xref: /freebsd/sys/kern/vfs_bio.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/bitset.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/buf.h>
57 #include <sys/devicestat.h>
58 #include <sys/eventhandler.h>
59 #include <sys/fail.h>
60 #include <sys/ktr.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/malloc.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/proc.h>
69 #include <sys/racct.h>
70 #include <sys/refcount.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/smp.h>
74 #include <sys/sysctl.h>
75 #include <sys/syscallsubr.h>
76 #include <sys/vmem.h>
77 #include <sys/vmmeter.h>
78 #include <sys/vnode.h>
79 #include <sys/watchdog.h>
80 #include <geom/geom.h>
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_map.h>
90 #include <vm/swap_pager.h>
91 
92 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
93 
94 struct	bio_ops bioops;		/* I/O operation notification */
95 
96 struct	buf_ops buf_ops_bio = {
97 	.bop_name	=	"buf_ops_bio",
98 	.bop_write	=	bufwrite,
99 	.bop_strategy	=	bufstrategy,
100 	.bop_sync	=	bufsync,
101 	.bop_bdflush	=	bufbdflush,
102 };
103 
104 struct bufqueue {
105 	struct mtx_padalign	bq_lock;
106 	TAILQ_HEAD(, buf)	bq_queue;
107 	uint8_t			bq_index;
108 	uint16_t		bq_subqueue;
109 	int			bq_len;
110 } __aligned(CACHE_LINE_SIZE);
111 
112 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
113 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
114 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
115 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
116 
117 struct bufdomain {
118 	struct bufqueue	bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
119 	struct bufqueue bd_dirtyq;
120 	struct bufqueue	*bd_cleanq;
121 	struct mtx_padalign bd_run_lock;
122 	/* Constants */
123 	long		bd_maxbufspace;
124 	long		bd_hibufspace;
125 	long 		bd_lobufspace;
126 	long 		bd_bufspacethresh;
127 	int		bd_hifreebuffers;
128 	int		bd_lofreebuffers;
129 	int		bd_hidirtybuffers;
130 	int		bd_lodirtybuffers;
131 	int		bd_dirtybufthresh;
132 	int		bd_lim;
133 	/* atomics */
134 	int		bd_wanted;
135 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
136 	int __aligned(CACHE_LINE_SIZE)	bd_running;
137 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
138 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
139 } __aligned(CACHE_LINE_SIZE);
140 
141 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
142 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
143 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
144 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
145 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
146 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
147 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
148 #define	BD_DOMAIN(bd)		(bd - bdomain)
149 
150 static struct buf *buf;		/* buffer header pool */
151 extern struct buf *swbuf;	/* Swap buffer header pool. */
152 caddr_t __read_mostly unmapped_buf;
153 
154 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
155 struct proc *bufdaemonproc;
156 
157 static int inmem(struct vnode *vp, daddr_t blkno);
158 static void vm_hold_free_pages(struct buf *bp, int newbsize);
159 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
160 		vm_offset_t to);
161 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
162 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
163 		vm_page_t m);
164 static void vfs_clean_pages_dirty_buf(struct buf *bp);
165 static void vfs_setdirty_range(struct buf *bp);
166 static void vfs_vmio_invalidate(struct buf *bp);
167 static void vfs_vmio_truncate(struct buf *bp, int npages);
168 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
169 static int vfs_bio_clcheck(struct vnode *vp, int size,
170 		daddr_t lblkno, daddr_t blkno);
171 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
172 		void (*)(struct buf *));
173 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
174 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
175 static void buf_daemon(void);
176 static __inline void bd_wakeup(void);
177 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
178 static void bufkva_reclaim(vmem_t *, int);
179 static void bufkva_free(struct buf *);
180 static int buf_import(void *, void **, int, int, int);
181 static void buf_release(void *, void **, int);
182 static void maxbcachebuf_adjust(void);
183 static inline struct bufdomain *bufdomain(struct buf *);
184 static void bq_remove(struct bufqueue *bq, struct buf *bp);
185 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
186 static int buf_recycle(struct bufdomain *, bool kva);
187 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
188 	    const char *lockname);
189 static void bd_init(struct bufdomain *bd);
190 static int bd_flushall(struct bufdomain *bd);
191 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
192 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
193 
194 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
195 int vmiodirenable = TRUE;
196 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
197     "Use the VM system for directory writes");
198 long runningbufspace;
199 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
200     "Amount of presently outstanding async buffer io");
201 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
202     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
203 static counter_u64_t bufkvaspace;
204 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
205     "Kernel virtual memory used for buffers");
206 static long maxbufspace;
207 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
208     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
209     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
210     "Maximum allowed value of bufspace (including metadata)");
211 static long bufmallocspace;
212 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
213     "Amount of malloced memory for buffers");
214 static long maxbufmallocspace;
215 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
216     0, "Maximum amount of malloced memory for buffers");
217 static long lobufspace;
218 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
219     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
220     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
221     "Minimum amount of buffers we want to have");
222 long hibufspace;
223 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
224     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
225     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
226     "Maximum allowed value of bufspace (excluding metadata)");
227 long bufspacethresh;
228 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
229     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
230     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
231     "Bufspace consumed before waking the daemon to free some");
232 static counter_u64_t buffreekvacnt;
233 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
234     "Number of times we have freed the KVA space from some buffer");
235 static counter_u64_t bufdefragcnt;
236 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
237     "Number of times we have had to repeat buffer allocation to defragment");
238 static long lorunningspace;
239 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
240     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
241     "Minimum preferred space used for in-progress I/O");
242 static long hirunningspace;
243 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
244     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
245     "Maximum amount of space to use for in-progress I/O");
246 int dirtybufferflushes;
247 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
248     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
249 int bdwriteskip;
250 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
251     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
252 int altbufferflushes;
253 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
254     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
255 static int recursiveflushes;
256 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
257     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
258 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
259 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
260     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
261     "Number of buffers that are dirty (has unwritten changes) at the moment");
262 static int lodirtybuffers;
263 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
264     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
265     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
266     "How many buffers we want to have free before bufdaemon can sleep");
267 static int hidirtybuffers;
268 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
269     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
270     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
271     "When the number of dirty buffers is considered severe");
272 int dirtybufthresh;
273 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
274     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
275     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
276     "Number of bdwrite to bawrite conversions to clear dirty buffers");
277 static int numfreebuffers;
278 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
279     "Number of free buffers");
280 static int lofreebuffers;
281 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
282     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
283     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
284    "Target number of free buffers");
285 static int hifreebuffers;
286 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
287     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
288     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
289    "Threshold for clean buffer recycling");
290 static counter_u64_t getnewbufcalls;
291 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
292    &getnewbufcalls, "Number of calls to getnewbuf");
293 static counter_u64_t getnewbufrestarts;
294 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
295     &getnewbufrestarts,
296     "Number of times getnewbuf has had to restart a buffer acquisition");
297 static counter_u64_t mappingrestarts;
298 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
299     &mappingrestarts,
300     "Number of times getblk has had to restart a buffer mapping for "
301     "unmapped buffer");
302 static counter_u64_t numbufallocfails;
303 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
304     &numbufallocfails, "Number of times buffer allocations failed");
305 static int flushbufqtarget = 100;
306 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
307     "Amount of work to do in flushbufqueues when helping bufdaemon");
308 static counter_u64_t notbufdflushes;
309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
310     "Number of dirty buffer flushes done by the bufdaemon helpers");
311 static long barrierwrites;
312 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
313     &barrierwrites, 0, "Number of barrier writes");
314 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
315     &unmapped_buf_allowed, 0,
316     "Permit the use of the unmapped i/o");
317 int maxbcachebuf = MAXBCACHEBUF;
318 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
319     "Maximum size of a buffer cache block");
320 
321 /*
322  * This lock synchronizes access to bd_request.
323  */
324 static struct mtx_padalign __exclusive_cache_line bdlock;
325 
326 /*
327  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
328  * waitrunningbufspace().
329  */
330 static struct mtx_padalign __exclusive_cache_line rbreqlock;
331 
332 /*
333  * Lock that protects bdirtywait.
334  */
335 static struct mtx_padalign __exclusive_cache_line bdirtylock;
336 
337 /*
338  * Wakeup point for bufdaemon, as well as indicator of whether it is already
339  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
340  * is idling.
341  */
342 static int bd_request;
343 
344 /*
345  * Request for the buf daemon to write more buffers than is indicated by
346  * lodirtybuf.  This may be necessary to push out excess dependencies or
347  * defragment the address space where a simple count of the number of dirty
348  * buffers is insufficient to characterize the demand for flushing them.
349  */
350 static int bd_speedupreq;
351 
352 /*
353  * Synchronization (sleep/wakeup) variable for active buffer space requests.
354  * Set when wait starts, cleared prior to wakeup().
355  * Used in runningbufwakeup() and waitrunningbufspace().
356  */
357 static int runningbufreq;
358 
359 /*
360  * Synchronization for bwillwrite() waiters.
361  */
362 static int bdirtywait;
363 
364 /*
365  * Definitions for the buffer free lists.
366  */
367 #define QUEUE_NONE	0	/* on no queue */
368 #define QUEUE_EMPTY	1	/* empty buffer headers */
369 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
370 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
371 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
372 
373 /* Maximum number of buffer domains. */
374 #define	BUF_DOMAINS	8
375 
376 struct bufdomainset bdlodirty;		/* Domains > lodirty */
377 struct bufdomainset bdhidirty;		/* Domains > hidirty */
378 
379 /* Configured number of clean queues. */
380 static int __read_mostly buf_domains;
381 
382 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
383 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
384 struct bufqueue __exclusive_cache_line bqempty;
385 
386 /*
387  * per-cpu empty buffer cache.
388  */
389 uma_zone_t buf_zone;
390 
391 /*
392  * Single global constant for BUF_WMESG, to avoid getting multiple references.
393  * buf_wmesg is referred from macros.
394  */
395 const char *buf_wmesg = BUF_WMESG;
396 
397 static int
398 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
399 {
400 	long value;
401 	int error;
402 
403 	value = *(long *)arg1;
404 	error = sysctl_handle_long(oidp, &value, 0, req);
405 	if (error != 0 || req->newptr == NULL)
406 		return (error);
407 	mtx_lock(&rbreqlock);
408 	if (arg1 == &hirunningspace) {
409 		if (value < lorunningspace)
410 			error = EINVAL;
411 		else
412 			hirunningspace = value;
413 	} else {
414 		KASSERT(arg1 == &lorunningspace,
415 		    ("%s: unknown arg1", __func__));
416 		if (value > hirunningspace)
417 			error = EINVAL;
418 		else
419 			lorunningspace = value;
420 	}
421 	mtx_unlock(&rbreqlock);
422 	return (error);
423 }
424 
425 static int
426 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
427 {
428 	int error;
429 	int value;
430 	int i;
431 
432 	value = *(int *)arg1;
433 	error = sysctl_handle_int(oidp, &value, 0, req);
434 	if (error != 0 || req->newptr == NULL)
435 		return (error);
436 	*(int *)arg1 = value;
437 	for (i = 0; i < buf_domains; i++)
438 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
439 		    value / buf_domains;
440 
441 	return (error);
442 }
443 
444 static int
445 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
446 {
447 	long value;
448 	int error;
449 	int i;
450 
451 	value = *(long *)arg1;
452 	error = sysctl_handle_long(oidp, &value, 0, req);
453 	if (error != 0 || req->newptr == NULL)
454 		return (error);
455 	*(long *)arg1 = value;
456 	for (i = 0; i < buf_domains; i++)
457 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
458 		    value / buf_domains;
459 
460 	return (error);
461 }
462 
463 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
464     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
465 static int
466 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
467 {
468 	long lvalue;
469 	int ivalue;
470 	int i;
471 
472 	lvalue = 0;
473 	for (i = 0; i < buf_domains; i++)
474 		lvalue += bdomain[i].bd_bufspace;
475 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
476 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
477 	if (lvalue > INT_MAX)
478 		/* On overflow, still write out a long to trigger ENOMEM. */
479 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
480 	ivalue = lvalue;
481 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
482 }
483 #else
484 static int
485 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
486 {
487 	long lvalue;
488 	int i;
489 
490 	lvalue = 0;
491 	for (i = 0; i < buf_domains; i++)
492 		lvalue += bdomain[i].bd_bufspace;
493 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
494 }
495 #endif
496 
497 static int
498 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
499 {
500 	int value;
501 	int i;
502 
503 	value = 0;
504 	for (i = 0; i < buf_domains; i++)
505 		value += bdomain[i].bd_numdirtybuffers;
506 	return (sysctl_handle_int(oidp, &value, 0, req));
507 }
508 
509 /*
510  *	bdirtywakeup:
511  *
512  *	Wakeup any bwillwrite() waiters.
513  */
514 static void
515 bdirtywakeup(void)
516 {
517 	mtx_lock(&bdirtylock);
518 	if (bdirtywait) {
519 		bdirtywait = 0;
520 		wakeup(&bdirtywait);
521 	}
522 	mtx_unlock(&bdirtylock);
523 }
524 
525 /*
526  *	bd_clear:
527  *
528  *	Clear a domain from the appropriate bitsets when dirtybuffers
529  *	is decremented.
530  */
531 static void
532 bd_clear(struct bufdomain *bd)
533 {
534 
535 	mtx_lock(&bdirtylock);
536 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
537 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
538 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
539 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
540 	mtx_unlock(&bdirtylock);
541 }
542 
543 /*
544  *	bd_set:
545  *
546  *	Set a domain in the appropriate bitsets when dirtybuffers
547  *	is incremented.
548  */
549 static void
550 bd_set(struct bufdomain *bd)
551 {
552 
553 	mtx_lock(&bdirtylock);
554 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
555 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
556 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
557 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
558 	mtx_unlock(&bdirtylock);
559 }
560 
561 /*
562  *	bdirtysub:
563  *
564  *	Decrement the numdirtybuffers count by one and wakeup any
565  *	threads blocked in bwillwrite().
566  */
567 static void
568 bdirtysub(struct buf *bp)
569 {
570 	struct bufdomain *bd;
571 	int num;
572 
573 	bd = bufdomain(bp);
574 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
575 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
576 		bdirtywakeup();
577 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
578 		bd_clear(bd);
579 }
580 
581 /*
582  *	bdirtyadd:
583  *
584  *	Increment the numdirtybuffers count by one and wakeup the buf
585  *	daemon if needed.
586  */
587 static void
588 bdirtyadd(struct buf *bp)
589 {
590 	struct bufdomain *bd;
591 	int num;
592 
593 	/*
594 	 * Only do the wakeup once as we cross the boundary.  The
595 	 * buf daemon will keep running until the condition clears.
596 	 */
597 	bd = bufdomain(bp);
598 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
599 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
600 		bd_wakeup();
601 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
602 		bd_set(bd);
603 }
604 
605 /*
606  *	bufspace_daemon_wakeup:
607  *
608  *	Wakeup the daemons responsible for freeing clean bufs.
609  */
610 static void
611 bufspace_daemon_wakeup(struct bufdomain *bd)
612 {
613 
614 	/*
615 	 * avoid the lock if the daemon is running.
616 	 */
617 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
618 		BD_RUN_LOCK(bd);
619 		atomic_store_int(&bd->bd_running, 1);
620 		wakeup(&bd->bd_running);
621 		BD_RUN_UNLOCK(bd);
622 	}
623 }
624 
625 /*
626  *	bufspace_daemon_wait:
627  *
628  *	Sleep until the domain falls below a limit or one second passes.
629  */
630 static void
631 bufspace_daemon_wait(struct bufdomain *bd)
632 {
633 	/*
634 	 * Re-check our limits and sleep.  bd_running must be
635 	 * cleared prior to checking the limits to avoid missed
636 	 * wakeups.  The waker will adjust one of bufspace or
637 	 * freebuffers prior to checking bd_running.
638 	 */
639 	BD_RUN_LOCK(bd);
640 	atomic_store_int(&bd->bd_running, 0);
641 	if (bd->bd_bufspace < bd->bd_bufspacethresh &&
642 	    bd->bd_freebuffers > bd->bd_lofreebuffers) {
643 		msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd), PRIBIO|PDROP,
644 		    "-", hz);
645 	} else {
646 		/* Avoid spurious wakeups while running. */
647 		atomic_store_int(&bd->bd_running, 1);
648 		BD_RUN_UNLOCK(bd);
649 	}
650 }
651 
652 /*
653  *	bufspace_adjust:
654  *
655  *	Adjust the reported bufspace for a KVA managed buffer, possibly
656  * 	waking any waiters.
657  */
658 static void
659 bufspace_adjust(struct buf *bp, int bufsize)
660 {
661 	struct bufdomain *bd;
662 	long space;
663 	int diff;
664 
665 	KASSERT((bp->b_flags & B_MALLOC) == 0,
666 	    ("bufspace_adjust: malloc buf %p", bp));
667 	bd = bufdomain(bp);
668 	diff = bufsize - bp->b_bufsize;
669 	if (diff < 0) {
670 		atomic_subtract_long(&bd->bd_bufspace, -diff);
671 	} else if (diff > 0) {
672 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
673 		/* Wake up the daemon on the transition. */
674 		if (space < bd->bd_bufspacethresh &&
675 		    space + diff >= bd->bd_bufspacethresh)
676 			bufspace_daemon_wakeup(bd);
677 	}
678 	bp->b_bufsize = bufsize;
679 }
680 
681 /*
682  *	bufspace_reserve:
683  *
684  *	Reserve bufspace before calling allocbuf().  metadata has a
685  *	different space limit than data.
686  */
687 static int
688 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
689 {
690 	long limit, new;
691 	long space;
692 
693 	if (metadata)
694 		limit = bd->bd_maxbufspace;
695 	else
696 		limit = bd->bd_hibufspace;
697 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
698 	new = space + size;
699 	if (new > limit) {
700 		atomic_subtract_long(&bd->bd_bufspace, size);
701 		return (ENOSPC);
702 	}
703 
704 	/* Wake up the daemon on the transition. */
705 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
706 		bufspace_daemon_wakeup(bd);
707 
708 	return (0);
709 }
710 
711 /*
712  *	bufspace_release:
713  *
714  *	Release reserved bufspace after bufspace_adjust() has consumed it.
715  */
716 static void
717 bufspace_release(struct bufdomain *bd, int size)
718 {
719 
720 	atomic_subtract_long(&bd->bd_bufspace, size);
721 }
722 
723 /*
724  *	bufspace_wait:
725  *
726  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
727  *	supplied.  bd_wanted must be set prior to polling for space.  The
728  *	operation must be re-tried on return.
729  */
730 static void
731 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
732     int slpflag, int slptimeo)
733 {
734 	struct thread *td;
735 	int error, fl, norunbuf;
736 
737 	if ((gbflags & GB_NOWAIT_BD) != 0)
738 		return;
739 
740 	td = curthread;
741 	BD_LOCK(bd);
742 	while (bd->bd_wanted) {
743 		if (vp != NULL && vp->v_type != VCHR &&
744 		    (td->td_pflags & TDP_BUFNEED) == 0) {
745 			BD_UNLOCK(bd);
746 			/*
747 			 * getblk() is called with a vnode locked, and
748 			 * some majority of the dirty buffers may as
749 			 * well belong to the vnode.  Flushing the
750 			 * buffers there would make a progress that
751 			 * cannot be achieved by the buf_daemon, that
752 			 * cannot lock the vnode.
753 			 */
754 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
755 			    (td->td_pflags & TDP_NORUNNINGBUF);
756 
757 			/*
758 			 * Play bufdaemon.  The getnewbuf() function
759 			 * may be called while the thread owns lock
760 			 * for another dirty buffer for the same
761 			 * vnode, which makes it impossible to use
762 			 * VOP_FSYNC() there, due to the buffer lock
763 			 * recursion.
764 			 */
765 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
766 			fl = buf_flush(vp, bd, flushbufqtarget);
767 			td->td_pflags &= norunbuf;
768 			BD_LOCK(bd);
769 			if (fl != 0)
770 				continue;
771 			if (bd->bd_wanted == 0)
772 				break;
773 		}
774 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
775 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
776 		if (error != 0)
777 			break;
778 	}
779 	BD_UNLOCK(bd);
780 }
781 
782 /*
783  *	bufspace_daemon:
784  *
785  *	buffer space management daemon.  Tries to maintain some marginal
786  *	amount of free buffer space so that requesting processes neither
787  *	block nor work to reclaim buffers.
788  */
789 static void
790 bufspace_daemon(void *arg)
791 {
792 	struct bufdomain *bd;
793 
794 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
795 	    SHUTDOWN_PRI_LAST + 100);
796 
797 	bd = arg;
798 	for (;;) {
799 		kthread_suspend_check();
800 
801 		/*
802 		 * Free buffers from the clean queue until we meet our
803 		 * targets.
804 		 *
805 		 * Theory of operation:  The buffer cache is most efficient
806 		 * when some free buffer headers and space are always
807 		 * available to getnewbuf().  This daemon attempts to prevent
808 		 * the excessive blocking and synchronization associated
809 		 * with shortfall.  It goes through three phases according
810 		 * demand:
811 		 *
812 		 * 1)	The daemon wakes up voluntarily once per-second
813 		 *	during idle periods when the counters are below
814 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
815 		 *
816 		 * 2)	The daemon wakes up as we cross the thresholds
817 		 *	ahead of any potential blocking.  This may bounce
818 		 *	slightly according to the rate of consumption and
819 		 *	release.
820 		 *
821 		 * 3)	The daemon and consumers are starved for working
822 		 *	clean buffers.  This is the 'bufspace' sleep below
823 		 *	which will inefficiently trade bufs with bqrelse
824 		 *	until we return to condition 2.
825 		 */
826 		while (bd->bd_bufspace > bd->bd_lobufspace ||
827 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
828 			if (buf_recycle(bd, false) != 0) {
829 				if (bd_flushall(bd))
830 					continue;
831 				/*
832 				 * Speedup dirty if we've run out of clean
833 				 * buffers.  This is possible in particular
834 				 * because softdep may held many bufs locked
835 				 * pending writes to other bufs which are
836 				 * marked for delayed write, exhausting
837 				 * clean space until they are written.
838 				 */
839 				bd_speedup();
840 				BD_LOCK(bd);
841 				if (bd->bd_wanted) {
842 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
843 					    PRIBIO|PDROP, "bufspace", hz/10);
844 				} else
845 					BD_UNLOCK(bd);
846 			}
847 			maybe_yield();
848 		}
849 		bufspace_daemon_wait(bd);
850 	}
851 }
852 
853 /*
854  *	bufmallocadjust:
855  *
856  *	Adjust the reported bufspace for a malloc managed buffer, possibly
857  *	waking any waiters.
858  */
859 static void
860 bufmallocadjust(struct buf *bp, int bufsize)
861 {
862 	int diff;
863 
864 	KASSERT((bp->b_flags & B_MALLOC) != 0,
865 	    ("bufmallocadjust: non-malloc buf %p", bp));
866 	diff = bufsize - bp->b_bufsize;
867 	if (diff < 0)
868 		atomic_subtract_long(&bufmallocspace, -diff);
869 	else
870 		atomic_add_long(&bufmallocspace, diff);
871 	bp->b_bufsize = bufsize;
872 }
873 
874 /*
875  *	runningwakeup:
876  *
877  *	Wake up processes that are waiting on asynchronous writes to fall
878  *	below lorunningspace.
879  */
880 static void
881 runningwakeup(void)
882 {
883 
884 	mtx_lock(&rbreqlock);
885 	if (runningbufreq) {
886 		runningbufreq = 0;
887 		wakeup(&runningbufreq);
888 	}
889 	mtx_unlock(&rbreqlock);
890 }
891 
892 /*
893  *	runningbufwakeup:
894  *
895  *	Decrement the outstanding write count according.
896  */
897 void
898 runningbufwakeup(struct buf *bp)
899 {
900 	long space, bspace;
901 
902 	bspace = bp->b_runningbufspace;
903 	if (bspace == 0)
904 		return;
905 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
906 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
907 	    space, bspace));
908 	bp->b_runningbufspace = 0;
909 	/*
910 	 * Only acquire the lock and wakeup on the transition from exceeding
911 	 * the threshold to falling below it.
912 	 */
913 	if (space < lorunningspace)
914 		return;
915 	if (space - bspace > lorunningspace)
916 		return;
917 	runningwakeup();
918 }
919 
920 /*
921  *	waitrunningbufspace()
922  *
923  *	runningbufspace is a measure of the amount of I/O currently
924  *	running.  This routine is used in async-write situations to
925  *	prevent creating huge backups of pending writes to a device.
926  *	Only asynchronous writes are governed by this function.
927  *
928  *	This does NOT turn an async write into a sync write.  It waits
929  *	for earlier writes to complete and generally returns before the
930  *	caller's write has reached the device.
931  */
932 void
933 waitrunningbufspace(void)
934 {
935 
936 	mtx_lock(&rbreqlock);
937 	while (runningbufspace > hirunningspace) {
938 		runningbufreq = 1;
939 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
940 	}
941 	mtx_unlock(&rbreqlock);
942 }
943 
944 /*
945  *	vfs_buf_test_cache:
946  *
947  *	Called when a buffer is extended.  This function clears the B_CACHE
948  *	bit if the newly extended portion of the buffer does not contain
949  *	valid data.
950  */
951 static __inline void
952 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
953     vm_offset_t size, vm_page_t m)
954 {
955 
956 	/*
957 	 * This function and its results are protected by higher level
958 	 * synchronization requiring vnode and buf locks to page in and
959 	 * validate pages.
960 	 */
961 	if (bp->b_flags & B_CACHE) {
962 		int base = (foff + off) & PAGE_MASK;
963 		if (vm_page_is_valid(m, base, size) == 0)
964 			bp->b_flags &= ~B_CACHE;
965 	}
966 }
967 
968 /* Wake up the buffer daemon if necessary */
969 static void
970 bd_wakeup(void)
971 {
972 
973 	mtx_lock(&bdlock);
974 	if (bd_request == 0) {
975 		bd_request = 1;
976 		wakeup(&bd_request);
977 	}
978 	mtx_unlock(&bdlock);
979 }
980 
981 /*
982  * Adjust the maxbcachbuf tunable.
983  */
984 static void
985 maxbcachebuf_adjust(void)
986 {
987 	int i;
988 
989 	/*
990 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
991 	 */
992 	i = 2;
993 	while (i * 2 <= maxbcachebuf)
994 		i *= 2;
995 	maxbcachebuf = i;
996 	if (maxbcachebuf < MAXBSIZE)
997 		maxbcachebuf = MAXBSIZE;
998 	if (maxbcachebuf > MAXPHYS)
999 		maxbcachebuf = MAXPHYS;
1000 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1001 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1002 }
1003 
1004 /*
1005  * bd_speedup - speedup the buffer cache flushing code
1006  */
1007 void
1008 bd_speedup(void)
1009 {
1010 	int needwake;
1011 
1012 	mtx_lock(&bdlock);
1013 	needwake = 0;
1014 	if (bd_speedupreq == 0 || bd_request == 0)
1015 		needwake = 1;
1016 	bd_speedupreq = 1;
1017 	bd_request = 1;
1018 	if (needwake)
1019 		wakeup(&bd_request);
1020 	mtx_unlock(&bdlock);
1021 }
1022 
1023 #ifdef __i386__
1024 #define	TRANSIENT_DENOM	5
1025 #else
1026 #define	TRANSIENT_DENOM 10
1027 #endif
1028 
1029 /*
1030  * Calculating buffer cache scaling values and reserve space for buffer
1031  * headers.  This is called during low level kernel initialization and
1032  * may be called more then once.  We CANNOT write to the memory area
1033  * being reserved at this time.
1034  */
1035 caddr_t
1036 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1037 {
1038 	int tuned_nbuf;
1039 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1040 
1041 	/*
1042 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1043 	 * PAGE_SIZE is >= 1K)
1044 	 */
1045 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1046 
1047 	maxbcachebuf_adjust();
1048 	/*
1049 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1050 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1051 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1052 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1053 	 * the buffer cache we limit the eventual kva reservation to
1054 	 * maxbcache bytes.
1055 	 *
1056 	 * factor represents the 1/4 x ram conversion.
1057 	 */
1058 	if (nbuf == 0) {
1059 		int factor = 4 * BKVASIZE / 1024;
1060 
1061 		nbuf = 50;
1062 		if (physmem_est > 4096)
1063 			nbuf += min((physmem_est - 4096) / factor,
1064 			    65536 / factor);
1065 		if (physmem_est > 65536)
1066 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1067 			    32 * 1024 * 1024 / (factor * 5));
1068 
1069 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1070 			nbuf = maxbcache / BKVASIZE;
1071 		tuned_nbuf = 1;
1072 	} else
1073 		tuned_nbuf = 0;
1074 
1075 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1076 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1077 	if (nbuf > maxbuf) {
1078 		if (!tuned_nbuf)
1079 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1080 			    maxbuf);
1081 		nbuf = maxbuf;
1082 	}
1083 
1084 	/*
1085 	 * Ideal allocation size for the transient bio submap is 10%
1086 	 * of the maximal space buffer map.  This roughly corresponds
1087 	 * to the amount of the buffer mapped for typical UFS load.
1088 	 *
1089 	 * Clip the buffer map to reserve space for the transient
1090 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1091 	 * maximum buffer map extent on the platform.
1092 	 *
1093 	 * The fall-back to the maxbuf in case of maxbcache unset,
1094 	 * allows to not trim the buffer KVA for the architectures
1095 	 * with ample KVA space.
1096 	 */
1097 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1098 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1099 		buf_sz = (long)nbuf * BKVASIZE;
1100 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1101 		    (TRANSIENT_DENOM - 1)) {
1102 			/*
1103 			 * There is more KVA than memory.  Do not
1104 			 * adjust buffer map size, and assign the rest
1105 			 * of maxbuf to transient map.
1106 			 */
1107 			biotmap_sz = maxbuf_sz - buf_sz;
1108 		} else {
1109 			/*
1110 			 * Buffer map spans all KVA we could afford on
1111 			 * this platform.  Give 10% (20% on i386) of
1112 			 * the buffer map to the transient bio map.
1113 			 */
1114 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1115 			buf_sz -= biotmap_sz;
1116 		}
1117 		if (biotmap_sz / INT_MAX > MAXPHYS)
1118 			bio_transient_maxcnt = INT_MAX;
1119 		else
1120 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
1121 		/*
1122 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1123 		 * using the transient mapping.
1124 		 */
1125 		if (bio_transient_maxcnt > 1024)
1126 			bio_transient_maxcnt = 1024;
1127 		if (tuned_nbuf)
1128 			nbuf = buf_sz / BKVASIZE;
1129 	}
1130 
1131 	if (nswbuf == 0) {
1132 		nswbuf = min(nbuf / 4, 256);
1133 		if (nswbuf < NSWBUF_MIN)
1134 			nswbuf = NSWBUF_MIN;
1135 	}
1136 
1137 	/*
1138 	 * Reserve space for the buffer cache buffers
1139 	 */
1140 	buf = (void *)v;
1141 	v = (caddr_t)(buf + nbuf);
1142 
1143 	return(v);
1144 }
1145 
1146 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1147 void
1148 bufinit(void)
1149 {
1150 	struct buf *bp;
1151 	int i;
1152 
1153 	KASSERT(maxbcachebuf >= MAXBSIZE,
1154 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1155 	    MAXBSIZE));
1156 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1157 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1158 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1159 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1160 
1161 	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
1162 
1163 	/* finally, initialize each buffer header and stick on empty q */
1164 	for (i = 0; i < nbuf; i++) {
1165 		bp = &buf[i];
1166 		bzero(bp, sizeof *bp);
1167 		bp->b_flags = B_INVAL;
1168 		bp->b_rcred = NOCRED;
1169 		bp->b_wcred = NOCRED;
1170 		bp->b_qindex = QUEUE_NONE;
1171 		bp->b_domain = -1;
1172 		bp->b_subqueue = mp_maxid + 1;
1173 		bp->b_xflags = 0;
1174 		bp->b_data = bp->b_kvabase = unmapped_buf;
1175 		LIST_INIT(&bp->b_dep);
1176 		BUF_LOCKINIT(bp);
1177 		bq_insert(&bqempty, bp, false);
1178 	}
1179 
1180 	/*
1181 	 * maxbufspace is the absolute maximum amount of buffer space we are
1182 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1183 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1184 	 * used by most other requests.  The differential is required to
1185 	 * ensure that metadata deadlocks don't occur.
1186 	 *
1187 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1188 	 * this may result in KVM fragmentation which is not handled optimally
1189 	 * by the system. XXX This is less true with vmem.  We could use
1190 	 * PAGE_SIZE.
1191 	 */
1192 	maxbufspace = (long)nbuf * BKVASIZE;
1193 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1194 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1195 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1196 
1197 	/*
1198 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1199 	 * arbitrarily and may need further tuning. It corresponds to
1200 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1201 	 * which fits with many RAID controllers' tagged queuing limits.
1202 	 * The lower 1 MiB limit is the historical upper limit for
1203 	 * hirunningspace.
1204 	 */
1205 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1206 	    16 * 1024 * 1024), 1024 * 1024);
1207 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1208 
1209 	/*
1210 	 * Limit the amount of malloc memory since it is wired permanently into
1211 	 * the kernel space.  Even though this is accounted for in the buffer
1212 	 * allocation, we don't want the malloced region to grow uncontrolled.
1213 	 * The malloc scheme improves memory utilization significantly on
1214 	 * average (small) directories.
1215 	 */
1216 	maxbufmallocspace = hibufspace / 20;
1217 
1218 	/*
1219 	 * Reduce the chance of a deadlock occurring by limiting the number
1220 	 * of delayed-write dirty buffers we allow to stack up.
1221 	 */
1222 	hidirtybuffers = nbuf / 4 + 20;
1223 	dirtybufthresh = hidirtybuffers * 9 / 10;
1224 	/*
1225 	 * To support extreme low-memory systems, make sure hidirtybuffers
1226 	 * cannot eat up all available buffer space.  This occurs when our
1227 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1228 	 * buffer space assuming BKVASIZE'd buffers.
1229 	 */
1230 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1231 		hidirtybuffers >>= 1;
1232 	}
1233 	lodirtybuffers = hidirtybuffers / 2;
1234 
1235 	/*
1236 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1237 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1238 	 * are counted as free but will be unavailable to threads executing
1239 	 * on other cpus.
1240 	 *
1241 	 * hifreebuffers is the free target for the bufspace daemon.  This
1242 	 * should be set appropriately to limit work per-iteration.
1243 	 */
1244 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1245 	hifreebuffers = (3 * lofreebuffers) / 2;
1246 	numfreebuffers = nbuf;
1247 
1248 	/* Setup the kva and free list allocators. */
1249 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1250 	buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
1251 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1252 
1253 	/*
1254 	 * Size the clean queue according to the amount of buffer space.
1255 	 * One queue per-256mb up to the max.  More queues gives better
1256 	 * concurrency but less accurate LRU.
1257 	 */
1258 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1259 	for (i = 0 ; i < buf_domains; i++) {
1260 		struct bufdomain *bd;
1261 
1262 		bd = &bdomain[i];
1263 		bd_init(bd);
1264 		bd->bd_freebuffers = nbuf / buf_domains;
1265 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1266 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1267 		bd->bd_bufspace = 0;
1268 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1269 		bd->bd_hibufspace = hibufspace / buf_domains;
1270 		bd->bd_lobufspace = lobufspace / buf_domains;
1271 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1272 		bd->bd_numdirtybuffers = 0;
1273 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1274 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1275 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1276 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1277 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1278 	}
1279 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1280 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1281 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1282 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1283 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1284 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1285 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1286 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1287 }
1288 
1289 #ifdef INVARIANTS
1290 static inline void
1291 vfs_buf_check_mapped(struct buf *bp)
1292 {
1293 
1294 	KASSERT(bp->b_kvabase != unmapped_buf,
1295 	    ("mapped buf: b_kvabase was not updated %p", bp));
1296 	KASSERT(bp->b_data != unmapped_buf,
1297 	    ("mapped buf: b_data was not updated %p", bp));
1298 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1299 	    MAXPHYS, ("b_data + b_offset unmapped %p", bp));
1300 }
1301 
1302 static inline void
1303 vfs_buf_check_unmapped(struct buf *bp)
1304 {
1305 
1306 	KASSERT(bp->b_data == unmapped_buf,
1307 	    ("unmapped buf: corrupted b_data %p", bp));
1308 }
1309 
1310 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1311 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1312 #else
1313 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1314 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1315 #endif
1316 
1317 static int
1318 isbufbusy(struct buf *bp)
1319 {
1320 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1321 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1322 		return (1);
1323 	return (0);
1324 }
1325 
1326 /*
1327  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1328  */
1329 void
1330 bufshutdown(int show_busybufs)
1331 {
1332 	static int first_buf_printf = 1;
1333 	struct buf *bp;
1334 	int iter, nbusy, pbusy;
1335 #ifndef PREEMPTION
1336 	int subiter;
1337 #endif
1338 
1339 	/*
1340 	 * Sync filesystems for shutdown
1341 	 */
1342 	wdog_kern_pat(WD_LASTVAL);
1343 	kern_sync(curthread);
1344 
1345 	/*
1346 	 * With soft updates, some buffers that are
1347 	 * written will be remarked as dirty until other
1348 	 * buffers are written.
1349 	 */
1350 	for (iter = pbusy = 0; iter < 20; iter++) {
1351 		nbusy = 0;
1352 		for (bp = &buf[nbuf]; --bp >= buf; )
1353 			if (isbufbusy(bp))
1354 				nbusy++;
1355 		if (nbusy == 0) {
1356 			if (first_buf_printf)
1357 				printf("All buffers synced.");
1358 			break;
1359 		}
1360 		if (first_buf_printf) {
1361 			printf("Syncing disks, buffers remaining... ");
1362 			first_buf_printf = 0;
1363 		}
1364 		printf("%d ", nbusy);
1365 		if (nbusy < pbusy)
1366 			iter = 0;
1367 		pbusy = nbusy;
1368 
1369 		wdog_kern_pat(WD_LASTVAL);
1370 		kern_sync(curthread);
1371 
1372 #ifdef PREEMPTION
1373 		/*
1374 		 * Spin for a while to allow interrupt threads to run.
1375 		 */
1376 		DELAY(50000 * iter);
1377 #else
1378 		/*
1379 		 * Context switch several times to allow interrupt
1380 		 * threads to run.
1381 		 */
1382 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1383 			thread_lock(curthread);
1384 			mi_switch(SW_VOL);
1385 			DELAY(1000);
1386 		}
1387 #endif
1388 	}
1389 	printf("\n");
1390 	/*
1391 	 * Count only busy local buffers to prevent forcing
1392 	 * a fsck if we're just a client of a wedged NFS server
1393 	 */
1394 	nbusy = 0;
1395 	for (bp = &buf[nbuf]; --bp >= buf; ) {
1396 		if (isbufbusy(bp)) {
1397 #if 0
1398 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1399 			if (bp->b_dev == NULL) {
1400 				TAILQ_REMOVE(&mountlist,
1401 				    bp->b_vp->v_mount, mnt_list);
1402 				continue;
1403 			}
1404 #endif
1405 			nbusy++;
1406 			if (show_busybufs > 0) {
1407 				printf(
1408 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1409 				    nbusy, bp, bp->b_vp, bp->b_flags,
1410 				    (intmax_t)bp->b_blkno,
1411 				    (intmax_t)bp->b_lblkno);
1412 				BUF_LOCKPRINTINFO(bp);
1413 				if (show_busybufs > 1)
1414 					vn_printf(bp->b_vp,
1415 					    "vnode content: ");
1416 			}
1417 		}
1418 	}
1419 	if (nbusy) {
1420 		/*
1421 		 * Failed to sync all blocks. Indicate this and don't
1422 		 * unmount filesystems (thus forcing an fsck on reboot).
1423 		 */
1424 		printf("Giving up on %d buffers\n", nbusy);
1425 		DELAY(5000000);	/* 5 seconds */
1426 	} else {
1427 		if (!first_buf_printf)
1428 			printf("Final sync complete\n");
1429 		/*
1430 		 * Unmount filesystems
1431 		 */
1432 		if (!KERNEL_PANICKED())
1433 			vfs_unmountall();
1434 	}
1435 	swapoff_all();
1436 	DELAY(100000);		/* wait for console output to finish */
1437 }
1438 
1439 static void
1440 bpmap_qenter(struct buf *bp)
1441 {
1442 
1443 	BUF_CHECK_MAPPED(bp);
1444 
1445 	/*
1446 	 * bp->b_data is relative to bp->b_offset, but
1447 	 * bp->b_offset may be offset into the first page.
1448 	 */
1449 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1450 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1451 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1452 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1453 }
1454 
1455 static inline struct bufdomain *
1456 bufdomain(struct buf *bp)
1457 {
1458 
1459 	return (&bdomain[bp->b_domain]);
1460 }
1461 
1462 static struct bufqueue *
1463 bufqueue(struct buf *bp)
1464 {
1465 
1466 	switch (bp->b_qindex) {
1467 	case QUEUE_NONE:
1468 		/* FALLTHROUGH */
1469 	case QUEUE_SENTINEL:
1470 		return (NULL);
1471 	case QUEUE_EMPTY:
1472 		return (&bqempty);
1473 	case QUEUE_DIRTY:
1474 		return (&bufdomain(bp)->bd_dirtyq);
1475 	case QUEUE_CLEAN:
1476 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1477 	default:
1478 		break;
1479 	}
1480 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1481 }
1482 
1483 /*
1484  * Return the locked bufqueue that bp is a member of.
1485  */
1486 static struct bufqueue *
1487 bufqueue_acquire(struct buf *bp)
1488 {
1489 	struct bufqueue *bq, *nbq;
1490 
1491 	/*
1492 	 * bp can be pushed from a per-cpu queue to the
1493 	 * cleanq while we're waiting on the lock.  Retry
1494 	 * if the queues don't match.
1495 	 */
1496 	bq = bufqueue(bp);
1497 	BQ_LOCK(bq);
1498 	for (;;) {
1499 		nbq = bufqueue(bp);
1500 		if (bq == nbq)
1501 			break;
1502 		BQ_UNLOCK(bq);
1503 		BQ_LOCK(nbq);
1504 		bq = nbq;
1505 	}
1506 	return (bq);
1507 }
1508 
1509 /*
1510  *	binsfree:
1511  *
1512  *	Insert the buffer into the appropriate free list.  Requires a
1513  *	locked buffer on entry and buffer is unlocked before return.
1514  */
1515 static void
1516 binsfree(struct buf *bp, int qindex)
1517 {
1518 	struct bufdomain *bd;
1519 	struct bufqueue *bq;
1520 
1521 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1522 	    ("binsfree: Invalid qindex %d", qindex));
1523 	BUF_ASSERT_XLOCKED(bp);
1524 
1525 	/*
1526 	 * Handle delayed bremfree() processing.
1527 	 */
1528 	if (bp->b_flags & B_REMFREE) {
1529 		if (bp->b_qindex == qindex) {
1530 			bp->b_flags |= B_REUSE;
1531 			bp->b_flags &= ~B_REMFREE;
1532 			BUF_UNLOCK(bp);
1533 			return;
1534 		}
1535 		bq = bufqueue_acquire(bp);
1536 		bq_remove(bq, bp);
1537 		BQ_UNLOCK(bq);
1538 	}
1539 	bd = bufdomain(bp);
1540 	if (qindex == QUEUE_CLEAN) {
1541 		if (bd->bd_lim != 0)
1542 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1543 		else
1544 			bq = bd->bd_cleanq;
1545 	} else
1546 		bq = &bd->bd_dirtyq;
1547 	bq_insert(bq, bp, true);
1548 }
1549 
1550 /*
1551  * buf_free:
1552  *
1553  *	Free a buffer to the buf zone once it no longer has valid contents.
1554  */
1555 static void
1556 buf_free(struct buf *bp)
1557 {
1558 
1559 	if (bp->b_flags & B_REMFREE)
1560 		bremfreef(bp);
1561 	if (bp->b_vflags & BV_BKGRDINPROG)
1562 		panic("losing buffer 1");
1563 	if (bp->b_rcred != NOCRED) {
1564 		crfree(bp->b_rcred);
1565 		bp->b_rcred = NOCRED;
1566 	}
1567 	if (bp->b_wcred != NOCRED) {
1568 		crfree(bp->b_wcred);
1569 		bp->b_wcred = NOCRED;
1570 	}
1571 	if (!LIST_EMPTY(&bp->b_dep))
1572 		buf_deallocate(bp);
1573 	bufkva_free(bp);
1574 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1575 	BUF_UNLOCK(bp);
1576 	uma_zfree(buf_zone, bp);
1577 }
1578 
1579 /*
1580  * buf_import:
1581  *
1582  *	Import bufs into the uma cache from the buf list.  The system still
1583  *	expects a static array of bufs and much of the synchronization
1584  *	around bufs assumes type stable storage.  As a result, UMA is used
1585  *	only as a per-cpu cache of bufs still maintained on a global list.
1586  */
1587 static int
1588 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1589 {
1590 	struct buf *bp;
1591 	int i;
1592 
1593 	BQ_LOCK(&bqempty);
1594 	for (i = 0; i < cnt; i++) {
1595 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1596 		if (bp == NULL)
1597 			break;
1598 		bq_remove(&bqempty, bp);
1599 		store[i] = bp;
1600 	}
1601 	BQ_UNLOCK(&bqempty);
1602 
1603 	return (i);
1604 }
1605 
1606 /*
1607  * buf_release:
1608  *
1609  *	Release bufs from the uma cache back to the buffer queues.
1610  */
1611 static void
1612 buf_release(void *arg, void **store, int cnt)
1613 {
1614 	struct bufqueue *bq;
1615 	struct buf *bp;
1616         int i;
1617 
1618 	bq = &bqempty;
1619 	BQ_LOCK(bq);
1620         for (i = 0; i < cnt; i++) {
1621 		bp = store[i];
1622 		/* Inline bq_insert() to batch locking. */
1623 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1624 		bp->b_flags &= ~(B_AGE | B_REUSE);
1625 		bq->bq_len++;
1626 		bp->b_qindex = bq->bq_index;
1627 	}
1628 	BQ_UNLOCK(bq);
1629 }
1630 
1631 /*
1632  * buf_alloc:
1633  *
1634  *	Allocate an empty buffer header.
1635  */
1636 static struct buf *
1637 buf_alloc(struct bufdomain *bd)
1638 {
1639 	struct buf *bp;
1640 	int freebufs;
1641 
1642 	/*
1643 	 * We can only run out of bufs in the buf zone if the average buf
1644 	 * is less than BKVASIZE.  In this case the actual wait/block will
1645 	 * come from buf_reycle() failing to flush one of these small bufs.
1646 	 */
1647 	bp = NULL;
1648 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1649 	if (freebufs > 0)
1650 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1651 	if (bp == NULL) {
1652 		atomic_add_int(&bd->bd_freebuffers, 1);
1653 		bufspace_daemon_wakeup(bd);
1654 		counter_u64_add(numbufallocfails, 1);
1655 		return (NULL);
1656 	}
1657 	/*
1658 	 * Wake-up the bufspace daemon on transition below threshold.
1659 	 */
1660 	if (freebufs == bd->bd_lofreebuffers)
1661 		bufspace_daemon_wakeup(bd);
1662 
1663 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1664 		panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
1665 
1666 	KASSERT(bp->b_vp == NULL,
1667 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1668 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1669 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1670 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1671 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1672 	KASSERT(bp->b_npages == 0,
1673 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1674 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1675 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1676 
1677 	bp->b_domain = BD_DOMAIN(bd);
1678 	bp->b_flags = 0;
1679 	bp->b_ioflags = 0;
1680 	bp->b_xflags = 0;
1681 	bp->b_vflags = 0;
1682 	bp->b_vp = NULL;
1683 	bp->b_blkno = bp->b_lblkno = 0;
1684 	bp->b_offset = NOOFFSET;
1685 	bp->b_iodone = 0;
1686 	bp->b_error = 0;
1687 	bp->b_resid = 0;
1688 	bp->b_bcount = 0;
1689 	bp->b_npages = 0;
1690 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1691 	bp->b_bufobj = NULL;
1692 	bp->b_data = bp->b_kvabase = unmapped_buf;
1693 	bp->b_fsprivate1 = NULL;
1694 	bp->b_fsprivate2 = NULL;
1695 	bp->b_fsprivate3 = NULL;
1696 	LIST_INIT(&bp->b_dep);
1697 
1698 	return (bp);
1699 }
1700 
1701 /*
1702  *	buf_recycle:
1703  *
1704  *	Free a buffer from the given bufqueue.  kva controls whether the
1705  *	freed buf must own some kva resources.  This is used for
1706  *	defragmenting.
1707  */
1708 static int
1709 buf_recycle(struct bufdomain *bd, bool kva)
1710 {
1711 	struct bufqueue *bq;
1712 	struct buf *bp, *nbp;
1713 
1714 	if (kva)
1715 		counter_u64_add(bufdefragcnt, 1);
1716 	nbp = NULL;
1717 	bq = bd->bd_cleanq;
1718 	BQ_LOCK(bq);
1719 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1720 	    ("buf_recycle: Locks don't match"));
1721 	nbp = TAILQ_FIRST(&bq->bq_queue);
1722 
1723 	/*
1724 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1725 	 * depending.
1726 	 */
1727 	while ((bp = nbp) != NULL) {
1728 		/*
1729 		 * Calculate next bp (we can only use it if we do not
1730 		 * release the bqlock).
1731 		 */
1732 		nbp = TAILQ_NEXT(bp, b_freelist);
1733 
1734 		/*
1735 		 * If we are defragging then we need a buffer with
1736 		 * some kva to reclaim.
1737 		 */
1738 		if (kva && bp->b_kvasize == 0)
1739 			continue;
1740 
1741 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1742 			continue;
1743 
1744 		/*
1745 		 * Implement a second chance algorithm for frequently
1746 		 * accessed buffers.
1747 		 */
1748 		if ((bp->b_flags & B_REUSE) != 0) {
1749 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1750 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1751 			bp->b_flags &= ~B_REUSE;
1752 			BUF_UNLOCK(bp);
1753 			continue;
1754 		}
1755 
1756 		/*
1757 		 * Skip buffers with background writes in progress.
1758 		 */
1759 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1760 			BUF_UNLOCK(bp);
1761 			continue;
1762 		}
1763 
1764 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1765 		    ("buf_recycle: inconsistent queue %d bp %p",
1766 		    bp->b_qindex, bp));
1767 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1768 		    ("getnewbuf: queue domain %d doesn't match request %d",
1769 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1770 		/*
1771 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1772 		 * the scan from this point on.
1773 		 */
1774 		bq_remove(bq, bp);
1775 		BQ_UNLOCK(bq);
1776 
1777 		/*
1778 		 * Requeue the background write buffer with error and
1779 		 * restart the scan.
1780 		 */
1781 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1782 			bqrelse(bp);
1783 			BQ_LOCK(bq);
1784 			nbp = TAILQ_FIRST(&bq->bq_queue);
1785 			continue;
1786 		}
1787 		bp->b_flags |= B_INVAL;
1788 		brelse(bp);
1789 		return (0);
1790 	}
1791 	bd->bd_wanted = 1;
1792 	BQ_UNLOCK(bq);
1793 
1794 	return (ENOBUFS);
1795 }
1796 
1797 /*
1798  *	bremfree:
1799  *
1800  *	Mark the buffer for removal from the appropriate free list.
1801  *
1802  */
1803 void
1804 bremfree(struct buf *bp)
1805 {
1806 
1807 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1808 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1809 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1810 	KASSERT(bp->b_qindex != QUEUE_NONE,
1811 	    ("bremfree: buffer %p not on a queue.", bp));
1812 	BUF_ASSERT_XLOCKED(bp);
1813 
1814 	bp->b_flags |= B_REMFREE;
1815 }
1816 
1817 /*
1818  *	bremfreef:
1819  *
1820  *	Force an immediate removal from a free list.  Used only in nfs when
1821  *	it abuses the b_freelist pointer.
1822  */
1823 void
1824 bremfreef(struct buf *bp)
1825 {
1826 	struct bufqueue *bq;
1827 
1828 	bq = bufqueue_acquire(bp);
1829 	bq_remove(bq, bp);
1830 	BQ_UNLOCK(bq);
1831 }
1832 
1833 static void
1834 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1835 {
1836 
1837 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1838 	TAILQ_INIT(&bq->bq_queue);
1839 	bq->bq_len = 0;
1840 	bq->bq_index = qindex;
1841 	bq->bq_subqueue = subqueue;
1842 }
1843 
1844 static void
1845 bd_init(struct bufdomain *bd)
1846 {
1847 	int i;
1848 
1849 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1850 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1851 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1852 	for (i = 0; i <= mp_maxid; i++)
1853 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1854 		    "bufq clean subqueue lock");
1855 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1856 }
1857 
1858 /*
1859  *	bq_remove:
1860  *
1861  *	Removes a buffer from the free list, must be called with the
1862  *	correct qlock held.
1863  */
1864 static void
1865 bq_remove(struct bufqueue *bq, struct buf *bp)
1866 {
1867 
1868 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1869 	    bp, bp->b_vp, bp->b_flags);
1870 	KASSERT(bp->b_qindex != QUEUE_NONE,
1871 	    ("bq_remove: buffer %p not on a queue.", bp));
1872 	KASSERT(bufqueue(bp) == bq,
1873 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1874 
1875 	BQ_ASSERT_LOCKED(bq);
1876 	if (bp->b_qindex != QUEUE_EMPTY) {
1877 		BUF_ASSERT_XLOCKED(bp);
1878 	}
1879 	KASSERT(bq->bq_len >= 1,
1880 	    ("queue %d underflow", bp->b_qindex));
1881 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1882 	bq->bq_len--;
1883 	bp->b_qindex = QUEUE_NONE;
1884 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1885 }
1886 
1887 static void
1888 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1889 {
1890 	struct buf *bp;
1891 
1892 	BQ_ASSERT_LOCKED(bq);
1893 	if (bq != bd->bd_cleanq) {
1894 		BD_LOCK(bd);
1895 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1896 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1897 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1898 			    b_freelist);
1899 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1900 		}
1901 		bd->bd_cleanq->bq_len += bq->bq_len;
1902 		bq->bq_len = 0;
1903 	}
1904 	if (bd->bd_wanted) {
1905 		bd->bd_wanted = 0;
1906 		wakeup(&bd->bd_wanted);
1907 	}
1908 	if (bq != bd->bd_cleanq)
1909 		BD_UNLOCK(bd);
1910 }
1911 
1912 static int
1913 bd_flushall(struct bufdomain *bd)
1914 {
1915 	struct bufqueue *bq;
1916 	int flushed;
1917 	int i;
1918 
1919 	if (bd->bd_lim == 0)
1920 		return (0);
1921 	flushed = 0;
1922 	for (i = 0; i <= mp_maxid; i++) {
1923 		bq = &bd->bd_subq[i];
1924 		if (bq->bq_len == 0)
1925 			continue;
1926 		BQ_LOCK(bq);
1927 		bd_flush(bd, bq);
1928 		BQ_UNLOCK(bq);
1929 		flushed++;
1930 	}
1931 
1932 	return (flushed);
1933 }
1934 
1935 static void
1936 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1937 {
1938 	struct bufdomain *bd;
1939 
1940 	if (bp->b_qindex != QUEUE_NONE)
1941 		panic("bq_insert: free buffer %p onto another queue?", bp);
1942 
1943 	bd = bufdomain(bp);
1944 	if (bp->b_flags & B_AGE) {
1945 		/* Place this buf directly on the real queue. */
1946 		if (bq->bq_index == QUEUE_CLEAN)
1947 			bq = bd->bd_cleanq;
1948 		BQ_LOCK(bq);
1949 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
1950 	} else {
1951 		BQ_LOCK(bq);
1952 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1953 	}
1954 	bp->b_flags &= ~(B_AGE | B_REUSE);
1955 	bq->bq_len++;
1956 	bp->b_qindex = bq->bq_index;
1957 	bp->b_subqueue = bq->bq_subqueue;
1958 
1959 	/*
1960 	 * Unlock before we notify so that we don't wakeup a waiter that
1961 	 * fails a trylock on the buf and sleeps again.
1962 	 */
1963 	if (unlock)
1964 		BUF_UNLOCK(bp);
1965 
1966 	if (bp->b_qindex == QUEUE_CLEAN) {
1967 		/*
1968 		 * Flush the per-cpu queue and notify any waiters.
1969 		 */
1970 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
1971 		    bq->bq_len >= bd->bd_lim))
1972 			bd_flush(bd, bq);
1973 	}
1974 	BQ_UNLOCK(bq);
1975 }
1976 
1977 /*
1978  *	bufkva_free:
1979  *
1980  *	Free the kva allocation for a buffer.
1981  *
1982  */
1983 static void
1984 bufkva_free(struct buf *bp)
1985 {
1986 
1987 #ifdef INVARIANTS
1988 	if (bp->b_kvasize == 0) {
1989 		KASSERT(bp->b_kvabase == unmapped_buf &&
1990 		    bp->b_data == unmapped_buf,
1991 		    ("Leaked KVA space on %p", bp));
1992 	} else if (buf_mapped(bp))
1993 		BUF_CHECK_MAPPED(bp);
1994 	else
1995 		BUF_CHECK_UNMAPPED(bp);
1996 #endif
1997 	if (bp->b_kvasize == 0)
1998 		return;
1999 
2000 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2001 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2002 	counter_u64_add(buffreekvacnt, 1);
2003 	bp->b_data = bp->b_kvabase = unmapped_buf;
2004 	bp->b_kvasize = 0;
2005 }
2006 
2007 /*
2008  *	bufkva_alloc:
2009  *
2010  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2011  */
2012 static int
2013 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2014 {
2015 	vm_offset_t addr;
2016 	int error;
2017 
2018 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2019 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2020 
2021 	bufkva_free(bp);
2022 
2023 	addr = 0;
2024 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2025 	if (error != 0) {
2026 		/*
2027 		 * Buffer map is too fragmented.  Request the caller
2028 		 * to defragment the map.
2029 		 */
2030 		return (error);
2031 	}
2032 	bp->b_kvabase = (caddr_t)addr;
2033 	bp->b_kvasize = maxsize;
2034 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2035 	if ((gbflags & GB_UNMAPPED) != 0) {
2036 		bp->b_data = unmapped_buf;
2037 		BUF_CHECK_UNMAPPED(bp);
2038 	} else {
2039 		bp->b_data = bp->b_kvabase;
2040 		BUF_CHECK_MAPPED(bp);
2041 	}
2042 	return (0);
2043 }
2044 
2045 /*
2046  *	bufkva_reclaim:
2047  *
2048  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2049  *	callback that fires to avoid returning failure.
2050  */
2051 static void
2052 bufkva_reclaim(vmem_t *vmem, int flags)
2053 {
2054 	bool done;
2055 	int q;
2056 	int i;
2057 
2058 	done = false;
2059 	for (i = 0; i < 5; i++) {
2060 		for (q = 0; q < buf_domains; q++)
2061 			if (buf_recycle(&bdomain[q], true) != 0)
2062 				done = true;
2063 		if (done)
2064 			break;
2065 	}
2066 	return;
2067 }
2068 
2069 /*
2070  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2071  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2072  * the buffer is valid and we do not have to do anything.
2073  */
2074 static void
2075 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2076     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2077 {
2078 	struct buf *rabp;
2079 	struct thread *td;
2080 	int i;
2081 
2082 	td = curthread;
2083 
2084 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2085 		if (inmem(vp, *rablkno))
2086 			continue;
2087 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2088 		if ((rabp->b_flags & B_CACHE) != 0) {
2089 			brelse(rabp);
2090 			continue;
2091 		}
2092 #ifdef RACCT
2093 		if (racct_enable) {
2094 			PROC_LOCK(curproc);
2095 			racct_add_buf(curproc, rabp, 0);
2096 			PROC_UNLOCK(curproc);
2097 		}
2098 #endif /* RACCT */
2099 		td->td_ru.ru_inblock++;
2100 		rabp->b_flags |= B_ASYNC;
2101 		rabp->b_flags &= ~B_INVAL;
2102 		if ((flags & GB_CKHASH) != 0) {
2103 			rabp->b_flags |= B_CKHASH;
2104 			rabp->b_ckhashcalc = ckhashfunc;
2105 		}
2106 		rabp->b_ioflags &= ~BIO_ERROR;
2107 		rabp->b_iocmd = BIO_READ;
2108 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2109 			rabp->b_rcred = crhold(cred);
2110 		vfs_busy_pages(rabp, 0);
2111 		BUF_KERNPROC(rabp);
2112 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2113 		bstrategy(rabp);
2114 	}
2115 }
2116 
2117 /*
2118  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2119  *
2120  * Get a buffer with the specified data.  Look in the cache first.  We
2121  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2122  * is set, the buffer is valid and we do not have to do anything, see
2123  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2124  *
2125  * Always return a NULL buffer pointer (in bpp) when returning an error.
2126  *
2127  * The blkno parameter is the logical block being requested. Normally
2128  * the mapping of logical block number to disk block address is done
2129  * by calling VOP_BMAP(). However, if the mapping is already known, the
2130  * disk block address can be passed using the dblkno parameter. If the
2131  * disk block address is not known, then the same value should be passed
2132  * for blkno and dblkno.
2133  */
2134 int
2135 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2136     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2137     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2138 {
2139 	struct buf *bp;
2140 	struct thread *td;
2141 	int error, readwait, rv;
2142 
2143 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2144 	td = curthread;
2145 	/*
2146 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2147 	 * are specified.
2148 	 */
2149 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2150 	if (error != 0) {
2151 		*bpp = NULL;
2152 		return (error);
2153 	}
2154 	KASSERT(blkno == bp->b_lblkno,
2155 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2156 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2157 	flags &= ~GB_NOSPARSE;
2158 	*bpp = bp;
2159 
2160 	/*
2161 	 * If not found in cache, do some I/O
2162 	 */
2163 	readwait = 0;
2164 	if ((bp->b_flags & B_CACHE) == 0) {
2165 #ifdef RACCT
2166 		if (racct_enable) {
2167 			PROC_LOCK(td->td_proc);
2168 			racct_add_buf(td->td_proc, bp, 0);
2169 			PROC_UNLOCK(td->td_proc);
2170 		}
2171 #endif /* RACCT */
2172 		td->td_ru.ru_inblock++;
2173 		bp->b_iocmd = BIO_READ;
2174 		bp->b_flags &= ~B_INVAL;
2175 		if ((flags & GB_CKHASH) != 0) {
2176 			bp->b_flags |= B_CKHASH;
2177 			bp->b_ckhashcalc = ckhashfunc;
2178 		}
2179 		if ((flags & GB_CVTENXIO) != 0)
2180 			bp->b_xflags |= BX_CVTENXIO;
2181 		bp->b_ioflags &= ~BIO_ERROR;
2182 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2183 			bp->b_rcred = crhold(cred);
2184 		vfs_busy_pages(bp, 0);
2185 		bp->b_iooffset = dbtob(bp->b_blkno);
2186 		bstrategy(bp);
2187 		++readwait;
2188 	}
2189 
2190 	/*
2191 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2192 	 */
2193 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2194 
2195 	rv = 0;
2196 	if (readwait) {
2197 		rv = bufwait(bp);
2198 		if (rv != 0) {
2199 			brelse(bp);
2200 			*bpp = NULL;
2201 		}
2202 	}
2203 	return (rv);
2204 }
2205 
2206 /*
2207  * Write, release buffer on completion.  (Done by iodone
2208  * if async).  Do not bother writing anything if the buffer
2209  * is invalid.
2210  *
2211  * Note that we set B_CACHE here, indicating that buffer is
2212  * fully valid and thus cacheable.  This is true even of NFS
2213  * now so we set it generally.  This could be set either here
2214  * or in biodone() since the I/O is synchronous.  We put it
2215  * here.
2216  */
2217 int
2218 bufwrite(struct buf *bp)
2219 {
2220 	int oldflags;
2221 	struct vnode *vp;
2222 	long space;
2223 	int vp_md;
2224 
2225 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2226 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2227 		bp->b_flags |= B_INVAL | B_RELBUF;
2228 		bp->b_flags &= ~B_CACHE;
2229 		brelse(bp);
2230 		return (ENXIO);
2231 	}
2232 	if (bp->b_flags & B_INVAL) {
2233 		brelse(bp);
2234 		return (0);
2235 	}
2236 
2237 	if (bp->b_flags & B_BARRIER)
2238 		atomic_add_long(&barrierwrites, 1);
2239 
2240 	oldflags = bp->b_flags;
2241 
2242 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2243 	    ("FFS background buffer should not get here %p", bp));
2244 
2245 	vp = bp->b_vp;
2246 	if (vp)
2247 		vp_md = vp->v_vflag & VV_MD;
2248 	else
2249 		vp_md = 0;
2250 
2251 	/*
2252 	 * Mark the buffer clean.  Increment the bufobj write count
2253 	 * before bundirty() call, to prevent other thread from seeing
2254 	 * empty dirty list and zero counter for writes in progress,
2255 	 * falsely indicating that the bufobj is clean.
2256 	 */
2257 	bufobj_wref(bp->b_bufobj);
2258 	bundirty(bp);
2259 
2260 	bp->b_flags &= ~B_DONE;
2261 	bp->b_ioflags &= ~BIO_ERROR;
2262 	bp->b_flags |= B_CACHE;
2263 	bp->b_iocmd = BIO_WRITE;
2264 
2265 	vfs_busy_pages(bp, 1);
2266 
2267 	/*
2268 	 * Normal bwrites pipeline writes
2269 	 */
2270 	bp->b_runningbufspace = bp->b_bufsize;
2271 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2272 
2273 #ifdef RACCT
2274 	if (racct_enable) {
2275 		PROC_LOCK(curproc);
2276 		racct_add_buf(curproc, bp, 1);
2277 		PROC_UNLOCK(curproc);
2278 	}
2279 #endif /* RACCT */
2280 	curthread->td_ru.ru_oublock++;
2281 	if (oldflags & B_ASYNC)
2282 		BUF_KERNPROC(bp);
2283 	bp->b_iooffset = dbtob(bp->b_blkno);
2284 	buf_track(bp, __func__);
2285 	bstrategy(bp);
2286 
2287 	if ((oldflags & B_ASYNC) == 0) {
2288 		int rtval = bufwait(bp);
2289 		brelse(bp);
2290 		return (rtval);
2291 	} else if (space > hirunningspace) {
2292 		/*
2293 		 * don't allow the async write to saturate the I/O
2294 		 * system.  We will not deadlock here because
2295 		 * we are blocking waiting for I/O that is already in-progress
2296 		 * to complete. We do not block here if it is the update
2297 		 * or syncer daemon trying to clean up as that can lead
2298 		 * to deadlock.
2299 		 */
2300 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2301 			waitrunningbufspace();
2302 	}
2303 
2304 	return (0);
2305 }
2306 
2307 void
2308 bufbdflush(struct bufobj *bo, struct buf *bp)
2309 {
2310 	struct buf *nbp;
2311 
2312 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
2313 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2314 		altbufferflushes++;
2315 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
2316 		BO_LOCK(bo);
2317 		/*
2318 		 * Try to find a buffer to flush.
2319 		 */
2320 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2321 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2322 			    BUF_LOCK(nbp,
2323 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2324 				continue;
2325 			if (bp == nbp)
2326 				panic("bdwrite: found ourselves");
2327 			BO_UNLOCK(bo);
2328 			/* Don't countdeps with the bo lock held. */
2329 			if (buf_countdeps(nbp, 0)) {
2330 				BO_LOCK(bo);
2331 				BUF_UNLOCK(nbp);
2332 				continue;
2333 			}
2334 			if (nbp->b_flags & B_CLUSTEROK) {
2335 				vfs_bio_awrite(nbp);
2336 			} else {
2337 				bremfree(nbp);
2338 				bawrite(nbp);
2339 			}
2340 			dirtybufferflushes++;
2341 			break;
2342 		}
2343 		if (nbp == NULL)
2344 			BO_UNLOCK(bo);
2345 	}
2346 }
2347 
2348 /*
2349  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2350  * anything if the buffer is marked invalid.
2351  *
2352  * Note that since the buffer must be completely valid, we can safely
2353  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2354  * biodone() in order to prevent getblk from writing the buffer
2355  * out synchronously.
2356  */
2357 void
2358 bdwrite(struct buf *bp)
2359 {
2360 	struct thread *td = curthread;
2361 	struct vnode *vp;
2362 	struct bufobj *bo;
2363 
2364 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2365 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2366 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2367 	    ("Barrier request in delayed write %p", bp));
2368 
2369 	if (bp->b_flags & B_INVAL) {
2370 		brelse(bp);
2371 		return;
2372 	}
2373 
2374 	/*
2375 	 * If we have too many dirty buffers, don't create any more.
2376 	 * If we are wildly over our limit, then force a complete
2377 	 * cleanup. Otherwise, just keep the situation from getting
2378 	 * out of control. Note that we have to avoid a recursive
2379 	 * disaster and not try to clean up after our own cleanup!
2380 	 */
2381 	vp = bp->b_vp;
2382 	bo = bp->b_bufobj;
2383 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2384 		td->td_pflags |= TDP_INBDFLUSH;
2385 		BO_BDFLUSH(bo, bp);
2386 		td->td_pflags &= ~TDP_INBDFLUSH;
2387 	} else
2388 		recursiveflushes++;
2389 
2390 	bdirty(bp);
2391 	/*
2392 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2393 	 * true even of NFS now.
2394 	 */
2395 	bp->b_flags |= B_CACHE;
2396 
2397 	/*
2398 	 * This bmap keeps the system from needing to do the bmap later,
2399 	 * perhaps when the system is attempting to do a sync.  Since it
2400 	 * is likely that the indirect block -- or whatever other datastructure
2401 	 * that the filesystem needs is still in memory now, it is a good
2402 	 * thing to do this.  Note also, that if the pageout daemon is
2403 	 * requesting a sync -- there might not be enough memory to do
2404 	 * the bmap then...  So, this is important to do.
2405 	 */
2406 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2407 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2408 	}
2409 
2410 	buf_track(bp, __func__);
2411 
2412 	/*
2413 	 * Set the *dirty* buffer range based upon the VM system dirty
2414 	 * pages.
2415 	 *
2416 	 * Mark the buffer pages as clean.  We need to do this here to
2417 	 * satisfy the vnode_pager and the pageout daemon, so that it
2418 	 * thinks that the pages have been "cleaned".  Note that since
2419 	 * the pages are in a delayed write buffer -- the VFS layer
2420 	 * "will" see that the pages get written out on the next sync,
2421 	 * or perhaps the cluster will be completed.
2422 	 */
2423 	vfs_clean_pages_dirty_buf(bp);
2424 	bqrelse(bp);
2425 
2426 	/*
2427 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2428 	 * due to the softdep code.
2429 	 */
2430 }
2431 
2432 /*
2433  *	bdirty:
2434  *
2435  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2436  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2437  *	itself to properly update it in the dirty/clean lists.  We mark it
2438  *	B_DONE to ensure that any asynchronization of the buffer properly
2439  *	clears B_DONE ( else a panic will occur later ).
2440  *
2441  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2442  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2443  *	should only be called if the buffer is known-good.
2444  *
2445  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2446  *	count.
2447  *
2448  *	The buffer must be on QUEUE_NONE.
2449  */
2450 void
2451 bdirty(struct buf *bp)
2452 {
2453 
2454 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2455 	    bp, bp->b_vp, bp->b_flags);
2456 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2457 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2458 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2459 	bp->b_flags &= ~(B_RELBUF);
2460 	bp->b_iocmd = BIO_WRITE;
2461 
2462 	if ((bp->b_flags & B_DELWRI) == 0) {
2463 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2464 		reassignbuf(bp);
2465 		bdirtyadd(bp);
2466 	}
2467 }
2468 
2469 /*
2470  *	bundirty:
2471  *
2472  *	Clear B_DELWRI for buffer.
2473  *
2474  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2475  *	count.
2476  *
2477  *	The buffer must be on QUEUE_NONE.
2478  */
2479 
2480 void
2481 bundirty(struct buf *bp)
2482 {
2483 
2484 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2485 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2486 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2487 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2488 
2489 	if (bp->b_flags & B_DELWRI) {
2490 		bp->b_flags &= ~B_DELWRI;
2491 		reassignbuf(bp);
2492 		bdirtysub(bp);
2493 	}
2494 	/*
2495 	 * Since it is now being written, we can clear its deferred write flag.
2496 	 */
2497 	bp->b_flags &= ~B_DEFERRED;
2498 }
2499 
2500 /*
2501  *	bawrite:
2502  *
2503  *	Asynchronous write.  Start output on a buffer, but do not wait for
2504  *	it to complete.  The buffer is released when the output completes.
2505  *
2506  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2507  *	B_INVAL buffers.  Not us.
2508  */
2509 void
2510 bawrite(struct buf *bp)
2511 {
2512 
2513 	bp->b_flags |= B_ASYNC;
2514 	(void) bwrite(bp);
2515 }
2516 
2517 /*
2518  *	babarrierwrite:
2519  *
2520  *	Asynchronous barrier write.  Start output on a buffer, but do not
2521  *	wait for it to complete.  Place a write barrier after this write so
2522  *	that this buffer and all buffers written before it are committed to
2523  *	the disk before any buffers written after this write are committed
2524  *	to the disk.  The buffer is released when the output completes.
2525  */
2526 void
2527 babarrierwrite(struct buf *bp)
2528 {
2529 
2530 	bp->b_flags |= B_ASYNC | B_BARRIER;
2531 	(void) bwrite(bp);
2532 }
2533 
2534 /*
2535  *	bbarrierwrite:
2536  *
2537  *	Synchronous barrier write.  Start output on a buffer and wait for
2538  *	it to complete.  Place a write barrier after this write so that
2539  *	this buffer and all buffers written before it are committed to
2540  *	the disk before any buffers written after this write are committed
2541  *	to the disk.  The buffer is released when the output completes.
2542  */
2543 int
2544 bbarrierwrite(struct buf *bp)
2545 {
2546 
2547 	bp->b_flags |= B_BARRIER;
2548 	return (bwrite(bp));
2549 }
2550 
2551 /*
2552  *	bwillwrite:
2553  *
2554  *	Called prior to the locking of any vnodes when we are expecting to
2555  *	write.  We do not want to starve the buffer cache with too many
2556  *	dirty buffers so we block here.  By blocking prior to the locking
2557  *	of any vnodes we attempt to avoid the situation where a locked vnode
2558  *	prevents the various system daemons from flushing related buffers.
2559  */
2560 void
2561 bwillwrite(void)
2562 {
2563 
2564 	if (buf_dirty_count_severe()) {
2565 		mtx_lock(&bdirtylock);
2566 		while (buf_dirty_count_severe()) {
2567 			bdirtywait = 1;
2568 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2569 			    "flswai", 0);
2570 		}
2571 		mtx_unlock(&bdirtylock);
2572 	}
2573 }
2574 
2575 /*
2576  * Return true if we have too many dirty buffers.
2577  */
2578 int
2579 buf_dirty_count_severe(void)
2580 {
2581 
2582 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2583 }
2584 
2585 /*
2586  *	brelse:
2587  *
2588  *	Release a busy buffer and, if requested, free its resources.  The
2589  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2590  *	to be accessed later as a cache entity or reused for other purposes.
2591  */
2592 void
2593 brelse(struct buf *bp)
2594 {
2595 	struct mount *v_mnt;
2596 	int qindex;
2597 
2598 	/*
2599 	 * Many functions erroneously call brelse with a NULL bp under rare
2600 	 * error conditions. Simply return when called with a NULL bp.
2601 	 */
2602 	if (bp == NULL)
2603 		return;
2604 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2605 	    bp, bp->b_vp, bp->b_flags);
2606 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2607 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2608 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2609 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2610 
2611 	if (BUF_LOCKRECURSED(bp)) {
2612 		/*
2613 		 * Do not process, in particular, do not handle the
2614 		 * B_INVAL/B_RELBUF and do not release to free list.
2615 		 */
2616 		BUF_UNLOCK(bp);
2617 		return;
2618 	}
2619 
2620 	if (bp->b_flags & B_MANAGED) {
2621 		bqrelse(bp);
2622 		return;
2623 	}
2624 
2625 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2626 		BO_LOCK(bp->b_bufobj);
2627 		bp->b_vflags &= ~BV_BKGRDERR;
2628 		BO_UNLOCK(bp->b_bufobj);
2629 		bdirty(bp);
2630 	}
2631 
2632 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2633 	    (bp->b_flags & B_INVALONERR)) {
2634 		/*
2635 		 * Forced invalidation of dirty buffer contents, to be used
2636 		 * after a failed write in the rare case that the loss of the
2637 		 * contents is acceptable.  The buffer is invalidated and
2638 		 * freed.
2639 		 */
2640 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2641 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2642 	}
2643 
2644 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2645 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2646 	    !(bp->b_flags & B_INVAL)) {
2647 		/*
2648 		 * Failed write, redirty.  All errors except ENXIO (which
2649 		 * means the device is gone) are treated as being
2650 		 * transient.
2651 		 *
2652 		 * XXX Treating EIO as transient is not correct; the
2653 		 * contract with the local storage device drivers is that
2654 		 * they will only return EIO once the I/O is no longer
2655 		 * retriable.  Network I/O also respects this through the
2656 		 * guarantees of TCP and/or the internal retries of NFS.
2657 		 * ENOMEM might be transient, but we also have no way of
2658 		 * knowing when its ok to retry/reschedule.  In general,
2659 		 * this entire case should be made obsolete through better
2660 		 * error handling/recovery and resource scheduling.
2661 		 *
2662 		 * Do this also for buffers that failed with ENXIO, but have
2663 		 * non-empty dependencies - the soft updates code might need
2664 		 * to access the buffer to untangle them.
2665 		 *
2666 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2667 		 */
2668 		bp->b_ioflags &= ~BIO_ERROR;
2669 		bdirty(bp);
2670 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2671 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2672 		/*
2673 		 * Either a failed read I/O, or we were asked to free or not
2674 		 * cache the buffer, or we failed to write to a device that's
2675 		 * no longer present.
2676 		 */
2677 		bp->b_flags |= B_INVAL;
2678 		if (!LIST_EMPTY(&bp->b_dep))
2679 			buf_deallocate(bp);
2680 		if (bp->b_flags & B_DELWRI)
2681 			bdirtysub(bp);
2682 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2683 		if ((bp->b_flags & B_VMIO) == 0) {
2684 			allocbuf(bp, 0);
2685 			if (bp->b_vp)
2686 				brelvp(bp);
2687 		}
2688 	}
2689 
2690 	/*
2691 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2692 	 * is called with B_DELWRI set, the underlying pages may wind up
2693 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2694 	 * because pages associated with a B_DELWRI bp are marked clean.
2695 	 *
2696 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2697 	 * if B_DELWRI is set.
2698 	 */
2699 	if (bp->b_flags & B_DELWRI)
2700 		bp->b_flags &= ~B_RELBUF;
2701 
2702 	/*
2703 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2704 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2705 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2706 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2707 	 *
2708 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2709 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2710 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2711 	 *
2712 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2713 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2714 	 * the commit state and we cannot afford to lose the buffer. If the
2715 	 * buffer has a background write in progress, we need to keep it
2716 	 * around to prevent it from being reconstituted and starting a second
2717 	 * background write.
2718 	 */
2719 
2720 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2721 
2722 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2723 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2724 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2725 	    vn_isdisk(bp->b_vp, NULL) || (bp->b_flags & B_DELWRI) == 0)) {
2726 		vfs_vmio_invalidate(bp);
2727 		allocbuf(bp, 0);
2728 	}
2729 
2730 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2731 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2732 		allocbuf(bp, 0);
2733 		bp->b_flags &= ~B_NOREUSE;
2734 		if (bp->b_vp != NULL)
2735 			brelvp(bp);
2736 	}
2737 
2738 	/*
2739 	 * If the buffer has junk contents signal it and eventually
2740 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2741 	 * doesn't find it.
2742 	 */
2743 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2744 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2745 		bp->b_flags |= B_INVAL;
2746 	if (bp->b_flags & B_INVAL) {
2747 		if (bp->b_flags & B_DELWRI)
2748 			bundirty(bp);
2749 		if (bp->b_vp)
2750 			brelvp(bp);
2751 	}
2752 
2753 	buf_track(bp, __func__);
2754 
2755 	/* buffers with no memory */
2756 	if (bp->b_bufsize == 0) {
2757 		buf_free(bp);
2758 		return;
2759 	}
2760 	/* buffers with junk contents */
2761 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2762 	    (bp->b_ioflags & BIO_ERROR)) {
2763 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2764 		if (bp->b_vflags & BV_BKGRDINPROG)
2765 			panic("losing buffer 2");
2766 		qindex = QUEUE_CLEAN;
2767 		bp->b_flags |= B_AGE;
2768 	/* remaining buffers */
2769 	} else if (bp->b_flags & B_DELWRI)
2770 		qindex = QUEUE_DIRTY;
2771 	else
2772 		qindex = QUEUE_CLEAN;
2773 
2774 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2775 		panic("brelse: not dirty");
2776 
2777 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2778 	bp->b_xflags &= ~(BX_CVTENXIO);
2779 	/* binsfree unlocks bp. */
2780 	binsfree(bp, qindex);
2781 }
2782 
2783 /*
2784  * Release a buffer back to the appropriate queue but do not try to free
2785  * it.  The buffer is expected to be used again soon.
2786  *
2787  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2788  * biodone() to requeue an async I/O on completion.  It is also used when
2789  * known good buffers need to be requeued but we think we may need the data
2790  * again soon.
2791  *
2792  * XXX we should be able to leave the B_RELBUF hint set on completion.
2793  */
2794 void
2795 bqrelse(struct buf *bp)
2796 {
2797 	int qindex;
2798 
2799 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2800 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2801 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2802 
2803 	qindex = QUEUE_NONE;
2804 	if (BUF_LOCKRECURSED(bp)) {
2805 		/* do not release to free list */
2806 		BUF_UNLOCK(bp);
2807 		return;
2808 	}
2809 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2810 	bp->b_xflags &= ~(BX_CVTENXIO);
2811 
2812 	if (bp->b_flags & B_MANAGED) {
2813 		if (bp->b_flags & B_REMFREE)
2814 			bremfreef(bp);
2815 		goto out;
2816 	}
2817 
2818 	/* buffers with stale but valid contents */
2819 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2820 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2821 		BO_LOCK(bp->b_bufobj);
2822 		bp->b_vflags &= ~BV_BKGRDERR;
2823 		BO_UNLOCK(bp->b_bufobj);
2824 		qindex = QUEUE_DIRTY;
2825 	} else {
2826 		if ((bp->b_flags & B_DELWRI) == 0 &&
2827 		    (bp->b_xflags & BX_VNDIRTY))
2828 			panic("bqrelse: not dirty");
2829 		if ((bp->b_flags & B_NOREUSE) != 0) {
2830 			brelse(bp);
2831 			return;
2832 		}
2833 		qindex = QUEUE_CLEAN;
2834 	}
2835 	buf_track(bp, __func__);
2836 	/* binsfree unlocks bp. */
2837 	binsfree(bp, qindex);
2838 	return;
2839 
2840 out:
2841 	buf_track(bp, __func__);
2842 	/* unlock */
2843 	BUF_UNLOCK(bp);
2844 }
2845 
2846 /*
2847  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2848  * restore bogus pages.
2849  */
2850 static void
2851 vfs_vmio_iodone(struct buf *bp)
2852 {
2853 	vm_ooffset_t foff;
2854 	vm_page_t m;
2855 	vm_object_t obj;
2856 	struct vnode *vp __unused;
2857 	int i, iosize, resid;
2858 	bool bogus;
2859 
2860 	obj = bp->b_bufobj->bo_object;
2861 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2862 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2863 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2864 
2865 	vp = bp->b_vp;
2866 	VNPASS(vp->v_holdcnt > 0, vp);
2867 	VNPASS(vp->v_object != NULL, vp);
2868 
2869 	foff = bp->b_offset;
2870 	KASSERT(bp->b_offset != NOOFFSET,
2871 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2872 
2873 	bogus = false;
2874 	iosize = bp->b_bcount - bp->b_resid;
2875 	for (i = 0; i < bp->b_npages; i++) {
2876 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2877 		if (resid > iosize)
2878 			resid = iosize;
2879 
2880 		/*
2881 		 * cleanup bogus pages, restoring the originals
2882 		 */
2883 		m = bp->b_pages[i];
2884 		if (m == bogus_page) {
2885 			bogus = true;
2886 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2887 			if (m == NULL)
2888 				panic("biodone: page disappeared!");
2889 			bp->b_pages[i] = m;
2890 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2891 			/*
2892 			 * In the write case, the valid and clean bits are
2893 			 * already changed correctly ( see bdwrite() ), so we
2894 			 * only need to do this here in the read case.
2895 			 */
2896 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2897 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2898 			    "has unexpected dirty bits", m));
2899 			vfs_page_set_valid(bp, foff, m);
2900 		}
2901 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2902 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2903 		    (intmax_t)foff, (uintmax_t)m->pindex));
2904 
2905 		vm_page_sunbusy(m);
2906 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2907 		iosize -= resid;
2908 	}
2909 	vm_object_pip_wakeupn(obj, bp->b_npages);
2910 	if (bogus && buf_mapped(bp)) {
2911 		BUF_CHECK_MAPPED(bp);
2912 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2913 		    bp->b_pages, bp->b_npages);
2914 	}
2915 }
2916 
2917 /*
2918  * Perform page invalidation when a buffer is released.  The fully invalid
2919  * pages will be reclaimed later in vfs_vmio_truncate().
2920  */
2921 static void
2922 vfs_vmio_invalidate(struct buf *bp)
2923 {
2924 	vm_object_t obj;
2925 	vm_page_t m;
2926 	int flags, i, resid, poffset, presid;
2927 
2928 	if (buf_mapped(bp)) {
2929 		BUF_CHECK_MAPPED(bp);
2930 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2931 	} else
2932 		BUF_CHECK_UNMAPPED(bp);
2933 	/*
2934 	 * Get the base offset and length of the buffer.  Note that
2935 	 * in the VMIO case if the buffer block size is not
2936 	 * page-aligned then b_data pointer may not be page-aligned.
2937 	 * But our b_pages[] array *IS* page aligned.
2938 	 *
2939 	 * block sizes less then DEV_BSIZE (usually 512) are not
2940 	 * supported due to the page granularity bits (m->valid,
2941 	 * m->dirty, etc...).
2942 	 *
2943 	 * See man buf(9) for more information
2944 	 */
2945 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
2946 	obj = bp->b_bufobj->bo_object;
2947 	resid = bp->b_bufsize;
2948 	poffset = bp->b_offset & PAGE_MASK;
2949 	VM_OBJECT_WLOCK(obj);
2950 	for (i = 0; i < bp->b_npages; i++) {
2951 		m = bp->b_pages[i];
2952 		if (m == bogus_page)
2953 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
2954 		bp->b_pages[i] = NULL;
2955 
2956 		presid = resid > (PAGE_SIZE - poffset) ?
2957 		    (PAGE_SIZE - poffset) : resid;
2958 		KASSERT(presid >= 0, ("brelse: extra page"));
2959 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
2960 		if (pmap_page_wired_mappings(m) == 0)
2961 			vm_page_set_invalid(m, poffset, presid);
2962 		vm_page_sunbusy(m);
2963 		vm_page_release_locked(m, flags);
2964 		resid -= presid;
2965 		poffset = 0;
2966 	}
2967 	VM_OBJECT_WUNLOCK(obj);
2968 	bp->b_npages = 0;
2969 }
2970 
2971 /*
2972  * Page-granular truncation of an existing VMIO buffer.
2973  */
2974 static void
2975 vfs_vmio_truncate(struct buf *bp, int desiredpages)
2976 {
2977 	vm_object_t obj;
2978 	vm_page_t m;
2979 	int flags, i;
2980 
2981 	if (bp->b_npages == desiredpages)
2982 		return;
2983 
2984 	if (buf_mapped(bp)) {
2985 		BUF_CHECK_MAPPED(bp);
2986 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
2987 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
2988 	} else
2989 		BUF_CHECK_UNMAPPED(bp);
2990 
2991 	/*
2992 	 * The object lock is needed only if we will attempt to free pages.
2993 	 */
2994 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
2995 	if ((bp->b_flags & B_DIRECT) != 0) {
2996 		flags |= VPR_TRYFREE;
2997 		obj = bp->b_bufobj->bo_object;
2998 		VM_OBJECT_WLOCK(obj);
2999 	} else {
3000 		obj = NULL;
3001 	}
3002 	for (i = desiredpages; i < bp->b_npages; i++) {
3003 		m = bp->b_pages[i];
3004 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3005 		bp->b_pages[i] = NULL;
3006 		if (obj != NULL)
3007 			vm_page_release_locked(m, flags);
3008 		else
3009 			vm_page_release(m, flags);
3010 	}
3011 	if (obj != NULL)
3012 		VM_OBJECT_WUNLOCK(obj);
3013 	bp->b_npages = desiredpages;
3014 }
3015 
3016 /*
3017  * Byte granular extension of VMIO buffers.
3018  */
3019 static void
3020 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3021 {
3022 	/*
3023 	 * We are growing the buffer, possibly in a
3024 	 * byte-granular fashion.
3025 	 */
3026 	vm_object_t obj;
3027 	vm_offset_t toff;
3028 	vm_offset_t tinc;
3029 	vm_page_t m;
3030 
3031 	/*
3032 	 * Step 1, bring in the VM pages from the object, allocating
3033 	 * them if necessary.  We must clear B_CACHE if these pages
3034 	 * are not valid for the range covered by the buffer.
3035 	 */
3036 	obj = bp->b_bufobj->bo_object;
3037 	if (bp->b_npages < desiredpages) {
3038 		/*
3039 		 * We must allocate system pages since blocking
3040 		 * here could interfere with paging I/O, no
3041 		 * matter which process we are.
3042 		 *
3043 		 * Only exclusive busy can be tested here.
3044 		 * Blocking on shared busy might lead to
3045 		 * deadlocks once allocbuf() is called after
3046 		 * pages are vfs_busy_pages().
3047 		 */
3048 		(void)vm_page_grab_pages_unlocked(obj,
3049 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3050 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3051 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3052 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3053 		bp->b_npages = desiredpages;
3054 	}
3055 
3056 	/*
3057 	 * Step 2.  We've loaded the pages into the buffer,
3058 	 * we have to figure out if we can still have B_CACHE
3059 	 * set.  Note that B_CACHE is set according to the
3060 	 * byte-granular range ( bcount and size ), not the
3061 	 * aligned range ( newbsize ).
3062 	 *
3063 	 * The VM test is against m->valid, which is DEV_BSIZE
3064 	 * aligned.  Needless to say, the validity of the data
3065 	 * needs to also be DEV_BSIZE aligned.  Note that this
3066 	 * fails with NFS if the server or some other client
3067 	 * extends the file's EOF.  If our buffer is resized,
3068 	 * B_CACHE may remain set! XXX
3069 	 */
3070 	toff = bp->b_bcount;
3071 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3072 	while ((bp->b_flags & B_CACHE) && toff < size) {
3073 		vm_pindex_t pi;
3074 
3075 		if (tinc > (size - toff))
3076 			tinc = size - toff;
3077 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3078 		m = bp->b_pages[pi];
3079 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3080 		toff += tinc;
3081 		tinc = PAGE_SIZE;
3082 	}
3083 
3084 	/*
3085 	 * Step 3, fixup the KVA pmap.
3086 	 */
3087 	if (buf_mapped(bp))
3088 		bpmap_qenter(bp);
3089 	else
3090 		BUF_CHECK_UNMAPPED(bp);
3091 }
3092 
3093 /*
3094  * Check to see if a block at a particular lbn is available for a clustered
3095  * write.
3096  */
3097 static int
3098 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3099 {
3100 	struct buf *bpa;
3101 	int match;
3102 
3103 	match = 0;
3104 
3105 	/* If the buf isn't in core skip it */
3106 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3107 		return (0);
3108 
3109 	/* If the buf is busy we don't want to wait for it */
3110 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3111 		return (0);
3112 
3113 	/* Only cluster with valid clusterable delayed write buffers */
3114 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3115 	    (B_DELWRI | B_CLUSTEROK))
3116 		goto done;
3117 
3118 	if (bpa->b_bufsize != size)
3119 		goto done;
3120 
3121 	/*
3122 	 * Check to see if it is in the expected place on disk and that the
3123 	 * block has been mapped.
3124 	 */
3125 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3126 		match = 1;
3127 done:
3128 	BUF_UNLOCK(bpa);
3129 	return (match);
3130 }
3131 
3132 /*
3133  *	vfs_bio_awrite:
3134  *
3135  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3136  *	This is much better then the old way of writing only one buffer at
3137  *	a time.  Note that we may not be presented with the buffers in the
3138  *	correct order, so we search for the cluster in both directions.
3139  */
3140 int
3141 vfs_bio_awrite(struct buf *bp)
3142 {
3143 	struct bufobj *bo;
3144 	int i;
3145 	int j;
3146 	daddr_t lblkno = bp->b_lblkno;
3147 	struct vnode *vp = bp->b_vp;
3148 	int ncl;
3149 	int nwritten;
3150 	int size;
3151 	int maxcl;
3152 	int gbflags;
3153 
3154 	bo = &vp->v_bufobj;
3155 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3156 	/*
3157 	 * right now we support clustered writing only to regular files.  If
3158 	 * we find a clusterable block we could be in the middle of a cluster
3159 	 * rather then at the beginning.
3160 	 */
3161 	if ((vp->v_type == VREG) &&
3162 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3163 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3164 
3165 		size = vp->v_mount->mnt_stat.f_iosize;
3166 		maxcl = MAXPHYS / size;
3167 
3168 		BO_RLOCK(bo);
3169 		for (i = 1; i < maxcl; i++)
3170 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3171 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3172 				break;
3173 
3174 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3175 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3176 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3177 				break;
3178 		BO_RUNLOCK(bo);
3179 		--j;
3180 		ncl = i + j;
3181 		/*
3182 		 * this is a possible cluster write
3183 		 */
3184 		if (ncl != 1) {
3185 			BUF_UNLOCK(bp);
3186 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3187 			    gbflags);
3188 			return (nwritten);
3189 		}
3190 	}
3191 	bremfree(bp);
3192 	bp->b_flags |= B_ASYNC;
3193 	/*
3194 	 * default (old) behavior, writing out only one block
3195 	 *
3196 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3197 	 */
3198 	nwritten = bp->b_bufsize;
3199 	(void) bwrite(bp);
3200 
3201 	return (nwritten);
3202 }
3203 
3204 /*
3205  *	getnewbuf_kva:
3206  *
3207  *	Allocate KVA for an empty buf header according to gbflags.
3208  */
3209 static int
3210 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3211 {
3212 
3213 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3214 		/*
3215 		 * In order to keep fragmentation sane we only allocate kva
3216 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3217 		 */
3218 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3219 
3220 		if (maxsize != bp->b_kvasize &&
3221 		    bufkva_alloc(bp, maxsize, gbflags))
3222 			return (ENOSPC);
3223 	}
3224 	return (0);
3225 }
3226 
3227 /*
3228  *	getnewbuf:
3229  *
3230  *	Find and initialize a new buffer header, freeing up existing buffers
3231  *	in the bufqueues as necessary.  The new buffer is returned locked.
3232  *
3233  *	We block if:
3234  *		We have insufficient buffer headers
3235  *		We have insufficient buffer space
3236  *		buffer_arena is too fragmented ( space reservation fails )
3237  *		If we have to flush dirty buffers ( but we try to avoid this )
3238  *
3239  *	The caller is responsible for releasing the reserved bufspace after
3240  *	allocbuf() is called.
3241  */
3242 static struct buf *
3243 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3244 {
3245 	struct bufdomain *bd;
3246 	struct buf *bp;
3247 	bool metadata, reserved;
3248 
3249 	bp = NULL;
3250 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3251 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3252 	if (!unmapped_buf_allowed)
3253 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3254 
3255 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3256 	    vp->v_type == VCHR)
3257 		metadata = true;
3258 	else
3259 		metadata = false;
3260 	if (vp == NULL)
3261 		bd = &bdomain[0];
3262 	else
3263 		bd = &bdomain[vp->v_bufobj.bo_domain];
3264 
3265 	counter_u64_add(getnewbufcalls, 1);
3266 	reserved = false;
3267 	do {
3268 		if (reserved == false &&
3269 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3270 			counter_u64_add(getnewbufrestarts, 1);
3271 			continue;
3272 		}
3273 		reserved = true;
3274 		if ((bp = buf_alloc(bd)) == NULL) {
3275 			counter_u64_add(getnewbufrestarts, 1);
3276 			continue;
3277 		}
3278 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3279 			return (bp);
3280 		break;
3281 	} while (buf_recycle(bd, false) == 0);
3282 
3283 	if (reserved)
3284 		bufspace_release(bd, maxsize);
3285 	if (bp != NULL) {
3286 		bp->b_flags |= B_INVAL;
3287 		brelse(bp);
3288 	}
3289 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3290 
3291 	return (NULL);
3292 }
3293 
3294 /*
3295  *	buf_daemon:
3296  *
3297  *	buffer flushing daemon.  Buffers are normally flushed by the
3298  *	update daemon but if it cannot keep up this process starts to
3299  *	take the load in an attempt to prevent getnewbuf() from blocking.
3300  */
3301 static struct kproc_desc buf_kp = {
3302 	"bufdaemon",
3303 	buf_daemon,
3304 	&bufdaemonproc
3305 };
3306 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3307 
3308 static int
3309 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3310 {
3311 	int flushed;
3312 
3313 	flushed = flushbufqueues(vp, bd, target, 0);
3314 	if (flushed == 0) {
3315 		/*
3316 		 * Could not find any buffers without rollback
3317 		 * dependencies, so just write the first one
3318 		 * in the hopes of eventually making progress.
3319 		 */
3320 		if (vp != NULL && target > 2)
3321 			target /= 2;
3322 		flushbufqueues(vp, bd, target, 1);
3323 	}
3324 	return (flushed);
3325 }
3326 
3327 static void
3328 buf_daemon()
3329 {
3330 	struct bufdomain *bd;
3331 	int speedupreq;
3332 	int lodirty;
3333 	int i;
3334 
3335 	/*
3336 	 * This process needs to be suspended prior to shutdown sync.
3337 	 */
3338 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown, curthread,
3339 	    SHUTDOWN_PRI_LAST + 100);
3340 
3341 	/*
3342 	 * Start the buf clean daemons as children threads.
3343 	 */
3344 	for (i = 0 ; i < buf_domains; i++) {
3345 		int error;
3346 
3347 		error = kthread_add((void (*)(void *))bufspace_daemon,
3348 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3349 		if (error)
3350 			panic("error %d spawning bufspace daemon", error);
3351 	}
3352 
3353 	/*
3354 	 * This process is allowed to take the buffer cache to the limit
3355 	 */
3356 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3357 	mtx_lock(&bdlock);
3358 	for (;;) {
3359 		bd_request = 0;
3360 		mtx_unlock(&bdlock);
3361 
3362 		kthread_suspend_check();
3363 
3364 		/*
3365 		 * Save speedupreq for this pass and reset to capture new
3366 		 * requests.
3367 		 */
3368 		speedupreq = bd_speedupreq;
3369 		bd_speedupreq = 0;
3370 
3371 		/*
3372 		 * Flush each domain sequentially according to its level and
3373 		 * the speedup request.
3374 		 */
3375 		for (i = 0; i < buf_domains; i++) {
3376 			bd = &bdomain[i];
3377 			if (speedupreq)
3378 				lodirty = bd->bd_numdirtybuffers / 2;
3379 			else
3380 				lodirty = bd->bd_lodirtybuffers;
3381 			while (bd->bd_numdirtybuffers > lodirty) {
3382 				if (buf_flush(NULL, bd,
3383 				    bd->bd_numdirtybuffers - lodirty) == 0)
3384 					break;
3385 				kern_yield(PRI_USER);
3386 			}
3387 		}
3388 
3389 		/*
3390 		 * Only clear bd_request if we have reached our low water
3391 		 * mark.  The buf_daemon normally waits 1 second and
3392 		 * then incrementally flushes any dirty buffers that have
3393 		 * built up, within reason.
3394 		 *
3395 		 * If we were unable to hit our low water mark and couldn't
3396 		 * find any flushable buffers, we sleep for a short period
3397 		 * to avoid endless loops on unlockable buffers.
3398 		 */
3399 		mtx_lock(&bdlock);
3400 		if (!BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3401 			/*
3402 			 * We reached our low water mark, reset the
3403 			 * request and sleep until we are needed again.
3404 			 * The sleep is just so the suspend code works.
3405 			 */
3406 			bd_request = 0;
3407 			/*
3408 			 * Do an extra wakeup in case dirty threshold
3409 			 * changed via sysctl and the explicit transition
3410 			 * out of shortfall was missed.
3411 			 */
3412 			bdirtywakeup();
3413 			if (runningbufspace <= lorunningspace)
3414 				runningwakeup();
3415 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3416 		} else {
3417 			/*
3418 			 * We couldn't find any flushable dirty buffers but
3419 			 * still have too many dirty buffers, we
3420 			 * have to sleep and try again.  (rare)
3421 			 */
3422 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3423 		}
3424 	}
3425 }
3426 
3427 /*
3428  *	flushbufqueues:
3429  *
3430  *	Try to flush a buffer in the dirty queue.  We must be careful to
3431  *	free up B_INVAL buffers instead of write them, which NFS is
3432  *	particularly sensitive to.
3433  */
3434 static int flushwithdeps = 0;
3435 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3436     &flushwithdeps, 0,
3437     "Number of buffers flushed with dependecies that require rollbacks");
3438 
3439 static int
3440 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3441     int flushdeps)
3442 {
3443 	struct bufqueue *bq;
3444 	struct buf *sentinel;
3445 	struct vnode *vp;
3446 	struct mount *mp;
3447 	struct buf *bp;
3448 	int hasdeps;
3449 	int flushed;
3450 	int error;
3451 	bool unlock;
3452 
3453 	flushed = 0;
3454 	bq = &bd->bd_dirtyq;
3455 	bp = NULL;
3456 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3457 	sentinel->b_qindex = QUEUE_SENTINEL;
3458 	BQ_LOCK(bq);
3459 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3460 	BQ_UNLOCK(bq);
3461 	while (flushed != target) {
3462 		maybe_yield();
3463 		BQ_LOCK(bq);
3464 		bp = TAILQ_NEXT(sentinel, b_freelist);
3465 		if (bp != NULL) {
3466 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3467 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3468 			    b_freelist);
3469 		} else {
3470 			BQ_UNLOCK(bq);
3471 			break;
3472 		}
3473 		/*
3474 		 * Skip sentinels inserted by other invocations of the
3475 		 * flushbufqueues(), taking care to not reorder them.
3476 		 *
3477 		 * Only flush the buffers that belong to the
3478 		 * vnode locked by the curthread.
3479 		 */
3480 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3481 		    bp->b_vp != lvp)) {
3482 			BQ_UNLOCK(bq);
3483 			continue;
3484 		}
3485 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3486 		BQ_UNLOCK(bq);
3487 		if (error != 0)
3488 			continue;
3489 
3490 		/*
3491 		 * BKGRDINPROG can only be set with the buf and bufobj
3492 		 * locks both held.  We tolerate a race to clear it here.
3493 		 */
3494 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3495 		    (bp->b_flags & B_DELWRI) == 0) {
3496 			BUF_UNLOCK(bp);
3497 			continue;
3498 		}
3499 		if (bp->b_flags & B_INVAL) {
3500 			bremfreef(bp);
3501 			brelse(bp);
3502 			flushed++;
3503 			continue;
3504 		}
3505 
3506 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3507 			if (flushdeps == 0) {
3508 				BUF_UNLOCK(bp);
3509 				continue;
3510 			}
3511 			hasdeps = 1;
3512 		} else
3513 			hasdeps = 0;
3514 		/*
3515 		 * We must hold the lock on a vnode before writing
3516 		 * one of its buffers. Otherwise we may confuse, or
3517 		 * in the case of a snapshot vnode, deadlock the
3518 		 * system.
3519 		 *
3520 		 * The lock order here is the reverse of the normal
3521 		 * of vnode followed by buf lock.  This is ok because
3522 		 * the NOWAIT will prevent deadlock.
3523 		 */
3524 		vp = bp->b_vp;
3525 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3526 			BUF_UNLOCK(bp);
3527 			continue;
3528 		}
3529 		if (lvp == NULL) {
3530 			unlock = true;
3531 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3532 		} else {
3533 			ASSERT_VOP_LOCKED(vp, "getbuf");
3534 			unlock = false;
3535 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3536 			    vn_lock(vp, LK_TRYUPGRADE);
3537 		}
3538 		if (error == 0) {
3539 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3540 			    bp, bp->b_vp, bp->b_flags);
3541 			if (curproc == bufdaemonproc) {
3542 				vfs_bio_awrite(bp);
3543 			} else {
3544 				bremfree(bp);
3545 				bwrite(bp);
3546 				counter_u64_add(notbufdflushes, 1);
3547 			}
3548 			vn_finished_write(mp);
3549 			if (unlock)
3550 				VOP_UNLOCK(vp);
3551 			flushwithdeps += hasdeps;
3552 			flushed++;
3553 
3554 			/*
3555 			 * Sleeping on runningbufspace while holding
3556 			 * vnode lock leads to deadlock.
3557 			 */
3558 			if (curproc == bufdaemonproc &&
3559 			    runningbufspace > hirunningspace)
3560 				waitrunningbufspace();
3561 			continue;
3562 		}
3563 		vn_finished_write(mp);
3564 		BUF_UNLOCK(bp);
3565 	}
3566 	BQ_LOCK(bq);
3567 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3568 	BQ_UNLOCK(bq);
3569 	free(sentinel, M_TEMP);
3570 	return (flushed);
3571 }
3572 
3573 /*
3574  * Check to see if a block is currently memory resident.
3575  */
3576 struct buf *
3577 incore(struct bufobj *bo, daddr_t blkno)
3578 {
3579 	struct buf *bp;
3580 
3581 	BO_RLOCK(bo);
3582 	bp = gbincore(bo, blkno);
3583 	BO_RUNLOCK(bo);
3584 	return (bp);
3585 }
3586 
3587 /*
3588  * Returns true if no I/O is needed to access the
3589  * associated VM object.  This is like incore except
3590  * it also hunts around in the VM system for the data.
3591  */
3592 
3593 static int
3594 inmem(struct vnode * vp, daddr_t blkno)
3595 {
3596 	vm_object_t obj;
3597 	vm_offset_t toff, tinc, size;
3598 	vm_page_t m;
3599 	vm_ooffset_t off;
3600 
3601 	ASSERT_VOP_LOCKED(vp, "inmem");
3602 
3603 	if (incore(&vp->v_bufobj, blkno))
3604 		return 1;
3605 	if (vp->v_mount == NULL)
3606 		return 0;
3607 	obj = vp->v_object;
3608 	if (obj == NULL)
3609 		return (0);
3610 
3611 	size = PAGE_SIZE;
3612 	if (size > vp->v_mount->mnt_stat.f_iosize)
3613 		size = vp->v_mount->mnt_stat.f_iosize;
3614 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3615 
3616 	VM_OBJECT_RLOCK(obj);
3617 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3618 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
3619 		if (!m)
3620 			goto notinmem;
3621 		tinc = size;
3622 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3623 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3624 		if (vm_page_is_valid(m,
3625 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
3626 			goto notinmem;
3627 	}
3628 	VM_OBJECT_RUNLOCK(obj);
3629 	return 1;
3630 
3631 notinmem:
3632 	VM_OBJECT_RUNLOCK(obj);
3633 	return (0);
3634 }
3635 
3636 /*
3637  * Set the dirty range for a buffer based on the status of the dirty
3638  * bits in the pages comprising the buffer.  The range is limited
3639  * to the size of the buffer.
3640  *
3641  * Tell the VM system that the pages associated with this buffer
3642  * are clean.  This is used for delayed writes where the data is
3643  * going to go to disk eventually without additional VM intevention.
3644  *
3645  * Note that while we only really need to clean through to b_bcount, we
3646  * just go ahead and clean through to b_bufsize.
3647  */
3648 static void
3649 vfs_clean_pages_dirty_buf(struct buf *bp)
3650 {
3651 	vm_ooffset_t foff, noff, eoff;
3652 	vm_page_t m;
3653 	int i;
3654 
3655 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3656 		return;
3657 
3658 	foff = bp->b_offset;
3659 	KASSERT(bp->b_offset != NOOFFSET,
3660 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3661 
3662 	vfs_busy_pages_acquire(bp);
3663 	vfs_setdirty_range(bp);
3664 	for (i = 0; i < bp->b_npages; i++) {
3665 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3666 		eoff = noff;
3667 		if (eoff > bp->b_offset + bp->b_bufsize)
3668 			eoff = bp->b_offset + bp->b_bufsize;
3669 		m = bp->b_pages[i];
3670 		vfs_page_set_validclean(bp, foff, m);
3671 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3672 		foff = noff;
3673 	}
3674 	vfs_busy_pages_release(bp);
3675 }
3676 
3677 static void
3678 vfs_setdirty_range(struct buf *bp)
3679 {
3680 	vm_offset_t boffset;
3681 	vm_offset_t eoffset;
3682 	int i;
3683 
3684 	/*
3685 	 * test the pages to see if they have been modified directly
3686 	 * by users through the VM system.
3687 	 */
3688 	for (i = 0; i < bp->b_npages; i++)
3689 		vm_page_test_dirty(bp->b_pages[i]);
3690 
3691 	/*
3692 	 * Calculate the encompassing dirty range, boffset and eoffset,
3693 	 * (eoffset - boffset) bytes.
3694 	 */
3695 
3696 	for (i = 0; i < bp->b_npages; i++) {
3697 		if (bp->b_pages[i]->dirty)
3698 			break;
3699 	}
3700 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3701 
3702 	for (i = bp->b_npages - 1; i >= 0; --i) {
3703 		if (bp->b_pages[i]->dirty) {
3704 			break;
3705 		}
3706 	}
3707 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3708 
3709 	/*
3710 	 * Fit it to the buffer.
3711 	 */
3712 
3713 	if (eoffset > bp->b_bcount)
3714 		eoffset = bp->b_bcount;
3715 
3716 	/*
3717 	 * If we have a good dirty range, merge with the existing
3718 	 * dirty range.
3719 	 */
3720 
3721 	if (boffset < eoffset) {
3722 		if (bp->b_dirtyoff > boffset)
3723 			bp->b_dirtyoff = boffset;
3724 		if (bp->b_dirtyend < eoffset)
3725 			bp->b_dirtyend = eoffset;
3726 	}
3727 }
3728 
3729 /*
3730  * Allocate the KVA mapping for an existing buffer.
3731  * If an unmapped buffer is provided but a mapped buffer is requested, take
3732  * also care to properly setup mappings between pages and KVA.
3733  */
3734 static void
3735 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3736 {
3737 	int bsize, maxsize, need_mapping, need_kva;
3738 	off_t offset;
3739 
3740 	need_mapping = bp->b_data == unmapped_buf &&
3741 	    (gbflags & GB_UNMAPPED) == 0;
3742 	need_kva = bp->b_kvabase == unmapped_buf &&
3743 	    bp->b_data == unmapped_buf &&
3744 	    (gbflags & GB_KVAALLOC) != 0;
3745 	if (!need_mapping && !need_kva)
3746 		return;
3747 
3748 	BUF_CHECK_UNMAPPED(bp);
3749 
3750 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3751 		/*
3752 		 * Buffer is not mapped, but the KVA was already
3753 		 * reserved at the time of the instantiation.  Use the
3754 		 * allocated space.
3755 		 */
3756 		goto has_addr;
3757 	}
3758 
3759 	/*
3760 	 * Calculate the amount of the address space we would reserve
3761 	 * if the buffer was mapped.
3762 	 */
3763 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3764 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3765 	offset = blkno * bsize;
3766 	maxsize = size + (offset & PAGE_MASK);
3767 	maxsize = imax(maxsize, bsize);
3768 
3769 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3770 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3771 			/*
3772 			 * XXXKIB: defragmentation cannot
3773 			 * succeed, not sure what else to do.
3774 			 */
3775 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3776 		}
3777 		counter_u64_add(mappingrestarts, 1);
3778 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3779 	}
3780 has_addr:
3781 	if (need_mapping) {
3782 		/* b_offset is handled by bpmap_qenter. */
3783 		bp->b_data = bp->b_kvabase;
3784 		BUF_CHECK_MAPPED(bp);
3785 		bpmap_qenter(bp);
3786 	}
3787 }
3788 
3789 struct buf *
3790 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3791     int flags)
3792 {
3793 	struct buf *bp;
3794 	int error;
3795 
3796 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3797 	if (error != 0)
3798 		return (NULL);
3799 	return (bp);
3800 }
3801 
3802 /*
3803  *	getblkx:
3804  *
3805  *	Get a block given a specified block and offset into a file/device.
3806  *	The buffers B_DONE bit will be cleared on return, making it almost
3807  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3808  *	return.  The caller should clear B_INVAL prior to initiating a
3809  *	READ.
3810  *
3811  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3812  *	an existing buffer.
3813  *
3814  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3815  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3816  *	and then cleared based on the backing VM.  If the previous buffer is
3817  *	non-0-sized but invalid, B_CACHE will be cleared.
3818  *
3819  *	If getblk() must create a new buffer, the new buffer is returned with
3820  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3821  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3822  *	backing VM.
3823  *
3824  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3825  *	B_CACHE bit is clear.
3826  *
3827  *	What this means, basically, is that the caller should use B_CACHE to
3828  *	determine whether the buffer is fully valid or not and should clear
3829  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3830  *	the buffer by loading its data area with something, the caller needs
3831  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3832  *	the caller should set B_CACHE ( as an optimization ), else the caller
3833  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3834  *	a write attempt or if it was a successful read.  If the caller
3835  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3836  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3837  *
3838  *	The blkno parameter is the logical block being requested. Normally
3839  *	the mapping of logical block number to disk block address is done
3840  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3841  *	disk block address can be passed using the dblkno parameter. If the
3842  *	disk block address is not known, then the same value should be passed
3843  *	for blkno and dblkno.
3844  */
3845 int
3846 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3847     int slptimeo, int flags, struct buf **bpp)
3848 {
3849 	struct buf *bp;
3850 	struct bufobj *bo;
3851 	daddr_t d_blkno;
3852 	int bsize, error, maxsize, vmio;
3853 	off_t offset;
3854 
3855 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3856 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3857 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3858 	ASSERT_VOP_LOCKED(vp, "getblk");
3859 	if (size > maxbcachebuf)
3860 		panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3861 		    maxbcachebuf);
3862 	if (!unmapped_buf_allowed)
3863 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3864 
3865 	bo = &vp->v_bufobj;
3866 	d_blkno = dblkno;
3867 loop:
3868 	BO_RLOCK(bo);
3869 	bp = gbincore(bo, blkno);
3870 	if (bp != NULL) {
3871 		int lockflags;
3872 		/*
3873 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3874 		 * it must be on a queue.
3875 		 */
3876 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3877 
3878 		if ((flags & GB_LOCK_NOWAIT) != 0)
3879 			lockflags |= LK_NOWAIT;
3880 
3881 		error = BUF_TIMELOCK(bp, lockflags,
3882 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3883 
3884 		/*
3885 		 * If we slept and got the lock we have to restart in case
3886 		 * the buffer changed identities.
3887 		 */
3888 		if (error == ENOLCK)
3889 			goto loop;
3890 		/* We timed out or were interrupted. */
3891 		else if (error != 0)
3892 			return (error);
3893 		/* If recursed, assume caller knows the rules. */
3894 		else if (BUF_LOCKRECURSED(bp))
3895 			goto end;
3896 
3897 		/*
3898 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3899 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3900 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3901 		 * backing VM cache.
3902 		 */
3903 		if (bp->b_flags & B_INVAL)
3904 			bp->b_flags &= ~B_CACHE;
3905 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3906 			bp->b_flags |= B_CACHE;
3907 		if (bp->b_flags & B_MANAGED)
3908 			MPASS(bp->b_qindex == QUEUE_NONE);
3909 		else
3910 			bremfree(bp);
3911 
3912 		/*
3913 		 * check for size inconsistencies for non-VMIO case.
3914 		 */
3915 		if (bp->b_bcount != size) {
3916 			if ((bp->b_flags & B_VMIO) == 0 ||
3917 			    (size > bp->b_kvasize)) {
3918 				if (bp->b_flags & B_DELWRI) {
3919 					bp->b_flags |= B_NOCACHE;
3920 					bwrite(bp);
3921 				} else {
3922 					if (LIST_EMPTY(&bp->b_dep)) {
3923 						bp->b_flags |= B_RELBUF;
3924 						brelse(bp);
3925 					} else {
3926 						bp->b_flags |= B_NOCACHE;
3927 						bwrite(bp);
3928 					}
3929 				}
3930 				goto loop;
3931 			}
3932 		}
3933 
3934 		/*
3935 		 * Handle the case of unmapped buffer which should
3936 		 * become mapped, or the buffer for which KVA
3937 		 * reservation is requested.
3938 		 */
3939 		bp_unmapped_get_kva(bp, blkno, size, flags);
3940 
3941 		/*
3942 		 * If the size is inconsistent in the VMIO case, we can resize
3943 		 * the buffer.  This might lead to B_CACHE getting set or
3944 		 * cleared.  If the size has not changed, B_CACHE remains
3945 		 * unchanged from its previous state.
3946 		 */
3947 		allocbuf(bp, size);
3948 
3949 		KASSERT(bp->b_offset != NOOFFSET,
3950 		    ("getblk: no buffer offset"));
3951 
3952 		/*
3953 		 * A buffer with B_DELWRI set and B_CACHE clear must
3954 		 * be committed before we can return the buffer in
3955 		 * order to prevent the caller from issuing a read
3956 		 * ( due to B_CACHE not being set ) and overwriting
3957 		 * it.
3958 		 *
3959 		 * Most callers, including NFS and FFS, need this to
3960 		 * operate properly either because they assume they
3961 		 * can issue a read if B_CACHE is not set, or because
3962 		 * ( for example ) an uncached B_DELWRI might loop due
3963 		 * to softupdates re-dirtying the buffer.  In the latter
3964 		 * case, B_CACHE is set after the first write completes,
3965 		 * preventing further loops.
3966 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3967 		 * above while extending the buffer, we cannot allow the
3968 		 * buffer to remain with B_CACHE set after the write
3969 		 * completes or it will represent a corrupt state.  To
3970 		 * deal with this we set B_NOCACHE to scrap the buffer
3971 		 * after the write.
3972 		 *
3973 		 * We might be able to do something fancy, like setting
3974 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3975 		 * so the below call doesn't set B_CACHE, but that gets real
3976 		 * confusing.  This is much easier.
3977 		 */
3978 
3979 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3980 			bp->b_flags |= B_NOCACHE;
3981 			bwrite(bp);
3982 			goto loop;
3983 		}
3984 		bp->b_flags &= ~B_DONE;
3985 	} else {
3986 		/*
3987 		 * Buffer is not in-core, create new buffer.  The buffer
3988 		 * returned by getnewbuf() is locked.  Note that the returned
3989 		 * buffer is also considered valid (not marked B_INVAL).
3990 		 */
3991 		BO_RUNLOCK(bo);
3992 		/*
3993 		 * If the user does not want us to create the buffer, bail out
3994 		 * here.
3995 		 */
3996 		if (flags & GB_NOCREAT)
3997 			return (EEXIST);
3998 
3999 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
4000 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4001 		offset = blkno * bsize;
4002 		vmio = vp->v_object != NULL;
4003 		if (vmio) {
4004 			maxsize = size + (offset & PAGE_MASK);
4005 		} else {
4006 			maxsize = size;
4007 			/* Do not allow non-VMIO notmapped buffers. */
4008 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4009 		}
4010 		maxsize = imax(maxsize, bsize);
4011 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4012 		    !vn_isdisk(vp, NULL)) {
4013 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4014 			KASSERT(error != EOPNOTSUPP,
4015 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4016 			    vp));
4017 			if (error != 0)
4018 				return (error);
4019 			if (d_blkno == -1)
4020 				return (EJUSTRETURN);
4021 		}
4022 
4023 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4024 		if (bp == NULL) {
4025 			if (slpflag || slptimeo)
4026 				return (ETIMEDOUT);
4027 			/*
4028 			 * XXX This is here until the sleep path is diagnosed
4029 			 * enough to work under very low memory conditions.
4030 			 *
4031 			 * There's an issue on low memory, 4BSD+non-preempt
4032 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4033 			 * exhaustion occurs without sleeping for buffer
4034 			 * reclaimation.  This just sticks in a loop and
4035 			 * constantly attempts to allocate a buffer, which
4036 			 * hits exhaustion and tries to wakeup bufdaemon.
4037 			 * This never happens because we never yield.
4038 			 *
4039 			 * The real solution is to identify and fix these cases
4040 			 * so we aren't effectively busy-waiting in a loop
4041 			 * until the reclaimation path has cycles to run.
4042 			 */
4043 			kern_yield(PRI_USER);
4044 			goto loop;
4045 		}
4046 
4047 		/*
4048 		 * This code is used to make sure that a buffer is not
4049 		 * created while the getnewbuf routine is blocked.
4050 		 * This can be a problem whether the vnode is locked or not.
4051 		 * If the buffer is created out from under us, we have to
4052 		 * throw away the one we just created.
4053 		 *
4054 		 * Note: this must occur before we associate the buffer
4055 		 * with the vp especially considering limitations in
4056 		 * the splay tree implementation when dealing with duplicate
4057 		 * lblkno's.
4058 		 */
4059 		BO_LOCK(bo);
4060 		if (gbincore(bo, blkno)) {
4061 			BO_UNLOCK(bo);
4062 			bp->b_flags |= B_INVAL;
4063 			bufspace_release(bufdomain(bp), maxsize);
4064 			brelse(bp);
4065 			goto loop;
4066 		}
4067 
4068 		/*
4069 		 * Insert the buffer into the hash, so that it can
4070 		 * be found by incore.
4071 		 */
4072 		bp->b_lblkno = blkno;
4073 		bp->b_blkno = d_blkno;
4074 		bp->b_offset = offset;
4075 		bgetvp(vp, bp);
4076 		BO_UNLOCK(bo);
4077 
4078 		/*
4079 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4080 		 * buffer size starts out as 0, B_CACHE will be set by
4081 		 * allocbuf() for the VMIO case prior to it testing the
4082 		 * backing store for validity.
4083 		 */
4084 
4085 		if (vmio) {
4086 			bp->b_flags |= B_VMIO;
4087 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4088 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4089 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4090 		} else {
4091 			bp->b_flags &= ~B_VMIO;
4092 			KASSERT(bp->b_bufobj->bo_object == NULL,
4093 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4094 			    bp, bp->b_bufobj->bo_object));
4095 			BUF_CHECK_MAPPED(bp);
4096 		}
4097 
4098 		allocbuf(bp, size);
4099 		bufspace_release(bufdomain(bp), maxsize);
4100 		bp->b_flags &= ~B_DONE;
4101 	}
4102 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4103 end:
4104 	buf_track(bp, __func__);
4105 	KASSERT(bp->b_bufobj == bo,
4106 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4107 	*bpp = bp;
4108 	return (0);
4109 }
4110 
4111 /*
4112  * Get an empty, disassociated buffer of given size.  The buffer is initially
4113  * set to B_INVAL.
4114  */
4115 struct buf *
4116 geteblk(int size, int flags)
4117 {
4118 	struct buf *bp;
4119 	int maxsize;
4120 
4121 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4122 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4123 		if ((flags & GB_NOWAIT_BD) &&
4124 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4125 			return (NULL);
4126 	}
4127 	allocbuf(bp, size);
4128 	bufspace_release(bufdomain(bp), maxsize);
4129 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4130 	return (bp);
4131 }
4132 
4133 /*
4134  * Truncate the backing store for a non-vmio buffer.
4135  */
4136 static void
4137 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4138 {
4139 
4140 	if (bp->b_flags & B_MALLOC) {
4141 		/*
4142 		 * malloced buffers are not shrunk
4143 		 */
4144 		if (newbsize == 0) {
4145 			bufmallocadjust(bp, 0);
4146 			free(bp->b_data, M_BIOBUF);
4147 			bp->b_data = bp->b_kvabase;
4148 			bp->b_flags &= ~B_MALLOC;
4149 		}
4150 		return;
4151 	}
4152 	vm_hold_free_pages(bp, newbsize);
4153 	bufspace_adjust(bp, newbsize);
4154 }
4155 
4156 /*
4157  * Extend the backing for a non-VMIO buffer.
4158  */
4159 static void
4160 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4161 {
4162 	caddr_t origbuf;
4163 	int origbufsize;
4164 
4165 	/*
4166 	 * We only use malloced memory on the first allocation.
4167 	 * and revert to page-allocated memory when the buffer
4168 	 * grows.
4169 	 *
4170 	 * There is a potential smp race here that could lead
4171 	 * to bufmallocspace slightly passing the max.  It
4172 	 * is probably extremely rare and not worth worrying
4173 	 * over.
4174 	 */
4175 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4176 	    bufmallocspace < maxbufmallocspace) {
4177 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4178 		bp->b_flags |= B_MALLOC;
4179 		bufmallocadjust(bp, newbsize);
4180 		return;
4181 	}
4182 
4183 	/*
4184 	 * If the buffer is growing on its other-than-first
4185 	 * allocation then we revert to the page-allocation
4186 	 * scheme.
4187 	 */
4188 	origbuf = NULL;
4189 	origbufsize = 0;
4190 	if (bp->b_flags & B_MALLOC) {
4191 		origbuf = bp->b_data;
4192 		origbufsize = bp->b_bufsize;
4193 		bp->b_data = bp->b_kvabase;
4194 		bufmallocadjust(bp, 0);
4195 		bp->b_flags &= ~B_MALLOC;
4196 		newbsize = round_page(newbsize);
4197 	}
4198 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4199 	    (vm_offset_t) bp->b_data + newbsize);
4200 	if (origbuf != NULL) {
4201 		bcopy(origbuf, bp->b_data, origbufsize);
4202 		free(origbuf, M_BIOBUF);
4203 	}
4204 	bufspace_adjust(bp, newbsize);
4205 }
4206 
4207 /*
4208  * This code constitutes the buffer memory from either anonymous system
4209  * memory (in the case of non-VMIO operations) or from an associated
4210  * VM object (in the case of VMIO operations).  This code is able to
4211  * resize a buffer up or down.
4212  *
4213  * Note that this code is tricky, and has many complications to resolve
4214  * deadlock or inconsistent data situations.  Tread lightly!!!
4215  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4216  * the caller.  Calling this code willy nilly can result in the loss of data.
4217  *
4218  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4219  * B_CACHE for the non-VMIO case.
4220  */
4221 int
4222 allocbuf(struct buf *bp, int size)
4223 {
4224 	int newbsize;
4225 
4226 	if (bp->b_bcount == size)
4227 		return (1);
4228 
4229 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4230 		panic("allocbuf: buffer too small");
4231 
4232 	newbsize = roundup2(size, DEV_BSIZE);
4233 	if ((bp->b_flags & B_VMIO) == 0) {
4234 		if ((bp->b_flags & B_MALLOC) == 0)
4235 			newbsize = round_page(newbsize);
4236 		/*
4237 		 * Just get anonymous memory from the kernel.  Don't
4238 		 * mess with B_CACHE.
4239 		 */
4240 		if (newbsize < bp->b_bufsize)
4241 			vfs_nonvmio_truncate(bp, newbsize);
4242 		else if (newbsize > bp->b_bufsize)
4243 			vfs_nonvmio_extend(bp, newbsize);
4244 	} else {
4245 		int desiredpages;
4246 
4247 		desiredpages = (size == 0) ? 0 :
4248 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4249 
4250 		if (bp->b_flags & B_MALLOC)
4251 			panic("allocbuf: VMIO buffer can't be malloced");
4252 		/*
4253 		 * Set B_CACHE initially if buffer is 0 length or will become
4254 		 * 0-length.
4255 		 */
4256 		if (size == 0 || bp->b_bufsize == 0)
4257 			bp->b_flags |= B_CACHE;
4258 
4259 		if (newbsize < bp->b_bufsize)
4260 			vfs_vmio_truncate(bp, desiredpages);
4261 		/* XXX This looks as if it should be newbsize > b_bufsize */
4262 		else if (size > bp->b_bcount)
4263 			vfs_vmio_extend(bp, desiredpages, size);
4264 		bufspace_adjust(bp, newbsize);
4265 	}
4266 	bp->b_bcount = size;		/* requested buffer size. */
4267 	return (1);
4268 }
4269 
4270 extern int inflight_transient_maps;
4271 
4272 static struct bio_queue nondump_bios;
4273 
4274 void
4275 biodone(struct bio *bp)
4276 {
4277 	struct mtx *mtxp;
4278 	void (*done)(struct bio *);
4279 	vm_offset_t start, end;
4280 
4281 	biotrack(bp, __func__);
4282 
4283 	/*
4284 	 * Avoid completing I/O when dumping after a panic since that may
4285 	 * result in a deadlock in the filesystem or pager code.  Note that
4286 	 * this doesn't affect dumps that were started manually since we aim
4287 	 * to keep the system usable after it has been resumed.
4288 	 */
4289 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4290 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4291 		return;
4292 	}
4293 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4294 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4295 		bp->bio_flags |= BIO_UNMAPPED;
4296 		start = trunc_page((vm_offset_t)bp->bio_data);
4297 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4298 		bp->bio_data = unmapped_buf;
4299 		pmap_qremove(start, atop(end - start));
4300 		vmem_free(transient_arena, start, end - start);
4301 		atomic_add_int(&inflight_transient_maps, -1);
4302 	}
4303 	done = bp->bio_done;
4304 	if (done == NULL) {
4305 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4306 		mtx_lock(mtxp);
4307 		bp->bio_flags |= BIO_DONE;
4308 		wakeup(bp);
4309 		mtx_unlock(mtxp);
4310 	} else
4311 		done(bp);
4312 }
4313 
4314 /*
4315  * Wait for a BIO to finish.
4316  */
4317 int
4318 biowait(struct bio *bp, const char *wchan)
4319 {
4320 	struct mtx *mtxp;
4321 
4322 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4323 	mtx_lock(mtxp);
4324 	while ((bp->bio_flags & BIO_DONE) == 0)
4325 		msleep(bp, mtxp, PRIBIO, wchan, 0);
4326 	mtx_unlock(mtxp);
4327 	if (bp->bio_error != 0)
4328 		return (bp->bio_error);
4329 	if (!(bp->bio_flags & BIO_ERROR))
4330 		return (0);
4331 	return (EIO);
4332 }
4333 
4334 void
4335 biofinish(struct bio *bp, struct devstat *stat, int error)
4336 {
4337 
4338 	if (error) {
4339 		bp->bio_error = error;
4340 		bp->bio_flags |= BIO_ERROR;
4341 	}
4342 	if (stat != NULL)
4343 		devstat_end_transaction_bio(stat, bp);
4344 	biodone(bp);
4345 }
4346 
4347 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4348 void
4349 biotrack_buf(struct bio *bp, const char *location)
4350 {
4351 
4352 	buf_track(bp->bio_track_bp, location);
4353 }
4354 #endif
4355 
4356 /*
4357  *	bufwait:
4358  *
4359  *	Wait for buffer I/O completion, returning error status.  The buffer
4360  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4361  *	error and cleared.
4362  */
4363 int
4364 bufwait(struct buf *bp)
4365 {
4366 	if (bp->b_iocmd == BIO_READ)
4367 		bwait(bp, PRIBIO, "biord");
4368 	else
4369 		bwait(bp, PRIBIO, "biowr");
4370 	if (bp->b_flags & B_EINTR) {
4371 		bp->b_flags &= ~B_EINTR;
4372 		return (EINTR);
4373 	}
4374 	if (bp->b_ioflags & BIO_ERROR) {
4375 		return (bp->b_error ? bp->b_error : EIO);
4376 	} else {
4377 		return (0);
4378 	}
4379 }
4380 
4381 /*
4382  *	bufdone:
4383  *
4384  *	Finish I/O on a buffer, optionally calling a completion function.
4385  *	This is usually called from an interrupt so process blocking is
4386  *	not allowed.
4387  *
4388  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4389  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4390  *	assuming B_INVAL is clear.
4391  *
4392  *	For the VMIO case, we set B_CACHE if the op was a read and no
4393  *	read error occurred, or if the op was a write.  B_CACHE is never
4394  *	set if the buffer is invalid or otherwise uncacheable.
4395  *
4396  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4397  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4398  *	in the biodone routine.
4399  */
4400 void
4401 bufdone(struct buf *bp)
4402 {
4403 	struct bufobj *dropobj;
4404 	void    (*biodone)(struct buf *);
4405 
4406 	buf_track(bp, __func__);
4407 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4408 	dropobj = NULL;
4409 
4410 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4411 
4412 	runningbufwakeup(bp);
4413 	if (bp->b_iocmd == BIO_WRITE)
4414 		dropobj = bp->b_bufobj;
4415 	/* call optional completion function if requested */
4416 	if (bp->b_iodone != NULL) {
4417 		biodone = bp->b_iodone;
4418 		bp->b_iodone = NULL;
4419 		(*biodone) (bp);
4420 		if (dropobj)
4421 			bufobj_wdrop(dropobj);
4422 		return;
4423 	}
4424 	if (bp->b_flags & B_VMIO) {
4425 		/*
4426 		 * Set B_CACHE if the op was a normal read and no error
4427 		 * occurred.  B_CACHE is set for writes in the b*write()
4428 		 * routines.
4429 		 */
4430 		if (bp->b_iocmd == BIO_READ &&
4431 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4432 		    !(bp->b_ioflags & BIO_ERROR))
4433 			bp->b_flags |= B_CACHE;
4434 		vfs_vmio_iodone(bp);
4435 	}
4436 	if (!LIST_EMPTY(&bp->b_dep))
4437 		buf_complete(bp);
4438 	if ((bp->b_flags & B_CKHASH) != 0) {
4439 		KASSERT(bp->b_iocmd == BIO_READ,
4440 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4441 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4442 		(*bp->b_ckhashcalc)(bp);
4443 	}
4444 	/*
4445 	 * For asynchronous completions, release the buffer now. The brelse
4446 	 * will do a wakeup there if necessary - so no need to do a wakeup
4447 	 * here in the async case. The sync case always needs to do a wakeup.
4448 	 */
4449 	if (bp->b_flags & B_ASYNC) {
4450 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4451 		    (bp->b_ioflags & BIO_ERROR))
4452 			brelse(bp);
4453 		else
4454 			bqrelse(bp);
4455 	} else
4456 		bdone(bp);
4457 	if (dropobj)
4458 		bufobj_wdrop(dropobj);
4459 }
4460 
4461 /*
4462  * This routine is called in lieu of iodone in the case of
4463  * incomplete I/O.  This keeps the busy status for pages
4464  * consistent.
4465  */
4466 void
4467 vfs_unbusy_pages(struct buf *bp)
4468 {
4469 	int i;
4470 	vm_object_t obj;
4471 	vm_page_t m;
4472 
4473 	runningbufwakeup(bp);
4474 	if (!(bp->b_flags & B_VMIO))
4475 		return;
4476 
4477 	obj = bp->b_bufobj->bo_object;
4478 	for (i = 0; i < bp->b_npages; i++) {
4479 		m = bp->b_pages[i];
4480 		if (m == bogus_page) {
4481 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4482 			if (!m)
4483 				panic("vfs_unbusy_pages: page missing\n");
4484 			bp->b_pages[i] = m;
4485 			if (buf_mapped(bp)) {
4486 				BUF_CHECK_MAPPED(bp);
4487 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4488 				    bp->b_pages, bp->b_npages);
4489 			} else
4490 				BUF_CHECK_UNMAPPED(bp);
4491 		}
4492 		vm_page_sunbusy(m);
4493 	}
4494 	vm_object_pip_wakeupn(obj, bp->b_npages);
4495 }
4496 
4497 /*
4498  * vfs_page_set_valid:
4499  *
4500  *	Set the valid bits in a page based on the supplied offset.   The
4501  *	range is restricted to the buffer's size.
4502  *
4503  *	This routine is typically called after a read completes.
4504  */
4505 static void
4506 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4507 {
4508 	vm_ooffset_t eoff;
4509 
4510 	/*
4511 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4512 	 * page boundary and eoff is not greater than the end of the buffer.
4513 	 * The end of the buffer, in this case, is our file EOF, not the
4514 	 * allocation size of the buffer.
4515 	 */
4516 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4517 	if (eoff > bp->b_offset + bp->b_bcount)
4518 		eoff = bp->b_offset + bp->b_bcount;
4519 
4520 	/*
4521 	 * Set valid range.  This is typically the entire buffer and thus the
4522 	 * entire page.
4523 	 */
4524 	if (eoff > off)
4525 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4526 }
4527 
4528 /*
4529  * vfs_page_set_validclean:
4530  *
4531  *	Set the valid bits and clear the dirty bits in a page based on the
4532  *	supplied offset.   The range is restricted to the buffer's size.
4533  */
4534 static void
4535 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4536 {
4537 	vm_ooffset_t soff, eoff;
4538 
4539 	/*
4540 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4541 	 * page boundary or cross the end of the buffer.  The end of the
4542 	 * buffer, in this case, is our file EOF, not the allocation size
4543 	 * of the buffer.
4544 	 */
4545 	soff = off;
4546 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4547 	if (eoff > bp->b_offset + bp->b_bcount)
4548 		eoff = bp->b_offset + bp->b_bcount;
4549 
4550 	/*
4551 	 * Set valid range.  This is typically the entire buffer and thus the
4552 	 * entire page.
4553 	 */
4554 	if (eoff > soff) {
4555 		vm_page_set_validclean(
4556 		    m,
4557 		   (vm_offset_t) (soff & PAGE_MASK),
4558 		   (vm_offset_t) (eoff - soff)
4559 		);
4560 	}
4561 }
4562 
4563 /*
4564  * Acquire a shared busy on all pages in the buf.
4565  */
4566 void
4567 vfs_busy_pages_acquire(struct buf *bp)
4568 {
4569 	int i;
4570 
4571 	for (i = 0; i < bp->b_npages; i++)
4572 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4573 }
4574 
4575 void
4576 vfs_busy_pages_release(struct buf *bp)
4577 {
4578 	int i;
4579 
4580 	for (i = 0; i < bp->b_npages; i++)
4581 		vm_page_sunbusy(bp->b_pages[i]);
4582 }
4583 
4584 /*
4585  * This routine is called before a device strategy routine.
4586  * It is used to tell the VM system that paging I/O is in
4587  * progress, and treat the pages associated with the buffer
4588  * almost as being exclusive busy.  Also the object paging_in_progress
4589  * flag is handled to make sure that the object doesn't become
4590  * inconsistent.
4591  *
4592  * Since I/O has not been initiated yet, certain buffer flags
4593  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4594  * and should be ignored.
4595  */
4596 void
4597 vfs_busy_pages(struct buf *bp, int clear_modify)
4598 {
4599 	vm_object_t obj;
4600 	vm_ooffset_t foff;
4601 	vm_page_t m;
4602 	int i;
4603 	bool bogus;
4604 
4605 	if (!(bp->b_flags & B_VMIO))
4606 		return;
4607 
4608 	obj = bp->b_bufobj->bo_object;
4609 	foff = bp->b_offset;
4610 	KASSERT(bp->b_offset != NOOFFSET,
4611 	    ("vfs_busy_pages: no buffer offset"));
4612 	if ((bp->b_flags & B_CLUSTER) == 0) {
4613 		vm_object_pip_add(obj, bp->b_npages);
4614 		vfs_busy_pages_acquire(bp);
4615 	}
4616 	if (bp->b_bufsize != 0)
4617 		vfs_setdirty_range(bp);
4618 	bogus = false;
4619 	for (i = 0; i < bp->b_npages; i++) {
4620 		m = bp->b_pages[i];
4621 		vm_page_assert_sbusied(m);
4622 
4623 		/*
4624 		 * When readying a buffer for a read ( i.e
4625 		 * clear_modify == 0 ), it is important to do
4626 		 * bogus_page replacement for valid pages in
4627 		 * partially instantiated buffers.  Partially
4628 		 * instantiated buffers can, in turn, occur when
4629 		 * reconstituting a buffer from its VM backing store
4630 		 * base.  We only have to do this if B_CACHE is
4631 		 * clear ( which causes the I/O to occur in the
4632 		 * first place ).  The replacement prevents the read
4633 		 * I/O from overwriting potentially dirty VM-backed
4634 		 * pages.  XXX bogus page replacement is, uh, bogus.
4635 		 * It may not work properly with small-block devices.
4636 		 * We need to find a better way.
4637 		 */
4638 		if (clear_modify) {
4639 			pmap_remove_write(m);
4640 			vfs_page_set_validclean(bp, foff, m);
4641 		} else if (vm_page_all_valid(m) &&
4642 		    (bp->b_flags & B_CACHE) == 0) {
4643 			bp->b_pages[i] = bogus_page;
4644 			bogus = true;
4645 		}
4646 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4647 	}
4648 	if (bogus && buf_mapped(bp)) {
4649 		BUF_CHECK_MAPPED(bp);
4650 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4651 		    bp->b_pages, bp->b_npages);
4652 	}
4653 }
4654 
4655 /*
4656  *	vfs_bio_set_valid:
4657  *
4658  *	Set the range within the buffer to valid.  The range is
4659  *	relative to the beginning of the buffer, b_offset.  Note that
4660  *	b_offset itself may be offset from the beginning of the first
4661  *	page.
4662  */
4663 void
4664 vfs_bio_set_valid(struct buf *bp, int base, int size)
4665 {
4666 	int i, n;
4667 	vm_page_t m;
4668 
4669 	if (!(bp->b_flags & B_VMIO))
4670 		return;
4671 
4672 	/*
4673 	 * Fixup base to be relative to beginning of first page.
4674 	 * Set initial n to be the maximum number of bytes in the
4675 	 * first page that can be validated.
4676 	 */
4677 	base += (bp->b_offset & PAGE_MASK);
4678 	n = PAGE_SIZE - (base & PAGE_MASK);
4679 
4680 	/*
4681 	 * Busy may not be strictly necessary here because the pages are
4682 	 * unlikely to be fully valid and the vnode lock will synchronize
4683 	 * their access via getpages.  It is grabbed for consistency with
4684 	 * other page validation.
4685 	 */
4686 	vfs_busy_pages_acquire(bp);
4687 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4688 		m = bp->b_pages[i];
4689 		if (n > size)
4690 			n = size;
4691 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4692 		base += n;
4693 		size -= n;
4694 		n = PAGE_SIZE;
4695 	}
4696 	vfs_busy_pages_release(bp);
4697 }
4698 
4699 /*
4700  *	vfs_bio_clrbuf:
4701  *
4702  *	If the specified buffer is a non-VMIO buffer, clear the entire
4703  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4704  *	validate only the previously invalid portions of the buffer.
4705  *	This routine essentially fakes an I/O, so we need to clear
4706  *	BIO_ERROR and B_INVAL.
4707  *
4708  *	Note that while we only theoretically need to clear through b_bcount,
4709  *	we go ahead and clear through b_bufsize.
4710  */
4711 void
4712 vfs_bio_clrbuf(struct buf *bp)
4713 {
4714 	int i, j, mask, sa, ea, slide;
4715 
4716 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4717 		clrbuf(bp);
4718 		return;
4719 	}
4720 	bp->b_flags &= ~B_INVAL;
4721 	bp->b_ioflags &= ~BIO_ERROR;
4722 	vfs_busy_pages_acquire(bp);
4723 	sa = bp->b_offset & PAGE_MASK;
4724 	slide = 0;
4725 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4726 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4727 		ea = slide & PAGE_MASK;
4728 		if (ea == 0)
4729 			ea = PAGE_SIZE;
4730 		if (bp->b_pages[i] == bogus_page)
4731 			continue;
4732 		j = sa / DEV_BSIZE;
4733 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4734 		if ((bp->b_pages[i]->valid & mask) == mask)
4735 			continue;
4736 		if ((bp->b_pages[i]->valid & mask) == 0)
4737 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4738 		else {
4739 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4740 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4741 					pmap_zero_page_area(bp->b_pages[i],
4742 					    sa, DEV_BSIZE);
4743 				}
4744 			}
4745 		}
4746 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4747 		    roundup2(ea - sa, DEV_BSIZE));
4748 	}
4749 	vfs_busy_pages_release(bp);
4750 	bp->b_resid = 0;
4751 }
4752 
4753 void
4754 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4755 {
4756 	vm_page_t m;
4757 	int i, n;
4758 
4759 	if (buf_mapped(bp)) {
4760 		BUF_CHECK_MAPPED(bp);
4761 		bzero(bp->b_data + base, size);
4762 	} else {
4763 		BUF_CHECK_UNMAPPED(bp);
4764 		n = PAGE_SIZE - (base & PAGE_MASK);
4765 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4766 			m = bp->b_pages[i];
4767 			if (n > size)
4768 				n = size;
4769 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4770 			base += n;
4771 			size -= n;
4772 			n = PAGE_SIZE;
4773 		}
4774 	}
4775 }
4776 
4777 /*
4778  * Update buffer flags based on I/O request parameters, optionally releasing the
4779  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4780  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4781  * I/O).  Otherwise the buffer is released to the cache.
4782  */
4783 static void
4784 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4785 {
4786 
4787 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4788 	    ("buf %p non-VMIO noreuse", bp));
4789 
4790 	if ((ioflag & IO_DIRECT) != 0)
4791 		bp->b_flags |= B_DIRECT;
4792 	if ((ioflag & IO_EXT) != 0)
4793 		bp->b_xflags |= BX_ALTDATA;
4794 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4795 		bp->b_flags |= B_RELBUF;
4796 		if ((ioflag & IO_NOREUSE) != 0)
4797 			bp->b_flags |= B_NOREUSE;
4798 		if (release)
4799 			brelse(bp);
4800 	} else if (release)
4801 		bqrelse(bp);
4802 }
4803 
4804 void
4805 vfs_bio_brelse(struct buf *bp, int ioflag)
4806 {
4807 
4808 	b_io_dismiss(bp, ioflag, true);
4809 }
4810 
4811 void
4812 vfs_bio_set_flags(struct buf *bp, int ioflag)
4813 {
4814 
4815 	b_io_dismiss(bp, ioflag, false);
4816 }
4817 
4818 /*
4819  * vm_hold_load_pages and vm_hold_free_pages get pages into
4820  * a buffers address space.  The pages are anonymous and are
4821  * not associated with a file object.
4822  */
4823 static void
4824 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4825 {
4826 	vm_offset_t pg;
4827 	vm_page_t p;
4828 	int index;
4829 
4830 	BUF_CHECK_MAPPED(bp);
4831 
4832 	to = round_page(to);
4833 	from = round_page(from);
4834 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4835 
4836 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4837 		/*
4838 		 * note: must allocate system pages since blocking here
4839 		 * could interfere with paging I/O, no matter which
4840 		 * process we are.
4841 		 */
4842 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4843 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
4844 		    VM_ALLOC_WAITOK);
4845 		pmap_qenter(pg, &p, 1);
4846 		bp->b_pages[index] = p;
4847 	}
4848 	bp->b_npages = index;
4849 }
4850 
4851 /* Return pages associated with this buf to the vm system */
4852 static void
4853 vm_hold_free_pages(struct buf *bp, int newbsize)
4854 {
4855 	vm_offset_t from;
4856 	vm_page_t p;
4857 	int index, newnpages;
4858 
4859 	BUF_CHECK_MAPPED(bp);
4860 
4861 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4862 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4863 	if (bp->b_npages > newnpages)
4864 		pmap_qremove(from, bp->b_npages - newnpages);
4865 	for (index = newnpages; index < bp->b_npages; index++) {
4866 		p = bp->b_pages[index];
4867 		bp->b_pages[index] = NULL;
4868 		vm_page_unwire_noq(p);
4869 		vm_page_free(p);
4870 	}
4871 	bp->b_npages = newnpages;
4872 }
4873 
4874 /*
4875  * Map an IO request into kernel virtual address space.
4876  *
4877  * All requests are (re)mapped into kernel VA space.
4878  * Notice that we use b_bufsize for the size of the buffer
4879  * to be mapped.  b_bcount might be modified by the driver.
4880  *
4881  * Note that even if the caller determines that the address space should
4882  * be valid, a race or a smaller-file mapped into a larger space may
4883  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4884  * check the return value.
4885  *
4886  * This function only works with pager buffers.
4887  */
4888 int
4889 vmapbuf(struct buf *bp, int mapbuf)
4890 {
4891 	vm_prot_t prot;
4892 	int pidx;
4893 
4894 	if (bp->b_bufsize < 0)
4895 		return (-1);
4896 	prot = VM_PROT_READ;
4897 	if (bp->b_iocmd == BIO_READ)
4898 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4899 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4900 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4901 	    btoc(MAXPHYS))) < 0)
4902 		return (-1);
4903 	bp->b_npages = pidx;
4904 	bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4905 	if (mapbuf || !unmapped_buf_allowed) {
4906 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4907 		bp->b_data = bp->b_kvabase + bp->b_offset;
4908 	} else
4909 		bp->b_data = unmapped_buf;
4910 	return(0);
4911 }
4912 
4913 /*
4914  * Free the io map PTEs associated with this IO operation.
4915  * We also invalidate the TLB entries and restore the original b_addr.
4916  *
4917  * This function only works with pager buffers.
4918  */
4919 void
4920 vunmapbuf(struct buf *bp)
4921 {
4922 	int npages;
4923 
4924 	npages = bp->b_npages;
4925 	if (buf_mapped(bp))
4926 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4927 	vm_page_unhold_pages(bp->b_pages, npages);
4928 
4929 	bp->b_data = unmapped_buf;
4930 }
4931 
4932 void
4933 bdone(struct buf *bp)
4934 {
4935 	struct mtx *mtxp;
4936 
4937 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4938 	mtx_lock(mtxp);
4939 	bp->b_flags |= B_DONE;
4940 	wakeup(bp);
4941 	mtx_unlock(mtxp);
4942 }
4943 
4944 void
4945 bwait(struct buf *bp, u_char pri, const char *wchan)
4946 {
4947 	struct mtx *mtxp;
4948 
4949 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4950 	mtx_lock(mtxp);
4951 	while ((bp->b_flags & B_DONE) == 0)
4952 		msleep(bp, mtxp, pri, wchan, 0);
4953 	mtx_unlock(mtxp);
4954 }
4955 
4956 int
4957 bufsync(struct bufobj *bo, int waitfor)
4958 {
4959 
4960 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
4961 }
4962 
4963 void
4964 bufstrategy(struct bufobj *bo, struct buf *bp)
4965 {
4966 	int i __unused;
4967 	struct vnode *vp;
4968 
4969 	vp = bp->b_vp;
4970 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4971 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4972 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4973 	i = VOP_STRATEGY(vp, bp);
4974 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4975 }
4976 
4977 /*
4978  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
4979  */
4980 void
4981 bufobj_init(struct bufobj *bo, void *private)
4982 {
4983 	static volatile int bufobj_cleanq;
4984 
4985         bo->bo_domain =
4986             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
4987         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
4988         bo->bo_private = private;
4989         TAILQ_INIT(&bo->bo_clean.bv_hd);
4990         TAILQ_INIT(&bo->bo_dirty.bv_hd);
4991 }
4992 
4993 void
4994 bufobj_wrefl(struct bufobj *bo)
4995 {
4996 
4997 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4998 	ASSERT_BO_WLOCKED(bo);
4999 	bo->bo_numoutput++;
5000 }
5001 
5002 void
5003 bufobj_wref(struct bufobj *bo)
5004 {
5005 
5006 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5007 	BO_LOCK(bo);
5008 	bo->bo_numoutput++;
5009 	BO_UNLOCK(bo);
5010 }
5011 
5012 void
5013 bufobj_wdrop(struct bufobj *bo)
5014 {
5015 
5016 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5017 	BO_LOCK(bo);
5018 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5019 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5020 		bo->bo_flag &= ~BO_WWAIT;
5021 		wakeup(&bo->bo_numoutput);
5022 	}
5023 	BO_UNLOCK(bo);
5024 }
5025 
5026 int
5027 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5028 {
5029 	int error;
5030 
5031 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5032 	ASSERT_BO_WLOCKED(bo);
5033 	error = 0;
5034 	while (bo->bo_numoutput) {
5035 		bo->bo_flag |= BO_WWAIT;
5036 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5037 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5038 		if (error)
5039 			break;
5040 	}
5041 	return (error);
5042 }
5043 
5044 /*
5045  * Set bio_data or bio_ma for struct bio from the struct buf.
5046  */
5047 void
5048 bdata2bio(struct buf *bp, struct bio *bip)
5049 {
5050 
5051 	if (!buf_mapped(bp)) {
5052 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5053 		bip->bio_ma = bp->b_pages;
5054 		bip->bio_ma_n = bp->b_npages;
5055 		bip->bio_data = unmapped_buf;
5056 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5057 		bip->bio_flags |= BIO_UNMAPPED;
5058 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5059 		    PAGE_SIZE == bp->b_npages,
5060 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5061 		    (long long)bip->bio_length, bip->bio_ma_n));
5062 	} else {
5063 		bip->bio_data = bp->b_data;
5064 		bip->bio_ma = NULL;
5065 	}
5066 }
5067 
5068 /*
5069  * The MIPS pmap code currently doesn't handle aliased pages.
5070  * The VIPT caches may not handle page aliasing themselves, leading
5071  * to data corruption.
5072  *
5073  * As such, this code makes a system extremely unhappy if said
5074  * system doesn't support unaliasing the above situation in hardware.
5075  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5076  * this feature at build time, so it has to be handled in software.
5077  *
5078  * Once the MIPS pmap/cache code grows to support this function on
5079  * earlier chips, it should be flipped back off.
5080  */
5081 #ifdef	__mips__
5082 static int buf_pager_relbuf = 1;
5083 #else
5084 static int buf_pager_relbuf = 0;
5085 #endif
5086 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5087     &buf_pager_relbuf, 0,
5088     "Make buffer pager release buffers after reading");
5089 
5090 /*
5091  * The buffer pager.  It uses buffer reads to validate pages.
5092  *
5093  * In contrast to the generic local pager from vm/vnode_pager.c, this
5094  * pager correctly and easily handles volumes where the underlying
5095  * device block size is greater than the machine page size.  The
5096  * buffer cache transparently extends the requested page run to be
5097  * aligned at the block boundary, and does the necessary bogus page
5098  * replacements in the addends to avoid obliterating already valid
5099  * pages.
5100  *
5101  * The only non-trivial issue is that the exclusive busy state for
5102  * pages, which is assumed by the vm_pager_getpages() interface, is
5103  * incompatible with the VMIO buffer cache's desire to share-busy the
5104  * pages.  This function performs a trivial downgrade of the pages'
5105  * state before reading buffers, and a less trivial upgrade from the
5106  * shared-busy to excl-busy state after the read.
5107  */
5108 int
5109 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5110     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5111     vbg_get_blksize_t get_blksize)
5112 {
5113 	vm_page_t m;
5114 	vm_object_t object;
5115 	struct buf *bp;
5116 	struct mount *mp;
5117 	daddr_t lbn, lbnp;
5118 	vm_ooffset_t la, lb, poff, poffe;
5119 	long bsize;
5120 	int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5121 	bool redo, lpart;
5122 
5123 	object = vp->v_object;
5124 	mp = vp->v_mount;
5125 	error = 0;
5126 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5127 	if (la >= object->un_pager.vnp.vnp_size)
5128 		return (VM_PAGER_BAD);
5129 
5130 	/*
5131 	 * Change the meaning of la from where the last requested page starts
5132 	 * to where it ends, because that's the end of the requested region
5133 	 * and the start of the potential read-ahead region.
5134 	 */
5135 	la += PAGE_SIZE;
5136 	lpart = la > object->un_pager.vnp.vnp_size;
5137 	bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
5138 
5139 	/*
5140 	 * Calculate read-ahead, behind and total pages.
5141 	 */
5142 	pgsin = count;
5143 	lb = IDX_TO_OFF(ma[0]->pindex);
5144 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5145 	pgsin += pgsin_b;
5146 	if (rbehind != NULL)
5147 		*rbehind = pgsin_b;
5148 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5149 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5150 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5151 		    PAGE_SIZE) - la);
5152 	pgsin += pgsin_a;
5153 	if (rahead != NULL)
5154 		*rahead = pgsin_a;
5155 	VM_CNT_INC(v_vnodein);
5156 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5157 
5158 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5159 	    != 0) ? GB_UNMAPPED : 0;
5160 again:
5161 	for (i = 0; i < count; i++) {
5162 		if (ma[i] != bogus_page)
5163 			vm_page_busy_downgrade(ma[i]);
5164 	}
5165 
5166 	lbnp = -1;
5167 	for (i = 0; i < count; i++) {
5168 		m = ma[i];
5169 		if (m == bogus_page)
5170 			continue;
5171 
5172 		/*
5173 		 * Pages are shared busy and the object lock is not
5174 		 * owned, which together allow for the pages'
5175 		 * invalidation.  The racy test for validity avoids
5176 		 * useless creation of the buffer for the most typical
5177 		 * case when invalidation is not used in redo or for
5178 		 * parallel read.  The shared->excl upgrade loop at
5179 		 * the end of the function catches the race in a
5180 		 * reliable way (protected by the object lock).
5181 		 */
5182 		if (vm_page_all_valid(m))
5183 			continue;
5184 
5185 		poff = IDX_TO_OFF(m->pindex);
5186 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5187 		for (; poff < poffe; poff += bsize) {
5188 			lbn = get_lblkno(vp, poff);
5189 			if (lbn == lbnp)
5190 				goto next_page;
5191 			lbnp = lbn;
5192 
5193 			bsize = get_blksize(vp, lbn);
5194 			error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
5195 			    br_flags, &bp);
5196 			if (error != 0)
5197 				goto end_pages;
5198 			if (bp->b_rcred == curthread->td_ucred) {
5199 				crfree(bp->b_rcred);
5200 				bp->b_rcred = NOCRED;
5201 			}
5202 			if (LIST_EMPTY(&bp->b_dep)) {
5203 				/*
5204 				 * Invalidation clears m->valid, but
5205 				 * may leave B_CACHE flag if the
5206 				 * buffer existed at the invalidation
5207 				 * time.  In this case, recycle the
5208 				 * buffer to do real read on next
5209 				 * bread() after redo.
5210 				 *
5211 				 * Otherwise B_RELBUF is not strictly
5212 				 * necessary, enable to reduce buf
5213 				 * cache pressure.
5214 				 */
5215 				if (buf_pager_relbuf ||
5216 				    !vm_page_all_valid(m))
5217 					bp->b_flags |= B_RELBUF;
5218 
5219 				bp->b_flags &= ~B_NOCACHE;
5220 				brelse(bp);
5221 			} else {
5222 				bqrelse(bp);
5223 			}
5224 		}
5225 		KASSERT(1 /* racy, enable for debugging */ ||
5226 		    vm_page_all_valid(m) || i == count - 1,
5227 		    ("buf %d %p invalid", i, m));
5228 		if (i == count - 1 && lpart) {
5229 			if (!vm_page_none_valid(m) &&
5230 			    !vm_page_all_valid(m))
5231 				vm_page_zero_invalid(m, TRUE);
5232 		}
5233 next_page:;
5234 	}
5235 end_pages:
5236 
5237 	redo = false;
5238 	for (i = 0; i < count; i++) {
5239 		if (ma[i] == bogus_page)
5240 			continue;
5241 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5242 			vm_page_sunbusy(ma[i]);
5243 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5244 			    VM_ALLOC_NORMAL);
5245 		}
5246 
5247 		/*
5248 		 * Since the pages were only sbusy while neither the
5249 		 * buffer nor the object lock was held by us, or
5250 		 * reallocated while vm_page_grab() slept for busy
5251 		 * relinguish, they could have been invalidated.
5252 		 * Recheck the valid bits and re-read as needed.
5253 		 *
5254 		 * Note that the last page is made fully valid in the
5255 		 * read loop, and partial validity for the page at
5256 		 * index count - 1 could mean that the page was
5257 		 * invalidated or removed, so we must restart for
5258 		 * safety as well.
5259 		 */
5260 		if (!vm_page_all_valid(ma[i]))
5261 			redo = true;
5262 	}
5263 	if (redo && error == 0)
5264 		goto again;
5265 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5266 }
5267 
5268 #include "opt_ddb.h"
5269 #ifdef DDB
5270 #include <ddb/ddb.h>
5271 
5272 /* DDB command to show buffer data */
5273 DB_SHOW_COMMAND(buffer, db_show_buffer)
5274 {
5275 	/* get args */
5276 	struct buf *bp = (struct buf *)addr;
5277 #ifdef FULL_BUF_TRACKING
5278 	uint32_t i, j;
5279 #endif
5280 
5281 	if (!have_addr) {
5282 		db_printf("usage: show buffer <addr>\n");
5283 		return;
5284 	}
5285 
5286 	db_printf("buf at %p\n", bp);
5287 	db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5288 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5289 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5290 	db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5291 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5292 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5293 	db_printf(
5294 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5295 	    "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
5296 	    "b_vp = %p, b_dep = %p\n",
5297 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5298 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5299 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5300 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5301 	    bp->b_kvabase, bp->b_kvasize);
5302 	if (bp->b_npages) {
5303 		int i;
5304 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5305 		for (i = 0; i < bp->b_npages; i++) {
5306 			vm_page_t m;
5307 			m = bp->b_pages[i];
5308 			if (m != NULL)
5309 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5310 				    (u_long)m->pindex,
5311 				    (u_long)VM_PAGE_TO_PHYS(m));
5312 			else
5313 				db_printf("( ??? )");
5314 			if ((i + 1) < bp->b_npages)
5315 				db_printf(",");
5316 		}
5317 		db_printf("\n");
5318 	}
5319 	BUF_LOCKPRINTINFO(bp);
5320 #if defined(FULL_BUF_TRACKING)
5321 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5322 
5323 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5324 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5325 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5326 			continue;
5327 		db_printf(" %2u: %s\n", j,
5328 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5329 	}
5330 #elif defined(BUF_TRACKING)
5331 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5332 #endif
5333 	db_printf(" ");
5334 }
5335 
5336 DB_SHOW_COMMAND(bufqueues, bufqueues)
5337 {
5338 	struct bufdomain *bd;
5339 	struct buf *bp;
5340 	long total;
5341 	int i, j, cnt;
5342 
5343 	db_printf("bqempty: %d\n", bqempty.bq_len);
5344 
5345 	for (i = 0; i < buf_domains; i++) {
5346 		bd = &bdomain[i];
5347 		db_printf("Buf domain %d\n", i);
5348 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5349 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5350 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5351 		db_printf("\n");
5352 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5353 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5354 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5355 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5356 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5357 		db_printf("\n");
5358 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5359 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5360 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5361 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5362 		db_printf("\n");
5363 		total = 0;
5364 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5365 			total += bp->b_bufsize;
5366 		db_printf("\tcleanq count\t%d (%ld)\n",
5367 		    bd->bd_cleanq->bq_len, total);
5368 		total = 0;
5369 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5370 			total += bp->b_bufsize;
5371 		db_printf("\tdirtyq count\t%d (%ld)\n",
5372 		    bd->bd_dirtyq.bq_len, total);
5373 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5374 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5375 		db_printf("\tCPU ");
5376 		for (j = 0; j <= mp_maxid; j++)
5377 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5378 		db_printf("\n");
5379 		cnt = 0;
5380 		total = 0;
5381 		for (j = 0; j < nbuf; j++)
5382 			if (buf[j].b_domain == i && BUF_ISLOCKED(&buf[j])) {
5383 				cnt++;
5384 				total += buf[j].b_bufsize;
5385 			}
5386 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5387 		cnt = 0;
5388 		total = 0;
5389 		for (j = 0; j < nbuf; j++)
5390 			if (buf[j].b_domain == i) {
5391 				cnt++;
5392 				total += buf[j].b_bufsize;
5393 			}
5394 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5395 	}
5396 }
5397 
5398 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5399 {
5400 	struct buf *bp;
5401 	int i;
5402 
5403 	for (i = 0; i < nbuf; i++) {
5404 		bp = &buf[i];
5405 		if (BUF_ISLOCKED(bp)) {
5406 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5407 			db_printf("\n");
5408 			if (db_pager_quit)
5409 				break;
5410 		}
5411 	}
5412 }
5413 
5414 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5415 {
5416 	struct vnode *vp;
5417 	struct buf *bp;
5418 
5419 	if (!have_addr) {
5420 		db_printf("usage: show vnodebufs <addr>\n");
5421 		return;
5422 	}
5423 	vp = (struct vnode *)addr;
5424 	db_printf("Clean buffers:\n");
5425 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5426 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5427 		db_printf("\n");
5428 	}
5429 	db_printf("Dirty buffers:\n");
5430 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5431 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5432 		db_printf("\n");
5433 	}
5434 }
5435 
5436 DB_COMMAND(countfreebufs, db_coundfreebufs)
5437 {
5438 	struct buf *bp;
5439 	int i, used = 0, nfree = 0;
5440 
5441 	if (have_addr) {
5442 		db_printf("usage: countfreebufs\n");
5443 		return;
5444 	}
5445 
5446 	for (i = 0; i < nbuf; i++) {
5447 		bp = &buf[i];
5448 		if (bp->b_qindex == QUEUE_EMPTY)
5449 			nfree++;
5450 		else
5451 			used++;
5452 	}
5453 
5454 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5455 	    nfree + used);
5456 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5457 }
5458 #endif /* DDB */
5459