xref: /freebsd/sys/kern/vfs_mount.c (revision c03c5b1c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/limits.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/filedesc.h>
60 #include <sys/reboot.h>
61 #include <sys/sbuf.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysproto.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/systm.h>
68 #include <sys/taskqueue.h>
69 #include <sys/vnode.h>
70 #include <vm/uma.h>
71 
72 #include <geom/geom.h>
73 
74 #include <machine/stdarg.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
80 
81 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
82 		    uint64_t fsflags, struct vfsoptlist **optlist);
83 static void	free_mntarg(struct mntarg *ma);
84 
85 static int	usermount = 0;
86 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
87     "Unprivileged users may mount and unmount file systems");
88 
89 static bool	default_autoro = false;
90 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
91     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
92 
93 static bool	recursive_forced_unmount = false;
94 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
95     &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
96     " when a file system is forcibly unmounted");
97 
98 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
99     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
100 
101 static unsigned int	deferred_unmount_retry_limit = 10;
102 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
103     &deferred_unmount_retry_limit, 0,
104     "Maximum number of retries for deferred unmount failure");
105 
106 static int	deferred_unmount_retry_delay_hz;
107 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
108     &deferred_unmount_retry_delay_hz, 0,
109     "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
110 
111 static int	deferred_unmount_total_retries = 0;
112 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
113     &deferred_unmount_total_retries, 0,
114     "Total number of retried deferred unmounts");
115 
116 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
117 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
118 static uma_zone_t mount_zone;
119 
120 /* List of mounted filesystems. */
121 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
122 
123 /* For any iteration/modification of mountlist */
124 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
125 
126 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
127 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
128 
129 static void vfs_deferred_unmount(void *arg, int pending);
130 static struct timeout_task deferred_unmount_task;
131 static struct mtx deferred_unmount_lock;
132 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
133     MTX_DEF);
134 static STAILQ_HEAD(, mount) deferred_unmount_list =
135     STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
136 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
137 
138 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
139 
140 /*
141  * Global opts, taken by all filesystems
142  */
143 static const char *global_opts[] = {
144 	"errmsg",
145 	"fstype",
146 	"fspath",
147 	"ro",
148 	"rw",
149 	"nosuid",
150 	"noexec",
151 	NULL
152 };
153 
154 static int
155 mount_init(void *mem, int size, int flags)
156 {
157 	struct mount *mp;
158 
159 	mp = (struct mount *)mem;
160 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
161 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
162 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
163 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
164 	mp->mnt_ref = 0;
165 	mp->mnt_vfs_ops = 1;
166 	mp->mnt_rootvnode = NULL;
167 	return (0);
168 }
169 
170 static void
171 mount_fini(void *mem, int size)
172 {
173 	struct mount *mp;
174 
175 	mp = (struct mount *)mem;
176 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
177 	lockdestroy(&mp->mnt_explock);
178 	mtx_destroy(&mp->mnt_listmtx);
179 	mtx_destroy(&mp->mnt_mtx);
180 }
181 
182 static void
183 vfs_mount_init(void *dummy __unused)
184 {
185 	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
186 	    0, vfs_deferred_unmount, NULL);
187 	deferred_unmount_retry_delay_hz = hz;
188 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
189 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
190 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
191 }
192 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
193 
194 /*
195  * ---------------------------------------------------------------------
196  * Functions for building and sanitizing the mount options
197  */
198 
199 /* Remove one mount option. */
200 static void
201 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
202 {
203 
204 	TAILQ_REMOVE(opts, opt, link);
205 	free(opt->name, M_MOUNT);
206 	if (opt->value != NULL)
207 		free(opt->value, M_MOUNT);
208 	free(opt, M_MOUNT);
209 }
210 
211 /* Release all resources related to the mount options. */
212 void
213 vfs_freeopts(struct vfsoptlist *opts)
214 {
215 	struct vfsopt *opt;
216 
217 	while (!TAILQ_EMPTY(opts)) {
218 		opt = TAILQ_FIRST(opts);
219 		vfs_freeopt(opts, opt);
220 	}
221 	free(opts, M_MOUNT);
222 }
223 
224 void
225 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
226 {
227 	struct vfsopt *opt, *temp;
228 
229 	if (opts == NULL)
230 		return;
231 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
232 		if (strcmp(opt->name, name) == 0)
233 			vfs_freeopt(opts, opt);
234 	}
235 }
236 
237 static int
238 vfs_isopt_ro(const char *opt)
239 {
240 
241 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
242 	    strcmp(opt, "norw") == 0)
243 		return (1);
244 	return (0);
245 }
246 
247 static int
248 vfs_isopt_rw(const char *opt)
249 {
250 
251 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
252 		return (1);
253 	return (0);
254 }
255 
256 /*
257  * Check if options are equal (with or without the "no" prefix).
258  */
259 static int
260 vfs_equalopts(const char *opt1, const char *opt2)
261 {
262 	char *p;
263 
264 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
265 	if (strcmp(opt1, opt2) == 0)
266 		return (1);
267 	/* "noopt" vs. "opt" */
268 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
269 		return (1);
270 	/* "opt" vs. "noopt" */
271 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
272 		return (1);
273 	while ((p = strchr(opt1, '.')) != NULL &&
274 	    !strncmp(opt1, opt2, ++p - opt1)) {
275 		opt2 += p - opt1;
276 		opt1 = p;
277 		/* "foo.noopt" vs. "foo.opt" */
278 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
279 			return (1);
280 		/* "foo.opt" vs. "foo.noopt" */
281 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
282 			return (1);
283 	}
284 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
285 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
286 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
287 		return (1);
288 	return (0);
289 }
290 
291 /*
292  * If a mount option is specified several times,
293  * (with or without the "no" prefix) only keep
294  * the last occurrence of it.
295  */
296 static void
297 vfs_sanitizeopts(struct vfsoptlist *opts)
298 {
299 	struct vfsopt *opt, *opt2, *tmp;
300 
301 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
302 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
303 		while (opt2 != NULL) {
304 			if (vfs_equalopts(opt->name, opt2->name)) {
305 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
306 				vfs_freeopt(opts, opt2);
307 				opt2 = tmp;
308 			} else {
309 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
310 			}
311 		}
312 	}
313 }
314 
315 /*
316  * Build a linked list of mount options from a struct uio.
317  */
318 int
319 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
320 {
321 	struct vfsoptlist *opts;
322 	struct vfsopt *opt;
323 	size_t memused, namelen, optlen;
324 	unsigned int i, iovcnt;
325 	int error;
326 
327 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
328 	TAILQ_INIT(opts);
329 	memused = 0;
330 	iovcnt = auio->uio_iovcnt;
331 	for (i = 0; i < iovcnt; i += 2) {
332 		namelen = auio->uio_iov[i].iov_len;
333 		optlen = auio->uio_iov[i + 1].iov_len;
334 		memused += sizeof(struct vfsopt) + optlen + namelen;
335 		/*
336 		 * Avoid consuming too much memory, and attempts to overflow
337 		 * memused.
338 		 */
339 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
340 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
341 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
342 			error = EINVAL;
343 			goto bad;
344 		}
345 
346 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
347 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
348 		opt->value = NULL;
349 		opt->len = 0;
350 		opt->pos = i / 2;
351 		opt->seen = 0;
352 
353 		/*
354 		 * Do this early, so jumps to "bad" will free the current
355 		 * option.
356 		 */
357 		TAILQ_INSERT_TAIL(opts, opt, link);
358 
359 		if (auio->uio_segflg == UIO_SYSSPACE) {
360 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
361 		} else {
362 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
363 			    namelen);
364 			if (error)
365 				goto bad;
366 		}
367 		/* Ensure names are null-terminated strings. */
368 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
369 			error = EINVAL;
370 			goto bad;
371 		}
372 		if (optlen != 0) {
373 			opt->len = optlen;
374 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
375 			if (auio->uio_segflg == UIO_SYSSPACE) {
376 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
377 				    optlen);
378 			} else {
379 				error = copyin(auio->uio_iov[i + 1].iov_base,
380 				    opt->value, optlen);
381 				if (error)
382 					goto bad;
383 			}
384 		}
385 	}
386 	vfs_sanitizeopts(opts);
387 	*options = opts;
388 	return (0);
389 bad:
390 	vfs_freeopts(opts);
391 	return (error);
392 }
393 
394 /*
395  * Merge the old mount options with the new ones passed
396  * in the MNT_UPDATE case.
397  *
398  * XXX: This function will keep a "nofoo" option in the new
399  * options.  E.g, if the option's canonical name is "foo",
400  * "nofoo" ends up in the mount point's active options.
401  */
402 static void
403 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
404 {
405 	struct vfsopt *opt, *new;
406 
407 	TAILQ_FOREACH(opt, oldopts, link) {
408 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
409 		new->name = strdup(opt->name, M_MOUNT);
410 		if (opt->len != 0) {
411 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
412 			bcopy(opt->value, new->value, opt->len);
413 		} else
414 			new->value = NULL;
415 		new->len = opt->len;
416 		new->seen = opt->seen;
417 		TAILQ_INSERT_HEAD(toopts, new, link);
418 	}
419 	vfs_sanitizeopts(toopts);
420 }
421 
422 /*
423  * Mount a filesystem.
424  */
425 #ifndef _SYS_SYSPROTO_H_
426 struct nmount_args {
427 	struct iovec *iovp;
428 	unsigned int iovcnt;
429 	int flags;
430 };
431 #endif
432 int
433 sys_nmount(struct thread *td, struct nmount_args *uap)
434 {
435 	struct uio *auio;
436 	int error;
437 	u_int iovcnt;
438 	uint64_t flags;
439 
440 	/*
441 	 * Mount flags are now 64-bits. On 32-bit archtectures only
442 	 * 32-bits are passed in, but from here on everything handles
443 	 * 64-bit flags correctly.
444 	 */
445 	flags = uap->flags;
446 
447 	AUDIT_ARG_FFLAGS(flags);
448 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
449 	    uap->iovp, uap->iovcnt, flags);
450 
451 	/*
452 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
453 	 * userspace to set this flag, but we must filter it out if we want
454 	 * MNT_UPDATE on the root file system to work.
455 	 * MNT_ROOTFS should only be set by the kernel when mounting its
456 	 * root file system.
457 	 */
458 	flags &= ~MNT_ROOTFS;
459 
460 	iovcnt = uap->iovcnt;
461 	/*
462 	 * Check that we have an even number of iovec's
463 	 * and that we have at least two options.
464 	 */
465 	if ((iovcnt & 1) || (iovcnt < 4)) {
466 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
467 		    uap->iovcnt);
468 		return (EINVAL);
469 	}
470 
471 	error = copyinuio(uap->iovp, iovcnt, &auio);
472 	if (error) {
473 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
474 		    __func__, error);
475 		return (error);
476 	}
477 	error = vfs_donmount(td, flags, auio);
478 
479 	free(auio, M_IOV);
480 	return (error);
481 }
482 
483 /*
484  * ---------------------------------------------------------------------
485  * Various utility functions
486  */
487 
488 /*
489  * Get a reference on a mount point from a vnode.
490  *
491  * The vnode is allowed to be passed unlocked and race against dooming. Note in
492  * such case there are no guarantees the referenced mount point will still be
493  * associated with it after the function returns.
494  */
495 struct mount *
496 vfs_ref_from_vp(struct vnode *vp)
497 {
498 	struct mount *mp;
499 	struct mount_pcpu *mpcpu;
500 
501 	mp = atomic_load_ptr(&vp->v_mount);
502 	if (__predict_false(mp == NULL)) {
503 		return (mp);
504 	}
505 	if (vfs_op_thread_enter(mp, mpcpu)) {
506 		if (__predict_true(mp == vp->v_mount)) {
507 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
508 			vfs_op_thread_exit(mp, mpcpu);
509 		} else {
510 			vfs_op_thread_exit(mp, mpcpu);
511 			mp = NULL;
512 		}
513 	} else {
514 		MNT_ILOCK(mp);
515 		if (mp == vp->v_mount) {
516 			MNT_REF(mp);
517 			MNT_IUNLOCK(mp);
518 		} else {
519 			MNT_IUNLOCK(mp);
520 			mp = NULL;
521 		}
522 	}
523 	return (mp);
524 }
525 
526 void
527 vfs_ref(struct mount *mp)
528 {
529 	struct mount_pcpu *mpcpu;
530 
531 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
532 	if (vfs_op_thread_enter(mp, mpcpu)) {
533 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
534 		vfs_op_thread_exit(mp, mpcpu);
535 		return;
536 	}
537 
538 	MNT_ILOCK(mp);
539 	MNT_REF(mp);
540 	MNT_IUNLOCK(mp);
541 }
542 
543 /*
544  * Register ump as an upper mount of the mount associated with
545  * vnode vp.  This registration will be tracked through
546  * mount_upper_node upper, which should be allocated by the
547  * caller and stored in per-mount data associated with mp.
548  *
549  * If successful, this function will return the mount associated
550  * with vp, and will ensure that it cannot be unmounted until
551  * ump has been unregistered as one of its upper mounts.
552  *
553  * Upon failure this function will return NULL.
554  */
555 struct mount *
556 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
557     struct mount_upper_node *upper)
558 {
559 	struct mount *mp;
560 
561 	mp = atomic_load_ptr(&vp->v_mount);
562 	if (mp == NULL)
563 		return (NULL);
564 	MNT_ILOCK(mp);
565 	if (mp != vp->v_mount ||
566 	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
567 		MNT_IUNLOCK(mp);
568 		return (NULL);
569 	}
570 	KASSERT(ump != mp, ("upper and lower mounts are identical"));
571 	upper->mp = ump;
572 	MNT_REF(mp);
573 	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
574 	MNT_IUNLOCK(mp);
575 	return (mp);
576 }
577 
578 /*
579  * Register upper mount ump to receive vnode unlink/reclaim
580  * notifications from lower mount mp. This registration will
581  * be tracked through mount_upper_node upper, which should be
582  * allocated by the caller and stored in per-mount data
583  * associated with mp.
584  *
585  * ump must already be registered as an upper mount of mp
586  * through a call to vfs_register_upper_from_vp().
587  */
588 void
589 vfs_register_for_notification(struct mount *mp, struct mount *ump,
590     struct mount_upper_node *upper)
591 {
592 	upper->mp = ump;
593 	MNT_ILOCK(mp);
594 	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
595 	MNT_IUNLOCK(mp);
596 }
597 
598 static void
599 vfs_drain_upper_locked(struct mount *mp)
600 {
601 	mtx_assert(MNT_MTX(mp), MA_OWNED);
602 	while (mp->mnt_upper_pending != 0) {
603 		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
604 		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
605 	}
606 }
607 
608 /*
609  * Undo a previous call to vfs_register_for_notification().
610  * The mount represented by upper must be currently registered
611  * as an upper mount for mp.
612  */
613 void
614 vfs_unregister_for_notification(struct mount *mp,
615     struct mount_upper_node *upper)
616 {
617 	MNT_ILOCK(mp);
618 	vfs_drain_upper_locked(mp);
619 	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
620 	MNT_IUNLOCK(mp);
621 }
622 
623 /*
624  * Undo a previous call to vfs_register_upper_from_vp().
625  * This must be done before mp can be unmounted.
626  */
627 void
628 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
629 {
630 	MNT_ILOCK(mp);
631 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
632 	    ("registered upper with pending unmount"));
633 	vfs_drain_upper_locked(mp);
634 	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
635 	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
636 	    TAILQ_EMPTY(&mp->mnt_uppers)) {
637 		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
638 		wakeup(&mp->mnt_taskqueue_link);
639 	}
640 	MNT_REL(mp);
641 	MNT_IUNLOCK(mp);
642 }
643 
644 void
645 vfs_rel(struct mount *mp)
646 {
647 	struct mount_pcpu *mpcpu;
648 
649 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
650 	if (vfs_op_thread_enter(mp, mpcpu)) {
651 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
652 		vfs_op_thread_exit(mp, mpcpu);
653 		return;
654 	}
655 
656 	MNT_ILOCK(mp);
657 	MNT_REL(mp);
658 	MNT_IUNLOCK(mp);
659 }
660 
661 /*
662  * Allocate and initialize the mount point struct.
663  */
664 struct mount *
665 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
666     struct ucred *cred)
667 {
668 	struct mount *mp;
669 
670 	mp = uma_zalloc(mount_zone, M_WAITOK);
671 	bzero(&mp->mnt_startzero,
672 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
673 	mp->mnt_kern_flag = 0;
674 	mp->mnt_flag = 0;
675 	mp->mnt_rootvnode = NULL;
676 	mp->mnt_vnodecovered = NULL;
677 	mp->mnt_op = NULL;
678 	mp->mnt_vfc = NULL;
679 	TAILQ_INIT(&mp->mnt_nvnodelist);
680 	mp->mnt_nvnodelistsize = 0;
681 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
682 	mp->mnt_lazyvnodelistsize = 0;
683 	if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 ||
684 	    mp->mnt_writeopcount != 0)
685 		panic("%s: non-zero counters on new mp %p\n", __func__, mp);
686 	if (mp->mnt_vfs_ops != 1)
687 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
688 		    mp->mnt_vfs_ops);
689 	(void) vfs_busy(mp, MBF_NOWAIT);
690 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
691 	mp->mnt_op = vfsp->vfc_vfsops;
692 	mp->mnt_vfc = vfsp;
693 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
694 	mp->mnt_gen++;
695 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
696 	mp->mnt_vnodecovered = vp;
697 	mp->mnt_cred = crdup(cred);
698 	mp->mnt_stat.f_owner = cred->cr_uid;
699 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
700 	mp->mnt_iosize_max = DFLTPHYS;
701 #ifdef MAC
702 	mac_mount_init(mp);
703 	mac_mount_create(cred, mp);
704 #endif
705 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
706 	mp->mnt_upper_pending = 0;
707 	TAILQ_INIT(&mp->mnt_uppers);
708 	TAILQ_INIT(&mp->mnt_notify);
709 	mp->mnt_taskqueue_flags = 0;
710 	mp->mnt_unmount_retries = 0;
711 	return (mp);
712 }
713 
714 /*
715  * Destroy the mount struct previously allocated by vfs_mount_alloc().
716  */
717 void
718 vfs_mount_destroy(struct mount *mp)
719 {
720 
721 	if (mp->mnt_vfs_ops == 0)
722 		panic("%s: entered with zero vfs_ops\n", __func__);
723 
724 	vfs_assert_mount_counters(mp);
725 
726 	MNT_ILOCK(mp);
727 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
728 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
729 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
730 		wakeup(mp);
731 	}
732 	while (mp->mnt_ref)
733 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
734 	KASSERT(mp->mnt_ref == 0,
735 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
736 	    __FILE__, __LINE__));
737 	if (mp->mnt_writeopcount != 0)
738 		panic("vfs_mount_destroy: nonzero writeopcount");
739 	if (mp->mnt_secondary_writes != 0)
740 		panic("vfs_mount_destroy: nonzero secondary_writes");
741 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
742 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
743 		struct vnode *vp;
744 
745 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
746 			vn_printf(vp, "dangling vnode ");
747 		panic("unmount: dangling vnode");
748 	}
749 	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
750 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
751 	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
752 	if (mp->mnt_nvnodelistsize != 0)
753 		panic("vfs_mount_destroy: nonzero nvnodelistsize");
754 	if (mp->mnt_lazyvnodelistsize != 0)
755 		panic("vfs_mount_destroy: nonzero lazyvnodelistsize");
756 	if (mp->mnt_lockref != 0)
757 		panic("vfs_mount_destroy: nonzero lock refcount");
758 	MNT_IUNLOCK(mp);
759 
760 	if (mp->mnt_vfs_ops != 1)
761 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
762 		    mp->mnt_vfs_ops);
763 
764 	if (mp->mnt_rootvnode != NULL)
765 		panic("%s: mount point still has a root vnode %p\n", __func__,
766 		    mp->mnt_rootvnode);
767 
768 	if (mp->mnt_vnodecovered != NULL)
769 		vrele(mp->mnt_vnodecovered);
770 #ifdef MAC
771 	mac_mount_destroy(mp);
772 #endif
773 	if (mp->mnt_opt != NULL)
774 		vfs_freeopts(mp->mnt_opt);
775 	crfree(mp->mnt_cred);
776 	uma_zfree(mount_zone, mp);
777 }
778 
779 static bool
780 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
781 {
782 	/* This is an upgrade of an exisiting mount. */
783 	if ((fsflags & MNT_UPDATE) != 0)
784 		return (false);
785 	/* This is already an R/O mount. */
786 	if ((fsflags & MNT_RDONLY) != 0)
787 		return (false);
788 
789 	switch (error) {
790 	case ENODEV:	/* generic, geom, ... */
791 	case EACCES:	/* cam/scsi, ... */
792 	case EROFS:	/* md, mmcsd, ... */
793 		/*
794 		 * These errors can be returned by the storage layer to signal
795 		 * that the media is read-only.  No harm in the R/O mount
796 		 * attempt if the error was returned for some other reason.
797 		 */
798 		return (true);
799 	default:
800 		return (false);
801 	}
802 }
803 
804 int
805 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
806 {
807 	struct vfsoptlist *optlist;
808 	struct vfsopt *opt, *tmp_opt;
809 	char *fstype, *fspath, *errmsg;
810 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
811 	bool autoro;
812 
813 	errmsg = fspath = NULL;
814 	errmsg_len = fspathlen = 0;
815 	errmsg_pos = -1;
816 	autoro = default_autoro;
817 
818 	error = vfs_buildopts(fsoptions, &optlist);
819 	if (error)
820 		return (error);
821 
822 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
823 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
824 
825 	/*
826 	 * We need these two options before the others,
827 	 * and they are mandatory for any filesystem.
828 	 * Ensure they are NUL terminated as well.
829 	 */
830 	fstypelen = 0;
831 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
832 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
833 		error = EINVAL;
834 		if (errmsg != NULL)
835 			strncpy(errmsg, "Invalid fstype", errmsg_len);
836 		goto bail;
837 	}
838 	fspathlen = 0;
839 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
840 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
841 		error = EINVAL;
842 		if (errmsg != NULL)
843 			strncpy(errmsg, "Invalid fspath", errmsg_len);
844 		goto bail;
845 	}
846 
847 	/*
848 	 * We need to see if we have the "update" option
849 	 * before we call vfs_domount(), since vfs_domount() has special
850 	 * logic based on MNT_UPDATE.  This is very important
851 	 * when we want to update the root filesystem.
852 	 */
853 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
854 		int do_freeopt = 0;
855 
856 		if (strcmp(opt->name, "update") == 0) {
857 			fsflags |= MNT_UPDATE;
858 			do_freeopt = 1;
859 		}
860 		else if (strcmp(opt->name, "async") == 0)
861 			fsflags |= MNT_ASYNC;
862 		else if (strcmp(opt->name, "force") == 0) {
863 			fsflags |= MNT_FORCE;
864 			do_freeopt = 1;
865 		}
866 		else if (strcmp(opt->name, "reload") == 0) {
867 			fsflags |= MNT_RELOAD;
868 			do_freeopt = 1;
869 		}
870 		else if (strcmp(opt->name, "multilabel") == 0)
871 			fsflags |= MNT_MULTILABEL;
872 		else if (strcmp(opt->name, "noasync") == 0)
873 			fsflags &= ~MNT_ASYNC;
874 		else if (strcmp(opt->name, "noatime") == 0)
875 			fsflags |= MNT_NOATIME;
876 		else if (strcmp(opt->name, "atime") == 0) {
877 			free(opt->name, M_MOUNT);
878 			opt->name = strdup("nonoatime", M_MOUNT);
879 		}
880 		else if (strcmp(opt->name, "noclusterr") == 0)
881 			fsflags |= MNT_NOCLUSTERR;
882 		else if (strcmp(opt->name, "clusterr") == 0) {
883 			free(opt->name, M_MOUNT);
884 			opt->name = strdup("nonoclusterr", M_MOUNT);
885 		}
886 		else if (strcmp(opt->name, "noclusterw") == 0)
887 			fsflags |= MNT_NOCLUSTERW;
888 		else if (strcmp(opt->name, "clusterw") == 0) {
889 			free(opt->name, M_MOUNT);
890 			opt->name = strdup("nonoclusterw", M_MOUNT);
891 		}
892 		else if (strcmp(opt->name, "noexec") == 0)
893 			fsflags |= MNT_NOEXEC;
894 		else if (strcmp(opt->name, "exec") == 0) {
895 			free(opt->name, M_MOUNT);
896 			opt->name = strdup("nonoexec", M_MOUNT);
897 		}
898 		else if (strcmp(opt->name, "nosuid") == 0)
899 			fsflags |= MNT_NOSUID;
900 		else if (strcmp(opt->name, "suid") == 0) {
901 			free(opt->name, M_MOUNT);
902 			opt->name = strdup("nonosuid", M_MOUNT);
903 		}
904 		else if (strcmp(opt->name, "nosymfollow") == 0)
905 			fsflags |= MNT_NOSYMFOLLOW;
906 		else if (strcmp(opt->name, "symfollow") == 0) {
907 			free(opt->name, M_MOUNT);
908 			opt->name = strdup("nonosymfollow", M_MOUNT);
909 		}
910 		else if (strcmp(opt->name, "noro") == 0) {
911 			fsflags &= ~MNT_RDONLY;
912 			autoro = false;
913 		}
914 		else if (strcmp(opt->name, "rw") == 0) {
915 			fsflags &= ~MNT_RDONLY;
916 			autoro = false;
917 		}
918 		else if (strcmp(opt->name, "ro") == 0) {
919 			fsflags |= MNT_RDONLY;
920 			autoro = false;
921 		}
922 		else if (strcmp(opt->name, "rdonly") == 0) {
923 			free(opt->name, M_MOUNT);
924 			opt->name = strdup("ro", M_MOUNT);
925 			fsflags |= MNT_RDONLY;
926 			autoro = false;
927 		}
928 		else if (strcmp(opt->name, "autoro") == 0) {
929 			do_freeopt = 1;
930 			autoro = true;
931 		}
932 		else if (strcmp(opt->name, "suiddir") == 0)
933 			fsflags |= MNT_SUIDDIR;
934 		else if (strcmp(opt->name, "sync") == 0)
935 			fsflags |= MNT_SYNCHRONOUS;
936 		else if (strcmp(opt->name, "union") == 0)
937 			fsflags |= MNT_UNION;
938 		else if (strcmp(opt->name, "automounted") == 0) {
939 			fsflags |= MNT_AUTOMOUNTED;
940 			do_freeopt = 1;
941 		} else if (strcmp(opt->name, "nocover") == 0) {
942 			fsflags |= MNT_NOCOVER;
943 			do_freeopt = 1;
944 		} else if (strcmp(opt->name, "cover") == 0) {
945 			fsflags &= ~MNT_NOCOVER;
946 			do_freeopt = 1;
947 		} else if (strcmp(opt->name, "emptydir") == 0) {
948 			fsflags |= MNT_EMPTYDIR;
949 			do_freeopt = 1;
950 		} else if (strcmp(opt->name, "noemptydir") == 0) {
951 			fsflags &= ~MNT_EMPTYDIR;
952 			do_freeopt = 1;
953 		}
954 		if (do_freeopt)
955 			vfs_freeopt(optlist, opt);
956 	}
957 
958 	/*
959 	 * Be ultra-paranoid about making sure the type and fspath
960 	 * variables will fit in our mp buffers, including the
961 	 * terminating NUL.
962 	 */
963 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
964 		error = ENAMETOOLONG;
965 		goto bail;
966 	}
967 
968 	error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
969 	if (error == ENOENT) {
970 		error = EINVAL;
971 		if (errmsg != NULL)
972 			strncpy(errmsg, "Invalid fstype", errmsg_len);
973 		goto bail;
974 	}
975 
976 	/*
977 	 * See if we can mount in the read-only mode if the error code suggests
978 	 * that it could be possible and the mount options allow for that.
979 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
980 	 * overridden by "autoro".
981 	 */
982 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
983 		printf("%s: R/W mount failed, possibly R/O media,"
984 		    " trying R/O mount\n", __func__);
985 		fsflags |= MNT_RDONLY;
986 		error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
987 	}
988 bail:
989 	/* copyout the errmsg */
990 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
991 	    && errmsg_len > 0 && errmsg != NULL) {
992 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
993 			bcopy(errmsg,
994 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
995 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
996 		} else {
997 			copyout(errmsg,
998 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
999 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1000 		}
1001 	}
1002 
1003 	if (optlist != NULL)
1004 		vfs_freeopts(optlist);
1005 	return (error);
1006 }
1007 
1008 /*
1009  * Old mount API.
1010  */
1011 #ifndef _SYS_SYSPROTO_H_
1012 struct mount_args {
1013 	char	*type;
1014 	char	*path;
1015 	int	flags;
1016 	caddr_t	data;
1017 };
1018 #endif
1019 /* ARGSUSED */
1020 int
1021 sys_mount(struct thread *td, struct mount_args *uap)
1022 {
1023 	char *fstype;
1024 	struct vfsconf *vfsp = NULL;
1025 	struct mntarg *ma = NULL;
1026 	uint64_t flags;
1027 	int error;
1028 
1029 	/*
1030 	 * Mount flags are now 64-bits. On 32-bit architectures only
1031 	 * 32-bits are passed in, but from here on everything handles
1032 	 * 64-bit flags correctly.
1033 	 */
1034 	flags = uap->flags;
1035 
1036 	AUDIT_ARG_FFLAGS(flags);
1037 
1038 	/*
1039 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1040 	 * userspace to set this flag, but we must filter it out if we want
1041 	 * MNT_UPDATE on the root file system to work.
1042 	 * MNT_ROOTFS should only be set by the kernel when mounting its
1043 	 * root file system.
1044 	 */
1045 	flags &= ~MNT_ROOTFS;
1046 
1047 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1048 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1049 	if (error) {
1050 		free(fstype, M_TEMP);
1051 		return (error);
1052 	}
1053 
1054 	AUDIT_ARG_TEXT(fstype);
1055 	vfsp = vfs_byname_kld(fstype, td, &error);
1056 	free(fstype, M_TEMP);
1057 	if (vfsp == NULL)
1058 		return (ENOENT);
1059 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1060 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1061 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1062 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1063 		return (EOPNOTSUPP);
1064 
1065 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1066 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1067 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1068 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1069 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1070 
1071 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1072 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1073 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1074 }
1075 
1076 /*
1077  * vfs_domount_first(): first file system mount (not update)
1078  */
1079 static int
1080 vfs_domount_first(
1081 	struct thread *td,		/* Calling thread. */
1082 	struct vfsconf *vfsp,		/* File system type. */
1083 	char *fspath,			/* Mount path. */
1084 	struct vnode *vp,		/* Vnode to be covered. */
1085 	uint64_t fsflags,		/* Flags common to all filesystems. */
1086 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1087 	)
1088 {
1089 	struct vattr va;
1090 	struct mount *mp;
1091 	struct vnode *newdp, *rootvp;
1092 	int error, error1;
1093 	bool unmounted;
1094 
1095 	ASSERT_VOP_ELOCKED(vp, __func__);
1096 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1097 
1098 	/*
1099 	 * If the jail of the calling thread lacks permission for this type of
1100 	 * file system, or is trying to cover its own root, deny immediately.
1101 	 */
1102 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1103 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1104 		vput(vp);
1105 		return (EPERM);
1106 	}
1107 
1108 	/*
1109 	 * If the user is not root, ensure that they own the directory
1110 	 * onto which we are attempting to mount.
1111 	 */
1112 	error = VOP_GETATTR(vp, &va, td->td_ucred);
1113 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1114 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1115 	if (error == 0)
1116 		error = vinvalbuf(vp, V_SAVE, 0, 0);
1117 	if (error == 0 && vp->v_type != VDIR)
1118 		error = ENOTDIR;
1119 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1120 		error = vfs_emptydir(vp);
1121 	if (error == 0) {
1122 		VI_LOCK(vp);
1123 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1124 			vp->v_iflag |= VI_MOUNT;
1125 		else
1126 			error = EBUSY;
1127 		VI_UNLOCK(vp);
1128 	}
1129 	if (error != 0) {
1130 		vput(vp);
1131 		return (error);
1132 	}
1133 	vn_seqc_write_begin(vp);
1134 	VOP_UNLOCK(vp);
1135 
1136 	/* Allocate and initialize the filesystem. */
1137 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1138 	/* XXXMAC: pass to vfs_mount_alloc? */
1139 	mp->mnt_optnew = *optlist;
1140 	/* Set the mount level flags. */
1141 	mp->mnt_flag = (fsflags &
1142 	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1143 
1144 	/*
1145 	 * Mount the filesystem.
1146 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1147 	 * get.  No freeing of cn_pnbuf.
1148 	 */
1149 	error1 = 0;
1150 	unmounted = true;
1151 	if ((error = VFS_MOUNT(mp)) != 0 ||
1152 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1153 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1154 		rootvp = NULL;
1155 		if (error1 != 0) {
1156 			MPASS(error == 0);
1157 			rootvp = vfs_cache_root_clear(mp);
1158 			if (rootvp != NULL) {
1159 				vhold(rootvp);
1160 				vrele(rootvp);
1161 			}
1162 			(void)vn_start_write(NULL, &mp, V_WAIT);
1163 			MNT_ILOCK(mp);
1164 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1165 			MNT_IUNLOCK(mp);
1166 			VFS_PURGE(mp);
1167 			error = VFS_UNMOUNT(mp, 0);
1168 			vn_finished_write(mp);
1169 			if (error != 0) {
1170 				printf(
1171 		    "failed post-mount (%d): rollback unmount returned %d\n",
1172 				    error1, error);
1173 				unmounted = false;
1174 			}
1175 			error = error1;
1176 		}
1177 		vfs_unbusy(mp);
1178 		mp->mnt_vnodecovered = NULL;
1179 		if (unmounted) {
1180 			/* XXXKIB wait for mnt_lockref drain? */
1181 			vfs_mount_destroy(mp);
1182 		}
1183 		VI_LOCK(vp);
1184 		vp->v_iflag &= ~VI_MOUNT;
1185 		VI_UNLOCK(vp);
1186 		if (rootvp != NULL) {
1187 			vn_seqc_write_end(rootvp);
1188 			vdrop(rootvp);
1189 		}
1190 		vn_seqc_write_end(vp);
1191 		vrele(vp);
1192 		return (error);
1193 	}
1194 	vn_seqc_write_begin(newdp);
1195 	VOP_UNLOCK(newdp);
1196 
1197 	if (mp->mnt_opt != NULL)
1198 		vfs_freeopts(mp->mnt_opt);
1199 	mp->mnt_opt = mp->mnt_optnew;
1200 	*optlist = NULL;
1201 
1202 	/*
1203 	 * Prevent external consumers of mount options from reading mnt_optnew.
1204 	 */
1205 	mp->mnt_optnew = NULL;
1206 
1207 	MNT_ILOCK(mp);
1208 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1209 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1210 		mp->mnt_kern_flag |= MNTK_ASYNC;
1211 	else
1212 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1213 	MNT_IUNLOCK(mp);
1214 
1215 	VI_LOCK(vp);
1216 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1217 	vp->v_mountedhere = mp;
1218 	VI_UNLOCK(vp);
1219 	cache_purge(vp);
1220 
1221 	/*
1222 	 * We need to lock both vnodes.
1223 	 *
1224 	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1225 	 * from different filesystems.
1226 	 */
1227 	vn_lock_pair(vp, false, newdp, false);
1228 
1229 	VI_LOCK(vp);
1230 	vp->v_iflag &= ~VI_MOUNT;
1231 	VI_UNLOCK(vp);
1232 	/* Place the new filesystem at the end of the mount list. */
1233 	mtx_lock(&mountlist_mtx);
1234 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1235 	mtx_unlock(&mountlist_mtx);
1236 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1237 	VOP_UNLOCK(vp);
1238 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1239 	VOP_UNLOCK(newdp);
1240 	mount_devctl_event("MOUNT", mp, false);
1241 	mountcheckdirs(vp, newdp);
1242 	vn_seqc_write_end(vp);
1243 	vn_seqc_write_end(newdp);
1244 	vrele(newdp);
1245 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1246 		vfs_allocate_syncvnode(mp);
1247 	vfs_op_exit(mp);
1248 	vfs_unbusy(mp);
1249 	return (0);
1250 }
1251 
1252 /*
1253  * vfs_domount_update(): update of mounted file system
1254  */
1255 static int
1256 vfs_domount_update(
1257 	struct thread *td,		/* Calling thread. */
1258 	struct vnode *vp,		/* Mount point vnode. */
1259 	uint64_t fsflags,		/* Flags common to all filesystems. */
1260 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1261 	)
1262 {
1263 	struct export_args export;
1264 	struct o2export_args o2export;
1265 	struct vnode *rootvp;
1266 	void *bufp;
1267 	struct mount *mp;
1268 	int error, export_error, i, len;
1269 	uint64_t flag;
1270 	gid_t *grps;
1271 
1272 	ASSERT_VOP_ELOCKED(vp, __func__);
1273 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1274 	mp = vp->v_mount;
1275 
1276 	if ((vp->v_vflag & VV_ROOT) == 0) {
1277 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1278 		    == 0)
1279 			error = EXDEV;
1280 		else
1281 			error = EINVAL;
1282 		vput(vp);
1283 		return (error);
1284 	}
1285 
1286 	/*
1287 	 * We only allow the filesystem to be reloaded if it
1288 	 * is currently mounted read-only.
1289 	 */
1290 	flag = mp->mnt_flag;
1291 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1292 		vput(vp);
1293 		return (EOPNOTSUPP);	/* Needs translation */
1294 	}
1295 	/*
1296 	 * Only privileged root, or (if MNT_USER is set) the user that
1297 	 * did the original mount is permitted to update it.
1298 	 */
1299 	error = vfs_suser(mp, td);
1300 	if (error != 0) {
1301 		vput(vp);
1302 		return (error);
1303 	}
1304 	if (vfs_busy(mp, MBF_NOWAIT)) {
1305 		vput(vp);
1306 		return (EBUSY);
1307 	}
1308 	VI_LOCK(vp);
1309 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1310 		VI_UNLOCK(vp);
1311 		vfs_unbusy(mp);
1312 		vput(vp);
1313 		return (EBUSY);
1314 	}
1315 	vp->v_iflag |= VI_MOUNT;
1316 	VI_UNLOCK(vp);
1317 	VOP_UNLOCK(vp);
1318 
1319 	vfs_op_enter(mp);
1320 	vn_seqc_write_begin(vp);
1321 
1322 	rootvp = NULL;
1323 	MNT_ILOCK(mp);
1324 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1325 		MNT_IUNLOCK(mp);
1326 		error = EBUSY;
1327 		goto end;
1328 	}
1329 	mp->mnt_flag &= ~MNT_UPDATEMASK;
1330 	mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1331 	    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1332 	if ((mp->mnt_flag & MNT_ASYNC) == 0)
1333 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1334 	rootvp = vfs_cache_root_clear(mp);
1335 	MNT_IUNLOCK(mp);
1336 	mp->mnt_optnew = *optlist;
1337 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1338 
1339 	/*
1340 	 * Mount the filesystem.
1341 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1342 	 * get.  No freeing of cn_pnbuf.
1343 	 */
1344 	error = VFS_MOUNT(mp);
1345 
1346 	export_error = 0;
1347 	/* Process the export option. */
1348 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1349 	    &len) == 0) {
1350 		/* Assume that there is only 1 ABI for each length. */
1351 		switch (len) {
1352 		case (sizeof(struct oexport_args)):
1353 			bzero(&o2export, sizeof(o2export));
1354 			/* FALLTHROUGH */
1355 		case (sizeof(o2export)):
1356 			bcopy(bufp, &o2export, len);
1357 			export.ex_flags = (uint64_t)o2export.ex_flags;
1358 			export.ex_root = o2export.ex_root;
1359 			export.ex_uid = o2export.ex_anon.cr_uid;
1360 			export.ex_groups = NULL;
1361 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1362 			if (export.ex_ngroups > 0) {
1363 				if (export.ex_ngroups <= XU_NGROUPS) {
1364 					export.ex_groups = malloc(
1365 					    export.ex_ngroups * sizeof(gid_t),
1366 					    M_TEMP, M_WAITOK);
1367 					for (i = 0; i < export.ex_ngroups; i++)
1368 						export.ex_groups[i] =
1369 						  o2export.ex_anon.cr_groups[i];
1370 				} else
1371 					export_error = EINVAL;
1372 			} else if (export.ex_ngroups < 0)
1373 				export_error = EINVAL;
1374 			export.ex_addr = o2export.ex_addr;
1375 			export.ex_addrlen = o2export.ex_addrlen;
1376 			export.ex_mask = o2export.ex_mask;
1377 			export.ex_masklen = o2export.ex_masklen;
1378 			export.ex_indexfile = o2export.ex_indexfile;
1379 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1380 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1381 				for (i = 0; i < export.ex_numsecflavors; i++)
1382 					export.ex_secflavors[i] =
1383 					    o2export.ex_secflavors[i];
1384 			} else
1385 				export_error = EINVAL;
1386 			if (export_error == 0)
1387 				export_error = vfs_export(mp, &export);
1388 			free(export.ex_groups, M_TEMP);
1389 			break;
1390 		case (sizeof(export)):
1391 			bcopy(bufp, &export, len);
1392 			grps = NULL;
1393 			if (export.ex_ngroups > 0) {
1394 				if (export.ex_ngroups <= NGROUPS_MAX) {
1395 					grps = malloc(export.ex_ngroups *
1396 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1397 					export_error = copyin(export.ex_groups,
1398 					    grps, export.ex_ngroups *
1399 					    sizeof(gid_t));
1400 					if (export_error == 0)
1401 						export.ex_groups = grps;
1402 				} else
1403 					export_error = EINVAL;
1404 			} else if (export.ex_ngroups == 0)
1405 				export.ex_groups = NULL;
1406 			else
1407 				export_error = EINVAL;
1408 			if (export_error == 0)
1409 				export_error = vfs_export(mp, &export);
1410 			free(grps, M_TEMP);
1411 			break;
1412 		default:
1413 			export_error = EINVAL;
1414 			break;
1415 		}
1416 	}
1417 
1418 	MNT_ILOCK(mp);
1419 	if (error == 0) {
1420 		mp->mnt_flag &=	~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1421 		    MNT_SNAPSHOT);
1422 	} else {
1423 		/*
1424 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1425 		 * because it is not part of MNT_UPDATEMASK, but it could have
1426 		 * changed in the meantime if quotactl(2) was called.
1427 		 * All in all we want current value of MNT_QUOTA, not the old
1428 		 * one.
1429 		 */
1430 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1431 	}
1432 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1433 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1434 		mp->mnt_kern_flag |= MNTK_ASYNC;
1435 	else
1436 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1437 	MNT_IUNLOCK(mp);
1438 
1439 	if (error != 0)
1440 		goto end;
1441 
1442 	mount_devctl_event("REMOUNT", mp, true);
1443 	if (mp->mnt_opt != NULL)
1444 		vfs_freeopts(mp->mnt_opt);
1445 	mp->mnt_opt = mp->mnt_optnew;
1446 	*optlist = NULL;
1447 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1448 	/*
1449 	 * Prevent external consumers of mount options from reading
1450 	 * mnt_optnew.
1451 	 */
1452 	mp->mnt_optnew = NULL;
1453 
1454 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1455 		vfs_allocate_syncvnode(mp);
1456 	else
1457 		vfs_deallocate_syncvnode(mp);
1458 end:
1459 	vfs_op_exit(mp);
1460 	if (rootvp != NULL) {
1461 		vn_seqc_write_end(rootvp);
1462 		vrele(rootvp);
1463 	}
1464 	vn_seqc_write_end(vp);
1465 	vfs_unbusy(mp);
1466 	VI_LOCK(vp);
1467 	vp->v_iflag &= ~VI_MOUNT;
1468 	VI_UNLOCK(vp);
1469 	vrele(vp);
1470 	return (error != 0 ? error : export_error);
1471 }
1472 
1473 /*
1474  * vfs_domount(): actually attempt a filesystem mount.
1475  */
1476 static int
1477 vfs_domount(
1478 	struct thread *td,		/* Calling thread. */
1479 	const char *fstype,		/* Filesystem type. */
1480 	char *fspath,			/* Mount path. */
1481 	uint64_t fsflags,		/* Flags common to all filesystems. */
1482 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1483 	)
1484 {
1485 	struct vfsconf *vfsp;
1486 	struct nameidata nd;
1487 	struct vnode *vp;
1488 	char *pathbuf;
1489 	int error;
1490 
1491 	/*
1492 	 * Be ultra-paranoid about making sure the type and fspath
1493 	 * variables will fit in our mp buffers, including the
1494 	 * terminating NUL.
1495 	 */
1496 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1497 		return (ENAMETOOLONG);
1498 
1499 	if (jailed(td->td_ucred) || usermount == 0) {
1500 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1501 			return (error);
1502 	}
1503 
1504 	/*
1505 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1506 	 */
1507 	if (fsflags & MNT_EXPORTED) {
1508 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1509 		if (error)
1510 			return (error);
1511 	}
1512 	if (fsflags & MNT_SUIDDIR) {
1513 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1514 		if (error)
1515 			return (error);
1516 	}
1517 	/*
1518 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1519 	 */
1520 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1521 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1522 			fsflags |= MNT_NOSUID | MNT_USER;
1523 	}
1524 
1525 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1526 	vfsp = NULL;
1527 	if ((fsflags & MNT_UPDATE) == 0) {
1528 		/* Don't try to load KLDs if we're mounting the root. */
1529 		if (fsflags & MNT_ROOTFS) {
1530 			if ((vfsp = vfs_byname(fstype)) == NULL)
1531 				return (ENODEV);
1532 		} else {
1533 			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1534 				return (error);
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1540 	 */
1541 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE,
1542 	    fspath);
1543 	error = namei(&nd);
1544 	if (error != 0)
1545 		return (error);
1546 	NDFREE(&nd, NDF_ONLY_PNBUF);
1547 	vp = nd.ni_vp;
1548 	if ((fsflags & MNT_UPDATE) == 0) {
1549 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1550 		    (fsflags & MNT_NOCOVER) != 0) {
1551 			vput(vp);
1552 			return (EBUSY);
1553 		}
1554 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1555 		strcpy(pathbuf, fspath);
1556 		error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1557 		if (error == 0) {
1558 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1559 			    fsflags, optlist);
1560 		}
1561 		free(pathbuf, M_TEMP);
1562 	} else
1563 		error = vfs_domount_update(td, vp, fsflags, optlist);
1564 
1565 	return (error);
1566 }
1567 
1568 /*
1569  * Unmount a filesystem.
1570  *
1571  * Note: unmount takes a path to the vnode mounted on as argument, not
1572  * special file (as before).
1573  */
1574 #ifndef _SYS_SYSPROTO_H_
1575 struct unmount_args {
1576 	char	*path;
1577 	int	flags;
1578 };
1579 #endif
1580 /* ARGSUSED */
1581 int
1582 sys_unmount(struct thread *td, struct unmount_args *uap)
1583 {
1584 
1585 	return (kern_unmount(td, uap->path, uap->flags));
1586 }
1587 
1588 int
1589 kern_unmount(struct thread *td, const char *path, int flags)
1590 {
1591 	struct nameidata nd;
1592 	struct mount *mp;
1593 	char *fsidbuf, *pathbuf;
1594 	fsid_t fsid;
1595 	int error;
1596 
1597 	AUDIT_ARG_VALUE(flags);
1598 	if (jailed(td->td_ucred) || usermount == 0) {
1599 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1600 		if (error)
1601 			return (error);
1602 	}
1603 
1604 	if (flags & MNT_BYFSID) {
1605 		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1606 		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1607 		if (error) {
1608 			free(fsidbuf, M_TEMP);
1609 			return (error);
1610 		}
1611 
1612 		AUDIT_ARG_TEXT(fsidbuf);
1613 		/* Decode the filesystem ID. */
1614 		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1615 			free(fsidbuf, M_TEMP);
1616 			return (EINVAL);
1617 		}
1618 
1619 		mp = vfs_getvfs(&fsid);
1620 		free(fsidbuf, M_TEMP);
1621 		if (mp == NULL) {
1622 			return (ENOENT);
1623 		}
1624 	} else {
1625 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1626 		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1627 		if (error) {
1628 			free(pathbuf, M_TEMP);
1629 			return (error);
1630 		}
1631 
1632 		/*
1633 		 * Try to find global path for path argument.
1634 		 */
1635 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1636 		    UIO_SYSSPACE, pathbuf);
1637 		if (namei(&nd) == 0) {
1638 			NDFREE(&nd, NDF_ONLY_PNBUF);
1639 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1640 			    MNAMELEN);
1641 			if (error == 0)
1642 				vput(nd.ni_vp);
1643 		}
1644 		mtx_lock(&mountlist_mtx);
1645 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1646 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1647 				vfs_ref(mp);
1648 				break;
1649 			}
1650 		}
1651 		mtx_unlock(&mountlist_mtx);
1652 		free(pathbuf, M_TEMP);
1653 		if (mp == NULL) {
1654 			/*
1655 			 * Previously we returned ENOENT for a nonexistent path and
1656 			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1657 			 * now, so in the !MNT_BYFSID case return the more likely
1658 			 * EINVAL for compatibility.
1659 			 */
1660 			return (EINVAL);
1661 		}
1662 	}
1663 
1664 	/*
1665 	 * Don't allow unmounting the root filesystem.
1666 	 */
1667 	if (mp->mnt_flag & MNT_ROOTFS) {
1668 		vfs_rel(mp);
1669 		return (EINVAL);
1670 	}
1671 	error = dounmount(mp, flags, td);
1672 	return (error);
1673 }
1674 
1675 /*
1676  * Return error if any of the vnodes, ignoring the root vnode
1677  * and the syncer vnode, have non-zero usecount.
1678  *
1679  * This function is purely advisory - it can return false positives
1680  * and negatives.
1681  */
1682 static int
1683 vfs_check_usecounts(struct mount *mp)
1684 {
1685 	struct vnode *vp, *mvp;
1686 
1687 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1688 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1689 		    vp->v_usecount != 0) {
1690 			VI_UNLOCK(vp);
1691 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1692 			return (EBUSY);
1693 		}
1694 		VI_UNLOCK(vp);
1695 	}
1696 
1697 	return (0);
1698 }
1699 
1700 static void
1701 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1702 {
1703 
1704 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1705 	mp->mnt_kern_flag &= ~mntkflags;
1706 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1707 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1708 		wakeup(mp);
1709 	}
1710 	vfs_op_exit_locked(mp);
1711 	MNT_IUNLOCK(mp);
1712 	if (coveredvp != NULL) {
1713 		VOP_UNLOCK(coveredvp);
1714 		vdrop(coveredvp);
1715 	}
1716 	vn_finished_write(mp);
1717 }
1718 
1719 /*
1720  * There are various reference counters associated with the mount point.
1721  * Normally it is permitted to modify them without taking the mnt ilock,
1722  * but this behavior can be temporarily disabled if stable value is needed
1723  * or callers are expected to block (e.g. to not allow new users during
1724  * forced unmount).
1725  */
1726 void
1727 vfs_op_enter(struct mount *mp)
1728 {
1729 	struct mount_pcpu *mpcpu;
1730 	int cpu;
1731 
1732 	MNT_ILOCK(mp);
1733 	mp->mnt_vfs_ops++;
1734 	if (mp->mnt_vfs_ops > 1) {
1735 		MNT_IUNLOCK(mp);
1736 		return;
1737 	}
1738 	vfs_op_barrier_wait(mp);
1739 	CPU_FOREACH(cpu) {
1740 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1741 
1742 		mp->mnt_ref += mpcpu->mntp_ref;
1743 		mpcpu->mntp_ref = 0;
1744 
1745 		mp->mnt_lockref += mpcpu->mntp_lockref;
1746 		mpcpu->mntp_lockref = 0;
1747 
1748 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1749 		mpcpu->mntp_writeopcount = 0;
1750 	}
1751 	if (mp->mnt_ref <= 0 || mp->mnt_lockref < 0 || mp->mnt_writeopcount < 0)
1752 		panic("%s: invalid count(s) on mp %p: ref %d lockref %d writeopcount %d\n",
1753 		    __func__, mp, mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount);
1754 	MNT_IUNLOCK(mp);
1755 	vfs_assert_mount_counters(mp);
1756 }
1757 
1758 void
1759 vfs_op_exit_locked(struct mount *mp)
1760 {
1761 
1762 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1763 
1764 	if (mp->mnt_vfs_ops <= 0)
1765 		panic("%s: invalid vfs_ops count %d for mp %p\n",
1766 		    __func__, mp->mnt_vfs_ops, mp);
1767 	mp->mnt_vfs_ops--;
1768 }
1769 
1770 void
1771 vfs_op_exit(struct mount *mp)
1772 {
1773 
1774 	MNT_ILOCK(mp);
1775 	vfs_op_exit_locked(mp);
1776 	MNT_IUNLOCK(mp);
1777 }
1778 
1779 struct vfs_op_barrier_ipi {
1780 	struct mount *mp;
1781 	struct smp_rendezvous_cpus_retry_arg srcra;
1782 };
1783 
1784 static void
1785 vfs_op_action_func(void *arg)
1786 {
1787 	struct vfs_op_barrier_ipi *vfsopipi;
1788 	struct mount *mp;
1789 
1790 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1791 	mp = vfsopipi->mp;
1792 
1793 	if (!vfs_op_thread_entered(mp))
1794 		smp_rendezvous_cpus_done(arg);
1795 }
1796 
1797 static void
1798 vfs_op_wait_func(void *arg, int cpu)
1799 {
1800 	struct vfs_op_barrier_ipi *vfsopipi;
1801 	struct mount *mp;
1802 	struct mount_pcpu *mpcpu;
1803 
1804 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1805 	mp = vfsopipi->mp;
1806 
1807 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1808 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1809 		cpu_spinwait();
1810 }
1811 
1812 void
1813 vfs_op_barrier_wait(struct mount *mp)
1814 {
1815 	struct vfs_op_barrier_ipi vfsopipi;
1816 
1817 	vfsopipi.mp = mp;
1818 
1819 	smp_rendezvous_cpus_retry(all_cpus,
1820 	    smp_no_rendezvous_barrier,
1821 	    vfs_op_action_func,
1822 	    smp_no_rendezvous_barrier,
1823 	    vfs_op_wait_func,
1824 	    &vfsopipi.srcra);
1825 }
1826 
1827 #ifdef DIAGNOSTIC
1828 void
1829 vfs_assert_mount_counters(struct mount *mp)
1830 {
1831 	struct mount_pcpu *mpcpu;
1832 	int cpu;
1833 
1834 	if (mp->mnt_vfs_ops == 0)
1835 		return;
1836 
1837 	CPU_FOREACH(cpu) {
1838 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1839 		if (mpcpu->mntp_ref != 0 ||
1840 		    mpcpu->mntp_lockref != 0 ||
1841 		    mpcpu->mntp_writeopcount != 0)
1842 			vfs_dump_mount_counters(mp);
1843 	}
1844 }
1845 
1846 void
1847 vfs_dump_mount_counters(struct mount *mp)
1848 {
1849 	struct mount_pcpu *mpcpu;
1850 	int ref, lockref, writeopcount;
1851 	int cpu;
1852 
1853 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1854 
1855 	printf("        ref : ");
1856 	ref = mp->mnt_ref;
1857 	CPU_FOREACH(cpu) {
1858 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1859 		printf("%d ", mpcpu->mntp_ref);
1860 		ref += mpcpu->mntp_ref;
1861 	}
1862 	printf("\n");
1863 	printf("    lockref : ");
1864 	lockref = mp->mnt_lockref;
1865 	CPU_FOREACH(cpu) {
1866 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1867 		printf("%d ", mpcpu->mntp_lockref);
1868 		lockref += mpcpu->mntp_lockref;
1869 	}
1870 	printf("\n");
1871 	printf("writeopcount: ");
1872 	writeopcount = mp->mnt_writeopcount;
1873 	CPU_FOREACH(cpu) {
1874 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1875 		printf("%d ", mpcpu->mntp_writeopcount);
1876 		writeopcount += mpcpu->mntp_writeopcount;
1877 	}
1878 	printf("\n");
1879 
1880 	printf("counter       struct total\n");
1881 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
1882 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
1883 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
1884 
1885 	panic("invalid counts on struct mount");
1886 }
1887 #endif
1888 
1889 int
1890 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1891 {
1892 	struct mount_pcpu *mpcpu;
1893 	int cpu, sum;
1894 
1895 	switch (which) {
1896 	case MNT_COUNT_REF:
1897 		sum = mp->mnt_ref;
1898 		break;
1899 	case MNT_COUNT_LOCKREF:
1900 		sum = mp->mnt_lockref;
1901 		break;
1902 	case MNT_COUNT_WRITEOPCOUNT:
1903 		sum = mp->mnt_writeopcount;
1904 		break;
1905 	}
1906 
1907 	CPU_FOREACH(cpu) {
1908 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1909 		switch (which) {
1910 		case MNT_COUNT_REF:
1911 			sum += mpcpu->mntp_ref;
1912 			break;
1913 		case MNT_COUNT_LOCKREF:
1914 			sum += mpcpu->mntp_lockref;
1915 			break;
1916 		case MNT_COUNT_WRITEOPCOUNT:
1917 			sum += mpcpu->mntp_writeopcount;
1918 			break;
1919 		}
1920 	}
1921 	return (sum);
1922 }
1923 
1924 static bool
1925 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
1926     int timeout_ticks)
1927 {
1928 	bool enqueued;
1929 
1930 	enqueued = false;
1931 	mtx_lock(&deferred_unmount_lock);
1932 	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
1933 		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
1934 		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
1935 		    mnt_taskqueue_link);
1936 		enqueued = true;
1937 	}
1938 	mtx_unlock(&deferred_unmount_lock);
1939 
1940 	if (enqueued) {
1941 		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
1942 		    &deferred_unmount_task, timeout_ticks);
1943 	}
1944 
1945 	return (enqueued);
1946 }
1947 
1948 /*
1949  * Taskqueue handler for processing async/recursive unmounts
1950  */
1951 static void
1952 vfs_deferred_unmount(void *argi __unused, int pending __unused)
1953 {
1954 	STAILQ_HEAD(, mount) local_unmounts;
1955 	uint64_t flags;
1956 	struct mount *mp, *tmp;
1957 	int error;
1958 	unsigned int retries;
1959 	bool unmounted;
1960 
1961 	STAILQ_INIT(&local_unmounts);
1962 	mtx_lock(&deferred_unmount_lock);
1963 	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
1964 	mtx_unlock(&deferred_unmount_lock);
1965 
1966 	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
1967 		flags = mp->mnt_taskqueue_flags;
1968 		KASSERT((flags & MNT_DEFERRED) != 0,
1969 		    ("taskqueue unmount without MNT_DEFERRED"));
1970 		error = dounmount(mp, flags, curthread);
1971 		if (error != 0) {
1972 			MNT_ILOCK(mp);
1973 			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
1974 			MNT_IUNLOCK(mp);
1975 
1976 			/*
1977 			 * The deferred unmount thread is the only thread that
1978 			 * modifies the retry counts, so locking/atomics aren't
1979 			 * needed here.
1980 			 */
1981 			retries = (mp->mnt_unmount_retries)++;
1982 			deferred_unmount_total_retries++;
1983 			if (!unmounted && retries < deferred_unmount_retry_limit) {
1984 				deferred_unmount_enqueue(mp, flags, true,
1985 				    -deferred_unmount_retry_delay_hz);
1986 			} else {
1987 				if (retries >= deferred_unmount_retry_limit) {
1988 					printf("giving up on deferred unmount "
1989 					    "of %s after %d retries, error %d\n",
1990 					    mp->mnt_stat.f_mntonname, retries, error);
1991 				}
1992 				vfs_rel(mp);
1993 			}
1994 		}
1995 	}
1996 }
1997 
1998 /*
1999  * Do the actual filesystem unmount.
2000  */
2001 int
2002 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2003 {
2004 	struct mount_upper_node *upper;
2005 	struct vnode *coveredvp, *rootvp;
2006 	int error;
2007 	uint64_t async_flag;
2008 	int mnt_gen_r;
2009 	unsigned int retries;
2010 
2011 	KASSERT((flags & MNT_DEFERRED) == 0 ||
2012 	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2013 	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2014 
2015 	/*
2016 	 * If the caller has explicitly requested the unmount to be handled by
2017 	 * the taskqueue and we're not already in taskqueue context, queue
2018 	 * up the unmount request and exit.  This is done prior to any
2019 	 * credential checks; MNT_DEFERRED should be used only for kernel-
2020 	 * initiated unmounts and will therefore be processed with the
2021 	 * (kernel) credentials of the taskqueue thread.  Still, callers
2022 	 * should be sure this is the behavior they want.
2023 	 */
2024 	if ((flags & MNT_DEFERRED) != 0 &&
2025 	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2026 		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2027 			vfs_rel(mp);
2028 		return (EINPROGRESS);
2029 	}
2030 
2031 	/*
2032 	 * Only privileged root, or (if MNT_USER is set) the user that did the
2033 	 * original mount is permitted to unmount this filesystem.
2034 	 * This check should be made prior to queueing up any recursive
2035 	 * unmounts of upper filesystems.  Those unmounts will be executed
2036 	 * with kernel thread credentials and are expected to succeed, so
2037 	 * we must at least ensure the originating context has sufficient
2038 	 * privilege to unmount the base filesystem before proceeding with
2039 	 * the uppers.
2040 	 */
2041 	error = vfs_suser(mp, td);
2042 	if (error != 0) {
2043 		KASSERT((flags & MNT_DEFERRED) == 0,
2044 		    ("taskqueue unmount with insufficient privilege"));
2045 		vfs_rel(mp);
2046 		return (error);
2047 	}
2048 
2049 	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2050 		flags |= MNT_RECURSE;
2051 
2052 	if ((flags & MNT_RECURSE) != 0) {
2053 		KASSERT((flags & MNT_FORCE) != 0,
2054 		    ("MNT_RECURSE requires MNT_FORCE"));
2055 
2056 		MNT_ILOCK(mp);
2057 		/*
2058 		 * Set MNTK_RECURSE to prevent new upper mounts from being
2059 		 * added, and note that an operation on the uppers list is in
2060 		 * progress.  This will ensure that unregistration from the
2061 		 * uppers list, and therefore any pending unmount of the upper
2062 		 * FS, can't complete until after we finish walking the list.
2063 		 */
2064 		mp->mnt_kern_flag |= MNTK_RECURSE;
2065 		mp->mnt_upper_pending++;
2066 		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2067 			retries = upper->mp->mnt_unmount_retries;
2068 			if (retries > deferred_unmount_retry_limit) {
2069 				error = EBUSY;
2070 				continue;
2071 			}
2072 			MNT_IUNLOCK(mp);
2073 
2074 			vfs_ref(upper->mp);
2075 			if (!deferred_unmount_enqueue(upper->mp, flags,
2076 			    false, 0))
2077 				vfs_rel(upper->mp);
2078 			MNT_ILOCK(mp);
2079 		}
2080 		mp->mnt_upper_pending--;
2081 		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2082 		    mp->mnt_upper_pending == 0) {
2083 			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2084 			wakeup(&mp->mnt_uppers);
2085 		}
2086 
2087 		/*
2088 		 * If we're not on the taskqueue, wait until the uppers list
2089 		 * is drained before proceeding with unmount.  Otherwise, if
2090 		 * we are on the taskqueue and there are still pending uppers,
2091 		 * just re-enqueue on the end of the taskqueue.
2092 		 */
2093 		if ((flags & MNT_DEFERRED) == 0) {
2094 			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2095 				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2096 				error = msleep(&mp->mnt_taskqueue_link,
2097 				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2098 			}
2099 			if (error != 0) {
2100 				MNT_REL(mp);
2101 				MNT_IUNLOCK(mp);
2102 				return (error);
2103 			}
2104 		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2105 			MNT_IUNLOCK(mp);
2106 			if (error == 0)
2107 				deferred_unmount_enqueue(mp, flags, true, 0);
2108 			return (error);
2109 		}
2110 		MNT_IUNLOCK(mp);
2111 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2112 	}
2113 
2114 	/* Allow the taskqueue to safely re-enqueue on failure */
2115 	if ((flags & MNT_DEFERRED) != 0)
2116 		vfs_ref(mp);
2117 
2118 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2119 		mnt_gen_r = mp->mnt_gen;
2120 		VI_LOCK(coveredvp);
2121 		vholdl(coveredvp);
2122 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2123 		/*
2124 		 * Check for mp being unmounted while waiting for the
2125 		 * covered vnode lock.
2126 		 */
2127 		if (coveredvp->v_mountedhere != mp ||
2128 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2129 			VOP_UNLOCK(coveredvp);
2130 			vdrop(coveredvp);
2131 			vfs_rel(mp);
2132 			return (EBUSY);
2133 		}
2134 	}
2135 
2136 	vfs_op_enter(mp);
2137 
2138 	vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
2139 	MNT_ILOCK(mp);
2140 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2141 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2142 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2143 		dounmount_cleanup(mp, coveredvp, 0);
2144 		return (EBUSY);
2145 	}
2146 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2147 	rootvp = vfs_cache_root_clear(mp);
2148 	if (coveredvp != NULL)
2149 		vn_seqc_write_begin(coveredvp);
2150 	if (flags & MNT_NONBUSY) {
2151 		MNT_IUNLOCK(mp);
2152 		error = vfs_check_usecounts(mp);
2153 		MNT_ILOCK(mp);
2154 		if (error != 0) {
2155 			vn_seqc_write_end(coveredvp);
2156 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2157 			if (rootvp != NULL) {
2158 				vn_seqc_write_end(rootvp);
2159 				vrele(rootvp);
2160 			}
2161 			return (error);
2162 		}
2163 	}
2164 	/* Allow filesystems to detect that a forced unmount is in progress. */
2165 	if (flags & MNT_FORCE) {
2166 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2167 		MNT_IUNLOCK(mp);
2168 		/*
2169 		 * Must be done after setting MNTK_UNMOUNTF and before
2170 		 * waiting for mnt_lockref to become 0.
2171 		 */
2172 		VFS_PURGE(mp);
2173 		MNT_ILOCK(mp);
2174 	}
2175 	error = 0;
2176 	if (mp->mnt_lockref) {
2177 		mp->mnt_kern_flag |= MNTK_DRAINING;
2178 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2179 		    "mount drain", 0);
2180 	}
2181 	MNT_IUNLOCK(mp);
2182 	KASSERT(mp->mnt_lockref == 0,
2183 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2184 	    __func__, __FILE__, __LINE__));
2185 	KASSERT(error == 0,
2186 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2187 	    __func__, __FILE__, __LINE__));
2188 
2189 	/*
2190 	 * We want to keep the vnode around so that we can vn_seqc_write_end
2191 	 * after we are done with unmount. Downgrade our reference to a mere
2192 	 * hold count so that we don't interefere with anything.
2193 	 */
2194 	if (rootvp != NULL) {
2195 		vhold(rootvp);
2196 		vrele(rootvp);
2197 	}
2198 
2199 	if (mp->mnt_flag & MNT_EXPUBLIC)
2200 		vfs_setpublicfs(NULL, NULL, NULL);
2201 
2202 	vfs_periodic(mp, MNT_WAIT);
2203 	MNT_ILOCK(mp);
2204 	async_flag = mp->mnt_flag & MNT_ASYNC;
2205 	mp->mnt_flag &= ~MNT_ASYNC;
2206 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2207 	MNT_IUNLOCK(mp);
2208 	vfs_deallocate_syncvnode(mp);
2209 	error = VFS_UNMOUNT(mp, flags);
2210 	vn_finished_write(mp);
2211 	/*
2212 	 * If we failed to flush the dirty blocks for this mount point,
2213 	 * undo all the cdir/rdir and rootvnode changes we made above.
2214 	 * Unless we failed to do so because the device is reporting that
2215 	 * it doesn't exist anymore.
2216 	 */
2217 	if (error && error != ENXIO) {
2218 		MNT_ILOCK(mp);
2219 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2220 			MNT_IUNLOCK(mp);
2221 			vfs_allocate_syncvnode(mp);
2222 			MNT_ILOCK(mp);
2223 		}
2224 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2225 		mp->mnt_flag |= async_flag;
2226 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2227 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2228 			mp->mnt_kern_flag |= MNTK_ASYNC;
2229 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2230 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2231 			wakeup(mp);
2232 		}
2233 		vfs_op_exit_locked(mp);
2234 		MNT_IUNLOCK(mp);
2235 		if (coveredvp) {
2236 			vn_seqc_write_end(coveredvp);
2237 			VOP_UNLOCK(coveredvp);
2238 			vdrop(coveredvp);
2239 		}
2240 		if (rootvp != NULL) {
2241 			vn_seqc_write_end(rootvp);
2242 			vdrop(rootvp);
2243 		}
2244 		return (error);
2245 	}
2246 
2247 	mtx_lock(&mountlist_mtx);
2248 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2249 	mtx_unlock(&mountlist_mtx);
2250 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2251 	if (coveredvp != NULL) {
2252 		VI_LOCK(coveredvp);
2253 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2254 		coveredvp->v_mountedhere = NULL;
2255 		vn_seqc_write_end_locked(coveredvp);
2256 		VI_UNLOCK(coveredvp);
2257 		VOP_UNLOCK(coveredvp);
2258 		vdrop(coveredvp);
2259 	}
2260 	mount_devctl_event("UNMOUNT", mp, false);
2261 	if (rootvp != NULL) {
2262 		vn_seqc_write_end(rootvp);
2263 		vdrop(rootvp);
2264 	}
2265 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2266 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2267 		vrele(rootvnode);
2268 		rootvnode = NULL;
2269 	}
2270 	if (mp == rootdevmp)
2271 		rootdevmp = NULL;
2272 	if ((flags & MNT_DEFERRED) != 0)
2273 		vfs_rel(mp);
2274 	vfs_mount_destroy(mp);
2275 	return (0);
2276 }
2277 
2278 /*
2279  * Report errors during filesystem mounting.
2280  */
2281 void
2282 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2283 {
2284 	struct vfsoptlist *moptlist = mp->mnt_optnew;
2285 	va_list ap;
2286 	int error, len;
2287 	char *errmsg;
2288 
2289 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2290 	if (error || errmsg == NULL || len <= 0)
2291 		return;
2292 
2293 	va_start(ap, fmt);
2294 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2295 	va_end(ap);
2296 }
2297 
2298 void
2299 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2300 {
2301 	va_list ap;
2302 	int error, len;
2303 	char *errmsg;
2304 
2305 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2306 	if (error || errmsg == NULL || len <= 0)
2307 		return;
2308 
2309 	va_start(ap, fmt);
2310 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2311 	va_end(ap);
2312 }
2313 
2314 /*
2315  * ---------------------------------------------------------------------
2316  * Functions for querying mount options/arguments from filesystems.
2317  */
2318 
2319 /*
2320  * Check that no unknown options are given
2321  */
2322 int
2323 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2324 {
2325 	struct vfsopt *opt;
2326 	char errmsg[255];
2327 	const char **t, *p, *q;
2328 	int ret = 0;
2329 
2330 	TAILQ_FOREACH(opt, opts, link) {
2331 		p = opt->name;
2332 		q = NULL;
2333 		if (p[0] == 'n' && p[1] == 'o')
2334 			q = p + 2;
2335 		for(t = global_opts; *t != NULL; t++) {
2336 			if (strcmp(*t, p) == 0)
2337 				break;
2338 			if (q != NULL) {
2339 				if (strcmp(*t, q) == 0)
2340 					break;
2341 			}
2342 		}
2343 		if (*t != NULL)
2344 			continue;
2345 		for(t = legal; *t != NULL; t++) {
2346 			if (strcmp(*t, p) == 0)
2347 				break;
2348 			if (q != NULL) {
2349 				if (strcmp(*t, q) == 0)
2350 					break;
2351 			}
2352 		}
2353 		if (*t != NULL)
2354 			continue;
2355 		snprintf(errmsg, sizeof(errmsg),
2356 		    "mount option <%s> is unknown", p);
2357 		ret = EINVAL;
2358 	}
2359 	if (ret != 0) {
2360 		TAILQ_FOREACH(opt, opts, link) {
2361 			if (strcmp(opt->name, "errmsg") == 0) {
2362 				strncpy((char *)opt->value, errmsg, opt->len);
2363 				break;
2364 			}
2365 		}
2366 		if (opt == NULL)
2367 			printf("%s\n", errmsg);
2368 	}
2369 	return (ret);
2370 }
2371 
2372 /*
2373  * Get a mount option by its name.
2374  *
2375  * Return 0 if the option was found, ENOENT otherwise.
2376  * If len is non-NULL it will be filled with the length
2377  * of the option. If buf is non-NULL, it will be filled
2378  * with the address of the option.
2379  */
2380 int
2381 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2382 {
2383 	struct vfsopt *opt;
2384 
2385 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2386 
2387 	TAILQ_FOREACH(opt, opts, link) {
2388 		if (strcmp(name, opt->name) == 0) {
2389 			opt->seen = 1;
2390 			if (len != NULL)
2391 				*len = opt->len;
2392 			if (buf != NULL)
2393 				*buf = opt->value;
2394 			return (0);
2395 		}
2396 	}
2397 	return (ENOENT);
2398 }
2399 
2400 int
2401 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2402 {
2403 	struct vfsopt *opt;
2404 
2405 	if (opts == NULL)
2406 		return (-1);
2407 
2408 	TAILQ_FOREACH(opt, opts, link) {
2409 		if (strcmp(name, opt->name) == 0) {
2410 			opt->seen = 1;
2411 			return (opt->pos);
2412 		}
2413 	}
2414 	return (-1);
2415 }
2416 
2417 int
2418 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2419 {
2420 	char *opt_value, *vtp;
2421 	quad_t iv;
2422 	int error, opt_len;
2423 
2424 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2425 	if (error != 0)
2426 		return (error);
2427 	if (opt_len == 0 || opt_value == NULL)
2428 		return (EINVAL);
2429 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2430 		return (EINVAL);
2431 	iv = strtoq(opt_value, &vtp, 0);
2432 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2433 		return (EINVAL);
2434 	if (iv < 0)
2435 		return (EINVAL);
2436 	switch (vtp[0]) {
2437 	case 't': case 'T':
2438 		iv *= 1024;
2439 		/* FALLTHROUGH */
2440 	case 'g': case 'G':
2441 		iv *= 1024;
2442 		/* FALLTHROUGH */
2443 	case 'm': case 'M':
2444 		iv *= 1024;
2445 		/* FALLTHROUGH */
2446 	case 'k': case 'K':
2447 		iv *= 1024;
2448 	case '\0':
2449 		break;
2450 	default:
2451 		return (EINVAL);
2452 	}
2453 	*value = iv;
2454 
2455 	return (0);
2456 }
2457 
2458 char *
2459 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2460 {
2461 	struct vfsopt *opt;
2462 
2463 	*error = 0;
2464 	TAILQ_FOREACH(opt, opts, link) {
2465 		if (strcmp(name, opt->name) != 0)
2466 			continue;
2467 		opt->seen = 1;
2468 		if (opt->len == 0 ||
2469 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2470 			*error = EINVAL;
2471 			return (NULL);
2472 		}
2473 		return (opt->value);
2474 	}
2475 	*error = ENOENT;
2476 	return (NULL);
2477 }
2478 
2479 int
2480 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2481 	uint64_t val)
2482 {
2483 	struct vfsopt *opt;
2484 
2485 	TAILQ_FOREACH(opt, opts, link) {
2486 		if (strcmp(name, opt->name) == 0) {
2487 			opt->seen = 1;
2488 			if (w != NULL)
2489 				*w |= val;
2490 			return (1);
2491 		}
2492 	}
2493 	if (w != NULL)
2494 		*w &= ~val;
2495 	return (0);
2496 }
2497 
2498 int
2499 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2500 {
2501 	va_list ap;
2502 	struct vfsopt *opt;
2503 	int ret;
2504 
2505 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2506 
2507 	TAILQ_FOREACH(opt, opts, link) {
2508 		if (strcmp(name, opt->name) != 0)
2509 			continue;
2510 		opt->seen = 1;
2511 		if (opt->len == 0 || opt->value == NULL)
2512 			return (0);
2513 		if (((char *)opt->value)[opt->len - 1] != '\0')
2514 			return (0);
2515 		va_start(ap, fmt);
2516 		ret = vsscanf(opt->value, fmt, ap);
2517 		va_end(ap);
2518 		return (ret);
2519 	}
2520 	return (0);
2521 }
2522 
2523 int
2524 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2525 {
2526 	struct vfsopt *opt;
2527 
2528 	TAILQ_FOREACH(opt, opts, link) {
2529 		if (strcmp(name, opt->name) != 0)
2530 			continue;
2531 		opt->seen = 1;
2532 		if (opt->value == NULL)
2533 			opt->len = len;
2534 		else {
2535 			if (opt->len != len)
2536 				return (EINVAL);
2537 			bcopy(value, opt->value, len);
2538 		}
2539 		return (0);
2540 	}
2541 	return (ENOENT);
2542 }
2543 
2544 int
2545 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2546 {
2547 	struct vfsopt *opt;
2548 
2549 	TAILQ_FOREACH(opt, opts, link) {
2550 		if (strcmp(name, opt->name) != 0)
2551 			continue;
2552 		opt->seen = 1;
2553 		if (opt->value == NULL)
2554 			opt->len = len;
2555 		else {
2556 			if (opt->len < len)
2557 				return (EINVAL);
2558 			opt->len = len;
2559 			bcopy(value, opt->value, len);
2560 		}
2561 		return (0);
2562 	}
2563 	return (ENOENT);
2564 }
2565 
2566 int
2567 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2568 {
2569 	struct vfsopt *opt;
2570 
2571 	TAILQ_FOREACH(opt, opts, link) {
2572 		if (strcmp(name, opt->name) != 0)
2573 			continue;
2574 		opt->seen = 1;
2575 		if (opt->value == NULL)
2576 			opt->len = strlen(value) + 1;
2577 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2578 			return (EINVAL);
2579 		return (0);
2580 	}
2581 	return (ENOENT);
2582 }
2583 
2584 /*
2585  * Find and copy a mount option.
2586  *
2587  * The size of the buffer has to be specified
2588  * in len, if it is not the same length as the
2589  * mount option, EINVAL is returned.
2590  * Returns ENOENT if the option is not found.
2591  */
2592 int
2593 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2594 {
2595 	struct vfsopt *opt;
2596 
2597 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2598 
2599 	TAILQ_FOREACH(opt, opts, link) {
2600 		if (strcmp(name, opt->name) == 0) {
2601 			opt->seen = 1;
2602 			if (len != opt->len)
2603 				return (EINVAL);
2604 			bcopy(opt->value, dest, opt->len);
2605 			return (0);
2606 		}
2607 	}
2608 	return (ENOENT);
2609 }
2610 
2611 int
2612 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2613 {
2614 
2615 	/*
2616 	 * Filesystems only fill in part of the structure for updates, we
2617 	 * have to read the entirety first to get all content.
2618 	 */
2619 	if (sbp != &mp->mnt_stat)
2620 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2621 
2622 	/*
2623 	 * Set these in case the underlying filesystem fails to do so.
2624 	 */
2625 	sbp->f_version = STATFS_VERSION;
2626 	sbp->f_namemax = NAME_MAX;
2627 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2628 
2629 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2630 }
2631 
2632 void
2633 vfs_mountedfrom(struct mount *mp, const char *from)
2634 {
2635 
2636 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2637 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2638 	    sizeof mp->mnt_stat.f_mntfromname);
2639 }
2640 
2641 /*
2642  * ---------------------------------------------------------------------
2643  * This is the api for building mount args and mounting filesystems from
2644  * inside the kernel.
2645  *
2646  * The API works by accumulation of individual args.  First error is
2647  * latched.
2648  *
2649  * XXX: should be documented in new manpage kernel_mount(9)
2650  */
2651 
2652 /* A memory allocation which must be freed when we are done */
2653 struct mntaarg {
2654 	SLIST_ENTRY(mntaarg)	next;
2655 };
2656 
2657 /* The header for the mount arguments */
2658 struct mntarg {
2659 	struct iovec *v;
2660 	int len;
2661 	int error;
2662 	SLIST_HEAD(, mntaarg)	list;
2663 };
2664 
2665 /*
2666  * Add a boolean argument.
2667  *
2668  * flag is the boolean value.
2669  * name must start with "no".
2670  */
2671 struct mntarg *
2672 mount_argb(struct mntarg *ma, int flag, const char *name)
2673 {
2674 
2675 	KASSERT(name[0] == 'n' && name[1] == 'o',
2676 	    ("mount_argb(...,%s): name must start with 'no'", name));
2677 
2678 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2679 }
2680 
2681 /*
2682  * Add an argument printf style
2683  */
2684 struct mntarg *
2685 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2686 {
2687 	va_list ap;
2688 	struct mntaarg *maa;
2689 	struct sbuf *sb;
2690 	int len;
2691 
2692 	if (ma == NULL) {
2693 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2694 		SLIST_INIT(&ma->list);
2695 	}
2696 	if (ma->error)
2697 		return (ma);
2698 
2699 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2700 	    M_MOUNT, M_WAITOK);
2701 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2702 	ma->v[ma->len].iov_len = strlen(name) + 1;
2703 	ma->len++;
2704 
2705 	sb = sbuf_new_auto();
2706 	va_start(ap, fmt);
2707 	sbuf_vprintf(sb, fmt, ap);
2708 	va_end(ap);
2709 	sbuf_finish(sb);
2710 	len = sbuf_len(sb) + 1;
2711 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2712 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2713 	bcopy(sbuf_data(sb), maa + 1, len);
2714 	sbuf_delete(sb);
2715 
2716 	ma->v[ma->len].iov_base = maa + 1;
2717 	ma->v[ma->len].iov_len = len;
2718 	ma->len++;
2719 
2720 	return (ma);
2721 }
2722 
2723 /*
2724  * Add an argument which is a userland string.
2725  */
2726 struct mntarg *
2727 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2728 {
2729 	struct mntaarg *maa;
2730 	char *tbuf;
2731 
2732 	if (val == NULL)
2733 		return (ma);
2734 	if (ma == NULL) {
2735 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2736 		SLIST_INIT(&ma->list);
2737 	}
2738 	if (ma->error)
2739 		return (ma);
2740 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2741 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2742 	tbuf = (void *)(maa + 1);
2743 	ma->error = copyinstr(val, tbuf, len, NULL);
2744 	return (mount_arg(ma, name, tbuf, -1));
2745 }
2746 
2747 /*
2748  * Plain argument.
2749  *
2750  * If length is -1, treat value as a C string.
2751  */
2752 struct mntarg *
2753 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2754 {
2755 
2756 	if (ma == NULL) {
2757 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2758 		SLIST_INIT(&ma->list);
2759 	}
2760 	if (ma->error)
2761 		return (ma);
2762 
2763 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2764 	    M_MOUNT, M_WAITOK);
2765 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2766 	ma->v[ma->len].iov_len = strlen(name) + 1;
2767 	ma->len++;
2768 
2769 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2770 	if (len < 0)
2771 		ma->v[ma->len].iov_len = strlen(val) + 1;
2772 	else
2773 		ma->v[ma->len].iov_len = len;
2774 	ma->len++;
2775 	return (ma);
2776 }
2777 
2778 /*
2779  * Free a mntarg structure
2780  */
2781 static void
2782 free_mntarg(struct mntarg *ma)
2783 {
2784 	struct mntaarg *maa;
2785 
2786 	while (!SLIST_EMPTY(&ma->list)) {
2787 		maa = SLIST_FIRST(&ma->list);
2788 		SLIST_REMOVE_HEAD(&ma->list, next);
2789 		free(maa, M_MOUNT);
2790 	}
2791 	free(ma->v, M_MOUNT);
2792 	free(ma, M_MOUNT);
2793 }
2794 
2795 /*
2796  * Mount a filesystem
2797  */
2798 int
2799 kernel_mount(struct mntarg *ma, uint64_t flags)
2800 {
2801 	struct uio auio;
2802 	int error;
2803 
2804 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2805 	KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v"));
2806 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2807 
2808 	auio.uio_iov = ma->v;
2809 	auio.uio_iovcnt = ma->len;
2810 	auio.uio_segflg = UIO_SYSSPACE;
2811 
2812 	error = ma->error;
2813 	if (!error)
2814 		error = vfs_donmount(curthread, flags, &auio);
2815 	free_mntarg(ma);
2816 	return (error);
2817 }
2818 
2819 /* Map from mount options to printable formats. */
2820 static struct mntoptnames optnames[] = {
2821 	MNTOPT_NAMES
2822 };
2823 
2824 #define DEVCTL_LEN 1024
2825 static void
2826 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2827 {
2828 	const uint8_t *cp;
2829 	struct mntoptnames *fp;
2830 	struct sbuf sb;
2831 	struct statfs *sfp = &mp->mnt_stat;
2832 	char *buf;
2833 
2834 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2835 	if (buf == NULL)
2836 		return;
2837 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2838 	sbuf_cpy(&sb, "mount-point=\"");
2839 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2840 	sbuf_cat(&sb, "\" mount-dev=\"");
2841 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2842 	sbuf_cat(&sb, "\" mount-type=\"");
2843 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2844 	sbuf_cat(&sb, "\" fsid=0x");
2845 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2846 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2847 		sbuf_printf(&sb, "%02x", cp[i]);
2848 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2849 	for (fp = optnames; fp->o_opt != 0; fp++) {
2850 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2851 			sbuf_cat(&sb, fp->o_name);
2852 			sbuf_putc(&sb, ';');
2853 		}
2854 	}
2855 	sbuf_putc(&sb, '"');
2856 	sbuf_finish(&sb);
2857 
2858 	/*
2859 	 * Options are not published because the form of the options depends on
2860 	 * the file system and may include binary data. In addition, they don't
2861 	 * necessarily provide enough useful information to be actionable when
2862 	 * devd processes them.
2863 	 */
2864 
2865 	if (sbuf_error(&sb) == 0)
2866 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2867 	sbuf_delete(&sb);
2868 	free(buf, M_MOUNT);
2869 }
2870 
2871 /*
2872  * Force remount specified mount point to read-only.  The argument
2873  * must be busied to avoid parallel unmount attempts.
2874  *
2875  * Intended use is to prevent further writes if some metadata
2876  * inconsistency is detected.  Note that the function still flushes
2877  * all cached metadata and data for the mount point, which might be
2878  * not always suitable.
2879  */
2880 int
2881 vfs_remount_ro(struct mount *mp)
2882 {
2883 	struct vfsoptlist *opts;
2884 	struct vfsopt *opt;
2885 	struct vnode *vp_covered, *rootvp;
2886 	int error;
2887 
2888 	KASSERT(mp->mnt_lockref > 0,
2889 	    ("vfs_remount_ro: mp %p is not busied", mp));
2890 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
2891 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
2892 
2893 	rootvp = NULL;
2894 	vp_covered = mp->mnt_vnodecovered;
2895 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
2896 	if (error != 0)
2897 		return (error);
2898 	VI_LOCK(vp_covered);
2899 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
2900 		VI_UNLOCK(vp_covered);
2901 		vput(vp_covered);
2902 		return (EBUSY);
2903 	}
2904 	vp_covered->v_iflag |= VI_MOUNT;
2905 	VI_UNLOCK(vp_covered);
2906 	vfs_op_enter(mp);
2907 	vn_seqc_write_begin(vp_covered);
2908 
2909 	MNT_ILOCK(mp);
2910 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
2911 		MNT_IUNLOCK(mp);
2912 		error = EBUSY;
2913 		goto out;
2914 	}
2915 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
2916 	rootvp = vfs_cache_root_clear(mp);
2917 	MNT_IUNLOCK(mp);
2918 
2919 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
2920 	TAILQ_INIT(opts);
2921 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
2922 	opt->name = strdup("ro", M_MOUNT);
2923 	opt->value = NULL;
2924 	TAILQ_INSERT_TAIL(opts, opt, link);
2925 	vfs_mergeopts(opts, mp->mnt_opt);
2926 	mp->mnt_optnew = opts;
2927 
2928 	error = VFS_MOUNT(mp);
2929 
2930 	if (error == 0) {
2931 		MNT_ILOCK(mp);
2932 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
2933 		MNT_IUNLOCK(mp);
2934 		vfs_deallocate_syncvnode(mp);
2935 		if (mp->mnt_opt != NULL)
2936 			vfs_freeopts(mp->mnt_opt);
2937 		mp->mnt_opt = mp->mnt_optnew;
2938 	} else {
2939 		MNT_ILOCK(mp);
2940 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
2941 		MNT_IUNLOCK(mp);
2942 		vfs_freeopts(mp->mnt_optnew);
2943 	}
2944 	mp->mnt_optnew = NULL;
2945 
2946 out:
2947 	vfs_op_exit(mp);
2948 	VI_LOCK(vp_covered);
2949 	vp_covered->v_iflag &= ~VI_MOUNT;
2950 	VI_UNLOCK(vp_covered);
2951 	vput(vp_covered);
2952 	vn_seqc_write_end(vp_covered);
2953 	if (rootvp != NULL) {
2954 		vn_seqc_write_end(rootvp);
2955 		vrele(rootvp);
2956 	}
2957 	return (error);
2958 }
2959 
2960 /*
2961  * Suspend write operations on all local writeable filesystems.  Does
2962  * full sync of them in the process.
2963  *
2964  * Iterate over the mount points in reverse order, suspending most
2965  * recently mounted filesystems first.  It handles a case where a
2966  * filesystem mounted from a md(4) vnode-backed device should be
2967  * suspended before the filesystem that owns the vnode.
2968  */
2969 void
2970 suspend_all_fs(void)
2971 {
2972 	struct mount *mp;
2973 	int error;
2974 
2975 	mtx_lock(&mountlist_mtx);
2976 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2977 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2978 		if (error != 0)
2979 			continue;
2980 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2981 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2982 			mtx_lock(&mountlist_mtx);
2983 			vfs_unbusy(mp);
2984 			continue;
2985 		}
2986 		error = vfs_write_suspend(mp, 0);
2987 		if (error == 0) {
2988 			MNT_ILOCK(mp);
2989 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2990 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2991 			MNT_IUNLOCK(mp);
2992 			mtx_lock(&mountlist_mtx);
2993 		} else {
2994 			printf("suspend of %s failed, error %d\n",
2995 			    mp->mnt_stat.f_mntonname, error);
2996 			mtx_lock(&mountlist_mtx);
2997 			vfs_unbusy(mp);
2998 		}
2999 	}
3000 	mtx_unlock(&mountlist_mtx);
3001 }
3002 
3003 void
3004 resume_all_fs(void)
3005 {
3006 	struct mount *mp;
3007 
3008 	mtx_lock(&mountlist_mtx);
3009 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3010 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3011 			continue;
3012 		mtx_unlock(&mountlist_mtx);
3013 		MNT_ILOCK(mp);
3014 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3015 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3016 		MNT_IUNLOCK(mp);
3017 		vfs_write_resume(mp, 0);
3018 		mtx_lock(&mountlist_mtx);
3019 		vfs_unbusy(mp);
3020 	}
3021 	mtx_unlock(&mountlist_mtx);
3022 }
3023