xref: /freebsd/sys/kern/vfs_subr.c (revision 15f0b8c3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/limits.h>
70 #include <sys/lockf.h>
71 #include <sys/malloc.h>
72 #include <sys/mount.h>
73 #include <sys/namei.h>
74 #include <sys/pctrie.h>
75 #include <sys/priv.h>
76 #include <sys/reboot.h>
77 #include <sys/refcount.h>
78 #include <sys/rwlock.h>
79 #include <sys/sched.h>
80 #include <sys/sleepqueue.h>
81 #include <sys/smr.h>
82 #include <sys/smp.h>
83 #include <sys/stat.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
86 #include <sys/vmmeter.h>
87 #include <sys/vnode.h>
88 #include <sys/watchdog.h>
89 
90 #include <machine/stdarg.h>
91 
92 #include <security/mac/mac_framework.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_extern.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_kern.h>
101 #include <vm/uma.h>
102 
103 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
104 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
105 #endif
106 
107 #ifdef DDB
108 #include <ddb/ddb.h>
109 #endif
110 
111 static void	delmntque(struct vnode *vp);
112 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
113 		    int slpflag, int slptimeo);
114 static void	syncer_shutdown(void *arg, int howto);
115 static int	vtryrecycle(struct vnode *vp);
116 static void	v_init_counters(struct vnode *);
117 static void	vn_seqc_init(struct vnode *);
118 static void	vn_seqc_write_end_free(struct vnode *vp);
119 static void	vgonel(struct vnode *);
120 static bool	vhold_recycle_free(struct vnode *);
121 static void	vdropl_recycle(struct vnode *vp);
122 static void	vdrop_recycle(struct vnode *vp);
123 static void	vfs_knllock(void *arg);
124 static void	vfs_knlunlock(void *arg);
125 static void	vfs_knl_assert_lock(void *arg, int what);
126 static void	destroy_vpollinfo(struct vpollinfo *vi);
127 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
128 		    daddr_t startlbn, daddr_t endlbn);
129 static void	vnlru_recalc(void);
130 
131 /*
132  * Number of vnodes in existence.  Increased whenever getnewvnode()
133  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
134  */
135 static u_long __exclusive_cache_line numvnodes;
136 
137 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
138     "Number of vnodes in existence");
139 
140 static counter_u64_t vnodes_created;
141 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
142     "Number of vnodes created by getnewvnode");
143 
144 /*
145  * Conversion tables for conversion from vnode types to inode formats
146  * and back.
147  */
148 enum vtype iftovt_tab[16] = {
149 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
150 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
151 };
152 int vttoif_tab[10] = {
153 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
154 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
155 };
156 
157 /*
158  * List of allocates vnodes in the system.
159  */
160 static TAILQ_HEAD(freelst, vnode) vnode_list;
161 static struct vnode *vnode_list_free_marker;
162 static struct vnode *vnode_list_reclaim_marker;
163 
164 /*
165  * "Free" vnode target.  Free vnodes are rarely completely free, but are
166  * just ones that are cheap to recycle.  Usually they are for files which
167  * have been stat'd but not read; these usually have inode and namecache
168  * data attached to them.  This target is the preferred minimum size of a
169  * sub-cache consisting mostly of such files. The system balances the size
170  * of this sub-cache with its complement to try to prevent either from
171  * thrashing while the other is relatively inactive.  The targets express
172  * a preference for the best balance.
173  *
174  * "Above" this target there are 2 further targets (watermarks) related
175  * to recyling of free vnodes.  In the best-operating case, the cache is
176  * exactly full, the free list has size between vlowat and vhiwat above the
177  * free target, and recycling from it and normal use maintains this state.
178  * Sometimes the free list is below vlowat or even empty, but this state
179  * is even better for immediate use provided the cache is not full.
180  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
181  * ones) to reach one of these states.  The watermarks are currently hard-
182  * coded as 4% and 9% of the available space higher.  These and the default
183  * of 25% for wantfreevnodes are too large if the memory size is large.
184  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
185  * whenever vnlru_proc() becomes active.
186  */
187 static long wantfreevnodes;
188 static long __exclusive_cache_line freevnodes;
189 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
190     &freevnodes, 0, "Number of \"free\" vnodes");
191 static long freevnodes_old;
192 
193 static counter_u64_t recycles_count;
194 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
195     "Number of vnodes recycled to meet vnode cache targets");
196 
197 static counter_u64_t recycles_free_count;
198 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
199     "Number of free vnodes recycled to meet vnode cache targets");
200 
201 static counter_u64_t deferred_inact;
202 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
203     "Number of times inactive processing was deferred");
204 
205 /* To keep more than one thread at a time from running vfs_getnewfsid */
206 static struct mtx mntid_mtx;
207 
208 /*
209  * Lock for any access to the following:
210  *	vnode_list
211  *	numvnodes
212  *	freevnodes
213  */
214 static struct mtx __exclusive_cache_line vnode_list_mtx;
215 
216 /* Publicly exported FS */
217 struct nfs_public nfs_pub;
218 
219 static uma_zone_t buf_trie_zone;
220 static smr_t buf_trie_smr;
221 
222 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
223 static uma_zone_t vnode_zone;
224 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
225 
226 __read_frequently smr_t vfs_smr;
227 
228 /*
229  * The workitem queue.
230  *
231  * It is useful to delay writes of file data and filesystem metadata
232  * for tens of seconds so that quickly created and deleted files need
233  * not waste disk bandwidth being created and removed. To realize this,
234  * we append vnodes to a "workitem" queue. When running with a soft
235  * updates implementation, most pending metadata dependencies should
236  * not wait for more than a few seconds. Thus, mounted on block devices
237  * are delayed only about a half the time that file data is delayed.
238  * Similarly, directory updates are more critical, so are only delayed
239  * about a third the time that file data is delayed. Thus, there are
240  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
241  * one each second (driven off the filesystem syncer process). The
242  * syncer_delayno variable indicates the next queue that is to be processed.
243  * Items that need to be processed soon are placed in this queue:
244  *
245  *	syncer_workitem_pending[syncer_delayno]
246  *
247  * A delay of fifteen seconds is done by placing the request fifteen
248  * entries later in the queue:
249  *
250  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
251  *
252  */
253 static int syncer_delayno;
254 static long syncer_mask;
255 LIST_HEAD(synclist, bufobj);
256 static struct synclist *syncer_workitem_pending;
257 /*
258  * The sync_mtx protects:
259  *	bo->bo_synclist
260  *	sync_vnode_count
261  *	syncer_delayno
262  *	syncer_state
263  *	syncer_workitem_pending
264  *	syncer_worklist_len
265  *	rushjob
266  */
267 static struct mtx sync_mtx;
268 static struct cv sync_wakeup;
269 
270 #define SYNCER_MAXDELAY		32
271 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
272 static int syncdelay = 30;		/* max time to delay syncing data */
273 static int filedelay = 30;		/* time to delay syncing files */
274 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
275     "Time to delay syncing files (in seconds)");
276 static int dirdelay = 29;		/* time to delay syncing directories */
277 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
278     "Time to delay syncing directories (in seconds)");
279 static int metadelay = 28;		/* time to delay syncing metadata */
280 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
281     "Time to delay syncing metadata (in seconds)");
282 static int rushjob;		/* number of slots to run ASAP */
283 static int stat_rush_requests;	/* number of times I/O speeded up */
284 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
285     "Number of times I/O speeded up (rush requests)");
286 
287 #define	VDBATCH_SIZE 8
288 struct vdbatch {
289 	u_int index;
290 	long freevnodes;
291 	struct mtx lock;
292 	struct vnode *tab[VDBATCH_SIZE];
293 };
294 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
295 
296 static void	vdbatch_dequeue(struct vnode *vp);
297 
298 /*
299  * When shutting down the syncer, run it at four times normal speed.
300  */
301 #define SYNCER_SHUTDOWN_SPEEDUP		4
302 static int sync_vnode_count;
303 static int syncer_worklist_len;
304 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
305     syncer_state;
306 
307 /* Target for maximum number of vnodes. */
308 u_long desiredvnodes;
309 static u_long gapvnodes;		/* gap between wanted and desired */
310 static u_long vhiwat;		/* enough extras after expansion */
311 static u_long vlowat;		/* minimal extras before expansion */
312 static u_long vstir;		/* nonzero to stir non-free vnodes */
313 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
314 
315 static u_long vnlru_read_freevnodes(void);
316 
317 /*
318  * Note that no attempt is made to sanitize these parameters.
319  */
320 static int
321 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
322 {
323 	u_long val;
324 	int error;
325 
326 	val = desiredvnodes;
327 	error = sysctl_handle_long(oidp, &val, 0, req);
328 	if (error != 0 || req->newptr == NULL)
329 		return (error);
330 
331 	if (val == desiredvnodes)
332 		return (0);
333 	mtx_lock(&vnode_list_mtx);
334 	desiredvnodes = val;
335 	wantfreevnodes = desiredvnodes / 4;
336 	vnlru_recalc();
337 	mtx_unlock(&vnode_list_mtx);
338 	/*
339 	 * XXX There is no protection against multiple threads changing
340 	 * desiredvnodes at the same time. Locking above only helps vnlru and
341 	 * getnewvnode.
342 	 */
343 	vfs_hash_changesize(desiredvnodes);
344 	cache_changesize(desiredvnodes);
345 	return (0);
346 }
347 
348 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
349     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
350     "LU", "Target for maximum number of vnodes");
351 
352 static int
353 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
354 {
355 	u_long val;
356 	int error;
357 
358 	val = wantfreevnodes;
359 	error = sysctl_handle_long(oidp, &val, 0, req);
360 	if (error != 0 || req->newptr == NULL)
361 		return (error);
362 
363 	if (val == wantfreevnodes)
364 		return (0);
365 	mtx_lock(&vnode_list_mtx);
366 	wantfreevnodes = val;
367 	vnlru_recalc();
368 	mtx_unlock(&vnode_list_mtx);
369 	return (0);
370 }
371 
372 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
373     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
374     "LU", "Target for minimum number of \"free\" vnodes");
375 
376 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
377     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
378 static int vnlru_nowhere;
379 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW | CTLFLAG_STATS,
380     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
381 
382 static int
383 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
384 {
385 	struct vnode *vp;
386 	struct nameidata nd;
387 	char *buf;
388 	unsigned long ndflags;
389 	int error;
390 
391 	if (req->newptr == NULL)
392 		return (EINVAL);
393 	if (req->newlen >= PATH_MAX)
394 		return (E2BIG);
395 
396 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
397 	error = SYSCTL_IN(req, buf, req->newlen);
398 	if (error != 0)
399 		goto out;
400 
401 	buf[req->newlen] = '\0';
402 
403 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
404 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
405 	if ((error = namei(&nd)) != 0)
406 		goto out;
407 	vp = nd.ni_vp;
408 
409 	if (VN_IS_DOOMED(vp)) {
410 		/*
411 		 * This vnode is being recycled.  Return != 0 to let the caller
412 		 * know that the sysctl had no effect.  Return EAGAIN because a
413 		 * subsequent call will likely succeed (since namei will create
414 		 * a new vnode if necessary)
415 		 */
416 		error = EAGAIN;
417 		goto putvnode;
418 	}
419 
420 	counter_u64_add(recycles_count, 1);
421 	vgone(vp);
422 putvnode:
423 	vput(vp);
424 	NDFREE_PNBUF(&nd);
425 out:
426 	free(buf, M_TEMP);
427 	return (error);
428 }
429 
430 static int
431 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
432 {
433 	struct thread *td = curthread;
434 	struct vnode *vp;
435 	struct file *fp;
436 	int error;
437 	int fd;
438 
439 	if (req->newptr == NULL)
440 		return (EBADF);
441 
442         error = sysctl_handle_int(oidp, &fd, 0, req);
443         if (error != 0)
444                 return (error);
445 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
446 	if (error != 0)
447 		return (error);
448 	vp = fp->f_vnode;
449 
450 	error = vn_lock(vp, LK_EXCLUSIVE);
451 	if (error != 0)
452 		goto drop;
453 
454 	counter_u64_add(recycles_count, 1);
455 	vgone(vp);
456 	VOP_UNLOCK(vp);
457 drop:
458 	fdrop(fp, td);
459 	return (error);
460 }
461 
462 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
463     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
464     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
465 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
466     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
467     sysctl_ftry_reclaim_vnode, "I",
468     "Try to reclaim a vnode by its file descriptor");
469 
470 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
471 #define vnsz2log 8
472 #ifndef DEBUG_LOCKS
473 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
474     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
475     "vnsz2log needs to be updated");
476 #endif
477 
478 /*
479  * Support for the bufobj clean & dirty pctrie.
480  */
481 static void *
482 buf_trie_alloc(struct pctrie *ptree)
483 {
484 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
485 }
486 
487 static void
488 buf_trie_free(struct pctrie *ptree, void *node)
489 {
490 	uma_zfree_smr(buf_trie_zone, node);
491 }
492 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
493     buf_trie_smr);
494 
495 /*
496  * Initialize the vnode management data structures.
497  *
498  * Reevaluate the following cap on the number of vnodes after the physical
499  * memory size exceeds 512GB.  In the limit, as the physical memory size
500  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
501  */
502 #ifndef	MAXVNODES_MAX
503 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
504 #endif
505 
506 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
507 
508 static struct vnode *
509 vn_alloc_marker(struct mount *mp)
510 {
511 	struct vnode *vp;
512 
513 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
514 	vp->v_type = VMARKER;
515 	vp->v_mount = mp;
516 
517 	return (vp);
518 }
519 
520 static void
521 vn_free_marker(struct vnode *vp)
522 {
523 
524 	MPASS(vp->v_type == VMARKER);
525 	free(vp, M_VNODE_MARKER);
526 }
527 
528 #ifdef KASAN
529 static int
530 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
531 {
532 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
533 	return (0);
534 }
535 
536 static void
537 vnode_dtor(void *mem, int size, void *arg __unused)
538 {
539 	size_t end1, end2, off1, off2;
540 
541 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
542 	    offsetof(struct vnode, v_dbatchcpu),
543 	    "KASAN marks require updating");
544 
545 	off1 = offsetof(struct vnode, v_vnodelist);
546 	off2 = offsetof(struct vnode, v_dbatchcpu);
547 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
548 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
549 
550 	/*
551 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
552 	 * after the vnode has been freed.  Try to get some KASAN coverage by
553 	 * marking everything except those two fields as invalid.  Because
554 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
555 	 * the same 8-byte aligned word must also be marked valid.
556 	 */
557 
558 	/* Handle the area from the start until v_vnodelist... */
559 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
560 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
561 
562 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
563 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
564 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
565 	if (off2 > off1)
566 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
567 		    off2 - off1, KASAN_UMA_FREED);
568 
569 	/* ... and finally the area from v_dbatchcpu to the end. */
570 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
571 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
572 	    KASAN_UMA_FREED);
573 }
574 #endif /* KASAN */
575 
576 /*
577  * Initialize a vnode as it first enters the zone.
578  */
579 static int
580 vnode_init(void *mem, int size, int flags)
581 {
582 	struct vnode *vp;
583 
584 	vp = mem;
585 	bzero(vp, size);
586 	/*
587 	 * Setup locks.
588 	 */
589 	vp->v_vnlock = &vp->v_lock;
590 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
591 	/*
592 	 * By default, don't allow shared locks unless filesystems opt-in.
593 	 */
594 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
595 	    LK_NOSHARE | LK_IS_VNODE);
596 	/*
597 	 * Initialize bufobj.
598 	 */
599 	bufobj_init(&vp->v_bufobj, vp);
600 	/*
601 	 * Initialize namecache.
602 	 */
603 	cache_vnode_init(vp);
604 	/*
605 	 * Initialize rangelocks.
606 	 */
607 	rangelock_init(&vp->v_rl);
608 
609 	vp->v_dbatchcpu = NOCPU;
610 
611 	vp->v_state = VSTATE_DEAD;
612 
613 	/*
614 	 * Check vhold_recycle_free for an explanation.
615 	 */
616 	vp->v_holdcnt = VHOLD_NO_SMR;
617 	vp->v_type = VNON;
618 	mtx_lock(&vnode_list_mtx);
619 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
620 	mtx_unlock(&vnode_list_mtx);
621 	return (0);
622 }
623 
624 /*
625  * Free a vnode when it is cleared from the zone.
626  */
627 static void
628 vnode_fini(void *mem, int size)
629 {
630 	struct vnode *vp;
631 	struct bufobj *bo;
632 
633 	vp = mem;
634 	vdbatch_dequeue(vp);
635 	mtx_lock(&vnode_list_mtx);
636 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
637 	mtx_unlock(&vnode_list_mtx);
638 	rangelock_destroy(&vp->v_rl);
639 	lockdestroy(vp->v_vnlock);
640 	mtx_destroy(&vp->v_interlock);
641 	bo = &vp->v_bufobj;
642 	rw_destroy(BO_LOCKPTR(bo));
643 
644 	kasan_mark(mem, size, size, 0);
645 }
646 
647 /*
648  * Provide the size of NFS nclnode and NFS fh for calculation of the
649  * vnode memory consumption.  The size is specified directly to
650  * eliminate dependency on NFS-private header.
651  *
652  * Other filesystems may use bigger or smaller (like UFS and ZFS)
653  * private inode data, but the NFS-based estimation is ample enough.
654  * Still, we care about differences in the size between 64- and 32-bit
655  * platforms.
656  *
657  * Namecache structure size is heuristically
658  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
659  */
660 #ifdef _LP64
661 #define	NFS_NCLNODE_SZ	(528 + 64)
662 #define	NC_SZ		148
663 #else
664 #define	NFS_NCLNODE_SZ	(360 + 32)
665 #define	NC_SZ		92
666 #endif
667 
668 static void
669 vntblinit(void *dummy __unused)
670 {
671 	struct vdbatch *vd;
672 	uma_ctor ctor;
673 	uma_dtor dtor;
674 	int cpu, physvnodes, virtvnodes;
675 
676 	/*
677 	 * Desiredvnodes is a function of the physical memory size and the
678 	 * kernel's heap size.  Generally speaking, it scales with the
679 	 * physical memory size.  The ratio of desiredvnodes to the physical
680 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
681 	 * Thereafter, the
682 	 * marginal ratio of desiredvnodes to the physical memory size is
683 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
684 	 * size.  The memory required by desiredvnodes vnodes and vm objects
685 	 * must not exceed 1/10th of the kernel's heap size.
686 	 */
687 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
688 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
689 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
690 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
691 	desiredvnodes = min(physvnodes, virtvnodes);
692 	if (desiredvnodes > MAXVNODES_MAX) {
693 		if (bootverbose)
694 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
695 			    desiredvnodes, MAXVNODES_MAX);
696 		desiredvnodes = MAXVNODES_MAX;
697 	}
698 	wantfreevnodes = desiredvnodes / 4;
699 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
700 	TAILQ_INIT(&vnode_list);
701 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
702 	/*
703 	 * The lock is taken to appease WITNESS.
704 	 */
705 	mtx_lock(&vnode_list_mtx);
706 	vnlru_recalc();
707 	mtx_unlock(&vnode_list_mtx);
708 	vnode_list_free_marker = vn_alloc_marker(NULL);
709 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
710 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
711 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
712 
713 #ifdef KASAN
714 	ctor = vnode_ctor;
715 	dtor = vnode_dtor;
716 #else
717 	ctor = NULL;
718 	dtor = NULL;
719 #endif
720 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
721 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
722 	uma_zone_set_smr(vnode_zone, vfs_smr);
723 
724 	/*
725 	 * Preallocate enough nodes to support one-per buf so that
726 	 * we can not fail an insert.  reassignbuf() callers can not
727 	 * tolerate the insertion failure.
728 	 */
729 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
730 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
731 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
732 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
733 	uma_prealloc(buf_trie_zone, nbuf);
734 
735 	vnodes_created = counter_u64_alloc(M_WAITOK);
736 	recycles_count = counter_u64_alloc(M_WAITOK);
737 	recycles_free_count = counter_u64_alloc(M_WAITOK);
738 	deferred_inact = counter_u64_alloc(M_WAITOK);
739 
740 	/*
741 	 * Initialize the filesystem syncer.
742 	 */
743 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
744 	    &syncer_mask);
745 	syncer_maxdelay = syncer_mask + 1;
746 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
747 	cv_init(&sync_wakeup, "syncer");
748 
749 	CPU_FOREACH(cpu) {
750 		vd = DPCPU_ID_PTR((cpu), vd);
751 		bzero(vd, sizeof(*vd));
752 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
753 	}
754 }
755 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
756 
757 /*
758  * Mark a mount point as busy. Used to synchronize access and to delay
759  * unmounting. Eventually, mountlist_mtx is not released on failure.
760  *
761  * vfs_busy() is a custom lock, it can block the caller.
762  * vfs_busy() only sleeps if the unmount is active on the mount point.
763  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
764  * vnode belonging to mp.
765  *
766  * Lookup uses vfs_busy() to traverse mount points.
767  * root fs			var fs
768  * / vnode lock		A	/ vnode lock (/var)		D
769  * /var vnode lock	B	/log vnode lock(/var/log)	E
770  * vfs_busy lock	C	vfs_busy lock			F
771  *
772  * Within each file system, the lock order is C->A->B and F->D->E.
773  *
774  * When traversing across mounts, the system follows that lock order:
775  *
776  *        C->A->B
777  *              |
778  *              +->F->D->E
779  *
780  * The lookup() process for namei("/var") illustrates the process:
781  *  1. VOP_LOOKUP() obtains B while A is held
782  *  2. vfs_busy() obtains a shared lock on F while A and B are held
783  *  3. vput() releases lock on B
784  *  4. vput() releases lock on A
785  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
786  *  6. vfs_unbusy() releases shared lock on F
787  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
788  *     Attempt to lock A (instead of vp_crossmp) while D is held would
789  *     violate the global order, causing deadlocks.
790  *
791  * dounmount() locks B while F is drained.  Note that for stacked
792  * filesystems, D and B in the example above may be the same lock,
793  * which introdues potential lock order reversal deadlock between
794  * dounmount() and step 5 above.  These filesystems may avoid the LOR
795  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
796  * remain held until after step 5.
797  */
798 int
799 vfs_busy(struct mount *mp, int flags)
800 {
801 	struct mount_pcpu *mpcpu;
802 
803 	MPASS((flags & ~MBF_MASK) == 0);
804 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
805 
806 	if (vfs_op_thread_enter(mp, mpcpu)) {
807 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
808 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
809 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
810 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
811 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
812 		vfs_op_thread_exit(mp, mpcpu);
813 		if (flags & MBF_MNTLSTLOCK)
814 			mtx_unlock(&mountlist_mtx);
815 		return (0);
816 	}
817 
818 	MNT_ILOCK(mp);
819 	vfs_assert_mount_counters(mp);
820 	MNT_REF(mp);
821 	/*
822 	 * If mount point is currently being unmounted, sleep until the
823 	 * mount point fate is decided.  If thread doing the unmounting fails,
824 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
825 	 * that this mount point has survived the unmount attempt and vfs_busy
826 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
827 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
828 	 * about to be really destroyed.  vfs_busy needs to release its
829 	 * reference on the mount point in this case and return with ENOENT,
830 	 * telling the caller the mount it tried to busy is no longer valid.
831 	 */
832 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
833 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
834 		    ("%s: non-empty upper mount list with pending unmount",
835 		    __func__));
836 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
837 			MNT_REL(mp);
838 			MNT_IUNLOCK(mp);
839 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
840 			    __func__);
841 			return (ENOENT);
842 		}
843 		if (flags & MBF_MNTLSTLOCK)
844 			mtx_unlock(&mountlist_mtx);
845 		mp->mnt_kern_flag |= MNTK_MWAIT;
846 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
847 		if (flags & MBF_MNTLSTLOCK)
848 			mtx_lock(&mountlist_mtx);
849 		MNT_ILOCK(mp);
850 	}
851 	if (flags & MBF_MNTLSTLOCK)
852 		mtx_unlock(&mountlist_mtx);
853 	mp->mnt_lockref++;
854 	MNT_IUNLOCK(mp);
855 	return (0);
856 }
857 
858 /*
859  * Free a busy filesystem.
860  */
861 void
862 vfs_unbusy(struct mount *mp)
863 {
864 	struct mount_pcpu *mpcpu;
865 	int c;
866 
867 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
868 
869 	if (vfs_op_thread_enter(mp, mpcpu)) {
870 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
871 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
872 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
873 		vfs_op_thread_exit(mp, mpcpu);
874 		return;
875 	}
876 
877 	MNT_ILOCK(mp);
878 	vfs_assert_mount_counters(mp);
879 	MNT_REL(mp);
880 	c = --mp->mnt_lockref;
881 	if (mp->mnt_vfs_ops == 0) {
882 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
883 		MNT_IUNLOCK(mp);
884 		return;
885 	}
886 	if (c < 0)
887 		vfs_dump_mount_counters(mp);
888 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
889 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
890 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
891 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
892 		wakeup(&mp->mnt_lockref);
893 	}
894 	MNT_IUNLOCK(mp);
895 }
896 
897 /*
898  * Lookup a mount point by filesystem identifier.
899  */
900 struct mount *
901 vfs_getvfs(fsid_t *fsid)
902 {
903 	struct mount *mp;
904 
905 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
906 	mtx_lock(&mountlist_mtx);
907 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
908 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
909 			vfs_ref(mp);
910 			mtx_unlock(&mountlist_mtx);
911 			return (mp);
912 		}
913 	}
914 	mtx_unlock(&mountlist_mtx);
915 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
916 	return ((struct mount *) 0);
917 }
918 
919 /*
920  * Lookup a mount point by filesystem identifier, busying it before
921  * returning.
922  *
923  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
924  * cache for popular filesystem identifiers.  The cache is lockess, using
925  * the fact that struct mount's are never freed.  In worst case we may
926  * get pointer to unmounted or even different filesystem, so we have to
927  * check what we got, and go slow way if so.
928  */
929 struct mount *
930 vfs_busyfs(fsid_t *fsid)
931 {
932 #define	FSID_CACHE_SIZE	256
933 	typedef struct mount * volatile vmp_t;
934 	static vmp_t cache[FSID_CACHE_SIZE];
935 	struct mount *mp;
936 	int error;
937 	uint32_t hash;
938 
939 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
940 	hash = fsid->val[0] ^ fsid->val[1];
941 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
942 	mp = cache[hash];
943 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
944 		goto slow;
945 	if (vfs_busy(mp, 0) != 0) {
946 		cache[hash] = NULL;
947 		goto slow;
948 	}
949 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
950 		return (mp);
951 	else
952 	    vfs_unbusy(mp);
953 
954 slow:
955 	mtx_lock(&mountlist_mtx);
956 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
957 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
958 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
959 			if (error) {
960 				cache[hash] = NULL;
961 				mtx_unlock(&mountlist_mtx);
962 				return (NULL);
963 			}
964 			cache[hash] = mp;
965 			return (mp);
966 		}
967 	}
968 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
969 	mtx_unlock(&mountlist_mtx);
970 	return ((struct mount *) 0);
971 }
972 
973 /*
974  * Check if a user can access privileged mount options.
975  */
976 int
977 vfs_suser(struct mount *mp, struct thread *td)
978 {
979 	int error;
980 
981 	if (jailed(td->td_ucred)) {
982 		/*
983 		 * If the jail of the calling thread lacks permission for
984 		 * this type of file system, deny immediately.
985 		 */
986 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
987 			return (EPERM);
988 
989 		/*
990 		 * If the file system was mounted outside the jail of the
991 		 * calling thread, deny immediately.
992 		 */
993 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
994 			return (EPERM);
995 	}
996 
997 	/*
998 	 * If file system supports delegated administration, we don't check
999 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1000 	 * by the file system itself.
1001 	 * If this is not the user that did original mount, we check for
1002 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1003 	 */
1004 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1005 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1006 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1007 			return (error);
1008 	}
1009 	return (0);
1010 }
1011 
1012 /*
1013  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1014  * will be used to create fake device numbers for stat().  Also try (but
1015  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1016  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1017  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1018  *
1019  * Keep in mind that several mounts may be running in parallel.  Starting
1020  * the search one past where the previous search terminated is both a
1021  * micro-optimization and a defense against returning the same fsid to
1022  * different mounts.
1023  */
1024 void
1025 vfs_getnewfsid(struct mount *mp)
1026 {
1027 	static uint16_t mntid_base;
1028 	struct mount *nmp;
1029 	fsid_t tfsid;
1030 	int mtype;
1031 
1032 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1033 	mtx_lock(&mntid_mtx);
1034 	mtype = mp->mnt_vfc->vfc_typenum;
1035 	tfsid.val[1] = mtype;
1036 	mtype = (mtype & 0xFF) << 24;
1037 	for (;;) {
1038 		tfsid.val[0] = makedev(255,
1039 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1040 		mntid_base++;
1041 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1042 			break;
1043 		vfs_rel(nmp);
1044 	}
1045 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1046 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1047 	mtx_unlock(&mntid_mtx);
1048 }
1049 
1050 /*
1051  * Knob to control the precision of file timestamps:
1052  *
1053  *   0 = seconds only; nanoseconds zeroed.
1054  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1055  *   2 = seconds and nanoseconds, truncated to microseconds.
1056  * >=3 = seconds and nanoseconds, maximum precision.
1057  */
1058 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1059 
1060 static int timestamp_precision = TSP_USEC;
1061 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1062     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1063     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1064     "3+: sec + ns (max. precision))");
1065 
1066 /*
1067  * Get a current timestamp.
1068  */
1069 void
1070 vfs_timestamp(struct timespec *tsp)
1071 {
1072 	struct timeval tv;
1073 
1074 	switch (timestamp_precision) {
1075 	case TSP_SEC:
1076 		tsp->tv_sec = time_second;
1077 		tsp->tv_nsec = 0;
1078 		break;
1079 	case TSP_HZ:
1080 		getnanotime(tsp);
1081 		break;
1082 	case TSP_USEC:
1083 		microtime(&tv);
1084 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1085 		break;
1086 	case TSP_NSEC:
1087 	default:
1088 		nanotime(tsp);
1089 		break;
1090 	}
1091 }
1092 
1093 /*
1094  * Set vnode attributes to VNOVAL
1095  */
1096 void
1097 vattr_null(struct vattr *vap)
1098 {
1099 
1100 	vap->va_type = VNON;
1101 	vap->va_size = VNOVAL;
1102 	vap->va_bytes = VNOVAL;
1103 	vap->va_mode = VNOVAL;
1104 	vap->va_nlink = VNOVAL;
1105 	vap->va_uid = VNOVAL;
1106 	vap->va_gid = VNOVAL;
1107 	vap->va_fsid = VNOVAL;
1108 	vap->va_fileid = VNOVAL;
1109 	vap->va_blocksize = VNOVAL;
1110 	vap->va_rdev = VNOVAL;
1111 	vap->va_atime.tv_sec = VNOVAL;
1112 	vap->va_atime.tv_nsec = VNOVAL;
1113 	vap->va_mtime.tv_sec = VNOVAL;
1114 	vap->va_mtime.tv_nsec = VNOVAL;
1115 	vap->va_ctime.tv_sec = VNOVAL;
1116 	vap->va_ctime.tv_nsec = VNOVAL;
1117 	vap->va_birthtime.tv_sec = VNOVAL;
1118 	vap->va_birthtime.tv_nsec = VNOVAL;
1119 	vap->va_flags = VNOVAL;
1120 	vap->va_gen = VNOVAL;
1121 	vap->va_vaflags = 0;
1122 }
1123 
1124 /*
1125  * Try to reduce the total number of vnodes.
1126  *
1127  * This routine (and its user) are buggy in at least the following ways:
1128  * - all parameters were picked years ago when RAM sizes were significantly
1129  *   smaller
1130  * - it can pick vnodes based on pages used by the vm object, but filesystems
1131  *   like ZFS don't use it making the pick broken
1132  * - since ZFS has its own aging policy it gets partially combated by this one
1133  * - a dedicated method should be provided for filesystems to let them decide
1134  *   whether the vnode should be recycled
1135  *
1136  * This routine is called when we have too many vnodes.  It attempts
1137  * to free <count> vnodes and will potentially free vnodes that still
1138  * have VM backing store (VM backing store is typically the cause
1139  * of a vnode blowout so we want to do this).  Therefore, this operation
1140  * is not considered cheap.
1141  *
1142  * A number of conditions may prevent a vnode from being reclaimed.
1143  * the buffer cache may have references on the vnode, a directory
1144  * vnode may still have references due to the namei cache representing
1145  * underlying files, or the vnode may be in active use.   It is not
1146  * desirable to reuse such vnodes.  These conditions may cause the
1147  * number of vnodes to reach some minimum value regardless of what
1148  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1149  *
1150  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1151  * 			 entries if this argument is strue
1152  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1153  *			 pages.
1154  * @param target	 How many vnodes to reclaim.
1155  * @return		 The number of vnodes that were reclaimed.
1156  */
1157 static int
1158 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1159 {
1160 	struct vnode *vp, *mvp;
1161 	struct mount *mp;
1162 	struct vm_object *object;
1163 	u_long done;
1164 	bool retried;
1165 
1166 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1167 
1168 	retried = false;
1169 	done = 0;
1170 
1171 	mvp = vnode_list_reclaim_marker;
1172 restart:
1173 	vp = mvp;
1174 	while (done < target) {
1175 		vp = TAILQ_NEXT(vp, v_vnodelist);
1176 		if (__predict_false(vp == NULL))
1177 			break;
1178 
1179 		if (__predict_false(vp->v_type == VMARKER))
1180 			continue;
1181 
1182 		/*
1183 		 * If it's been deconstructed already, it's still
1184 		 * referenced, or it exceeds the trigger, skip it.
1185 		 * Also skip free vnodes.  We are trying to make space
1186 		 * to expand the free list, not reduce it.
1187 		 */
1188 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1189 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1190 			goto next_iter;
1191 
1192 		if (vp->v_type == VBAD || vp->v_type == VNON)
1193 			goto next_iter;
1194 
1195 		object = atomic_load_ptr(&vp->v_object);
1196 		if (object == NULL || object->resident_page_count > trigger) {
1197 			goto next_iter;
1198 		}
1199 
1200 		/*
1201 		 * Handle races against vnode allocation. Filesystems lock the
1202 		 * vnode some time after it gets returned from getnewvnode,
1203 		 * despite type and hold count being manipulated earlier.
1204 		 * Resorting to checking v_mount restores guarantees present
1205 		 * before the global list was reworked to contain all vnodes.
1206 		 */
1207 		if (!VI_TRYLOCK(vp))
1208 			goto next_iter;
1209 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1210 			VI_UNLOCK(vp);
1211 			goto next_iter;
1212 		}
1213 		if (vp->v_mount == NULL) {
1214 			VI_UNLOCK(vp);
1215 			goto next_iter;
1216 		}
1217 		vholdl(vp);
1218 		VI_UNLOCK(vp);
1219 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1220 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1221 		mtx_unlock(&vnode_list_mtx);
1222 
1223 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1224 			vdrop_recycle(vp);
1225 			goto next_iter_unlocked;
1226 		}
1227 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1228 			vdrop_recycle(vp);
1229 			vn_finished_write(mp);
1230 			goto next_iter_unlocked;
1231 		}
1232 
1233 		VI_LOCK(vp);
1234 		if (vp->v_usecount > 0 ||
1235 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1236 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1237 		    vp->v_object->resident_page_count > trigger)) {
1238 			VOP_UNLOCK(vp);
1239 			vdropl_recycle(vp);
1240 			vn_finished_write(mp);
1241 			goto next_iter_unlocked;
1242 		}
1243 		counter_u64_add(recycles_count, 1);
1244 		vgonel(vp);
1245 		VOP_UNLOCK(vp);
1246 		vdropl_recycle(vp);
1247 		vn_finished_write(mp);
1248 		done++;
1249 next_iter_unlocked:
1250 		if (should_yield())
1251 			kern_yield(PRI_USER);
1252 		mtx_lock(&vnode_list_mtx);
1253 		goto restart;
1254 next_iter:
1255 		MPASS(vp->v_type != VMARKER);
1256 		if (!should_yield())
1257 			continue;
1258 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1259 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1260 		mtx_unlock(&vnode_list_mtx);
1261 		kern_yield(PRI_USER);
1262 		mtx_lock(&vnode_list_mtx);
1263 		goto restart;
1264 	}
1265 	if (done == 0 && !retried) {
1266 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1267 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1268 		retried = true;
1269 		goto restart;
1270 	}
1271 	return (done);
1272 }
1273 
1274 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1275 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1276     0,
1277     "limit on vnode free requests per call to the vnlru_free routine");
1278 
1279 /*
1280  * Attempt to reduce the free list by the requested amount.
1281  */
1282 static int
1283 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1284 {
1285 	struct vnode *vp;
1286 	struct mount *mp;
1287 	int ocount;
1288 
1289 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1290 	if (count > max_vnlru_free)
1291 		count = max_vnlru_free;
1292 	ocount = count;
1293 	vp = mvp;
1294 	for (;;) {
1295 		if (count == 0) {
1296 			break;
1297 		}
1298 		vp = TAILQ_NEXT(vp, v_vnodelist);
1299 		if (__predict_false(vp == NULL)) {
1300 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1301 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1302 			break;
1303 		}
1304 		if (__predict_false(vp->v_type == VMARKER))
1305 			continue;
1306 		if (vp->v_holdcnt > 0)
1307 			continue;
1308 		/*
1309 		 * Don't recycle if our vnode is from different type
1310 		 * of mount point.  Note that mp is type-safe, the
1311 		 * check does not reach unmapped address even if
1312 		 * vnode is reclaimed.
1313 		 */
1314 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1315 		    mp->mnt_op != mnt_op) {
1316 			continue;
1317 		}
1318 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1319 			continue;
1320 		}
1321 		if (!vhold_recycle_free(vp))
1322 			continue;
1323 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1324 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1325 		mtx_unlock(&vnode_list_mtx);
1326 		/*
1327 		 * FIXME: ignores the return value, meaning it may be nothing
1328 		 * got recycled but it claims otherwise to the caller.
1329 		 *
1330 		 * Originally the value started being ignored in 2005 with
1331 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1332 		 *
1333 		 * Respecting the value can run into significant stalls if most
1334 		 * vnodes belong to one file system and it has writes
1335 		 * suspended.  In presence of many threads and millions of
1336 		 * vnodes they keep contending on the vnode_list_mtx lock only
1337 		 * to find vnodes they can't recycle.
1338 		 *
1339 		 * The solution would be to pre-check if the vnode is likely to
1340 		 * be recycle-able, but it needs to happen with the
1341 		 * vnode_list_mtx lock held. This runs into a problem where
1342 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1343 		 * writes are frozen) can take locks which LOR against it.
1344 		 *
1345 		 * Check nullfs for one example (null_getwritemount).
1346 		 */
1347 		vtryrecycle(vp);
1348 		count--;
1349 		mtx_lock(&vnode_list_mtx);
1350 		vp = mvp;
1351 	}
1352 	return (ocount - count);
1353 }
1354 
1355 static int
1356 vnlru_free_locked(int count)
1357 {
1358 
1359 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1360 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1361 }
1362 
1363 void
1364 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1365 {
1366 
1367 	MPASS(mnt_op != NULL);
1368 	MPASS(mvp != NULL);
1369 	VNPASS(mvp->v_type == VMARKER, mvp);
1370 	mtx_lock(&vnode_list_mtx);
1371 	vnlru_free_impl(count, mnt_op, mvp);
1372 	mtx_unlock(&vnode_list_mtx);
1373 }
1374 
1375 struct vnode *
1376 vnlru_alloc_marker(void)
1377 {
1378 	struct vnode *mvp;
1379 
1380 	mvp = vn_alloc_marker(NULL);
1381 	mtx_lock(&vnode_list_mtx);
1382 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1383 	mtx_unlock(&vnode_list_mtx);
1384 	return (mvp);
1385 }
1386 
1387 void
1388 vnlru_free_marker(struct vnode *mvp)
1389 {
1390 	mtx_lock(&vnode_list_mtx);
1391 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1392 	mtx_unlock(&vnode_list_mtx);
1393 	vn_free_marker(mvp);
1394 }
1395 
1396 static void
1397 vnlru_recalc(void)
1398 {
1399 
1400 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1401 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1402 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1403 	vlowat = vhiwat / 2;
1404 }
1405 
1406 /*
1407  * Attempt to recycle vnodes in a context that is always safe to block.
1408  * Calling vlrurecycle() from the bowels of filesystem code has some
1409  * interesting deadlock problems.
1410  */
1411 static struct proc *vnlruproc;
1412 static int vnlruproc_sig;
1413 
1414 /*
1415  * The main freevnodes counter is only updated when threads requeue their vnode
1416  * batches. CPUs are conditionally walked to compute a more accurate total.
1417  *
1418  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1419  * at any given moment can still exceed slop, but it should not be by significant
1420  * margin in practice.
1421  */
1422 #define VNLRU_FREEVNODES_SLOP 128
1423 
1424 static __inline void
1425 vfs_freevnodes_inc(void)
1426 {
1427 	struct vdbatch *vd;
1428 
1429 	critical_enter();
1430 	vd = DPCPU_PTR(vd);
1431 	vd->freevnodes++;
1432 	critical_exit();
1433 }
1434 
1435 static __inline void
1436 vfs_freevnodes_dec(void)
1437 {
1438 	struct vdbatch *vd;
1439 
1440 	critical_enter();
1441 	vd = DPCPU_PTR(vd);
1442 	vd->freevnodes--;
1443 	critical_exit();
1444 }
1445 
1446 static u_long
1447 vnlru_read_freevnodes(void)
1448 {
1449 	struct vdbatch *vd;
1450 	long slop;
1451 	int cpu;
1452 
1453 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1454 	if (freevnodes > freevnodes_old)
1455 		slop = freevnodes - freevnodes_old;
1456 	else
1457 		slop = freevnodes_old - freevnodes;
1458 	if (slop < VNLRU_FREEVNODES_SLOP)
1459 		return (freevnodes >= 0 ? freevnodes : 0);
1460 	freevnodes_old = freevnodes;
1461 	CPU_FOREACH(cpu) {
1462 		vd = DPCPU_ID_PTR((cpu), vd);
1463 		freevnodes_old += vd->freevnodes;
1464 	}
1465 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1466 }
1467 
1468 static bool
1469 vnlru_under(u_long rnumvnodes, u_long limit)
1470 {
1471 	u_long rfreevnodes, space;
1472 
1473 	if (__predict_false(rnumvnodes > desiredvnodes))
1474 		return (true);
1475 
1476 	space = desiredvnodes - rnumvnodes;
1477 	if (space < limit) {
1478 		rfreevnodes = vnlru_read_freevnodes();
1479 		if (rfreevnodes > wantfreevnodes)
1480 			space += rfreevnodes - wantfreevnodes;
1481 	}
1482 	return (space < limit);
1483 }
1484 
1485 static bool
1486 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1487 {
1488 	long rfreevnodes, space;
1489 
1490 	if (__predict_false(rnumvnodes > desiredvnodes))
1491 		return (true);
1492 
1493 	space = desiredvnodes - rnumvnodes;
1494 	if (space < limit) {
1495 		rfreevnodes = atomic_load_long(&freevnodes);
1496 		if (rfreevnodes > wantfreevnodes)
1497 			space += rfreevnodes - wantfreevnodes;
1498 	}
1499 	return (space < limit);
1500 }
1501 
1502 static void
1503 vnlru_kick(void)
1504 {
1505 
1506 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1507 	if (vnlruproc_sig == 0) {
1508 		vnlruproc_sig = 1;
1509 		wakeup(vnlruproc);
1510 	}
1511 }
1512 
1513 static void
1514 vnlru_proc(void)
1515 {
1516 	u_long rnumvnodes, rfreevnodes, target;
1517 	unsigned long onumvnodes;
1518 	int done, force, trigger, usevnodes;
1519 	bool reclaim_nc_src, want_reread;
1520 
1521 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1522 	    SHUTDOWN_PRI_FIRST);
1523 
1524 	force = 0;
1525 	want_reread = false;
1526 	for (;;) {
1527 		kproc_suspend_check(vnlruproc);
1528 		mtx_lock(&vnode_list_mtx);
1529 		rnumvnodes = atomic_load_long(&numvnodes);
1530 
1531 		if (want_reread) {
1532 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1533 			want_reread = false;
1534 		}
1535 
1536 		/*
1537 		 * If numvnodes is too large (due to desiredvnodes being
1538 		 * adjusted using its sysctl, or emergency growth), first
1539 		 * try to reduce it by discarding from the free list.
1540 		 */
1541 		if (rnumvnodes > desiredvnodes) {
1542 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1543 			rnumvnodes = atomic_load_long(&numvnodes);
1544 		}
1545 		/*
1546 		 * Sleep if the vnode cache is in a good state.  This is
1547 		 * when it is not over-full and has space for about a 4%
1548 		 * or 9% expansion (by growing its size or inexcessively
1549 		 * reducing its free list).  Otherwise, try to reclaim
1550 		 * space for a 10% expansion.
1551 		 */
1552 		if (vstir && force == 0) {
1553 			force = 1;
1554 			vstir = 0;
1555 		}
1556 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1557 			vnlruproc_sig = 0;
1558 			wakeup(&vnlruproc_sig);
1559 			msleep(vnlruproc, &vnode_list_mtx,
1560 			    PVFS|PDROP, "vlruwt", hz);
1561 			continue;
1562 		}
1563 		rfreevnodes = vnlru_read_freevnodes();
1564 
1565 		onumvnodes = rnumvnodes;
1566 		/*
1567 		 * Calculate parameters for recycling.  These are the same
1568 		 * throughout the loop to give some semblance of fairness.
1569 		 * The trigger point is to avoid recycling vnodes with lots
1570 		 * of resident pages.  We aren't trying to free memory; we
1571 		 * are trying to recycle or at least free vnodes.
1572 		 */
1573 		if (rnumvnodes <= desiredvnodes)
1574 			usevnodes = rnumvnodes - rfreevnodes;
1575 		else
1576 			usevnodes = rnumvnodes;
1577 		if (usevnodes <= 0)
1578 			usevnodes = 1;
1579 		/*
1580 		 * The trigger value is chosen to give a conservatively
1581 		 * large value to ensure that it alone doesn't prevent
1582 		 * making progress.  The value can easily be so large that
1583 		 * it is effectively infinite in some congested and
1584 		 * misconfigured cases, and this is necessary.  Normally
1585 		 * it is about 8 to 100 (pages), which is quite large.
1586 		 */
1587 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1588 		if (force < 2)
1589 			trigger = vsmalltrigger;
1590 		reclaim_nc_src = force >= 3;
1591 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1592 		target = target / 10 + 1;
1593 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1594 		mtx_unlock(&vnode_list_mtx);
1595 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1596 			uma_reclaim(UMA_RECLAIM_DRAIN);
1597 		if (done == 0) {
1598 			if (force == 0 || force == 1) {
1599 				force = 2;
1600 				continue;
1601 			}
1602 			if (force == 2) {
1603 				force = 3;
1604 				continue;
1605 			}
1606 			want_reread = true;
1607 			force = 0;
1608 			vnlru_nowhere++;
1609 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1610 		} else {
1611 			want_reread = true;
1612 			kern_yield(PRI_USER);
1613 		}
1614 	}
1615 }
1616 
1617 static struct kproc_desc vnlru_kp = {
1618 	"vnlru",
1619 	vnlru_proc,
1620 	&vnlruproc
1621 };
1622 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1623     &vnlru_kp);
1624 
1625 /*
1626  * Routines having to do with the management of the vnode table.
1627  */
1628 
1629 /*
1630  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1631  * before we actually vgone().  This function must be called with the vnode
1632  * held to prevent the vnode from being returned to the free list midway
1633  * through vgone().
1634  */
1635 static int
1636 vtryrecycle(struct vnode *vp)
1637 {
1638 	struct mount *vnmp;
1639 
1640 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1641 	VNASSERT(vp->v_holdcnt, vp,
1642 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1643 	/*
1644 	 * This vnode may found and locked via some other list, if so we
1645 	 * can't recycle it yet.
1646 	 */
1647 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1648 		CTR2(KTR_VFS,
1649 		    "%s: impossible to recycle, vp %p lock is already held",
1650 		    __func__, vp);
1651 		vdrop_recycle(vp);
1652 		return (EWOULDBLOCK);
1653 	}
1654 	/*
1655 	 * Don't recycle if its filesystem is being suspended.
1656 	 */
1657 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1658 		VOP_UNLOCK(vp);
1659 		CTR2(KTR_VFS,
1660 		    "%s: impossible to recycle, cannot start the write for %p",
1661 		    __func__, vp);
1662 		vdrop_recycle(vp);
1663 		return (EBUSY);
1664 	}
1665 	/*
1666 	 * If we got this far, we need to acquire the interlock and see if
1667 	 * anyone picked up this vnode from another list.  If not, we will
1668 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1669 	 * will skip over it.
1670 	 */
1671 	VI_LOCK(vp);
1672 	if (vp->v_usecount) {
1673 		VOP_UNLOCK(vp);
1674 		vdropl_recycle(vp);
1675 		vn_finished_write(vnmp);
1676 		CTR2(KTR_VFS,
1677 		    "%s: impossible to recycle, %p is already referenced",
1678 		    __func__, vp);
1679 		return (EBUSY);
1680 	}
1681 	if (!VN_IS_DOOMED(vp)) {
1682 		counter_u64_add(recycles_free_count, 1);
1683 		vgonel(vp);
1684 	}
1685 	VOP_UNLOCK(vp);
1686 	vdropl_recycle(vp);
1687 	vn_finished_write(vnmp);
1688 	return (0);
1689 }
1690 
1691 /*
1692  * Allocate a new vnode.
1693  *
1694  * The operation never returns an error. Returning an error was disabled
1695  * in r145385 (dated 2005) with the following comment:
1696  *
1697  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1698  *
1699  * Given the age of this commit (almost 15 years at the time of writing this
1700  * comment) restoring the ability to fail requires a significant audit of
1701  * all codepaths.
1702  *
1703  * The routine can try to free a vnode or stall for up to 1 second waiting for
1704  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1705  */
1706 static u_long vn_alloc_cyclecount;
1707 
1708 static struct vnode * __noinline
1709 vn_alloc_hard(struct mount *mp)
1710 {
1711 	u_long rnumvnodes, rfreevnodes;
1712 
1713 	mtx_lock(&vnode_list_mtx);
1714 	rnumvnodes = atomic_load_long(&numvnodes);
1715 	if (rnumvnodes + 1 < desiredvnodes) {
1716 		vn_alloc_cyclecount = 0;
1717 		goto alloc;
1718 	}
1719 	rfreevnodes = vnlru_read_freevnodes();
1720 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1721 		vn_alloc_cyclecount = 0;
1722 		vstir = 1;
1723 	}
1724 	/*
1725 	 * Grow the vnode cache if it will not be above its target max
1726 	 * after growing.  Otherwise, if the free list is nonempty, try
1727 	 * to reclaim 1 item from it before growing the cache (possibly
1728 	 * above its target max if the reclamation failed or is delayed).
1729 	 * Otherwise, wait for some space.  In all cases, schedule
1730 	 * vnlru_proc() if we are getting short of space.  The watermarks
1731 	 * should be chosen so that we never wait or even reclaim from
1732 	 * the free list to below its target minimum.
1733 	 */
1734 	if (vnlru_free_locked(1) > 0)
1735 		goto alloc;
1736 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1737 		/*
1738 		 * Wait for space for a new vnode.
1739 		 */
1740 		vnlru_kick();
1741 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1742 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1743 		    vnlru_read_freevnodes() > 1)
1744 			vnlru_free_locked(1);
1745 	}
1746 alloc:
1747 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1748 	if (vnlru_under(rnumvnodes, vlowat))
1749 		vnlru_kick();
1750 	mtx_unlock(&vnode_list_mtx);
1751 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1752 }
1753 
1754 static struct vnode *
1755 vn_alloc(struct mount *mp)
1756 {
1757 	u_long rnumvnodes;
1758 
1759 	if (__predict_false(vn_alloc_cyclecount != 0))
1760 		return (vn_alloc_hard(mp));
1761 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1762 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1763 		atomic_subtract_long(&numvnodes, 1);
1764 		return (vn_alloc_hard(mp));
1765 	}
1766 
1767 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1768 }
1769 
1770 static void
1771 vn_free(struct vnode *vp)
1772 {
1773 
1774 	atomic_subtract_long(&numvnodes, 1);
1775 	uma_zfree_smr(vnode_zone, vp);
1776 }
1777 
1778 /*
1779  * Return the next vnode from the free list.
1780  */
1781 int
1782 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1783     struct vnode **vpp)
1784 {
1785 	struct vnode *vp;
1786 	struct thread *td;
1787 	struct lock_object *lo;
1788 
1789 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1790 
1791 	KASSERT(vops->registered,
1792 	    ("%s: not registered vector op %p\n", __func__, vops));
1793 
1794 	td = curthread;
1795 	if (td->td_vp_reserved != NULL) {
1796 		vp = td->td_vp_reserved;
1797 		td->td_vp_reserved = NULL;
1798 	} else {
1799 		vp = vn_alloc(mp);
1800 	}
1801 	counter_u64_add(vnodes_created, 1);
1802 
1803 	vn_set_state(vp, VSTATE_UNINITIALIZED);
1804 
1805 	/*
1806 	 * Locks are given the generic name "vnode" when created.
1807 	 * Follow the historic practice of using the filesystem
1808 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1809 	 *
1810 	 * Locks live in a witness group keyed on their name. Thus,
1811 	 * when a lock is renamed, it must also move from the witness
1812 	 * group of its old name to the witness group of its new name.
1813 	 *
1814 	 * The change only needs to be made when the vnode moves
1815 	 * from one filesystem type to another. We ensure that each
1816 	 * filesystem use a single static name pointer for its tag so
1817 	 * that we can compare pointers rather than doing a strcmp().
1818 	 */
1819 	lo = &vp->v_vnlock->lock_object;
1820 #ifdef WITNESS
1821 	if (lo->lo_name != tag) {
1822 #endif
1823 		lo->lo_name = tag;
1824 #ifdef WITNESS
1825 		WITNESS_DESTROY(lo);
1826 		WITNESS_INIT(lo, tag);
1827 	}
1828 #endif
1829 	/*
1830 	 * By default, don't allow shared locks unless filesystems opt-in.
1831 	 */
1832 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1833 	/*
1834 	 * Finalize various vnode identity bits.
1835 	 */
1836 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1837 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1838 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1839 	vp->v_type = VNON;
1840 	vp->v_op = vops;
1841 	vp->v_irflag = 0;
1842 	v_init_counters(vp);
1843 	vn_seqc_init(vp);
1844 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1845 #ifdef DIAGNOSTIC
1846 	if (mp == NULL && vops != &dead_vnodeops)
1847 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1848 #endif
1849 #ifdef MAC
1850 	mac_vnode_init(vp);
1851 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1852 		mac_vnode_associate_singlelabel(mp, vp);
1853 #endif
1854 	if (mp != NULL) {
1855 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1856 	}
1857 
1858 	/*
1859 	 * For the filesystems which do not use vfs_hash_insert(),
1860 	 * still initialize v_hash to have vfs_hash_index() useful.
1861 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1862 	 * its own hashing.
1863 	 */
1864 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1865 
1866 	*vpp = vp;
1867 	return (0);
1868 }
1869 
1870 void
1871 getnewvnode_reserve(void)
1872 {
1873 	struct thread *td;
1874 
1875 	td = curthread;
1876 	MPASS(td->td_vp_reserved == NULL);
1877 	td->td_vp_reserved = vn_alloc(NULL);
1878 }
1879 
1880 void
1881 getnewvnode_drop_reserve(void)
1882 {
1883 	struct thread *td;
1884 
1885 	td = curthread;
1886 	if (td->td_vp_reserved != NULL) {
1887 		vn_free(td->td_vp_reserved);
1888 		td->td_vp_reserved = NULL;
1889 	}
1890 }
1891 
1892 static void __noinline
1893 freevnode(struct vnode *vp)
1894 {
1895 	struct bufobj *bo;
1896 
1897 	/*
1898 	 * The vnode has been marked for destruction, so free it.
1899 	 *
1900 	 * The vnode will be returned to the zone where it will
1901 	 * normally remain until it is needed for another vnode. We
1902 	 * need to cleanup (or verify that the cleanup has already
1903 	 * been done) any residual data left from its current use
1904 	 * so as not to contaminate the freshly allocated vnode.
1905 	 */
1906 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1907 	/*
1908 	 * Paired with vgone.
1909 	 */
1910 	vn_seqc_write_end_free(vp);
1911 
1912 	bo = &vp->v_bufobj;
1913 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1914 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1915 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1916 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1917 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1918 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1919 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1920 	    ("clean blk trie not empty"));
1921 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1922 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1923 	    ("dirty blk trie not empty"));
1924 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1925 	    ("Dangling rangelock waiters"));
1926 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1927 	    ("Leaked inactivation"));
1928 	VI_UNLOCK(vp);
1929 	cache_assert_no_entries(vp);
1930 
1931 #ifdef MAC
1932 	mac_vnode_destroy(vp);
1933 #endif
1934 	if (vp->v_pollinfo != NULL) {
1935 		/*
1936 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
1937 		 * here while having another vnode locked when trying to
1938 		 * satisfy a lookup and needing to recycle.
1939 		 */
1940 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
1941 		destroy_vpollinfo(vp->v_pollinfo);
1942 		VOP_UNLOCK(vp);
1943 		vp->v_pollinfo = NULL;
1944 	}
1945 	vp->v_mountedhere = NULL;
1946 	vp->v_unpcb = NULL;
1947 	vp->v_rdev = NULL;
1948 	vp->v_fifoinfo = NULL;
1949 	vp->v_iflag = 0;
1950 	vp->v_vflag = 0;
1951 	bo->bo_flag = 0;
1952 	vn_free(vp);
1953 }
1954 
1955 /*
1956  * Delete from old mount point vnode list, if on one.
1957  */
1958 static void
1959 delmntque(struct vnode *vp)
1960 {
1961 	struct mount *mp;
1962 
1963 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1964 
1965 	mp = vp->v_mount;
1966 	MNT_ILOCK(mp);
1967 	VI_LOCK(vp);
1968 	vp->v_mount = NULL;
1969 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1970 		("bad mount point vnode list size"));
1971 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1972 	mp->mnt_nvnodelistsize--;
1973 	MNT_REL(mp);
1974 	MNT_IUNLOCK(mp);
1975 	/*
1976 	 * The caller expects the interlock to be still held.
1977 	 */
1978 	ASSERT_VI_LOCKED(vp, __func__);
1979 }
1980 
1981 static int
1982 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1983 {
1984 
1985 	KASSERT(vp->v_mount == NULL,
1986 		("insmntque: vnode already on per mount vnode list"));
1987 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1988 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1989 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1990 	} else {
1991 		KASSERT(!dtr,
1992 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
1993 		    __func__));
1994 	}
1995 
1996 	/*
1997 	 * We acquire the vnode interlock early to ensure that the
1998 	 * vnode cannot be recycled by another process releasing a
1999 	 * holdcnt on it before we get it on both the vnode list
2000 	 * and the active vnode list. The mount mutex protects only
2001 	 * manipulation of the vnode list and the vnode freelist
2002 	 * mutex protects only manipulation of the active vnode list.
2003 	 * Hence the need to hold the vnode interlock throughout.
2004 	 */
2005 	MNT_ILOCK(mp);
2006 	VI_LOCK(vp);
2007 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2008 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2009 	    mp->mnt_nvnodelistsize == 0)) &&
2010 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2011 		VI_UNLOCK(vp);
2012 		MNT_IUNLOCK(mp);
2013 		if (dtr) {
2014 			vp->v_data = NULL;
2015 			vp->v_op = &dead_vnodeops;
2016 			vgone(vp);
2017 			vput(vp);
2018 		}
2019 		return (EBUSY);
2020 	}
2021 	vp->v_mount = mp;
2022 	MNT_REF(mp);
2023 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2024 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2025 		("neg mount point vnode list size"));
2026 	mp->mnt_nvnodelistsize++;
2027 	VI_UNLOCK(vp);
2028 	MNT_IUNLOCK(mp);
2029 	return (0);
2030 }
2031 
2032 /*
2033  * Insert into list of vnodes for the new mount point, if available.
2034  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2035  * leaves handling of the vnode to the caller.
2036  */
2037 int
2038 insmntque(struct vnode *vp, struct mount *mp)
2039 {
2040 	return (insmntque1_int(vp, mp, true));
2041 }
2042 
2043 int
2044 insmntque1(struct vnode *vp, struct mount *mp)
2045 {
2046 	return (insmntque1_int(vp, mp, false));
2047 }
2048 
2049 /*
2050  * Flush out and invalidate all buffers associated with a bufobj
2051  * Called with the underlying object locked.
2052  */
2053 int
2054 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2055 {
2056 	int error;
2057 
2058 	BO_LOCK(bo);
2059 	if (flags & V_SAVE) {
2060 		error = bufobj_wwait(bo, slpflag, slptimeo);
2061 		if (error) {
2062 			BO_UNLOCK(bo);
2063 			return (error);
2064 		}
2065 		if (bo->bo_dirty.bv_cnt > 0) {
2066 			BO_UNLOCK(bo);
2067 			do {
2068 				error = BO_SYNC(bo, MNT_WAIT);
2069 			} while (error == ERELOOKUP);
2070 			if (error != 0)
2071 				return (error);
2072 			BO_LOCK(bo);
2073 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2074 				BO_UNLOCK(bo);
2075 				return (EBUSY);
2076 			}
2077 		}
2078 	}
2079 	/*
2080 	 * If you alter this loop please notice that interlock is dropped and
2081 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2082 	 * no race conditions occur from this.
2083 	 */
2084 	do {
2085 		error = flushbuflist(&bo->bo_clean,
2086 		    flags, bo, slpflag, slptimeo);
2087 		if (error == 0 && !(flags & V_CLEANONLY))
2088 			error = flushbuflist(&bo->bo_dirty,
2089 			    flags, bo, slpflag, slptimeo);
2090 		if (error != 0 && error != EAGAIN) {
2091 			BO_UNLOCK(bo);
2092 			return (error);
2093 		}
2094 	} while (error != 0);
2095 
2096 	/*
2097 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2098 	 * have write I/O in-progress but if there is a VM object then the
2099 	 * VM object can also have read-I/O in-progress.
2100 	 */
2101 	do {
2102 		bufobj_wwait(bo, 0, 0);
2103 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2104 			BO_UNLOCK(bo);
2105 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2106 			BO_LOCK(bo);
2107 		}
2108 	} while (bo->bo_numoutput > 0);
2109 	BO_UNLOCK(bo);
2110 
2111 	/*
2112 	 * Destroy the copy in the VM cache, too.
2113 	 */
2114 	if (bo->bo_object != NULL &&
2115 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2116 		VM_OBJECT_WLOCK(bo->bo_object);
2117 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2118 		    OBJPR_CLEANONLY : 0);
2119 		VM_OBJECT_WUNLOCK(bo->bo_object);
2120 	}
2121 
2122 #ifdef INVARIANTS
2123 	BO_LOCK(bo);
2124 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2125 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2126 	    bo->bo_clean.bv_cnt > 0))
2127 		panic("vinvalbuf: flush failed");
2128 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2129 	    bo->bo_dirty.bv_cnt > 0)
2130 		panic("vinvalbuf: flush dirty failed");
2131 	BO_UNLOCK(bo);
2132 #endif
2133 	return (0);
2134 }
2135 
2136 /*
2137  * Flush out and invalidate all buffers associated with a vnode.
2138  * Called with the underlying object locked.
2139  */
2140 int
2141 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2142 {
2143 
2144 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2145 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2146 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2147 		return (0);
2148 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2149 }
2150 
2151 /*
2152  * Flush out buffers on the specified list.
2153  *
2154  */
2155 static int
2156 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2157     int slptimeo)
2158 {
2159 	struct buf *bp, *nbp;
2160 	int retval, error;
2161 	daddr_t lblkno;
2162 	b_xflags_t xflags;
2163 
2164 	ASSERT_BO_WLOCKED(bo);
2165 
2166 	retval = 0;
2167 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2168 		/*
2169 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2170 		 * do not skip any buffers. If we are flushing only V_NORMAL
2171 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2172 		 * flushing only V_ALT buffers then skip buffers not marked
2173 		 * as BX_ALTDATA.
2174 		 */
2175 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2176 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2177 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2178 			continue;
2179 		}
2180 		if (nbp != NULL) {
2181 			lblkno = nbp->b_lblkno;
2182 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2183 		}
2184 		retval = EAGAIN;
2185 		error = BUF_TIMELOCK(bp,
2186 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2187 		    "flushbuf", slpflag, slptimeo);
2188 		if (error) {
2189 			BO_LOCK(bo);
2190 			return (error != ENOLCK ? error : EAGAIN);
2191 		}
2192 		KASSERT(bp->b_bufobj == bo,
2193 		    ("bp %p wrong b_bufobj %p should be %p",
2194 		    bp, bp->b_bufobj, bo));
2195 		/*
2196 		 * XXX Since there are no node locks for NFS, I
2197 		 * believe there is a slight chance that a delayed
2198 		 * write will occur while sleeping just above, so
2199 		 * check for it.
2200 		 */
2201 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2202 		    (flags & V_SAVE)) {
2203 			bremfree(bp);
2204 			bp->b_flags |= B_ASYNC;
2205 			bwrite(bp);
2206 			BO_LOCK(bo);
2207 			return (EAGAIN);	/* XXX: why not loop ? */
2208 		}
2209 		bremfree(bp);
2210 		bp->b_flags |= (B_INVAL | B_RELBUF);
2211 		bp->b_flags &= ~B_ASYNC;
2212 		brelse(bp);
2213 		BO_LOCK(bo);
2214 		if (nbp == NULL)
2215 			break;
2216 		nbp = gbincore(bo, lblkno);
2217 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2218 		    != xflags)
2219 			break;			/* nbp invalid */
2220 	}
2221 	return (retval);
2222 }
2223 
2224 int
2225 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2226 {
2227 	struct buf *bp;
2228 	int error;
2229 	daddr_t lblkno;
2230 
2231 	ASSERT_BO_LOCKED(bo);
2232 
2233 	for (lblkno = startn;;) {
2234 again:
2235 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2236 		if (bp == NULL || bp->b_lblkno >= endn ||
2237 		    bp->b_lblkno < startn)
2238 			break;
2239 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2240 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2241 		if (error != 0) {
2242 			BO_RLOCK(bo);
2243 			if (error == ENOLCK)
2244 				goto again;
2245 			return (error);
2246 		}
2247 		KASSERT(bp->b_bufobj == bo,
2248 		    ("bp %p wrong b_bufobj %p should be %p",
2249 		    bp, bp->b_bufobj, bo));
2250 		lblkno = bp->b_lblkno + 1;
2251 		if ((bp->b_flags & B_MANAGED) == 0)
2252 			bremfree(bp);
2253 		bp->b_flags |= B_RELBUF;
2254 		/*
2255 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2256 		 * pages backing each buffer in the range are unlikely to be
2257 		 * reused.  Dirty buffers will have the hint applied once
2258 		 * they've been written.
2259 		 */
2260 		if ((bp->b_flags & B_VMIO) != 0)
2261 			bp->b_flags |= B_NOREUSE;
2262 		brelse(bp);
2263 		BO_RLOCK(bo);
2264 	}
2265 	return (0);
2266 }
2267 
2268 /*
2269  * Truncate a file's buffer and pages to a specified length.  This
2270  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2271  * sync activity.
2272  */
2273 int
2274 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2275 {
2276 	struct buf *bp, *nbp;
2277 	struct bufobj *bo;
2278 	daddr_t startlbn;
2279 
2280 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2281 	    vp, blksize, (uintmax_t)length);
2282 
2283 	/*
2284 	 * Round up to the *next* lbn.
2285 	 */
2286 	startlbn = howmany(length, blksize);
2287 
2288 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2289 
2290 	bo = &vp->v_bufobj;
2291 restart_unlocked:
2292 	BO_LOCK(bo);
2293 
2294 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2295 		;
2296 
2297 	if (length > 0) {
2298 restartsync:
2299 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2300 			if (bp->b_lblkno > 0)
2301 				continue;
2302 			/*
2303 			 * Since we hold the vnode lock this should only
2304 			 * fail if we're racing with the buf daemon.
2305 			 */
2306 			if (BUF_LOCK(bp,
2307 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2308 			    BO_LOCKPTR(bo)) == ENOLCK)
2309 				goto restart_unlocked;
2310 
2311 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2312 			    ("buf(%p) on dirty queue without DELWRI", bp));
2313 
2314 			bremfree(bp);
2315 			bawrite(bp);
2316 			BO_LOCK(bo);
2317 			goto restartsync;
2318 		}
2319 	}
2320 
2321 	bufobj_wwait(bo, 0, 0);
2322 	BO_UNLOCK(bo);
2323 	vnode_pager_setsize(vp, length);
2324 
2325 	return (0);
2326 }
2327 
2328 /*
2329  * Invalidate the cached pages of a file's buffer within the range of block
2330  * numbers [startlbn, endlbn).
2331  */
2332 void
2333 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2334     int blksize)
2335 {
2336 	struct bufobj *bo;
2337 	off_t start, end;
2338 
2339 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2340 
2341 	start = blksize * startlbn;
2342 	end = blksize * endlbn;
2343 
2344 	bo = &vp->v_bufobj;
2345 	BO_LOCK(bo);
2346 	MPASS(blksize == bo->bo_bsize);
2347 
2348 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2349 		;
2350 
2351 	BO_UNLOCK(bo);
2352 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2353 }
2354 
2355 static int
2356 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2357     daddr_t startlbn, daddr_t endlbn)
2358 {
2359 	struct buf *bp, *nbp;
2360 	bool anyfreed;
2361 
2362 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2363 	ASSERT_BO_LOCKED(bo);
2364 
2365 	do {
2366 		anyfreed = false;
2367 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2368 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2369 				continue;
2370 			if (BUF_LOCK(bp,
2371 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2372 			    BO_LOCKPTR(bo)) == ENOLCK) {
2373 				BO_LOCK(bo);
2374 				return (EAGAIN);
2375 			}
2376 
2377 			bremfree(bp);
2378 			bp->b_flags |= B_INVAL | B_RELBUF;
2379 			bp->b_flags &= ~B_ASYNC;
2380 			brelse(bp);
2381 			anyfreed = true;
2382 
2383 			BO_LOCK(bo);
2384 			if (nbp != NULL &&
2385 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2386 			    nbp->b_vp != vp ||
2387 			    (nbp->b_flags & B_DELWRI) != 0))
2388 				return (EAGAIN);
2389 		}
2390 
2391 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2392 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2393 				continue;
2394 			if (BUF_LOCK(bp,
2395 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2396 			    BO_LOCKPTR(bo)) == ENOLCK) {
2397 				BO_LOCK(bo);
2398 				return (EAGAIN);
2399 			}
2400 			bremfree(bp);
2401 			bp->b_flags |= B_INVAL | B_RELBUF;
2402 			bp->b_flags &= ~B_ASYNC;
2403 			brelse(bp);
2404 			anyfreed = true;
2405 
2406 			BO_LOCK(bo);
2407 			if (nbp != NULL &&
2408 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2409 			    (nbp->b_vp != vp) ||
2410 			    (nbp->b_flags & B_DELWRI) == 0))
2411 				return (EAGAIN);
2412 		}
2413 	} while (anyfreed);
2414 	return (0);
2415 }
2416 
2417 static void
2418 buf_vlist_remove(struct buf *bp)
2419 {
2420 	struct bufv *bv;
2421 	b_xflags_t flags;
2422 
2423 	flags = bp->b_xflags;
2424 
2425 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2426 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2427 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2428 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2429 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2430 
2431 	if ((flags & BX_VNDIRTY) != 0)
2432 		bv = &bp->b_bufobj->bo_dirty;
2433 	else
2434 		bv = &bp->b_bufobj->bo_clean;
2435 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2436 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2437 	bv->bv_cnt--;
2438 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2439 }
2440 
2441 /*
2442  * Add the buffer to the sorted clean or dirty block list.
2443  *
2444  * NOTE: xflags is passed as a constant, optimizing this inline function!
2445  */
2446 static void
2447 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2448 {
2449 	struct bufv *bv;
2450 	struct buf *n;
2451 	int error;
2452 
2453 	ASSERT_BO_WLOCKED(bo);
2454 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2455 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2456 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2457 	    ("dead bo %p", bo));
2458 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2459 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2460 	bp->b_xflags |= xflags;
2461 	if (xflags & BX_VNDIRTY)
2462 		bv = &bo->bo_dirty;
2463 	else
2464 		bv = &bo->bo_clean;
2465 
2466 	/*
2467 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2468 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2469 	 * than _ge.
2470 	 */
2471 	if (bv->bv_cnt == 0 ||
2472 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2473 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2474 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2475 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2476 	else
2477 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2478 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2479 	if (error)
2480 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2481 	bv->bv_cnt++;
2482 }
2483 
2484 /*
2485  * Look up a buffer using the buffer tries.
2486  */
2487 struct buf *
2488 gbincore(struct bufobj *bo, daddr_t lblkno)
2489 {
2490 	struct buf *bp;
2491 
2492 	ASSERT_BO_LOCKED(bo);
2493 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2494 	if (bp != NULL)
2495 		return (bp);
2496 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2497 }
2498 
2499 /*
2500  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2501  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2502  * stability of the result.  Like other lockless lookups, the found buf may
2503  * already be invalid by the time this function returns.
2504  */
2505 struct buf *
2506 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2507 {
2508 	struct buf *bp;
2509 
2510 	ASSERT_BO_UNLOCKED(bo);
2511 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2512 	if (bp != NULL)
2513 		return (bp);
2514 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2515 }
2516 
2517 /*
2518  * Associate a buffer with a vnode.
2519  */
2520 void
2521 bgetvp(struct vnode *vp, struct buf *bp)
2522 {
2523 	struct bufobj *bo;
2524 
2525 	bo = &vp->v_bufobj;
2526 	ASSERT_BO_WLOCKED(bo);
2527 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2528 
2529 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2530 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2531 	    ("bgetvp: bp already attached! %p", bp));
2532 
2533 	vhold(vp);
2534 	bp->b_vp = vp;
2535 	bp->b_bufobj = bo;
2536 	/*
2537 	 * Insert onto list for new vnode.
2538 	 */
2539 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2540 }
2541 
2542 /*
2543  * Disassociate a buffer from a vnode.
2544  */
2545 void
2546 brelvp(struct buf *bp)
2547 {
2548 	struct bufobj *bo;
2549 	struct vnode *vp;
2550 
2551 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2552 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2553 
2554 	/*
2555 	 * Delete from old vnode list, if on one.
2556 	 */
2557 	vp = bp->b_vp;		/* XXX */
2558 	bo = bp->b_bufobj;
2559 	BO_LOCK(bo);
2560 	buf_vlist_remove(bp);
2561 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2562 		bo->bo_flag &= ~BO_ONWORKLST;
2563 		mtx_lock(&sync_mtx);
2564 		LIST_REMOVE(bo, bo_synclist);
2565 		syncer_worklist_len--;
2566 		mtx_unlock(&sync_mtx);
2567 	}
2568 	bp->b_vp = NULL;
2569 	bp->b_bufobj = NULL;
2570 	BO_UNLOCK(bo);
2571 	vdrop(vp);
2572 }
2573 
2574 /*
2575  * Add an item to the syncer work queue.
2576  */
2577 static void
2578 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2579 {
2580 	int slot;
2581 
2582 	ASSERT_BO_WLOCKED(bo);
2583 
2584 	mtx_lock(&sync_mtx);
2585 	if (bo->bo_flag & BO_ONWORKLST)
2586 		LIST_REMOVE(bo, bo_synclist);
2587 	else {
2588 		bo->bo_flag |= BO_ONWORKLST;
2589 		syncer_worklist_len++;
2590 	}
2591 
2592 	if (delay > syncer_maxdelay - 2)
2593 		delay = syncer_maxdelay - 2;
2594 	slot = (syncer_delayno + delay) & syncer_mask;
2595 
2596 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2597 	mtx_unlock(&sync_mtx);
2598 }
2599 
2600 static int
2601 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2602 {
2603 	int error, len;
2604 
2605 	mtx_lock(&sync_mtx);
2606 	len = syncer_worklist_len - sync_vnode_count;
2607 	mtx_unlock(&sync_mtx);
2608 	error = SYSCTL_OUT(req, &len, sizeof(len));
2609 	return (error);
2610 }
2611 
2612 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2613     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2614     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2615 
2616 static struct proc *updateproc;
2617 static void sched_sync(void);
2618 static struct kproc_desc up_kp = {
2619 	"syncer",
2620 	sched_sync,
2621 	&updateproc
2622 };
2623 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2624 
2625 static int
2626 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2627 {
2628 	struct vnode *vp;
2629 	struct mount *mp;
2630 
2631 	*bo = LIST_FIRST(slp);
2632 	if (*bo == NULL)
2633 		return (0);
2634 	vp = bo2vnode(*bo);
2635 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2636 		return (1);
2637 	/*
2638 	 * We use vhold in case the vnode does not
2639 	 * successfully sync.  vhold prevents the vnode from
2640 	 * going away when we unlock the sync_mtx so that
2641 	 * we can acquire the vnode interlock.
2642 	 */
2643 	vholdl(vp);
2644 	mtx_unlock(&sync_mtx);
2645 	VI_UNLOCK(vp);
2646 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2647 		vdrop(vp);
2648 		mtx_lock(&sync_mtx);
2649 		return (*bo == LIST_FIRST(slp));
2650 	}
2651 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2652 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2653 	VOP_UNLOCK(vp);
2654 	vn_finished_write(mp);
2655 	BO_LOCK(*bo);
2656 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2657 		/*
2658 		 * Put us back on the worklist.  The worklist
2659 		 * routine will remove us from our current
2660 		 * position and then add us back in at a later
2661 		 * position.
2662 		 */
2663 		vn_syncer_add_to_worklist(*bo, syncdelay);
2664 	}
2665 	BO_UNLOCK(*bo);
2666 	vdrop(vp);
2667 	mtx_lock(&sync_mtx);
2668 	return (0);
2669 }
2670 
2671 static int first_printf = 1;
2672 
2673 /*
2674  * System filesystem synchronizer daemon.
2675  */
2676 static void
2677 sched_sync(void)
2678 {
2679 	struct synclist *next, *slp;
2680 	struct bufobj *bo;
2681 	long starttime;
2682 	struct thread *td = curthread;
2683 	int last_work_seen;
2684 	int net_worklist_len;
2685 	int syncer_final_iter;
2686 	int error;
2687 
2688 	last_work_seen = 0;
2689 	syncer_final_iter = 0;
2690 	syncer_state = SYNCER_RUNNING;
2691 	starttime = time_uptime;
2692 	td->td_pflags |= TDP_NORUNNINGBUF;
2693 
2694 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2695 	    SHUTDOWN_PRI_LAST);
2696 
2697 	mtx_lock(&sync_mtx);
2698 	for (;;) {
2699 		if (syncer_state == SYNCER_FINAL_DELAY &&
2700 		    syncer_final_iter == 0) {
2701 			mtx_unlock(&sync_mtx);
2702 			kproc_suspend_check(td->td_proc);
2703 			mtx_lock(&sync_mtx);
2704 		}
2705 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2706 		if (syncer_state != SYNCER_RUNNING &&
2707 		    starttime != time_uptime) {
2708 			if (first_printf) {
2709 				printf("\nSyncing disks, vnodes remaining... ");
2710 				first_printf = 0;
2711 			}
2712 			printf("%d ", net_worklist_len);
2713 		}
2714 		starttime = time_uptime;
2715 
2716 		/*
2717 		 * Push files whose dirty time has expired.  Be careful
2718 		 * of interrupt race on slp queue.
2719 		 *
2720 		 * Skip over empty worklist slots when shutting down.
2721 		 */
2722 		do {
2723 			slp = &syncer_workitem_pending[syncer_delayno];
2724 			syncer_delayno += 1;
2725 			if (syncer_delayno == syncer_maxdelay)
2726 				syncer_delayno = 0;
2727 			next = &syncer_workitem_pending[syncer_delayno];
2728 			/*
2729 			 * If the worklist has wrapped since the
2730 			 * it was emptied of all but syncer vnodes,
2731 			 * switch to the FINAL_DELAY state and run
2732 			 * for one more second.
2733 			 */
2734 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2735 			    net_worklist_len == 0 &&
2736 			    last_work_seen == syncer_delayno) {
2737 				syncer_state = SYNCER_FINAL_DELAY;
2738 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2739 			}
2740 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2741 		    syncer_worklist_len > 0);
2742 
2743 		/*
2744 		 * Keep track of the last time there was anything
2745 		 * on the worklist other than syncer vnodes.
2746 		 * Return to the SHUTTING_DOWN state if any
2747 		 * new work appears.
2748 		 */
2749 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2750 			last_work_seen = syncer_delayno;
2751 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2752 			syncer_state = SYNCER_SHUTTING_DOWN;
2753 		while (!LIST_EMPTY(slp)) {
2754 			error = sync_vnode(slp, &bo, td);
2755 			if (error == 1) {
2756 				LIST_REMOVE(bo, bo_synclist);
2757 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2758 				continue;
2759 			}
2760 
2761 			if (first_printf == 0) {
2762 				/*
2763 				 * Drop the sync mutex, because some watchdog
2764 				 * drivers need to sleep while patting
2765 				 */
2766 				mtx_unlock(&sync_mtx);
2767 				wdog_kern_pat(WD_LASTVAL);
2768 				mtx_lock(&sync_mtx);
2769 			}
2770 		}
2771 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2772 			syncer_final_iter--;
2773 		/*
2774 		 * The variable rushjob allows the kernel to speed up the
2775 		 * processing of the filesystem syncer process. A rushjob
2776 		 * value of N tells the filesystem syncer to process the next
2777 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2778 		 * is used by the soft update code to speed up the filesystem
2779 		 * syncer process when the incore state is getting so far
2780 		 * ahead of the disk that the kernel memory pool is being
2781 		 * threatened with exhaustion.
2782 		 */
2783 		if (rushjob > 0) {
2784 			rushjob -= 1;
2785 			continue;
2786 		}
2787 		/*
2788 		 * Just sleep for a short period of time between
2789 		 * iterations when shutting down to allow some I/O
2790 		 * to happen.
2791 		 *
2792 		 * If it has taken us less than a second to process the
2793 		 * current work, then wait. Otherwise start right over
2794 		 * again. We can still lose time if any single round
2795 		 * takes more than two seconds, but it does not really
2796 		 * matter as we are just trying to generally pace the
2797 		 * filesystem activity.
2798 		 */
2799 		if (syncer_state != SYNCER_RUNNING ||
2800 		    time_uptime == starttime) {
2801 			thread_lock(td);
2802 			sched_prio(td, PPAUSE);
2803 			thread_unlock(td);
2804 		}
2805 		if (syncer_state != SYNCER_RUNNING)
2806 			cv_timedwait(&sync_wakeup, &sync_mtx,
2807 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2808 		else if (time_uptime == starttime)
2809 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2810 	}
2811 }
2812 
2813 /*
2814  * Request the syncer daemon to speed up its work.
2815  * We never push it to speed up more than half of its
2816  * normal turn time, otherwise it could take over the cpu.
2817  */
2818 int
2819 speedup_syncer(void)
2820 {
2821 	int ret = 0;
2822 
2823 	mtx_lock(&sync_mtx);
2824 	if (rushjob < syncdelay / 2) {
2825 		rushjob += 1;
2826 		stat_rush_requests += 1;
2827 		ret = 1;
2828 	}
2829 	mtx_unlock(&sync_mtx);
2830 	cv_broadcast(&sync_wakeup);
2831 	return (ret);
2832 }
2833 
2834 /*
2835  * Tell the syncer to speed up its work and run though its work
2836  * list several times, then tell it to shut down.
2837  */
2838 static void
2839 syncer_shutdown(void *arg, int howto)
2840 {
2841 
2842 	if (howto & RB_NOSYNC)
2843 		return;
2844 	mtx_lock(&sync_mtx);
2845 	syncer_state = SYNCER_SHUTTING_DOWN;
2846 	rushjob = 0;
2847 	mtx_unlock(&sync_mtx);
2848 	cv_broadcast(&sync_wakeup);
2849 	kproc_shutdown(arg, howto);
2850 }
2851 
2852 void
2853 syncer_suspend(void)
2854 {
2855 
2856 	syncer_shutdown(updateproc, 0);
2857 }
2858 
2859 void
2860 syncer_resume(void)
2861 {
2862 
2863 	mtx_lock(&sync_mtx);
2864 	first_printf = 1;
2865 	syncer_state = SYNCER_RUNNING;
2866 	mtx_unlock(&sync_mtx);
2867 	cv_broadcast(&sync_wakeup);
2868 	kproc_resume(updateproc);
2869 }
2870 
2871 /*
2872  * Move the buffer between the clean and dirty lists of its vnode.
2873  */
2874 void
2875 reassignbuf(struct buf *bp)
2876 {
2877 	struct vnode *vp;
2878 	struct bufobj *bo;
2879 	int delay;
2880 #ifdef INVARIANTS
2881 	struct bufv *bv;
2882 #endif
2883 
2884 	vp = bp->b_vp;
2885 	bo = bp->b_bufobj;
2886 
2887 	KASSERT((bp->b_flags & B_PAGING) == 0,
2888 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2889 
2890 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2891 	    bp, bp->b_vp, bp->b_flags);
2892 
2893 	BO_LOCK(bo);
2894 	buf_vlist_remove(bp);
2895 
2896 	/*
2897 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2898 	 * of clean buffers.
2899 	 */
2900 	if (bp->b_flags & B_DELWRI) {
2901 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2902 			switch (vp->v_type) {
2903 			case VDIR:
2904 				delay = dirdelay;
2905 				break;
2906 			case VCHR:
2907 				delay = metadelay;
2908 				break;
2909 			default:
2910 				delay = filedelay;
2911 			}
2912 			vn_syncer_add_to_worklist(bo, delay);
2913 		}
2914 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2915 	} else {
2916 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2917 
2918 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2919 			mtx_lock(&sync_mtx);
2920 			LIST_REMOVE(bo, bo_synclist);
2921 			syncer_worklist_len--;
2922 			mtx_unlock(&sync_mtx);
2923 			bo->bo_flag &= ~BO_ONWORKLST;
2924 		}
2925 	}
2926 #ifdef INVARIANTS
2927 	bv = &bo->bo_clean;
2928 	bp = TAILQ_FIRST(&bv->bv_hd);
2929 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2930 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2931 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2932 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2933 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2934 	bv = &bo->bo_dirty;
2935 	bp = TAILQ_FIRST(&bv->bv_hd);
2936 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2937 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2938 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2939 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2940 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2941 #endif
2942 	BO_UNLOCK(bo);
2943 }
2944 
2945 static void
2946 v_init_counters(struct vnode *vp)
2947 {
2948 
2949 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2950 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2951 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2952 
2953 	refcount_init(&vp->v_holdcnt, 1);
2954 	refcount_init(&vp->v_usecount, 1);
2955 }
2956 
2957 /*
2958  * Grab a particular vnode from the free list, increment its
2959  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2960  * is being destroyed.  Only callers who specify LK_RETRY will
2961  * see doomed vnodes.  If inactive processing was delayed in
2962  * vput try to do it here.
2963  *
2964  * usecount is manipulated using atomics without holding any locks.
2965  *
2966  * holdcnt can be manipulated using atomics without holding any locks,
2967  * except when transitioning 1<->0, in which case the interlock is held.
2968  *
2969  * Consumers which don't guarantee liveness of the vnode can use SMR to
2970  * try to get a reference. Note this operation can fail since the vnode
2971  * may be awaiting getting freed by the time they get to it.
2972  */
2973 enum vgetstate
2974 vget_prep_smr(struct vnode *vp)
2975 {
2976 	enum vgetstate vs;
2977 
2978 	VFS_SMR_ASSERT_ENTERED();
2979 
2980 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2981 		vs = VGET_USECOUNT;
2982 	} else {
2983 		if (vhold_smr(vp))
2984 			vs = VGET_HOLDCNT;
2985 		else
2986 			vs = VGET_NONE;
2987 	}
2988 	return (vs);
2989 }
2990 
2991 enum vgetstate
2992 vget_prep(struct vnode *vp)
2993 {
2994 	enum vgetstate vs;
2995 
2996 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2997 		vs = VGET_USECOUNT;
2998 	} else {
2999 		vhold(vp);
3000 		vs = VGET_HOLDCNT;
3001 	}
3002 	return (vs);
3003 }
3004 
3005 void
3006 vget_abort(struct vnode *vp, enum vgetstate vs)
3007 {
3008 
3009 	switch (vs) {
3010 	case VGET_USECOUNT:
3011 		vrele(vp);
3012 		break;
3013 	case VGET_HOLDCNT:
3014 		vdrop(vp);
3015 		break;
3016 	default:
3017 		__assert_unreachable();
3018 	}
3019 }
3020 
3021 int
3022 vget(struct vnode *vp, int flags)
3023 {
3024 	enum vgetstate vs;
3025 
3026 	vs = vget_prep(vp);
3027 	return (vget_finish(vp, flags, vs));
3028 }
3029 
3030 int
3031 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3032 {
3033 	int error;
3034 
3035 	if ((flags & LK_INTERLOCK) != 0)
3036 		ASSERT_VI_LOCKED(vp, __func__);
3037 	else
3038 		ASSERT_VI_UNLOCKED(vp, __func__);
3039 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3040 	VNPASS(vp->v_holdcnt > 0, vp);
3041 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3042 
3043 	error = vn_lock(vp, flags);
3044 	if (__predict_false(error != 0)) {
3045 		vget_abort(vp, vs);
3046 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3047 		    vp);
3048 		return (error);
3049 	}
3050 
3051 	vget_finish_ref(vp, vs);
3052 	return (0);
3053 }
3054 
3055 void
3056 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3057 {
3058 	int old;
3059 
3060 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3061 	VNPASS(vp->v_holdcnt > 0, vp);
3062 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3063 
3064 	if (vs == VGET_USECOUNT)
3065 		return;
3066 
3067 	/*
3068 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3069 	 * the vnode around. Otherwise someone else lended their hold count and
3070 	 * we have to drop ours.
3071 	 */
3072 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3073 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3074 	if (old != 0) {
3075 #ifdef INVARIANTS
3076 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3077 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3078 #else
3079 		refcount_release(&vp->v_holdcnt);
3080 #endif
3081 	}
3082 }
3083 
3084 void
3085 vref(struct vnode *vp)
3086 {
3087 	enum vgetstate vs;
3088 
3089 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3090 	vs = vget_prep(vp);
3091 	vget_finish_ref(vp, vs);
3092 }
3093 
3094 void
3095 vrefact(struct vnode *vp)
3096 {
3097 
3098 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3099 #ifdef INVARIANTS
3100 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3101 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3102 #else
3103 	refcount_acquire(&vp->v_usecount);
3104 #endif
3105 }
3106 
3107 void
3108 vlazy(struct vnode *vp)
3109 {
3110 	struct mount *mp;
3111 
3112 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3113 
3114 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3115 		return;
3116 	/*
3117 	 * We may get here for inactive routines after the vnode got doomed.
3118 	 */
3119 	if (VN_IS_DOOMED(vp))
3120 		return;
3121 	mp = vp->v_mount;
3122 	mtx_lock(&mp->mnt_listmtx);
3123 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3124 		vp->v_mflag |= VMP_LAZYLIST;
3125 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3126 		mp->mnt_lazyvnodelistsize++;
3127 	}
3128 	mtx_unlock(&mp->mnt_listmtx);
3129 }
3130 
3131 static void
3132 vunlazy(struct vnode *vp)
3133 {
3134 	struct mount *mp;
3135 
3136 	ASSERT_VI_LOCKED(vp, __func__);
3137 	VNPASS(!VN_IS_DOOMED(vp), vp);
3138 
3139 	mp = vp->v_mount;
3140 	mtx_lock(&mp->mnt_listmtx);
3141 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3142 	/*
3143 	 * Don't remove the vnode from the lazy list if another thread
3144 	 * has increased the hold count. It may have re-enqueued the
3145 	 * vnode to the lazy list and is now responsible for its
3146 	 * removal.
3147 	 */
3148 	if (vp->v_holdcnt == 0) {
3149 		vp->v_mflag &= ~VMP_LAZYLIST;
3150 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3151 		mp->mnt_lazyvnodelistsize--;
3152 	}
3153 	mtx_unlock(&mp->mnt_listmtx);
3154 }
3155 
3156 /*
3157  * This routine is only meant to be called from vgonel prior to dooming
3158  * the vnode.
3159  */
3160 static void
3161 vunlazy_gone(struct vnode *vp)
3162 {
3163 	struct mount *mp;
3164 
3165 	ASSERT_VOP_ELOCKED(vp, __func__);
3166 	ASSERT_VI_LOCKED(vp, __func__);
3167 	VNPASS(!VN_IS_DOOMED(vp), vp);
3168 
3169 	if (vp->v_mflag & VMP_LAZYLIST) {
3170 		mp = vp->v_mount;
3171 		mtx_lock(&mp->mnt_listmtx);
3172 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3173 		vp->v_mflag &= ~VMP_LAZYLIST;
3174 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3175 		mp->mnt_lazyvnodelistsize--;
3176 		mtx_unlock(&mp->mnt_listmtx);
3177 	}
3178 }
3179 
3180 static void
3181 vdefer_inactive(struct vnode *vp)
3182 {
3183 
3184 	ASSERT_VI_LOCKED(vp, __func__);
3185 	VNASSERT(vp->v_holdcnt > 0, vp,
3186 	    ("%s: vnode without hold count", __func__));
3187 	if (VN_IS_DOOMED(vp)) {
3188 		vdropl(vp);
3189 		return;
3190 	}
3191 	if (vp->v_iflag & VI_DEFINACT) {
3192 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3193 		vdropl(vp);
3194 		return;
3195 	}
3196 	if (vp->v_usecount > 0) {
3197 		vp->v_iflag &= ~VI_OWEINACT;
3198 		vdropl(vp);
3199 		return;
3200 	}
3201 	vlazy(vp);
3202 	vp->v_iflag |= VI_DEFINACT;
3203 	VI_UNLOCK(vp);
3204 	counter_u64_add(deferred_inact, 1);
3205 }
3206 
3207 static void
3208 vdefer_inactive_unlocked(struct vnode *vp)
3209 {
3210 
3211 	VI_LOCK(vp);
3212 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3213 		vdropl(vp);
3214 		return;
3215 	}
3216 	vdefer_inactive(vp);
3217 }
3218 
3219 enum vput_op { VRELE, VPUT, VUNREF };
3220 
3221 /*
3222  * Handle ->v_usecount transitioning to 0.
3223  *
3224  * By releasing the last usecount we take ownership of the hold count which
3225  * provides liveness of the vnode, meaning we have to vdrop.
3226  *
3227  * For all vnodes we may need to perform inactive processing. It requires an
3228  * exclusive lock on the vnode, while it is legal to call here with only a
3229  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3230  * inactive processing gets deferred to the syncer.
3231  *
3232  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3233  * on the lock being held all the way until VOP_INACTIVE. This in particular
3234  * happens with UFS which adds half-constructed vnodes to the hash, where they
3235  * can be found by other code.
3236  */
3237 static void
3238 vput_final(struct vnode *vp, enum vput_op func)
3239 {
3240 	int error;
3241 	bool want_unlock;
3242 
3243 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3244 	VNPASS(vp->v_holdcnt > 0, vp);
3245 
3246 	VI_LOCK(vp);
3247 
3248 	/*
3249 	 * By the time we got here someone else might have transitioned
3250 	 * the count back to > 0.
3251 	 */
3252 	if (vp->v_usecount > 0)
3253 		goto out;
3254 
3255 	/*
3256 	 * If the vnode is doomed vgone already performed inactive processing
3257 	 * (if needed).
3258 	 */
3259 	if (VN_IS_DOOMED(vp))
3260 		goto out;
3261 
3262 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3263 		goto out;
3264 
3265 	if (vp->v_iflag & VI_DOINGINACT)
3266 		goto out;
3267 
3268 	/*
3269 	 * Locking operations here will drop the interlock and possibly the
3270 	 * vnode lock, opening a window where the vnode can get doomed all the
3271 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3272 	 * perform inactive.
3273 	 */
3274 	vp->v_iflag |= VI_OWEINACT;
3275 	want_unlock = false;
3276 	error = 0;
3277 	switch (func) {
3278 	case VRELE:
3279 		switch (VOP_ISLOCKED(vp)) {
3280 		case LK_EXCLUSIVE:
3281 			break;
3282 		case LK_EXCLOTHER:
3283 		case 0:
3284 			want_unlock = true;
3285 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3286 			VI_LOCK(vp);
3287 			break;
3288 		default:
3289 			/*
3290 			 * The lock has at least one sharer, but we have no way
3291 			 * to conclude whether this is us. Play it safe and
3292 			 * defer processing.
3293 			 */
3294 			error = EAGAIN;
3295 			break;
3296 		}
3297 		break;
3298 	case VPUT:
3299 		want_unlock = true;
3300 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3301 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3302 			    LK_NOWAIT);
3303 			VI_LOCK(vp);
3304 		}
3305 		break;
3306 	case VUNREF:
3307 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3308 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3309 			VI_LOCK(vp);
3310 		}
3311 		break;
3312 	}
3313 	if (error == 0) {
3314 		if (func == VUNREF) {
3315 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3316 			    ("recursive vunref"));
3317 			vp->v_vflag |= VV_UNREF;
3318 		}
3319 		for (;;) {
3320 			error = vinactive(vp);
3321 			if (want_unlock)
3322 				VOP_UNLOCK(vp);
3323 			if (error != ERELOOKUP || !want_unlock)
3324 				break;
3325 			VOP_LOCK(vp, LK_EXCLUSIVE);
3326 		}
3327 		if (func == VUNREF)
3328 			vp->v_vflag &= ~VV_UNREF;
3329 		vdropl(vp);
3330 	} else {
3331 		vdefer_inactive(vp);
3332 	}
3333 	return;
3334 out:
3335 	if (func == VPUT)
3336 		VOP_UNLOCK(vp);
3337 	vdropl(vp);
3338 }
3339 
3340 /*
3341  * Decrement ->v_usecount for a vnode.
3342  *
3343  * Releasing the last use count requires additional processing, see vput_final
3344  * above for details.
3345  *
3346  * Comment above each variant denotes lock state on entry and exit.
3347  */
3348 
3349 /*
3350  * in: any
3351  * out: same as passed in
3352  */
3353 void
3354 vrele(struct vnode *vp)
3355 {
3356 
3357 	ASSERT_VI_UNLOCKED(vp, __func__);
3358 	if (!refcount_release(&vp->v_usecount))
3359 		return;
3360 	vput_final(vp, VRELE);
3361 }
3362 
3363 /*
3364  * in: locked
3365  * out: unlocked
3366  */
3367 void
3368 vput(struct vnode *vp)
3369 {
3370 
3371 	ASSERT_VOP_LOCKED(vp, __func__);
3372 	ASSERT_VI_UNLOCKED(vp, __func__);
3373 	if (!refcount_release(&vp->v_usecount)) {
3374 		VOP_UNLOCK(vp);
3375 		return;
3376 	}
3377 	vput_final(vp, VPUT);
3378 }
3379 
3380 /*
3381  * in: locked
3382  * out: locked
3383  */
3384 void
3385 vunref(struct vnode *vp)
3386 {
3387 
3388 	ASSERT_VOP_LOCKED(vp, __func__);
3389 	ASSERT_VI_UNLOCKED(vp, __func__);
3390 	if (!refcount_release(&vp->v_usecount))
3391 		return;
3392 	vput_final(vp, VUNREF);
3393 }
3394 
3395 void
3396 vhold(struct vnode *vp)
3397 {
3398 	int old;
3399 
3400 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3401 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3402 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3403 	    ("%s: wrong hold count %d", __func__, old));
3404 	if (old == 0)
3405 		vfs_freevnodes_dec();
3406 }
3407 
3408 void
3409 vholdnz(struct vnode *vp)
3410 {
3411 
3412 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3413 #ifdef INVARIANTS
3414 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3415 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3416 	    ("%s: wrong hold count %d", __func__, old));
3417 #else
3418 	atomic_add_int(&vp->v_holdcnt, 1);
3419 #endif
3420 }
3421 
3422 /*
3423  * Grab a hold count unless the vnode is freed.
3424  *
3425  * Only use this routine if vfs smr is the only protection you have against
3426  * freeing the vnode.
3427  *
3428  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3429  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3430  * the thread which managed to set the flag.
3431  *
3432  * It may be tempting to replace the loop with:
3433  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3434  * if (count & VHOLD_NO_SMR) {
3435  *     backpedal and error out;
3436  * }
3437  *
3438  * However, while this is more performant, it hinders debugging by eliminating
3439  * the previously mentioned invariant.
3440  */
3441 bool
3442 vhold_smr(struct vnode *vp)
3443 {
3444 	int count;
3445 
3446 	VFS_SMR_ASSERT_ENTERED();
3447 
3448 	count = atomic_load_int(&vp->v_holdcnt);
3449 	for (;;) {
3450 		if (count & VHOLD_NO_SMR) {
3451 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3452 			    ("non-zero hold count with flags %d\n", count));
3453 			return (false);
3454 		}
3455 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3456 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3457 			if (count == 0)
3458 				vfs_freevnodes_dec();
3459 			return (true);
3460 		}
3461 	}
3462 }
3463 
3464 /*
3465  * Hold a free vnode for recycling.
3466  *
3467  * Note: vnode_init references this comment.
3468  *
3469  * Attempts to recycle only need the global vnode list lock and have no use for
3470  * SMR.
3471  *
3472  * However, vnodes get inserted into the global list before they get fully
3473  * initialized and stay there until UMA decides to free the memory. This in
3474  * particular means the target can be found before it becomes usable and after
3475  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3476  * VHOLD_NO_SMR.
3477  *
3478  * Note: the vnode may gain more references after we transition the count 0->1.
3479  */
3480 static bool
3481 vhold_recycle_free(struct vnode *vp)
3482 {
3483 	int count;
3484 
3485 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3486 
3487 	count = atomic_load_int(&vp->v_holdcnt);
3488 	for (;;) {
3489 		if (count & VHOLD_NO_SMR) {
3490 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3491 			    ("non-zero hold count with flags %d\n", count));
3492 			return (false);
3493 		}
3494 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3495 		if (count > 0) {
3496 			return (false);
3497 		}
3498 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3499 			vfs_freevnodes_dec();
3500 			return (true);
3501 		}
3502 	}
3503 }
3504 
3505 static void __noinline
3506 vdbatch_process(struct vdbatch *vd)
3507 {
3508 	struct vnode *vp;
3509 	int i;
3510 
3511 	mtx_assert(&vd->lock, MA_OWNED);
3512 	MPASS(curthread->td_pinned > 0);
3513 	MPASS(vd->index == VDBATCH_SIZE);
3514 
3515 	mtx_lock(&vnode_list_mtx);
3516 	critical_enter();
3517 	freevnodes += vd->freevnodes;
3518 	for (i = 0; i < VDBATCH_SIZE; i++) {
3519 		vp = vd->tab[i];
3520 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3521 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3522 		MPASS(vp->v_dbatchcpu != NOCPU);
3523 		vp->v_dbatchcpu = NOCPU;
3524 	}
3525 	mtx_unlock(&vnode_list_mtx);
3526 	vd->freevnodes = 0;
3527 	bzero(vd->tab, sizeof(vd->tab));
3528 	vd->index = 0;
3529 	critical_exit();
3530 }
3531 
3532 static void
3533 vdbatch_enqueue(struct vnode *vp)
3534 {
3535 	struct vdbatch *vd;
3536 
3537 	ASSERT_VI_LOCKED(vp, __func__);
3538 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3539 	    ("%s: deferring requeue of a doomed vnode", __func__));
3540 
3541 	if (vp->v_dbatchcpu != NOCPU) {
3542 		VI_UNLOCK(vp);
3543 		return;
3544 	}
3545 
3546 	sched_pin();
3547 	vd = DPCPU_PTR(vd);
3548 	mtx_lock(&vd->lock);
3549 	MPASS(vd->index < VDBATCH_SIZE);
3550 	MPASS(vd->tab[vd->index] == NULL);
3551 	/*
3552 	 * A hack: we depend on being pinned so that we know what to put in
3553 	 * ->v_dbatchcpu.
3554 	 */
3555 	vp->v_dbatchcpu = curcpu;
3556 	vd->tab[vd->index] = vp;
3557 	vd->index++;
3558 	VI_UNLOCK(vp);
3559 	if (vd->index == VDBATCH_SIZE)
3560 		vdbatch_process(vd);
3561 	mtx_unlock(&vd->lock);
3562 	sched_unpin();
3563 }
3564 
3565 /*
3566  * This routine must only be called for vnodes which are about to be
3567  * deallocated. Supporting dequeue for arbitrary vndoes would require
3568  * validating that the locked batch matches.
3569  */
3570 static void
3571 vdbatch_dequeue(struct vnode *vp)
3572 {
3573 	struct vdbatch *vd;
3574 	int i;
3575 	short cpu;
3576 
3577 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3578 	    ("%s: called for a used vnode\n", __func__));
3579 
3580 	cpu = vp->v_dbatchcpu;
3581 	if (cpu == NOCPU)
3582 		return;
3583 
3584 	vd = DPCPU_ID_PTR(cpu, vd);
3585 	mtx_lock(&vd->lock);
3586 	for (i = 0; i < vd->index; i++) {
3587 		if (vd->tab[i] != vp)
3588 			continue;
3589 		vp->v_dbatchcpu = NOCPU;
3590 		vd->index--;
3591 		vd->tab[i] = vd->tab[vd->index];
3592 		vd->tab[vd->index] = NULL;
3593 		break;
3594 	}
3595 	mtx_unlock(&vd->lock);
3596 	/*
3597 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3598 	 */
3599 	MPASS(vp->v_dbatchcpu == NOCPU);
3600 }
3601 
3602 /*
3603  * Drop the hold count of the vnode.  If this is the last reference to
3604  * the vnode we place it on the free list unless it has been vgone'd
3605  * (marked VIRF_DOOMED) in which case we will free it.
3606  *
3607  * Because the vnode vm object keeps a hold reference on the vnode if
3608  * there is at least one resident non-cached page, the vnode cannot
3609  * leave the active list without the page cleanup done.
3610  */
3611 static void __noinline
3612 vdropl_final(struct vnode *vp)
3613 {
3614 
3615 	ASSERT_VI_LOCKED(vp, __func__);
3616 	VNPASS(VN_IS_DOOMED(vp), vp);
3617 	/*
3618 	 * Set the VHOLD_NO_SMR flag.
3619 	 *
3620 	 * We may be racing against vhold_smr. If they win we can just pretend
3621 	 * we never got this far, they will vdrop later.
3622 	 */
3623 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3624 		vfs_freevnodes_inc();
3625 		VI_UNLOCK(vp);
3626 		/*
3627 		 * We lost the aforementioned race. Any subsequent access is
3628 		 * invalid as they might have managed to vdropl on their own.
3629 		 */
3630 		return;
3631 	}
3632 	/*
3633 	 * Don't bump freevnodes as this one is going away.
3634 	 */
3635 	freevnode(vp);
3636 }
3637 
3638 void
3639 vdrop(struct vnode *vp)
3640 {
3641 
3642 	ASSERT_VI_UNLOCKED(vp, __func__);
3643 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3644 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3645 		return;
3646 	VI_LOCK(vp);
3647 	vdropl(vp);
3648 }
3649 
3650 static void __always_inline
3651 vdropl_impl(struct vnode *vp, bool enqueue)
3652 {
3653 
3654 	ASSERT_VI_LOCKED(vp, __func__);
3655 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3656 	if (!refcount_release(&vp->v_holdcnt)) {
3657 		VI_UNLOCK(vp);
3658 		return;
3659 	}
3660 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3661 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3662 	if (VN_IS_DOOMED(vp)) {
3663 		vdropl_final(vp);
3664 		return;
3665 	}
3666 
3667 	vfs_freevnodes_inc();
3668 	if (vp->v_mflag & VMP_LAZYLIST) {
3669 		vunlazy(vp);
3670 	}
3671 
3672 	if (!enqueue) {
3673 		VI_UNLOCK(vp);
3674 		return;
3675 	}
3676 
3677 	/*
3678 	 * Also unlocks the interlock. We can't assert on it as we
3679 	 * released our hold and by now the vnode might have been
3680 	 * freed.
3681 	 */
3682 	vdbatch_enqueue(vp);
3683 }
3684 
3685 void
3686 vdropl(struct vnode *vp)
3687 {
3688 
3689 	vdropl_impl(vp, true);
3690 }
3691 
3692 /*
3693  * vdrop a vnode when recycling
3694  *
3695  * This is a special case routine only to be used when recycling, differs from
3696  * regular vdrop by not requeieing the vnode on LRU.
3697  *
3698  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3699  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3700  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3701  * loop which can last for as long as writes are frozen.
3702  */
3703 static void
3704 vdropl_recycle(struct vnode *vp)
3705 {
3706 
3707 	vdropl_impl(vp, false);
3708 }
3709 
3710 static void
3711 vdrop_recycle(struct vnode *vp)
3712 {
3713 
3714 	VI_LOCK(vp);
3715 	vdropl_recycle(vp);
3716 }
3717 
3718 /*
3719  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3720  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3721  */
3722 static int
3723 vinactivef(struct vnode *vp)
3724 {
3725 	struct vm_object *obj;
3726 	int error;
3727 
3728 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3729 	ASSERT_VI_LOCKED(vp, "vinactive");
3730 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3731 	    ("vinactive: recursed on VI_DOINGINACT"));
3732 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3733 	vp->v_iflag |= VI_DOINGINACT;
3734 	vp->v_iflag &= ~VI_OWEINACT;
3735 	VI_UNLOCK(vp);
3736 	/*
3737 	 * Before moving off the active list, we must be sure that any
3738 	 * modified pages are converted into the vnode's dirty
3739 	 * buffers, since these will no longer be checked once the
3740 	 * vnode is on the inactive list.
3741 	 *
3742 	 * The write-out of the dirty pages is asynchronous.  At the
3743 	 * point that VOP_INACTIVE() is called, there could still be
3744 	 * pending I/O and dirty pages in the object.
3745 	 */
3746 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3747 	    vm_object_mightbedirty(obj)) {
3748 		VM_OBJECT_WLOCK(obj);
3749 		vm_object_page_clean(obj, 0, 0, 0);
3750 		VM_OBJECT_WUNLOCK(obj);
3751 	}
3752 	error = VOP_INACTIVE(vp);
3753 	VI_LOCK(vp);
3754 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3755 	    ("vinactive: lost VI_DOINGINACT"));
3756 	vp->v_iflag &= ~VI_DOINGINACT;
3757 	return (error);
3758 }
3759 
3760 int
3761 vinactive(struct vnode *vp)
3762 {
3763 
3764 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3765 	ASSERT_VI_LOCKED(vp, "vinactive");
3766 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3767 
3768 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3769 		return (0);
3770 	if (vp->v_iflag & VI_DOINGINACT)
3771 		return (0);
3772 	if (vp->v_usecount > 0) {
3773 		vp->v_iflag &= ~VI_OWEINACT;
3774 		return (0);
3775 	}
3776 	return (vinactivef(vp));
3777 }
3778 
3779 /*
3780  * Remove any vnodes in the vnode table belonging to mount point mp.
3781  *
3782  * If FORCECLOSE is not specified, there should not be any active ones,
3783  * return error if any are found (nb: this is a user error, not a
3784  * system error). If FORCECLOSE is specified, detach any active vnodes
3785  * that are found.
3786  *
3787  * If WRITECLOSE is set, only flush out regular file vnodes open for
3788  * writing.
3789  *
3790  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3791  *
3792  * `rootrefs' specifies the base reference count for the root vnode
3793  * of this filesystem. The root vnode is considered busy if its
3794  * v_usecount exceeds this value. On a successful return, vflush(, td)
3795  * will call vrele() on the root vnode exactly rootrefs times.
3796  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3797  * be zero.
3798  */
3799 #ifdef DIAGNOSTIC
3800 static int busyprt = 0;		/* print out busy vnodes */
3801 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3802 #endif
3803 
3804 int
3805 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3806 {
3807 	struct vnode *vp, *mvp, *rootvp = NULL;
3808 	struct vattr vattr;
3809 	int busy = 0, error;
3810 
3811 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3812 	    rootrefs, flags);
3813 	if (rootrefs > 0) {
3814 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3815 		    ("vflush: bad args"));
3816 		/*
3817 		 * Get the filesystem root vnode. We can vput() it
3818 		 * immediately, since with rootrefs > 0, it won't go away.
3819 		 */
3820 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3821 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3822 			    __func__, error);
3823 			return (error);
3824 		}
3825 		vput(rootvp);
3826 	}
3827 loop:
3828 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3829 		vholdl(vp);
3830 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3831 		if (error) {
3832 			vdrop(vp);
3833 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3834 			goto loop;
3835 		}
3836 		/*
3837 		 * Skip over a vnodes marked VV_SYSTEM.
3838 		 */
3839 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3840 			VOP_UNLOCK(vp);
3841 			vdrop(vp);
3842 			continue;
3843 		}
3844 		/*
3845 		 * If WRITECLOSE is set, flush out unlinked but still open
3846 		 * files (even if open only for reading) and regular file
3847 		 * vnodes open for writing.
3848 		 */
3849 		if (flags & WRITECLOSE) {
3850 			if (vp->v_object != NULL) {
3851 				VM_OBJECT_WLOCK(vp->v_object);
3852 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3853 				VM_OBJECT_WUNLOCK(vp->v_object);
3854 			}
3855 			do {
3856 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3857 			} while (error == ERELOOKUP);
3858 			if (error != 0) {
3859 				VOP_UNLOCK(vp);
3860 				vdrop(vp);
3861 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3862 				return (error);
3863 			}
3864 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3865 			VI_LOCK(vp);
3866 
3867 			if ((vp->v_type == VNON ||
3868 			    (error == 0 && vattr.va_nlink > 0)) &&
3869 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3870 				VOP_UNLOCK(vp);
3871 				vdropl(vp);
3872 				continue;
3873 			}
3874 		} else
3875 			VI_LOCK(vp);
3876 		/*
3877 		 * With v_usecount == 0, all we need to do is clear out the
3878 		 * vnode data structures and we are done.
3879 		 *
3880 		 * If FORCECLOSE is set, forcibly close the vnode.
3881 		 */
3882 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3883 			vgonel(vp);
3884 		} else {
3885 			busy++;
3886 #ifdef DIAGNOSTIC
3887 			if (busyprt)
3888 				vn_printf(vp, "vflush: busy vnode ");
3889 #endif
3890 		}
3891 		VOP_UNLOCK(vp);
3892 		vdropl(vp);
3893 	}
3894 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3895 		/*
3896 		 * If just the root vnode is busy, and if its refcount
3897 		 * is equal to `rootrefs', then go ahead and kill it.
3898 		 */
3899 		VI_LOCK(rootvp);
3900 		KASSERT(busy > 0, ("vflush: not busy"));
3901 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3902 		    ("vflush: usecount %d < rootrefs %d",
3903 		     rootvp->v_usecount, rootrefs));
3904 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3905 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3906 			vgone(rootvp);
3907 			VOP_UNLOCK(rootvp);
3908 			busy = 0;
3909 		} else
3910 			VI_UNLOCK(rootvp);
3911 	}
3912 	if (busy) {
3913 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3914 		    busy);
3915 		return (EBUSY);
3916 	}
3917 	for (; rootrefs > 0; rootrefs--)
3918 		vrele(rootvp);
3919 	return (0);
3920 }
3921 
3922 /*
3923  * Recycle an unused vnode to the front of the free list.
3924  */
3925 int
3926 vrecycle(struct vnode *vp)
3927 {
3928 	int recycled;
3929 
3930 	VI_LOCK(vp);
3931 	recycled = vrecyclel(vp);
3932 	VI_UNLOCK(vp);
3933 	return (recycled);
3934 }
3935 
3936 /*
3937  * vrecycle, with the vp interlock held.
3938  */
3939 int
3940 vrecyclel(struct vnode *vp)
3941 {
3942 	int recycled;
3943 
3944 	ASSERT_VOP_ELOCKED(vp, __func__);
3945 	ASSERT_VI_LOCKED(vp, __func__);
3946 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3947 	recycled = 0;
3948 	if (vp->v_usecount == 0) {
3949 		recycled = 1;
3950 		vgonel(vp);
3951 	}
3952 	return (recycled);
3953 }
3954 
3955 /*
3956  * Eliminate all activity associated with a vnode
3957  * in preparation for reuse.
3958  */
3959 void
3960 vgone(struct vnode *vp)
3961 {
3962 	VI_LOCK(vp);
3963 	vgonel(vp);
3964 	VI_UNLOCK(vp);
3965 }
3966 
3967 /*
3968  * Notify upper mounts about reclaimed or unlinked vnode.
3969  */
3970 void
3971 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3972 {
3973 	struct mount *mp;
3974 	struct mount_upper_node *ump;
3975 
3976 	mp = atomic_load_ptr(&vp->v_mount);
3977 	if (mp == NULL)
3978 		return;
3979 	if (TAILQ_EMPTY(&mp->mnt_notify))
3980 		return;
3981 
3982 	MNT_ILOCK(mp);
3983 	mp->mnt_upper_pending++;
3984 	KASSERT(mp->mnt_upper_pending > 0,
3985 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3986 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3987 		MNT_IUNLOCK(mp);
3988 		switch (event) {
3989 		case VFS_NOTIFY_UPPER_RECLAIM:
3990 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3991 			break;
3992 		case VFS_NOTIFY_UPPER_UNLINK:
3993 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3994 			break;
3995 		}
3996 		MNT_ILOCK(mp);
3997 	}
3998 	mp->mnt_upper_pending--;
3999 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4000 	    mp->mnt_upper_pending == 0) {
4001 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4002 		wakeup(&mp->mnt_uppers);
4003 	}
4004 	MNT_IUNLOCK(mp);
4005 }
4006 
4007 /*
4008  * vgone, with the vp interlock held.
4009  */
4010 static void
4011 vgonel(struct vnode *vp)
4012 {
4013 	struct thread *td;
4014 	struct mount *mp;
4015 	vm_object_t object;
4016 	bool active, doinginact, oweinact;
4017 
4018 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4019 	ASSERT_VI_LOCKED(vp, "vgonel");
4020 	VNASSERT(vp->v_holdcnt, vp,
4021 	    ("vgonel: vp %p has no reference.", vp));
4022 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4023 	td = curthread;
4024 
4025 	/*
4026 	 * Don't vgonel if we're already doomed.
4027 	 */
4028 	if (VN_IS_DOOMED(vp)) {
4029 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4030 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4031 		return;
4032 	}
4033 	/*
4034 	 * Paired with freevnode.
4035 	 */
4036 	vn_seqc_write_begin_locked(vp);
4037 	vunlazy_gone(vp);
4038 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4039 	vn_set_state(vp, VSTATE_DESTROYING);
4040 
4041 	/*
4042 	 * Check to see if the vnode is in use.  If so, we have to
4043 	 * call VOP_CLOSE() and VOP_INACTIVE().
4044 	 *
4045 	 * It could be that VOP_INACTIVE() requested reclamation, in
4046 	 * which case we should avoid recursion, so check
4047 	 * VI_DOINGINACT.  This is not precise but good enough.
4048 	 */
4049 	active = vp->v_usecount > 0;
4050 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4051 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4052 
4053 	/*
4054 	 * If we need to do inactive VI_OWEINACT will be set.
4055 	 */
4056 	if (vp->v_iflag & VI_DEFINACT) {
4057 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4058 		vp->v_iflag &= ~VI_DEFINACT;
4059 		vdropl(vp);
4060 	} else {
4061 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4062 		VI_UNLOCK(vp);
4063 	}
4064 	cache_purge_vgone(vp);
4065 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4066 
4067 	/*
4068 	 * If purging an active vnode, it must be closed and
4069 	 * deactivated before being reclaimed.
4070 	 */
4071 	if (active)
4072 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4073 	if (!doinginact) {
4074 		do {
4075 			if (oweinact || active) {
4076 				VI_LOCK(vp);
4077 				vinactivef(vp);
4078 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4079 				VI_UNLOCK(vp);
4080 			}
4081 		} while (oweinact);
4082 	}
4083 	if (vp->v_type == VSOCK)
4084 		vfs_unp_reclaim(vp);
4085 
4086 	/*
4087 	 * Clean out any buffers associated with the vnode.
4088 	 * If the flush fails, just toss the buffers.
4089 	 */
4090 	mp = NULL;
4091 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4092 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4093 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4094 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4095 			;
4096 	}
4097 
4098 	BO_LOCK(&vp->v_bufobj);
4099 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4100 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4101 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4102 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4103 	    ("vp %p bufobj not invalidated", vp));
4104 
4105 	/*
4106 	 * For VMIO bufobj, BO_DEAD is set later, or in
4107 	 * vm_object_terminate() after the object's page queue is
4108 	 * flushed.
4109 	 */
4110 	object = vp->v_bufobj.bo_object;
4111 	if (object == NULL)
4112 		vp->v_bufobj.bo_flag |= BO_DEAD;
4113 	BO_UNLOCK(&vp->v_bufobj);
4114 
4115 	/*
4116 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4117 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4118 	 * should not touch the object borrowed from the lower vnode
4119 	 * (the handle check).
4120 	 */
4121 	if (object != NULL && object->type == OBJT_VNODE &&
4122 	    object->handle == vp)
4123 		vnode_destroy_vobject(vp);
4124 
4125 	/*
4126 	 * Reclaim the vnode.
4127 	 */
4128 	if (VOP_RECLAIM(vp))
4129 		panic("vgone: cannot reclaim");
4130 	if (mp != NULL)
4131 		vn_finished_secondary_write(mp);
4132 	VNASSERT(vp->v_object == NULL, vp,
4133 	    ("vop_reclaim left v_object vp=%p", vp));
4134 	/*
4135 	 * Clear the advisory locks and wake up waiting threads.
4136 	 */
4137 	if (vp->v_lockf != NULL) {
4138 		(void)VOP_ADVLOCKPURGE(vp);
4139 		vp->v_lockf = NULL;
4140 	}
4141 	/*
4142 	 * Delete from old mount point vnode list.
4143 	 */
4144 	if (vp->v_mount == NULL) {
4145 		VI_LOCK(vp);
4146 	} else {
4147 		delmntque(vp);
4148 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4149 	}
4150 	/*
4151 	 * Done with purge, reset to the standard lock and invalidate
4152 	 * the vnode.
4153 	 */
4154 	vp->v_vnlock = &vp->v_lock;
4155 	vp->v_op = &dead_vnodeops;
4156 	vp->v_type = VBAD;
4157 	vn_set_state(vp, VSTATE_DEAD);
4158 }
4159 
4160 /*
4161  * Print out a description of a vnode.
4162  */
4163 static const char *const vtypename[] = {
4164 	[VNON] = "VNON",
4165 	[VREG] = "VREG",
4166 	[VDIR] = "VDIR",
4167 	[VBLK] = "VBLK",
4168 	[VCHR] = "VCHR",
4169 	[VLNK] = "VLNK",
4170 	[VSOCK] = "VSOCK",
4171 	[VFIFO] = "VFIFO",
4172 	[VBAD] = "VBAD",
4173 	[VMARKER] = "VMARKER",
4174 };
4175 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4176     "vnode type name not added to vtypename");
4177 
4178 static const char *const vstatename[] = {
4179 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4180 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4181 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4182 	[VSTATE_DEAD] = "VSTATE_DEAD",
4183 };
4184 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4185     "vnode state name not added to vstatename");
4186 
4187 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4188     "new hold count flag not added to vn_printf");
4189 
4190 void
4191 vn_printf(struct vnode *vp, const char *fmt, ...)
4192 {
4193 	va_list ap;
4194 	char buf[256], buf2[16];
4195 	u_long flags;
4196 	u_int holdcnt;
4197 	short irflag;
4198 
4199 	va_start(ap, fmt);
4200 	vprintf(fmt, ap);
4201 	va_end(ap);
4202 	printf("%p: ", (void *)vp);
4203 	printf("type %s state %s\n", vtypename[vp->v_type], vstatename[vp->v_state]);
4204 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4205 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4206 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4207 	    vp->v_seqc_users);
4208 	switch (vp->v_type) {
4209 	case VDIR:
4210 		printf(" mountedhere %p\n", vp->v_mountedhere);
4211 		break;
4212 	case VCHR:
4213 		printf(" rdev %p\n", vp->v_rdev);
4214 		break;
4215 	case VSOCK:
4216 		printf(" socket %p\n", vp->v_unpcb);
4217 		break;
4218 	case VFIFO:
4219 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4220 		break;
4221 	default:
4222 		printf("\n");
4223 		break;
4224 	}
4225 	buf[0] = '\0';
4226 	buf[1] = '\0';
4227 	if (holdcnt & VHOLD_NO_SMR)
4228 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4229 	printf("    hold count flags (%s)\n", buf + 1);
4230 
4231 	buf[0] = '\0';
4232 	buf[1] = '\0';
4233 	irflag = vn_irflag_read(vp);
4234 	if (irflag & VIRF_DOOMED)
4235 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4236 	if (irflag & VIRF_PGREAD)
4237 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4238 	if (irflag & VIRF_MOUNTPOINT)
4239 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4240 	if (irflag & VIRF_TEXT_REF)
4241 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4242 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4243 	if (flags != 0) {
4244 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4245 		strlcat(buf, buf2, sizeof(buf));
4246 	}
4247 	if (vp->v_vflag & VV_ROOT)
4248 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4249 	if (vp->v_vflag & VV_ISTTY)
4250 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4251 	if (vp->v_vflag & VV_NOSYNC)
4252 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4253 	if (vp->v_vflag & VV_ETERNALDEV)
4254 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4255 	if (vp->v_vflag & VV_CACHEDLABEL)
4256 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4257 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4258 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4259 	if (vp->v_vflag & VV_COPYONWRITE)
4260 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4261 	if (vp->v_vflag & VV_SYSTEM)
4262 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4263 	if (vp->v_vflag & VV_PROCDEP)
4264 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4265 	if (vp->v_vflag & VV_DELETED)
4266 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4267 	if (vp->v_vflag & VV_MD)
4268 		strlcat(buf, "|VV_MD", sizeof(buf));
4269 	if (vp->v_vflag & VV_FORCEINSMQ)
4270 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4271 	if (vp->v_vflag & VV_READLINK)
4272 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4273 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4274 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4275 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4276 	if (flags != 0) {
4277 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4278 		strlcat(buf, buf2, sizeof(buf));
4279 	}
4280 	if (vp->v_iflag & VI_MOUNT)
4281 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4282 	if (vp->v_iflag & VI_DOINGINACT)
4283 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4284 	if (vp->v_iflag & VI_OWEINACT)
4285 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4286 	if (vp->v_iflag & VI_DEFINACT)
4287 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4288 	if (vp->v_iflag & VI_FOPENING)
4289 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4290 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4291 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4292 	if (flags != 0) {
4293 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4294 		strlcat(buf, buf2, sizeof(buf));
4295 	}
4296 	if (vp->v_mflag & VMP_LAZYLIST)
4297 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4298 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4299 	if (flags != 0) {
4300 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4301 		strlcat(buf, buf2, sizeof(buf));
4302 	}
4303 	printf("    flags (%s)", buf + 1);
4304 	if (mtx_owned(VI_MTX(vp)))
4305 		printf(" VI_LOCKed");
4306 	printf("\n");
4307 	if (vp->v_object != NULL)
4308 		printf("    v_object %p ref %d pages %d "
4309 		    "cleanbuf %d dirtybuf %d\n",
4310 		    vp->v_object, vp->v_object->ref_count,
4311 		    vp->v_object->resident_page_count,
4312 		    vp->v_bufobj.bo_clean.bv_cnt,
4313 		    vp->v_bufobj.bo_dirty.bv_cnt);
4314 	printf("    ");
4315 	lockmgr_printinfo(vp->v_vnlock);
4316 	if (vp->v_data != NULL)
4317 		VOP_PRINT(vp);
4318 }
4319 
4320 #ifdef DDB
4321 /*
4322  * List all of the locked vnodes in the system.
4323  * Called when debugging the kernel.
4324  */
4325 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4326 {
4327 	struct mount *mp;
4328 	struct vnode *vp;
4329 
4330 	/*
4331 	 * Note: because this is DDB, we can't obey the locking semantics
4332 	 * for these structures, which means we could catch an inconsistent
4333 	 * state and dereference a nasty pointer.  Not much to be done
4334 	 * about that.
4335 	 */
4336 	db_printf("Locked vnodes\n");
4337 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4338 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4339 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4340 				vn_printf(vp, "vnode ");
4341 		}
4342 	}
4343 }
4344 
4345 /*
4346  * Show details about the given vnode.
4347  */
4348 DB_SHOW_COMMAND(vnode, db_show_vnode)
4349 {
4350 	struct vnode *vp;
4351 
4352 	if (!have_addr)
4353 		return;
4354 	vp = (struct vnode *)addr;
4355 	vn_printf(vp, "vnode ");
4356 }
4357 
4358 /*
4359  * Show details about the given mount point.
4360  */
4361 DB_SHOW_COMMAND(mount, db_show_mount)
4362 {
4363 	struct mount *mp;
4364 	struct vfsopt *opt;
4365 	struct statfs *sp;
4366 	struct vnode *vp;
4367 	char buf[512];
4368 	uint64_t mflags;
4369 	u_int flags;
4370 
4371 	if (!have_addr) {
4372 		/* No address given, print short info about all mount points. */
4373 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4374 			db_printf("%p %s on %s (%s)\n", mp,
4375 			    mp->mnt_stat.f_mntfromname,
4376 			    mp->mnt_stat.f_mntonname,
4377 			    mp->mnt_stat.f_fstypename);
4378 			if (db_pager_quit)
4379 				break;
4380 		}
4381 		db_printf("\nMore info: show mount <addr>\n");
4382 		return;
4383 	}
4384 
4385 	mp = (struct mount *)addr;
4386 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4387 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4388 
4389 	buf[0] = '\0';
4390 	mflags = mp->mnt_flag;
4391 #define	MNT_FLAG(flag)	do {						\
4392 	if (mflags & (flag)) {						\
4393 		if (buf[0] != '\0')					\
4394 			strlcat(buf, ", ", sizeof(buf));		\
4395 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4396 		mflags &= ~(flag);					\
4397 	}								\
4398 } while (0)
4399 	MNT_FLAG(MNT_RDONLY);
4400 	MNT_FLAG(MNT_SYNCHRONOUS);
4401 	MNT_FLAG(MNT_NOEXEC);
4402 	MNT_FLAG(MNT_NOSUID);
4403 	MNT_FLAG(MNT_NFS4ACLS);
4404 	MNT_FLAG(MNT_UNION);
4405 	MNT_FLAG(MNT_ASYNC);
4406 	MNT_FLAG(MNT_SUIDDIR);
4407 	MNT_FLAG(MNT_SOFTDEP);
4408 	MNT_FLAG(MNT_NOSYMFOLLOW);
4409 	MNT_FLAG(MNT_GJOURNAL);
4410 	MNT_FLAG(MNT_MULTILABEL);
4411 	MNT_FLAG(MNT_ACLS);
4412 	MNT_FLAG(MNT_NOATIME);
4413 	MNT_FLAG(MNT_NOCLUSTERR);
4414 	MNT_FLAG(MNT_NOCLUSTERW);
4415 	MNT_FLAG(MNT_SUJ);
4416 	MNT_FLAG(MNT_EXRDONLY);
4417 	MNT_FLAG(MNT_EXPORTED);
4418 	MNT_FLAG(MNT_DEFEXPORTED);
4419 	MNT_FLAG(MNT_EXPORTANON);
4420 	MNT_FLAG(MNT_EXKERB);
4421 	MNT_FLAG(MNT_EXPUBLIC);
4422 	MNT_FLAG(MNT_LOCAL);
4423 	MNT_FLAG(MNT_QUOTA);
4424 	MNT_FLAG(MNT_ROOTFS);
4425 	MNT_FLAG(MNT_USER);
4426 	MNT_FLAG(MNT_IGNORE);
4427 	MNT_FLAG(MNT_UPDATE);
4428 	MNT_FLAG(MNT_DELEXPORT);
4429 	MNT_FLAG(MNT_RELOAD);
4430 	MNT_FLAG(MNT_FORCE);
4431 	MNT_FLAG(MNT_SNAPSHOT);
4432 	MNT_FLAG(MNT_BYFSID);
4433 #undef MNT_FLAG
4434 	if (mflags != 0) {
4435 		if (buf[0] != '\0')
4436 			strlcat(buf, ", ", sizeof(buf));
4437 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4438 		    "0x%016jx", mflags);
4439 	}
4440 	db_printf("    mnt_flag = %s\n", buf);
4441 
4442 	buf[0] = '\0';
4443 	flags = mp->mnt_kern_flag;
4444 #define	MNT_KERN_FLAG(flag)	do {					\
4445 	if (flags & (flag)) {						\
4446 		if (buf[0] != '\0')					\
4447 			strlcat(buf, ", ", sizeof(buf));		\
4448 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4449 		flags &= ~(flag);					\
4450 	}								\
4451 } while (0)
4452 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4453 	MNT_KERN_FLAG(MNTK_ASYNC);
4454 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4455 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4456 	MNT_KERN_FLAG(MNTK_DRAINING);
4457 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4458 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4459 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4460 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4461 	MNT_KERN_FLAG(MNTK_RECURSE);
4462 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4463 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4464 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4465 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4466 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4467 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4468 	MNT_KERN_FLAG(MNTK_NOASYNC);
4469 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4470 	MNT_KERN_FLAG(MNTK_MWAIT);
4471 	MNT_KERN_FLAG(MNTK_SUSPEND);
4472 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4473 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4474 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4475 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4476 #undef MNT_KERN_FLAG
4477 	if (flags != 0) {
4478 		if (buf[0] != '\0')
4479 			strlcat(buf, ", ", sizeof(buf));
4480 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4481 		    "0x%08x", flags);
4482 	}
4483 	db_printf("    mnt_kern_flag = %s\n", buf);
4484 
4485 	db_printf("    mnt_opt = ");
4486 	opt = TAILQ_FIRST(mp->mnt_opt);
4487 	if (opt != NULL) {
4488 		db_printf("%s", opt->name);
4489 		opt = TAILQ_NEXT(opt, link);
4490 		while (opt != NULL) {
4491 			db_printf(", %s", opt->name);
4492 			opt = TAILQ_NEXT(opt, link);
4493 		}
4494 	}
4495 	db_printf("\n");
4496 
4497 	sp = &mp->mnt_stat;
4498 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4499 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4500 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4501 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4502 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4503 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4504 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4505 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4506 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4507 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4508 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4509 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4510 
4511 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4512 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4513 	if (jailed(mp->mnt_cred))
4514 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4515 	db_printf(" }\n");
4516 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4517 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4518 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4519 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4520 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4521 	    mp->mnt_lazyvnodelistsize);
4522 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4523 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4524 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4525 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4526 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4527 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4528 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4529 	db_printf("    mnt_secondary_accwrites = %d\n",
4530 	    mp->mnt_secondary_accwrites);
4531 	db_printf("    mnt_gjprovider = %s\n",
4532 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4533 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4534 
4535 	db_printf("\n\nList of active vnodes\n");
4536 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4537 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4538 			vn_printf(vp, "vnode ");
4539 			if (db_pager_quit)
4540 				break;
4541 		}
4542 	}
4543 	db_printf("\n\nList of inactive vnodes\n");
4544 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4545 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4546 			vn_printf(vp, "vnode ");
4547 			if (db_pager_quit)
4548 				break;
4549 		}
4550 	}
4551 }
4552 #endif	/* DDB */
4553 
4554 /*
4555  * Fill in a struct xvfsconf based on a struct vfsconf.
4556  */
4557 static int
4558 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4559 {
4560 	struct xvfsconf xvfsp;
4561 
4562 	bzero(&xvfsp, sizeof(xvfsp));
4563 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4564 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4565 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4566 	xvfsp.vfc_flags = vfsp->vfc_flags;
4567 	/*
4568 	 * These are unused in userland, we keep them
4569 	 * to not break binary compatibility.
4570 	 */
4571 	xvfsp.vfc_vfsops = NULL;
4572 	xvfsp.vfc_next = NULL;
4573 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4574 }
4575 
4576 #ifdef COMPAT_FREEBSD32
4577 struct xvfsconf32 {
4578 	uint32_t	vfc_vfsops;
4579 	char		vfc_name[MFSNAMELEN];
4580 	int32_t		vfc_typenum;
4581 	int32_t		vfc_refcount;
4582 	int32_t		vfc_flags;
4583 	uint32_t	vfc_next;
4584 };
4585 
4586 static int
4587 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4588 {
4589 	struct xvfsconf32 xvfsp;
4590 
4591 	bzero(&xvfsp, sizeof(xvfsp));
4592 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4593 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4594 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4595 	xvfsp.vfc_flags = vfsp->vfc_flags;
4596 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4597 }
4598 #endif
4599 
4600 /*
4601  * Top level filesystem related information gathering.
4602  */
4603 static int
4604 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4605 {
4606 	struct vfsconf *vfsp;
4607 	int error;
4608 
4609 	error = 0;
4610 	vfsconf_slock();
4611 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4612 #ifdef COMPAT_FREEBSD32
4613 		if (req->flags & SCTL_MASK32)
4614 			error = vfsconf2x32(req, vfsp);
4615 		else
4616 #endif
4617 			error = vfsconf2x(req, vfsp);
4618 		if (error)
4619 			break;
4620 	}
4621 	vfsconf_sunlock();
4622 	return (error);
4623 }
4624 
4625 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4626     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4627     "S,xvfsconf", "List of all configured filesystems");
4628 
4629 #ifndef BURN_BRIDGES
4630 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4631 
4632 static int
4633 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4634 {
4635 	int *name = (int *)arg1 - 1;	/* XXX */
4636 	u_int namelen = arg2 + 1;	/* XXX */
4637 	struct vfsconf *vfsp;
4638 
4639 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4640 	    "please rebuild world\n");
4641 
4642 #if 1 || defined(COMPAT_PRELITE2)
4643 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4644 	if (namelen == 1)
4645 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4646 #endif
4647 
4648 	switch (name[1]) {
4649 	case VFS_MAXTYPENUM:
4650 		if (namelen != 2)
4651 			return (ENOTDIR);
4652 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4653 	case VFS_CONF:
4654 		if (namelen != 3)
4655 			return (ENOTDIR);	/* overloaded */
4656 		vfsconf_slock();
4657 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4658 			if (vfsp->vfc_typenum == name[2])
4659 				break;
4660 		}
4661 		vfsconf_sunlock();
4662 		if (vfsp == NULL)
4663 			return (EOPNOTSUPP);
4664 #ifdef COMPAT_FREEBSD32
4665 		if (req->flags & SCTL_MASK32)
4666 			return (vfsconf2x32(req, vfsp));
4667 		else
4668 #endif
4669 			return (vfsconf2x(req, vfsp));
4670 	}
4671 	return (EOPNOTSUPP);
4672 }
4673 
4674 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4675     CTLFLAG_MPSAFE, vfs_sysctl,
4676     "Generic filesystem");
4677 
4678 #if 1 || defined(COMPAT_PRELITE2)
4679 
4680 static int
4681 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4682 {
4683 	int error;
4684 	struct vfsconf *vfsp;
4685 	struct ovfsconf ovfs;
4686 
4687 	vfsconf_slock();
4688 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4689 		bzero(&ovfs, sizeof(ovfs));
4690 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4691 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4692 		ovfs.vfc_index = vfsp->vfc_typenum;
4693 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4694 		ovfs.vfc_flags = vfsp->vfc_flags;
4695 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4696 		if (error != 0) {
4697 			vfsconf_sunlock();
4698 			return (error);
4699 		}
4700 	}
4701 	vfsconf_sunlock();
4702 	return (0);
4703 }
4704 
4705 #endif /* 1 || COMPAT_PRELITE2 */
4706 #endif /* !BURN_BRIDGES */
4707 
4708 #define KINFO_VNODESLOP		10
4709 #ifdef notyet
4710 /*
4711  * Dump vnode list (via sysctl).
4712  */
4713 /* ARGSUSED */
4714 static int
4715 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4716 {
4717 	struct xvnode *xvn;
4718 	struct mount *mp;
4719 	struct vnode *vp;
4720 	int error, len, n;
4721 
4722 	/*
4723 	 * Stale numvnodes access is not fatal here.
4724 	 */
4725 	req->lock = 0;
4726 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4727 	if (!req->oldptr)
4728 		/* Make an estimate */
4729 		return (SYSCTL_OUT(req, 0, len));
4730 
4731 	error = sysctl_wire_old_buffer(req, 0);
4732 	if (error != 0)
4733 		return (error);
4734 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4735 	n = 0;
4736 	mtx_lock(&mountlist_mtx);
4737 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4738 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4739 			continue;
4740 		MNT_ILOCK(mp);
4741 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4742 			if (n == len)
4743 				break;
4744 			vref(vp);
4745 			xvn[n].xv_size = sizeof *xvn;
4746 			xvn[n].xv_vnode = vp;
4747 			xvn[n].xv_id = 0;	/* XXX compat */
4748 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4749 			XV_COPY(usecount);
4750 			XV_COPY(writecount);
4751 			XV_COPY(holdcnt);
4752 			XV_COPY(mount);
4753 			XV_COPY(numoutput);
4754 			XV_COPY(type);
4755 #undef XV_COPY
4756 			xvn[n].xv_flag = vp->v_vflag;
4757 
4758 			switch (vp->v_type) {
4759 			case VREG:
4760 			case VDIR:
4761 			case VLNK:
4762 				break;
4763 			case VBLK:
4764 			case VCHR:
4765 				if (vp->v_rdev == NULL) {
4766 					vrele(vp);
4767 					continue;
4768 				}
4769 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4770 				break;
4771 			case VSOCK:
4772 				xvn[n].xv_socket = vp->v_socket;
4773 				break;
4774 			case VFIFO:
4775 				xvn[n].xv_fifo = vp->v_fifoinfo;
4776 				break;
4777 			case VNON:
4778 			case VBAD:
4779 			default:
4780 				/* shouldn't happen? */
4781 				vrele(vp);
4782 				continue;
4783 			}
4784 			vrele(vp);
4785 			++n;
4786 		}
4787 		MNT_IUNLOCK(mp);
4788 		mtx_lock(&mountlist_mtx);
4789 		vfs_unbusy(mp);
4790 		if (n == len)
4791 			break;
4792 	}
4793 	mtx_unlock(&mountlist_mtx);
4794 
4795 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4796 	free(xvn, M_TEMP);
4797 	return (error);
4798 }
4799 
4800 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4801     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4802     "");
4803 #endif
4804 
4805 static void
4806 unmount_or_warn(struct mount *mp)
4807 {
4808 	int error;
4809 
4810 	error = dounmount(mp, MNT_FORCE, curthread);
4811 	if (error != 0) {
4812 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4813 		if (error == EBUSY)
4814 			printf("BUSY)\n");
4815 		else
4816 			printf("%d)\n", error);
4817 	}
4818 }
4819 
4820 /*
4821  * Unmount all filesystems. The list is traversed in reverse order
4822  * of mounting to avoid dependencies.
4823  */
4824 void
4825 vfs_unmountall(void)
4826 {
4827 	struct mount *mp, *tmp;
4828 
4829 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4830 
4831 	/*
4832 	 * Since this only runs when rebooting, it is not interlocked.
4833 	 */
4834 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4835 		vfs_ref(mp);
4836 
4837 		/*
4838 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4839 		 * unmount of the latter.
4840 		 */
4841 		if (mp == rootdevmp)
4842 			continue;
4843 
4844 		unmount_or_warn(mp);
4845 	}
4846 
4847 	if (rootdevmp != NULL)
4848 		unmount_or_warn(rootdevmp);
4849 }
4850 
4851 static void
4852 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4853 {
4854 
4855 	ASSERT_VI_LOCKED(vp, __func__);
4856 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4857 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4858 		vdropl(vp);
4859 		return;
4860 	}
4861 	if (vn_lock(vp, lkflags) == 0) {
4862 		VI_LOCK(vp);
4863 		vinactive(vp);
4864 		VOP_UNLOCK(vp);
4865 		vdropl(vp);
4866 		return;
4867 	}
4868 	vdefer_inactive_unlocked(vp);
4869 }
4870 
4871 static int
4872 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4873 {
4874 
4875 	return (vp->v_iflag & VI_DEFINACT);
4876 }
4877 
4878 static void __noinline
4879 vfs_periodic_inactive(struct mount *mp, int flags)
4880 {
4881 	struct vnode *vp, *mvp;
4882 	int lkflags;
4883 
4884 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4885 	if (flags != MNT_WAIT)
4886 		lkflags |= LK_NOWAIT;
4887 
4888 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4889 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4890 			VI_UNLOCK(vp);
4891 			continue;
4892 		}
4893 		vp->v_iflag &= ~VI_DEFINACT;
4894 		vfs_deferred_inactive(vp, lkflags);
4895 	}
4896 }
4897 
4898 static inline bool
4899 vfs_want_msync(struct vnode *vp)
4900 {
4901 	struct vm_object *obj;
4902 
4903 	/*
4904 	 * This test may be performed without any locks held.
4905 	 * We rely on vm_object's type stability.
4906 	 */
4907 	if (vp->v_vflag & VV_NOSYNC)
4908 		return (false);
4909 	obj = vp->v_object;
4910 	return (obj != NULL && vm_object_mightbedirty(obj));
4911 }
4912 
4913 static int
4914 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4915 {
4916 
4917 	if (vp->v_vflag & VV_NOSYNC)
4918 		return (false);
4919 	if (vp->v_iflag & VI_DEFINACT)
4920 		return (true);
4921 	return (vfs_want_msync(vp));
4922 }
4923 
4924 static void __noinline
4925 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4926 {
4927 	struct vnode *vp, *mvp;
4928 	struct vm_object *obj;
4929 	int lkflags, objflags;
4930 	bool seen_defer;
4931 
4932 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4933 	if (flags != MNT_WAIT) {
4934 		lkflags |= LK_NOWAIT;
4935 		objflags = OBJPC_NOSYNC;
4936 	} else {
4937 		objflags = OBJPC_SYNC;
4938 	}
4939 
4940 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4941 		seen_defer = false;
4942 		if (vp->v_iflag & VI_DEFINACT) {
4943 			vp->v_iflag &= ~VI_DEFINACT;
4944 			seen_defer = true;
4945 		}
4946 		if (!vfs_want_msync(vp)) {
4947 			if (seen_defer)
4948 				vfs_deferred_inactive(vp, lkflags);
4949 			else
4950 				VI_UNLOCK(vp);
4951 			continue;
4952 		}
4953 		if (vget(vp, lkflags) == 0) {
4954 			obj = vp->v_object;
4955 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4956 				VM_OBJECT_WLOCK(obj);
4957 				vm_object_page_clean(obj, 0, 0, objflags);
4958 				VM_OBJECT_WUNLOCK(obj);
4959 			}
4960 			vput(vp);
4961 			if (seen_defer)
4962 				vdrop(vp);
4963 		} else {
4964 			if (seen_defer)
4965 				vdefer_inactive_unlocked(vp);
4966 		}
4967 	}
4968 }
4969 
4970 void
4971 vfs_periodic(struct mount *mp, int flags)
4972 {
4973 
4974 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4975 
4976 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4977 		vfs_periodic_inactive(mp, flags);
4978 	else
4979 		vfs_periodic_msync_inactive(mp, flags);
4980 }
4981 
4982 static void
4983 destroy_vpollinfo_free(struct vpollinfo *vi)
4984 {
4985 
4986 	knlist_destroy(&vi->vpi_selinfo.si_note);
4987 	mtx_destroy(&vi->vpi_lock);
4988 	free(vi, M_VNODEPOLL);
4989 }
4990 
4991 static void
4992 destroy_vpollinfo(struct vpollinfo *vi)
4993 {
4994 
4995 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4996 	seldrain(&vi->vpi_selinfo);
4997 	destroy_vpollinfo_free(vi);
4998 }
4999 
5000 /*
5001  * Initialize per-vnode helper structure to hold poll-related state.
5002  */
5003 void
5004 v_addpollinfo(struct vnode *vp)
5005 {
5006 	struct vpollinfo *vi;
5007 
5008 	if (vp->v_pollinfo != NULL)
5009 		return;
5010 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5011 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5012 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5013 	    vfs_knlunlock, vfs_knl_assert_lock);
5014 	VI_LOCK(vp);
5015 	if (vp->v_pollinfo != NULL) {
5016 		VI_UNLOCK(vp);
5017 		destroy_vpollinfo_free(vi);
5018 		return;
5019 	}
5020 	vp->v_pollinfo = vi;
5021 	VI_UNLOCK(vp);
5022 }
5023 
5024 /*
5025  * Record a process's interest in events which might happen to
5026  * a vnode.  Because poll uses the historic select-style interface
5027  * internally, this routine serves as both the ``check for any
5028  * pending events'' and the ``record my interest in future events''
5029  * functions.  (These are done together, while the lock is held,
5030  * to avoid race conditions.)
5031  */
5032 int
5033 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5034 {
5035 
5036 	v_addpollinfo(vp);
5037 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5038 	if (vp->v_pollinfo->vpi_revents & events) {
5039 		/*
5040 		 * This leaves events we are not interested
5041 		 * in available for the other process which
5042 		 * which presumably had requested them
5043 		 * (otherwise they would never have been
5044 		 * recorded).
5045 		 */
5046 		events &= vp->v_pollinfo->vpi_revents;
5047 		vp->v_pollinfo->vpi_revents &= ~events;
5048 
5049 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5050 		return (events);
5051 	}
5052 	vp->v_pollinfo->vpi_events |= events;
5053 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5054 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5055 	return (0);
5056 }
5057 
5058 /*
5059  * Routine to create and manage a filesystem syncer vnode.
5060  */
5061 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5062 static int	sync_fsync(struct  vop_fsync_args *);
5063 static int	sync_inactive(struct  vop_inactive_args *);
5064 static int	sync_reclaim(struct  vop_reclaim_args *);
5065 
5066 static struct vop_vector sync_vnodeops = {
5067 	.vop_bypass =	VOP_EOPNOTSUPP,
5068 	.vop_close =	sync_close,		/* close */
5069 	.vop_fsync =	sync_fsync,		/* fsync */
5070 	.vop_inactive =	sync_inactive,	/* inactive */
5071 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5072 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5073 	.vop_lock1 =	vop_stdlock,	/* lock */
5074 	.vop_unlock =	vop_stdunlock,	/* unlock */
5075 	.vop_islocked =	vop_stdislocked,	/* islocked */
5076 };
5077 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5078 
5079 /*
5080  * Create a new filesystem syncer vnode for the specified mount point.
5081  */
5082 void
5083 vfs_allocate_syncvnode(struct mount *mp)
5084 {
5085 	struct vnode *vp;
5086 	struct bufobj *bo;
5087 	static long start, incr, next;
5088 	int error;
5089 
5090 	/* Allocate a new vnode */
5091 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5092 	if (error != 0)
5093 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5094 	vp->v_type = VNON;
5095 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5096 	vp->v_vflag |= VV_FORCEINSMQ;
5097 	error = insmntque1(vp, mp);
5098 	if (error != 0)
5099 		panic("vfs_allocate_syncvnode: insmntque() failed");
5100 	vp->v_vflag &= ~VV_FORCEINSMQ;
5101 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5102 	VOP_UNLOCK(vp);
5103 	/*
5104 	 * Place the vnode onto the syncer worklist. We attempt to
5105 	 * scatter them about on the list so that they will go off
5106 	 * at evenly distributed times even if all the filesystems
5107 	 * are mounted at once.
5108 	 */
5109 	next += incr;
5110 	if (next == 0 || next > syncer_maxdelay) {
5111 		start /= 2;
5112 		incr /= 2;
5113 		if (start == 0) {
5114 			start = syncer_maxdelay / 2;
5115 			incr = syncer_maxdelay;
5116 		}
5117 		next = start;
5118 	}
5119 	bo = &vp->v_bufobj;
5120 	BO_LOCK(bo);
5121 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5122 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5123 	mtx_lock(&sync_mtx);
5124 	sync_vnode_count++;
5125 	if (mp->mnt_syncer == NULL) {
5126 		mp->mnt_syncer = vp;
5127 		vp = NULL;
5128 	}
5129 	mtx_unlock(&sync_mtx);
5130 	BO_UNLOCK(bo);
5131 	if (vp != NULL) {
5132 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5133 		vgone(vp);
5134 		vput(vp);
5135 	}
5136 }
5137 
5138 void
5139 vfs_deallocate_syncvnode(struct mount *mp)
5140 {
5141 	struct vnode *vp;
5142 
5143 	mtx_lock(&sync_mtx);
5144 	vp = mp->mnt_syncer;
5145 	if (vp != NULL)
5146 		mp->mnt_syncer = NULL;
5147 	mtx_unlock(&sync_mtx);
5148 	if (vp != NULL)
5149 		vrele(vp);
5150 }
5151 
5152 /*
5153  * Do a lazy sync of the filesystem.
5154  */
5155 static int
5156 sync_fsync(struct vop_fsync_args *ap)
5157 {
5158 	struct vnode *syncvp = ap->a_vp;
5159 	struct mount *mp = syncvp->v_mount;
5160 	int error, save;
5161 	struct bufobj *bo;
5162 
5163 	/*
5164 	 * We only need to do something if this is a lazy evaluation.
5165 	 */
5166 	if (ap->a_waitfor != MNT_LAZY)
5167 		return (0);
5168 
5169 	/*
5170 	 * Move ourselves to the back of the sync list.
5171 	 */
5172 	bo = &syncvp->v_bufobj;
5173 	BO_LOCK(bo);
5174 	vn_syncer_add_to_worklist(bo, syncdelay);
5175 	BO_UNLOCK(bo);
5176 
5177 	/*
5178 	 * Walk the list of vnodes pushing all that are dirty and
5179 	 * not already on the sync list.
5180 	 */
5181 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5182 		return (0);
5183 	VOP_UNLOCK(syncvp);
5184 	save = curthread_pflags_set(TDP_SYNCIO);
5185 	/*
5186 	 * The filesystem at hand may be idle with free vnodes stored in the
5187 	 * batch.  Return them instead of letting them stay there indefinitely.
5188 	 */
5189 	vfs_periodic(mp, MNT_NOWAIT);
5190 	error = VFS_SYNC(mp, MNT_LAZY);
5191 	curthread_pflags_restore(save);
5192 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5193 	vfs_unbusy(mp);
5194 	return (error);
5195 }
5196 
5197 /*
5198  * The syncer vnode is no referenced.
5199  */
5200 static int
5201 sync_inactive(struct vop_inactive_args *ap)
5202 {
5203 
5204 	vgone(ap->a_vp);
5205 	return (0);
5206 }
5207 
5208 /*
5209  * The syncer vnode is no longer needed and is being decommissioned.
5210  *
5211  * Modifications to the worklist must be protected by sync_mtx.
5212  */
5213 static int
5214 sync_reclaim(struct vop_reclaim_args *ap)
5215 {
5216 	struct vnode *vp = ap->a_vp;
5217 	struct bufobj *bo;
5218 
5219 	bo = &vp->v_bufobj;
5220 	BO_LOCK(bo);
5221 	mtx_lock(&sync_mtx);
5222 	if (vp->v_mount->mnt_syncer == vp)
5223 		vp->v_mount->mnt_syncer = NULL;
5224 	if (bo->bo_flag & BO_ONWORKLST) {
5225 		LIST_REMOVE(bo, bo_synclist);
5226 		syncer_worklist_len--;
5227 		sync_vnode_count--;
5228 		bo->bo_flag &= ~BO_ONWORKLST;
5229 	}
5230 	mtx_unlock(&sync_mtx);
5231 	BO_UNLOCK(bo);
5232 
5233 	return (0);
5234 }
5235 
5236 int
5237 vn_need_pageq_flush(struct vnode *vp)
5238 {
5239 	struct vm_object *obj;
5240 
5241 	obj = vp->v_object;
5242 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5243 	    vm_object_mightbedirty(obj));
5244 }
5245 
5246 /*
5247  * Check if vnode represents a disk device
5248  */
5249 bool
5250 vn_isdisk_error(struct vnode *vp, int *errp)
5251 {
5252 	int error;
5253 
5254 	if (vp->v_type != VCHR) {
5255 		error = ENOTBLK;
5256 		goto out;
5257 	}
5258 	error = 0;
5259 	dev_lock();
5260 	if (vp->v_rdev == NULL)
5261 		error = ENXIO;
5262 	else if (vp->v_rdev->si_devsw == NULL)
5263 		error = ENXIO;
5264 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5265 		error = ENOTBLK;
5266 	dev_unlock();
5267 out:
5268 	*errp = error;
5269 	return (error == 0);
5270 }
5271 
5272 bool
5273 vn_isdisk(struct vnode *vp)
5274 {
5275 	int error;
5276 
5277 	return (vn_isdisk_error(vp, &error));
5278 }
5279 
5280 /*
5281  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5282  * the comment above cache_fplookup for details.
5283  */
5284 int
5285 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5286 {
5287 	int error;
5288 
5289 	VFS_SMR_ASSERT_ENTERED();
5290 
5291 	/* Check the owner. */
5292 	if (cred->cr_uid == file_uid) {
5293 		if (file_mode & S_IXUSR)
5294 			return (0);
5295 		goto out_error;
5296 	}
5297 
5298 	/* Otherwise, check the groups (first match) */
5299 	if (groupmember(file_gid, cred)) {
5300 		if (file_mode & S_IXGRP)
5301 			return (0);
5302 		goto out_error;
5303 	}
5304 
5305 	/* Otherwise, check everyone else. */
5306 	if (file_mode & S_IXOTH)
5307 		return (0);
5308 out_error:
5309 	/*
5310 	 * Permission check failed, but it is possible denial will get overwritten
5311 	 * (e.g., when root is traversing through a 700 directory owned by someone
5312 	 * else).
5313 	 *
5314 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5315 	 * modules overriding this result. It's quite unclear what semantics
5316 	 * are allowed for them to operate, thus for safety we don't call them
5317 	 * from within the SMR section. This also means if any such modules
5318 	 * are present, we have to let the regular lookup decide.
5319 	 */
5320 	error = priv_check_cred_vfs_lookup_nomac(cred);
5321 	switch (error) {
5322 	case 0:
5323 		return (0);
5324 	case EAGAIN:
5325 		/*
5326 		 * MAC modules present.
5327 		 */
5328 		return (EAGAIN);
5329 	case EPERM:
5330 		return (EACCES);
5331 	default:
5332 		return (error);
5333 	}
5334 }
5335 
5336 /*
5337  * Common filesystem object access control check routine.  Accepts a
5338  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5339  * Returns 0 on success, or an errno on failure.
5340  */
5341 int
5342 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5343     accmode_t accmode, struct ucred *cred)
5344 {
5345 	accmode_t dac_granted;
5346 	accmode_t priv_granted;
5347 
5348 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5349 	    ("invalid bit in accmode"));
5350 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5351 	    ("VAPPEND without VWRITE"));
5352 
5353 	/*
5354 	 * Look for a normal, non-privileged way to access the file/directory
5355 	 * as requested.  If it exists, go with that.
5356 	 */
5357 
5358 	dac_granted = 0;
5359 
5360 	/* Check the owner. */
5361 	if (cred->cr_uid == file_uid) {
5362 		dac_granted |= VADMIN;
5363 		if (file_mode & S_IXUSR)
5364 			dac_granted |= VEXEC;
5365 		if (file_mode & S_IRUSR)
5366 			dac_granted |= VREAD;
5367 		if (file_mode & S_IWUSR)
5368 			dac_granted |= (VWRITE | VAPPEND);
5369 
5370 		if ((accmode & dac_granted) == accmode)
5371 			return (0);
5372 
5373 		goto privcheck;
5374 	}
5375 
5376 	/* Otherwise, check the groups (first match) */
5377 	if (groupmember(file_gid, cred)) {
5378 		if (file_mode & S_IXGRP)
5379 			dac_granted |= VEXEC;
5380 		if (file_mode & S_IRGRP)
5381 			dac_granted |= VREAD;
5382 		if (file_mode & S_IWGRP)
5383 			dac_granted |= (VWRITE | VAPPEND);
5384 
5385 		if ((accmode & dac_granted) == accmode)
5386 			return (0);
5387 
5388 		goto privcheck;
5389 	}
5390 
5391 	/* Otherwise, check everyone else. */
5392 	if (file_mode & S_IXOTH)
5393 		dac_granted |= VEXEC;
5394 	if (file_mode & S_IROTH)
5395 		dac_granted |= VREAD;
5396 	if (file_mode & S_IWOTH)
5397 		dac_granted |= (VWRITE | VAPPEND);
5398 	if ((accmode & dac_granted) == accmode)
5399 		return (0);
5400 
5401 privcheck:
5402 	/*
5403 	 * Build a privilege mask to determine if the set of privileges
5404 	 * satisfies the requirements when combined with the granted mask
5405 	 * from above.  For each privilege, if the privilege is required,
5406 	 * bitwise or the request type onto the priv_granted mask.
5407 	 */
5408 	priv_granted = 0;
5409 
5410 	if (type == VDIR) {
5411 		/*
5412 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5413 		 * requests, instead of PRIV_VFS_EXEC.
5414 		 */
5415 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5416 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5417 			priv_granted |= VEXEC;
5418 	} else {
5419 		/*
5420 		 * Ensure that at least one execute bit is on. Otherwise,
5421 		 * a privileged user will always succeed, and we don't want
5422 		 * this to happen unless the file really is executable.
5423 		 */
5424 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5425 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5426 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5427 			priv_granted |= VEXEC;
5428 	}
5429 
5430 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5431 	    !priv_check_cred(cred, PRIV_VFS_READ))
5432 		priv_granted |= VREAD;
5433 
5434 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5435 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5436 		priv_granted |= (VWRITE | VAPPEND);
5437 
5438 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5439 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5440 		priv_granted |= VADMIN;
5441 
5442 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5443 		return (0);
5444 	}
5445 
5446 	return ((accmode & VADMIN) ? EPERM : EACCES);
5447 }
5448 
5449 /*
5450  * Credential check based on process requesting service, and per-attribute
5451  * permissions.
5452  */
5453 int
5454 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5455     struct thread *td, accmode_t accmode)
5456 {
5457 
5458 	/*
5459 	 * Kernel-invoked always succeeds.
5460 	 */
5461 	if (cred == NOCRED)
5462 		return (0);
5463 
5464 	/*
5465 	 * Do not allow privileged processes in jail to directly manipulate
5466 	 * system attributes.
5467 	 */
5468 	switch (attrnamespace) {
5469 	case EXTATTR_NAMESPACE_SYSTEM:
5470 		/* Potentially should be: return (EPERM); */
5471 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5472 	case EXTATTR_NAMESPACE_USER:
5473 		return (VOP_ACCESS(vp, accmode, cred, td));
5474 	default:
5475 		return (EPERM);
5476 	}
5477 }
5478 
5479 #ifdef DEBUG_VFS_LOCKS
5480 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5481 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5482     "Drop into debugger on lock violation");
5483 
5484 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5485 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5486     0, "Check for interlock across VOPs");
5487 
5488 int vfs_badlock_print = 1;	/* Print lock violations. */
5489 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5490     0, "Print lock violations");
5491 
5492 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5493 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5494     0, "Print vnode details on lock violations");
5495 
5496 #ifdef KDB
5497 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5498 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5499     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5500 #endif
5501 
5502 static void
5503 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5504 {
5505 
5506 #ifdef KDB
5507 	if (vfs_badlock_backtrace)
5508 		kdb_backtrace();
5509 #endif
5510 	if (vfs_badlock_vnode)
5511 		vn_printf(vp, "vnode ");
5512 	if (vfs_badlock_print)
5513 		printf("%s: %p %s\n", str, (void *)vp, msg);
5514 	if (vfs_badlock_ddb)
5515 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5516 }
5517 
5518 void
5519 assert_vi_locked(struct vnode *vp, const char *str)
5520 {
5521 
5522 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5523 		vfs_badlock("interlock is not locked but should be", str, vp);
5524 }
5525 
5526 void
5527 assert_vi_unlocked(struct vnode *vp, const char *str)
5528 {
5529 
5530 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5531 		vfs_badlock("interlock is locked but should not be", str, vp);
5532 }
5533 
5534 void
5535 assert_vop_locked(struct vnode *vp, const char *str)
5536 {
5537 	int locked;
5538 
5539 	if (KERNEL_PANICKED() || vp == NULL)
5540 		return;
5541 
5542 	locked = VOP_ISLOCKED(vp);
5543 	if (locked == 0 || locked == LK_EXCLOTHER)
5544 		vfs_badlock("is not locked but should be", str, vp);
5545 }
5546 
5547 void
5548 assert_vop_unlocked(struct vnode *vp, const char *str)
5549 {
5550 	if (KERNEL_PANICKED() || vp == NULL)
5551 		return;
5552 
5553 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5554 		vfs_badlock("is locked but should not be", str, vp);
5555 }
5556 
5557 void
5558 assert_vop_elocked(struct vnode *vp, const char *str)
5559 {
5560 	if (KERNEL_PANICKED() || vp == NULL)
5561 		return;
5562 
5563 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5564 		vfs_badlock("is not exclusive locked but should be", str, vp);
5565 }
5566 #endif /* DEBUG_VFS_LOCKS */
5567 
5568 void
5569 vop_rename_fail(struct vop_rename_args *ap)
5570 {
5571 
5572 	if (ap->a_tvp != NULL)
5573 		vput(ap->a_tvp);
5574 	if (ap->a_tdvp == ap->a_tvp)
5575 		vrele(ap->a_tdvp);
5576 	else
5577 		vput(ap->a_tdvp);
5578 	vrele(ap->a_fdvp);
5579 	vrele(ap->a_fvp);
5580 }
5581 
5582 void
5583 vop_rename_pre(void *ap)
5584 {
5585 	struct vop_rename_args *a = ap;
5586 
5587 #ifdef DEBUG_VFS_LOCKS
5588 	if (a->a_tvp)
5589 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5590 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5591 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5592 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5593 
5594 	/* Check the source (from). */
5595 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5596 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5597 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5598 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5599 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5600 
5601 	/* Check the target. */
5602 	if (a->a_tvp)
5603 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5604 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5605 #endif
5606 	/*
5607 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5608 	 * in vop_rename_post but that's not going to work out since some
5609 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5610 	 *
5611 	 * For now filesystems are expected to do the relevant calls after they
5612 	 * decide what vnodes to operate on.
5613 	 */
5614 	if (a->a_tdvp != a->a_fdvp)
5615 		vhold(a->a_fdvp);
5616 	if (a->a_tvp != a->a_fvp)
5617 		vhold(a->a_fvp);
5618 	vhold(a->a_tdvp);
5619 	if (a->a_tvp)
5620 		vhold(a->a_tvp);
5621 }
5622 
5623 #ifdef DEBUG_VFS_LOCKS
5624 void
5625 vop_fplookup_vexec_debugpre(void *ap __unused)
5626 {
5627 
5628 	VFS_SMR_ASSERT_ENTERED();
5629 }
5630 
5631 void
5632 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5633 {
5634 
5635 	VFS_SMR_ASSERT_ENTERED();
5636 }
5637 
5638 void
5639 vop_fplookup_symlink_debugpre(void *ap __unused)
5640 {
5641 
5642 	VFS_SMR_ASSERT_ENTERED();
5643 }
5644 
5645 void
5646 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5647 {
5648 
5649 	VFS_SMR_ASSERT_ENTERED();
5650 }
5651 
5652 static void
5653 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5654 {
5655 	if (vp->v_type == VCHR)
5656 		;
5657 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5658 		ASSERT_VOP_LOCKED(vp, name);
5659 	else
5660 		ASSERT_VOP_ELOCKED(vp, name);
5661 }
5662 
5663 void
5664 vop_fsync_debugpre(void *a)
5665 {
5666 	struct vop_fsync_args *ap;
5667 
5668 	ap = a;
5669 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5670 }
5671 
5672 void
5673 vop_fsync_debugpost(void *a, int rc __unused)
5674 {
5675 	struct vop_fsync_args *ap;
5676 
5677 	ap = a;
5678 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5679 }
5680 
5681 void
5682 vop_fdatasync_debugpre(void *a)
5683 {
5684 	struct vop_fdatasync_args *ap;
5685 
5686 	ap = a;
5687 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5688 }
5689 
5690 void
5691 vop_fdatasync_debugpost(void *a, int rc __unused)
5692 {
5693 	struct vop_fdatasync_args *ap;
5694 
5695 	ap = a;
5696 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5697 }
5698 
5699 void
5700 vop_strategy_debugpre(void *ap)
5701 {
5702 	struct vop_strategy_args *a;
5703 	struct buf *bp;
5704 
5705 	a = ap;
5706 	bp = a->a_bp;
5707 
5708 	/*
5709 	 * Cluster ops lock their component buffers but not the IO container.
5710 	 */
5711 	if ((bp->b_flags & B_CLUSTER) != 0)
5712 		return;
5713 
5714 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5715 		if (vfs_badlock_print)
5716 			printf(
5717 			    "VOP_STRATEGY: bp is not locked but should be\n");
5718 		if (vfs_badlock_ddb)
5719 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5720 	}
5721 }
5722 
5723 void
5724 vop_lock_debugpre(void *ap)
5725 {
5726 	struct vop_lock1_args *a = ap;
5727 
5728 	if ((a->a_flags & LK_INTERLOCK) == 0)
5729 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5730 	else
5731 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5732 }
5733 
5734 void
5735 vop_lock_debugpost(void *ap, int rc)
5736 {
5737 	struct vop_lock1_args *a = ap;
5738 
5739 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5740 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5741 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5742 }
5743 
5744 void
5745 vop_unlock_debugpre(void *ap)
5746 {
5747 	struct vop_unlock_args *a = ap;
5748 	struct vnode *vp = a->a_vp;
5749 
5750 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5751 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5752 }
5753 
5754 void
5755 vop_need_inactive_debugpre(void *ap)
5756 {
5757 	struct vop_need_inactive_args *a = ap;
5758 
5759 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5760 }
5761 
5762 void
5763 vop_need_inactive_debugpost(void *ap, int rc)
5764 {
5765 	struct vop_need_inactive_args *a = ap;
5766 
5767 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5768 }
5769 #endif
5770 
5771 void
5772 vop_create_pre(void *ap)
5773 {
5774 	struct vop_create_args *a;
5775 	struct vnode *dvp;
5776 
5777 	a = ap;
5778 	dvp = a->a_dvp;
5779 	vn_seqc_write_begin(dvp);
5780 }
5781 
5782 void
5783 vop_create_post(void *ap, int rc)
5784 {
5785 	struct vop_create_args *a;
5786 	struct vnode *dvp;
5787 
5788 	a = ap;
5789 	dvp = a->a_dvp;
5790 	vn_seqc_write_end(dvp);
5791 	if (!rc)
5792 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5793 }
5794 
5795 void
5796 vop_whiteout_pre(void *ap)
5797 {
5798 	struct vop_whiteout_args *a;
5799 	struct vnode *dvp;
5800 
5801 	a = ap;
5802 	dvp = a->a_dvp;
5803 	vn_seqc_write_begin(dvp);
5804 }
5805 
5806 void
5807 vop_whiteout_post(void *ap, int rc)
5808 {
5809 	struct vop_whiteout_args *a;
5810 	struct vnode *dvp;
5811 
5812 	a = ap;
5813 	dvp = a->a_dvp;
5814 	vn_seqc_write_end(dvp);
5815 }
5816 
5817 void
5818 vop_deleteextattr_pre(void *ap)
5819 {
5820 	struct vop_deleteextattr_args *a;
5821 	struct vnode *vp;
5822 
5823 	a = ap;
5824 	vp = a->a_vp;
5825 	vn_seqc_write_begin(vp);
5826 }
5827 
5828 void
5829 vop_deleteextattr_post(void *ap, int rc)
5830 {
5831 	struct vop_deleteextattr_args *a;
5832 	struct vnode *vp;
5833 
5834 	a = ap;
5835 	vp = a->a_vp;
5836 	vn_seqc_write_end(vp);
5837 	if (!rc)
5838 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5839 }
5840 
5841 void
5842 vop_link_pre(void *ap)
5843 {
5844 	struct vop_link_args *a;
5845 	struct vnode *vp, *tdvp;
5846 
5847 	a = ap;
5848 	vp = a->a_vp;
5849 	tdvp = a->a_tdvp;
5850 	vn_seqc_write_begin(vp);
5851 	vn_seqc_write_begin(tdvp);
5852 }
5853 
5854 void
5855 vop_link_post(void *ap, int rc)
5856 {
5857 	struct vop_link_args *a;
5858 	struct vnode *vp, *tdvp;
5859 
5860 	a = ap;
5861 	vp = a->a_vp;
5862 	tdvp = a->a_tdvp;
5863 	vn_seqc_write_end(vp);
5864 	vn_seqc_write_end(tdvp);
5865 	if (!rc) {
5866 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5867 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5868 	}
5869 }
5870 
5871 void
5872 vop_mkdir_pre(void *ap)
5873 {
5874 	struct vop_mkdir_args *a;
5875 	struct vnode *dvp;
5876 
5877 	a = ap;
5878 	dvp = a->a_dvp;
5879 	vn_seqc_write_begin(dvp);
5880 }
5881 
5882 void
5883 vop_mkdir_post(void *ap, int rc)
5884 {
5885 	struct vop_mkdir_args *a;
5886 	struct vnode *dvp;
5887 
5888 	a = ap;
5889 	dvp = a->a_dvp;
5890 	vn_seqc_write_end(dvp);
5891 	if (!rc)
5892 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5893 }
5894 
5895 #ifdef DEBUG_VFS_LOCKS
5896 void
5897 vop_mkdir_debugpost(void *ap, int rc)
5898 {
5899 	struct vop_mkdir_args *a;
5900 
5901 	a = ap;
5902 	if (!rc)
5903 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5904 }
5905 #endif
5906 
5907 void
5908 vop_mknod_pre(void *ap)
5909 {
5910 	struct vop_mknod_args *a;
5911 	struct vnode *dvp;
5912 
5913 	a = ap;
5914 	dvp = a->a_dvp;
5915 	vn_seqc_write_begin(dvp);
5916 }
5917 
5918 void
5919 vop_mknod_post(void *ap, int rc)
5920 {
5921 	struct vop_mknod_args *a;
5922 	struct vnode *dvp;
5923 
5924 	a = ap;
5925 	dvp = a->a_dvp;
5926 	vn_seqc_write_end(dvp);
5927 	if (!rc)
5928 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5929 }
5930 
5931 void
5932 vop_reclaim_post(void *ap, int rc)
5933 {
5934 	struct vop_reclaim_args *a;
5935 	struct vnode *vp;
5936 
5937 	a = ap;
5938 	vp = a->a_vp;
5939 	ASSERT_VOP_IN_SEQC(vp);
5940 	if (!rc)
5941 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5942 }
5943 
5944 void
5945 vop_remove_pre(void *ap)
5946 {
5947 	struct vop_remove_args *a;
5948 	struct vnode *dvp, *vp;
5949 
5950 	a = ap;
5951 	dvp = a->a_dvp;
5952 	vp = a->a_vp;
5953 	vn_seqc_write_begin(dvp);
5954 	vn_seqc_write_begin(vp);
5955 }
5956 
5957 void
5958 vop_remove_post(void *ap, int rc)
5959 {
5960 	struct vop_remove_args *a;
5961 	struct vnode *dvp, *vp;
5962 
5963 	a = ap;
5964 	dvp = a->a_dvp;
5965 	vp = a->a_vp;
5966 	vn_seqc_write_end(dvp);
5967 	vn_seqc_write_end(vp);
5968 	if (!rc) {
5969 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5970 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5971 	}
5972 }
5973 
5974 void
5975 vop_rename_post(void *ap, int rc)
5976 {
5977 	struct vop_rename_args *a = ap;
5978 	long hint;
5979 
5980 	if (!rc) {
5981 		hint = NOTE_WRITE;
5982 		if (a->a_fdvp == a->a_tdvp) {
5983 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5984 				hint |= NOTE_LINK;
5985 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5986 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5987 		} else {
5988 			hint |= NOTE_EXTEND;
5989 			if (a->a_fvp->v_type == VDIR)
5990 				hint |= NOTE_LINK;
5991 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5992 
5993 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5994 			    a->a_tvp->v_type == VDIR)
5995 				hint &= ~NOTE_LINK;
5996 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5997 		}
5998 
5999 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6000 		if (a->a_tvp)
6001 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6002 	}
6003 	if (a->a_tdvp != a->a_fdvp)
6004 		vdrop(a->a_fdvp);
6005 	if (a->a_tvp != a->a_fvp)
6006 		vdrop(a->a_fvp);
6007 	vdrop(a->a_tdvp);
6008 	if (a->a_tvp)
6009 		vdrop(a->a_tvp);
6010 }
6011 
6012 void
6013 vop_rmdir_pre(void *ap)
6014 {
6015 	struct vop_rmdir_args *a;
6016 	struct vnode *dvp, *vp;
6017 
6018 	a = ap;
6019 	dvp = a->a_dvp;
6020 	vp = a->a_vp;
6021 	vn_seqc_write_begin(dvp);
6022 	vn_seqc_write_begin(vp);
6023 }
6024 
6025 void
6026 vop_rmdir_post(void *ap, int rc)
6027 {
6028 	struct vop_rmdir_args *a;
6029 	struct vnode *dvp, *vp;
6030 
6031 	a = ap;
6032 	dvp = a->a_dvp;
6033 	vp = a->a_vp;
6034 	vn_seqc_write_end(dvp);
6035 	vn_seqc_write_end(vp);
6036 	if (!rc) {
6037 		vp->v_vflag |= VV_UNLINKED;
6038 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6039 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6040 	}
6041 }
6042 
6043 void
6044 vop_setattr_pre(void *ap)
6045 {
6046 	struct vop_setattr_args *a;
6047 	struct vnode *vp;
6048 
6049 	a = ap;
6050 	vp = a->a_vp;
6051 	vn_seqc_write_begin(vp);
6052 }
6053 
6054 void
6055 vop_setattr_post(void *ap, int rc)
6056 {
6057 	struct vop_setattr_args *a;
6058 	struct vnode *vp;
6059 
6060 	a = ap;
6061 	vp = a->a_vp;
6062 	vn_seqc_write_end(vp);
6063 	if (!rc)
6064 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6065 }
6066 
6067 void
6068 vop_setacl_pre(void *ap)
6069 {
6070 	struct vop_setacl_args *a;
6071 	struct vnode *vp;
6072 
6073 	a = ap;
6074 	vp = a->a_vp;
6075 	vn_seqc_write_begin(vp);
6076 }
6077 
6078 void
6079 vop_setacl_post(void *ap, int rc __unused)
6080 {
6081 	struct vop_setacl_args *a;
6082 	struct vnode *vp;
6083 
6084 	a = ap;
6085 	vp = a->a_vp;
6086 	vn_seqc_write_end(vp);
6087 }
6088 
6089 void
6090 vop_setextattr_pre(void *ap)
6091 {
6092 	struct vop_setextattr_args *a;
6093 	struct vnode *vp;
6094 
6095 	a = ap;
6096 	vp = a->a_vp;
6097 	vn_seqc_write_begin(vp);
6098 }
6099 
6100 void
6101 vop_setextattr_post(void *ap, int rc)
6102 {
6103 	struct vop_setextattr_args *a;
6104 	struct vnode *vp;
6105 
6106 	a = ap;
6107 	vp = a->a_vp;
6108 	vn_seqc_write_end(vp);
6109 	if (!rc)
6110 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6111 }
6112 
6113 void
6114 vop_symlink_pre(void *ap)
6115 {
6116 	struct vop_symlink_args *a;
6117 	struct vnode *dvp;
6118 
6119 	a = ap;
6120 	dvp = a->a_dvp;
6121 	vn_seqc_write_begin(dvp);
6122 }
6123 
6124 void
6125 vop_symlink_post(void *ap, int rc)
6126 {
6127 	struct vop_symlink_args *a;
6128 	struct vnode *dvp;
6129 
6130 	a = ap;
6131 	dvp = a->a_dvp;
6132 	vn_seqc_write_end(dvp);
6133 	if (!rc)
6134 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6135 }
6136 
6137 void
6138 vop_open_post(void *ap, int rc)
6139 {
6140 	struct vop_open_args *a = ap;
6141 
6142 	if (!rc)
6143 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6144 }
6145 
6146 void
6147 vop_close_post(void *ap, int rc)
6148 {
6149 	struct vop_close_args *a = ap;
6150 
6151 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6152 	    !VN_IS_DOOMED(a->a_vp))) {
6153 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6154 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6155 	}
6156 }
6157 
6158 void
6159 vop_read_post(void *ap, int rc)
6160 {
6161 	struct vop_read_args *a = ap;
6162 
6163 	if (!rc)
6164 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6165 }
6166 
6167 void
6168 vop_read_pgcache_post(void *ap, int rc)
6169 {
6170 	struct vop_read_pgcache_args *a = ap;
6171 
6172 	if (!rc)
6173 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6174 }
6175 
6176 void
6177 vop_readdir_post(void *ap, int rc)
6178 {
6179 	struct vop_readdir_args *a = ap;
6180 
6181 	if (!rc)
6182 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6183 }
6184 
6185 static struct knlist fs_knlist;
6186 
6187 static void
6188 vfs_event_init(void *arg)
6189 {
6190 	knlist_init_mtx(&fs_knlist, NULL);
6191 }
6192 /* XXX - correct order? */
6193 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6194 
6195 void
6196 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6197 {
6198 
6199 	KNOTE_UNLOCKED(&fs_knlist, event);
6200 }
6201 
6202 static int	filt_fsattach(struct knote *kn);
6203 static void	filt_fsdetach(struct knote *kn);
6204 static int	filt_fsevent(struct knote *kn, long hint);
6205 
6206 struct filterops fs_filtops = {
6207 	.f_isfd = 0,
6208 	.f_attach = filt_fsattach,
6209 	.f_detach = filt_fsdetach,
6210 	.f_event = filt_fsevent
6211 };
6212 
6213 static int
6214 filt_fsattach(struct knote *kn)
6215 {
6216 
6217 	kn->kn_flags |= EV_CLEAR;
6218 	knlist_add(&fs_knlist, kn, 0);
6219 	return (0);
6220 }
6221 
6222 static void
6223 filt_fsdetach(struct knote *kn)
6224 {
6225 
6226 	knlist_remove(&fs_knlist, kn, 0);
6227 }
6228 
6229 static int
6230 filt_fsevent(struct knote *kn, long hint)
6231 {
6232 
6233 	kn->kn_fflags |= kn->kn_sfflags & hint;
6234 
6235 	return (kn->kn_fflags != 0);
6236 }
6237 
6238 static int
6239 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6240 {
6241 	struct vfsidctl vc;
6242 	int error;
6243 	struct mount *mp;
6244 
6245 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6246 	if (error)
6247 		return (error);
6248 	if (vc.vc_vers != VFS_CTL_VERS1)
6249 		return (EINVAL);
6250 	mp = vfs_getvfs(&vc.vc_fsid);
6251 	if (mp == NULL)
6252 		return (ENOENT);
6253 	/* ensure that a specific sysctl goes to the right filesystem. */
6254 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6255 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6256 		vfs_rel(mp);
6257 		return (EINVAL);
6258 	}
6259 	VCTLTOREQ(&vc, req);
6260 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6261 	vfs_rel(mp);
6262 	return (error);
6263 }
6264 
6265 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6266     NULL, 0, sysctl_vfs_ctl, "",
6267     "Sysctl by fsid");
6268 
6269 /*
6270  * Function to initialize a va_filerev field sensibly.
6271  * XXX: Wouldn't a random number make a lot more sense ??
6272  */
6273 u_quad_t
6274 init_va_filerev(void)
6275 {
6276 	struct bintime bt;
6277 
6278 	getbinuptime(&bt);
6279 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6280 }
6281 
6282 static int	filt_vfsread(struct knote *kn, long hint);
6283 static int	filt_vfswrite(struct knote *kn, long hint);
6284 static int	filt_vfsvnode(struct knote *kn, long hint);
6285 static void	filt_vfsdetach(struct knote *kn);
6286 static struct filterops vfsread_filtops = {
6287 	.f_isfd = 1,
6288 	.f_detach = filt_vfsdetach,
6289 	.f_event = filt_vfsread
6290 };
6291 static struct filterops vfswrite_filtops = {
6292 	.f_isfd = 1,
6293 	.f_detach = filt_vfsdetach,
6294 	.f_event = filt_vfswrite
6295 };
6296 static struct filterops vfsvnode_filtops = {
6297 	.f_isfd = 1,
6298 	.f_detach = filt_vfsdetach,
6299 	.f_event = filt_vfsvnode
6300 };
6301 
6302 static void
6303 vfs_knllock(void *arg)
6304 {
6305 	struct vnode *vp = arg;
6306 
6307 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6308 }
6309 
6310 static void
6311 vfs_knlunlock(void *arg)
6312 {
6313 	struct vnode *vp = arg;
6314 
6315 	VOP_UNLOCK(vp);
6316 }
6317 
6318 static void
6319 vfs_knl_assert_lock(void *arg, int what)
6320 {
6321 #ifdef DEBUG_VFS_LOCKS
6322 	struct vnode *vp = arg;
6323 
6324 	if (what == LA_LOCKED)
6325 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6326 	else
6327 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6328 #endif
6329 }
6330 
6331 int
6332 vfs_kqfilter(struct vop_kqfilter_args *ap)
6333 {
6334 	struct vnode *vp = ap->a_vp;
6335 	struct knote *kn = ap->a_kn;
6336 	struct knlist *knl;
6337 
6338 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6339 	    kn->kn_filter != EVFILT_WRITE),
6340 	    ("READ/WRITE filter on a FIFO leaked through"));
6341 	switch (kn->kn_filter) {
6342 	case EVFILT_READ:
6343 		kn->kn_fop = &vfsread_filtops;
6344 		break;
6345 	case EVFILT_WRITE:
6346 		kn->kn_fop = &vfswrite_filtops;
6347 		break;
6348 	case EVFILT_VNODE:
6349 		kn->kn_fop = &vfsvnode_filtops;
6350 		break;
6351 	default:
6352 		return (EINVAL);
6353 	}
6354 
6355 	kn->kn_hook = (caddr_t)vp;
6356 
6357 	v_addpollinfo(vp);
6358 	if (vp->v_pollinfo == NULL)
6359 		return (ENOMEM);
6360 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6361 	vhold(vp);
6362 	knlist_add(knl, kn, 0);
6363 
6364 	return (0);
6365 }
6366 
6367 /*
6368  * Detach knote from vnode
6369  */
6370 static void
6371 filt_vfsdetach(struct knote *kn)
6372 {
6373 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6374 
6375 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6376 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6377 	vdrop(vp);
6378 }
6379 
6380 /*ARGSUSED*/
6381 static int
6382 filt_vfsread(struct knote *kn, long hint)
6383 {
6384 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6385 	off_t size;
6386 	int res;
6387 
6388 	/*
6389 	 * filesystem is gone, so set the EOF flag and schedule
6390 	 * the knote for deletion.
6391 	 */
6392 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6393 		VI_LOCK(vp);
6394 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6395 		VI_UNLOCK(vp);
6396 		return (1);
6397 	}
6398 
6399 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6400 		return (0);
6401 
6402 	VI_LOCK(vp);
6403 	kn->kn_data = size - kn->kn_fp->f_offset;
6404 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6405 	VI_UNLOCK(vp);
6406 	return (res);
6407 }
6408 
6409 /*ARGSUSED*/
6410 static int
6411 filt_vfswrite(struct knote *kn, long hint)
6412 {
6413 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6414 
6415 	VI_LOCK(vp);
6416 
6417 	/*
6418 	 * filesystem is gone, so set the EOF flag and schedule
6419 	 * the knote for deletion.
6420 	 */
6421 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6422 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6423 
6424 	kn->kn_data = 0;
6425 	VI_UNLOCK(vp);
6426 	return (1);
6427 }
6428 
6429 static int
6430 filt_vfsvnode(struct knote *kn, long hint)
6431 {
6432 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6433 	int res;
6434 
6435 	VI_LOCK(vp);
6436 	if (kn->kn_sfflags & hint)
6437 		kn->kn_fflags |= hint;
6438 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6439 		kn->kn_flags |= EV_EOF;
6440 		VI_UNLOCK(vp);
6441 		return (1);
6442 	}
6443 	res = (kn->kn_fflags != 0);
6444 	VI_UNLOCK(vp);
6445 	return (res);
6446 }
6447 
6448 /*
6449  * Returns whether the directory is empty or not.
6450  * If it is empty, the return value is 0; otherwise
6451  * the return value is an error value (which may
6452  * be ENOTEMPTY).
6453  */
6454 int
6455 vfs_emptydir(struct vnode *vp)
6456 {
6457 	struct uio uio;
6458 	struct iovec iov;
6459 	struct dirent *dirent, *dp, *endp;
6460 	int error, eof;
6461 
6462 	error = 0;
6463 	eof = 0;
6464 
6465 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6466 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6467 
6468 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6469 	iov.iov_base = dirent;
6470 	iov.iov_len = sizeof(struct dirent);
6471 
6472 	uio.uio_iov = &iov;
6473 	uio.uio_iovcnt = 1;
6474 	uio.uio_offset = 0;
6475 	uio.uio_resid = sizeof(struct dirent);
6476 	uio.uio_segflg = UIO_SYSSPACE;
6477 	uio.uio_rw = UIO_READ;
6478 	uio.uio_td = curthread;
6479 
6480 	while (eof == 0 && error == 0) {
6481 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6482 		    NULL, NULL);
6483 		if (error != 0)
6484 			break;
6485 		endp = (void *)((uint8_t *)dirent +
6486 		    sizeof(struct dirent) - uio.uio_resid);
6487 		for (dp = dirent; dp < endp;
6488 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6489 			if (dp->d_type == DT_WHT)
6490 				continue;
6491 			if (dp->d_namlen == 0)
6492 				continue;
6493 			if (dp->d_type != DT_DIR &&
6494 			    dp->d_type != DT_UNKNOWN) {
6495 				error = ENOTEMPTY;
6496 				break;
6497 			}
6498 			if (dp->d_namlen > 2) {
6499 				error = ENOTEMPTY;
6500 				break;
6501 			}
6502 			if (dp->d_namlen == 1 &&
6503 			    dp->d_name[0] != '.') {
6504 				error = ENOTEMPTY;
6505 				break;
6506 			}
6507 			if (dp->d_namlen == 2 &&
6508 			    dp->d_name[1] != '.') {
6509 				error = ENOTEMPTY;
6510 				break;
6511 			}
6512 			uio.uio_resid = sizeof(struct dirent);
6513 		}
6514 	}
6515 	free(dirent, M_TEMP);
6516 	return (error);
6517 }
6518 
6519 int
6520 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6521 {
6522 	int error;
6523 
6524 	if (dp->d_reclen > ap->a_uio->uio_resid)
6525 		return (ENAMETOOLONG);
6526 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6527 	if (error) {
6528 		if (ap->a_ncookies != NULL) {
6529 			if (ap->a_cookies != NULL)
6530 				free(ap->a_cookies, M_TEMP);
6531 			ap->a_cookies = NULL;
6532 			*ap->a_ncookies = 0;
6533 		}
6534 		return (error);
6535 	}
6536 	if (ap->a_ncookies == NULL)
6537 		return (0);
6538 
6539 	KASSERT(ap->a_cookies,
6540 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6541 
6542 	*ap->a_cookies = realloc(*ap->a_cookies,
6543 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6544 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6545 	*ap->a_ncookies += 1;
6546 	return (0);
6547 }
6548 
6549 /*
6550  * The purpose of this routine is to remove granularity from accmode_t,
6551  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6552  * VADMIN and VAPPEND.
6553  *
6554  * If it returns 0, the caller is supposed to continue with the usual
6555  * access checks using 'accmode' as modified by this routine.  If it
6556  * returns nonzero value, the caller is supposed to return that value
6557  * as errno.
6558  *
6559  * Note that after this routine runs, accmode may be zero.
6560  */
6561 int
6562 vfs_unixify_accmode(accmode_t *accmode)
6563 {
6564 	/*
6565 	 * There is no way to specify explicit "deny" rule using
6566 	 * file mode or POSIX.1e ACLs.
6567 	 */
6568 	if (*accmode & VEXPLICIT_DENY) {
6569 		*accmode = 0;
6570 		return (0);
6571 	}
6572 
6573 	/*
6574 	 * None of these can be translated into usual access bits.
6575 	 * Also, the common case for NFSv4 ACLs is to not contain
6576 	 * either of these bits. Caller should check for VWRITE
6577 	 * on the containing directory instead.
6578 	 */
6579 	if (*accmode & (VDELETE_CHILD | VDELETE))
6580 		return (EPERM);
6581 
6582 	if (*accmode & VADMIN_PERMS) {
6583 		*accmode &= ~VADMIN_PERMS;
6584 		*accmode |= VADMIN;
6585 	}
6586 
6587 	/*
6588 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6589 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6590 	 */
6591 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6592 
6593 	return (0);
6594 }
6595 
6596 /*
6597  * Clear out a doomed vnode (if any) and replace it with a new one as long
6598  * as the fs is not being unmounted. Return the root vnode to the caller.
6599  */
6600 static int __noinline
6601 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6602 {
6603 	struct vnode *vp;
6604 	int error;
6605 
6606 restart:
6607 	if (mp->mnt_rootvnode != NULL) {
6608 		MNT_ILOCK(mp);
6609 		vp = mp->mnt_rootvnode;
6610 		if (vp != NULL) {
6611 			if (!VN_IS_DOOMED(vp)) {
6612 				vrefact(vp);
6613 				MNT_IUNLOCK(mp);
6614 				error = vn_lock(vp, flags);
6615 				if (error == 0) {
6616 					*vpp = vp;
6617 					return (0);
6618 				}
6619 				vrele(vp);
6620 				goto restart;
6621 			}
6622 			/*
6623 			 * Clear the old one.
6624 			 */
6625 			mp->mnt_rootvnode = NULL;
6626 		}
6627 		MNT_IUNLOCK(mp);
6628 		if (vp != NULL) {
6629 			vfs_op_barrier_wait(mp);
6630 			vrele(vp);
6631 		}
6632 	}
6633 	error = VFS_CACHEDROOT(mp, flags, vpp);
6634 	if (error != 0)
6635 		return (error);
6636 	if (mp->mnt_vfs_ops == 0) {
6637 		MNT_ILOCK(mp);
6638 		if (mp->mnt_vfs_ops != 0) {
6639 			MNT_IUNLOCK(mp);
6640 			return (0);
6641 		}
6642 		if (mp->mnt_rootvnode == NULL) {
6643 			vrefact(*vpp);
6644 			mp->mnt_rootvnode = *vpp;
6645 		} else {
6646 			if (mp->mnt_rootvnode != *vpp) {
6647 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6648 					panic("%s: mismatch between vnode returned "
6649 					    " by VFS_CACHEDROOT and the one cached "
6650 					    " (%p != %p)",
6651 					    __func__, *vpp, mp->mnt_rootvnode);
6652 				}
6653 			}
6654 		}
6655 		MNT_IUNLOCK(mp);
6656 	}
6657 	return (0);
6658 }
6659 
6660 int
6661 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6662 {
6663 	struct mount_pcpu *mpcpu;
6664 	struct vnode *vp;
6665 	int error;
6666 
6667 	if (!vfs_op_thread_enter(mp, mpcpu))
6668 		return (vfs_cache_root_fallback(mp, flags, vpp));
6669 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6670 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6671 		vfs_op_thread_exit(mp, mpcpu);
6672 		return (vfs_cache_root_fallback(mp, flags, vpp));
6673 	}
6674 	vrefact(vp);
6675 	vfs_op_thread_exit(mp, mpcpu);
6676 	error = vn_lock(vp, flags);
6677 	if (error != 0) {
6678 		vrele(vp);
6679 		return (vfs_cache_root_fallback(mp, flags, vpp));
6680 	}
6681 	*vpp = vp;
6682 	return (0);
6683 }
6684 
6685 struct vnode *
6686 vfs_cache_root_clear(struct mount *mp)
6687 {
6688 	struct vnode *vp;
6689 
6690 	/*
6691 	 * ops > 0 guarantees there is nobody who can see this vnode
6692 	 */
6693 	MPASS(mp->mnt_vfs_ops > 0);
6694 	vp = mp->mnt_rootvnode;
6695 	if (vp != NULL)
6696 		vn_seqc_write_begin(vp);
6697 	mp->mnt_rootvnode = NULL;
6698 	return (vp);
6699 }
6700 
6701 void
6702 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6703 {
6704 
6705 	MPASS(mp->mnt_vfs_ops > 0);
6706 	vrefact(vp);
6707 	mp->mnt_rootvnode = vp;
6708 }
6709 
6710 /*
6711  * These are helper functions for filesystems to traverse all
6712  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6713  *
6714  * This interface replaces MNT_VNODE_FOREACH.
6715  */
6716 
6717 struct vnode *
6718 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6719 {
6720 	struct vnode *vp;
6721 
6722 	if (should_yield())
6723 		kern_yield(PRI_USER);
6724 	MNT_ILOCK(mp);
6725 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6726 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6727 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6728 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6729 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6730 			continue;
6731 		VI_LOCK(vp);
6732 		if (VN_IS_DOOMED(vp)) {
6733 			VI_UNLOCK(vp);
6734 			continue;
6735 		}
6736 		break;
6737 	}
6738 	if (vp == NULL) {
6739 		__mnt_vnode_markerfree_all(mvp, mp);
6740 		/* MNT_IUNLOCK(mp); -- done in above function */
6741 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6742 		return (NULL);
6743 	}
6744 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6745 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6746 	MNT_IUNLOCK(mp);
6747 	return (vp);
6748 }
6749 
6750 struct vnode *
6751 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6752 {
6753 	struct vnode *vp;
6754 
6755 	*mvp = vn_alloc_marker(mp);
6756 	MNT_ILOCK(mp);
6757 	MNT_REF(mp);
6758 
6759 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6760 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6761 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6762 			continue;
6763 		VI_LOCK(vp);
6764 		if (VN_IS_DOOMED(vp)) {
6765 			VI_UNLOCK(vp);
6766 			continue;
6767 		}
6768 		break;
6769 	}
6770 	if (vp == NULL) {
6771 		MNT_REL(mp);
6772 		MNT_IUNLOCK(mp);
6773 		vn_free_marker(*mvp);
6774 		*mvp = NULL;
6775 		return (NULL);
6776 	}
6777 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6778 	MNT_IUNLOCK(mp);
6779 	return (vp);
6780 }
6781 
6782 void
6783 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6784 {
6785 
6786 	if (*mvp == NULL) {
6787 		MNT_IUNLOCK(mp);
6788 		return;
6789 	}
6790 
6791 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6792 
6793 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6794 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6795 	MNT_REL(mp);
6796 	MNT_IUNLOCK(mp);
6797 	vn_free_marker(*mvp);
6798 	*mvp = NULL;
6799 }
6800 
6801 /*
6802  * These are helper functions for filesystems to traverse their
6803  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6804  */
6805 static void
6806 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6807 {
6808 
6809 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6810 
6811 	MNT_ILOCK(mp);
6812 	MNT_REL(mp);
6813 	MNT_IUNLOCK(mp);
6814 	vn_free_marker(*mvp);
6815 	*mvp = NULL;
6816 }
6817 
6818 /*
6819  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6820  * conventional lock order during mnt_vnode_next_lazy iteration.
6821  *
6822  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6823  * The list lock is dropped and reacquired.  On success, both locks are held.
6824  * On failure, the mount vnode list lock is held but the vnode interlock is
6825  * not, and the procedure may have yielded.
6826  */
6827 static bool
6828 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6829     struct vnode *vp)
6830 {
6831 
6832 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6833 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6834 	    ("%s: bad marker", __func__));
6835 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6836 	    ("%s: inappropriate vnode", __func__));
6837 	ASSERT_VI_UNLOCKED(vp, __func__);
6838 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6839 
6840 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6841 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6842 
6843 	/*
6844 	 * Note we may be racing against vdrop which transitioned the hold
6845 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6846 	 * if we are the only user after we get the interlock we will just
6847 	 * vdrop.
6848 	 */
6849 	vhold(vp);
6850 	mtx_unlock(&mp->mnt_listmtx);
6851 	VI_LOCK(vp);
6852 	if (VN_IS_DOOMED(vp)) {
6853 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6854 		goto out_lost;
6855 	}
6856 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6857 	/*
6858 	 * There is nothing to do if we are the last user.
6859 	 */
6860 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6861 		goto out_lost;
6862 	mtx_lock(&mp->mnt_listmtx);
6863 	return (true);
6864 out_lost:
6865 	vdropl(vp);
6866 	maybe_yield();
6867 	mtx_lock(&mp->mnt_listmtx);
6868 	return (false);
6869 }
6870 
6871 static struct vnode *
6872 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6873     void *cbarg)
6874 {
6875 	struct vnode *vp;
6876 
6877 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6878 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6879 restart:
6880 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6881 	while (vp != NULL) {
6882 		if (vp->v_type == VMARKER) {
6883 			vp = TAILQ_NEXT(vp, v_lazylist);
6884 			continue;
6885 		}
6886 		/*
6887 		 * See if we want to process the vnode. Note we may encounter a
6888 		 * long string of vnodes we don't care about and hog the list
6889 		 * as a result. Check for it and requeue the marker.
6890 		 */
6891 		VNPASS(!VN_IS_DOOMED(vp), vp);
6892 		if (!cb(vp, cbarg)) {
6893 			if (!should_yield()) {
6894 				vp = TAILQ_NEXT(vp, v_lazylist);
6895 				continue;
6896 			}
6897 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6898 			    v_lazylist);
6899 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6900 			    v_lazylist);
6901 			mtx_unlock(&mp->mnt_listmtx);
6902 			kern_yield(PRI_USER);
6903 			mtx_lock(&mp->mnt_listmtx);
6904 			goto restart;
6905 		}
6906 		/*
6907 		 * Try-lock because this is the wrong lock order.
6908 		 */
6909 		if (!VI_TRYLOCK(vp) &&
6910 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6911 			goto restart;
6912 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6913 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6914 		    ("alien vnode on the lazy list %p %p", vp, mp));
6915 		VNPASS(vp->v_mount == mp, vp);
6916 		VNPASS(!VN_IS_DOOMED(vp), vp);
6917 		break;
6918 	}
6919 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6920 
6921 	/* Check if we are done */
6922 	if (vp == NULL) {
6923 		mtx_unlock(&mp->mnt_listmtx);
6924 		mnt_vnode_markerfree_lazy(mvp, mp);
6925 		return (NULL);
6926 	}
6927 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6928 	mtx_unlock(&mp->mnt_listmtx);
6929 	ASSERT_VI_LOCKED(vp, "lazy iter");
6930 	return (vp);
6931 }
6932 
6933 struct vnode *
6934 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6935     void *cbarg)
6936 {
6937 
6938 	if (should_yield())
6939 		kern_yield(PRI_USER);
6940 	mtx_lock(&mp->mnt_listmtx);
6941 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6942 }
6943 
6944 struct vnode *
6945 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6946     void *cbarg)
6947 {
6948 	struct vnode *vp;
6949 
6950 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6951 		return (NULL);
6952 
6953 	*mvp = vn_alloc_marker(mp);
6954 	MNT_ILOCK(mp);
6955 	MNT_REF(mp);
6956 	MNT_IUNLOCK(mp);
6957 
6958 	mtx_lock(&mp->mnt_listmtx);
6959 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6960 	if (vp == NULL) {
6961 		mtx_unlock(&mp->mnt_listmtx);
6962 		mnt_vnode_markerfree_lazy(mvp, mp);
6963 		return (NULL);
6964 	}
6965 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6966 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6967 }
6968 
6969 void
6970 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6971 {
6972 
6973 	if (*mvp == NULL)
6974 		return;
6975 
6976 	mtx_lock(&mp->mnt_listmtx);
6977 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6978 	mtx_unlock(&mp->mnt_listmtx);
6979 	mnt_vnode_markerfree_lazy(mvp, mp);
6980 }
6981 
6982 int
6983 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6984 {
6985 
6986 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6987 		cnp->cn_flags &= ~NOEXECCHECK;
6988 		return (0);
6989 	}
6990 
6991 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6992 }
6993 
6994 /*
6995  * Do not use this variant unless you have means other than the hold count
6996  * to prevent the vnode from getting freed.
6997  */
6998 void
6999 vn_seqc_write_begin_locked(struct vnode *vp)
7000 {
7001 
7002 	ASSERT_VI_LOCKED(vp, __func__);
7003 	VNPASS(vp->v_holdcnt > 0, vp);
7004 	VNPASS(vp->v_seqc_users >= 0, vp);
7005 	vp->v_seqc_users++;
7006 	if (vp->v_seqc_users == 1)
7007 		seqc_sleepable_write_begin(&vp->v_seqc);
7008 }
7009 
7010 void
7011 vn_seqc_write_begin(struct vnode *vp)
7012 {
7013 
7014 	VI_LOCK(vp);
7015 	vn_seqc_write_begin_locked(vp);
7016 	VI_UNLOCK(vp);
7017 }
7018 
7019 void
7020 vn_seqc_write_end_locked(struct vnode *vp)
7021 {
7022 
7023 	ASSERT_VI_LOCKED(vp, __func__);
7024 	VNPASS(vp->v_seqc_users > 0, vp);
7025 	vp->v_seqc_users--;
7026 	if (vp->v_seqc_users == 0)
7027 		seqc_sleepable_write_end(&vp->v_seqc);
7028 }
7029 
7030 void
7031 vn_seqc_write_end(struct vnode *vp)
7032 {
7033 
7034 	VI_LOCK(vp);
7035 	vn_seqc_write_end_locked(vp);
7036 	VI_UNLOCK(vp);
7037 }
7038 
7039 /*
7040  * Special case handling for allocating and freeing vnodes.
7041  *
7042  * The counter remains unchanged on free so that a doomed vnode will
7043  * keep testing as in modify as long as it is accessible with SMR.
7044  */
7045 static void
7046 vn_seqc_init(struct vnode *vp)
7047 {
7048 
7049 	vp->v_seqc = 0;
7050 	vp->v_seqc_users = 0;
7051 }
7052 
7053 static void
7054 vn_seqc_write_end_free(struct vnode *vp)
7055 {
7056 
7057 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7058 	VNPASS(vp->v_seqc_users == 1, vp);
7059 }
7060 
7061 void
7062 vn_irflag_set_locked(struct vnode *vp, short toset)
7063 {
7064 	short flags;
7065 
7066 	ASSERT_VI_LOCKED(vp, __func__);
7067 	flags = vn_irflag_read(vp);
7068 	VNASSERT((flags & toset) == 0, vp,
7069 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7070 	    __func__, flags, toset));
7071 	atomic_store_short(&vp->v_irflag, flags | toset);
7072 }
7073 
7074 void
7075 vn_irflag_set(struct vnode *vp, short toset)
7076 {
7077 
7078 	VI_LOCK(vp);
7079 	vn_irflag_set_locked(vp, toset);
7080 	VI_UNLOCK(vp);
7081 }
7082 
7083 void
7084 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7085 {
7086 	short flags;
7087 
7088 	ASSERT_VI_LOCKED(vp, __func__);
7089 	flags = vn_irflag_read(vp);
7090 	atomic_store_short(&vp->v_irflag, flags | toset);
7091 }
7092 
7093 void
7094 vn_irflag_set_cond(struct vnode *vp, short toset)
7095 {
7096 
7097 	VI_LOCK(vp);
7098 	vn_irflag_set_cond_locked(vp, toset);
7099 	VI_UNLOCK(vp);
7100 }
7101 
7102 void
7103 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7104 {
7105 	short flags;
7106 
7107 	ASSERT_VI_LOCKED(vp, __func__);
7108 	flags = vn_irflag_read(vp);
7109 	VNASSERT((flags & tounset) == tounset, vp,
7110 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7111 	    __func__, flags, tounset));
7112 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7113 }
7114 
7115 void
7116 vn_irflag_unset(struct vnode *vp, short tounset)
7117 {
7118 
7119 	VI_LOCK(vp);
7120 	vn_irflag_unset_locked(vp, tounset);
7121 	VI_UNLOCK(vp);
7122 }
7123 
7124 int
7125 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7126 {
7127 	struct vattr vattr;
7128 	int error;
7129 
7130 	ASSERT_VOP_LOCKED(vp, __func__);
7131 	error = VOP_GETATTR(vp, &vattr, cred);
7132 	if (__predict_true(error == 0)) {
7133 		if (vattr.va_size <= OFF_MAX)
7134 			*size = vattr.va_size;
7135 		else
7136 			error = EFBIG;
7137 	}
7138 	return (error);
7139 }
7140 
7141 int
7142 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7143 {
7144 	int error;
7145 
7146 	VOP_LOCK(vp, LK_SHARED);
7147 	error = vn_getsize_locked(vp, size, cred);
7148 	VOP_UNLOCK(vp);
7149 	return (error);
7150 }
7151 
7152 #ifdef INVARIANTS
7153 void
7154 vn_set_state_validate(struct vnode *vp, enum vstate state)
7155 {
7156 
7157 	switch (vp->v_state) {
7158 	case VSTATE_UNINITIALIZED:
7159 		switch (state) {
7160 		case VSTATE_CONSTRUCTED:
7161 		case VSTATE_DESTROYING:
7162 			return;
7163 		default:
7164 			break;
7165 		}
7166 		break;
7167 	case VSTATE_CONSTRUCTED:
7168 		ASSERT_VOP_ELOCKED(vp, __func__);
7169 		switch (state) {
7170 		case VSTATE_DESTROYING:
7171 			return;
7172 		default:
7173 			break;
7174 		}
7175 		break;
7176 	case VSTATE_DESTROYING:
7177 		ASSERT_VOP_ELOCKED(vp, __func__);
7178 		switch (state) {
7179 		case VSTATE_DEAD:
7180 			return;
7181 		default:
7182 			break;
7183 		}
7184 		break;
7185 	case VSTATE_DEAD:
7186 		switch (state) {
7187 		case VSTATE_UNINITIALIZED:
7188 			return;
7189 		default:
7190 			break;
7191 		}
7192 		break;
7193 	}
7194 
7195 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7196 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7197 }
7198 #endif
7199