNLOCK(bp->b_bufobj);
2876 		qindex = QUEUE_DIRTY;
2877 	} else {
2878 		if ((bp->b_flags & B_DELWRI) == 0 &&
2879 		    (bp->b_xflags & BX_VNDIRTY))
2880 			panic("bqrelse: not dirty");
2881 		if ((bp->b_flags & B_NOREUSE) != 0) {
2882 			brelse(bp);
2883 			return;
2884 		}
2885 		qindex = QUEUE_CLEAN;
2886 	}
2887 	buf_track(bp, __func__);
2888 	/* binsfree unlocks bp. */
2889 	binsfree(bp, qindex);
2890 	return;
2891 
2892 out:
2893 	buf_track(bp, __func__);
2894 	/* unlock */
2895 	BUF_UNLOCK(bp);
2896 }
2897 
2898 /*
2899  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2900  * restore bogus pages.
2901  */
2902 static void
2903 vfs_vmio_iodone(struct buf *bp)
2904 {
2905 	vm_ooffset_t foff;
2906 	vm_page_t m;
2907 	vm_object_t obj;
2908 	struct vnode *vp __unused;
2909 	int i, iosize, resid;
2910 	bool bogus;
2911 
2912 	obj = bp->b_bufobj->bo_object;
2913 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2914 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2915 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2916 
2917 	vp = bp->b_vp;
2918 	VNPASS(vp->v_holdcnt > 0, vp);
2919 	VNPASS(vp->v_object != NULL, vp);
2920 
2921 	foff = bp->b_offset;
2922 	KASSERT(bp->b_offset != NOOFFSET,
2923 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2924 
2925 	bogus = false;
2926 	iosize = bp->b_bcount - bp->b_resid;
2927 	for (i = 0; i < bp->b_npages; i++) {
2928 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2929 		if (resid > iosize)
2930 			resid = iosize;
2931 
2932 		/*
2933 		 * cleanup bogus pages, restoring the originals
2934 		 */
2935 		m = bp->b_pages[i];
2936 		if (m == bogus_page) {
2937 			bogus = true;
2938 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2939 			if (m == NULL)
2940 				panic("biodone: page disappeared!");
2941 			bp->b_pages[i] = m;
2942 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2943 			/*
2944 			 * In the write case, the valid and clean bits are
2945 			 * already changed correctly ( see bdwrite() ), so we
2946 			 * only need to do this here in the read case.
2947 			 */
2948 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2949 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2950 			    "has unexpected dirty bits", m));
2951 			vfs_page_set_valid(bp, foff, m);
2952 		}
2953 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2954 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2955 		    (intmax_t)foff, (uintmax_t)m->pindex));
2956 
2957 		vm_page_sunbusy(m);
2958 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2959 		iosize -= resid;
2960 	}
2961 	vm_object_pip_wakeupn(obj, bp->b_npages);
2962 	if (bogus && buf_mapped(bp)) {
2963 		BUF_CHECK_MAPPED(bp);
2964 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2965 		    bp->b_pages, bp->b_npages);
2966 	}
2967 }
2968 
2969 /*
2970  * Perform page invalidation when a buffer is released.  The fully invalid
2971  * pages will be reclaimed later in vfs_vmio_truncate().
2972  */
2973 static void
2974 vfs_vmio_invalidate(struct buf *bp)
2975 {
2976 	vm_object_t obj;
2977 	vm_page_t m;
2978 	int flags, i, resid, poffset, presid;
2979 
2980 	if (buf_mapped(bp)) {
2981 		BUF_CHECK_MAPPED(bp);
2982 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2983 	} else
2984 		BUF_CHECK_UNMAPPED(bp);
2985 	/*
2986 	 * Get the base offset and length of the buffer.  Note that
2987 	 * in the VMIO case if the buffer block size is not
2988 	 * page-aligned then b_data pointer may not be page-aligned.
2989 	 * But our b_pages[] array *IS* page aligned.
2990 	 *
2991 	 * block sizes less then DEV_BSIZE (usually 512) are not
2992 	 * supported due to the page granularity bits (m->valid,
2993 	 * m->dirty, etc...).
2994 	 *
2995 	 * See man buf(9) for more information
2996 	 */
2997 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
2998 	obj = bp->b_bufobj->bo_object;
2999 	resid = bp->b_bufsize;
3000 	poffset = bp->b_offset & PAGE_MASK;
3001 	VM_OBJECT_WLOCK(obj);
3002 	for (i = 0; i < bp->b_npages; i++) {
3003 		m = bp->b_pages[i];
3004 		if (m == bogus_page)
3005 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
3006 		bp->b_pages[i] = NULL;
3007 
3008 		presid = resid > (PAGE_SIZE - poffset) ?
3009 		    (PAGE_SIZE - poffset) : resid;
3010 		KASSERT(presid >= 0, ("brelse: extra page"));
3011 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3012 		if (pmap_page_wired_mappings(m) == 0)
3013 			vm_page_set_invalid(m, poffset, presid);
3014 		vm_page_sunbusy(m);
3015 		vm_page_release_locked(m, flags);
3016 		resid -= presid;
3017 		poffset = 0;
3018 	}
3019 	VM_OBJECT_WUNLOCK(obj);
3020 	bp->b_npages = 0;
3021 }
3022 
3023 /*
3024  * Page-granular truncation of an existing VMIO buffer.
3025  */
3026 static void
3027 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3028 {
3029 	vm_object_t obj;
3030 	vm_page_t m;
3031 	int flags, i;
3032 
3033 	if (bp->b_npages == desiredpages)
3034 		return;
3035 
3036 	if (buf_mapped(bp)) {
3037 		BUF_CHECK_MAPPED(bp);
3038 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3039 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3040 	} else
3041 		BUF_CHECK_UNMAPPED(bp);
3042 
3043 	/*
3044 	 * The object lock is needed only if we will attempt to free pages.
3045 	 */
3046 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3047 	if ((bp->b_flags & B_DIRECT) != 0) {
3048 		flags |= VPR_TRYFREE;
3049 		obj = bp->b_bufobj->bo_object;
3050 		VM_OBJECT_WLOCK(obj);
3051 	} else {
3052 		obj = NULL;
3053 	}
3054 	for (i = desiredpages; i < bp->b_npages; i++) {
3055 		m = bp->b_pages[i];
3056 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3057 		bp->b_pages[i] = NULL;
3058 		if (obj != NULL)
3059 			vm_page_release_locked(m, flags);
3060 		else
3061 			vm_page_release(m, flags);
3062 	}
3063 	if (obj != NULL)
3064 		VM_OBJECT_WUNLOCK(obj);
3065 	bp->b_npages = desiredpages;
3066 }
3067 
3068 /*
3069  * Byte granular extension of VMIO buffers.
3070  */
3071 static void
3072 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3073 {
3074 	/*
3075 	 * We are growing the buffer, possibly in a
3076 	 * byte-granular fashion.
3077 	 */
3078 	vm_object_t obj;
3079 	vm_offset_t toff;
3080 	vm_offset_t tinc;
3081 	vm_page_t m;
3082 
3083 	/*
3084 	 * Step 1, bring in the VM pages from the object, allocating
3085 	 * them if necessary.  We must clear B_CACHE if these pages
3086 	 * are not valid for the range covered by the buffer.
3087 	 */
3088 	obj = bp->b_bufobj->bo_object;
3089 	if (bp->b_npages < desiredpages) {
3090 		KASSERT(desiredpages <= atop(maxbcachebuf),
3091 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3092 		    bp, desiredpages, maxbcachebuf));
3093 
3094 		/*
3095 		 * We must allocate system pages since blocking
3096 		 * here could interfere with paging I/O, no
3097 		 * matter which process we are.
3098 		 *
3099 		 * Only exclusive busy can be tested here.
3100 		 * Blocking on shared busy might lead to
3101 		 * deadlocks once allocbuf() is called after
3102 		 * pages are vfs_busy_pages().
3103 		 */
3104 		(void)vm_page_grab_pages_unlocked(obj,
3105 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3106 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3107 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3108 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3109 		bp->b_npages = desiredpages;
3110 	}
3111 
3112 	/*
3113 	 * Step 2.  We've loaded the pages into the buffer,
3114 	 * we have to figure out if we can still have B_CACHE
3115 	 * set.  Note that B_CACHE is set according to the
3116 	 * byte-granular range ( bcount and size ), not the
3117 	 * aligned range ( newbsize ).
3118 	 *
3119 	 * The VM test is against m->valid, which is DEV_BSIZE
3120 	 * aligned.  Needless to say, the validity of the data
3121 	 * needs to also be DEV_BSIZE aligned.  Note that this
3122 	 * fails with NFS if the server or some other client
3123 	 * extends the file's EOF.  If our buffer is resized,
3124 	 * B_CACHE may remain set! XXX
3125 	 */
3126 	toff = bp->b_bcount;
3127 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3128 	while ((bp->b_flags & B_CACHE) && toff < size) {
3129 		vm_pindex_t pi;
3130 
3131 		if (tinc > (size - toff))
3132 			tinc = size - toff;
3133 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3134 		m = bp->b_pages[pi];
3135 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3136 		toff += tinc;
3137 		tinc = PAGE_SIZE;
3138 	}
3139 
3140 	/*
3141 	 * Step 3, fixup the KVA pmap.
3142 	 */
3143 	if (buf_mapped(bp))
3144 		bpmap_qenter(bp);
3145 	else
3146 		BUF_CHECK_UNMAPPED(bp);
3147 }
3148 
3149 /*
3150  * Check to see if a block at a particular lbn is available for a clustered
3151  * write.
3152  */
3153 static int
3154 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3155 {
3156 	struct buf *bpa;
3157 	int match;
3158 
3159 	match = 0;
3160 
3161 	/* If the buf isn't in core skip it */
3162 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3163 		return (0);
3164 
3165 	/* If the buf is busy we don't want to wait for it */
3166 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3167 		return (0);
3168 
3169 	/* Only cluster with valid clusterable delayed write buffers */
3170 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3171 	    (B_DELWRI | B_CLUSTEROK))
3172 		goto done;
3173 
3174 	if (bpa->b_bufsize != size)
3175 		goto done;
3176 
3177 	/*
3178 	 * Check to see if it is in the expected place on disk and that the
3179 	 * block has been mapped.
3180 	 */
3181 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3182 		match = 1;
3183 done:
3184 	BUF_UNLOCK(bpa);
3185 	return (match);
3186 }
3187 
3188 /*
3189  *	vfs_bio_awrite:
3190  *
3191  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3192  *	This is much better then the old way of writing only one buffer at
3193  *	a time.  Note that we may not be presented with the buffers in the
3194  *	correct order, so we search for the cluster in both directions.
3195  */
3196 int
3197 vfs_bio_awrite(struct buf *bp)
3198 {
3199 	struct bufobj *bo;
3200 	int i;
3201 	int j;
3202 	daddr_t lblkno = bp->b_lblkno;
3203 	struct vnode *vp = bp->b_vp;
3204 	int ncl;
3205 	int nwritten;
3206 	int size;
3207 	int maxcl;
3208 	int gbflags;
3209 
3210 	bo = &vp->v_bufobj;
3211 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3212 	/*
3213 	 * right now we support clustered writing only to regular files.  If
3214 	 * we find a clusterable block we could be in the middle of a cluster
3215 	 * rather then at the beginning.
3216 	 */
3217 	if ((vp->v_type == VREG) &&
3218 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3219 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3220 		size = vp->v_mount->mnt_stat.f_iosize;
3221 		maxcl = maxphys / size;
3222 
3223 		BO_RLOCK(bo);
3224 		for (i = 1; i < maxcl; i++)
3225 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3226 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3227 				break;
3228 
3229 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3230 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3231 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3232 				break;
3233 		BO_RUNLOCK(bo);
3234 		--j;
3235 		ncl = i + j;
3236 		/*
3237 		 * this is a possible cluster write
3238 		 */
3239 		if (ncl != 1) {
3240 			BUF_UNLOCK(bp);
3241 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3242 			    gbflags);
3243 			return (nwritten);
3244 		}
3245 	}
3246 	bremfree(bp);
3247 	bp->b_flags |= B_ASYNC;
3248 	/*
3249 	 * default (old) behavior, writing out only one block
3250 	 *
3251 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3252 	 */
3253 	nwritten = bp->b_bufsize;
3254 	(void) bwrite(bp);
3255 
3256 	return (nwritten);
3257 }
3258 
3259 /*
3260  *	getnewbuf_kva:
3261  *
3262  *	Allocate KVA for an empty buf header according to gbflags.
3263  */
3264 static int
3265 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3266 {
3267 
3268 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3269 		/*
3270 		 * In order to keep fragmentation sane we only allocate kva
3271 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3272 		 */
3273 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3274 
3275 		if (maxsize != bp->b_kvasize &&
3276 		    bufkva_alloc(bp, maxsize, gbflags))
3277 			return (ENOSPC);
3278 	}
3279 	return (0);
3280 }
3281 
3282 /*
3283  *	getnewbuf:
3284  *
3285  *	Find and initialize a new buffer header, freeing up existing buffers
3286  *	in the bufqueues as necessary.  The new buffer is returned locked.
3287  *
3288  *	We block if:
3289  *		We have insufficient buffer headers
3290  *		We have insufficient buffer space
3291  *		buffer_arena is too fragmented ( space reservation fails )
3292  *		If we have to flush dirty buffers ( but we try to avoid this )
3293  *
3294  *	The caller is responsible for releasing the reserved bufspace after
3295  *	allocbuf() is called.
3296  */
3297 static struct buf *
3298 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3299 {
3300 	struct bufdomain *bd;
3301 	struct buf *bp;
3302 	bool metadata, reserved;
3303 
3304 	bp = NULL;
3305 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3306 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3307 	if (!unmapped_buf_allowed)
3308 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3309 
3310 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3311 	    vp->v_type == VCHR)
3312 		metadata = true;
3313 	else
3314 		metadata = false;
3315 	if (vp == NULL)
3316 		bd = &bdomain[0];
3317 	else
3318 		bd = &bdomain[vp->v_bufobj.bo_domain];
3319 
3320 	counter_u64_add(getnewbufcalls, 1);
3321 	reserved = false;
3322 	do {
3323 		if (reserved == false &&
3324 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3325 			counter_u64_add(getnewbufrestarts, 1);
3326 			continue;
3327 		}
3328 		reserved = true;
3329 		if ((bp = buf_alloc(bd)) == NULL) {
3330 			counter_u64_add(getnewbufrestarts, 1);
3331 			continue;
3332 		}
3333 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3334 			return (bp);
3335 		break;
3336 	} while (buf_recycle(bd, false) == 0);
3337 
3338 	if (reserved)
3339 		bufspace_release(bd, maxsize);
3340 	if (bp != NULL) {
3341 		bp->b_flags |= B_INVAL;
3342 		brelse(bp);
3343 	}
3344 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3345 
3346 	return (NULL);
3347 }
3348 
3349 /*
3350  *	buf_daemon:
3351  *
3352  *	buffer flushing daemon.  Buffers are normally flushed by the
3353  *	update daemon but if it cannot keep up this process starts to
3354  *	take the load in an attempt to prevent getnewbuf() from blocking.
3355  */
3356 static struct kproc_desc buf_kp = {
3357 	"bufdaemon",
3358 	buf_daemon,
3359 	&bufdaemonproc
3360 };
3361 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3362 
3363 static int
3364 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3365 {
3366 	int flushed;
3367 
3368 	flushed = flushbufqueues(vp, bd, target, 0);
3369 	if (flushed == 0) {
3370 		/*
3371 		 * Could not find any buffers without rollback
3372 		 * dependencies, so just write the first one
3373 		 * in the hopes of eventually making progress.
3374 		 */
3375 		if (vp != NULL && target > 2)
3376 			target /= 2;
3377 		flushbufqueues(vp, bd, target, 1);
3378 	}
3379 	return (flushed);
3380 }
3381 
3382 static void
3383 buf_daemon()
3384 {
3385 	struct bufdomain *bd;
3386 	int speedupreq;
3387 	int lodirty;
3388 	int i;
3389 
3390 	/*
3391 	 * This process needs to be suspended prior to shutdown sync.
3392 	 */
3393 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
3394 	    SHUTDOWN_PRI_LAST + 100);
3395 
3396 	/*
3397 	 * Start the buf clean daemons as children threads.
3398 	 */
3399 	for (i = 0 ; i < buf_domains; i++) {
3400 		int error;
3401 
3402 		error = kthread_add((void (*)(void *))bufspace_daemon,
3403 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3404 		if (error)
3405 			panic("error %d spawning bufspace daemon", error);
3406 	}
3407 
3408 	/*
3409 	 * This process is allowed to take the buffer cache to the limit
3410 	 */
3411 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3412 	mtx_lock(&bdlock);
3413 	for (;;) {
3414 		bd_request = 0;
3415 		mtx_unlock(&bdlock);
3416 
3417 		kthread_suspend_check();
3418 
3419 		/*
3420 		 * Save speedupreq for this pass and reset to capture new
3421 		 * requests.
3422 		 */
3423 		speedupreq = bd_speedupreq;
3424 		bd_speedupreq = 0;
3425 
3426 		/*
3427 		 * Flush each domain sequentially according to its level and
3428 		 * the speedup request.
3429 		 */
3430 		for (i = 0; i < buf_domains; i++) {
3431 			bd = &bdomain[i];
3432 			if (speedupreq)
3433 				lodirty = bd->bd_numdirtybuffers / 2;
3434 			else
3435 				lodirty = bd->bd_lodirtybuffers;
3436 			while (bd->bd_numdirtybuffers > lodirty) {
3437 				if (buf_flush(NULL, bd,
3438 				    bd->bd_numdirtybuffers - lodirty) == 0)
3439 					break;
3440 				kern_yield(PRI_USER);
3441 			}
3442 		}
3443 
3444 		/*
3445 		 * Only clear bd_request if we have reached our low water
3446 		 * mark.  The buf_daemon normally waits 1 second and
3447 		 * then incrementally flushes any dirty buffers that have
3448 		 * built up, within reason.
3449 		 *
3450 		 * If we were unable to hit our low water mark and couldn't
3451 		 * find any flushable buffers, we sleep for a short period
3452 		 * to avoid endless loops on unlockable buffers.
3453 		 */
3454 		mtx_lock(&bdlock);
3455 		if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3456 			/*
3457 			 * We reached our low water mark, reset the
3458 			 * request and sleep until we are needed again.
3459 			 * The sleep is just so the suspend code works.
3460 			 */
3461 			bd_request = 0;
3462 			/*
3463 			 * Do an extra wakeup in case dirty threshold
3464 			 * changed via sysctl and the explicit transition
3465 			 * out of shortfall was missed.
3466 			 */
3467 			bdirtywakeup();
3468 			if (runningbufspace <= lorunningspace)
3469 				runningwakeup();
3470 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3471 		} else {
3472 			/*
3473 			 * We couldn't find any flushable dirty buffers but
3474 			 * still have too many dirty buffers, we
3475 			 * have to sleep and try again.  (rare)
3476 			 */
3477 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3478 		}
3479 	}
3480 }
3481 
3482 /*
3483  *	flushbufqueues:
3484  *
3485  *	Try to flush a buffer in the dirty queue.  We must be careful to
3486  *	free up B_INVAL buffers instead of write them, which NFS is
3487  *	particularly sensitive to.
3488  */
3489 static int flushwithdeps = 0;
3490 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3491     &flushwithdeps, 0,
3492     "Number of buffers flushed with dependecies that require rollbacks");
3493 
3494 static int
3495 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3496     int flushdeps)
3497 {
3498 	struct bufqueue *bq;
3499 	struct buf *sentinel;
3500 	struct vnode *vp;
3501 	struct mount *mp;
3502 	struct buf *bp;
3503 	int hasdeps;
3504 	int flushed;
3505 	int error;
3506 	bool unlock;
3507 
3508 	flushed = 0;
3509 	bq = &bd->bd_dirtyq;
3510 	bp = NULL;
3511 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3512 	sentinel->b_qindex = QUEUE_SENTINEL;
3513 	BQ_LOCK(bq);
3514 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3515 	BQ_UNLOCK(bq);
3516 	while (flushed != target) {
3517 		maybe_yield();
3518 		BQ_LOCK(bq);
3519 		bp = TAILQ_NEXT(sentinel, b_freelist);
3520 		if (bp != NULL) {
3521 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3522 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3523 			    b_freelist);
3524 		} else {
3525 			BQ_UNLOCK(bq);
3526 			break;
3527 		}
3528 		/*
3529 		 * Skip sentinels inserted by other invocations of the
3530 		 * flushbufqueues(), taking care to not reorder them.
3531 		 *
3532 		 * Only flush the buffers that belong to the
3533 		 * vnode locked by the curthread.
3534 		 */
3535 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3536 		    bp->b_vp != lvp)) {
3537 			BQ_UNLOCK(bq);
3538 			continue;
3539 		}
3540 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3541 		BQ_UNLOCK(bq);
3542 		if (error != 0)
3543 			continue;
3544 
3545 		/*
3546 		 * BKGRDINPROG can only be set with the buf and bufobj
3547 		 * locks both held.  We tolerate a race to clear it here.
3548 		 */
3549 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3550 		    (bp->b_flags & B_DELWRI) == 0) {
3551 			BUF_UNLOCK(bp);
3552 			continue;
3553 		}
3554 		if (bp->b_flags & B_INVAL) {
3555 			bremfreef(bp);
3556 			brelse(bp);
3557 			flushed++;
3558 			continue;
3559 		}
3560 
3561 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3562 			if (flushdeps == 0) {
3563 				BUF_UNLOCK(bp);
3564 				continue;
3565 			}
3566 			hasdeps = 1;
3567 		} else
3568 			hasdeps = 0;
3569 		/*
3570 		 * We must hold the lock on a vnode before writing
3571 		 * one of its buffers. Otherwise we may confuse, or
3572 		 * in the case of a snapshot vnode, deadlock the
3573 		 * system.
3574 		 *
3575 		 * The lock order here is the reverse of the normal
3576 		 * of vnode followed by buf lock.  This is ok because
3577 		 * the NOWAIT will prevent deadlock.
3578 		 */
3579 		vp = bp->b_vp;
3580 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3581 			BUF_UNLOCK(bp);
3582 			continue;
3583 		}
3584 		if (lvp == NULL) {
3585 			unlock = true;
3586 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3587 		} else {
3588 			ASSERT_VOP_LOCKED(vp, "getbuf");
3589 			unlock = false;
3590 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3591 			    vn_lock(vp, LK_TRYUPGRADE);
3592 		}
3593 		if (error == 0) {
3594 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3595 			    bp, bp->b_vp, bp->b_flags);
3596 			if (curproc == bufdaemonproc) {
3597 				vfs_bio_awrite(bp);
3598 			} else {
3599 				bremfree(bp);
3600 				bwrite(bp);
3601 				counter_u64_add(notbufdflushes, 1);
3602 			}
3603 			vn_finished_write(mp);
3604 			if (unlock)
3605 				VOP_UNLOCK(vp);
3606 			flushwithdeps += hasdeps;
3607 			flushed++;
3608 
3609 			/*
3610 			 * Sleeping on runningbufspace while holding
3611 			 * vnode lock leads to deadlock.
3612 			 */
3613 			if (curproc == bufdaemonproc &&
3614 			    runningbufspace > hirunningspace)
3615 				waitrunningbufspace();
3616 			continue;
3617 		}
3618 		vn_finished_write(mp);
3619 		BUF_UNLOCK(bp);
3620 	}
3621 	BQ_LOCK(bq);
3622 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3623 	BQ_UNLOCK(bq);
3624 	free(sentinel, M_TEMP);
3625 	return (flushed);
3626 }
3627 
3628 /*
3629  * Check to see if a block is currently memory resident.
3630  */
3631 struct buf *
3632 incore(struct bufobj *bo, daddr_t blkno)
3633 {
3634 	return (gbincore_unlocked(bo, blkno));
3635 }
3636 
3637 /*
3638  * Returns true if no I/O is needed to access the
3639  * associated VM object.  This is like incore except
3640  * it also hunts around in the VM system for the data.
3641  */
3642 bool
3643 inmem(struct vnode * vp, daddr_t blkno)
3644 {
3645 	vm_object_t obj;
3646 	vm_offset_t toff, tinc, size;
3647 	vm_page_t m, n;
3648 	vm_ooffset_t off;
3649 	int valid;
3650 
3651 	ASSERT_VOP_LOCKED(vp, "inmem");
3652 
3653 	if (incore(&vp->v_bufobj, blkno))
3654 		return (true);
3655 	if (vp->v_mount == NULL)
3656 		return (false);
3657 	obj = vp->v_object;
3658 	if (obj == NULL)
3659 		return (false);
3660 
3661 	size = PAGE_SIZE;
3662 	if (size > vp->v_mount->mnt_stat.f_iosize)
3663 		size = vp->v_mount->mnt_stat.f_iosize;
3664 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3665 
3666 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3667 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3668 recheck:
3669 		if (m == NULL)
3670 			return (false);
3671 
3672 		tinc = size;
3673 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3674 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3675 		/*
3676 		 * Consider page validity only if page mapping didn't change
3677 		 * during the check.
3678 		 */
3679 		valid = vm_page_is_valid(m,
3680 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3681 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3682 		if (m != n) {
3683 			m = n;
3684 			goto recheck;
3685 		}
3686 		if (!valid)
3687 			return (false);
3688 	}
3689 	return (true);
3690 }
3691 
3692 /*
3693  * Set the dirty range for a buffer based on the status of the dirty
3694  * bits in the pages comprising the buffer.  The range is limited
3695  * to the size of the buffer.
3696  *
3697  * Tell the VM system that the pages associated with this buffer
3698  * are clean.  This is used for delayed writes where the data is
3699  * going to go to disk eventually without additional VM intevention.
3700  *
3701  * Note that while we only really need to clean through to b_bcount, we
3702  * just go ahead and clean through to b_bufsize.
3703  */
3704 static void
3705 vfs_clean_pages_dirty_buf(struct buf *bp)
3706 {
3707 	vm_ooffset_t foff, noff, eoff;
3708 	vm_page_t m;
3709 	int i;
3710 
3711 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3712 		return;
3713 
3714 	foff = bp->b_offset;
3715 	KASSERT(bp->b_offset != NOOFFSET,
3716 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3717 
3718 	vfs_busy_pages_acquire(bp);
3719 	vfs_setdirty_range(bp);
3720 	for (i = 0; i < bp->b_npages; i++) {
3721 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3722 		eoff = noff;
3723 		if (eoff > bp->b_offset + bp->b_bufsize)
3724 			eoff = bp->b_offset + bp->b_bufsize;
3725 		m = bp->b_pages[i];
3726 		vfs_page_set_validclean(bp, foff, m);
3727 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3728 		foff = noff;
3729 	}
3730 	vfs_busy_pages_release(bp);
3731 }
3732 
3733 static void
3734 vfs_setdirty_range(struct buf *bp)
3735 {
3736 	vm_offset_t boffset;
3737 	vm_offset_t eoffset;
3738 	int i;
3739 
3740 	/*
3741 	 * test the pages to see if they have been modified directly
3742 	 * by users through the VM system.
3743 	 */
3744 	for (i = 0; i < bp->b_npages; i++)
3745 		vm_page_test_dirty(bp->b_pages[i]);
3746 
3747 	/*
3748 	 * Calculate the encompassing dirty range, boffset and eoffset,
3749 	 * (eoffset - boffset) bytes.
3750 	 */
3751 
3752 	for (i = 0; i < bp->b_npages; i++) {
3753 		if (bp->b_pages[i]->dirty)
3754 			break;
3755 	}
3756 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3757 
3758 	for (i = bp->b_npages - 1; i >= 0; --i) {
3759 		if (bp->b_pages[i]->dirty) {
3760 			break;
3761 		}
3762 	}
3763 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3764 
3765 	/*
3766 	 * Fit it to the buffer.
3767 	 */
3768 
3769 	if (eoffset > bp->b_bcount)
3770 		eoffset = bp->b_bcount;
3771 
3772 	/*
3773 	 * If we have a good dirty range, merge with the existing
3774 	 * dirty range.
3775 	 */
3776 
3777 	if (boffset < eoffset) {
3778 		if (bp->b_dirtyoff > boffset)
3779 			bp->b_dirtyoff = boffset;
3780 		if (bp->b_dirtyend < eoffset)
3781 			bp->b_dirtyend = eoffset;
3782 	}
3783 }
3784 
3785 /*
3786  * Allocate the KVA mapping for an existing buffer.
3787  * If an unmapped buffer is provided but a mapped buffer is requested, take
3788  * also care to properly setup mappings between pages and KVA.
3789  */
3790 static void
3791 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3792 {
3793 	int bsize, maxsize, need_mapping, need_kva;
3794 	off_t offset;
3795 
3796 	need_mapping = bp->b_data == unmapped_buf &&
3797 	    (gbflags & GB_UNMAPPED) == 0;
3798 	need_kva = bp->b_kvabase == unmapped_buf &&
3799 	    bp->b_data == unmapped_buf &&
3800 	    (gbflags & GB_KVAALLOC) != 0;
3801 	if (!need_mapping && !need_kva)
3802 		return;
3803 
3804 	BUF_CHECK_UNMAPPED(bp);
3805 
3806 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3807 		/*
3808 		 * Buffer is not mapped, but the KVA was already
3809 		 * reserved at the time of the instantiation.  Use the
3810 		 * allocated space.
3811 		 */
3812 		goto has_addr;
3813 	}
3814 
3815 	/*
3816 	 * Calculate the amount of the address space we would reserve
3817 	 * if the buffer was mapped.
3818 	 */
3819 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3820 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3821 	offset = blkno * bsize;
3822 	maxsize = size + (offset & PAGE_MASK);
3823 	maxsize = imax(maxsize, bsize);
3824 
3825 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3826 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3827 			/*
3828 			 * XXXKIB: defragmentation cannot
3829 			 * succeed, not sure what else to do.
3830 			 */
3831 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3832 		}
3833 		counter_u64_add(mappingrestarts, 1);
3834 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3835 	}
3836 has_addr:
3837 	if (need_mapping) {
3838 		/* b_offset is handled by bpmap_qenter. */
3839 		bp->b_data = bp->b_kvabase;
3840 		BUF_CHECK_MAPPED(bp);
3841 		bpmap_qenter(bp);
3842 	}
3843 }
3844 
3845 struct buf *
3846 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3847     int flags)
3848 {
3849 	struct buf *bp;
3850 	int error;
3851 
3852 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3853 	if (error != 0)
3854 		return (NULL);
3855 	return (bp);
3856 }
3857 
3858 /*
3859  *	getblkx:
3860  *
3861  *	Get a block given a specified block and offset into a file/device.
3862  *	The buffers B_DONE bit will be cleared on return, making it almost
3863  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3864  *	return.  The caller should clear B_INVAL prior to initiating a
3865  *	READ.
3866  *
3867  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3868  *	an existing buffer.
3869  *
3870  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3871  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3872  *	and then cleared based on the backing VM.  If the previous buffer is
3873  *	non-0-sized but invalid, B_CACHE will be cleared.
3874  *
3875  *	If getblk() must create a new buffer, the new buffer is returned with
3876  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3877  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3878  *	backing VM.
3879  *
3880  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3881  *	B_CACHE bit is clear.
3882  *
3883  *	What this means, basically, is that the caller should use B_CACHE to
3884  *	determine whether the buffer is fully valid or not and should clear
3885  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3886  *	the buffer by loading its data area with something, the caller needs
3887  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3888  *	the caller should set B_CACHE ( as an optimization ), else the caller
3889  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3890  *	a write attempt or if it was a successful read.  If the caller
3891  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3892  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3893  *
3894  *	The blkno parameter is the logical block being requested. Normally
3895  *	the mapping of logical block number to disk block address is done
3896  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3897  *	disk block address can be passed using the dblkno parameter. If the
3898  *	disk block address is not known, then the same value should be passed
3899  *	for blkno and dblkno.
3900  */
3901 int
3902 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3903     int slptimeo, int flags, struct buf **bpp)
3904 {
3905 	struct buf *bp;
3906 	struct bufobj *bo;
3907 	daddr_t d_blkno;
3908 	int bsize, error, maxsize, vmio;
3909 	off_t offset;
3910 
3911 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3912 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3913 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3914 	ASSERT_VOP_LOCKED(vp, "getblk");
3915 	if (size > maxbcachebuf)
3916 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3917 		    maxbcachebuf);
3918 	if (!unmapped_buf_allowed)
3919 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3920 
3921 	bo = &vp->v_bufobj;
3922 	d_blkno = dblkno;
3923 
3924 	/* Attempt lockless lookup first. */
3925 	bp = gbincore_unlocked(bo, blkno);
3926 	if (bp == NULL) {
3927 		/*
3928 		 * With GB_NOCREAT we must be sure about not finding the buffer
3929 		 * as it may have been reassigned during unlocked lookup.
3930 		 */
3931 		if ((flags & GB_NOCREAT) != 0)
3932 			goto loop;
3933 		goto newbuf_unlocked;
3934 	}
3935 
3936 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
3937 	    0);
3938 	if (error != 0)
3939 		goto loop;
3940 
3941 	/* Verify buf identify has not changed since lookup. */
3942 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
3943 		goto foundbuf_fastpath;
3944 
3945 	/* It changed, fallback to locked lookup. */
3946 	BUF_UNLOCK_RAW(bp);
3947 
3948 loop:
3949 	BO_RLOCK(bo);
3950 	bp = gbincore(bo, blkno);
3951 	if (bp != NULL) {
3952 		int lockflags;
3953 
3954 		/*
3955 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3956 		 * it must be on a queue.
3957 		 */
3958 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
3959 		    ((flags & GB_LOCK_NOWAIT) ? LK_NOWAIT : LK_SLEEPFAIL);
3960 
3961 		error = BUF_TIMELOCK(bp, lockflags,
3962 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3963 
3964 		/*
3965 		 * If we slept and got the lock we have to restart in case
3966 		 * the buffer changed identities.
3967 		 */
3968 		if (error == ENOLCK)
3969 			goto loop;
3970 		/* We timed out or were interrupted. */
3971 		else if (error != 0)
3972 			return (error);
3973 
3974 foundbuf_fastpath:
3975 		/* If recursed, assume caller knows the rules. */
3976 		if (BUF_LOCKRECURSED(bp))
3977 			goto end;
3978 
3979 		/*
3980 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3981 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3982 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3983 		 * backing VM cache.
3984 		 */
3985 		if (bp->b_flags & B_INVAL)
3986 			bp->b_flags &= ~B_CACHE;
3987 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3988 			bp->b_flags |= B_CACHE;
3989 		if (bp->b_flags & B_MANAGED)
3990 			MPASS(bp->b_qindex == QUEUE_NONE);
3991 		else
3992 			bremfree(bp);
3993 
3994 		/*
3995 		 * check for size inconsistencies for non-VMIO case.
3996 		 */
3997 		if (bp->b_bcount != size) {
3998 			if ((bp->b_flags & B_VMIO) == 0 ||
3999 			    (size > bp->b_kvasize)) {
4000 				if (bp->b_flags & B_DELWRI) {
4001 					bp->b_flags |= B_NOCACHE;
4002 					bwrite(bp);
4003 				} else {
4004 					if (LIST_EMPTY(&bp->b_dep)) {
4005 						bp->b_flags |= B_RELBUF;
4006 						brelse(bp);
4007 					} else {
4008 						bp->b_flags |= B_NOCACHE;
4009 						bwrite(bp);
4010 					}
4011 				}
4012 				goto loop;
4013 			}
4014 		}
4015 
4016 		/*
4017 		 * Handle the case of unmapped buffer which should
4018 		 * become mapped, or the buffer for which KVA
4019 		 * reservation is requested.
4020 		 */
4021 		bp_unmapped_get_kva(bp, blkno, size, flags);
4022 
4023 		/*
4024 		 * If the size is inconsistent in the VMIO case, we can resize
4025 		 * the buffer.  This might lead to B_CACHE getting set or
4026 		 * cleared.  If the size has not changed, B_CACHE remains
4027 		 * unchanged from its previous state.
4028 		 */
4029 		allocbuf(bp, size);
4030 
4031 		KASSERT(bp->b_offset != NOOFFSET,
4032 		    ("getblk: no buffer offset"));
4033 
4034 		/*
4035 		 * A buffer with B_DELWRI set and B_CACHE clear must
4036 		 * be committed before we can return the buffer in
4037 		 * order to prevent the caller from issuing a read
4038 		 * ( due to B_CACHE not being set ) and overwriting
4039 		 * it.
4040 		 *
4041 		 * Most callers, including NFS and FFS, need this to
4042 		 * operate properly either because they assume they
4043 		 * can issue a read if B_CACHE is not set, or because
4044 		 * ( for example ) an uncached B_DELWRI might loop due
4045 		 * to softupdates re-dirtying the buffer.  In the latter
4046 		 * case, B_CACHE is set after the first write completes,
4047 		 * preventing further loops.
4048 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
4049 		 * above while extending the buffer, we cannot allow the
4050 		 * buffer to remain with B_CACHE set after the write
4051 		 * completes or it will represent a corrupt state.  To
4052 		 * deal with this we set B_NOCACHE to scrap the buffer
4053 		 * after the write.
4054 		 *
4055 		 * We might be able to do something fancy, like setting
4056 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
4057 		 * so the below call doesn't set B_CACHE, but that gets real
4058 		 * confusing.  This is much easier.
4059 		 */
4060 
4061 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4062 			bp->b_flags |= B_NOCACHE;
4063 			bwrite(bp);
4064 			goto loop;
4065 		}
4066 		bp->b_flags &= ~B_DONE;
4067 	} else {
4068 		/*
4069 		 * Buffer is not in-core, create new buffer.  The buffer
4070 		 * returned by getnewbuf() is locked.  Note that the returned
4071 		 * buffer is also considered valid (not marked B_INVAL).
4072 		 */
4073 		BO_RUNLOCK(bo);
4074 newbuf_unlocked:
4075 		/*
4076 		 * If the user does not want us to create the buffer, bail out
4077 		 * here.
4078 		 */
4079 		if (flags & GB_NOCREAT)
4080 			return (EEXIST);
4081 
4082 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4083 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4084 		offset = blkno * bsize;
4085 		vmio = vp->v_object != NULL;
4086 		if (vmio) {
4087 			maxsize = size + (offset & PAGE_MASK);
4088 		} else {
4089 			maxsize = size;
4090 			/* Do not allow non-VMIO notmapped buffers. */
4091 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4092 		}
4093 		maxsize = imax(maxsize, bsize);
4094 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4095 		    !vn_isdisk(vp)) {
4096 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4097 			KASSERT(error != EOPNOTSUPP,
4098 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4099 			    vp));
4100 			if (error != 0)
4101 				return (error);
4102 			if (d_blkno == -1)
4103 				return (EJUSTRETURN);
4104 		}
4105 
4106 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4107 		if (bp == NULL) {
4108 			if (slpflag || slptimeo)
4109 				return (ETIMEDOUT);
4110 			/*
4111 			 * XXX This is here until the sleep path is diagnosed
4112 			 * enough to work under very low memory conditions.
4113 			 *
4114 			 * There's an issue on low memory, 4BSD+non-preempt
4115 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4116 			 * exhaustion occurs without sleeping for buffer
4117 			 * reclaimation.  This just sticks in a loop and
4118 			 * constantly attempts to allocate a buffer, which
4119 			 * hits exhaustion and tries to wakeup bufdaemon.
4120 			 * This never happens because we never yield.
4121 			 *
4122 			 * The real solution is to identify and fix these cases
4123 			 * so we aren't effectively busy-waiting in a loop
4124 			 * until the reclaimation path has cycles to run.
4125 			 */
4126 			kern_yield(PRI_USER);
4127 			goto loop;
4128 		}
4129 
4130 		/*
4131 		 * This code is used to make sure that a buffer is not
4132 		 * created while the getnewbuf routine is blocked.
4133 		 * This can be a problem whether the vnode is locked or not.
4134 		 * If the buffer is created out from under us, we have to
4135 		 * throw away the one we just created.
4136 		 *
4137 		 * Note: this must occur before we associate the buffer
4138 		 * with the vp especially considering limitations in
4139 		 * the splay tree implementation when dealing with duplicate
4140 		 * lblkno's.
4141 		 */
4142 		BO_LOCK(bo);
4143 		if (gbincore(bo, blkno)) {
4144 			BO_UNLOCK(bo);
4145 			bp->b_flags |= B_INVAL;
4146 			bufspace_release(bufdomain(bp), maxsize);
4147 			brelse(bp);
4148 			goto loop;
4149 		}
4150 
4151 		/*
4152 		 * Insert the buffer into the hash, so that it can
4153 		 * be found by incore.
4154 		 */
4155 		bp->b_lblkno = blkno;
4156 		bp->b_blkno = d_blkno;
4157 		bp->b_offset = offset;
4158 		bgetvp(vp, bp);
4159 		BO_UNLOCK(bo);
4160 
4161 		/*
4162 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4163 		 * buffer size starts out as 0, B_CACHE will be set by
4164 		 * allocbuf() for the VMIO case prior to it testing the
4165 		 * backing store for validity.
4166 		 */
4167 
4168 		if (vmio) {
4169 			bp->b_flags |= B_VMIO;
4170 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4171 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4172 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4173 		} else {
4174 			bp->b_flags &= ~B_VMIO;
4175 			KASSERT(bp->b_bufobj->bo_object == NULL,
4176 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4177 			    bp, bp->b_bufobj->bo_object));
4178 			BUF_CHECK_MAPPED(bp);
4179 		}
4180 
4181 		allocbuf(bp, size);
4182 		bufspace_release(bufdomain(bp), maxsize);
4183 		bp->b_flags &= ~B_DONE;
4184 	}
4185 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4186 end:
4187 	buf_track(bp, __func__);
4188 	KASSERT(bp->b_bufobj == bo,
4189 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4190 	*bpp = bp;
4191 	return (0);
4192 }
4193 
4194 /*
4195  * Get an empty, disassociated buffer of given size.  The buffer is initially
4196  * set to B_INVAL.
4197  */
4198 struct buf *
4199 geteblk(int size, int flags)
4200 {
4201 	struct buf *bp;
4202 	int maxsize;
4203 
4204 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4205 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4206 		if ((flags & GB_NOWAIT_BD) &&
4207 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4208 			return (NULL);
4209 	}
4210 	allocbuf(bp, size);
4211 	bufspace_release(bufdomain(bp), maxsize);
4212 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4213 	return (bp);
4214 }
4215 
4216 /*
4217  * Truncate the backing store for a non-vmio buffer.
4218  */
4219 static void
4220 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4221 {
4222 
4223 	if (bp->b_flags & B_MALLOC) {
4224 		/*
4225 		 * malloced buffers are not shrunk
4226 		 */
4227 		if (newbsize == 0) {
4228 			bufmallocadjust(bp, 0);
4229 			free(bp->b_data, M_BIOBUF);
4230 			bp->b_data = bp->b_kvabase;
4231 			bp->b_flags &= ~B_MALLOC;
4232 		}
4233 		return;
4234 	}
4235 	vm_hold_free_pages(bp, newbsize);
4236 	bufspace_adjust(bp, newbsize);
4237 }
4238 
4239 /*
4240  * Extend the backing for a non-VMIO buffer.
4241  */
4242 static void
4243 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4244 {
4245 	caddr_t origbuf;
4246 	int origbufsize;
4247 
4248 	/*
4249 	 * We only use malloced memory on the first allocation.
4250 	 * and revert to page-allocated memory when the buffer
4251 	 * grows.
4252 	 *
4253 	 * There is a potential smp race here that could lead
4254 	 * to bufmallocspace slightly passing the max.  It
4255 	 * is probably extremely rare and not worth worrying
4256 	 * over.
4257 	 */
4258 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4259 	    bufmallocspace < maxbufmallocspace) {
4260 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4261 		bp->b_flags |= B_MALLOC;
4262 		bufmallocadjust(bp, newbsize);
4263 		return;
4264 	}
4265 
4266 	/*
4267 	 * If the buffer is growing on its other-than-first
4268 	 * allocation then we revert to the page-allocation
4269 	 * scheme.
4270 	 */
4271 	origbuf = NULL;
4272 	origbufsize = 0;
4273 	if (bp->b_flags & B_MALLOC) {
4274 		origbuf = bp->b_data;
4275 		origbufsize = bp->b_bufsize;
4276 		bp->b_data = bp->b_kvabase;
4277 		bufmallocadjust(bp, 0);
4278 		bp->b_flags &= ~B_MALLOC;
4279 		newbsize = round_page(newbsize);
4280 	}
4281 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4282 	    (vm_offset_t) bp->b_data + newbsize);
4283 	if (origbuf != NULL) {
4284 		bcopy(origbuf, bp->b_data, origbufsize);
4285 		free(origbuf, M_BIOBUF);
4286 	}
4287 	bufspace_adjust(bp, newbsize);
4288 }
4289 
4290 /*
4291  * This code constitutes the buffer memory from either anonymous system
4292  * memory (in the case of non-VMIO operations) or from an associated
4293  * VM object (in the case of VMIO operations).  This code is able to
4294  * resize a buffer up or down.
4295  *
4296  * Note that this code is tricky, and has many complications to resolve
4297  * deadlock or inconsistent data situations.  Tread lightly!!!
4298  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4299  * the caller.  Calling this code willy nilly can result in the loss of data.
4300  *
4301  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4302  * B_CACHE for the non-VMIO case.
4303  */
4304 int
4305 allocbuf(struct buf *bp, int size)
4306 {
4307 	int newbsize;
4308 
4309 	if (bp->b_bcount == size)
4310 		return (1);
4311 
4312 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4313 		panic("allocbuf: buffer too small");
4314 
4315 	newbsize = roundup2(size, DEV_BSIZE);
4316 	if ((bp->b_flags & B_VMIO) == 0) {
4317 		if ((bp->b_flags & B_MALLOC) == 0)
4318 			newbsize = round_page(newbsize);
4319 		/*
4320 		 * Just get anonymous memory from the kernel.  Don't
4321 		 * mess with B_CACHE.
4322 		 */
4323 		if (newbsize < bp->b_bufsize)
4324 			vfs_nonvmio_truncate(bp, newbsize);
4325 		else if (newbsize > bp->b_bufsize)
4326 			vfs_nonvmio_extend(bp, newbsize);
4327 	} else {
4328 		int desiredpages;
4329 
4330 		desiredpages = (size == 0) ? 0 :
4331 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4332 
4333 		if (bp->b_flags & B_MALLOC)
4334 			panic("allocbuf: VMIO buffer can't be malloced");
4335 		/*
4336 		 * Set B_CACHE initially if buffer is 0 length or will become
4337 		 * 0-length.
4338 		 */
4339 		if (size == 0 || bp->b_bufsize == 0)
4340 			bp->b_flags |= B_CACHE;
4341 
4342 		if (newbsize < bp->b_bufsize)
4343 			vfs_vmio_truncate(bp, desiredpages);
4344 		/* XXX This looks as if it should be newbsize > b_bufsize */
4345 		else if (size > bp->b_bcount)
4346 			vfs_vmio_extend(bp, desiredpages, size);
4347 		bufspace_adjust(bp, newbsize);
4348 	}
4349 	bp->b_bcount = size;		/* requested buffer size. */
4350 	return (1);
4351 }
4352 
4353 extern int inflight_transient_maps;
4354 
4355 static struct bio_queue nondump_bios;
4356 
4357 void
4358 biodone(struct bio *bp)
4359 {
4360 	struct mtx *mtxp;
4361 	void (*done)(struct bio *);
4362 	vm_offset_t start, end;
4363 
4364 	biotrack(bp, __func__);
4365 
4366 	/*
4367 	 * Avoid completing I/O when dumping after a panic since that may
4368 	 * result in a deadlock in the filesystem or pager code.  Note that
4369 	 * this doesn't affect dumps that were started manually since we aim
4370 	 * to keep the system usable after it has been resumed.
4371 	 */
4372 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4373 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4374 		return;
4375 	}
4376 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4377 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4378 		bp->bio_flags |= BIO_UNMAPPED;
4379 		start = trunc_page((vm_offset_t)bp->bio_data);
4380 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4381 		bp->bio_data = unmapped_buf;
4382 		pmap_qremove(start, atop(end - start));
4383 		vmem_free(transient_arena, start, end - start);
4384 		atomic_add_int(&inflight_transient_maps, -1);
4385 	}
4386 	done = bp->bio_done;
4387 	if (done == NULL) {
4388 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4389 		mtx_lock(mtxp);
4390 		bp->bio_flags |= BIO_DONE;
4391 		wakeup(bp);
4392 		mtx_unlock(mtxp);
4393 	} else
4394 		done(bp);
4395 }
4396 
4397 /*
4398  * Wait for a BIO to finish.
4399  */
4400 int
4401 biowait(struct bio *bp, const char *wchan)
4402 {
4403 	struct mtx *mtxp;
4404 
4405 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4406 	mtx_lock(mtxp);
4407 	while ((bp->bio_flags & BIO_DONE) == 0)
4408 		msleep(bp, mtxp, PRIBIO, wchan, 0);
4409 	mtx_unlock(mtxp);
4410 	if (bp->bio_error != 0)
4411 		return (bp->bio_error);
4412 	if (!(bp->bio_flags & BIO_ERROR))
4413 		return (0);
4414 	return (EIO);
4415 }
4416 
4417 void
4418 biofinish(struct bio *bp, struct devstat *stat, int error)
4419 {
4420 
4421 	if (error) {
4422 		bp->bio_error = error;
4423 		bp->bio_flags |= BIO_ERROR;
4424 	}
4425 	if (stat != NULL)
4426 		devstat_end_transaction_bio(stat, bp);
4427 	biodone(bp);
4428 }
4429 
4430 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4431 void
4432 biotrack_buf(struct bio *bp, const char *location)
4433 {
4434 
4435 	buf_track(bp->bio_track_bp, location);
4436 }
4437 #endif
4438 
4439 /*
4440  *	bufwait:
4441  *
4442  *	Wait for buffer I/O completion, returning error status.  The buffer
4443  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4444  *	error and cleared.
4445  */
4446 int
4447 bufwait(struct buf *bp)
4448 {
4449 	if (bp->b_iocmd == BIO_READ)
4450 		bwait(bp, PRIBIO, "biord");
4451 	else
4452 		bwait(bp, PRIBIO, "biowr");
4453 	if (bp->b_flags & B_EINTR) {
4454 		bp->b_flags &= ~B_EINTR;
4455 		return (EINTR);
4456 	}
4457 	if (bp->b_ioflags & BIO_ERROR) {
4458 		return (bp->b_error ? bp->b_error : EIO);
4459 	} else {
4460 		return (0);
4461 	}
4462 }
4463 
4464 /*
4465  *	bufdone:
4466  *
4467  *	Finish I/O on a buffer, optionally calling a completion function.
4468  *	This is usually called from an interrupt so process blocking is
4469  *	not allowed.
4470  *
4471  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4472  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4473  *	assuming B_INVAL is clear.
4474  *
4475  *	For the VMIO case, we set B_CACHE if the op was a read and no
4476  *	read error occurred, or if the op was a write.  B_CACHE is never
4477  *	set if the buffer is invalid or otherwise uncacheable.
4478  *
4479  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4480  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4481  *	in the biodone routine.
4482  */
4483 void
4484 bufdone(struct buf *bp)
4485 {
4486 	struct bufobj *dropobj;
4487 	void    (*biodone)(struct buf *);
4488 
4489 	buf_track(bp, __func__);
4490 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4491 	dropobj = NULL;
4492 
4493 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4494 
4495 	runningbufwakeup(bp);
4496 	if (bp->b_iocmd == BIO_WRITE)
4497 		dropobj = bp->b_bufobj;
4498 	/* call optional completion function if requested */
4499 	if (bp->b_iodone != NULL) {
4500 		biodone = bp->b_iodone;
4501 		bp->b_iodone = NULL;
4502 		(*biodone) (bp);
4503 		if (dropobj)
4504 			bufobj_wdrop(dropobj);
4505 		return;
4506 	}
4507 	if (bp->b_flags & B_VMIO) {
4508 		/*
4509 		 * Set B_CACHE if the op was a normal read and no error
4510 		 * occurred.  B_CACHE is set for writes in the b*write()
4511 		 * routines.
4512 		 */
4513 		if (bp->b_iocmd == BIO_READ &&
4514 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4515 		    !(bp->b_ioflags & BIO_ERROR))
4516 			bp->b_flags |= B_CACHE;
4517 		vfs_vmio_iodone(bp);
4518 	}
4519 	if (!LIST_EMPTY(&bp->b_dep))
4520 		buf_complete(bp);
4521 	if ((bp->b_flags & B_CKHASH) != 0) {
4522 		KASSERT(bp->b_iocmd == BIO_READ,
4523 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4524 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4525 		(*bp->b_ckhashcalc)(bp);
4526 	}
4527 	/*
4528 	 * For asynchronous completions, release the buffer now. The brelse
4529 	 * will do a wakeup there if necessary - so no need to do a wakeup
4530 	 * here in the async case. The sync case always needs to do a wakeup.
4531 	 */
4532 	if (bp->b_flags & B_ASYNC) {
4533 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4534 		    (bp->b_ioflags & BIO_ERROR))
4535 			brelse(bp);
4536 		else
4537 			bqrelse(bp);
4538 	} else
4539 		bdone(bp);
4540 	if (dropobj)
4541 		bufobj_wdrop(dropobj);
4542 }
4543 
4544 /*
4545  * This routine is called in lieu of iodone in the case of
4546  * incomplete I/O.  This keeps the busy status for pages
4547  * consistent.
4548  */
4549 void
4550 vfs_unbusy_pages(struct buf *bp)
4551 {
4552 	int i;
4553 	vm_object_t obj;
4554 	vm_page_t m;
4555 
4556 	runningbufwakeup(bp);
4557 	if (!(bp->b_flags & B_VMIO))
4558 		return;
4559 
4560 	obj = bp->b_bufobj->bo_object;
4561 	for (i = 0; i < bp->b_npages; i++) {
4562 		m = bp->b_pages[i];
4563 		if (m == bogus_page) {
4564 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4565 			if (!m)
4566 				panic("vfs_unbusy_pages: page missing\n");
4567 			bp->b_pages[i] = m;
4568 			if (buf_mapped(bp)) {
4569 				BUF_CHECK_MAPPED(bp);
4570 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4571 				    bp->b_pages, bp->b_npages);
4572 			} else
4573 				BUF_CHECK_UNMAPPED(bp);
4574 		}
4575 		vm_page_sunbusy(m);
4576 	}
4577 	vm_object_pip_wakeupn(obj, bp->b_npages);
4578 }
4579 
4580 /*
4581  * vfs_page_set_valid:
4582  *
4583  *	Set the valid bits in a page based on the supplied offset.   The
4584  *	range is restricted to the buffer's size.
4585  *
4586  *	This routine is typically called after a read completes.
4587  */
4588 static void
4589 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4590 {
4591 	vm_ooffset_t eoff;
4592 
4593 	/*
4594 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4595 	 * page boundary and eoff is not greater than the end of the buffer.
4596 	 * The end of the buffer, in this case, is our file EOF, not the
4597 	 * allocation size of the buffer.
4598 	 */
4599 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4600 	if (eoff > bp->b_offset + bp->b_bcount)
4601 		eoff = bp->b_offset + bp->b_bcount;
4602 
4603 	/*
4604 	 * Set valid range.  This is typically the entire buffer and thus the
4605 	 * entire page.
4606 	 */
4607 	if (eoff > off)
4608 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4609 }
4610 
4611 /*
4612  * vfs_page_set_validclean:
4613  *
4614  *	Set the valid bits and clear the dirty bits in a page based on the
4615  *	supplied offset.   The range is restricted to the buffer's size.
4616  */
4617 static void
4618 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4619 {
4620 	vm_ooffset_t soff, eoff;
4621 
4622 	/*
4623 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4624 	 * page boundary or cross the end of the buffer.  The end of the
4625 	 * buffer, in this case, is our file EOF, not the allocation size
4626 	 * of the buffer.
4627 	 */
4628 	soff = off;
4629 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4630 	if (eoff > bp->b_offset + bp->b_bcount)
4631 		eoff = bp->b_offset + bp->b_bcount;
4632 
4633 	/*
4634 	 * Set valid range.  This is typically the entire buffer and thus the
4635 	 * entire page.
4636 	 */
4637 	if (eoff > soff) {
4638 		vm_page_set_validclean(
4639 		    m,
4640 		   (vm_offset_t) (soff & PAGE_MASK),
4641 		   (vm_offset_t) (eoff - soff)
4642 		);
4643 	}
4644 }
4645 
4646 /*
4647  * Acquire a shared busy on all pages in the buf.
4648  */
4649 void
4650 vfs_busy_pages_acquire(struct buf *bp)
4651 {
4652 	int i;
4653 
4654 	for (i = 0; i < bp->b_npages; i++)
4655 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4656 }
4657 
4658 void
4659 vfs_busy_pages_release(struct buf *bp)
4660 {
4661 	int i;
4662 
4663 	for (i = 0; i < bp->b_npages; i++)
4664 		vm_page_sunbusy(bp->b_pages[i]);
4665 }
4666 
4667 /*
4668  * This routine is called before a device strategy routine.
4669  * It is used to tell the VM system that paging I/O is in
4670  * progress, and treat the pages associated with the buffer
4671  * almost as being exclusive busy.  Also the object paging_in_progress
4672  * flag is handled to make sure that the object doesn't become
4673  * inconsistent.
4674  *
4675  * Since I/O has not been initiated yet, certain buffer flags
4676  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4677  * and should be ignored.
4678  */
4679 void
4680 vfs_busy_pages(struct buf *bp, int clear_modify)
4681 {
4682 	vm_object_t obj;
4683 	vm_ooffset_t foff;
4684 	vm_page_t m;
4685 	int i;
4686 	bool bogus;
4687 
4688 	if (!(bp->b_flags & B_VMIO))
4689 		return;
4690 
4691 	obj = bp->b_bufobj->bo_object;
4692 	foff = bp->b_offset;
4693 	KASSERT(bp->b_offset != NOOFFSET,
4694 	    ("vfs_busy_pages: no buffer offset"));
4695 	if ((bp->b_flags & B_CLUSTER) == 0) {
4696 		vm_object_pip_add(obj, bp->b_npages);
4697 		vfs_busy_pages_acquire(bp);
4698 	}
4699 	if (bp->b_bufsize != 0)
4700 		vfs_setdirty_range(bp);
4701 	bogus = false;
4702 	for (i = 0; i < bp->b_npages; i++) {
4703 		m = bp->b_pages[i];
4704 		vm_page_assert_sbusied(m);
4705 
4706 		/*
4707 		 * When readying a buffer for a read ( i.e
4708 		 * clear_modify == 0 ), it is important to do
4709 		 * bogus_page replacement for valid pages in
4710 		 * partially instantiated buffers.  Partially
4711 		 * instantiated buffers can, in turn, occur when
4712 		 * reconstituting a buffer from its VM backing store
4713 		 * base.  We only have to do this if B_CACHE is
4714 		 * clear ( which causes the I/O to occur in the
4715 		 * first place ).  The replacement prevents the read
4716 		 * I/O from overwriting potentially dirty VM-backed
4717 		 * pages.  XXX bogus page replacement is, uh, bogus.
4718 		 * It may not work properly with small-block devices.
4719 		 * We need to find a better way.
4720 		 */
4721 		if (clear_modify) {
4722 			pmap_remove_write(m);
4723 			vfs_page_set_validclean(bp, foff, m);
4724 		} else if (vm_page_all_valid(m) &&
4725 		    (bp->b_flags & B_CACHE) == 0) {
4726 			bp->b_pages[i] = bogus_page;
4727 			bogus = true;
4728 		}
4729 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4730 	}
4731 	if (bogus && buf_mapped(bp)) {
4732 		BUF_CHECK_MAPPED(bp);
4733 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4734 		    bp->b_pages, bp->b_npages);
4735 	}
4736 }
4737 
4738 /*
4739  *	vfs_bio_set_valid:
4740  *
4741  *	Set the range within the buffer to valid.  The range is
4742  *	relative to the beginning of the buffer, b_offset.  Note that
4743  *	b_offset itself may be offset from the beginning of the first
4744  *	page.
4745  */
4746 void
4747 vfs_bio_set_valid(struct buf *bp, int base, int size)
4748 {
4749 	int i, n;
4750 	vm_page_t m;
4751 
4752 	if (!(bp->b_flags & B_VMIO))
4753 		return;
4754 
4755 	/*
4756 	 * Fixup base to be relative to beginning of first page.
4757 	 * Set initial n to be the maximum number of bytes in the
4758 	 * first page that can be validated.
4759 	 */
4760 	base += (bp->b_offset & PAGE_MASK);
4761 	n = PAGE_SIZE - (base & PAGE_MASK);
4762 
4763 	/*
4764 	 * Busy may not be strictly necessary here because the pages are
4765 	 * unlikely to be fully valid and the vnode lock will synchronize
4766 	 * their access via getpages.  It is grabbed for consistency with
4767 	 * other page validation.
4768 	 */
4769 	vfs_busy_pages_acquire(bp);
4770 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4771 		m = bp->b_pages[i];
4772 		if (n > size)
4773 			n = size;
4774 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4775 		base += n;
4776 		size -= n;
4777 		n = PAGE_SIZE;
4778 	}
4779 	vfs_busy_pages_release(bp);
4780 }
4781 
4782 /*
4783  *	vfs_bio_clrbuf:
4784  *
4785  *	If the specified buffer is a non-VMIO buffer, clear the entire
4786  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4787  *	validate only the previously invalid portions of the buffer.
4788  *	This routine essentially fakes an I/O, so we need to clear
4789  *	BIO_ERROR and B_INVAL.
4790  *
4791  *	Note that while we only theoretically need to clear through b_bcount,
4792  *	we go ahead and clear through b_bufsize.
4793  */
4794 void
4795 vfs_bio_clrbuf(struct buf *bp)
4796 {
4797 	int i, j, mask, sa, ea, slide;
4798 
4799 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4800 		clrbuf(bp);
4801 		return;
4802 	}
4803 	bp->b_flags &= ~B_INVAL;
4804 	bp->b_ioflags &= ~BIO_ERROR;
4805 	vfs_busy_pages_acquire(bp);
4806 	sa = bp->b_offset & PAGE_MASK;
4807 	slide = 0;
4808 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4809 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4810 		ea = slide & PAGE_MASK;
4811 		if (ea == 0)
4812 			ea = PAGE_SIZE;
4813 		if (bp->b_pages[i] == bogus_page)
4814 			continue;
4815 		j = sa / DEV_BSIZE;
4816 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4817 		if ((bp->b_pages[i]->valid & mask) == mask)
4818 			continue;
4819 		if ((bp->b_pages[i]->valid & mask) == 0)
4820 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4821 		else {
4822 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4823 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4824 					pmap_zero_page_area(bp->b_pages[i],
4825 					    sa, DEV_BSIZE);
4826 				}
4827 			}
4828 		}
4829 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4830 		    roundup2(ea - sa, DEV_BSIZE));
4831 	}
4832 	vfs_busy_pages_release(bp);
4833 	bp->b_resid = 0;
4834 }
4835 
4836 void
4837 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4838 {
4839 	vm_page_t m;
4840 	int i, n;
4841 
4842 	if (buf_mapped(bp)) {
4843 		BUF_CHECK_MAPPED(bp);
4844 		bzero(bp->b_data + base, size);
4845 	} else {
4846 		BUF_CHECK_UNMAPPED(bp);
4847 		n = PAGE_SIZE - (base & PAGE_MASK);
4848 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4849 			m = bp->b_pages[i];
4850 			if (n > size)
4851 				n = size;
4852 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4853 			base += n;
4854 			size -= n;
4855 			n = PAGE_SIZE;
4856 		}
4857 	}
4858 }
4859 
4860 /*
4861  * Update buffer flags based on I/O request parameters, optionally releasing the
4862  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4863  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4864  * I/O).  Otherwise the buffer is released to the cache.
4865  */
4866 static void
4867 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4868 {
4869 
4870 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4871 	    ("buf %p non-VMIO noreuse", bp));
4872 
4873 	if ((ioflag & IO_DIRECT) != 0)
4874 		bp->b_flags |= B_DIRECT;
4875 	if ((ioflag & IO_EXT) != 0)
4876 		bp->b_xflags |= BX_ALTDATA;
4877 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4878 		bp->b_flags |= B_RELBUF;
4879 		if ((ioflag & IO_NOREUSE) != 0)
4880 			bp->b_flags |= B_NOREUSE;
4881 		if (release)
4882 			brelse(bp);
4883 	} else if (release)
4884 		bqrelse(bp);
4885 }
4886 
4887 void
4888 vfs_bio_brelse(struct buf *bp, int ioflag)
4889 {
4890 
4891 	b_io_dismiss(bp, ioflag, true);
4892 }
4893 
4894 void
4895 vfs_bio_set_flags(struct buf *bp, int ioflag)
4896 {
4897 
4898 	b_io_dismiss(bp, ioflag, false);
4899 }
4900 
4901 /*
4902  * vm_hold_load_pages and vm_hold_free_pages get pages into
4903  * a buffers address space.  The pages are anonymous and are
4904  * not associated with a file object.
4905  */
4906 static void
4907 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4908 {
4909 	vm_offset_t pg;
4910 	vm_page_t p;
4911 	int index;
4912 
4913 	BUF_CHECK_MAPPED(bp);
4914 
4915 	to = round_page(to);
4916 	from = round_page(from);
4917 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4918 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
4919 	KASSERT(to - from <= maxbcachebuf,
4920 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
4921 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
4922 
4923 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4924 		/*
4925 		 * note: must allocate system pages since blocking here
4926 		 * could interfere with paging I/O, no matter which
4927 		 * process we are.
4928 		 */
4929 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4930 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
4931 		    VM_ALLOC_WAITOK);
4932 		pmap_qenter(pg, &p, 1);
4933 		bp->b_pages[index] = p;
4934 	}
4935 	bp->b_npages = index;
4936 }
4937 
4938 /* Return pages associated with this buf to the vm system */
4939 static void
4940 vm_hold_free_pages(struct buf *bp, int newbsize)
4941 {
4942 	vm_offset_t from;
4943 	vm_page_t p;
4944 	int index, newnpages;
4945 
4946 	BUF_CHECK_MAPPED(bp);
4947 
4948 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4949 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4950 	if (bp->b_npages > newnpages)
4951 		pmap_qremove(from, bp->b_npages - newnpages);
4952 	for (index = newnpages; index < bp->b_npages; index++) {
4953 		p = bp->b_pages[index];
4954 		bp->b_pages[index] = NULL;
4955 		vm_page_unwire_noq(p);
4956 		vm_page_free(p);
4957 	}
4958 	bp->b_npages = newnpages;
4959 }
4960 
4961 /*
4962  * Map an IO request into kernel virtual address space.
4963  *
4964  * All requests are (re)mapped into kernel VA space.
4965  * Notice that we use b_bufsize for the size of the buffer
4966  * to be mapped.  b_bcount might be modified by the driver.
4967  *
4968  * Note that even if the caller determines that the address space should
4969  * be valid, a race or a smaller-file mapped into a larger space may
4970  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4971  * check the return value.
4972  *
4973  * This function only works with pager buffers.
4974  */
4975 int
4976 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
4977 {
4978 	vm_prot_t prot;
4979 	int pidx;
4980 
4981 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
4982 	prot = VM_PROT_READ;
4983 	if (bp->b_iocmd == BIO_READ)
4984 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4985 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4986 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
4987 	if (pidx < 0)
4988 		return (-1);
4989 	bp->b_bufsize = len;
4990 	bp->b_npages = pidx;
4991 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
4992 	if (mapbuf || !unmapped_buf_allowed) {
4993 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4994 		bp->b_data = bp->b_kvabase + bp->b_offset;
4995 	} else
4996 		bp->b_data = unmapped_buf;
4997 	return (0);
4998 }
4999 
5000 /*
5001  * Free the io map PTEs associated with this IO operation.
5002  * We also invalidate the TLB entries and restore the original b_addr.
5003  *
5004  * This function only works with pager buffers.
5005  */
5006 void
5007 vunmapbuf(struct buf *bp)
5008 {
5009 	int npages;
5010 
5011 	npages = bp->b_npages;
5012 	if (buf_mapped(bp))
5013 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5014 	vm_page_unhold_pages(bp->b_pages, npages);
5015 
5016 	bp->b_data = unmapped_buf;
5017 }
5018 
5019 void
5020 bdone(struct buf *bp)
5021 {
5022 	struct mtx *mtxp;
5023 
5024 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5025 	mtx_lock(mtxp);
5026 	bp->b_flags |= B_DONE;
5027 	wakeup(bp);
5028 	mtx_unlock(mtxp);
5029 }
5030 
5031 void
5032 bwait(struct buf *bp, u_char pri, const char *wchan)
5033 {
5034 	struct mtx *mtxp;
5035 
5036 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5037 	mtx_lock(mtxp);
5038 	while ((bp->b_flags & B_DONE) == 0)
5039 		msleep(bp, mtxp, pri, wchan, 0);
5040 	mtx_unlock(mtxp);
5041 }
5042 
5043 int
5044 bufsync(struct bufobj *bo, int waitfor)
5045 {
5046 
5047 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5048 }
5049 
5050 void
5051 bufstrategy(struct bufobj *bo, struct buf *bp)
5052 {
5053 	int i __unused;
5054 	struct vnode *vp;
5055 
5056 	vp = bp->b_vp;
5057 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5058 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5059 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5060 	i = VOP_STRATEGY(vp, bp);
5061 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5062 }
5063 
5064 /*
5065  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5066  */
5067 void
5068 bufobj_init(struct bufobj *bo, void *private)
5069 {
5070 	static volatile int bufobj_cleanq;
5071 
5072         bo->bo_domain =
5073             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5074         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5075         bo->bo_private = private;
5076         TAILQ_INIT(&bo->bo_clean.bv_hd);
5077         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5078 }
5079 
5080 void
5081 bufobj_wrefl(struct bufobj *bo)
5082 {
5083 
5084 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5085 	ASSERT_BO_WLOCKED(bo);
5086 	bo->bo_numoutput++;
5087 }
5088 
5089 void
5090 bufobj_wref(struct bufobj *bo)
5091 {
5092 
5093 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5094 	BO_LOCK(bo);
5095 	bo->bo_numoutput++;
5096 	BO_UNLOCK(bo);
5097 }
5098 
5099 void
5100 bufobj_wdrop(struct bufobj *bo)
5101 {
5102 
5103 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5104 	BO_LOCK(bo);
5105 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5106 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5107 		bo->bo_flag &= ~BO_WWAIT;
5108 		wakeup(&bo->bo_numoutput);
5109 	}
5110 	BO_UNLOCK(bo);
5111 }
5112 
5113 int
5114 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5115 {
5116 	int error;
5117 
5118 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5119 	ASSERT_BO_WLOCKED(bo);
5120 	error = 0;
5121 	while (bo->bo_numoutput) {
5122 		bo->bo_flag |= BO_WWAIT;
5123 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5124 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5125 		if (error)
5126 			break;
5127 	}
5128 	return (error);
5129 }
5130 
5131 /*
5132  * Set bio_data or bio_ma for struct bio from the struct buf.
5133  */
5134 void
5135 bdata2bio(struct buf *bp, struct bio *bip)
5136 {
5137 
5138 	if (!buf_mapped(bp)) {
5139 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5140 		bip->bio_ma = bp->b_pages;
5141 		bip->bio_ma_n = bp->b_npages;
5142 		bip->bio_data = unmapped_buf;
5143 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5144 		bip->bio_flags |= BIO_UNMAPPED;
5145 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5146 		    PAGE_SIZE == bp->b_npages,
5147 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5148 		    (long long)bip->bio_length, bip->bio_ma_n));
5149 	} else {
5150 		bip->bio_data = bp->b_data;
5151 		bip->bio_ma = NULL;
5152 	}
5153 }
5154 
5155 /*
5156  * The MIPS pmap code currently doesn't handle aliased pages.
5157  * The VIPT caches may not handle page aliasing themselves, leading
5158  * to data corruption.
5159  *
5160  * As such, this code makes a system extremely unhappy if said
5161  * system doesn't support unaliasing the above situation in hardware.
5162  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5163  * this feature at build time, so it has to be handled in software.
5164  *
5165  * Once the MIPS pmap/cache code grows to support this function on
5166  * earlier chips, it should be flipped back off.
5167  */
5168 #ifdef	__mips__
5169 static int buf_pager_relbuf = 1;
5170 #else
5171 static int buf_pager_relbuf = 0;
5172 #endif
5173 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5174     &buf_pager_relbuf, 0,
5175     "Make buffer pager release buffers after reading");
5176 
5177 /*
5178  * The buffer pager.  It uses buffer reads to validate pages.
5179  *
5180  * In contrast to the generic local pager from vm/vnode_pager.c, this
5181  * pager correctly and easily handles volumes where the underlying
5182  * device block size is greater than the machine page size.  The
5183  * buffer cache transparently extends the requested page run to be
5184  * aligned at the block boundary, and does the necessary bogus page
5185  * replacements in the addends to avoid obliterating already valid
5186  * pages.
5187  *
5188  * The only non-trivial issue is that the exclusive busy state for
5189  * pages, which is assumed by the vm_pager_getpages() interface, is
5190  * incompatible with the VMIO buffer cache's desire to share-busy the
5191  * pages.  This function performs a trivial downgrade of the pages'
5192  * state before reading buffers, and a less trivial upgrade from the
5193  * shared-busy to excl-busy state after the read.
5194  */
5195 int
5196 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5197     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5198     vbg_get_blksize_t get_blksize)
5199 {
5200 	vm_page_t m;
5201 	vm_object_t object;
5202 	struct buf *bp;
5203 	struct mount *mp;
5204 	daddr_t lbn, lbnp;
5205 	vm_ooffset_t la, lb, poff, poffe;
5206 	long bo_bs, bsize;
5207 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5208 	bool redo, lpart;
5209 
5210 	object = vp->v_object;
5211 	mp = vp->v_mount;
5212 	error = 0;
5213 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5214 	if (la >= object->un_pager.vnp.vnp_size)
5215 		return (VM_PAGER_BAD);
5216 
5217 	/*
5218 	 * Change the meaning of la from where the last requested page starts
5219 	 * to where it ends, because that's the end of the requested region
5220 	 * and the start of the potential read-ahead region.
5221 	 */
5222 	la += PAGE_SIZE;
5223 	lpart = la > object->un_pager.vnp.vnp_size;
5224 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5225 	    &bo_bs);
5226 	if (error != 0)
5227 		return (VM_PAGER_ERROR);
5228 
5229 	/*
5230 	 * Calculate read-ahead, behind and total pages.
5231 	 */
5232 	pgsin = count;
5233 	lb = IDX_TO_OFF(ma[0]->pindex);
5234 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5235 	pgsin += pgsin_b;
5236 	if (rbehind != NULL)
5237 		*rbehind = pgsin_b;
5238 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5239 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5240 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5241 		    PAGE_SIZE) - la);
5242 	pgsin += pgsin_a;
5243 	if (rahead != NULL)
5244 		*rahead = pgsin_a;
5245 	VM_CNT_INC(v_vnodein);
5246 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5247 
5248 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5249 	    != 0) ? GB_UNMAPPED : 0;
5250 again:
5251 	for (i = 0; i < count; i++) {
5252 		if (ma[i] != bogus_page)
5253 			vm_page_busy_downgrade(ma[i]);
5254 	}
5255 
5256 	lbnp = -1;
5257 	for (i = 0; i < count; i++) {
5258 		m = ma[i];
5259 		if (m == bogus_page)
5260 			continue;
5261 
5262 		/*
5263 		 * Pages are shared busy and the object lock is not
5264 		 * owned, which together allow for the pages'
5265 		 * invalidation.  The racy test for validity avoids
5266 		 * useless creation of the buffer for the most typical
5267 		 * case when invalidation is not used in redo or for
5268 		 * parallel read.  The shared->excl upgrade loop at
5269 		 * the end of the function catches the race in a
5270 		 * reliable way (protected by the object lock).
5271 		 */
5272 		if (vm_page_all_valid(m))
5273 			continue;
5274 
5275 		poff = IDX_TO_OFF(m->pindex);
5276 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5277 		for (; poff < poffe; poff += bsize) {
5278 			lbn = get_lblkno(vp, poff);
5279 			if (lbn == lbnp)
5280 				goto next_page;
5281 			lbnp = lbn;
5282 
5283 			error = get_blksize(vp, lbn, &bsize);
5284 			if (error == 0)
5285 				error = bread_gb(vp, lbn, bsize,
5286 				    curthread->td_ucred, br_flags, &bp);
5287 			if (error != 0)
5288 				goto end_pages;
5289 			if (bp->b_rcred == curthread->td_ucred) {
5290 				crfree(bp->b_rcred);
5291 				bp->b_rcred = NOCRED;
5292 			}
5293 			if (LIST_EMPTY(&bp->b_dep)) {
5294 				/*
5295 				 * Invalidation clears m->valid, but
5296 				 * may leave B_CACHE flag if the
5297 				 * buffer existed at the invalidation
5298 				 * time.  In this case, recycle the
5299 				 * buffer to do real read on next
5300 				 * bread() after redo.
5301 				 *
5302 				 * Otherwise B_RELBUF is not strictly
5303 				 * necessary, enable to reduce buf
5304 				 * cache pressure.
5305 				 */
5306 				if (buf_pager_relbuf ||
5307 				    !vm_page_all_valid(m))
5308 					bp->b_flags |= B_RELBUF;
5309 
5310 				bp->b_flags &= ~B_NOCACHE;
5311 				brelse(bp);
5312 			} else {
5313 				bqrelse(bp);
5314 			}
5315 		}
5316 		KASSERT(1 /* racy, enable for debugging */ ||
5317 		    vm_page_all_valid(m) || i == count - 1,
5318 		    ("buf %d %p invalid", i, m));
5319 		if (i == count - 1 && lpart) {
5320 			if (!vm_page_none_valid(m) &&
5321 			    !vm_page_all_valid(m))
5322 				vm_page_zero_invalid(m, TRUE);
5323 		}
5324 next_page:;
5325 	}
5326 end_pages:
5327 
5328 	redo = false;
5329 	for (i = 0; i < count; i++) {
5330 		if (ma[i] == bogus_page)
5331 			continue;
5332 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5333 			vm_page_sunbusy(ma[i]);
5334 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5335 			    VM_ALLOC_NORMAL);
5336 		}
5337 
5338 		/*
5339 		 * Since the pages were only sbusy while neither the
5340 		 * buffer nor the object lock was held by us, or
5341 		 * reallocated while vm_page_grab() slept for busy
5342 		 * relinguish, they could have been invalidated.
5343 		 * Recheck the valid bits and re-read as needed.
5344 		 *
5345 		 * Note that the last page is made fully valid in the
5346 		 * read loop, and partial validity for the page at
5347 		 * index count - 1 could mean that the page was
5348 		 * invalidated or removed, so we must restart for
5349 		 * safety as well.
5350 		 */
5351 		if (!vm_page_all_valid(ma[i]))
5352 			redo = true;
5353 	}
5354 	if (redo && error == 0)
5355 		goto again;
5356 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5357 }
5358 
5359 #include "opt_ddb.h"
5360 #ifdef DDB
5361 #include <ddb/ddb.h>
5362 
5363 /* DDB command to show buffer data */
5364 DB_SHOW_COMMAND(buffer, db_show_buffer)
5365 {
5366 	/* get args */
5367 	struct buf *bp = (struct buf *)addr;
5368 #ifdef FULL_BUF_TRACKING
5369 	uint32_t i, j;
5370 #endif
5371 
5372 	if (!have_addr) {
5373 		db_printf("usage: show buffer <addr>\n");
5374 		return;
5375 	}
5376 
5377 	db_printf("buf at %p\n", bp);
5378 	db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5379 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5380 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5381 	db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5382 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5383 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5384 	db_printf(
5385 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5386 	    "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
5387 	    "b_vp = %p, b_dep = %p\n",
5388 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5389 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5390 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5391 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5392 	    bp->b_kvabase, bp->b_kvasize);
5393 	if (bp->b_npages) {
5394 		int i;
5395 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5396 		for (i = 0; i < bp->b_npages; i++) {
5397 			vm_page_t m;
5398 			m = bp->b_pages[i];
5399 			if (m != NULL)
5400 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5401 				    (u_long)m->pindex,
5402 				    (u_long)VM_PAGE_TO_PHYS(m));
5403 			else
5404 				db_printf("( ??? )");
5405 			if ((i + 1) < bp->b_npages)
5406 				db_printf(",");
5407 		}
5408 		db_printf("\n");
5409 	}
5410 	BUF_LOCKPRINTINFO(bp);
5411 #if defined(FULL_BUF_TRACKING)
5412 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5413 
5414 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5415 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5416 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5417 			continue;
5418 		db_printf(" %2u: %s\n", j,
5419 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5420 	}
5421 #elif defined(BUF_TRACKING)
5422 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5423 #endif
5424 	db_printf(" ");
5425 }
5426 
5427 DB_SHOW_COMMAND(bufqueues, bufqueues)
5428 {
5429 	struct bufdomain *bd;
5430 	struct buf *bp;
5431 	long total;
5432 	int i, j, cnt;
5433 
5434 	db_printf("bqempty: %d\n", bqempty.bq_len);
5435 
5436 	for (i = 0; i < buf_domains; i++) {
5437 		bd = &bdomain[i];
5438 		db_printf("Buf domain %d\n", i);
5439 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5440 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5441 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5442 		db_printf("\n");
5443 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5444 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5445 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5446 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5447 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5448 		db_printf("\n");
5449 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5450 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5451 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5452 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5453 		db_printf("\n");
5454 		total = 0;
5455 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5456 			total += bp->b_bufsize;
5457 		db_printf("\tcleanq count\t%d (%ld)\n",
5458 		    bd->bd_cleanq->bq_len, total);
5459 		total = 0;
5460 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5461 			total += bp->b_bufsize;
5462 		db_printf("\tdirtyq count\t%d (%ld)\n",
5463 		    bd->bd_dirtyq.bq_len, total);
5464 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5465 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5466 		db_printf("\tCPU ");
5467 		for (j = 0; j <= mp_maxid; j++)
5468 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5469 		db_printf("\n");
5470 		cnt = 0;
5471 		total = 0;
5472 		for (j = 0; j < nbuf; j++) {
5473 			bp = nbufp(j);
5474 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5475 				cnt++;
5476 				total += bp->b_bufsize;
5477 			}
5478 		}
5479 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5480 		cnt = 0;
5481 		total = 0;
5482 		for (j = 0; j < nbuf; j++) {
5483 			bp = nbufp(j);
5484 			if (bp->b_domain == i) {
5485 				cnt++;
5486 				total += bp->b_bufsize;
5487 			}
5488 		}
5489 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5490 	}
5491 }
5492 
5493 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5494 {
5495 	struct buf *bp;
5496 	int i;
5497 
5498 	for (i = 0; i < nbuf; i++) {
5499 		bp = nbufp(i);
5500 		if (BUF_ISLOCKED(bp)) {
5501 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5502 			db_printf("\n");
5503 			if (db_pager_quit)
5504 				break;
5505 		}
5506 	}
5507 }
5508 
5509 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5510 {
5511 	struct vnode *vp;
5512 	struct buf *bp;
5513 
5514 	if (!have_addr) {
5515 		db_printf("usage: show vnodebufs <addr>\n");
5516 		return;
5517 	}
5518 	vp = (struct vnode *)addr;
5519 	db_printf("Clean buffers:\n");
5520 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5521 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5522 		db_printf("\n");
5523 	}
5524 	db_printf("Dirty buffers:\n");
5525 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5526 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5527 		db_printf("\n");
5528 	}
5529 }
5530 
5531 DB_COMMAND(countfreebufs, db_coundfreebufs)
5532 {
5533 	struct buf *bp;
5534 	int i, used = 0, nfree = 0;
5535 
5536 	if (have_addr) {
5537 		db_printf("usage: countfreebufs\n");
5538 		return;
5539 	}
5540 
5541 	for (i = 0; i < nbuf; i++) {
5542 		bp = nbufp(i);
5543 		if (bp->b_qindex == QUEUE_EMPTY)
5544 			nfree++;
5545 		else
5546 			used++;
5547 	}
5548 
5549 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5550 	    nfree + used);
5551 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5552 }
5553 #endif /* DDB */
5554