xref: /freebsd/sys/kern/vfs_bio.c (revision 266f97b5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/asan.h>
53 #include <sys/bio.h>
54 #include <sys/bitset.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/buf.h>
58 #include <sys/devicestat.h>
59 #include <sys/eventhandler.h>
60 #include <sys/fail.h>
61 #include <sys/ktr.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/mutex.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/vmem.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/watchdog.h>
81 #include <geom/geom.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_map.h>
91 #include <vm/swap_pager.h>
92 
93 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
94 
95 struct	bio_ops bioops;		/* I/O operation notification */
96 
97 struct	buf_ops buf_ops_bio = {
98 	.bop_name	=	"buf_ops_bio",
99 	.bop_write	=	bufwrite,
100 	.bop_strategy	=	bufstrategy,
101 	.bop_sync	=	bufsync,
102 	.bop_bdflush	=	bufbdflush,
103 };
104 
105 struct bufqueue {
106 	struct mtx_padalign	bq_lock;
107 	TAILQ_HEAD(, buf)	bq_queue;
108 	uint8_t			bq_index;
109 	uint16_t		bq_subqueue;
110 	int			bq_len;
111 } __aligned(CACHE_LINE_SIZE);
112 
113 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
114 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
115 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
116 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
117 
118 struct bufdomain {
119 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
120 	struct bufqueue bd_dirtyq;
121 	struct bufqueue	*bd_cleanq;
122 	struct mtx_padalign bd_run_lock;
123 	/* Constants */
124 	long		bd_maxbufspace;
125 	long		bd_hibufspace;
126 	long 		bd_lobufspace;
127 	long 		bd_bufspacethresh;
128 	int		bd_hifreebuffers;
129 	int		bd_lofreebuffers;
130 	int		bd_hidirtybuffers;
131 	int		bd_lodirtybuffers;
132 	int		bd_dirtybufthresh;
133 	int		bd_lim;
134 	/* atomics */
135 	int		bd_wanted;
136 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
137 	int __aligned(CACHE_LINE_SIZE)	bd_running;
138 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
139 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
140 } __aligned(CACHE_LINE_SIZE);
141 
142 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
143 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
144 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
145 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
146 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
147 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
148 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
149 #define	BD_DOMAIN(bd)		(bd - bdomain)
150 
151 static char *buf;		/* buffer header pool */
152 static struct buf *
153 nbufp(unsigned i)
154 {
155 	return ((struct buf *)(buf + (sizeof(struct buf) +
156 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
157 }
158 
159 caddr_t __read_mostly unmapped_buf;
160 
161 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
162 struct proc *bufdaemonproc;
163 
164 static void vm_hold_free_pages(struct buf *bp, int newbsize);
165 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
166 		vm_offset_t to);
167 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
168 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
169 		vm_page_t m);
170 static void vfs_clean_pages_dirty_buf(struct buf *bp);
171 static void vfs_setdirty_range(struct buf *bp);
172 static void vfs_vmio_invalidate(struct buf *bp);
173 static void vfs_vmio_truncate(struct buf *bp, int npages);
174 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
175 static int vfs_bio_clcheck(struct vnode *vp, int size,
176 		daddr_t lblkno, daddr_t blkno);
177 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
178 		void (*)(struct buf *));
179 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
180 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
181 static void buf_daemon(void);
182 static __inline void bd_wakeup(void);
183 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
184 static void bufkva_reclaim(vmem_t *, int);
185 static void bufkva_free(struct buf *);
186 static int buf_import(void *, void **, int, int, int);
187 static void buf_release(void *, void **, int);
188 static void maxbcachebuf_adjust(void);
189 static inline struct bufdomain *bufdomain(struct buf *);
190 static void bq_remove(struct bufqueue *bq, struct buf *bp);
191 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
192 static int buf_recycle(struct bufdomain *, bool kva);
193 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
194 	    const char *lockname);
195 static void bd_init(struct bufdomain *bd);
196 static int bd_flushall(struct bufdomain *bd);
197 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
198 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
199 
200 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
201 int vmiodirenable = TRUE;
202 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
203     "Use the VM system for directory writes");
204 long runningbufspace;
205 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
206     "Amount of presently outstanding async buffer io");
207 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
208     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
209 static counter_u64_t bufkvaspace;
210 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
211     "Kernel virtual memory used for buffers");
212 static long maxbufspace;
213 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
214     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
215     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
216     "Maximum allowed value of bufspace (including metadata)");
217 static long bufmallocspace;
218 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
219     "Amount of malloced memory for buffers");
220 static long maxbufmallocspace;
221 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
222     0, "Maximum amount of malloced memory for buffers");
223 static long lobufspace;
224 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
225     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
226     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
227     "Minimum amount of buffers we want to have");
228 long hibufspace;
229 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
230     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
231     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
232     "Maximum allowed value of bufspace (excluding metadata)");
233 long bufspacethresh;
234 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
235     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
236     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
237     "Bufspace consumed before waking the daemon to free some");
238 static counter_u64_t buffreekvacnt;
239 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
240     "Number of times we have freed the KVA space from some buffer");
241 static counter_u64_t bufdefragcnt;
242 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
243     "Number of times we have had to repeat buffer allocation to defragment");
244 static long lorunningspace;
245 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
246     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
247     "Minimum preferred space used for in-progress I/O");
248 static long hirunningspace;
249 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
250     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
251     "Maximum amount of space to use for in-progress I/O");
252 int dirtybufferflushes;
253 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
254     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
255 int bdwriteskip;
256 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
257     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
258 int altbufferflushes;
259 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
260     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
261 static int recursiveflushes;
262 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
263     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
264 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
265 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
266     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
267     "Number of buffers that are dirty (has unwritten changes) at the moment");
268 static int lodirtybuffers;
269 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
270     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
271     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
272     "How many buffers we want to have free before bufdaemon can sleep");
273 static int hidirtybuffers;
274 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
275     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
276     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
277     "When the number of dirty buffers is considered severe");
278 int dirtybufthresh;
279 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
280     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
281     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
282     "Number of bdwrite to bawrite conversions to clear dirty buffers");
283 static int numfreebuffers;
284 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
285     "Number of free buffers");
286 static int lofreebuffers;
287 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
288     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
289     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
290    "Target number of free buffers");
291 static int hifreebuffers;
292 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
293     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
294     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
295    "Threshold for clean buffer recycling");
296 static counter_u64_t getnewbufcalls;
297 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
298    &getnewbufcalls, "Number of calls to getnewbuf");
299 static counter_u64_t getnewbufrestarts;
300 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
301     &getnewbufrestarts,
302     "Number of times getnewbuf has had to restart a buffer acquisition");
303 static counter_u64_t mappingrestarts;
304 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
305     &mappingrestarts,
306     "Number of times getblk has had to restart a buffer mapping for "
307     "unmapped buffer");
308 static counter_u64_t numbufallocfails;
309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
310     &numbufallocfails, "Number of times buffer allocations failed");
311 static int flushbufqtarget = 100;
312 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
313     "Amount of work to do in flushbufqueues when helping bufdaemon");
314 static counter_u64_t notbufdflushes;
315 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
316     "Number of dirty buffer flushes done by the bufdaemon helpers");
317 static long barrierwrites;
318 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
319     &barrierwrites, 0, "Number of barrier writes");
320 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
321     &unmapped_buf_allowed, 0,
322     "Permit the use of the unmapped i/o");
323 int maxbcachebuf = MAXBCACHEBUF;
324 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
325     "Maximum size of a buffer cache block");
326 
327 /*
328  * This lock synchronizes access to bd_request.
329  */
330 static struct mtx_padalign __exclusive_cache_line bdlock;
331 
332 /*
333  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
334  * waitrunningbufspace().
335  */
336 static struct mtx_padalign __exclusive_cache_line rbreqlock;
337 
338 /*
339  * Lock that protects bdirtywait.
340  */
341 static struct mtx_padalign __exclusive_cache_line bdirtylock;
342 
343 /*
344  * Wakeup point for bufdaemon, as well as indicator of whether it is already
345  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
346  * is idling.
347  */
348 static int bd_request;
349 
350 /*
351  * Request for the buf daemon to write more buffers than is indicated by
352  * lodirtybuf.  This may be necessary to push out excess dependencies or
353  * defragment the address space where a simple count of the number of dirty
354  * buffers is insufficient to characterize the demand for flushing them.
355  */
356 static int bd_speedupreq;
357 
358 /*
359  * Synchronization (sleep/wakeup) variable for active buffer space requests.
360  * Set when wait starts, cleared prior to wakeup().
361  * Used in runningbufwakeup() and waitrunningbufspace().
362  */
363 static int runningbufreq;
364 
365 /*
366  * Synchronization for bwillwrite() waiters.
367  */
368 static int bdirtywait;
369 
370 /*
371  * Definitions for the buffer free lists.
372  */
373 #define QUEUE_NONE	0	/* on no queue */
374 #define QUEUE_EMPTY	1	/* empty buffer headers */
375 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
376 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
377 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
378 
379 /* Maximum number of buffer domains. */
380 #define	BUF_DOMAINS	8
381 
382 struct bufdomainset bdlodirty;		/* Domains > lodirty */
383 struct bufdomainset bdhidirty;		/* Domains > hidirty */
384 
385 /* Configured number of clean queues. */
386 static int __read_mostly buf_domains;
387 
388 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
389 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
390 struct bufqueue __exclusive_cache_line bqempty;
391 
392 /*
393  * per-cpu empty buffer cache.
394  */
395 uma_zone_t buf_zone;
396 
397 /*
398  * Single global constant for BUF_WMESG, to avoid getting multiple references.
399  * buf_wmesg is referred from macros.
400  */
401 const char *buf_wmesg = BUF_WMESG;
402 
403 static int
404 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
405 {
406 	long value;
407 	int error;
408 
409 	value = *(long *)arg1;
410 	error = sysctl_handle_long(oidp, &value, 0, req);
411 	if (error != 0 || req->newptr == NULL)
412 		return (error);
413 	mtx_lock(&rbreqlock);
414 	if (arg1 == &hirunningspace) {
415 		if (value < lorunningspace)
416 			error = EINVAL;
417 		else
418 			hirunningspace = value;
419 	} else {
420 		KASSERT(arg1 == &lorunningspace,
421 		    ("%s: unknown arg1", __func__));
422 		if (value > hirunningspace)
423 			error = EINVAL;
424 		else
425 			lorunningspace = value;
426 	}
427 	mtx_unlock(&rbreqlock);
428 	return (error);
429 }
430 
431 static int
432 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
433 {
434 	int error;
435 	int value;
436 	int i;
437 
438 	value = *(int *)arg1;
439 	error = sysctl_handle_int(oidp, &value, 0, req);
440 	if (error != 0 || req->newptr == NULL)
441 		return (error);
442 	*(int *)arg1 = value;
443 	for (i = 0; i < buf_domains; i++)
444 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
445 		    value / buf_domains;
446 
447 	return (error);
448 }
449 
450 static int
451 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
452 {
453 	long value;
454 	int error;
455 	int i;
456 
457 	value = *(long *)arg1;
458 	error = sysctl_handle_long(oidp, &value, 0, req);
459 	if (error != 0 || req->newptr == NULL)
460 		return (error);
461 	*(long *)arg1 = value;
462 	for (i = 0; i < buf_domains; i++)
463 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
464 		    value / buf_domains;
465 
466 	return (error);
467 }
468 
469 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
470     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
471 static int
472 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
473 {
474 	long lvalue;
475 	int ivalue;
476 	int i;
477 
478 	lvalue = 0;
479 	for (i = 0; i < buf_domains; i++)
480 		lvalue += bdomain[i].bd_bufspace;
481 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
482 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
483 	if (lvalue > INT_MAX)
484 		/* On overflow, still write out a long to trigger ENOMEM. */
485 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
486 	ivalue = lvalue;
487 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
488 }
489 #else
490 static int
491 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
492 {
493 	long lvalue;
494 	int i;
495 
496 	lvalue = 0;
497 	for (i = 0; i < buf_domains; i++)
498 		lvalue += bdomain[i].bd_bufspace;
499 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
500 }
501 #endif
502 
503 static int
504 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
505 {
506 	int value;
507 	int i;
508 
509 	value = 0;
510 	for (i = 0; i < buf_domains; i++)
511 		value += bdomain[i].bd_numdirtybuffers;
512 	return (sysctl_handle_int(oidp, &value, 0, req));
513 }
514 
515 /*
516  *	bdirtywakeup:
517  *
518  *	Wakeup any bwillwrite() waiters.
519  */
520 static void
521 bdirtywakeup(void)
522 {
523 	mtx_lock(&bdirtylock);
524 	if (bdirtywait) {
525 		bdirtywait = 0;
526 		wakeup(&bdirtywait);
527 	}
528 	mtx_unlock(&bdirtylock);
529 }
530 
531 /*
532  *	bd_clear:
533  *
534  *	Clear a domain from the appropriate bitsets when dirtybuffers
535  *	is decremented.
536  */
537 static void
538 bd_clear(struct bufdomain *bd)
539 {
540 
541 	mtx_lock(&bdirtylock);
542 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
543 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
544 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
545 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
546 	mtx_unlock(&bdirtylock);
547 }
548 
549 /*
550  *	bd_set:
551  *
552  *	Set a domain in the appropriate bitsets when dirtybuffers
553  *	is incremented.
554  */
555 static void
556 bd_set(struct bufdomain *bd)
557 {
558 
559 	mtx_lock(&bdirtylock);
560 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
561 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
562 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
563 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
564 	mtx_unlock(&bdirtylock);
565 }
566 
567 /*
568  *	bdirtysub:
569  *
570  *	Decrement the numdirtybuffers count by one and wakeup any
571  *	threads blocked in bwillwrite().
572  */
573 static void
574 bdirtysub(struct buf *bp)
575 {
576 	struct bufdomain *bd;
577 	int num;
578 
579 	bd = bufdomain(bp);
580 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
581 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
582 		bdirtywakeup();
583 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
584 		bd_clear(bd);
585 }
586 
587 /*
588  *	bdirtyadd:
589  *
590  *	Increment the numdirtybuffers count by one and wakeup the buf
591  *	daemon if needed.
592  */
593 static void
594 bdirtyadd(struct buf *bp)
595 {
596 	struct bufdomain *bd;
597 	int num;
598 
599 	/*
600 	 * Only do the wakeup once as we cross the boundary.  The
601 	 * buf daemon will keep running until the condition clears.
602 	 */
603 	bd = bufdomain(bp);
604 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
605 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
606 		bd_wakeup();
607 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
608 		bd_set(bd);
609 }
610 
611 /*
612  *	bufspace_daemon_wakeup:
613  *
614  *	Wakeup the daemons responsible for freeing clean bufs.
615  */
616 static void
617 bufspace_daemon_wakeup(struct bufdomain *bd)
618 {
619 
620 	/*
621 	 * avoid the lock if the daemon is running.
622 	 */
623 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
624 		BD_RUN_LOCK(bd);
625 		atomic_store_int(&bd->bd_running, 1);
626 		wakeup(&bd->bd_running);
627 		BD_RUN_UNLOCK(bd);
628 	}
629 }
630 
631 /*
632  *	bufspace_daemon_wait:
633  *
634  *	Sleep until the domain falls below a limit or one second passes.
635  */
636 static void
637 bufspace_daemon_wait(struct bufdomain *bd)
638 {
639 	/*
640 	 * Re-check our limits and sleep.  bd_running must be
641 	 * cleared prior to checking the limits to avoid missed
642 	 * wakeups.  The waker will adjust one of bufspace or
643 	 * freebuffers prior to checking bd_running.
644 	 */
645 	BD_RUN_LOCK(bd);
646 	atomic_store_int(&bd->bd_running, 0);
647 	if (bd->bd_bufspace < bd->bd_bufspacethresh &&
648 	    bd->bd_freebuffers > bd->bd_lofreebuffers) {
649 		msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
650 		    "-", hz);
651 	} else {
652 		/* Avoid spurious wakeups while running. */
653 		atomic_store_int(&bd->bd_running, 1);
654 		BD_RUN_UNLOCK(bd);
655 	}
656 }
657 
658 /*
659  *	bufspace_adjust:
660  *
661  *	Adjust the reported bufspace for a KVA managed buffer, possibly
662  * 	waking any waiters.
663  */
664 static void
665 bufspace_adjust(struct buf *bp, int bufsize)
666 {
667 	struct bufdomain *bd;
668 	long space;
669 	int diff;
670 
671 	KASSERT((bp->b_flags & B_MALLOC) == 0,
672 	    ("bufspace_adjust: malloc buf %p", bp));
673 	bd = bufdomain(bp);
674 	diff = bufsize - bp->b_bufsize;
675 	if (diff < 0) {
676 		atomic_subtract_long(&bd->bd_bufspace, -diff);
677 	} else if (diff > 0) {
678 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
679 		/* Wake up the daemon on the transition. */
680 		if (space < bd->bd_bufspacethresh &&
681 		    space + diff >= bd->bd_bufspacethresh)
682 			bufspace_daemon_wakeup(bd);
683 	}
684 	bp->b_bufsize = bufsize;
685 }
686 
687 /*
688  *	bufspace_reserve:
689  *
690  *	Reserve bufspace before calling allocbuf().  metadata has a
691  *	different space limit than data.
692  */
693 static int
694 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
695 {
696 	long limit, new;
697 	long space;
698 
699 	if (metadata)
700 		limit = bd->bd_maxbufspace;
701 	else
702 		limit = bd->bd_hibufspace;
703 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
704 	new = space + size;
705 	if (new > limit) {
706 		atomic_subtract_long(&bd->bd_bufspace, size);
707 		return (ENOSPC);
708 	}
709 
710 	/* Wake up the daemon on the transition. */
711 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
712 		bufspace_daemon_wakeup(bd);
713 
714 	return (0);
715 }
716 
717 /*
718  *	bufspace_release:
719  *
720  *	Release reserved bufspace after bufspace_adjust() has consumed it.
721  */
722 static void
723 bufspace_release(struct bufdomain *bd, int size)
724 {
725 
726 	atomic_subtract_long(&bd->bd_bufspace, size);
727 }
728 
729 /*
730  *	bufspace_wait:
731  *
732  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
733  *	supplied.  bd_wanted must be set prior to polling for space.  The
734  *	operation must be re-tried on return.
735  */
736 static void
737 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
738     int slpflag, int slptimeo)
739 {
740 	struct thread *td;
741 	int error, fl, norunbuf;
742 
743 	if ((gbflags & GB_NOWAIT_BD) != 0)
744 		return;
745 
746 	td = curthread;
747 	BD_LOCK(bd);
748 	while (bd->bd_wanted) {
749 		if (vp != NULL && vp->v_type != VCHR &&
750 		    (td->td_pflags & TDP_BUFNEED) == 0) {
751 			BD_UNLOCK(bd);
752 			/*
753 			 * getblk() is called with a vnode locked, and
754 			 * some majority of the dirty buffers may as
755 			 * well belong to the vnode.  Flushing the
756 			 * buffers there would make a progress that
757 			 * cannot be achieved by the buf_daemon, that
758 			 * cannot lock the vnode.
759 			 */
760 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
761 			    (td->td_pflags & TDP_NORUNNINGBUF);
762 
763 			/*
764 			 * Play bufdaemon.  The getnewbuf() function
765 			 * may be called while the thread owns lock
766 			 * for another dirty buffer for the same
767 			 * vnode, which makes it impossible to use
768 			 * VOP_FSYNC() there, due to the buffer lock
769 			 * recursion.
770 			 */
771 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
772 			fl = buf_flush(vp, bd, flushbufqtarget);
773 			td->td_pflags &= norunbuf;
774 			BD_LOCK(bd);
775 			if (fl != 0)
776 				continue;
777 			if (bd->bd_wanted == 0)
778 				break;
779 		}
780 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
781 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
782 		if (error != 0)
783 			break;
784 	}
785 	BD_UNLOCK(bd);
786 }
787 
788 /*
789  *	bufspace_daemon:
790  *
791  *	buffer space management daemon.  Tries to maintain some marginal
792  *	amount of free buffer space so that requesting processes neither
793  *	block nor work to reclaim buffers.
794  */
795 static void
796 bufspace_daemon(void *arg)
797 {
798 	struct bufdomain *bd;
799 
800 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
801 	    SHUTDOWN_PRI_LAST + 100);
802 
803 	bd = arg;
804 	for (;;) {
805 		kthread_suspend_check();
806 
807 		/*
808 		 * Free buffers from the clean queue until we meet our
809 		 * targets.
810 		 *
811 		 * Theory of operation:  The buffer cache is most efficient
812 		 * when some free buffer headers and space are always
813 		 * available to getnewbuf().  This daemon attempts to prevent
814 		 * the excessive blocking and synchronization associated
815 		 * with shortfall.  It goes through three phases according
816 		 * demand:
817 		 *
818 		 * 1)	The daemon wakes up voluntarily once per-second
819 		 *	during idle periods when the counters are below
820 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
821 		 *
822 		 * 2)	The daemon wakes up as we cross the thresholds
823 		 *	ahead of any potential blocking.  This may bounce
824 		 *	slightly according to the rate of consumption and
825 		 *	release.
826 		 *
827 		 * 3)	The daemon and consumers are starved for working
828 		 *	clean buffers.  This is the 'bufspace' sleep below
829 		 *	which will inefficiently trade bufs with bqrelse
830 		 *	until we return to condition 2.
831 		 */
832 		while (bd->bd_bufspace > bd->bd_lobufspace ||
833 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
834 			if (buf_recycle(bd, false) != 0) {
835 				if (bd_flushall(bd))
836 					continue;
837 				/*
838 				 * Speedup dirty if we've run out of clean
839 				 * buffers.  This is possible in particular
840 				 * because softdep may held many bufs locked
841 				 * pending writes to other bufs which are
842 				 * marked for delayed write, exhausting
843 				 * clean space until they are written.
844 				 */
845 				bd_speedup();
846 				BD_LOCK(bd);
847 				if (bd->bd_wanted) {
848 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
849 					    PRIBIO|PDROP, "bufspace", hz/10);
850 				} else
851 					BD_UNLOCK(bd);
852 			}
853 			maybe_yield();
854 		}
855 		bufspace_daemon_wait(bd);
856 	}
857 }
858 
859 /*
860  *	bufmallocadjust:
861  *
862  *	Adjust the reported bufspace for a malloc managed buffer, possibly
863  *	waking any waiters.
864  */
865 static void
866 bufmallocadjust(struct buf *bp, int bufsize)
867 {
868 	int diff;
869 
870 	KASSERT((bp->b_flags & B_MALLOC) != 0,
871 	    ("bufmallocadjust: non-malloc buf %p", bp));
872 	diff = bufsize - bp->b_bufsize;
873 	if (diff < 0)
874 		atomic_subtract_long(&bufmallocspace, -diff);
875 	else
876 		atomic_add_long(&bufmallocspace, diff);
877 	bp->b_bufsize = bufsize;
878 }
879 
880 /*
881  *	runningwakeup:
882  *
883  *	Wake up processes that are waiting on asynchronous writes to fall
884  *	below lorunningspace.
885  */
886 static void
887 runningwakeup(void)
888 {
889 
890 	mtx_lock(&rbreqlock);
891 	if (runningbufreq) {
892 		runningbufreq = 0;
893 		wakeup(&runningbufreq);
894 	}
895 	mtx_unlock(&rbreqlock);
896 }
897 
898 /*
899  *	runningbufwakeup:
900  *
901  *	Decrement the outstanding write count according.
902  */
903 void
904 runningbufwakeup(struct buf *bp)
905 {
906 	long space, bspace;
907 
908 	bspace = bp->b_runningbufspace;
909 	if (bspace == 0)
910 		return;
911 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
912 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
913 	    space, bspace));
914 	bp->b_runningbufspace = 0;
915 	/*
916 	 * Only acquire the lock and wakeup on the transition from exceeding
917 	 * the threshold to falling below it.
918 	 */
919 	if (space < lorunningspace)
920 		return;
921 	if (space - bspace > lorunningspace)
922 		return;
923 	runningwakeup();
924 }
925 
926 /*
927  *	waitrunningbufspace()
928  *
929  *	runningbufspace is a measure of the amount of I/O currently
930  *	running.  This routine is used in async-write situations to
931  *	prevent creating huge backups of pending writes to a device.
932  *	Only asynchronous writes are governed by this function.
933  *
934  *	This does NOT turn an async write into a sync write.  It waits
935  *	for earlier writes to complete and generally returns before the
936  *	caller's write has reached the device.
937  */
938 void
939 waitrunningbufspace(void)
940 {
941 
942 	mtx_lock(&rbreqlock);
943 	while (runningbufspace > hirunningspace) {
944 		runningbufreq = 1;
945 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
946 	}
947 	mtx_unlock(&rbreqlock);
948 }
949 
950 /*
951  *	vfs_buf_test_cache:
952  *
953  *	Called when a buffer is extended.  This function clears the B_CACHE
954  *	bit if the newly extended portion of the buffer does not contain
955  *	valid data.
956  */
957 static __inline void
958 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
959     vm_offset_t size, vm_page_t m)
960 {
961 
962 	/*
963 	 * This function and its results are protected by higher level
964 	 * synchronization requiring vnode and buf locks to page in and
965 	 * validate pages.
966 	 */
967 	if (bp->b_flags & B_CACHE) {
968 		int base = (foff + off) & PAGE_MASK;
969 		if (vm_page_is_valid(m, base, size) == 0)
970 			bp->b_flags &= ~B_CACHE;
971 	}
972 }
973 
974 /* Wake up the buffer daemon if necessary */
975 static void
976 bd_wakeup(void)
977 {
978 
979 	mtx_lock(&bdlock);
980 	if (bd_request == 0) {
981 		bd_request = 1;
982 		wakeup(&bd_request);
983 	}
984 	mtx_unlock(&bdlock);
985 }
986 
987 /*
988  * Adjust the maxbcachbuf tunable.
989  */
990 static void
991 maxbcachebuf_adjust(void)
992 {
993 	int i;
994 
995 	/*
996 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
997 	 */
998 	i = 2;
999 	while (i * 2 <= maxbcachebuf)
1000 		i *= 2;
1001 	maxbcachebuf = i;
1002 	if (maxbcachebuf < MAXBSIZE)
1003 		maxbcachebuf = MAXBSIZE;
1004 	if (maxbcachebuf > maxphys)
1005 		maxbcachebuf = maxphys;
1006 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1007 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1008 }
1009 
1010 /*
1011  * bd_speedup - speedup the buffer cache flushing code
1012  */
1013 void
1014 bd_speedup(void)
1015 {
1016 	int needwake;
1017 
1018 	mtx_lock(&bdlock);
1019 	needwake = 0;
1020 	if (bd_speedupreq == 0 || bd_request == 0)
1021 		needwake = 1;
1022 	bd_speedupreq = 1;
1023 	bd_request = 1;
1024 	if (needwake)
1025 		wakeup(&bd_request);
1026 	mtx_unlock(&bdlock);
1027 }
1028 
1029 #ifdef __i386__
1030 #define	TRANSIENT_DENOM	5
1031 #else
1032 #define	TRANSIENT_DENOM 10
1033 #endif
1034 
1035 /*
1036  * Calculating buffer cache scaling values and reserve space for buffer
1037  * headers.  This is called during low level kernel initialization and
1038  * may be called more then once.  We CANNOT write to the memory area
1039  * being reserved at this time.
1040  */
1041 caddr_t
1042 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1043 {
1044 	int tuned_nbuf;
1045 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1046 
1047 	/*
1048 	 * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
1049 	 * this when sizing maps based on the amount of physical memory
1050 	 * available.
1051 	 */
1052 #if defined(KASAN)
1053 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1054 	    (KASAN_SHADOW_SCALE + 1);
1055 #elif defined(KMSAN)
1056 	physmem_est /= 3;
1057 
1058 	/*
1059 	 * KMSAN cannot reliably determine whether buffer data is initialized
1060 	 * unless it is updated through a KVA mapping.
1061 	 */
1062 	unmapped_buf_allowed = 0;
1063 #endif
1064 
1065 	/*
1066 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1067 	 * PAGE_SIZE is >= 1K)
1068 	 */
1069 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1070 
1071 	maxbcachebuf_adjust();
1072 	/*
1073 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1074 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1075 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1076 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1077 	 * the buffer cache we limit the eventual kva reservation to
1078 	 * maxbcache bytes.
1079 	 *
1080 	 * factor represents the 1/4 x ram conversion.
1081 	 */
1082 	if (nbuf == 0) {
1083 		int factor = 4 * BKVASIZE / 1024;
1084 
1085 		nbuf = 50;
1086 		if (physmem_est > 4096)
1087 			nbuf += min((physmem_est - 4096) / factor,
1088 			    65536 / factor);
1089 		if (physmem_est > 65536)
1090 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1091 			    32 * 1024 * 1024 / (factor * 5));
1092 
1093 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1094 			nbuf = maxbcache / BKVASIZE;
1095 		tuned_nbuf = 1;
1096 	} else
1097 		tuned_nbuf = 0;
1098 
1099 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1100 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1101 	if (nbuf > maxbuf) {
1102 		if (!tuned_nbuf)
1103 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1104 			    maxbuf);
1105 		nbuf = maxbuf;
1106 	}
1107 
1108 	/*
1109 	 * Ideal allocation size for the transient bio submap is 10%
1110 	 * of the maximal space buffer map.  This roughly corresponds
1111 	 * to the amount of the buffer mapped for typical UFS load.
1112 	 *
1113 	 * Clip the buffer map to reserve space for the transient
1114 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1115 	 * maximum buffer map extent on the platform.
1116 	 *
1117 	 * The fall-back to the maxbuf in case of maxbcache unset,
1118 	 * allows to not trim the buffer KVA for the architectures
1119 	 * with ample KVA space.
1120 	 */
1121 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1122 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1123 		buf_sz = (long)nbuf * BKVASIZE;
1124 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1125 		    (TRANSIENT_DENOM - 1)) {
1126 			/*
1127 			 * There is more KVA than memory.  Do not
1128 			 * adjust buffer map size, and assign the rest
1129 			 * of maxbuf to transient map.
1130 			 */
1131 			biotmap_sz = maxbuf_sz - buf_sz;
1132 		} else {
1133 			/*
1134 			 * Buffer map spans all KVA we could afford on
1135 			 * this platform.  Give 10% (20% on i386) of
1136 			 * the buffer map to the transient bio map.
1137 			 */
1138 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1139 			buf_sz -= biotmap_sz;
1140 		}
1141 		if (biotmap_sz / INT_MAX > maxphys)
1142 			bio_transient_maxcnt = INT_MAX;
1143 		else
1144 			bio_transient_maxcnt = biotmap_sz / maxphys;
1145 		/*
1146 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1147 		 * using the transient mapping.
1148 		 */
1149 		if (bio_transient_maxcnt > 1024)
1150 			bio_transient_maxcnt = 1024;
1151 		if (tuned_nbuf)
1152 			nbuf = buf_sz / BKVASIZE;
1153 	}
1154 
1155 	if (nswbuf == 0) {
1156 		nswbuf = min(nbuf / 4, 256);
1157 		if (nswbuf < NSWBUF_MIN)
1158 			nswbuf = NSWBUF_MIN;
1159 	}
1160 
1161 	/*
1162 	 * Reserve space for the buffer cache buffers
1163 	 */
1164 	buf = (char *)v;
1165 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1166 	    atop(maxbcachebuf)) * nbuf;
1167 
1168 	return (v);
1169 }
1170 
1171 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1172 void
1173 bufinit(void)
1174 {
1175 	struct buf *bp;
1176 	int i;
1177 
1178 	KASSERT(maxbcachebuf >= MAXBSIZE,
1179 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1180 	    MAXBSIZE));
1181 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1182 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1183 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1184 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1185 
1186 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
1187 
1188 	/* finally, initialize each buffer header and stick on empty q */
1189 	for (i = 0; i < nbuf; i++) {
1190 		bp = nbufp(i);
1191 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1192 		bp->b_flags = B_INVAL;
1193 		bp->b_rcred = NOCRED;
1194 		bp->b_wcred = NOCRED;
1195 		bp->b_qindex = QUEUE_NONE;
1196 		bp->b_domain = -1;
1197 		bp->b_subqueue = mp_maxid + 1;
1198 		bp->b_xflags = 0;
1199 		bp->b_data = bp->b_kvabase = unmapped_buf;
1200 		LIST_INIT(&bp->b_dep);
1201 		BUF_LOCKINIT(bp);
1202 		bq_insert(&bqempty, bp, false);
1203 	}
1204 
1205 	/*
1206 	 * maxbufspace is the absolute maximum amount of buffer space we are
1207 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1208 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1209 	 * used by most other requests.  The differential is required to
1210 	 * ensure that metadata deadlocks don't occur.
1211 	 *
1212 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1213 	 * this may result in KVM fragmentation which is not handled optimally
1214 	 * by the system. XXX This is less true with vmem.  We could use
1215 	 * PAGE_SIZE.
1216 	 */
1217 	maxbufspace = (long)nbuf * BKVASIZE;
1218 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1219 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1220 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1221 
1222 	/*
1223 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1224 	 * arbitrarily and may need further tuning. It corresponds to
1225 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1226 	 * which fits with many RAID controllers' tagged queuing limits.
1227 	 * The lower 1 MiB limit is the historical upper limit for
1228 	 * hirunningspace.
1229 	 */
1230 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1231 	    16 * 1024 * 1024), 1024 * 1024);
1232 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1233 
1234 	/*
1235 	 * Limit the amount of malloc memory since it is wired permanently into
1236 	 * the kernel space.  Even though this is accounted for in the buffer
1237 	 * allocation, we don't want the malloced region to grow uncontrolled.
1238 	 * The malloc scheme improves memory utilization significantly on
1239 	 * average (small) directories.
1240 	 */
1241 	maxbufmallocspace = hibufspace / 20;
1242 
1243 	/*
1244 	 * Reduce the chance of a deadlock occurring by limiting the number
1245 	 * of delayed-write dirty buffers we allow to stack up.
1246 	 */
1247 	hidirtybuffers = nbuf / 4 + 20;
1248 	dirtybufthresh = hidirtybuffers * 9 / 10;
1249 	/*
1250 	 * To support extreme low-memory systems, make sure hidirtybuffers
1251 	 * cannot eat up all available buffer space.  This occurs when our
1252 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1253 	 * buffer space assuming BKVASIZE'd buffers.
1254 	 */
1255 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1256 		hidirtybuffers >>= 1;
1257 	}
1258 	lodirtybuffers = hidirtybuffers / 2;
1259 
1260 	/*
1261 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1262 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1263 	 * are counted as free but will be unavailable to threads executing
1264 	 * on other cpus.
1265 	 *
1266 	 * hifreebuffers is the free target for the bufspace daemon.  This
1267 	 * should be set appropriately to limit work per-iteration.
1268 	 */
1269 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1270 	hifreebuffers = (3 * lofreebuffers) / 2;
1271 	numfreebuffers = nbuf;
1272 
1273 	/* Setup the kva and free list allocators. */
1274 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1275 	buf_zone = uma_zcache_create("buf free cache",
1276 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1277 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1278 
1279 	/*
1280 	 * Size the clean queue according to the amount of buffer space.
1281 	 * One queue per-256mb up to the max.  More queues gives better
1282 	 * concurrency but less accurate LRU.
1283 	 */
1284 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1285 	for (i = 0 ; i < buf_domains; i++) {
1286 		struct bufdomain *bd;
1287 
1288 		bd = &bdomain[i];
1289 		bd_init(bd);
1290 		bd->bd_freebuffers = nbuf / buf_domains;
1291 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1292 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1293 		bd->bd_bufspace = 0;
1294 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1295 		bd->bd_hibufspace = hibufspace / buf_domains;
1296 		bd->bd_lobufspace = lobufspace / buf_domains;
1297 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1298 		bd->bd_numdirtybuffers = 0;
1299 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1300 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1301 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1302 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1303 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1304 	}
1305 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1306 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1307 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1308 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1309 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1310 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1311 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1312 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1313 }
1314 
1315 #ifdef INVARIANTS
1316 static inline void
1317 vfs_buf_check_mapped(struct buf *bp)
1318 {
1319 
1320 	KASSERT(bp->b_kvabase != unmapped_buf,
1321 	    ("mapped buf: b_kvabase was not updated %p", bp));
1322 	KASSERT(bp->b_data != unmapped_buf,
1323 	    ("mapped buf: b_data was not updated %p", bp));
1324 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1325 	    maxphys, ("b_data + b_offset unmapped %p", bp));
1326 }
1327 
1328 static inline void
1329 vfs_buf_check_unmapped(struct buf *bp)
1330 {
1331 
1332 	KASSERT(bp->b_data == unmapped_buf,
1333 	    ("unmapped buf: corrupted b_data %p", bp));
1334 }
1335 
1336 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1337 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1338 #else
1339 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1340 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1341 #endif
1342 
1343 static int
1344 isbufbusy(struct buf *bp)
1345 {
1346 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1347 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1348 		return (1);
1349 	return (0);
1350 }
1351 
1352 /*
1353  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1354  */
1355 void
1356 bufshutdown(int show_busybufs)
1357 {
1358 	static int first_buf_printf = 1;
1359 	struct buf *bp;
1360 	int i, iter, nbusy, pbusy;
1361 #ifndef PREEMPTION
1362 	int subiter;
1363 #endif
1364 
1365 	/*
1366 	 * Sync filesystems for shutdown
1367 	 */
1368 	wdog_kern_pat(WD_LASTVAL);
1369 	kern_sync(curthread);
1370 
1371 	/*
1372 	 * With soft updates, some buffers that are
1373 	 * written will be remarked as dirty until other
1374 	 * buffers are written.
1375 	 */
1376 	for (iter = pbusy = 0; iter < 20; iter++) {
1377 		nbusy = 0;
1378 		for (i = nbuf - 1; i >= 0; i--) {
1379 			bp = nbufp(i);
1380 			if (isbufbusy(bp))
1381 				nbusy++;
1382 		}
1383 		if (nbusy == 0) {
1384 			if (first_buf_printf)
1385 				printf("All buffers synced.");
1386 			break;
1387 		}
1388 		if (first_buf_printf) {
1389 			printf("Syncing disks, buffers remaining... ");
1390 			first_buf_printf = 0;
1391 		}
1392 		printf("%d ", nbusy);
1393 		if (nbusy < pbusy)
1394 			iter = 0;
1395 		pbusy = nbusy;
1396 
1397 		wdog_kern_pat(WD_LASTVAL);
1398 		kern_sync(curthread);
1399 
1400 #ifdef PREEMPTION
1401 		/*
1402 		 * Spin for a while to allow interrupt threads to run.
1403 		 */
1404 		DELAY(50000 * iter);
1405 #else
1406 		/*
1407 		 * Context switch several times to allow interrupt
1408 		 * threads to run.
1409 		 */
1410 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1411 			thread_lock(curthread);
1412 			mi_switch(SW_VOL);
1413 			DELAY(1000);
1414 		}
1415 #endif
1416 	}
1417 	printf("\n");
1418 	/*
1419 	 * Count only busy local buffers to prevent forcing
1420 	 * a fsck if we're just a client of a wedged NFS server
1421 	 */
1422 	nbusy = 0;
1423 	for (i = nbuf - 1; i >= 0; i--) {
1424 		bp = nbufp(i);
1425 		if (isbufbusy(bp)) {
1426 #if 0
1427 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1428 			if (bp->b_dev == NULL) {
1429 				TAILQ_REMOVE(&mountlist,
1430 				    bp->b_vp->v_mount, mnt_list);
1431 				continue;
1432 			}
1433 #endif
1434 			nbusy++;
1435 			if (show_busybufs > 0) {
1436 				printf(
1437 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1438 				    nbusy, bp, bp->b_vp, bp->b_flags,
1439 				    (intmax_t)bp->b_blkno,
1440 				    (intmax_t)bp->b_lblkno);
1441 				BUF_LOCKPRINTINFO(bp);
1442 				if (show_busybufs > 1)
1443 					vn_printf(bp->b_vp,
1444 					    "vnode content: ");
1445 			}
1446 		}
1447 	}
1448 	if (nbusy) {
1449 		/*
1450 		 * Failed to sync all blocks. Indicate this and don't
1451 		 * unmount filesystems (thus forcing an fsck on reboot).
1452 		 */
1453 		printf("Giving up on %d buffers\n", nbusy);
1454 		DELAY(5000000);	/* 5 seconds */
1455 		swapoff_all();
1456 	} else {
1457 		if (!first_buf_printf)
1458 			printf("Final sync complete\n");
1459 
1460 		/*
1461 		 * Unmount filesystems.  Swapoff before unmount,
1462 		 * because file-backed swap is non-operational after unmount
1463 		 * of the underlying filesystem.
1464 		 */
1465 		if (!KERNEL_PANICKED()) {
1466 			swapoff_all();
1467 			vfs_unmountall();
1468 		}
1469 	}
1470 	DELAY(100000);		/* wait for console output to finish */
1471 }
1472 
1473 static void
1474 bpmap_qenter(struct buf *bp)
1475 {
1476 
1477 	BUF_CHECK_MAPPED(bp);
1478 
1479 	/*
1480 	 * bp->b_data is relative to bp->b_offset, but
1481 	 * bp->b_offset may be offset into the first page.
1482 	 */
1483 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1484 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1485 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1486 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1487 }
1488 
1489 static inline struct bufdomain *
1490 bufdomain(struct buf *bp)
1491 {
1492 
1493 	return (&bdomain[bp->b_domain]);
1494 }
1495 
1496 static struct bufqueue *
1497 bufqueue(struct buf *bp)
1498 {
1499 
1500 	switch (bp->b_qindex) {
1501 	case QUEUE_NONE:
1502 		/* FALLTHROUGH */
1503 	case QUEUE_SENTINEL:
1504 		return (NULL);
1505 	case QUEUE_EMPTY:
1506 		return (&bqempty);
1507 	case QUEUE_DIRTY:
1508 		return (&bufdomain(bp)->bd_dirtyq);
1509 	case QUEUE_CLEAN:
1510 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1511 	default:
1512 		break;
1513 	}
1514 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1515 }
1516 
1517 /*
1518  * Return the locked bufqueue that bp is a member of.
1519  */
1520 static struct bufqueue *
1521 bufqueue_acquire(struct buf *bp)
1522 {
1523 	struct bufqueue *bq, *nbq;
1524 
1525 	/*
1526 	 * bp can be pushed from a per-cpu queue to the
1527 	 * cleanq while we're waiting on the lock.  Retry
1528 	 * if the queues don't match.
1529 	 */
1530 	bq = bufqueue(bp);
1531 	BQ_LOCK(bq);
1532 	for (;;) {
1533 		nbq = bufqueue(bp);
1534 		if (bq == nbq)
1535 			break;
1536 		BQ_UNLOCK(bq);
1537 		BQ_LOCK(nbq);
1538 		bq = nbq;
1539 	}
1540 	return (bq);
1541 }
1542 
1543 /*
1544  *	binsfree:
1545  *
1546  *	Insert the buffer into the appropriate free list.  Requires a
1547  *	locked buffer on entry and buffer is unlocked before return.
1548  */
1549 static void
1550 binsfree(struct buf *bp, int qindex)
1551 {
1552 	struct bufdomain *bd;
1553 	struct bufqueue *bq;
1554 
1555 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1556 	    ("binsfree: Invalid qindex %d", qindex));
1557 	BUF_ASSERT_XLOCKED(bp);
1558 
1559 	/*
1560 	 * Handle delayed bremfree() processing.
1561 	 */
1562 	if (bp->b_flags & B_REMFREE) {
1563 		if (bp->b_qindex == qindex) {
1564 			bp->b_flags |= B_REUSE;
1565 			bp->b_flags &= ~B_REMFREE;
1566 			BUF_UNLOCK(bp);
1567 			return;
1568 		}
1569 		bq = bufqueue_acquire(bp);
1570 		bq_remove(bq, bp);
1571 		BQ_UNLOCK(bq);
1572 	}
1573 	bd = bufdomain(bp);
1574 	if (qindex == QUEUE_CLEAN) {
1575 		if (bd->bd_lim != 0)
1576 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1577 		else
1578 			bq = bd->bd_cleanq;
1579 	} else
1580 		bq = &bd->bd_dirtyq;
1581 	bq_insert(bq, bp, true);
1582 }
1583 
1584 /*
1585  * buf_free:
1586  *
1587  *	Free a buffer to the buf zone once it no longer has valid contents.
1588  */
1589 static void
1590 buf_free(struct buf *bp)
1591 {
1592 
1593 	if (bp->b_flags & B_REMFREE)
1594 		bremfreef(bp);
1595 	if (bp->b_vflags & BV_BKGRDINPROG)
1596 		panic("losing buffer 1");
1597 	if (bp->b_rcred != NOCRED) {
1598 		crfree(bp->b_rcred);
1599 		bp->b_rcred = NOCRED;
1600 	}
1601 	if (bp->b_wcred != NOCRED) {
1602 		crfree(bp->b_wcred);
1603 		bp->b_wcred = NOCRED;
1604 	}
1605 	if (!LIST_EMPTY(&bp->b_dep))
1606 		buf_deallocate(bp);
1607 	bufkva_free(bp);
1608 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1609 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1610 	BUF_UNLOCK(bp);
1611 	uma_zfree(buf_zone, bp);
1612 }
1613 
1614 /*
1615  * buf_import:
1616  *
1617  *	Import bufs into the uma cache from the buf list.  The system still
1618  *	expects a static array of bufs and much of the synchronization
1619  *	around bufs assumes type stable storage.  As a result, UMA is used
1620  *	only as a per-cpu cache of bufs still maintained on a global list.
1621  */
1622 static int
1623 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1624 {
1625 	struct buf *bp;
1626 	int i;
1627 
1628 	BQ_LOCK(&bqempty);
1629 	for (i = 0; i < cnt; i++) {
1630 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1631 		if (bp == NULL)
1632 			break;
1633 		bq_remove(&bqempty, bp);
1634 		store[i] = bp;
1635 	}
1636 	BQ_UNLOCK(&bqempty);
1637 
1638 	return (i);
1639 }
1640 
1641 /*
1642  * buf_release:
1643  *
1644  *	Release bufs from the uma cache back to the buffer queues.
1645  */
1646 static void
1647 buf_release(void *arg, void **store, int cnt)
1648 {
1649 	struct bufqueue *bq;
1650 	struct buf *bp;
1651         int i;
1652 
1653 	bq = &bqempty;
1654 	BQ_LOCK(bq);
1655         for (i = 0; i < cnt; i++) {
1656 		bp = store[i];
1657 		/* Inline bq_insert() to batch locking. */
1658 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1659 		bp->b_flags &= ~(B_AGE | B_REUSE);
1660 		bq->bq_len++;
1661 		bp->b_qindex = bq->bq_index;
1662 	}
1663 	BQ_UNLOCK(bq);
1664 }
1665 
1666 /*
1667  * buf_alloc:
1668  *
1669  *	Allocate an empty buffer header.
1670  */
1671 static struct buf *
1672 buf_alloc(struct bufdomain *bd)
1673 {
1674 	struct buf *bp;
1675 	int freebufs, error;
1676 
1677 	/*
1678 	 * We can only run out of bufs in the buf zone if the average buf
1679 	 * is less than BKVASIZE.  In this case the actual wait/block will
1680 	 * come from buf_reycle() failing to flush one of these small bufs.
1681 	 */
1682 	bp = NULL;
1683 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1684 	if (freebufs > 0)
1685 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1686 	if (bp == NULL) {
1687 		atomic_add_int(&bd->bd_freebuffers, 1);
1688 		bufspace_daemon_wakeup(bd);
1689 		counter_u64_add(numbufallocfails, 1);
1690 		return (NULL);
1691 	}
1692 	/*
1693 	 * Wake-up the bufspace daemon on transition below threshold.
1694 	 */
1695 	if (freebufs == bd->bd_lofreebuffers)
1696 		bufspace_daemon_wakeup(bd);
1697 
1698 	error = BUF_LOCK(bp, LK_EXCLUSIVE, NULL);
1699 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1700 	    error));
1701 	(void)error;
1702 
1703 	KASSERT(bp->b_vp == NULL,
1704 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1705 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1706 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1707 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1708 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1709 	KASSERT(bp->b_npages == 0,
1710 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1711 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1712 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1713 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1714 
1715 	bp->b_domain = BD_DOMAIN(bd);
1716 	bp->b_flags = 0;
1717 	bp->b_ioflags = 0;
1718 	bp->b_xflags = 0;
1719 	bp->b_vflags = 0;
1720 	bp->b_vp = NULL;
1721 	bp->b_blkno = bp->b_lblkno = 0;
1722 	bp->b_offset = NOOFFSET;
1723 	bp->b_iodone = 0;
1724 	bp->b_error = 0;
1725 	bp->b_resid = 0;
1726 	bp->b_bcount = 0;
1727 	bp->b_npages = 0;
1728 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1729 	bp->b_bufobj = NULL;
1730 	bp->b_data = bp->b_kvabase = unmapped_buf;
1731 	bp->b_fsprivate1 = NULL;
1732 	bp->b_fsprivate2 = NULL;
1733 	bp->b_fsprivate3 = NULL;
1734 	LIST_INIT(&bp->b_dep);
1735 
1736 	return (bp);
1737 }
1738 
1739 /*
1740  *	buf_recycle:
1741  *
1742  *	Free a buffer from the given bufqueue.  kva controls whether the
1743  *	freed buf must own some kva resources.  This is used for
1744  *	defragmenting.
1745  */
1746 static int
1747 buf_recycle(struct bufdomain *bd, bool kva)
1748 {
1749 	struct bufqueue *bq;
1750 	struct buf *bp, *nbp;
1751 
1752 	if (kva)
1753 		counter_u64_add(bufdefragcnt, 1);
1754 	nbp = NULL;
1755 	bq = bd->bd_cleanq;
1756 	BQ_LOCK(bq);
1757 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1758 	    ("buf_recycle: Locks don't match"));
1759 	nbp = TAILQ_FIRST(&bq->bq_queue);
1760 
1761 	/*
1762 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1763 	 * depending.
1764 	 */
1765 	while ((bp = nbp) != NULL) {
1766 		/*
1767 		 * Calculate next bp (we can only use it if we do not
1768 		 * release the bqlock).
1769 		 */
1770 		nbp = TAILQ_NEXT(bp, b_freelist);
1771 
1772 		/*
1773 		 * If we are defragging then we need a buffer with
1774 		 * some kva to reclaim.
1775 		 */
1776 		if (kva && bp->b_kvasize == 0)
1777 			continue;
1778 
1779 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1780 			continue;
1781 
1782 		/*
1783 		 * Implement a second chance algorithm for frequently
1784 		 * accessed buffers.
1785 		 */
1786 		if ((bp->b_flags & B_REUSE) != 0) {
1787 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1788 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1789 			bp->b_flags &= ~B_REUSE;
1790 			BUF_UNLOCK(bp);
1791 			continue;
1792 		}
1793 
1794 		/*
1795 		 * Skip buffers with background writes in progress.
1796 		 */
1797 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1798 			BUF_UNLOCK(bp);
1799 			continue;
1800 		}
1801 
1802 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1803 		    ("buf_recycle: inconsistent queue %d bp %p",
1804 		    bp->b_qindex, bp));
1805 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1806 		    ("getnewbuf: queue domain %d doesn't match request %d",
1807 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1808 		/*
1809 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1810 		 * the scan from this point on.
1811 		 */
1812 		bq_remove(bq, bp);
1813 		BQ_UNLOCK(bq);
1814 
1815 		/*
1816 		 * Requeue the background write buffer with error and
1817 		 * restart the scan.
1818 		 */
1819 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1820 			bqrelse(bp);
1821 			BQ_LOCK(bq);
1822 			nbp = TAILQ_FIRST(&bq->bq_queue);
1823 			continue;
1824 		}
1825 		bp->b_flags |= B_INVAL;
1826 		brelse(bp);
1827 		return (0);
1828 	}
1829 	bd->bd_wanted = 1;
1830 	BQ_UNLOCK(bq);
1831 
1832 	return (ENOBUFS);
1833 }
1834 
1835 /*
1836  *	bremfree:
1837  *
1838  *	Mark the buffer for removal from the appropriate free list.
1839  *
1840  */
1841 void
1842 bremfree(struct buf *bp)
1843 {
1844 
1845 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1846 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1847 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1848 	KASSERT(bp->b_qindex != QUEUE_NONE,
1849 	    ("bremfree: buffer %p not on a queue.", bp));
1850 	BUF_ASSERT_XLOCKED(bp);
1851 
1852 	bp->b_flags |= B_REMFREE;
1853 }
1854 
1855 /*
1856  *	bremfreef:
1857  *
1858  *	Force an immediate removal from a free list.  Used only in nfs when
1859  *	it abuses the b_freelist pointer.
1860  */
1861 void
1862 bremfreef(struct buf *bp)
1863 {
1864 	struct bufqueue *bq;
1865 
1866 	bq = bufqueue_acquire(bp);
1867 	bq_remove(bq, bp);
1868 	BQ_UNLOCK(bq);
1869 }
1870 
1871 static void
1872 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1873 {
1874 
1875 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1876 	TAILQ_INIT(&bq->bq_queue);
1877 	bq->bq_len = 0;
1878 	bq->bq_index = qindex;
1879 	bq->bq_subqueue = subqueue;
1880 }
1881 
1882 static void
1883 bd_init(struct bufdomain *bd)
1884 {
1885 	int i;
1886 
1887 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1888 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1889 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1890 	for (i = 0; i <= mp_maxid; i++)
1891 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1892 		    "bufq clean subqueue lock");
1893 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1894 }
1895 
1896 /*
1897  *	bq_remove:
1898  *
1899  *	Removes a buffer from the free list, must be called with the
1900  *	correct qlock held.
1901  */
1902 static void
1903 bq_remove(struct bufqueue *bq, struct buf *bp)
1904 {
1905 
1906 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1907 	    bp, bp->b_vp, bp->b_flags);
1908 	KASSERT(bp->b_qindex != QUEUE_NONE,
1909 	    ("bq_remove: buffer %p not on a queue.", bp));
1910 	KASSERT(bufqueue(bp) == bq,
1911 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1912 
1913 	BQ_ASSERT_LOCKED(bq);
1914 	if (bp->b_qindex != QUEUE_EMPTY) {
1915 		BUF_ASSERT_XLOCKED(bp);
1916 	}
1917 	KASSERT(bq->bq_len >= 1,
1918 	    ("queue %d underflow", bp->b_qindex));
1919 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1920 	bq->bq_len--;
1921 	bp->b_qindex = QUEUE_NONE;
1922 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1923 }
1924 
1925 static void
1926 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1927 {
1928 	struct buf *bp;
1929 
1930 	BQ_ASSERT_LOCKED(bq);
1931 	if (bq != bd->bd_cleanq) {
1932 		BD_LOCK(bd);
1933 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1934 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1935 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1936 			    b_freelist);
1937 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1938 		}
1939 		bd->bd_cleanq->bq_len += bq->bq_len;
1940 		bq->bq_len = 0;
1941 	}
1942 	if (bd->bd_wanted) {
1943 		bd->bd_wanted = 0;
1944 		wakeup(&bd->bd_wanted);
1945 	}
1946 	if (bq != bd->bd_cleanq)
1947 		BD_UNLOCK(bd);
1948 }
1949 
1950 static int
1951 bd_flushall(struct bufdomain *bd)
1952 {
1953 	struct bufqueue *bq;
1954 	int flushed;
1955 	int i;
1956 
1957 	if (bd->bd_lim == 0)
1958 		return (0);
1959 	flushed = 0;
1960 	for (i = 0; i <= mp_maxid; i++) {
1961 		bq = &bd->bd_subq[i];
1962 		if (bq->bq_len == 0)
1963 			continue;
1964 		BQ_LOCK(bq);
1965 		bd_flush(bd, bq);
1966 		BQ_UNLOCK(bq);
1967 		flushed++;
1968 	}
1969 
1970 	return (flushed);
1971 }
1972 
1973 static void
1974 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1975 {
1976 	struct bufdomain *bd;
1977 
1978 	if (bp->b_qindex != QUEUE_NONE)
1979 		panic("bq_insert: free buffer %p onto another queue?", bp);
1980 
1981 	bd = bufdomain(bp);
1982 	if (bp->b_flags & B_AGE) {
1983 		/* Place this buf directly on the real queue. */
1984 		if (bq->bq_index == QUEUE_CLEAN)
1985 			bq = bd->bd_cleanq;
1986 		BQ_LOCK(bq);
1987 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
1988 	} else {
1989 		BQ_LOCK(bq);
1990 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1991 	}
1992 	bp->b_flags &= ~(B_AGE | B_REUSE);
1993 	bq->bq_len++;
1994 	bp->b_qindex = bq->bq_index;
1995 	bp->b_subqueue = bq->bq_subqueue;
1996 
1997 	/*
1998 	 * Unlock before we notify so that we don't wakeup a waiter that
1999 	 * fails a trylock on the buf and sleeps again.
2000 	 */
2001 	if (unlock)
2002 		BUF_UNLOCK(bp);
2003 
2004 	if (bp->b_qindex == QUEUE_CLEAN) {
2005 		/*
2006 		 * Flush the per-cpu queue and notify any waiters.
2007 		 */
2008 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2009 		    bq->bq_len >= bd->bd_lim))
2010 			bd_flush(bd, bq);
2011 	}
2012 	BQ_UNLOCK(bq);
2013 }
2014 
2015 /*
2016  *	bufkva_free:
2017  *
2018  *	Free the kva allocation for a buffer.
2019  *
2020  */
2021 static void
2022 bufkva_free(struct buf *bp)
2023 {
2024 
2025 #ifdef INVARIANTS
2026 	if (bp->b_kvasize == 0) {
2027 		KASSERT(bp->b_kvabase == unmapped_buf &&
2028 		    bp->b_data == unmapped_buf,
2029 		    ("Leaked KVA space on %p", bp));
2030 	} else if (buf_mapped(bp))
2031 		BUF_CHECK_MAPPED(bp);
2032 	else
2033 		BUF_CHECK_UNMAPPED(bp);
2034 #endif
2035 	if (bp->b_kvasize == 0)
2036 		return;
2037 
2038 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2039 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2040 	counter_u64_add(buffreekvacnt, 1);
2041 	bp->b_data = bp->b_kvabase = unmapped_buf;
2042 	bp->b_kvasize = 0;
2043 }
2044 
2045 /*
2046  *	bufkva_alloc:
2047  *
2048  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2049  */
2050 static int
2051 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2052 {
2053 	vm_offset_t addr;
2054 	int error;
2055 
2056 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2057 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2058 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
2059 	KASSERT(maxsize <= maxbcachebuf,
2060 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2061 
2062 	bufkva_free(bp);
2063 
2064 	addr = 0;
2065 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2066 	if (error != 0) {
2067 		/*
2068 		 * Buffer map is too fragmented.  Request the caller
2069 		 * to defragment the map.
2070 		 */
2071 		return (error);
2072 	}
2073 	bp->b_kvabase = (caddr_t)addr;
2074 	bp->b_kvasize = maxsize;
2075 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2076 	if ((gbflags & GB_UNMAPPED) != 0) {
2077 		bp->b_data = unmapped_buf;
2078 		BUF_CHECK_UNMAPPED(bp);
2079 	} else {
2080 		bp->b_data = bp->b_kvabase;
2081 		BUF_CHECK_MAPPED(bp);
2082 	}
2083 	return (0);
2084 }
2085 
2086 /*
2087  *	bufkva_reclaim:
2088  *
2089  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2090  *	callback that fires to avoid returning failure.
2091  */
2092 static void
2093 bufkva_reclaim(vmem_t *vmem, int flags)
2094 {
2095 	bool done;
2096 	int q;
2097 	int i;
2098 
2099 	done = false;
2100 	for (i = 0; i < 5; i++) {
2101 		for (q = 0; q < buf_domains; q++)
2102 			if (buf_recycle(&bdomain[q], true) != 0)
2103 				done = true;
2104 		if (done)
2105 			break;
2106 	}
2107 	return;
2108 }
2109 
2110 /*
2111  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2112  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2113  * the buffer is valid and we do not have to do anything.
2114  */
2115 static void
2116 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2117     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2118 {
2119 	struct buf *rabp;
2120 	struct thread *td;
2121 	int i;
2122 
2123 	td = curthread;
2124 
2125 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2126 		if (inmem(vp, *rablkno))
2127 			continue;
2128 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2129 		if ((rabp->b_flags & B_CACHE) != 0) {
2130 			brelse(rabp);
2131 			continue;
2132 		}
2133 #ifdef RACCT
2134 		if (racct_enable) {
2135 			PROC_LOCK(curproc);
2136 			racct_add_buf(curproc, rabp, 0);
2137 			PROC_UNLOCK(curproc);
2138 		}
2139 #endif /* RACCT */
2140 		td->td_ru.ru_inblock++;
2141 		rabp->b_flags |= B_ASYNC;
2142 		rabp->b_flags &= ~B_INVAL;
2143 		if ((flags & GB_CKHASH) != 0) {
2144 			rabp->b_flags |= B_CKHASH;
2145 			rabp->b_ckhashcalc = ckhashfunc;
2146 		}
2147 		rabp->b_ioflags &= ~BIO_ERROR;
2148 		rabp->b_iocmd = BIO_READ;
2149 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2150 			rabp->b_rcred = crhold(cred);
2151 		vfs_busy_pages(rabp, 0);
2152 		BUF_KERNPROC(rabp);
2153 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2154 		bstrategy(rabp);
2155 	}
2156 }
2157 
2158 /*
2159  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2160  *
2161  * Get a buffer with the specified data.  Look in the cache first.  We
2162  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2163  * is set, the buffer is valid and we do not have to do anything, see
2164  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2165  *
2166  * Always return a NULL buffer pointer (in bpp) when returning an error.
2167  *
2168  * The blkno parameter is the logical block being requested. Normally
2169  * the mapping of logical block number to disk block address is done
2170  * by calling VOP_BMAP(). However, if the mapping is already known, the
2171  * disk block address can be passed using the dblkno parameter. If the
2172  * disk block address is not known, then the same value should be passed
2173  * for blkno and dblkno.
2174  */
2175 int
2176 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2177     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2178     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2179 {
2180 	struct buf *bp;
2181 	struct thread *td;
2182 	int error, readwait, rv;
2183 
2184 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2185 	td = curthread;
2186 	/*
2187 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2188 	 * are specified.
2189 	 */
2190 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2191 	if (error != 0) {
2192 		*bpp = NULL;
2193 		return (error);
2194 	}
2195 	KASSERT(blkno == bp->b_lblkno,
2196 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2197 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2198 	flags &= ~GB_NOSPARSE;
2199 	*bpp = bp;
2200 
2201 	/*
2202 	 * If not found in cache, do some I/O
2203 	 */
2204 	readwait = 0;
2205 	if ((bp->b_flags & B_CACHE) == 0) {
2206 #ifdef RACCT
2207 		if (racct_enable) {
2208 			PROC_LOCK(td->td_proc);
2209 			racct_add_buf(td->td_proc, bp, 0);
2210 			PROC_UNLOCK(td->td_proc);
2211 		}
2212 #endif /* RACCT */
2213 		td->td_ru.ru_inblock++;
2214 		bp->b_iocmd = BIO_READ;
2215 		bp->b_flags &= ~B_INVAL;
2216 		if ((flags & GB_CKHASH) != 0) {
2217 			bp->b_flags |= B_CKHASH;
2218 			bp->b_ckhashcalc = ckhashfunc;
2219 		}
2220 		if ((flags & GB_CVTENXIO) != 0)
2221 			bp->b_xflags |= BX_CVTENXIO;
2222 		bp->b_ioflags &= ~BIO_ERROR;
2223 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2224 			bp->b_rcred = crhold(cred);
2225 		vfs_busy_pages(bp, 0);
2226 		bp->b_iooffset = dbtob(bp->b_blkno);
2227 		bstrategy(bp);
2228 		++readwait;
2229 	}
2230 
2231 	/*
2232 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2233 	 */
2234 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2235 
2236 	rv = 0;
2237 	if (readwait) {
2238 		rv = bufwait(bp);
2239 		if (rv != 0) {
2240 			brelse(bp);
2241 			*bpp = NULL;
2242 		}
2243 	}
2244 	return (rv);
2245 }
2246 
2247 /*
2248  * Write, release buffer on completion.  (Done by iodone
2249  * if async).  Do not bother writing anything if the buffer
2250  * is invalid.
2251  *
2252  * Note that we set B_CACHE here, indicating that buffer is
2253  * fully valid and thus cacheable.  This is true even of NFS
2254  * now so we set it generally.  This could be set either here
2255  * or in biodone() since the I/O is synchronous.  We put it
2256  * here.
2257  */
2258 int
2259 bufwrite(struct buf *bp)
2260 {
2261 	int oldflags;
2262 	struct vnode *vp;
2263 	long space;
2264 	int vp_md;
2265 
2266 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2267 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2268 		bp->b_flags |= B_INVAL | B_RELBUF;
2269 		bp->b_flags &= ~B_CACHE;
2270 		brelse(bp);
2271 		return (ENXIO);
2272 	}
2273 	if (bp->b_flags & B_INVAL) {
2274 		brelse(bp);
2275 		return (0);
2276 	}
2277 
2278 	if (bp->b_flags & B_BARRIER)
2279 		atomic_add_long(&barrierwrites, 1);
2280 
2281 	oldflags = bp->b_flags;
2282 
2283 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2284 	    ("FFS background buffer should not get here %p", bp));
2285 
2286 	vp = bp->b_vp;
2287 	if (vp)
2288 		vp_md = vp->v_vflag & VV_MD;
2289 	else
2290 		vp_md = 0;
2291 
2292 	/*
2293 	 * Mark the buffer clean.  Increment the bufobj write count
2294 	 * before bundirty() call, to prevent other thread from seeing
2295 	 * empty dirty list and zero counter for writes in progress,
2296 	 * falsely indicating that the bufobj is clean.
2297 	 */
2298 	bufobj_wref(bp->b_bufobj);
2299 	bundirty(bp);
2300 
2301 	bp->b_flags &= ~B_DONE;
2302 	bp->b_ioflags &= ~BIO_ERROR;
2303 	bp->b_flags |= B_CACHE;
2304 	bp->b_iocmd = BIO_WRITE;
2305 
2306 	vfs_busy_pages(bp, 1);
2307 
2308 	/*
2309 	 * Normal bwrites pipeline writes
2310 	 */
2311 	bp->b_runningbufspace = bp->b_bufsize;
2312 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2313 
2314 #ifdef RACCT
2315 	if (racct_enable) {
2316 		PROC_LOCK(curproc);
2317 		racct_add_buf(curproc, bp, 1);
2318 		PROC_UNLOCK(curproc);
2319 	}
2320 #endif /* RACCT */
2321 	curthread->td_ru.ru_oublock++;
2322 	if (oldflags & B_ASYNC)
2323 		BUF_KERNPROC(bp);
2324 	bp->b_iooffset = dbtob(bp->b_blkno);
2325 	buf_track(bp, __func__);
2326 	bstrategy(bp);
2327 
2328 	if ((oldflags & B_ASYNC) == 0) {
2329 		int rtval = bufwait(bp);
2330 		brelse(bp);
2331 		return (rtval);
2332 	} else if (space > hirunningspace) {
2333 		/*
2334 		 * don't allow the async write to saturate the I/O
2335 		 * system.  We will not deadlock here because
2336 		 * we are blocking waiting for I/O that is already in-progress
2337 		 * to complete. We do not block here if it is the update
2338 		 * or syncer daemon trying to clean up as that can lead
2339 		 * to deadlock.
2340 		 */
2341 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2342 			waitrunningbufspace();
2343 	}
2344 
2345 	return (0);
2346 }
2347 
2348 void
2349 bufbdflush(struct bufobj *bo, struct buf *bp)
2350 {
2351 	struct buf *nbp;
2352 	struct bufdomain *bd;
2353 
2354 	bd = &bdomain[bo->bo_domain];
2355 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2356 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2357 		altbufferflushes++;
2358 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2359 		BO_LOCK(bo);
2360 		/*
2361 		 * Try to find a buffer to flush.
2362 		 */
2363 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2364 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2365 			    BUF_LOCK(nbp,
2366 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2367 				continue;
2368 			if (bp == nbp)
2369 				panic("bdwrite: found ourselves");
2370 			BO_UNLOCK(bo);
2371 			/* Don't countdeps with the bo lock held. */
2372 			if (buf_countdeps(nbp, 0)) {
2373 				BO_LOCK(bo);
2374 				BUF_UNLOCK(nbp);
2375 				continue;
2376 			}
2377 			if (nbp->b_flags & B_CLUSTEROK) {
2378 				vfs_bio_awrite(nbp);
2379 			} else {
2380 				bremfree(nbp);
2381 				bawrite(nbp);
2382 			}
2383 			dirtybufferflushes++;
2384 			break;
2385 		}
2386 		if (nbp == NULL)
2387 			BO_UNLOCK(bo);
2388 	}
2389 }
2390 
2391 /*
2392  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2393  * anything if the buffer is marked invalid.
2394  *
2395  * Note that since the buffer must be completely valid, we can safely
2396  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2397  * biodone() in order to prevent getblk from writing the buffer
2398  * out synchronously.
2399  */
2400 void
2401 bdwrite(struct buf *bp)
2402 {
2403 	struct thread *td = curthread;
2404 	struct vnode *vp;
2405 	struct bufobj *bo;
2406 
2407 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2408 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2409 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2410 	    ("Barrier request in delayed write %p", bp));
2411 
2412 	if (bp->b_flags & B_INVAL) {
2413 		brelse(bp);
2414 		return;
2415 	}
2416 
2417 	/*
2418 	 * If we have too many dirty buffers, don't create any more.
2419 	 * If we are wildly over our limit, then force a complete
2420 	 * cleanup. Otherwise, just keep the situation from getting
2421 	 * out of control. Note that we have to avoid a recursive
2422 	 * disaster and not try to clean up after our own cleanup!
2423 	 */
2424 	vp = bp->b_vp;
2425 	bo = bp->b_bufobj;
2426 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2427 		td->td_pflags |= TDP_INBDFLUSH;
2428 		BO_BDFLUSH(bo, bp);
2429 		td->td_pflags &= ~TDP_INBDFLUSH;
2430 	} else
2431 		recursiveflushes++;
2432 
2433 	bdirty(bp);
2434 	/*
2435 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2436 	 * true even of NFS now.
2437 	 */
2438 	bp->b_flags |= B_CACHE;
2439 
2440 	/*
2441 	 * This bmap keeps the system from needing to do the bmap later,
2442 	 * perhaps when the system is attempting to do a sync.  Since it
2443 	 * is likely that the indirect block -- or whatever other datastructure
2444 	 * that the filesystem needs is still in memory now, it is a good
2445 	 * thing to do this.  Note also, that if the pageout daemon is
2446 	 * requesting a sync -- there might not be enough memory to do
2447 	 * the bmap then...  So, this is important to do.
2448 	 */
2449 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2450 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2451 	}
2452 
2453 	buf_track(bp, __func__);
2454 
2455 	/*
2456 	 * Set the *dirty* buffer range based upon the VM system dirty
2457 	 * pages.
2458 	 *
2459 	 * Mark the buffer pages as clean.  We need to do this here to
2460 	 * satisfy the vnode_pager and the pageout daemon, so that it
2461 	 * thinks that the pages have been "cleaned".  Note that since
2462 	 * the pages are in a delayed write buffer -- the VFS layer
2463 	 * "will" see that the pages get written out on the next sync,
2464 	 * or perhaps the cluster will be completed.
2465 	 */
2466 	vfs_clean_pages_dirty_buf(bp);
2467 	bqrelse(bp);
2468 
2469 	/*
2470 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2471 	 * due to the softdep code.
2472 	 */
2473 }
2474 
2475 /*
2476  *	bdirty:
2477  *
2478  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2479  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2480  *	itself to properly update it in the dirty/clean lists.  We mark it
2481  *	B_DONE to ensure that any asynchronization of the buffer properly
2482  *	clears B_DONE ( else a panic will occur later ).
2483  *
2484  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2485  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2486  *	should only be called if the buffer is known-good.
2487  *
2488  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2489  *	count.
2490  *
2491  *	The buffer must be on QUEUE_NONE.
2492  */
2493 void
2494 bdirty(struct buf *bp)
2495 {
2496 
2497 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2498 	    bp, bp->b_vp, bp->b_flags);
2499 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2500 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2501 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2502 	bp->b_flags &= ~(B_RELBUF);
2503 	bp->b_iocmd = BIO_WRITE;
2504 
2505 	if ((bp->b_flags & B_DELWRI) == 0) {
2506 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2507 		reassignbuf(bp);
2508 		bdirtyadd(bp);
2509 	}
2510 }
2511 
2512 /*
2513  *	bundirty:
2514  *
2515  *	Clear B_DELWRI for buffer.
2516  *
2517  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2518  *	count.
2519  *
2520  *	The buffer must be on QUEUE_NONE.
2521  */
2522 
2523 void
2524 bundirty(struct buf *bp)
2525 {
2526 
2527 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2528 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2529 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2530 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2531 
2532 	if (bp->b_flags & B_DELWRI) {
2533 		bp->b_flags &= ~B_DELWRI;
2534 		reassignbuf(bp);
2535 		bdirtysub(bp);
2536 	}
2537 	/*
2538 	 * Since it is now being written, we can clear its deferred write flag.
2539 	 */
2540 	bp->b_flags &= ~B_DEFERRED;
2541 }
2542 
2543 /*
2544  *	bawrite:
2545  *
2546  *	Asynchronous write.  Start output on a buffer, but do not wait for
2547  *	it to complete.  The buffer is released when the output completes.
2548  *
2549  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2550  *	B_INVAL buffers.  Not us.
2551  */
2552 void
2553 bawrite(struct buf *bp)
2554 {
2555 
2556 	bp->b_flags |= B_ASYNC;
2557 	(void) bwrite(bp);
2558 }
2559 
2560 /*
2561  *	babarrierwrite:
2562  *
2563  *	Asynchronous barrier write.  Start output on a buffer, but do not
2564  *	wait for it to complete.  Place a write barrier after this write so
2565  *	that this buffer and all buffers written before it are committed to
2566  *	the disk before any buffers written after this write are committed
2567  *	to the disk.  The buffer is released when the output completes.
2568  */
2569 void
2570 babarrierwrite(struct buf *bp)
2571 {
2572 
2573 	bp->b_flags |= B_ASYNC | B_BARRIER;
2574 	(void) bwrite(bp);
2575 }
2576 
2577 /*
2578  *	bbarrierwrite:
2579  *
2580  *	Synchronous barrier write.  Start output on a buffer and wait for
2581  *	it to complete.  Place a write barrier after this write so that
2582  *	this buffer and all buffers written before it are committed to
2583  *	the disk before any buffers written after this write are committed
2584  *	to the disk.  The buffer is released when the output completes.
2585  */
2586 int
2587 bbarrierwrite(struct buf *bp)
2588 {
2589 
2590 	bp->b_flags |= B_BARRIER;
2591 	return (bwrite(bp));
2592 }
2593 
2594 /*
2595  *	bwillwrite:
2596  *
2597  *	Called prior to the locking of any vnodes when we are expecting to
2598  *	write.  We do not want to starve the buffer cache with too many
2599  *	dirty buffers so we block here.  By blocking prior to the locking
2600  *	of any vnodes we attempt to avoid the situation where a locked vnode
2601  *	prevents the various system daemons from flushing related buffers.
2602  */
2603 void
2604 bwillwrite(void)
2605 {
2606 
2607 	if (buf_dirty_count_severe()) {
2608 		mtx_lock(&bdirtylock);
2609 		while (buf_dirty_count_severe()) {
2610 			bdirtywait = 1;
2611 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2612 			    "flswai", 0);
2613 		}
2614 		mtx_unlock(&bdirtylock);
2615 	}
2616 }
2617 
2618 /*
2619  * Return true if we have too many dirty buffers.
2620  */
2621 int
2622 buf_dirty_count_severe(void)
2623 {
2624 
2625 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2626 }
2627 
2628 /*
2629  *	brelse:
2630  *
2631  *	Release a busy buffer and, if requested, free its resources.  The
2632  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2633  *	to be accessed later as a cache entity or reused for other purposes.
2634  */
2635 void
2636 brelse(struct buf *bp)
2637 {
2638 	struct mount *v_mnt;
2639 	int qindex;
2640 
2641 	/*
2642 	 * Many functions erroneously call brelse with a NULL bp under rare
2643 	 * error conditions. Simply return when called with a NULL bp.
2644 	 */
2645 	if (bp == NULL)
2646 		return;
2647 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2648 	    bp, bp->b_vp, bp->b_flags);
2649 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2650 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2651 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2652 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2653 
2654 	if (BUF_LOCKRECURSED(bp)) {
2655 		/*
2656 		 * Do not process, in particular, do not handle the
2657 		 * B_INVAL/B_RELBUF and do not release to free list.
2658 		 */
2659 		BUF_UNLOCK(bp);
2660 		return;
2661 	}
2662 
2663 	if (bp->b_flags & B_MANAGED) {
2664 		bqrelse(bp);
2665 		return;
2666 	}
2667 
2668 	if (LIST_EMPTY(&bp->b_dep)) {
2669 		bp->b_flags &= ~B_IOSTARTED;
2670 	} else {
2671 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2672 		    ("brelse: SU io not finished bp %p", bp));
2673 	}
2674 
2675 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2676 		BO_LOCK(bp->b_bufobj);
2677 		bp->b_vflags &= ~BV_BKGRDERR;
2678 		BO_UNLOCK(bp->b_bufobj);
2679 		bdirty(bp);
2680 	}
2681 
2682 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2683 	    (bp->b_flags & B_INVALONERR)) {
2684 		/*
2685 		 * Forced invalidation of dirty buffer contents, to be used
2686 		 * after a failed write in the rare case that the loss of the
2687 		 * contents is acceptable.  The buffer is invalidated and
2688 		 * freed.
2689 		 */
2690 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2691 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2692 	}
2693 
2694 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2695 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2696 	    !(bp->b_flags & B_INVAL)) {
2697 		/*
2698 		 * Failed write, redirty.  All errors except ENXIO (which
2699 		 * means the device is gone) are treated as being
2700 		 * transient.
2701 		 *
2702 		 * XXX Treating EIO as transient is not correct; the
2703 		 * contract with the local storage device drivers is that
2704 		 * they will only return EIO once the I/O is no longer
2705 		 * retriable.  Network I/O also respects this through the
2706 		 * guarantees of TCP and/or the internal retries of NFS.
2707 		 * ENOMEM might be transient, but we also have no way of
2708 		 * knowing when its ok to retry/reschedule.  In general,
2709 		 * this entire case should be made obsolete through better
2710 		 * error handling/recovery and resource scheduling.
2711 		 *
2712 		 * Do this also for buffers that failed with ENXIO, but have
2713 		 * non-empty dependencies - the soft updates code might need
2714 		 * to access the buffer to untangle them.
2715 		 *
2716 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2717 		 */
2718 		bp->b_ioflags &= ~BIO_ERROR;
2719 		bdirty(bp);
2720 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2721 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2722 		/*
2723 		 * Either a failed read I/O, or we were asked to free or not
2724 		 * cache the buffer, or we failed to write to a device that's
2725 		 * no longer present.
2726 		 */
2727 		bp->b_flags |= B_INVAL;
2728 		if (!LIST_EMPTY(&bp->b_dep))
2729 			buf_deallocate(bp);
2730 		if (bp->b_flags & B_DELWRI)
2731 			bdirtysub(bp);
2732 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2733 		if ((bp->b_flags & B_VMIO) == 0) {
2734 			allocbuf(bp, 0);
2735 			if (bp->b_vp)
2736 				brelvp(bp);
2737 		}
2738 	}
2739 
2740 	/*
2741 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2742 	 * is called with B_DELWRI set, the underlying pages may wind up
2743 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2744 	 * because pages associated with a B_DELWRI bp are marked clean.
2745 	 *
2746 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2747 	 * if B_DELWRI is set.
2748 	 */
2749 	if (bp->b_flags & B_DELWRI)
2750 		bp->b_flags &= ~B_RELBUF;
2751 
2752 	/*
2753 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2754 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2755 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2756 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2757 	 *
2758 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2759 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2760 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2761 	 *
2762 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2763 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2764 	 * the commit state and we cannot afford to lose the buffer. If the
2765 	 * buffer has a background write in progress, we need to keep it
2766 	 * around to prevent it from being reconstituted and starting a second
2767 	 * background write.
2768 	 */
2769 
2770 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2771 
2772 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2773 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2774 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2775 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2776 		vfs_vmio_invalidate(bp);
2777 		allocbuf(bp, 0);
2778 	}
2779 
2780 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2781 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2782 		allocbuf(bp, 0);
2783 		bp->b_flags &= ~B_NOREUSE;
2784 		if (bp->b_vp != NULL)
2785 			brelvp(bp);
2786 	}
2787 
2788 	/*
2789 	 * If the buffer has junk contents signal it and eventually
2790 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2791 	 * doesn't find it.
2792 	 */
2793 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2794 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2795 		bp->b_flags |= B_INVAL;
2796 	if (bp->b_flags & B_INVAL) {
2797 		if (bp->b_flags & B_DELWRI)
2798 			bundirty(bp);
2799 		if (bp->b_vp)
2800 			brelvp(bp);
2801 	}
2802 
2803 	buf_track(bp, __func__);
2804 
2805 	/* buffers with no memory */
2806 	if (bp->b_bufsize == 0) {
2807 		buf_free(bp);
2808 		return;
2809 	}
2810 	/* buffers with junk contents */
2811 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2812 	    (bp->b_ioflags & BIO_ERROR)) {
2813 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2814 		if (bp->b_vflags & BV_BKGRDINPROG)
2815 			panic("losing buffer 2");
2816 		qindex = QUEUE_CLEAN;
2817 		bp->b_flags |= B_AGE;
2818 	/* remaining buffers */
2819 	} else if (bp->b_flags & B_DELWRI)
2820 		qindex = QUEUE_DIRTY;
2821 	else
2822 		qindex = QUEUE_CLEAN;
2823 
2824 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2825 		panic("brelse: not dirty");
2826 
2827 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2828 	bp->b_xflags &= ~(BX_CVTENXIO);
2829 	/* binsfree unlocks bp. */
2830 	binsfree(bp, qindex);
2831 }
2832 
2833 /*
2834  * Release a buffer back to the appropriate queue but do not try to free
2835  * it.  The buffer is expected to be used again soon.
2836  *
2837  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2838  * biodone() to requeue an async I/O on completion.  It is also used when
2839  * known good buffers need to be requeued but we think we may need the data
2840  * again soon.
2841  *
2842  * XXX we should be able to leave the B_RELBUF hint set on completion.
2843  */
2844 void
2845 bqrelse(struct buf *bp)
2846 {
2847 	int qindex;
2848 
2849 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2850 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2851 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2852 
2853 	qindex = QUEUE_NONE;
2854 	if (BUF_LOCKRECURSED(bp)) {
2855 		/* do not release to free list */
2856 		BUF_UNLOCK(bp);
2857 		return;
2858 	}
2859 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2860 	bp->b_xflags &= ~(BX_CVTENXIO);
2861 
2862 	if (LIST_EMPTY(&bp->b_dep)) {
2863 		bp->b_flags &= ~B_IOSTARTED;
2864 	} else {
2865 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2866 		    ("bqrelse: SU io not finished bp %p", bp));
2867 	}
2868 
2869 	if (bp->b_flags & B_MANAGED) {
2870 		if (bp->b_flags & B_REMFREE)
2871 			bremfreef(bp);
2872 		goto out;
2873 	}
2874 
2875 	/* buffers with stale but valid contents */
2876 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2877 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2878 		BO_LOCK(bp->b_bufobj);
2879 		bp->b_vflags &= ~BV_BKGRDERR;
2880 		BO_UNLOCK(bp->b_bufobj);
2881 		qindex = QUEUE_DIRTY;
2882 	} else {
2883 		if ((bp->b_flags & B_DELWRI) == 0 &&
2884 		    (bp->b_xflags & BX_VNDIRTY))
2885 			panic("bqrelse: not dirty");
2886 		if ((bp->b_flags & B_NOREUSE) != 0) {
2887 			brelse(bp);
2888 			return;
2889 		}
2890 		qindex = QUEUE_CLEAN;
2891 	}
2892 	buf_track(bp, __func__);
2893 	/* binsfree unlocks bp. */
2894 	binsfree(bp, qindex);
2895 	return;
2896 
2897 out:
2898 	buf_track(bp, __func__);
2899 	/* unlock */
2900 	BUF_UNLOCK(bp);
2901 }
2902 
2903 /*
2904  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2905  * restore bogus pages.
2906  */
2907 static void
2908 vfs_vmio_iodone(struct buf *bp)
2909 {
2910 	vm_ooffset_t foff;
2911 	vm_page_t m;
2912 	vm_object_t obj;
2913 	struct vnode *vp __unused;
2914 	int i, iosize, resid;
2915 	bool bogus;
2916 
2917 	obj = bp->b_bufobj->bo_object;
2918 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2919 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2920 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2921 
2922 	vp = bp->b_vp;
2923 	VNPASS(vp->v_holdcnt > 0, vp);
2924 	VNPASS(vp->v_object != NULL, vp);
2925 
2926 	foff = bp->b_offset;
2927 	KASSERT(bp->b_offset != NOOFFSET,
2928 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2929 
2930 	bogus = false;
2931 	iosize = bp->b_bcount - bp->b_resid;
2932 	for (i = 0; i < bp->b_npages; i++) {
2933 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2934 		if (resid > iosize)
2935 			resid = iosize;
2936 
2937 		/*
2938 		 * cleanup bogus pages, restoring the originals
2939 		 */
2940 		m = bp->b_pages[i];
2941 		if (m == bogus_page) {
2942 			bogus = true;
2943 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2944 			if (m == NULL)
2945 				panic("biodone: page disappeared!");
2946 			bp->b_pages[i] = m;
2947 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2948 			/*
2949 			 * In the write case, the valid and clean bits are
2950 			 * already changed correctly ( see bdwrite() ), so we
2951 			 * only need to do this here in the read case.
2952 			 */
2953 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2954 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2955 			    "has unexpected dirty bits", m));
2956 			vfs_page_set_valid(bp, foff, m);
2957 		}
2958 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2959 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2960 		    (intmax_t)foff, (uintmax_t)m->pindex));
2961 
2962 		vm_page_sunbusy(m);
2963 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2964 		iosize -= resid;
2965 	}
2966 	vm_object_pip_wakeupn(obj, bp->b_npages);
2967 	if (bogus && buf_mapped(bp)) {
2968 		BUF_CHECK_MAPPED(bp);
2969 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2970 		    bp->b_pages, bp->b_npages);
2971 	}
2972 }
2973 
2974 /*
2975  * Perform page invalidation when a buffer is released.  The fully invalid
2976  * pages will be reclaimed later in vfs_vmio_truncate().
2977  */
2978 static void
2979 vfs_vmio_invalidate(struct buf *bp)
2980 {
2981 	vm_object_t obj;
2982 	vm_page_t m;
2983 	int flags, i, resid, poffset, presid;
2984 
2985 	if (buf_mapped(bp)) {
2986 		BUF_CHECK_MAPPED(bp);
2987 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2988 	} else
2989 		BUF_CHECK_UNMAPPED(bp);
2990 	/*
2991 	 * Get the base offset and length of the buffer.  Note that
2992 	 * in the VMIO case if the buffer block size is not
2993 	 * page-aligned then b_data pointer may not be page-aligned.
2994 	 * But our b_pages[] array *IS* page aligned.
2995 	 *
2996 	 * block sizes less then DEV_BSIZE (usually 512) are not
2997 	 * supported due to the page granularity bits (m->valid,
2998 	 * m->dirty, etc...).
2999 	 *
3000 	 * See man buf(9) for more information
3001 	 */
3002 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3003 	obj = bp->b_bufobj->bo_object;
3004 	resid = bp->b_bufsize;
3005 	poffset = bp->b_offset & PAGE_MASK;
3006 	VM_OBJECT_WLOCK(obj);
3007 	for (i = 0; i < bp->b_npages; i++) {
3008 		m = bp->b_pages[i];
3009 		if (m == bogus_page)
3010 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
3011 		bp->b_pages[i] = NULL;
3012 
3013 		presid = resid > (PAGE_SIZE - poffset) ?
3014 		    (PAGE_SIZE - poffset) : resid;
3015 		KASSERT(presid >= 0, ("brelse: extra page"));
3016 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3017 		if (pmap_page_wired_mappings(m) == 0)
3018 			vm_page_set_invalid(m, poffset, presid);
3019 		vm_page_sunbusy(m);
3020 		vm_page_release_locked(m, flags);
3021 		resid -= presid;
3022 		poffset = 0;
3023 	}
3024 	VM_OBJECT_WUNLOCK(obj);
3025 	bp->b_npages = 0;
3026 }
3027 
3028 /*
3029  * Page-granular truncation of an existing VMIO buffer.
3030  */
3031 static void
3032 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3033 {
3034 	vm_object_t obj;
3035 	vm_page_t m;
3036 	int flags, i;
3037 
3038 	if (bp->b_npages == desiredpages)
3039 		return;
3040 
3041 	if (buf_mapped(bp)) {
3042 		BUF_CHECK_MAPPED(bp);
3043 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3044 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3045 	} else
3046 		BUF_CHECK_UNMAPPED(bp);
3047 
3048 	/*
3049 	 * The object lock is needed only if we will attempt to free pages.
3050 	 */
3051 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3052 	if ((bp->b_flags & B_DIRECT) != 0) {
3053 		flags |= VPR_TRYFREE;
3054 		obj = bp->b_bufobj->bo_object;
3055 		VM_OBJECT_WLOCK(obj);
3056 	} else {
3057 		obj = NULL;
3058 	}
3059 	for (i = desiredpages; i < bp->b_npages; i++) {
3060 		m = bp->b_pages[i];
3061 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3062 		bp->b_pages[i] = NULL;
3063 		if (obj != NULL)
3064 			vm_page_release_locked(m, flags);
3065 		else
3066 			vm_page_release(m, flags);
3067 	}
3068 	if (obj != NULL)
3069 		VM_OBJECT_WUNLOCK(obj);
3070 	bp->b_npages = desiredpages;
3071 }
3072 
3073 /*
3074  * Byte granular extension of VMIO buffers.
3075  */
3076 static void
3077 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3078 {
3079 	/*
3080 	 * We are growing the buffer, possibly in a
3081 	 * byte-granular fashion.
3082 	 */
3083 	vm_object_t obj;
3084 	vm_offset_t toff;
3085 	vm_offset_t tinc;
3086 	vm_page_t m;
3087 
3088 	/*
3089 	 * Step 1, bring in the VM pages from the object, allocating
3090 	 * them if necessary.  We must clear B_CACHE if these pages
3091 	 * are not valid for the range covered by the buffer.
3092 	 */
3093 	obj = bp->b_bufobj->bo_object;
3094 	if (bp->b_npages < desiredpages) {
3095 		KASSERT(desiredpages <= atop(maxbcachebuf),
3096 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3097 		    bp, desiredpages, maxbcachebuf));
3098 
3099 		/*
3100 		 * We must allocate system pages since blocking
3101 		 * here could interfere with paging I/O, no
3102 		 * matter which process we are.
3103 		 *
3104 		 * Only exclusive busy can be tested here.
3105 		 * Blocking on shared busy might lead to
3106 		 * deadlocks once allocbuf() is called after
3107 		 * pages are vfs_busy_pages().
3108 		 */
3109 		(void)vm_page_grab_pages_unlocked(obj,
3110 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3111 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3112 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3113 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3114 		bp->b_npages = desiredpages;
3115 	}
3116 
3117 	/*
3118 	 * Step 2.  We've loaded the pages into the buffer,
3119 	 * we have to figure out if we can still have B_CACHE
3120 	 * set.  Note that B_CACHE is set according to the
3121 	 * byte-granular range ( bcount and size ), not the
3122 	 * aligned range ( newbsize ).
3123 	 *
3124 	 * The VM test is against m->valid, which is DEV_BSIZE
3125 	 * aligned.  Needless to say, the validity of the data
3126 	 * needs to also be DEV_BSIZE aligned.  Note that this
3127 	 * fails with NFS if the server or some other client
3128 	 * extends the file's EOF.  If our buffer is resized,
3129 	 * B_CACHE may remain set! XXX
3130 	 */
3131 	toff = bp->b_bcount;
3132 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3133 	while ((bp->b_flags & B_CACHE) && toff < size) {
3134 		vm_pindex_t pi;
3135 
3136 		if (tinc > (size - toff))
3137 			tinc = size - toff;
3138 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3139 		m = bp->b_pages[pi];
3140 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3141 		toff += tinc;
3142 		tinc = PAGE_SIZE;
3143 	}
3144 
3145 	/*
3146 	 * Step 3, fixup the KVA pmap.
3147 	 */
3148 	if (buf_mapped(bp))
3149 		bpmap_qenter(bp);
3150 	else
3151 		BUF_CHECK_UNMAPPED(bp);
3152 }
3153 
3154 /*
3155  * Check to see if a block at a particular lbn is available for a clustered
3156  * write.
3157  */
3158 static int
3159 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3160 {
3161 	struct buf *bpa;
3162 	int match;
3163 
3164 	match = 0;
3165 
3166 	/* If the buf isn't in core skip it */
3167 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3168 		return (0);
3169 
3170 	/* If the buf is busy we don't want to wait for it */
3171 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3172 		return (0);
3173 
3174 	/* Only cluster with valid clusterable delayed write buffers */
3175 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3176 	    (B_DELWRI | B_CLUSTEROK))
3177 		goto done;
3178 
3179 	if (bpa->b_bufsize != size)
3180 		goto done;
3181 
3182 	/*
3183 	 * Check to see if it is in the expected place on disk and that the
3184 	 * block has been mapped.
3185 	 */
3186 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3187 		match = 1;
3188 done:
3189 	BUF_UNLOCK(bpa);
3190 	return (match);
3191 }
3192 
3193 /*
3194  *	vfs_bio_awrite:
3195  *
3196  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3197  *	This is much better then the old way of writing only one buffer at
3198  *	a time.  Note that we may not be presented with the buffers in the
3199  *	correct order, so we search for the cluster in both directions.
3200  */
3201 int
3202 vfs_bio_awrite(struct buf *bp)
3203 {
3204 	struct bufobj *bo;
3205 	int i;
3206 	int j;
3207 	daddr_t lblkno = bp->b_lblkno;
3208 	struct vnode *vp = bp->b_vp;
3209 	int ncl;
3210 	int nwritten;
3211 	int size;
3212 	int maxcl;
3213 	int gbflags;
3214 
3215 	bo = &vp->v_bufobj;
3216 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3217 	/*
3218 	 * right now we support clustered writing only to regular files.  If
3219 	 * we find a clusterable block we could be in the middle of a cluster
3220 	 * rather then at the beginning.
3221 	 */
3222 	if ((vp->v_type == VREG) &&
3223 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3224 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3225 		size = vp->v_mount->mnt_stat.f_iosize;
3226 		maxcl = maxphys / size;
3227 
3228 		BO_RLOCK(bo);
3229 		for (i = 1; i < maxcl; i++)
3230 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3231 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3232 				break;
3233 
3234 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3235 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3236 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3237 				break;
3238 		BO_RUNLOCK(bo);
3239 		--j;
3240 		ncl = i + j;
3241 		/*
3242 		 * this is a possible cluster write
3243 		 */
3244 		if (ncl != 1) {
3245 			BUF_UNLOCK(bp);
3246 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3247 			    gbflags);
3248 			return (nwritten);
3249 		}
3250 	}
3251 	bremfree(bp);
3252 	bp->b_flags |= B_ASYNC;
3253 	/*
3254 	 * default (old) behavior, writing out only one block
3255 	 *
3256 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3257 	 */
3258 	nwritten = bp->b_bufsize;
3259 	(void) bwrite(bp);
3260 
3261 	return (nwritten);
3262 }
3263 
3264 /*
3265  *	getnewbuf_kva:
3266  *
3267  *	Allocate KVA for an empty buf header according to gbflags.
3268  */
3269 static int
3270 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3271 {
3272 
3273 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3274 		/*
3275 		 * In order to keep fragmentation sane we only allocate kva
3276 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3277 		 */
3278 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3279 
3280 		if (maxsize != bp->b_kvasize &&
3281 		    bufkva_alloc(bp, maxsize, gbflags))
3282 			return (ENOSPC);
3283 	}
3284 	return (0);
3285 }
3286 
3287 /*
3288  *	getnewbuf:
3289  *
3290  *	Find and initialize a new buffer header, freeing up existing buffers
3291  *	in the bufqueues as necessary.  The new buffer is returned locked.
3292  *
3293  *	We block if:
3294  *		We have insufficient buffer headers
3295  *		We have insufficient buffer space
3296  *		buffer_arena is too fragmented ( space reservation fails )
3297  *		If we have to flush dirty buffers ( but we try to avoid this )
3298  *
3299  *	The caller is responsible for releasing the reserved bufspace after
3300  *	allocbuf() is called.
3301  */
3302 static struct buf *
3303 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3304 {
3305 	struct bufdomain *bd;
3306 	struct buf *bp;
3307 	bool metadata, reserved;
3308 
3309 	bp = NULL;
3310 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3311 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3312 	if (!unmapped_buf_allowed)
3313 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3314 
3315 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3316 	    vp->v_type == VCHR)
3317 		metadata = true;
3318 	else
3319 		metadata = false;
3320 	if (vp == NULL)
3321 		bd = &bdomain[0];
3322 	else
3323 		bd = &bdomain[vp->v_bufobj.bo_domain];
3324 
3325 	counter_u64_add(getnewbufcalls, 1);
3326 	reserved = false;
3327 	do {
3328 		if (reserved == false &&
3329 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3330 			counter_u64_add(getnewbufrestarts, 1);
3331 			continue;
3332 		}
3333 		reserved = true;
3334 		if ((bp = buf_alloc(bd)) == NULL) {
3335 			counter_u64_add(getnewbufrestarts, 1);
3336 			continue;
3337 		}
3338 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3339 			return (bp);
3340 		break;
3341 	} while (buf_recycle(bd, false) == 0);
3342 
3343 	if (reserved)
3344 		bufspace_release(bd, maxsize);
3345 	if (bp != NULL) {
3346 		bp->b_flags |= B_INVAL;
3347 		brelse(bp);
3348 	}
3349 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3350 
3351 	return (NULL);
3352 }
3353 
3354 /*
3355  *	buf_daemon:
3356  *
3357  *	buffer flushing daemon.  Buffers are normally flushed by the
3358  *	update daemon but if it cannot keep up this process starts to
3359  *	take the load in an attempt to prevent getnewbuf() from blocking.
3360  */
3361 static struct kproc_desc buf_kp = {
3362 	"bufdaemon",
3363 	buf_daemon,
3364 	&bufdaemonproc
3365 };
3366 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3367 
3368 static int
3369 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3370 {
3371 	int flushed;
3372 
3373 	flushed = flushbufqueues(vp, bd, target, 0);
3374 	if (flushed == 0) {
3375 		/*
3376 		 * Could not find any buffers without rollback
3377 		 * dependencies, so just write the first one
3378 		 * in the hopes of eventually making progress.
3379 		 */
3380 		if (vp != NULL && target > 2)
3381 			target /= 2;
3382 		flushbufqueues(vp, bd, target, 1);
3383 	}
3384 	return (flushed);
3385 }
3386 
3387 static void
3388 buf_daemon()
3389 {
3390 	struct bufdomain *bd;
3391 	int speedupreq;
3392 	int lodirty;
3393 	int i;
3394 
3395 	/*
3396 	 * This process needs to be suspended prior to shutdown sync.
3397 	 */
3398 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
3399 	    SHUTDOWN_PRI_LAST + 100);
3400 
3401 	/*
3402 	 * Start the buf clean daemons as children threads.
3403 	 */
3404 	for (i = 0 ; i < buf_domains; i++) {
3405 		int error;
3406 
3407 		error = kthread_add((void (*)(void *))bufspace_daemon,
3408 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3409 		if (error)
3410 			panic("error %d spawning bufspace daemon", error);
3411 	}
3412 
3413 	/*
3414 	 * This process is allowed to take the buffer cache to the limit
3415 	 */
3416 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3417 	mtx_lock(&bdlock);
3418 	for (;;) {
3419 		bd_request = 0;
3420 		mtx_unlock(&bdlock);
3421 
3422 		kthread_suspend_check();
3423 
3424 		/*
3425 		 * Save speedupreq for this pass and reset to capture new
3426 		 * requests.
3427 		 */
3428 		speedupreq = bd_speedupreq;
3429 		bd_speedupreq = 0;
3430 
3431 		/*
3432 		 * Flush each domain sequentially according to its level and
3433 		 * the speedup request.
3434 		 */
3435 		for (i = 0; i < buf_domains; i++) {
3436 			bd = &bdomain[i];
3437 			if (speedupreq)
3438 				lodirty = bd->bd_numdirtybuffers / 2;
3439 			else
3440 				lodirty = bd->bd_lodirtybuffers;
3441 			while (bd->bd_numdirtybuffers > lodirty) {
3442 				if (buf_flush(NULL, bd,
3443 				    bd->bd_numdirtybuffers - lodirty) == 0)
3444 					break;
3445 				kern_yield(PRI_USER);
3446 			}
3447 		}
3448 
3449 		/*
3450 		 * Only clear bd_request if we have reached our low water
3451 		 * mark.  The buf_daemon normally waits 1 second and
3452 		 * then incrementally flushes any dirty buffers that have
3453 		 * built up, within reason.
3454 		 *
3455 		 * If we were unable to hit our low water mark and couldn't
3456 		 * find any flushable buffers, we sleep for a short period
3457 		 * to avoid endless loops on unlockable buffers.
3458 		 */
3459 		mtx_lock(&bdlock);
3460 		if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3461 			/*
3462 			 * We reached our low water mark, reset the
3463 			 * request and sleep until we are needed again.
3464 			 * The sleep is just so the suspend code works.
3465 			 */
3466 			bd_request = 0;
3467 			/*
3468 			 * Do an extra wakeup in case dirty threshold
3469 			 * changed via sysctl and the explicit transition
3470 			 * out of shortfall was missed.
3471 			 */
3472 			bdirtywakeup();
3473 			if (runningbufspace <= lorunningspace)
3474 				runningwakeup();
3475 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3476 		} else {
3477 			/*
3478 			 * We couldn't find any flushable dirty buffers but
3479 			 * still have too many dirty buffers, we
3480 			 * have to sleep and try again.  (rare)
3481 			 */
3482 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3483 		}
3484 	}
3485 }
3486 
3487 /*
3488  *	flushbufqueues:
3489  *
3490  *	Try to flush a buffer in the dirty queue.  We must be careful to
3491  *	free up B_INVAL buffers instead of write them, which NFS is
3492  *	particularly sensitive to.
3493  */
3494 static int flushwithdeps = 0;
3495 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3496     &flushwithdeps, 0,
3497     "Number of buffers flushed with dependencies that require rollbacks");
3498 
3499 static int
3500 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3501     int flushdeps)
3502 {
3503 	struct bufqueue *bq;
3504 	struct buf *sentinel;
3505 	struct vnode *vp;
3506 	struct mount *mp;
3507 	struct buf *bp;
3508 	int hasdeps;
3509 	int flushed;
3510 	int error;
3511 	bool unlock;
3512 
3513 	flushed = 0;
3514 	bq = &bd->bd_dirtyq;
3515 	bp = NULL;
3516 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3517 	sentinel->b_qindex = QUEUE_SENTINEL;
3518 	BQ_LOCK(bq);
3519 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3520 	BQ_UNLOCK(bq);
3521 	while (flushed != target) {
3522 		maybe_yield();
3523 		BQ_LOCK(bq);
3524 		bp = TAILQ_NEXT(sentinel, b_freelist);
3525 		if (bp != NULL) {
3526 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3527 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3528 			    b_freelist);
3529 		} else {
3530 			BQ_UNLOCK(bq);
3531 			break;
3532 		}
3533 		/*
3534 		 * Skip sentinels inserted by other invocations of the
3535 		 * flushbufqueues(), taking care to not reorder them.
3536 		 *
3537 		 * Only flush the buffers that belong to the
3538 		 * vnode locked by the curthread.
3539 		 */
3540 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3541 		    bp->b_vp != lvp)) {
3542 			BQ_UNLOCK(bq);
3543 			continue;
3544 		}
3545 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3546 		BQ_UNLOCK(bq);
3547 		if (error != 0)
3548 			continue;
3549 
3550 		/*
3551 		 * BKGRDINPROG can only be set with the buf and bufobj
3552 		 * locks both held.  We tolerate a race to clear it here.
3553 		 */
3554 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3555 		    (bp->b_flags & B_DELWRI) == 0) {
3556 			BUF_UNLOCK(bp);
3557 			continue;
3558 		}
3559 		if (bp->b_flags & B_INVAL) {
3560 			bremfreef(bp);
3561 			brelse(bp);
3562 			flushed++;
3563 			continue;
3564 		}
3565 
3566 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3567 			if (flushdeps == 0) {
3568 				BUF_UNLOCK(bp);
3569 				continue;
3570 			}
3571 			hasdeps = 1;
3572 		} else
3573 			hasdeps = 0;
3574 		/*
3575 		 * We must hold the lock on a vnode before writing
3576 		 * one of its buffers. Otherwise we may confuse, or
3577 		 * in the case of a snapshot vnode, deadlock the
3578 		 * system.
3579 		 *
3580 		 * The lock order here is the reverse of the normal
3581 		 * of vnode followed by buf lock.  This is ok because
3582 		 * the NOWAIT will prevent deadlock.
3583 		 */
3584 		vp = bp->b_vp;
3585 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3586 			BUF_UNLOCK(bp);
3587 			continue;
3588 		}
3589 		if (lvp == NULL) {
3590 			unlock = true;
3591 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3592 		} else {
3593 			ASSERT_VOP_LOCKED(vp, "getbuf");
3594 			unlock = false;
3595 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3596 			    vn_lock(vp, LK_TRYUPGRADE);
3597 		}
3598 		if (error == 0) {
3599 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3600 			    bp, bp->b_vp, bp->b_flags);
3601 			if (curproc == bufdaemonproc) {
3602 				vfs_bio_awrite(bp);
3603 			} else {
3604 				bremfree(bp);
3605 				bwrite(bp);
3606 				counter_u64_add(notbufdflushes, 1);
3607 			}
3608 			vn_finished_write(mp);
3609 			if (unlock)
3610 				VOP_UNLOCK(vp);
3611 			flushwithdeps += hasdeps;
3612 			flushed++;
3613 
3614 			/*
3615 			 * Sleeping on runningbufspace while holding
3616 			 * vnode lock leads to deadlock.
3617 			 */
3618 			if (curproc == bufdaemonproc &&
3619 			    runningbufspace > hirunningspace)
3620 				waitrunningbufspace();
3621 			continue;
3622 		}
3623 		vn_finished_write(mp);
3624 		BUF_UNLOCK(bp);
3625 	}
3626 	BQ_LOCK(bq);
3627 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3628 	BQ_UNLOCK(bq);
3629 	free(sentinel, M_TEMP);
3630 	return (flushed);
3631 }
3632 
3633 /*
3634  * Check to see if a block is currently memory resident.
3635  */
3636 struct buf *
3637 incore(struct bufobj *bo, daddr_t blkno)
3638 {
3639 	return (gbincore_unlocked(bo, blkno));
3640 }
3641 
3642 /*
3643  * Returns true if no I/O is needed to access the
3644  * associated VM object.  This is like incore except
3645  * it also hunts around in the VM system for the data.
3646  */
3647 bool
3648 inmem(struct vnode * vp, daddr_t blkno)
3649 {
3650 	vm_object_t obj;
3651 	vm_offset_t toff, tinc, size;
3652 	vm_page_t m, n;
3653 	vm_ooffset_t off;
3654 	int valid;
3655 
3656 	ASSERT_VOP_LOCKED(vp, "inmem");
3657 
3658 	if (incore(&vp->v_bufobj, blkno))
3659 		return (true);
3660 	if (vp->v_mount == NULL)
3661 		return (false);
3662 	obj = vp->v_object;
3663 	if (obj == NULL)
3664 		return (false);
3665 
3666 	size = PAGE_SIZE;
3667 	if (size > vp->v_mount->mnt_stat.f_iosize)
3668 		size = vp->v_mount->mnt_stat.f_iosize;
3669 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3670 
3671 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3672 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3673 recheck:
3674 		if (m == NULL)
3675 			return (false);
3676 
3677 		tinc = size;
3678 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3679 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3680 		/*
3681 		 * Consider page validity only if page mapping didn't change
3682 		 * during the check.
3683 		 */
3684 		valid = vm_page_is_valid(m,
3685 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3686 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3687 		if (m != n) {
3688 			m = n;
3689 			goto recheck;
3690 		}
3691 		if (!valid)
3692 			return (false);
3693 	}
3694 	return (true);
3695 }
3696 
3697 /*
3698  * Set the dirty range for a buffer based on the status of the dirty
3699  * bits in the pages comprising the buffer.  The range is limited
3700  * to the size of the buffer.
3701  *
3702  * Tell the VM system that the pages associated with this buffer
3703  * are clean.  This is used for delayed writes where the data is
3704  * going to go to disk eventually without additional VM intevention.
3705  *
3706  * Note that while we only really need to clean through to b_bcount, we
3707  * just go ahead and clean through to b_bufsize.
3708  */
3709 static void
3710 vfs_clean_pages_dirty_buf(struct buf *bp)
3711 {
3712 	vm_ooffset_t foff, noff, eoff;
3713 	vm_page_t m;
3714 	int i;
3715 
3716 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3717 		return;
3718 
3719 	foff = bp->b_offset;
3720 	KASSERT(bp->b_offset != NOOFFSET,
3721 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3722 
3723 	vfs_busy_pages_acquire(bp);
3724 	vfs_setdirty_range(bp);
3725 	for (i = 0; i < bp->b_npages; i++) {
3726 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3727 		eoff = noff;
3728 		if (eoff > bp->b_offset + bp->b_bufsize)
3729 			eoff = bp->b_offset + bp->b_bufsize;
3730 		m = bp->b_pages[i];
3731 		vfs_page_set_validclean(bp, foff, m);
3732 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3733 		foff = noff;
3734 	}
3735 	vfs_busy_pages_release(bp);
3736 }
3737 
3738 static void
3739 vfs_setdirty_range(struct buf *bp)
3740 {
3741 	vm_offset_t boffset;
3742 	vm_offset_t eoffset;
3743 	int i;
3744 
3745 	/*
3746 	 * test the pages to see if they have been modified directly
3747 	 * by users through the VM system.
3748 	 */
3749 	for (i = 0; i < bp->b_npages; i++)
3750 		vm_page_test_dirty(bp->b_pages[i]);
3751 
3752 	/*
3753 	 * Calculate the encompassing dirty range, boffset and eoffset,
3754 	 * (eoffset - boffset) bytes.
3755 	 */
3756 
3757 	for (i = 0; i < bp->b_npages; i++) {
3758 		if (bp->b_pages[i]->dirty)
3759 			break;
3760 	}
3761 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3762 
3763 	for (i = bp->b_npages - 1; i >= 0; --i) {
3764 		if (bp->b_pages[i]->dirty) {
3765 			break;
3766 		}
3767 	}
3768 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3769 
3770 	/*
3771 	 * Fit it to the buffer.
3772 	 */
3773 
3774 	if (eoffset > bp->b_bcount)
3775 		eoffset = bp->b_bcount;
3776 
3777 	/*
3778 	 * If we have a good dirty range, merge with the existing
3779 	 * dirty range.
3780 	 */
3781 
3782 	if (boffset < eoffset) {
3783 		if (bp->b_dirtyoff > boffset)
3784 			bp->b_dirtyoff = boffset;
3785 		if (bp->b_dirtyend < eoffset)
3786 			bp->b_dirtyend = eoffset;
3787 	}
3788 }
3789 
3790 /*
3791  * Allocate the KVA mapping for an existing buffer.
3792  * If an unmapped buffer is provided but a mapped buffer is requested, take
3793  * also care to properly setup mappings between pages and KVA.
3794  */
3795 static void
3796 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3797 {
3798 	int bsize, maxsize, need_mapping, need_kva;
3799 	off_t offset;
3800 
3801 	need_mapping = bp->b_data == unmapped_buf &&
3802 	    (gbflags & GB_UNMAPPED) == 0;
3803 	need_kva = bp->b_kvabase == unmapped_buf &&
3804 	    bp->b_data == unmapped_buf &&
3805 	    (gbflags & GB_KVAALLOC) != 0;
3806 	if (!need_mapping && !need_kva)
3807 		return;
3808 
3809 	BUF_CHECK_UNMAPPED(bp);
3810 
3811 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3812 		/*
3813 		 * Buffer is not mapped, but the KVA was already
3814 		 * reserved at the time of the instantiation.  Use the
3815 		 * allocated space.
3816 		 */
3817 		goto has_addr;
3818 	}
3819 
3820 	/*
3821 	 * Calculate the amount of the address space we would reserve
3822 	 * if the buffer was mapped.
3823 	 */
3824 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3825 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3826 	offset = blkno * bsize;
3827 	maxsize = size + (offset & PAGE_MASK);
3828 	maxsize = imax(maxsize, bsize);
3829 
3830 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3831 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3832 			/*
3833 			 * XXXKIB: defragmentation cannot
3834 			 * succeed, not sure what else to do.
3835 			 */
3836 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3837 		}
3838 		counter_u64_add(mappingrestarts, 1);
3839 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3840 	}
3841 has_addr:
3842 	if (need_mapping) {
3843 		/* b_offset is handled by bpmap_qenter. */
3844 		bp->b_data = bp->b_kvabase;
3845 		BUF_CHECK_MAPPED(bp);
3846 		bpmap_qenter(bp);
3847 	}
3848 }
3849 
3850 struct buf *
3851 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3852     int flags)
3853 {
3854 	struct buf *bp;
3855 	int error;
3856 
3857 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3858 	if (error != 0)
3859 		return (NULL);
3860 	return (bp);
3861 }
3862 
3863 /*
3864  *	getblkx:
3865  *
3866  *	Get a block given a specified block and offset into a file/device.
3867  *	The buffers B_DONE bit will be cleared on return, making it almost
3868  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3869  *	return.  The caller should clear B_INVAL prior to initiating a
3870  *	READ.
3871  *
3872  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3873  *	an existing buffer.
3874  *
3875  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3876  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3877  *	and then cleared based on the backing VM.  If the previous buffer is
3878  *	non-0-sized but invalid, B_CACHE will be cleared.
3879  *
3880  *	If getblk() must create a new buffer, the new buffer is returned with
3881  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3882  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3883  *	backing VM.
3884  *
3885  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3886  *	B_CACHE bit is clear.
3887  *
3888  *	What this means, basically, is that the caller should use B_CACHE to
3889  *	determine whether the buffer is fully valid or not and should clear
3890  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3891  *	the buffer by loading its data area with something, the caller needs
3892  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3893  *	the caller should set B_CACHE ( as an optimization ), else the caller
3894  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3895  *	a write attempt or if it was a successful read.  If the caller
3896  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3897  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3898  *
3899  *	The blkno parameter is the logical block being requested. Normally
3900  *	the mapping of logical block number to disk block address is done
3901  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3902  *	disk block address can be passed using the dblkno parameter. If the
3903  *	disk block address is not known, then the same value should be passed
3904  *	for blkno and dblkno.
3905  */
3906 int
3907 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3908     int slptimeo, int flags, struct buf **bpp)
3909 {
3910 	struct buf *bp;
3911 	struct bufobj *bo;
3912 	daddr_t d_blkno;
3913 	int bsize, error, maxsize, vmio;
3914 	off_t offset;
3915 
3916 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3917 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3918 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3919 	if (vp->v_type != VCHR)
3920 		ASSERT_VOP_LOCKED(vp, "getblk");
3921 	if (size > maxbcachebuf)
3922 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3923 		    maxbcachebuf);
3924 	if (!unmapped_buf_allowed)
3925 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3926 
3927 	bo = &vp->v_bufobj;
3928 	d_blkno = dblkno;
3929 
3930 	/* Attempt lockless lookup first. */
3931 	bp = gbincore_unlocked(bo, blkno);
3932 	if (bp == NULL) {
3933 		/*
3934 		 * With GB_NOCREAT we must be sure about not finding the buffer
3935 		 * as it may have been reassigned during unlocked lookup.
3936 		 */
3937 		if ((flags & GB_NOCREAT) != 0)
3938 			goto loop;
3939 		goto newbuf_unlocked;
3940 	}
3941 
3942 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
3943 	    0);
3944 	if (error != 0)
3945 		goto loop;
3946 
3947 	/* Verify buf identify has not changed since lookup. */
3948 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
3949 		goto foundbuf_fastpath;
3950 
3951 	/* It changed, fallback to locked lookup. */
3952 	BUF_UNLOCK_RAW(bp);
3953 
3954 loop:
3955 	BO_RLOCK(bo);
3956 	bp = gbincore(bo, blkno);
3957 	if (bp != NULL) {
3958 		int lockflags;
3959 
3960 		/*
3961 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3962 		 * it must be on a queue.
3963 		 */
3964 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
3965 		    ((flags & GB_LOCK_NOWAIT) ? LK_NOWAIT : LK_SLEEPFAIL);
3966 
3967 		error = BUF_TIMELOCK(bp, lockflags,
3968 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3969 
3970 		/*
3971 		 * If we slept and got the lock we have to restart in case
3972 		 * the buffer changed identities.
3973 		 */
3974 		if (error == ENOLCK)
3975 			goto loop;
3976 		/* We timed out or were interrupted. */
3977 		else if (error != 0)
3978 			return (error);
3979 
3980 foundbuf_fastpath:
3981 		/* If recursed, assume caller knows the rules. */
3982 		if (BUF_LOCKRECURSED(bp))
3983 			goto end;
3984 
3985 		/*
3986 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3987 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3988 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3989 		 * backing VM cache.
3990 		 */
3991 		if (bp->b_flags & B_INVAL)
3992 			bp->b_flags &= ~B_CACHE;
3993 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3994 			bp->b_flags |= B_CACHE;
3995 		if (bp->b_flags & B_MANAGED)
3996 			MPASS(bp->b_qindex == QUEUE_NONE);
3997 		else
3998 			bremfree(bp);
3999 
4000 		/*
4001 		 * check for size inconsistencies for non-VMIO case.
4002 		 */
4003 		if (bp->b_bcount != size) {
4004 			if ((bp->b_flags & B_VMIO) == 0 ||
4005 			    (size > bp->b_kvasize)) {
4006 				if (bp->b_flags & B_DELWRI) {
4007 					bp->b_flags |= B_NOCACHE;
4008 					bwrite(bp);
4009 				} else {
4010 					if (LIST_EMPTY(&bp->b_dep)) {
4011 						bp->b_flags |= B_RELBUF;
4012 						brelse(bp);
4013 					} else {
4014 						bp->b_flags |= B_NOCACHE;
4015 						bwrite(bp);
4016 					}
4017 				}
4018 				goto loop;
4019 			}
4020 		}
4021 
4022 		/*
4023 		 * Handle the case of unmapped buffer which should
4024 		 * become mapped, or the buffer for which KVA
4025 		 * reservation is requested.
4026 		 */
4027 		bp_unmapped_get_kva(bp, blkno, size, flags);
4028 
4029 		/*
4030 		 * If the size is inconsistent in the VMIO case, we can resize
4031 		 * the buffer.  This might lead to B_CACHE getting set or
4032 		 * cleared.  If the size has not changed, B_CACHE remains
4033 		 * unchanged from its previous state.
4034 		 */
4035 		allocbuf(bp, size);
4036 
4037 		KASSERT(bp->b_offset != NOOFFSET,
4038 		    ("getblk: no buffer offset"));
4039 
4040 		/*
4041 		 * A buffer with B_DELWRI set and B_CACHE clear must
4042 		 * be committed before we can return the buffer in
4043 		 * order to prevent the caller from issuing a read
4044 		 * ( due to B_CACHE not being set ) and overwriting
4045 		 * it.
4046 		 *
4047 		 * Most callers, including NFS and FFS, need this to
4048 		 * operate properly either because they assume they
4049 		 * can issue a read if B_CACHE is not set, or because
4050 		 * ( for example ) an uncached B_DELWRI might loop due
4051 		 * to softupdates re-dirtying the buffer.  In the latter
4052 		 * case, B_CACHE is set after the first write completes,
4053 		 * preventing further loops.
4054 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
4055 		 * above while extending the buffer, we cannot allow the
4056 		 * buffer to remain with B_CACHE set after the write
4057 		 * completes or it will represent a corrupt state.  To
4058 		 * deal with this we set B_NOCACHE to scrap the buffer
4059 		 * after the write.
4060 		 *
4061 		 * We might be able to do something fancy, like setting
4062 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
4063 		 * so the below call doesn't set B_CACHE, but that gets real
4064 		 * confusing.  This is much easier.
4065 		 */
4066 
4067 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4068 			bp->b_flags |= B_NOCACHE;
4069 			bwrite(bp);
4070 			goto loop;
4071 		}
4072 		bp->b_flags &= ~B_DONE;
4073 	} else {
4074 		/*
4075 		 * Buffer is not in-core, create new buffer.  The buffer
4076 		 * returned by getnewbuf() is locked.  Note that the returned
4077 		 * buffer is also considered valid (not marked B_INVAL).
4078 		 */
4079 		BO_RUNLOCK(bo);
4080 newbuf_unlocked:
4081 		/*
4082 		 * If the user does not want us to create the buffer, bail out
4083 		 * here.
4084 		 */
4085 		if (flags & GB_NOCREAT)
4086 			return (EEXIST);
4087 
4088 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4089 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4090 		offset = blkno * bsize;
4091 		vmio = vp->v_object != NULL;
4092 		if (vmio) {
4093 			maxsize = size + (offset & PAGE_MASK);
4094 		} else {
4095 			maxsize = size;
4096 			/* Do not allow non-VMIO notmapped buffers. */
4097 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4098 		}
4099 		maxsize = imax(maxsize, bsize);
4100 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4101 		    !vn_isdisk(vp)) {
4102 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4103 			KASSERT(error != EOPNOTSUPP,
4104 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4105 			    vp));
4106 			if (error != 0)
4107 				return (error);
4108 			if (d_blkno == -1)
4109 				return (EJUSTRETURN);
4110 		}
4111 
4112 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4113 		if (bp == NULL) {
4114 			if (slpflag || slptimeo)
4115 				return (ETIMEDOUT);
4116 			/*
4117 			 * XXX This is here until the sleep path is diagnosed
4118 			 * enough to work under very low memory conditions.
4119 			 *
4120 			 * There's an issue on low memory, 4BSD+non-preempt
4121 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4122 			 * exhaustion occurs without sleeping for buffer
4123 			 * reclaimation.  This just sticks in a loop and
4124 			 * constantly attempts to allocate a buffer, which
4125 			 * hits exhaustion and tries to wakeup bufdaemon.
4126 			 * This never happens because we never yield.
4127 			 *
4128 			 * The real solution is to identify and fix these cases
4129 			 * so we aren't effectively busy-waiting in a loop
4130 			 * until the reclaimation path has cycles to run.
4131 			 */
4132 			kern_yield(PRI_USER);
4133 			goto loop;
4134 		}
4135 
4136 		/*
4137 		 * This code is used to make sure that a buffer is not
4138 		 * created while the getnewbuf routine is blocked.
4139 		 * This can be a problem whether the vnode is locked or not.
4140 		 * If the buffer is created out from under us, we have to
4141 		 * throw away the one we just created.
4142 		 *
4143 		 * Note: this must occur before we associate the buffer
4144 		 * with the vp especially considering limitations in
4145 		 * the splay tree implementation when dealing with duplicate
4146 		 * lblkno's.
4147 		 */
4148 		BO_LOCK(bo);
4149 		if (gbincore(bo, blkno)) {
4150 			BO_UNLOCK(bo);
4151 			bp->b_flags |= B_INVAL;
4152 			bufspace_release(bufdomain(bp), maxsize);
4153 			brelse(bp);
4154 			goto loop;
4155 		}
4156 
4157 		/*
4158 		 * Insert the buffer into the hash, so that it can
4159 		 * be found by incore.
4160 		 */
4161 		bp->b_lblkno = blkno;
4162 		bp->b_blkno = d_blkno;
4163 		bp->b_offset = offset;
4164 		bgetvp(vp, bp);
4165 		BO_UNLOCK(bo);
4166 
4167 		/*
4168 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4169 		 * buffer size starts out as 0, B_CACHE will be set by
4170 		 * allocbuf() for the VMIO case prior to it testing the
4171 		 * backing store for validity.
4172 		 */
4173 
4174 		if (vmio) {
4175 			bp->b_flags |= B_VMIO;
4176 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4177 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4178 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4179 		} else {
4180 			bp->b_flags &= ~B_VMIO;
4181 			KASSERT(bp->b_bufobj->bo_object == NULL,
4182 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4183 			    bp, bp->b_bufobj->bo_object));
4184 			BUF_CHECK_MAPPED(bp);
4185 		}
4186 
4187 		allocbuf(bp, size);
4188 		bufspace_release(bufdomain(bp), maxsize);
4189 		bp->b_flags &= ~B_DONE;
4190 	}
4191 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4192 end:
4193 	buf_track(bp, __func__);
4194 	KASSERT(bp->b_bufobj == bo,
4195 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4196 	*bpp = bp;
4197 	return (0);
4198 }
4199 
4200 /*
4201  * Get an empty, disassociated buffer of given size.  The buffer is initially
4202  * set to B_INVAL.
4203  */
4204 struct buf *
4205 geteblk(int size, int flags)
4206 {
4207 	struct buf *bp;
4208 	int maxsize;
4209 
4210 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4211 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4212 		if ((flags & GB_NOWAIT_BD) &&
4213 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4214 			return (NULL);
4215 	}
4216 	allocbuf(bp, size);
4217 	bufspace_release(bufdomain(bp), maxsize);
4218 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4219 	return (bp);
4220 }
4221 
4222 /*
4223  * Truncate the backing store for a non-vmio buffer.
4224  */
4225 static void
4226 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4227 {
4228 
4229 	if (bp->b_flags & B_MALLOC) {
4230 		/*
4231 		 * malloced buffers are not shrunk
4232 		 */
4233 		if (newbsize == 0) {
4234 			bufmallocadjust(bp, 0);
4235 			free(bp->b_data, M_BIOBUF);
4236 			bp->b_data = bp->b_kvabase;
4237 			bp->b_flags &= ~B_MALLOC;
4238 		}
4239 		return;
4240 	}
4241 	vm_hold_free_pages(bp, newbsize);
4242 	bufspace_adjust(bp, newbsize);
4243 }
4244 
4245 /*
4246  * Extend the backing for a non-VMIO buffer.
4247  */
4248 static void
4249 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4250 {
4251 	caddr_t origbuf;
4252 	int origbufsize;
4253 
4254 	/*
4255 	 * We only use malloced memory on the first allocation.
4256 	 * and revert to page-allocated memory when the buffer
4257 	 * grows.
4258 	 *
4259 	 * There is a potential smp race here that could lead
4260 	 * to bufmallocspace slightly passing the max.  It
4261 	 * is probably extremely rare and not worth worrying
4262 	 * over.
4263 	 */
4264 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4265 	    bufmallocspace < maxbufmallocspace) {
4266 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4267 		bp->b_flags |= B_MALLOC;
4268 		bufmallocadjust(bp, newbsize);
4269 		return;
4270 	}
4271 
4272 	/*
4273 	 * If the buffer is growing on its other-than-first
4274 	 * allocation then we revert to the page-allocation
4275 	 * scheme.
4276 	 */
4277 	origbuf = NULL;
4278 	origbufsize = 0;
4279 	if (bp->b_flags & B_MALLOC) {
4280 		origbuf = bp->b_data;
4281 		origbufsize = bp->b_bufsize;
4282 		bp->b_data = bp->b_kvabase;
4283 		bufmallocadjust(bp, 0);
4284 		bp->b_flags &= ~B_MALLOC;
4285 		newbsize = round_page(newbsize);
4286 	}
4287 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4288 	    (vm_offset_t) bp->b_data + newbsize);
4289 	if (origbuf != NULL) {
4290 		bcopy(origbuf, bp->b_data, origbufsize);
4291 		free(origbuf, M_BIOBUF);
4292 	}
4293 	bufspace_adjust(bp, newbsize);
4294 }
4295 
4296 /*
4297  * This code constitutes the buffer memory from either anonymous system
4298  * memory (in the case of non-VMIO operations) or from an associated
4299  * VM object (in the case of VMIO operations).  This code is able to
4300  * resize a buffer up or down.
4301  *
4302  * Note that this code is tricky, and has many complications to resolve
4303  * deadlock or inconsistent data situations.  Tread lightly!!!
4304  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4305  * the caller.  Calling this code willy nilly can result in the loss of data.
4306  *
4307  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4308  * B_CACHE for the non-VMIO case.
4309  */
4310 int
4311 allocbuf(struct buf *bp, int size)
4312 {
4313 	int newbsize;
4314 
4315 	if (bp->b_bcount == size)
4316 		return (1);
4317 
4318 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4319 		panic("allocbuf: buffer too small");
4320 
4321 	newbsize = roundup2(size, DEV_BSIZE);
4322 	if ((bp->b_flags & B_VMIO) == 0) {
4323 		if ((bp->b_flags & B_MALLOC) == 0)
4324 			newbsize = round_page(newbsize);
4325 		/*
4326 		 * Just get anonymous memory from the kernel.  Don't
4327 		 * mess with B_CACHE.
4328 		 */
4329 		if (newbsize < bp->b_bufsize)
4330 			vfs_nonvmio_truncate(bp, newbsize);
4331 		else if (newbsize > bp->b_bufsize)
4332 			vfs_nonvmio_extend(bp, newbsize);
4333 	} else {
4334 		int desiredpages;
4335 
4336 		desiredpages = (size == 0) ? 0 :
4337 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4338 
4339 		if (bp->b_flags & B_MALLOC)
4340 			panic("allocbuf: VMIO buffer can't be malloced");
4341 		/*
4342 		 * Set B_CACHE initially if buffer is 0 length or will become
4343 		 * 0-length.
4344 		 */
4345 		if (size == 0 || bp->b_bufsize == 0)
4346 			bp->b_flags |= B_CACHE;
4347 
4348 		if (newbsize < bp->b_bufsize)
4349 			vfs_vmio_truncate(bp, desiredpages);
4350 		/* XXX This looks as if it should be newbsize > b_bufsize */
4351 		else if (size > bp->b_bcount)
4352 			vfs_vmio_extend(bp, desiredpages, size);
4353 		bufspace_adjust(bp, newbsize);
4354 	}
4355 	bp->b_bcount = size;		/* requested buffer size. */
4356 	return (1);
4357 }
4358 
4359 extern int inflight_transient_maps;
4360 
4361 static struct bio_queue nondump_bios;
4362 
4363 void
4364 biodone(struct bio *bp)
4365 {
4366 	struct mtx *mtxp;
4367 	void (*done)(struct bio *);
4368 	vm_offset_t start, end;
4369 
4370 	biotrack(bp, __func__);
4371 
4372 	/*
4373 	 * Avoid completing I/O when dumping after a panic since that may
4374 	 * result in a deadlock in the filesystem or pager code.  Note that
4375 	 * this doesn't affect dumps that were started manually since we aim
4376 	 * to keep the system usable after it has been resumed.
4377 	 */
4378 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4379 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4380 		return;
4381 	}
4382 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4383 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4384 		bp->bio_flags |= BIO_UNMAPPED;
4385 		start = trunc_page((vm_offset_t)bp->bio_data);
4386 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4387 		bp->bio_data = unmapped_buf;
4388 		pmap_qremove(start, atop(end - start));
4389 		vmem_free(transient_arena, start, end - start);
4390 		atomic_add_int(&inflight_transient_maps, -1);
4391 	}
4392 	done = bp->bio_done;
4393 	/*
4394 	 * The check for done == biodone is to allow biodone to be
4395 	 * used as a bio_done routine.
4396 	 */
4397 	if (done == NULL || done == biodone) {
4398 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4399 		mtx_lock(mtxp);
4400 		bp->bio_flags |= BIO_DONE;
4401 		wakeup(bp);
4402 		mtx_unlock(mtxp);
4403 	} else
4404 		done(bp);
4405 }
4406 
4407 /*
4408  * Wait for a BIO to finish.
4409  */
4410 int
4411 biowait(struct bio *bp, const char *wmesg)
4412 {
4413 	struct mtx *mtxp;
4414 
4415 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4416 	mtx_lock(mtxp);
4417 	while ((bp->bio_flags & BIO_DONE) == 0)
4418 		msleep(bp, mtxp, PRIBIO, wmesg, 0);
4419 	mtx_unlock(mtxp);
4420 	if (bp->bio_error != 0)
4421 		return (bp->bio_error);
4422 	if (!(bp->bio_flags & BIO_ERROR))
4423 		return (0);
4424 	return (EIO);
4425 }
4426 
4427 void
4428 biofinish(struct bio *bp, struct devstat *stat, int error)
4429 {
4430 
4431 	if (error) {
4432 		bp->bio_error = error;
4433 		bp->bio_flags |= BIO_ERROR;
4434 	}
4435 	if (stat != NULL)
4436 		devstat_end_transaction_bio(stat, bp);
4437 	biodone(bp);
4438 }
4439 
4440 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4441 void
4442 biotrack_buf(struct bio *bp, const char *location)
4443 {
4444 
4445 	buf_track(bp->bio_track_bp, location);
4446 }
4447 #endif
4448 
4449 /*
4450  *	bufwait:
4451  *
4452  *	Wait for buffer I/O completion, returning error status.  The buffer
4453  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4454  *	error and cleared.
4455  */
4456 int
4457 bufwait(struct buf *bp)
4458 {
4459 	if (bp->b_iocmd == BIO_READ)
4460 		bwait(bp, PRIBIO, "biord");
4461 	else
4462 		bwait(bp, PRIBIO, "biowr");
4463 	if (bp->b_flags & B_EINTR) {
4464 		bp->b_flags &= ~B_EINTR;
4465 		return (EINTR);
4466 	}
4467 	if (bp->b_ioflags & BIO_ERROR) {
4468 		return (bp->b_error ? bp->b_error : EIO);
4469 	} else {
4470 		return (0);
4471 	}
4472 }
4473 
4474 /*
4475  *	bufdone:
4476  *
4477  *	Finish I/O on a buffer, optionally calling a completion function.
4478  *	This is usually called from an interrupt so process blocking is
4479  *	not allowed.
4480  *
4481  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4482  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4483  *	assuming B_INVAL is clear.
4484  *
4485  *	For the VMIO case, we set B_CACHE if the op was a read and no
4486  *	read error occurred, or if the op was a write.  B_CACHE is never
4487  *	set if the buffer is invalid or otherwise uncacheable.
4488  *
4489  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4490  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4491  *	in the biodone routine.
4492  */
4493 void
4494 bufdone(struct buf *bp)
4495 {
4496 	struct bufobj *dropobj;
4497 	void    (*biodone)(struct buf *);
4498 
4499 	buf_track(bp, __func__);
4500 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4501 	dropobj = NULL;
4502 
4503 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4504 
4505 	runningbufwakeup(bp);
4506 	if (bp->b_iocmd == BIO_WRITE)
4507 		dropobj = bp->b_bufobj;
4508 	/* call optional completion function if requested */
4509 	if (bp->b_iodone != NULL) {
4510 		biodone = bp->b_iodone;
4511 		bp->b_iodone = NULL;
4512 		(*biodone) (bp);
4513 		if (dropobj)
4514 			bufobj_wdrop(dropobj);
4515 		return;
4516 	}
4517 	if (bp->b_flags & B_VMIO) {
4518 		/*
4519 		 * Set B_CACHE if the op was a normal read and no error
4520 		 * occurred.  B_CACHE is set for writes in the b*write()
4521 		 * routines.
4522 		 */
4523 		if (bp->b_iocmd == BIO_READ &&
4524 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4525 		    !(bp->b_ioflags & BIO_ERROR))
4526 			bp->b_flags |= B_CACHE;
4527 		vfs_vmio_iodone(bp);
4528 	}
4529 	if (!LIST_EMPTY(&bp->b_dep))
4530 		buf_complete(bp);
4531 	if ((bp->b_flags & B_CKHASH) != 0) {
4532 		KASSERT(bp->b_iocmd == BIO_READ,
4533 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4534 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4535 		(*bp->b_ckhashcalc)(bp);
4536 	}
4537 	/*
4538 	 * For asynchronous completions, release the buffer now. The brelse
4539 	 * will do a wakeup there if necessary - so no need to do a wakeup
4540 	 * here in the async case. The sync case always needs to do a wakeup.
4541 	 */
4542 	if (bp->b_flags & B_ASYNC) {
4543 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4544 		    (bp->b_ioflags & BIO_ERROR))
4545 			brelse(bp);
4546 		else
4547 			bqrelse(bp);
4548 	} else
4549 		bdone(bp);
4550 	if (dropobj)
4551 		bufobj_wdrop(dropobj);
4552 }
4553 
4554 /*
4555  * This routine is called in lieu of iodone in the case of
4556  * incomplete I/O.  This keeps the busy status for pages
4557  * consistent.
4558  */
4559 void
4560 vfs_unbusy_pages(struct buf *bp)
4561 {
4562 	int i;
4563 	vm_object_t obj;
4564 	vm_page_t m;
4565 
4566 	runningbufwakeup(bp);
4567 	if (!(bp->b_flags & B_VMIO))
4568 		return;
4569 
4570 	obj = bp->b_bufobj->bo_object;
4571 	for (i = 0; i < bp->b_npages; i++) {
4572 		m = bp->b_pages[i];
4573 		if (m == bogus_page) {
4574 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4575 			if (!m)
4576 				panic("vfs_unbusy_pages: page missing\n");
4577 			bp->b_pages[i] = m;
4578 			if (buf_mapped(bp)) {
4579 				BUF_CHECK_MAPPED(bp);
4580 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4581 				    bp->b_pages, bp->b_npages);
4582 			} else
4583 				BUF_CHECK_UNMAPPED(bp);
4584 		}
4585 		vm_page_sunbusy(m);
4586 	}
4587 	vm_object_pip_wakeupn(obj, bp->b_npages);
4588 }
4589 
4590 /*
4591  * vfs_page_set_valid:
4592  *
4593  *	Set the valid bits in a page based on the supplied offset.   The
4594  *	range is restricted to the buffer's size.
4595  *
4596  *	This routine is typically called after a read completes.
4597  */
4598 static void
4599 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4600 {
4601 	vm_ooffset_t eoff;
4602 
4603 	/*
4604 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4605 	 * page boundary and eoff is not greater than the end of the buffer.
4606 	 * The end of the buffer, in this case, is our file EOF, not the
4607 	 * allocation size of the buffer.
4608 	 */
4609 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4610 	if (eoff > bp->b_offset + bp->b_bcount)
4611 		eoff = bp->b_offset + bp->b_bcount;
4612 
4613 	/*
4614 	 * Set valid range.  This is typically the entire buffer and thus the
4615 	 * entire page.
4616 	 */
4617 	if (eoff > off)
4618 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4619 }
4620 
4621 /*
4622  * vfs_page_set_validclean:
4623  *
4624  *	Set the valid bits and clear the dirty bits in a page based on the
4625  *	supplied offset.   The range is restricted to the buffer's size.
4626  */
4627 static void
4628 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4629 {
4630 	vm_ooffset_t soff, eoff;
4631 
4632 	/*
4633 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4634 	 * page boundary or cross the end of the buffer.  The end of the
4635 	 * buffer, in this case, is our file EOF, not the allocation size
4636 	 * of the buffer.
4637 	 */
4638 	soff = off;
4639 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4640 	if (eoff > bp->b_offset + bp->b_bcount)
4641 		eoff = bp->b_offset + bp->b_bcount;
4642 
4643 	/*
4644 	 * Set valid range.  This is typically the entire buffer and thus the
4645 	 * entire page.
4646 	 */
4647 	if (eoff > soff) {
4648 		vm_page_set_validclean(
4649 		    m,
4650 		   (vm_offset_t) (soff & PAGE_MASK),
4651 		   (vm_offset_t) (eoff - soff)
4652 		);
4653 	}
4654 }
4655 
4656 /*
4657  * Acquire a shared busy on all pages in the buf.
4658  */
4659 void
4660 vfs_busy_pages_acquire(struct buf *bp)
4661 {
4662 	int i;
4663 
4664 	for (i = 0; i < bp->b_npages; i++)
4665 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4666 }
4667 
4668 void
4669 vfs_busy_pages_release(struct buf *bp)
4670 {
4671 	int i;
4672 
4673 	for (i = 0; i < bp->b_npages; i++)
4674 		vm_page_sunbusy(bp->b_pages[i]);
4675 }
4676 
4677 /*
4678  * This routine is called before a device strategy routine.
4679  * It is used to tell the VM system that paging I/O is in
4680  * progress, and treat the pages associated with the buffer
4681  * almost as being exclusive busy.  Also the object paging_in_progress
4682  * flag is handled to make sure that the object doesn't become
4683  * inconsistent.
4684  *
4685  * Since I/O has not been initiated yet, certain buffer flags
4686  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4687  * and should be ignored.
4688  */
4689 void
4690 vfs_busy_pages(struct buf *bp, int clear_modify)
4691 {
4692 	vm_object_t obj;
4693 	vm_ooffset_t foff;
4694 	vm_page_t m;
4695 	int i;
4696 	bool bogus;
4697 
4698 	if (!(bp->b_flags & B_VMIO))
4699 		return;
4700 
4701 	obj = bp->b_bufobj->bo_object;
4702 	foff = bp->b_offset;
4703 	KASSERT(bp->b_offset != NOOFFSET,
4704 	    ("vfs_busy_pages: no buffer offset"));
4705 	if ((bp->b_flags & B_CLUSTER) == 0) {
4706 		vm_object_pip_add(obj, bp->b_npages);
4707 		vfs_busy_pages_acquire(bp);
4708 	}
4709 	if (bp->b_bufsize != 0)
4710 		vfs_setdirty_range(bp);
4711 	bogus = false;
4712 	for (i = 0; i < bp->b_npages; i++) {
4713 		m = bp->b_pages[i];
4714 		vm_page_assert_sbusied(m);
4715 
4716 		/*
4717 		 * When readying a buffer for a read ( i.e
4718 		 * clear_modify == 0 ), it is important to do
4719 		 * bogus_page replacement for valid pages in
4720 		 * partially instantiated buffers.  Partially
4721 		 * instantiated buffers can, in turn, occur when
4722 		 * reconstituting a buffer from its VM backing store
4723 		 * base.  We only have to do this if B_CACHE is
4724 		 * clear ( which causes the I/O to occur in the
4725 		 * first place ).  The replacement prevents the read
4726 		 * I/O from overwriting potentially dirty VM-backed
4727 		 * pages.  XXX bogus page replacement is, uh, bogus.
4728 		 * It may not work properly with small-block devices.
4729 		 * We need to find a better way.
4730 		 */
4731 		if (clear_modify) {
4732 			pmap_remove_write(m);
4733 			vfs_page_set_validclean(bp, foff, m);
4734 		} else if (vm_page_all_valid(m) &&
4735 		    (bp->b_flags & B_CACHE) == 0) {
4736 			bp->b_pages[i] = bogus_page;
4737 			bogus = true;
4738 		}
4739 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4740 	}
4741 	if (bogus && buf_mapped(bp)) {
4742 		BUF_CHECK_MAPPED(bp);
4743 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4744 		    bp->b_pages, bp->b_npages);
4745 	}
4746 }
4747 
4748 /*
4749  *	vfs_bio_set_valid:
4750  *
4751  *	Set the range within the buffer to valid.  The range is
4752  *	relative to the beginning of the buffer, b_offset.  Note that
4753  *	b_offset itself may be offset from the beginning of the first
4754  *	page.
4755  */
4756 void
4757 vfs_bio_set_valid(struct buf *bp, int base, int size)
4758 {
4759 	int i, n;
4760 	vm_page_t m;
4761 
4762 	if (!(bp->b_flags & B_VMIO))
4763 		return;
4764 
4765 	/*
4766 	 * Fixup base to be relative to beginning of first page.
4767 	 * Set initial n to be the maximum number of bytes in the
4768 	 * first page that can be validated.
4769 	 */
4770 	base += (bp->b_offset & PAGE_MASK);
4771 	n = PAGE_SIZE - (base & PAGE_MASK);
4772 
4773 	/*
4774 	 * Busy may not be strictly necessary here because the pages are
4775 	 * unlikely to be fully valid and the vnode lock will synchronize
4776 	 * their access via getpages.  It is grabbed for consistency with
4777 	 * other page validation.
4778 	 */
4779 	vfs_busy_pages_acquire(bp);
4780 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4781 		m = bp->b_pages[i];
4782 		if (n > size)
4783 			n = size;
4784 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4785 		base += n;
4786 		size -= n;
4787 		n = PAGE_SIZE;
4788 	}
4789 	vfs_busy_pages_release(bp);
4790 }
4791 
4792 /*
4793  *	vfs_bio_clrbuf:
4794  *
4795  *	If the specified buffer is a non-VMIO buffer, clear the entire
4796  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4797  *	validate only the previously invalid portions of the buffer.
4798  *	This routine essentially fakes an I/O, so we need to clear
4799  *	BIO_ERROR and B_INVAL.
4800  *
4801  *	Note that while we only theoretically need to clear through b_bcount,
4802  *	we go ahead and clear through b_bufsize.
4803  */
4804 void
4805 vfs_bio_clrbuf(struct buf *bp)
4806 {
4807 	int i, j, mask, sa, ea, slide;
4808 
4809 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4810 		clrbuf(bp);
4811 		return;
4812 	}
4813 	bp->b_flags &= ~B_INVAL;
4814 	bp->b_ioflags &= ~BIO_ERROR;
4815 	vfs_busy_pages_acquire(bp);
4816 	sa = bp->b_offset & PAGE_MASK;
4817 	slide = 0;
4818 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4819 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4820 		ea = slide & PAGE_MASK;
4821 		if (ea == 0)
4822 			ea = PAGE_SIZE;
4823 		if (bp->b_pages[i] == bogus_page)
4824 			continue;
4825 		j = sa / DEV_BSIZE;
4826 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4827 		if ((bp->b_pages[i]->valid & mask) == mask)
4828 			continue;
4829 		if ((bp->b_pages[i]->valid & mask) == 0)
4830 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4831 		else {
4832 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4833 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4834 					pmap_zero_page_area(bp->b_pages[i],
4835 					    sa, DEV_BSIZE);
4836 				}
4837 			}
4838 		}
4839 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4840 		    roundup2(ea - sa, DEV_BSIZE));
4841 	}
4842 	vfs_busy_pages_release(bp);
4843 	bp->b_resid = 0;
4844 }
4845 
4846 void
4847 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4848 {
4849 	vm_page_t m;
4850 	int i, n;
4851 
4852 	if (buf_mapped(bp)) {
4853 		BUF_CHECK_MAPPED(bp);
4854 		bzero(bp->b_data + base, size);
4855 	} else {
4856 		BUF_CHECK_UNMAPPED(bp);
4857 		n = PAGE_SIZE - (base & PAGE_MASK);
4858 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4859 			m = bp->b_pages[i];
4860 			if (n > size)
4861 				n = size;
4862 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4863 			base += n;
4864 			size -= n;
4865 			n = PAGE_SIZE;
4866 		}
4867 	}
4868 }
4869 
4870 /*
4871  * Update buffer flags based on I/O request parameters, optionally releasing the
4872  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4873  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4874  * I/O).  Otherwise the buffer is released to the cache.
4875  */
4876 static void
4877 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4878 {
4879 
4880 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4881 	    ("buf %p non-VMIO noreuse", bp));
4882 
4883 	if ((ioflag & IO_DIRECT) != 0)
4884 		bp->b_flags |= B_DIRECT;
4885 	if ((ioflag & IO_EXT) != 0)
4886 		bp->b_xflags |= BX_ALTDATA;
4887 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4888 		bp->b_flags |= B_RELBUF;
4889 		if ((ioflag & IO_NOREUSE) != 0)
4890 			bp->b_flags |= B_NOREUSE;
4891 		if (release)
4892 			brelse(bp);
4893 	} else if (release)
4894 		bqrelse(bp);
4895 }
4896 
4897 void
4898 vfs_bio_brelse(struct buf *bp, int ioflag)
4899 {
4900 
4901 	b_io_dismiss(bp, ioflag, true);
4902 }
4903 
4904 void
4905 vfs_bio_set_flags(struct buf *bp, int ioflag)
4906 {
4907 
4908 	b_io_dismiss(bp, ioflag, false);
4909 }
4910 
4911 /*
4912  * vm_hold_load_pages and vm_hold_free_pages get pages into
4913  * a buffers address space.  The pages are anonymous and are
4914  * not associated with a file object.
4915  */
4916 static void
4917 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4918 {
4919 	vm_offset_t pg;
4920 	vm_page_t p;
4921 	int index;
4922 
4923 	BUF_CHECK_MAPPED(bp);
4924 
4925 	to = round_page(to);
4926 	from = round_page(from);
4927 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4928 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
4929 	KASSERT(to - from <= maxbcachebuf,
4930 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
4931 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
4932 
4933 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4934 		/*
4935 		 * note: must allocate system pages since blocking here
4936 		 * could interfere with paging I/O, no matter which
4937 		 * process we are.
4938 		 */
4939 		p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
4940 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
4941 		pmap_qenter(pg, &p, 1);
4942 		bp->b_pages[index] = p;
4943 	}
4944 	bp->b_npages = index;
4945 }
4946 
4947 /* Return pages associated with this buf to the vm system */
4948 static void
4949 vm_hold_free_pages(struct buf *bp, int newbsize)
4950 {
4951 	vm_offset_t from;
4952 	vm_page_t p;
4953 	int index, newnpages;
4954 
4955 	BUF_CHECK_MAPPED(bp);
4956 
4957 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4958 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4959 	if (bp->b_npages > newnpages)
4960 		pmap_qremove(from, bp->b_npages - newnpages);
4961 	for (index = newnpages; index < bp->b_npages; index++) {
4962 		p = bp->b_pages[index];
4963 		bp->b_pages[index] = NULL;
4964 		vm_page_unwire_noq(p);
4965 		vm_page_free(p);
4966 	}
4967 	bp->b_npages = newnpages;
4968 }
4969 
4970 /*
4971  * Map an IO request into kernel virtual address space.
4972  *
4973  * All requests are (re)mapped into kernel VA space.
4974  * Notice that we use b_bufsize for the size of the buffer
4975  * to be mapped.  b_bcount might be modified by the driver.
4976  *
4977  * Note that even if the caller determines that the address space should
4978  * be valid, a race or a smaller-file mapped into a larger space may
4979  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4980  * check the return value.
4981  *
4982  * This function only works with pager buffers.
4983  */
4984 int
4985 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
4986 {
4987 	vm_prot_t prot;
4988 	int pidx;
4989 
4990 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
4991 	prot = VM_PROT_READ;
4992 	if (bp->b_iocmd == BIO_READ)
4993 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4994 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4995 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
4996 	if (pidx < 0)
4997 		return (-1);
4998 	bp->b_bufsize = len;
4999 	bp->b_npages = pidx;
5000 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5001 	if (mapbuf || !unmapped_buf_allowed) {
5002 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5003 		bp->b_data = bp->b_kvabase + bp->b_offset;
5004 	} else
5005 		bp->b_data = unmapped_buf;
5006 	return (0);
5007 }
5008 
5009 /*
5010  * Free the io map PTEs associated with this IO operation.
5011  * We also invalidate the TLB entries and restore the original b_addr.
5012  *
5013  * This function only works with pager buffers.
5014  */
5015 void
5016 vunmapbuf(struct buf *bp)
5017 {
5018 	int npages;
5019 
5020 	npages = bp->b_npages;
5021 	if (buf_mapped(bp))
5022 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5023 	vm_page_unhold_pages(bp->b_pages, npages);
5024 
5025 	bp->b_data = unmapped_buf;
5026 }
5027 
5028 void
5029 bdone(struct buf *bp)
5030 {
5031 	struct mtx *mtxp;
5032 
5033 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5034 	mtx_lock(mtxp);
5035 	bp->b_flags |= B_DONE;
5036 	wakeup(bp);
5037 	mtx_unlock(mtxp);
5038 }
5039 
5040 void
5041 bwait(struct buf *bp, u_char pri, const char *wchan)
5042 {
5043 	struct mtx *mtxp;
5044 
5045 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5046 	mtx_lock(mtxp);
5047 	while ((bp->b_flags & B_DONE) == 0)
5048 		msleep(bp, mtxp, pri, wchan, 0);
5049 	mtx_unlock(mtxp);
5050 }
5051 
5052 int
5053 bufsync(struct bufobj *bo, int waitfor)
5054 {
5055 
5056 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5057 }
5058 
5059 void
5060 bufstrategy(struct bufobj *bo, struct buf *bp)
5061 {
5062 	int i __unused;
5063 	struct vnode *vp;
5064 
5065 	vp = bp->b_vp;
5066 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5067 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5068 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5069 	i = VOP_STRATEGY(vp, bp);
5070 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5071 }
5072 
5073 /*
5074  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5075  */
5076 void
5077 bufobj_init(struct bufobj *bo, void *private)
5078 {
5079 	static volatile int bufobj_cleanq;
5080 
5081         bo->bo_domain =
5082             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5083         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5084         bo->bo_private = private;
5085         TAILQ_INIT(&bo->bo_clean.bv_hd);
5086         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5087 }
5088 
5089 void
5090 bufobj_wrefl(struct bufobj *bo)
5091 {
5092 
5093 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5094 	ASSERT_BO_WLOCKED(bo);
5095 	bo->bo_numoutput++;
5096 }
5097 
5098 void
5099 bufobj_wref(struct bufobj *bo)
5100 {
5101 
5102 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5103 	BO_LOCK(bo);
5104 	bo->bo_numoutput++;
5105 	BO_UNLOCK(bo);
5106 }
5107 
5108 void
5109 bufobj_wdrop(struct bufobj *bo)
5110 {
5111 
5112 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5113 	BO_LOCK(bo);
5114 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5115 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5116 		bo->bo_flag &= ~BO_WWAIT;
5117 		wakeup(&bo->bo_numoutput);
5118 	}
5119 	BO_UNLOCK(bo);
5120 }
5121 
5122 int
5123 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5124 {
5125 	int error;
5126 
5127 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5128 	ASSERT_BO_WLOCKED(bo);
5129 	error = 0;
5130 	while (bo->bo_numoutput) {
5131 		bo->bo_flag |= BO_WWAIT;
5132 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5133 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5134 		if (error)
5135 			break;
5136 	}
5137 	return (error);
5138 }
5139 
5140 /*
5141  * Set bio_data or bio_ma for struct bio from the struct buf.
5142  */
5143 void
5144 bdata2bio(struct buf *bp, struct bio *bip)
5145 {
5146 
5147 	if (!buf_mapped(bp)) {
5148 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5149 		bip->bio_ma = bp->b_pages;
5150 		bip->bio_ma_n = bp->b_npages;
5151 		bip->bio_data = unmapped_buf;
5152 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5153 		bip->bio_flags |= BIO_UNMAPPED;
5154 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5155 		    PAGE_SIZE == bp->b_npages,
5156 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5157 		    (long long)bip->bio_length, bip->bio_ma_n));
5158 	} else {
5159 		bip->bio_data = bp->b_data;
5160 		bip->bio_ma = NULL;
5161 	}
5162 }
5163 
5164 /*
5165  * The MIPS pmap code currently doesn't handle aliased pages.
5166  * The VIPT caches may not handle page aliasing themselves, leading
5167  * to data corruption.
5168  *
5169  * As such, this code makes a system extremely unhappy if said
5170  * system doesn't support unaliasing the above situation in hardware.
5171  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5172  * this feature at build time, so it has to be handled in software.
5173  *
5174  * Once the MIPS pmap/cache code grows to support this function on
5175  * earlier chips, it should be flipped back off.
5176  */
5177 #ifdef	__mips__
5178 static int buf_pager_relbuf = 1;
5179 #else
5180 static int buf_pager_relbuf = 0;
5181 #endif
5182 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5183     &buf_pager_relbuf, 0,
5184     "Make buffer pager release buffers after reading");
5185 
5186 /*
5187  * The buffer pager.  It uses buffer reads to validate pages.
5188  *
5189  * In contrast to the generic local pager from vm/vnode_pager.c, this
5190  * pager correctly and easily handles volumes where the underlying
5191  * device block size is greater than the machine page size.  The
5192  * buffer cache transparently extends the requested page run to be
5193  * aligned at the block boundary, and does the necessary bogus page
5194  * replacements in the addends to avoid obliterating already valid
5195  * pages.
5196  *
5197  * The only non-trivial issue is that the exclusive busy state for
5198  * pages, which is assumed by the vm_pager_getpages() interface, is
5199  * incompatible with the VMIO buffer cache's desire to share-busy the
5200  * pages.  This function performs a trivial downgrade of the pages'
5201  * state before reading buffers, and a less trivial upgrade from the
5202  * shared-busy to excl-busy state after the read.
5203  */
5204 int
5205 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5206     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5207     vbg_get_blksize_t get_blksize)
5208 {
5209 	vm_page_t m;
5210 	vm_object_t object;
5211 	struct buf *bp;
5212 	struct mount *mp;
5213 	daddr_t lbn, lbnp;
5214 	vm_ooffset_t la, lb, poff, poffe;
5215 	long bo_bs, bsize;
5216 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5217 	bool redo, lpart;
5218 
5219 	object = vp->v_object;
5220 	mp = vp->v_mount;
5221 	error = 0;
5222 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5223 	if (la >= object->un_pager.vnp.vnp_size)
5224 		return (VM_PAGER_BAD);
5225 
5226 	/*
5227 	 * Change the meaning of la from where the last requested page starts
5228 	 * to where it ends, because that's the end of the requested region
5229 	 * and the start of the potential read-ahead region.
5230 	 */
5231 	la += PAGE_SIZE;
5232 	lpart = la > object->un_pager.vnp.vnp_size;
5233 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5234 	    &bo_bs);
5235 	if (error != 0)
5236 		return (VM_PAGER_ERROR);
5237 
5238 	/*
5239 	 * Calculate read-ahead, behind and total pages.
5240 	 */
5241 	pgsin = count;
5242 	lb = IDX_TO_OFF(ma[0]->pindex);
5243 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5244 	pgsin += pgsin_b;
5245 	if (rbehind != NULL)
5246 		*rbehind = pgsin_b;
5247 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5248 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5249 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5250 		    PAGE_SIZE) - la);
5251 	pgsin += pgsin_a;
5252 	if (rahead != NULL)
5253 		*rahead = pgsin_a;
5254 	VM_CNT_INC(v_vnodein);
5255 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5256 
5257 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5258 	    != 0) ? GB_UNMAPPED : 0;
5259 again:
5260 	for (i = 0; i < count; i++) {
5261 		if (ma[i] != bogus_page)
5262 			vm_page_busy_downgrade(ma[i]);
5263 	}
5264 
5265 	lbnp = -1;
5266 	for (i = 0; i < count; i++) {
5267 		m = ma[i];
5268 		if (m == bogus_page)
5269 			continue;
5270 
5271 		/*
5272 		 * Pages are shared busy and the object lock is not
5273 		 * owned, which together allow for the pages'
5274 		 * invalidation.  The racy test for validity avoids
5275 		 * useless creation of the buffer for the most typical
5276 		 * case when invalidation is not used in redo or for
5277 		 * parallel read.  The shared->excl upgrade loop at
5278 		 * the end of the function catches the race in a
5279 		 * reliable way (protected by the object lock).
5280 		 */
5281 		if (vm_page_all_valid(m))
5282 			continue;
5283 
5284 		poff = IDX_TO_OFF(m->pindex);
5285 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5286 		for (; poff < poffe; poff += bsize) {
5287 			lbn = get_lblkno(vp, poff);
5288 			if (lbn == lbnp)
5289 				goto next_page;
5290 			lbnp = lbn;
5291 
5292 			error = get_blksize(vp, lbn, &bsize);
5293 			if (error == 0)
5294 				error = bread_gb(vp, lbn, bsize,
5295 				    curthread->td_ucred, br_flags, &bp);
5296 			if (error != 0)
5297 				goto end_pages;
5298 			if (bp->b_rcred == curthread->td_ucred) {
5299 				crfree(bp->b_rcred);
5300 				bp->b_rcred = NOCRED;
5301 			}
5302 			if (LIST_EMPTY(&bp->b_dep)) {
5303 				/*
5304 				 * Invalidation clears m->valid, but
5305 				 * may leave B_CACHE flag if the
5306 				 * buffer existed at the invalidation
5307 				 * time.  In this case, recycle the
5308 				 * buffer to do real read on next
5309 				 * bread() after redo.
5310 				 *
5311 				 * Otherwise B_RELBUF is not strictly
5312 				 * necessary, enable to reduce buf
5313 				 * cache pressure.
5314 				 */
5315 				if (buf_pager_relbuf ||
5316 				    !vm_page_all_valid(m))
5317 					bp->b_flags |= B_RELBUF;
5318 
5319 				bp->b_flags &= ~B_NOCACHE;
5320 				brelse(bp);
5321 			} else {
5322 				bqrelse(bp);
5323 			}
5324 		}
5325 		KASSERT(1 /* racy, enable for debugging */ ||
5326 		    vm_page_all_valid(m) || i == count - 1,
5327 		    ("buf %d %p invalid", i, m));
5328 		if (i == count - 1 && lpart) {
5329 			if (!vm_page_none_valid(m) &&
5330 			    !vm_page_all_valid(m))
5331 				vm_page_zero_invalid(m, TRUE);
5332 		}
5333 next_page:;
5334 	}
5335 end_pages:
5336 
5337 	redo = false;
5338 	for (i = 0; i < count; i++) {
5339 		if (ma[i] == bogus_page)
5340 			continue;
5341 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5342 			vm_page_sunbusy(ma[i]);
5343 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5344 			    VM_ALLOC_NORMAL);
5345 		}
5346 
5347 		/*
5348 		 * Since the pages were only sbusy while neither the
5349 		 * buffer nor the object lock was held by us, or
5350 		 * reallocated while vm_page_grab() slept for busy
5351 		 * relinguish, they could have been invalidated.
5352 		 * Recheck the valid bits and re-read as needed.
5353 		 *
5354 		 * Note that the last page is made fully valid in the
5355 		 * read loop, and partial validity for the page at
5356 		 * index count - 1 could mean that the page was
5357 		 * invalidated or removed, so we must restart for
5358 		 * safety as well.
5359 		 */
5360 		if (!vm_page_all_valid(ma[i]))
5361 			redo = true;
5362 	}
5363 	if (redo && error == 0)
5364 		goto again;
5365 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5366 }
5367 
5368 #include "opt_ddb.h"
5369 #ifdef DDB
5370 #include <ddb/ddb.h>
5371 
5372 /* DDB command to show buffer data */
5373 DB_SHOW_COMMAND(buffer, db_show_buffer)
5374 {
5375 	/* get args */
5376 	struct buf *bp = (struct buf *)addr;
5377 #ifdef FULL_BUF_TRACKING
5378 	uint32_t i, j;
5379 #endif
5380 
5381 	if (!have_addr) {
5382 		db_printf("usage: show buffer <addr>\n");
5383 		return;
5384 	}
5385 
5386 	db_printf("buf at %p\n", bp);
5387 	db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5388 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5389 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5390 	db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5391 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5392 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5393 	db_printf(
5394 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5395 	    "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
5396 	    "b_vp = %p, b_dep = %p\n",
5397 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5398 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5399 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5400 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5401 	    bp->b_kvabase, bp->b_kvasize);
5402 	if (bp->b_npages) {
5403 		int i;
5404 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5405 		for (i = 0; i < bp->b_npages; i++) {
5406 			vm_page_t m;
5407 			m = bp->b_pages[i];
5408 			if (m != NULL)
5409 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5410 				    (u_long)m->pindex,
5411 				    (u_long)VM_PAGE_TO_PHYS(m));
5412 			else
5413 				db_printf("( ??? )");
5414 			if ((i + 1) < bp->b_npages)
5415 				db_printf(",");
5416 		}
5417 		db_printf("\n");
5418 	}
5419 	BUF_LOCKPRINTINFO(bp);
5420 #if defined(FULL_BUF_TRACKING)
5421 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5422 
5423 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5424 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5425 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5426 			continue;
5427 		db_printf(" %2u: %s\n", j,
5428 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5429 	}
5430 #elif defined(BUF_TRACKING)
5431 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5432 #endif
5433 	db_printf(" ");
5434 }
5435 
5436 DB_SHOW_COMMAND(bufqueues, bufqueues)
5437 {
5438 	struct bufdomain *bd;
5439 	struct buf *bp;
5440 	long total;
5441 	int i, j, cnt;
5442 
5443 	db_printf("bqempty: %d\n", bqempty.bq_len);
5444 
5445 	for (i = 0; i < buf_domains; i++) {
5446 		bd = &bdomain[i];
5447 		db_printf("Buf domain %d\n", i);
5448 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5449 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5450 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5451 		db_printf("\n");
5452 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5453 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5454 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5455 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5456 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5457 		db_printf("\n");
5458 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5459 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5460 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5461 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5462 		db_printf("\n");
5463 		total = 0;
5464 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5465 			total += bp->b_bufsize;
5466 		db_printf("\tcleanq count\t%d (%ld)\n",
5467 		    bd->bd_cleanq->bq_len, total);
5468 		total = 0;
5469 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5470 			total += bp->b_bufsize;
5471 		db_printf("\tdirtyq count\t%d (%ld)\n",
5472 		    bd->bd_dirtyq.bq_len, total);
5473 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5474 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5475 		db_printf("\tCPU ");
5476 		for (j = 0; j <= mp_maxid; j++)
5477 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5478 		db_printf("\n");
5479 		cnt = 0;
5480 		total = 0;
5481 		for (j = 0; j < nbuf; j++) {
5482 			bp = nbufp(j);
5483 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5484 				cnt++;
5485 				total += bp->b_bufsize;
5486 			}
5487 		}
5488 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5489 		cnt = 0;
5490 		total = 0;
5491 		for (j = 0; j < nbuf; j++) {
5492 			bp = nbufp(j);
5493 			if (bp->b_domain == i) {
5494 				cnt++;
5495 				total += bp->b_bufsize;
5496 			}
5497 		}
5498 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5499 	}
5500 }
5501 
5502 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5503 {
5504 	struct buf *bp;
5505 	int i;
5506 
5507 	for (i = 0; i < nbuf; i++) {
5508 		bp = nbufp(i);
5509 		if (BUF_ISLOCKED(bp)) {
5510 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5511 			db_printf("\n");
5512 			if (db_pager_quit)
5513 				break;
5514 		}
5515 	}
5516 }
5517 
5518 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5519 {
5520 	struct vnode *vp;
5521 	struct buf *bp;
5522 
5523 	if (!have_addr) {
5524 		db_printf("usage: show vnodebufs <addr>\n");
5525 		return;
5526 	}
5527 	vp = (struct vnode *)addr;
5528 	db_printf("Clean buffers:\n");
5529 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5530 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5531 		db_printf("\n");
5532 	}
5533 	db_printf("Dirty buffers:\n");
5534 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5535 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5536 		db_printf("\n");
5537 	}
5538 }
5539 
5540 DB_COMMAND(countfreebufs, db_coundfreebufs)
5541 {
5542 	struct buf *bp;
5543 	int i, used = 0, nfree = 0;
5544 
5545 	if (have_addr) {
5546 		db_printf("usage: countfreebufs\n");
5547 		return;
5548 	}
5549 
5550 	for (i = 0; i < nbuf; i++) {
5551 		bp = nbufp(i);
5552 		if (bp->b_qindex == QUEUE_EMPTY)
5553 			nfree++;
5554 		else
5555 			used++;
5556 	}
5557 
5558 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5559 	    nfree + used);
5560 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5561 }
5562 #endif /* DDB */
5563