xref: /freebsd/sys/kern/vfs_subr.c (revision 2782c00c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/stat.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85 #include <sys/watchdog.h>
86 
87 #include <machine/stdarg.h>
88 
89 #include <security/mac/mac_framework.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_extern.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/uma.h>
99 
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103 
104 static void	delmntque(struct vnode *vp);
105 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 		    int slpflag, int slptimeo);
107 static void	syncer_shutdown(void *arg, int howto);
108 static int	vtryrecycle(struct vnode *vp);
109 static void	v_init_counters(struct vnode *);
110 static void	v_incr_devcount(struct vnode *);
111 static void	v_decr_devcount(struct vnode *);
112 static void	vgonel(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_locked(void *arg);
116 static void	vfs_knl_assert_unlocked(void *arg);
117 static void	destroy_vpollinfo(struct vpollinfo *vi);
118 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
119 		    daddr_t startlbn, daddr_t endlbn);
120 static void	vnlru_recalc(void);
121 
122 /*
123  * These fences are intended for cases where some synchronization is
124  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
125  * and v_usecount) updates.  Access to v_iflags is generally synchronized
126  * by the interlock, but we have some internal assertions that check vnode
127  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
128  * for now.
129  */
130 #ifdef INVARIANTS
131 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
132 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
133 #else
134 #define	VNODE_REFCOUNT_FENCE_ACQ()
135 #define	VNODE_REFCOUNT_FENCE_REL()
136 #endif
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
141  */
142 static u_long __exclusive_cache_line numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence");
146 
147 static counter_u64_t vnodes_created;
148 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
149     "Number of vnodes created by getnewvnode");
150 
151 /*
152  * Conversion tables for conversion from vnode types to inode formats
153  * and back.
154  */
155 enum vtype iftovt_tab[16] = {
156 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
157 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
158 };
159 int vttoif_tab[10] = {
160 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
161 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
162 };
163 
164 /*
165  * List of allocates vnodes in the system.
166  */
167 static TAILQ_HEAD(freelst, vnode) vnode_list;
168 static struct vnode *vnode_list_free_marker;
169 static struct vnode *vnode_list_reclaim_marker;
170 
171 /*
172  * "Free" vnode target.  Free vnodes are rarely completely free, but are
173  * just ones that are cheap to recycle.  Usually they are for files which
174  * have been stat'd but not read; these usually have inode and namecache
175  * data attached to them.  This target is the preferred minimum size of a
176  * sub-cache consisting mostly of such files. The system balances the size
177  * of this sub-cache with its complement to try to prevent either from
178  * thrashing while the other is relatively inactive.  The targets express
179  * a preference for the best balance.
180  *
181  * "Above" this target there are 2 further targets (watermarks) related
182  * to recyling of free vnodes.  In the best-operating case, the cache is
183  * exactly full, the free list has size between vlowat and vhiwat above the
184  * free target, and recycling from it and normal use maintains this state.
185  * Sometimes the free list is below vlowat or even empty, but this state
186  * is even better for immediate use provided the cache is not full.
187  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
188  * ones) to reach one of these states.  The watermarks are currently hard-
189  * coded as 4% and 9% of the available space higher.  These and the default
190  * of 25% for wantfreevnodes are too large if the memory size is large.
191  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
192  * whenever vnlru_proc() becomes active.
193  */
194 static long wantfreevnodes;
195 static long __exclusive_cache_line freevnodes;
196 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
197     &freevnodes, 0, "Number of \"free\" vnodes");
198 static long freevnodes_old;
199 
200 static counter_u64_t recycles_count;
201 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
202     "Number of vnodes recycled to meet vnode cache targets");
203 
204 static counter_u64_t recycles_free_count;
205 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
206     "Number of free vnodes recycled to meet vnode cache targets");
207 
208 /*
209  * Various variables used for debugging the new implementation of
210  * reassignbuf().
211  * XXX these are probably of (very) limited utility now.
212  */
213 static int reassignbufcalls;
214 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW | CTLFLAG_STATS,
215     &reassignbufcalls, 0, "Number of calls to reassignbuf");
216 
217 static counter_u64_t deferred_inact;
218 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
219     "Number of times inactive processing was deferred");
220 
221 /* To keep more than one thread at a time from running vfs_getnewfsid */
222 static struct mtx mntid_mtx;
223 
224 /*
225  * Lock for any access to the following:
226  *	vnode_list
227  *	numvnodes
228  *	freevnodes
229  */
230 static struct mtx __exclusive_cache_line vnode_list_mtx;
231 
232 /* Publicly exported FS */
233 struct nfs_public nfs_pub;
234 
235 static uma_zone_t buf_trie_zone;
236 
237 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
238 static uma_zone_t vnode_zone;
239 static uma_zone_t vnodepoll_zone;
240 
241 /*
242  * The workitem queue.
243  *
244  * It is useful to delay writes of file data and filesystem metadata
245  * for tens of seconds so that quickly created and deleted files need
246  * not waste disk bandwidth being created and removed. To realize this,
247  * we append vnodes to a "workitem" queue. When running with a soft
248  * updates implementation, most pending metadata dependencies should
249  * not wait for more than a few seconds. Thus, mounted on block devices
250  * are delayed only about a half the time that file data is delayed.
251  * Similarly, directory updates are more critical, so are only delayed
252  * about a third the time that file data is delayed. Thus, there are
253  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
254  * one each second (driven off the filesystem syncer process). The
255  * syncer_delayno variable indicates the next queue that is to be processed.
256  * Items that need to be processed soon are placed in this queue:
257  *
258  *	syncer_workitem_pending[syncer_delayno]
259  *
260  * A delay of fifteen seconds is done by placing the request fifteen
261  * entries later in the queue:
262  *
263  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
264  *
265  */
266 static int syncer_delayno;
267 static long syncer_mask;
268 LIST_HEAD(synclist, bufobj);
269 static struct synclist *syncer_workitem_pending;
270 /*
271  * The sync_mtx protects:
272  *	bo->bo_synclist
273  *	sync_vnode_count
274  *	syncer_delayno
275  *	syncer_state
276  *	syncer_workitem_pending
277  *	syncer_worklist_len
278  *	rushjob
279  */
280 static struct mtx sync_mtx;
281 static struct cv sync_wakeup;
282 
283 #define SYNCER_MAXDELAY		32
284 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
285 static int syncdelay = 30;		/* max time to delay syncing data */
286 static int filedelay = 30;		/* time to delay syncing files */
287 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
288     "Time to delay syncing files (in seconds)");
289 static int dirdelay = 29;		/* time to delay syncing directories */
290 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
291     "Time to delay syncing directories (in seconds)");
292 static int metadelay = 28;		/* time to delay syncing metadata */
293 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
294     "Time to delay syncing metadata (in seconds)");
295 static int rushjob;		/* number of slots to run ASAP */
296 static int stat_rush_requests;	/* number of times I/O speeded up */
297 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
298     "Number of times I/O speeded up (rush requests)");
299 
300 #define	VDBATCH_SIZE 8
301 struct vdbatch {
302 	u_int index;
303 	long freevnodes;
304 	struct mtx lock;
305 	struct vnode *tab[VDBATCH_SIZE];
306 };
307 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
308 
309 static void	vdbatch_dequeue(struct vnode *vp);
310 
311 /*
312  * When shutting down the syncer, run it at four times normal speed.
313  */
314 #define SYNCER_SHUTDOWN_SPEEDUP		4
315 static int sync_vnode_count;
316 static int syncer_worklist_len;
317 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
318     syncer_state;
319 
320 /* Target for maximum number of vnodes. */
321 u_long desiredvnodes;
322 static u_long gapvnodes;		/* gap between wanted and desired */
323 static u_long vhiwat;		/* enough extras after expansion */
324 static u_long vlowat;		/* minimal extras before expansion */
325 static u_long vstir;		/* nonzero to stir non-free vnodes */
326 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
327 
328 static u_long vnlru_read_freevnodes(void);
329 
330 /*
331  * Note that no attempt is made to sanitize these parameters.
332  */
333 static int
334 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
335 {
336 	u_long val;
337 	int error;
338 
339 	val = desiredvnodes;
340 	error = sysctl_handle_long(oidp, &val, 0, req);
341 	if (error != 0 || req->newptr == NULL)
342 		return (error);
343 
344 	if (val == desiredvnodes)
345 		return (0);
346 	mtx_lock(&vnode_list_mtx);
347 	desiredvnodes = val;
348 	wantfreevnodes = desiredvnodes / 4;
349 	vnlru_recalc();
350 	mtx_unlock(&vnode_list_mtx);
351 	/*
352 	 * XXX There is no protection against multiple threads changing
353 	 * desiredvnodes at the same time. Locking above only helps vnlru and
354 	 * getnewvnode.
355 	 */
356 	vfs_hash_changesize(desiredvnodes);
357 	cache_changesize(desiredvnodes);
358 	return (0);
359 }
360 
361 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
362     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
363     "LU", "Target for maximum number of vnodes");
364 
365 static int
366 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
367 {
368 	u_long val;
369 	int error;
370 
371 	val = wantfreevnodes;
372 	error = sysctl_handle_long(oidp, &val, 0, req);
373 	if (error != 0 || req->newptr == NULL)
374 		return (error);
375 
376 	if (val == wantfreevnodes)
377 		return (0);
378 	mtx_lock(&vnode_list_mtx);
379 	wantfreevnodes = val;
380 	vnlru_recalc();
381 	mtx_unlock(&vnode_list_mtx);
382 	return (0);
383 }
384 
385 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
386     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
387     "LU", "Target for minimum number of \"free\" vnodes");
388 
389 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
390     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
391 static int vnlru_nowhere;
392 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
393     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
394 
395 static int
396 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
397 {
398 	struct vnode *vp;
399 	struct nameidata nd;
400 	char *buf;
401 	unsigned long ndflags;
402 	int error;
403 
404 	if (req->newptr == NULL)
405 		return (EINVAL);
406 	if (req->newlen >= PATH_MAX)
407 		return (E2BIG);
408 
409 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
410 	error = SYSCTL_IN(req, buf, req->newlen);
411 	if (error != 0)
412 		goto out;
413 
414 	buf[req->newlen] = '\0';
415 
416 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | NOCACHE | SAVENAME;
417 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
418 	if ((error = namei(&nd)) != 0)
419 		goto out;
420 	vp = nd.ni_vp;
421 
422 	if (VN_IS_DOOMED(vp)) {
423 		/*
424 		 * This vnode is being recycled.  Return != 0 to let the caller
425 		 * know that the sysctl had no effect.  Return EAGAIN because a
426 		 * subsequent call will likely succeed (since namei will create
427 		 * a new vnode if necessary)
428 		 */
429 		error = EAGAIN;
430 		goto putvnode;
431 	}
432 
433 	counter_u64_add(recycles_count, 1);
434 	vgone(vp);
435 putvnode:
436 	NDFREE(&nd, 0);
437 out:
438 	free(buf, M_TEMP);
439 	return (error);
440 }
441 
442 static int
443 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
444 {
445 	struct thread *td = curthread;
446 	struct vnode *vp;
447 	struct file *fp;
448 	int error;
449 	int fd;
450 
451 	if (req->newptr == NULL)
452 		return (EBADF);
453 
454         error = sysctl_handle_int(oidp, &fd, 0, req);
455         if (error != 0)
456                 return (error);
457 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
458 	if (error != 0)
459 		return (error);
460 	vp = fp->f_vnode;
461 
462 	error = vn_lock(vp, LK_EXCLUSIVE);
463 	if (error != 0)
464 		goto drop;
465 
466 	counter_u64_add(recycles_count, 1);
467 	vgone(vp);
468 	VOP_UNLOCK(vp);
469 drop:
470 	fdrop(fp, td);
471 	return (error);
472 }
473 
474 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
475     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
476     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
477 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
478     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
479     sysctl_ftry_reclaim_vnode, "I",
480     "Try to reclaim a vnode by its file descriptor");
481 
482 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
483 static int vnsz2log;
484 
485 /*
486  * Support for the bufobj clean & dirty pctrie.
487  */
488 static void *
489 buf_trie_alloc(struct pctrie *ptree)
490 {
491 
492 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
493 }
494 
495 static void
496 buf_trie_free(struct pctrie *ptree, void *node)
497 {
498 
499 	uma_zfree(buf_trie_zone, node);
500 }
501 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
502 
503 /*
504  * Initialize the vnode management data structures.
505  *
506  * Reevaluate the following cap on the number of vnodes after the physical
507  * memory size exceeds 512GB.  In the limit, as the physical memory size
508  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
509  */
510 #ifndef	MAXVNODES_MAX
511 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
512 #endif
513 
514 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
515 
516 static struct vnode *
517 vn_alloc_marker(struct mount *mp)
518 {
519 	struct vnode *vp;
520 
521 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
522 	vp->v_type = VMARKER;
523 	vp->v_mount = mp;
524 
525 	return (vp);
526 }
527 
528 static void
529 vn_free_marker(struct vnode *vp)
530 {
531 
532 	MPASS(vp->v_type == VMARKER);
533 	free(vp, M_VNODE_MARKER);
534 }
535 
536 /*
537  * Initialize a vnode as it first enters the zone.
538  */
539 static int
540 vnode_init(void *mem, int size, int flags)
541 {
542 	struct vnode *vp;
543 
544 	vp = mem;
545 	bzero(vp, size);
546 	/*
547 	 * Setup locks.
548 	 */
549 	vp->v_vnlock = &vp->v_lock;
550 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
551 	/*
552 	 * By default, don't allow shared locks unless filesystems opt-in.
553 	 */
554 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
555 	    LK_NOSHARE | LK_IS_VNODE);
556 	/*
557 	 * Initialize bufobj.
558 	 */
559 	bufobj_init(&vp->v_bufobj, vp);
560 	/*
561 	 * Initialize namecache.
562 	 */
563 	LIST_INIT(&vp->v_cache_src);
564 	TAILQ_INIT(&vp->v_cache_dst);
565 	/*
566 	 * Initialize rangelocks.
567 	 */
568 	rangelock_init(&vp->v_rl);
569 
570 	vp->v_dbatchcpu = NOCPU;
571 
572 	mtx_lock(&vnode_list_mtx);
573 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
574 	mtx_unlock(&vnode_list_mtx);
575 	return (0);
576 }
577 
578 /*
579  * Free a vnode when it is cleared from the zone.
580  */
581 static void
582 vnode_fini(void *mem, int size)
583 {
584 	struct vnode *vp;
585 	struct bufobj *bo;
586 
587 	vp = mem;
588 	vdbatch_dequeue(vp);
589 	mtx_lock(&vnode_list_mtx);
590 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
591 	mtx_unlock(&vnode_list_mtx);
592 	rangelock_destroy(&vp->v_rl);
593 	lockdestroy(vp->v_vnlock);
594 	mtx_destroy(&vp->v_interlock);
595 	bo = &vp->v_bufobj;
596 	rw_destroy(BO_LOCKPTR(bo));
597 }
598 
599 /*
600  * Provide the size of NFS nclnode and NFS fh for calculation of the
601  * vnode memory consumption.  The size is specified directly to
602  * eliminate dependency on NFS-private header.
603  *
604  * Other filesystems may use bigger or smaller (like UFS and ZFS)
605  * private inode data, but the NFS-based estimation is ample enough.
606  * Still, we care about differences in the size between 64- and 32-bit
607  * platforms.
608  *
609  * Namecache structure size is heuristically
610  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
611  */
612 #ifdef _LP64
613 #define	NFS_NCLNODE_SZ	(528 + 64)
614 #define	NC_SZ		148
615 #else
616 #define	NFS_NCLNODE_SZ	(360 + 32)
617 #define	NC_SZ		92
618 #endif
619 
620 static void
621 vntblinit(void *dummy __unused)
622 {
623 	struct vdbatch *vd;
624 	int cpu, physvnodes, virtvnodes;
625 	u_int i;
626 
627 	/*
628 	 * Desiredvnodes is a function of the physical memory size and the
629 	 * kernel's heap size.  Generally speaking, it scales with the
630 	 * physical memory size.  The ratio of desiredvnodes to the physical
631 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
632 	 * Thereafter, the
633 	 * marginal ratio of desiredvnodes to the physical memory size is
634 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
635 	 * size.  The memory required by desiredvnodes vnodes and vm objects
636 	 * must not exceed 1/10th of the kernel's heap size.
637 	 */
638 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
639 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
640 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
641 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
642 	desiredvnodes = min(physvnodes, virtvnodes);
643 	if (desiredvnodes > MAXVNODES_MAX) {
644 		if (bootverbose)
645 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
646 			    desiredvnodes, MAXVNODES_MAX);
647 		desiredvnodes = MAXVNODES_MAX;
648 	}
649 	wantfreevnodes = desiredvnodes / 4;
650 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
651 	TAILQ_INIT(&vnode_list);
652 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
653 	/*
654 	 * The lock is taken to appease WITNESS.
655 	 */
656 	mtx_lock(&vnode_list_mtx);
657 	vnlru_recalc();
658 	mtx_unlock(&vnode_list_mtx);
659 	vnode_list_free_marker = vn_alloc_marker(NULL);
660 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
661 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
662 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
663 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
664 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
665 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
666 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
667 	/*
668 	 * Preallocate enough nodes to support one-per buf so that
669 	 * we can not fail an insert.  reassignbuf() callers can not
670 	 * tolerate the insertion failure.
671 	 */
672 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
673 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
674 	    UMA_ZONE_NOFREE);
675 	uma_prealloc(buf_trie_zone, nbuf);
676 
677 	vnodes_created = counter_u64_alloc(M_WAITOK);
678 	recycles_count = counter_u64_alloc(M_WAITOK);
679 	recycles_free_count = counter_u64_alloc(M_WAITOK);
680 	deferred_inact = counter_u64_alloc(M_WAITOK);
681 
682 	/*
683 	 * Initialize the filesystem syncer.
684 	 */
685 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
686 	    &syncer_mask);
687 	syncer_maxdelay = syncer_mask + 1;
688 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
689 	cv_init(&sync_wakeup, "syncer");
690 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
691 		vnsz2log++;
692 	vnsz2log--;
693 
694 	CPU_FOREACH(cpu) {
695 		vd = DPCPU_ID_PTR((cpu), vd);
696 		bzero(vd, sizeof(*vd));
697 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
698 	}
699 }
700 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
701 
702 /*
703  * Mark a mount point as busy. Used to synchronize access and to delay
704  * unmounting. Eventually, mountlist_mtx is not released on failure.
705  *
706  * vfs_busy() is a custom lock, it can block the caller.
707  * vfs_busy() only sleeps if the unmount is active on the mount point.
708  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
709  * vnode belonging to mp.
710  *
711  * Lookup uses vfs_busy() to traverse mount points.
712  * root fs			var fs
713  * / vnode lock		A	/ vnode lock (/var)		D
714  * /var vnode lock	B	/log vnode lock(/var/log)	E
715  * vfs_busy lock	C	vfs_busy lock			F
716  *
717  * Within each file system, the lock order is C->A->B and F->D->E.
718  *
719  * When traversing across mounts, the system follows that lock order:
720  *
721  *        C->A->B
722  *              |
723  *              +->F->D->E
724  *
725  * The lookup() process for namei("/var") illustrates the process:
726  *  VOP_LOOKUP() obtains B while A is held
727  *  vfs_busy() obtains a shared lock on F while A and B are held
728  *  vput() releases lock on B
729  *  vput() releases lock on A
730  *  VFS_ROOT() obtains lock on D while shared lock on F is held
731  *  vfs_unbusy() releases shared lock on F
732  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
733  *    Attempt to lock A (instead of vp_crossmp) while D is held would
734  *    violate the global order, causing deadlocks.
735  *
736  * dounmount() locks B while F is drained.
737  */
738 int
739 vfs_busy(struct mount *mp, int flags)
740 {
741 
742 	MPASS((flags & ~MBF_MASK) == 0);
743 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
744 
745 	if (vfs_op_thread_enter(mp)) {
746 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
747 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
748 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
749 		vfs_mp_count_add_pcpu(mp, ref, 1);
750 		vfs_mp_count_add_pcpu(mp, lockref, 1);
751 		vfs_op_thread_exit(mp);
752 		if (flags & MBF_MNTLSTLOCK)
753 			mtx_unlock(&mountlist_mtx);
754 		return (0);
755 	}
756 
757 	MNT_ILOCK(mp);
758 	vfs_assert_mount_counters(mp);
759 	MNT_REF(mp);
760 	/*
761 	 * If mount point is currently being unmounted, sleep until the
762 	 * mount point fate is decided.  If thread doing the unmounting fails,
763 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
764 	 * that this mount point has survived the unmount attempt and vfs_busy
765 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
766 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
767 	 * about to be really destroyed.  vfs_busy needs to release its
768 	 * reference on the mount point in this case and return with ENOENT,
769 	 * telling the caller that mount mount it tried to busy is no longer
770 	 * valid.
771 	 */
772 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
773 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
774 			MNT_REL(mp);
775 			MNT_IUNLOCK(mp);
776 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
777 			    __func__);
778 			return (ENOENT);
779 		}
780 		if (flags & MBF_MNTLSTLOCK)
781 			mtx_unlock(&mountlist_mtx);
782 		mp->mnt_kern_flag |= MNTK_MWAIT;
783 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
784 		if (flags & MBF_MNTLSTLOCK)
785 			mtx_lock(&mountlist_mtx);
786 		MNT_ILOCK(mp);
787 	}
788 	if (flags & MBF_MNTLSTLOCK)
789 		mtx_unlock(&mountlist_mtx);
790 	mp->mnt_lockref++;
791 	MNT_IUNLOCK(mp);
792 	return (0);
793 }
794 
795 /*
796  * Free a busy filesystem.
797  */
798 void
799 vfs_unbusy(struct mount *mp)
800 {
801 	int c;
802 
803 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
804 
805 	if (vfs_op_thread_enter(mp)) {
806 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
807 		vfs_mp_count_sub_pcpu(mp, lockref, 1);
808 		vfs_mp_count_sub_pcpu(mp, ref, 1);
809 		vfs_op_thread_exit(mp);
810 		return;
811 	}
812 
813 	MNT_ILOCK(mp);
814 	vfs_assert_mount_counters(mp);
815 	MNT_REL(mp);
816 	c = --mp->mnt_lockref;
817 	if (mp->mnt_vfs_ops == 0) {
818 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
819 		MNT_IUNLOCK(mp);
820 		return;
821 	}
822 	if (c < 0)
823 		vfs_dump_mount_counters(mp);
824 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
825 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
826 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
827 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
828 		wakeup(&mp->mnt_lockref);
829 	}
830 	MNT_IUNLOCK(mp);
831 }
832 
833 /*
834  * Lookup a mount point by filesystem identifier.
835  */
836 struct mount *
837 vfs_getvfs(fsid_t *fsid)
838 {
839 	struct mount *mp;
840 
841 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
842 	mtx_lock(&mountlist_mtx);
843 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
844 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
845 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
846 			vfs_ref(mp);
847 			mtx_unlock(&mountlist_mtx);
848 			return (mp);
849 		}
850 	}
851 	mtx_unlock(&mountlist_mtx);
852 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
853 	return ((struct mount *) 0);
854 }
855 
856 /*
857  * Lookup a mount point by filesystem identifier, busying it before
858  * returning.
859  *
860  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
861  * cache for popular filesystem identifiers.  The cache is lockess, using
862  * the fact that struct mount's are never freed.  In worst case we may
863  * get pointer to unmounted or even different filesystem, so we have to
864  * check what we got, and go slow way if so.
865  */
866 struct mount *
867 vfs_busyfs(fsid_t *fsid)
868 {
869 #define	FSID_CACHE_SIZE	256
870 	typedef struct mount * volatile vmp_t;
871 	static vmp_t cache[FSID_CACHE_SIZE];
872 	struct mount *mp;
873 	int error;
874 	uint32_t hash;
875 
876 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
877 	hash = fsid->val[0] ^ fsid->val[1];
878 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
879 	mp = cache[hash];
880 	if (mp == NULL ||
881 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
882 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
883 		goto slow;
884 	if (vfs_busy(mp, 0) != 0) {
885 		cache[hash] = NULL;
886 		goto slow;
887 	}
888 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
889 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
890 		return (mp);
891 	else
892 	    vfs_unbusy(mp);
893 
894 slow:
895 	mtx_lock(&mountlist_mtx);
896 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
897 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
898 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
899 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
900 			if (error) {
901 				cache[hash] = NULL;
902 				mtx_unlock(&mountlist_mtx);
903 				return (NULL);
904 			}
905 			cache[hash] = mp;
906 			return (mp);
907 		}
908 	}
909 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
910 	mtx_unlock(&mountlist_mtx);
911 	return ((struct mount *) 0);
912 }
913 
914 /*
915  * Check if a user can access privileged mount options.
916  */
917 int
918 vfs_suser(struct mount *mp, struct thread *td)
919 {
920 	int error;
921 
922 	if (jailed(td->td_ucred)) {
923 		/*
924 		 * If the jail of the calling thread lacks permission for
925 		 * this type of file system, deny immediately.
926 		 */
927 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
928 			return (EPERM);
929 
930 		/*
931 		 * If the file system was mounted outside the jail of the
932 		 * calling thread, deny immediately.
933 		 */
934 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
935 			return (EPERM);
936 	}
937 
938 	/*
939 	 * If file system supports delegated administration, we don't check
940 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
941 	 * by the file system itself.
942 	 * If this is not the user that did original mount, we check for
943 	 * the PRIV_VFS_MOUNT_OWNER privilege.
944 	 */
945 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
946 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
947 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
948 			return (error);
949 	}
950 	return (0);
951 }
952 
953 /*
954  * Get a new unique fsid.  Try to make its val[0] unique, since this value
955  * will be used to create fake device numbers for stat().  Also try (but
956  * not so hard) make its val[0] unique mod 2^16, since some emulators only
957  * support 16-bit device numbers.  We end up with unique val[0]'s for the
958  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
959  *
960  * Keep in mind that several mounts may be running in parallel.  Starting
961  * the search one past where the previous search terminated is both a
962  * micro-optimization and a defense against returning the same fsid to
963  * different mounts.
964  */
965 void
966 vfs_getnewfsid(struct mount *mp)
967 {
968 	static uint16_t mntid_base;
969 	struct mount *nmp;
970 	fsid_t tfsid;
971 	int mtype;
972 
973 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
974 	mtx_lock(&mntid_mtx);
975 	mtype = mp->mnt_vfc->vfc_typenum;
976 	tfsid.val[1] = mtype;
977 	mtype = (mtype & 0xFF) << 24;
978 	for (;;) {
979 		tfsid.val[0] = makedev(255,
980 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
981 		mntid_base++;
982 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
983 			break;
984 		vfs_rel(nmp);
985 	}
986 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
987 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
988 	mtx_unlock(&mntid_mtx);
989 }
990 
991 /*
992  * Knob to control the precision of file timestamps:
993  *
994  *   0 = seconds only; nanoseconds zeroed.
995  *   1 = seconds and nanoseconds, accurate within 1/HZ.
996  *   2 = seconds and nanoseconds, truncated to microseconds.
997  * >=3 = seconds and nanoseconds, maximum precision.
998  */
999 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1000 
1001 static int timestamp_precision = TSP_USEC;
1002 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1003     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1004     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1005     "3+: sec + ns (max. precision))");
1006 
1007 /*
1008  * Get a current timestamp.
1009  */
1010 void
1011 vfs_timestamp(struct timespec *tsp)
1012 {
1013 	struct timeval tv;
1014 
1015 	switch (timestamp_precision) {
1016 	case TSP_SEC:
1017 		tsp->tv_sec = time_second;
1018 		tsp->tv_nsec = 0;
1019 		break;
1020 	case TSP_HZ:
1021 		getnanotime(tsp);
1022 		break;
1023 	case TSP_USEC:
1024 		microtime(&tv);
1025 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1026 		break;
1027 	case TSP_NSEC:
1028 	default:
1029 		nanotime(tsp);
1030 		break;
1031 	}
1032 }
1033 
1034 /*
1035  * Set vnode attributes to VNOVAL
1036  */
1037 void
1038 vattr_null(struct vattr *vap)
1039 {
1040 
1041 	vap->va_type = VNON;
1042 	vap->va_size = VNOVAL;
1043 	vap->va_bytes = VNOVAL;
1044 	vap->va_mode = VNOVAL;
1045 	vap->va_nlink = VNOVAL;
1046 	vap->va_uid = VNOVAL;
1047 	vap->va_gid = VNOVAL;
1048 	vap->va_fsid = VNOVAL;
1049 	vap->va_fileid = VNOVAL;
1050 	vap->va_blocksize = VNOVAL;
1051 	vap->va_rdev = VNOVAL;
1052 	vap->va_atime.tv_sec = VNOVAL;
1053 	vap->va_atime.tv_nsec = VNOVAL;
1054 	vap->va_mtime.tv_sec = VNOVAL;
1055 	vap->va_mtime.tv_nsec = VNOVAL;
1056 	vap->va_ctime.tv_sec = VNOVAL;
1057 	vap->va_ctime.tv_nsec = VNOVAL;
1058 	vap->va_birthtime.tv_sec = VNOVAL;
1059 	vap->va_birthtime.tv_nsec = VNOVAL;
1060 	vap->va_flags = VNOVAL;
1061 	vap->va_gen = VNOVAL;
1062 	vap->va_vaflags = 0;
1063 }
1064 
1065 /*
1066  * Try to reduce the total number of vnodes.
1067  *
1068  * This routine (and its user) are buggy in at least the following ways:
1069  * - all parameters were picked years ago when RAM sizes were significantly
1070  *   smaller
1071  * - it can pick vnodes based on pages used by the vm object, but filesystems
1072  *   like ZFS don't use it making the pick broken
1073  * - since ZFS has its own aging policy it gets partially combated by this one
1074  * - a dedicated method should be provided for filesystems to let them decide
1075  *   whether the vnode should be recycled
1076  *
1077  * This routine is called when we have too many vnodes.  It attempts
1078  * to free <count> vnodes and will potentially free vnodes that still
1079  * have VM backing store (VM backing store is typically the cause
1080  * of a vnode blowout so we want to do this).  Therefore, this operation
1081  * is not considered cheap.
1082  *
1083  * A number of conditions may prevent a vnode from being reclaimed.
1084  * the buffer cache may have references on the vnode, a directory
1085  * vnode may still have references due to the namei cache representing
1086  * underlying files, or the vnode may be in active use.   It is not
1087  * desirable to reuse such vnodes.  These conditions may cause the
1088  * number of vnodes to reach some minimum value regardless of what
1089  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1090  *
1091  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1092  * 			 entries if this argument is strue
1093  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1094  *			 pages.
1095  * @param target	 How many vnodes to reclaim.
1096  * @return		 The number of vnodes that were reclaimed.
1097  */
1098 static int
1099 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1100 {
1101 	struct vnode *vp, *mvp;
1102 	struct mount *mp;
1103 	struct vm_object *object;
1104 	u_long done;
1105 	bool retried;
1106 
1107 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1108 
1109 	retried = false;
1110 	done = 0;
1111 
1112 	mvp = vnode_list_reclaim_marker;
1113 restart:
1114 	vp = mvp;
1115 	while (done < target) {
1116 		vp = TAILQ_NEXT(vp, v_vnodelist);
1117 		if (__predict_false(vp == NULL))
1118 			break;
1119 
1120 		if (__predict_false(vp->v_type == VMARKER))
1121 			continue;
1122 
1123 		/*
1124 		 * If it's been deconstructed already, it's still
1125 		 * referenced, or it exceeds the trigger, skip it.
1126 		 * Also skip free vnodes.  We are trying to make space
1127 		 * to expand the free list, not reduce it.
1128 		 */
1129 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1130 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1131 			goto next_iter;
1132 
1133 		if (vp->v_type == VBAD || vp->v_type == VNON)
1134 			goto next_iter;
1135 
1136 		if (!VI_TRYLOCK(vp))
1137 			goto next_iter;
1138 
1139 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1140 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1141 		    VN_IS_DOOMED(vp) || vp->v_type == VNON) {
1142 			VI_UNLOCK(vp);
1143 			goto next_iter;
1144 		}
1145 
1146 		object = atomic_load_ptr(&vp->v_object);
1147 		if (object == NULL || object->resident_page_count > trigger) {
1148 			VI_UNLOCK(vp);
1149 			goto next_iter;
1150 		}
1151 
1152 		vholdl(vp);
1153 		VI_UNLOCK(vp);
1154 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1155 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1156 		mtx_unlock(&vnode_list_mtx);
1157 
1158 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1159 			vdrop(vp);
1160 			goto next_iter_unlocked;
1161 		}
1162 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1163 			vdrop(vp);
1164 			vn_finished_write(mp);
1165 			goto next_iter_unlocked;
1166 		}
1167 
1168 		VI_LOCK(vp);
1169 		if (vp->v_usecount > 0 ||
1170 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1171 		    (vp->v_object != NULL &&
1172 		    vp->v_object->resident_page_count > trigger)) {
1173 			VOP_UNLOCK(vp);
1174 			vdropl(vp);
1175 			vn_finished_write(mp);
1176 			goto next_iter_unlocked;
1177 		}
1178 		counter_u64_add(recycles_count, 1);
1179 		vgonel(vp);
1180 		VOP_UNLOCK(vp);
1181 		vdropl(vp);
1182 		vn_finished_write(mp);
1183 		done++;
1184 next_iter_unlocked:
1185 		if (should_yield())
1186 			kern_yield(PRI_USER);
1187 		mtx_lock(&vnode_list_mtx);
1188 		goto restart;
1189 next_iter:
1190 		MPASS(vp->v_type != VMARKER);
1191 		if (!should_yield())
1192 			continue;
1193 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1194 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1195 		mtx_unlock(&vnode_list_mtx);
1196 		kern_yield(PRI_USER);
1197 		mtx_lock(&vnode_list_mtx);
1198 		goto restart;
1199 	}
1200 	if (done == 0 && !retried) {
1201 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1202 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1203 		retried = true;
1204 		goto restart;
1205 	}
1206 	return (done);
1207 }
1208 
1209 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1210 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1211     0,
1212     "limit on vnode free requests per call to the vnlru_free routine");
1213 
1214 /*
1215  * Attempt to reduce the free list by the requested amount.
1216  */
1217 static int
1218 vnlru_free_locked(int count, struct vfsops *mnt_op)
1219 {
1220 	struct vnode *vp, *mvp;
1221 	struct mount *mp;
1222 	int ocount;
1223 
1224 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1225 	if (count > max_vnlru_free)
1226 		count = max_vnlru_free;
1227 	ocount = count;
1228 	mvp = vnode_list_free_marker;
1229 restart:
1230 	vp = mvp;
1231 	while (count > 0) {
1232 		vp = TAILQ_NEXT(vp, v_vnodelist);
1233 		if (__predict_false(vp == NULL)) {
1234 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1235 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1236 			break;
1237 		}
1238 		if (__predict_false(vp->v_type == VMARKER))
1239 			continue;
1240 
1241 		/*
1242 		 * Don't recycle if our vnode is from different type
1243 		 * of mount point.  Note that mp is type-safe, the
1244 		 * check does not reach unmapped address even if
1245 		 * vnode is reclaimed.
1246 		 * Don't recycle if we can't get the interlock without
1247 		 * blocking.
1248 		 */
1249 		if (vp->v_holdcnt > 0 || (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1250 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1251 			continue;
1252 		}
1253 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1254 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1255 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1256 			VI_UNLOCK(vp);
1257 			continue;
1258 		}
1259 		vholdl(vp);
1260 		count--;
1261 		mtx_unlock(&vnode_list_mtx);
1262 		VI_UNLOCK(vp);
1263 		vtryrecycle(vp);
1264 		vdrop(vp);
1265 		mtx_lock(&vnode_list_mtx);
1266 		goto restart;
1267 	}
1268 	return (ocount - count);
1269 }
1270 
1271 void
1272 vnlru_free(int count, struct vfsops *mnt_op)
1273 {
1274 
1275 	mtx_lock(&vnode_list_mtx);
1276 	vnlru_free_locked(count, mnt_op);
1277 	mtx_unlock(&vnode_list_mtx);
1278 }
1279 
1280 static void
1281 vnlru_recalc(void)
1282 {
1283 
1284 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1285 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1286 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1287 	vlowat = vhiwat / 2;
1288 }
1289 
1290 /*
1291  * Attempt to recycle vnodes in a context that is always safe to block.
1292  * Calling vlrurecycle() from the bowels of filesystem code has some
1293  * interesting deadlock problems.
1294  */
1295 static struct proc *vnlruproc;
1296 static int vnlruproc_sig;
1297 
1298 /*
1299  * The main freevnodes counter is only updated when threads requeue their vnode
1300  * batches. CPUs are conditionally walked to compute a more accurate total.
1301  *
1302  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1303  * at any given moment can still exceed slop, but it should not be by significant
1304  * margin in practice.
1305  */
1306 #define VNLRU_FREEVNODES_SLOP 128
1307 
1308 static u_long
1309 vnlru_read_freevnodes(void)
1310 {
1311 	struct vdbatch *vd;
1312 	long slop;
1313 	int cpu;
1314 
1315 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1316 	if (freevnodes > freevnodes_old)
1317 		slop = freevnodes - freevnodes_old;
1318 	else
1319 		slop = freevnodes_old - freevnodes;
1320 	if (slop < VNLRU_FREEVNODES_SLOP)
1321 		return (freevnodes >= 0 ? freevnodes : 0);
1322 	freevnodes_old = freevnodes;
1323 	CPU_FOREACH(cpu) {
1324 		vd = DPCPU_ID_PTR((cpu), vd);
1325 		freevnodes_old += vd->freevnodes;
1326 	}
1327 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1328 }
1329 
1330 static bool
1331 vnlru_under(u_long rnumvnodes, u_long limit)
1332 {
1333 	u_long rfreevnodes, space;
1334 
1335 	if (__predict_false(rnumvnodes > desiredvnodes))
1336 		return (true);
1337 
1338 	space = desiredvnodes - rnumvnodes;
1339 	if (space < limit) {
1340 		rfreevnodes = vnlru_read_freevnodes();
1341 		if (rfreevnodes > wantfreevnodes)
1342 			space += rfreevnodes - wantfreevnodes;
1343 	}
1344 	return (space < limit);
1345 }
1346 
1347 static bool
1348 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1349 {
1350 	long rfreevnodes, space;
1351 
1352 	if (__predict_false(rnumvnodes > desiredvnodes))
1353 		return (true);
1354 
1355 	space = desiredvnodes - rnumvnodes;
1356 	if (space < limit) {
1357 		rfreevnodes = atomic_load_long(&freevnodes);
1358 		if (rfreevnodes > wantfreevnodes)
1359 			space += rfreevnodes - wantfreevnodes;
1360 	}
1361 	return (space < limit);
1362 }
1363 
1364 static void
1365 vnlru_kick(void)
1366 {
1367 
1368 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1369 	if (vnlruproc_sig == 0) {
1370 		vnlruproc_sig = 1;
1371 		wakeup(vnlruproc);
1372 	}
1373 }
1374 
1375 static void
1376 vnlru_proc(void)
1377 {
1378 	u_long rnumvnodes, rfreevnodes, target;
1379 	unsigned long onumvnodes;
1380 	int done, force, trigger, usevnodes;
1381 	bool reclaim_nc_src, want_reread;
1382 
1383 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1384 	    SHUTDOWN_PRI_FIRST);
1385 
1386 	force = 0;
1387 	want_reread = false;
1388 	for (;;) {
1389 		kproc_suspend_check(vnlruproc);
1390 		mtx_lock(&vnode_list_mtx);
1391 		rnumvnodes = atomic_load_long(&numvnodes);
1392 
1393 		if (want_reread) {
1394 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1395 			want_reread = false;
1396 		}
1397 
1398 		/*
1399 		 * If numvnodes is too large (due to desiredvnodes being
1400 		 * adjusted using its sysctl, or emergency growth), first
1401 		 * try to reduce it by discarding from the free list.
1402 		 */
1403 		if (rnumvnodes > desiredvnodes) {
1404 			vnlru_free_locked(rnumvnodes - desiredvnodes, NULL);
1405 			rnumvnodes = atomic_load_long(&numvnodes);
1406 		}
1407 		/*
1408 		 * Sleep if the vnode cache is in a good state.  This is
1409 		 * when it is not over-full and has space for about a 4%
1410 		 * or 9% expansion (by growing its size or inexcessively
1411 		 * reducing its free list).  Otherwise, try to reclaim
1412 		 * space for a 10% expansion.
1413 		 */
1414 		if (vstir && force == 0) {
1415 			force = 1;
1416 			vstir = 0;
1417 		}
1418 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1419 			vnlruproc_sig = 0;
1420 			wakeup(&vnlruproc_sig);
1421 			msleep(vnlruproc, &vnode_list_mtx,
1422 			    PVFS|PDROP, "vlruwt", hz);
1423 			continue;
1424 		}
1425 		rfreevnodes = vnlru_read_freevnodes();
1426 
1427 		onumvnodes = rnumvnodes;
1428 		/*
1429 		 * Calculate parameters for recycling.  These are the same
1430 		 * throughout the loop to give some semblance of fairness.
1431 		 * The trigger point is to avoid recycling vnodes with lots
1432 		 * of resident pages.  We aren't trying to free memory; we
1433 		 * are trying to recycle or at least free vnodes.
1434 		 */
1435 		if (rnumvnodes <= desiredvnodes)
1436 			usevnodes = rnumvnodes - rfreevnodes;
1437 		else
1438 			usevnodes = rnumvnodes;
1439 		if (usevnodes <= 0)
1440 			usevnodes = 1;
1441 		/*
1442 		 * The trigger value is is chosen to give a conservatively
1443 		 * large value to ensure that it alone doesn't prevent
1444 		 * making progress.  The value can easily be so large that
1445 		 * it is effectively infinite in some congested and
1446 		 * misconfigured cases, and this is necessary.  Normally
1447 		 * it is about 8 to 100 (pages), which is quite large.
1448 		 */
1449 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1450 		if (force < 2)
1451 			trigger = vsmalltrigger;
1452 		reclaim_nc_src = force >= 3;
1453 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1454 		target = target / 10 + 1;
1455 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1456 		mtx_unlock(&vnode_list_mtx);
1457 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1458 			uma_reclaim(UMA_RECLAIM_DRAIN);
1459 		if (done == 0) {
1460 			if (force == 0 || force == 1) {
1461 				force = 2;
1462 				continue;
1463 			}
1464 			if (force == 2) {
1465 				force = 3;
1466 				continue;
1467 			}
1468 			want_reread = true;
1469 			force = 0;
1470 			vnlru_nowhere++;
1471 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1472 		} else {
1473 			want_reread = true;
1474 			kern_yield(PRI_USER);
1475 		}
1476 	}
1477 }
1478 
1479 static struct kproc_desc vnlru_kp = {
1480 	"vnlru",
1481 	vnlru_proc,
1482 	&vnlruproc
1483 };
1484 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1485     &vnlru_kp);
1486 
1487 /*
1488  * Routines having to do with the management of the vnode table.
1489  */
1490 
1491 /*
1492  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1493  * before we actually vgone().  This function must be called with the vnode
1494  * held to prevent the vnode from being returned to the free list midway
1495  * through vgone().
1496  */
1497 static int
1498 vtryrecycle(struct vnode *vp)
1499 {
1500 	struct mount *vnmp;
1501 
1502 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1503 	VNASSERT(vp->v_holdcnt, vp,
1504 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1505 	/*
1506 	 * This vnode may found and locked via some other list, if so we
1507 	 * can't recycle it yet.
1508 	 */
1509 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1510 		CTR2(KTR_VFS,
1511 		    "%s: impossible to recycle, vp %p lock is already held",
1512 		    __func__, vp);
1513 		return (EWOULDBLOCK);
1514 	}
1515 	/*
1516 	 * Don't recycle if its filesystem is being suspended.
1517 	 */
1518 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1519 		VOP_UNLOCK(vp);
1520 		CTR2(KTR_VFS,
1521 		    "%s: impossible to recycle, cannot start the write for %p",
1522 		    __func__, vp);
1523 		return (EBUSY);
1524 	}
1525 	/*
1526 	 * If we got this far, we need to acquire the interlock and see if
1527 	 * anyone picked up this vnode from another list.  If not, we will
1528 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1529 	 * will skip over it.
1530 	 */
1531 	VI_LOCK(vp);
1532 	if (vp->v_usecount) {
1533 		VOP_UNLOCK(vp);
1534 		VI_UNLOCK(vp);
1535 		vn_finished_write(vnmp);
1536 		CTR2(KTR_VFS,
1537 		    "%s: impossible to recycle, %p is already referenced",
1538 		    __func__, vp);
1539 		return (EBUSY);
1540 	}
1541 	if (!VN_IS_DOOMED(vp)) {
1542 		counter_u64_add(recycles_free_count, 1);
1543 		vgonel(vp);
1544 	}
1545 	VOP_UNLOCK(vp);
1546 	VI_UNLOCK(vp);
1547 	vn_finished_write(vnmp);
1548 	return (0);
1549 }
1550 
1551 /*
1552  * Allocate a new vnode.
1553  *
1554  * The operation never returns an error. Returning an error was disabled
1555  * in r145385 (dated 2005) with the following comment:
1556  *
1557  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1558  *
1559  * Given the age of this commit (almost 15 years at the time of writing this
1560  * comment) restoring the ability to fail requires a significant audit of
1561  * all codepaths.
1562  *
1563  * The routine can try to free a vnode or stall for up to 1 second waiting for
1564  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1565  */
1566 static u_long vn_alloc_cyclecount;
1567 
1568 static struct vnode * __noinline
1569 vn_alloc_hard(struct mount *mp)
1570 {
1571 	u_long rnumvnodes, rfreevnodes;
1572 
1573 	mtx_lock(&vnode_list_mtx);
1574 	rnumvnodes = atomic_load_long(&numvnodes);
1575 	if (rnumvnodes + 1 < desiredvnodes) {
1576 		vn_alloc_cyclecount = 0;
1577 		goto alloc;
1578 	}
1579 	rfreevnodes = vnlru_read_freevnodes();
1580 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1581 		vn_alloc_cyclecount = 0;
1582 		vstir = 1;
1583 	}
1584 	/*
1585 	 * Grow the vnode cache if it will not be above its target max
1586 	 * after growing.  Otherwise, if the free list is nonempty, try
1587 	 * to reclaim 1 item from it before growing the cache (possibly
1588 	 * above its target max if the reclamation failed or is delayed).
1589 	 * Otherwise, wait for some space.  In all cases, schedule
1590 	 * vnlru_proc() if we are getting short of space.  The watermarks
1591 	 * should be chosen so that we never wait or even reclaim from
1592 	 * the free list to below its target minimum.
1593 	 */
1594 	if (vnlru_free_locked(1, NULL) > 0)
1595 		goto alloc;
1596 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1597 		/*
1598 		 * Wait for space for a new vnode.
1599 		 */
1600 		vnlru_kick();
1601 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1602 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1603 		    vnlru_read_freevnodes() > 1)
1604 			vnlru_free_locked(1, NULL);
1605 	}
1606 alloc:
1607 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1608 	if (vnlru_under(rnumvnodes, vlowat))
1609 		vnlru_kick();
1610 	mtx_unlock(&vnode_list_mtx);
1611 	return (uma_zalloc(vnode_zone, M_WAITOK));
1612 }
1613 
1614 static struct vnode *
1615 vn_alloc(struct mount *mp)
1616 {
1617 	u_long rnumvnodes;
1618 
1619 	if (__predict_false(vn_alloc_cyclecount != 0))
1620 		return (vn_alloc_hard(mp));
1621 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1622 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1623 		atomic_subtract_long(&numvnodes, 1);
1624 		return (vn_alloc_hard(mp));
1625 	}
1626 
1627 	return (uma_zalloc(vnode_zone, M_WAITOK));
1628 }
1629 
1630 static void
1631 vn_free(struct vnode *vp)
1632 {
1633 
1634 	atomic_subtract_long(&numvnodes, 1);
1635 	uma_zfree(vnode_zone, vp);
1636 }
1637 
1638 /*
1639  * Return the next vnode from the free list.
1640  */
1641 int
1642 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1643     struct vnode **vpp)
1644 {
1645 	struct vnode *vp;
1646 	struct thread *td;
1647 	struct lock_object *lo;
1648 
1649 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1650 
1651 	KASSERT(vops->registered,
1652 	    ("%s: not registered vector op %p\n", __func__, vops));
1653 
1654 	td = curthread;
1655 	if (td->td_vp_reserved != NULL) {
1656 		vp = td->td_vp_reserved;
1657 		td->td_vp_reserved = NULL;
1658 	} else {
1659 		vp = vn_alloc(mp);
1660 	}
1661 	counter_u64_add(vnodes_created, 1);
1662 	/*
1663 	 * Locks are given the generic name "vnode" when created.
1664 	 * Follow the historic practice of using the filesystem
1665 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1666 	 *
1667 	 * Locks live in a witness group keyed on their name. Thus,
1668 	 * when a lock is renamed, it must also move from the witness
1669 	 * group of its old name to the witness group of its new name.
1670 	 *
1671 	 * The change only needs to be made when the vnode moves
1672 	 * from one filesystem type to another. We ensure that each
1673 	 * filesystem use a single static name pointer for its tag so
1674 	 * that we can compare pointers rather than doing a strcmp().
1675 	 */
1676 	lo = &vp->v_vnlock->lock_object;
1677 #ifdef WITNESS
1678 	if (lo->lo_name != tag) {
1679 #endif
1680 		lo->lo_name = tag;
1681 #ifdef WITNESS
1682 		WITNESS_DESTROY(lo);
1683 		WITNESS_INIT(lo, tag);
1684 	}
1685 #endif
1686 	/*
1687 	 * By default, don't allow shared locks unless filesystems opt-in.
1688 	 */
1689 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1690 	/*
1691 	 * Finalize various vnode identity bits.
1692 	 */
1693 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1694 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1695 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1696 	vp->v_type = VNON;
1697 	vp->v_op = vops;
1698 	v_init_counters(vp);
1699 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1700 #ifdef DIAGNOSTIC
1701 	if (mp == NULL && vops != &dead_vnodeops)
1702 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1703 #endif
1704 #ifdef MAC
1705 	mac_vnode_init(vp);
1706 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1707 		mac_vnode_associate_singlelabel(mp, vp);
1708 #endif
1709 	if (mp != NULL) {
1710 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1711 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1712 			vp->v_vflag |= VV_NOKNOTE;
1713 	}
1714 
1715 	/*
1716 	 * For the filesystems which do not use vfs_hash_insert(),
1717 	 * still initialize v_hash to have vfs_hash_index() useful.
1718 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1719 	 * its own hashing.
1720 	 */
1721 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1722 
1723 	*vpp = vp;
1724 	return (0);
1725 }
1726 
1727 void
1728 getnewvnode_reserve(void)
1729 {
1730 	struct thread *td;
1731 
1732 	td = curthread;
1733 	MPASS(td->td_vp_reserved == NULL);
1734 	td->td_vp_reserved = vn_alloc(NULL);
1735 }
1736 
1737 void
1738 getnewvnode_drop_reserve(void)
1739 {
1740 	struct thread *td;
1741 
1742 	td = curthread;
1743 	if (td->td_vp_reserved != NULL) {
1744 		vn_free(td->td_vp_reserved);
1745 		td->td_vp_reserved = NULL;
1746 	}
1747 }
1748 
1749 static void
1750 freevnode(struct vnode *vp)
1751 {
1752 	struct bufobj *bo;
1753 
1754 	/*
1755 	 * The vnode has been marked for destruction, so free it.
1756 	 *
1757 	 * The vnode will be returned to the zone where it will
1758 	 * normally remain until it is needed for another vnode. We
1759 	 * need to cleanup (or verify that the cleanup has already
1760 	 * been done) any residual data left from its current use
1761 	 * so as not to contaminate the freshly allocated vnode.
1762 	 */
1763 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1764 	bo = &vp->v_bufobj;
1765 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1766 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
1767 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1768 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1769 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1770 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1771 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1772 	    ("clean blk trie not empty"));
1773 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1774 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1775 	    ("dirty blk trie not empty"));
1776 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1777 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1778 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1779 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1780 	    ("Dangling rangelock waiters"));
1781 	VI_UNLOCK(vp);
1782 #ifdef MAC
1783 	mac_vnode_destroy(vp);
1784 #endif
1785 	if (vp->v_pollinfo != NULL) {
1786 		destroy_vpollinfo(vp->v_pollinfo);
1787 		vp->v_pollinfo = NULL;
1788 	}
1789 #ifdef INVARIANTS
1790 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
1791 	vp->v_op = NULL;
1792 #endif
1793 	vp->v_mountedhere = NULL;
1794 	vp->v_unpcb = NULL;
1795 	vp->v_rdev = NULL;
1796 	vp->v_fifoinfo = NULL;
1797 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
1798 	vp->v_irflag = 0;
1799 	vp->v_iflag = 0;
1800 	vp->v_vflag = 0;
1801 	bo->bo_flag = 0;
1802 	vn_free(vp);
1803 }
1804 
1805 /*
1806  * Delete from old mount point vnode list, if on one.
1807  */
1808 static void
1809 delmntque(struct vnode *vp)
1810 {
1811 	struct mount *mp;
1812 
1813 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1814 
1815 	mp = vp->v_mount;
1816 	if (mp == NULL)
1817 		return;
1818 	MNT_ILOCK(mp);
1819 	VI_LOCK(vp);
1820 	vp->v_mount = NULL;
1821 	VI_UNLOCK(vp);
1822 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1823 		("bad mount point vnode list size"));
1824 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1825 	mp->mnt_nvnodelistsize--;
1826 	MNT_REL(mp);
1827 	MNT_IUNLOCK(mp);
1828 }
1829 
1830 static void
1831 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1832 {
1833 
1834 	vp->v_data = NULL;
1835 	vp->v_op = &dead_vnodeops;
1836 	vgone(vp);
1837 	vput(vp);
1838 }
1839 
1840 /*
1841  * Insert into list of vnodes for the new mount point, if available.
1842  */
1843 int
1844 insmntque1(struct vnode *vp, struct mount *mp,
1845 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1846 {
1847 
1848 	KASSERT(vp->v_mount == NULL,
1849 		("insmntque: vnode already on per mount vnode list"));
1850 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1851 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1852 
1853 	/*
1854 	 * We acquire the vnode interlock early to ensure that the
1855 	 * vnode cannot be recycled by another process releasing a
1856 	 * holdcnt on it before we get it on both the vnode list
1857 	 * and the active vnode list. The mount mutex protects only
1858 	 * manipulation of the vnode list and the vnode freelist
1859 	 * mutex protects only manipulation of the active vnode list.
1860 	 * Hence the need to hold the vnode interlock throughout.
1861 	 */
1862 	MNT_ILOCK(mp);
1863 	VI_LOCK(vp);
1864 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1865 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1866 	    mp->mnt_nvnodelistsize == 0)) &&
1867 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1868 		VI_UNLOCK(vp);
1869 		MNT_IUNLOCK(mp);
1870 		if (dtr != NULL)
1871 			dtr(vp, dtr_arg);
1872 		return (EBUSY);
1873 	}
1874 	vp->v_mount = mp;
1875 	MNT_REF(mp);
1876 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1877 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1878 		("neg mount point vnode list size"));
1879 	mp->mnt_nvnodelistsize++;
1880 	VI_UNLOCK(vp);
1881 	MNT_IUNLOCK(mp);
1882 	return (0);
1883 }
1884 
1885 int
1886 insmntque(struct vnode *vp, struct mount *mp)
1887 {
1888 
1889 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1890 }
1891 
1892 /*
1893  * Flush out and invalidate all buffers associated with a bufobj
1894  * Called with the underlying object locked.
1895  */
1896 int
1897 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1898 {
1899 	int error;
1900 
1901 	BO_LOCK(bo);
1902 	if (flags & V_SAVE) {
1903 		error = bufobj_wwait(bo, slpflag, slptimeo);
1904 		if (error) {
1905 			BO_UNLOCK(bo);
1906 			return (error);
1907 		}
1908 		if (bo->bo_dirty.bv_cnt > 0) {
1909 			BO_UNLOCK(bo);
1910 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1911 				return (error);
1912 			/*
1913 			 * XXX We could save a lock/unlock if this was only
1914 			 * enabled under INVARIANTS
1915 			 */
1916 			BO_LOCK(bo);
1917 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1918 				panic("vinvalbuf: dirty bufs");
1919 		}
1920 	}
1921 	/*
1922 	 * If you alter this loop please notice that interlock is dropped and
1923 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1924 	 * no race conditions occur from this.
1925 	 */
1926 	do {
1927 		error = flushbuflist(&bo->bo_clean,
1928 		    flags, bo, slpflag, slptimeo);
1929 		if (error == 0 && !(flags & V_CLEANONLY))
1930 			error = flushbuflist(&bo->bo_dirty,
1931 			    flags, bo, slpflag, slptimeo);
1932 		if (error != 0 && error != EAGAIN) {
1933 			BO_UNLOCK(bo);
1934 			return (error);
1935 		}
1936 	} while (error != 0);
1937 
1938 	/*
1939 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1940 	 * have write I/O in-progress but if there is a VM object then the
1941 	 * VM object can also have read-I/O in-progress.
1942 	 */
1943 	do {
1944 		bufobj_wwait(bo, 0, 0);
1945 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
1946 			BO_UNLOCK(bo);
1947 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
1948 			BO_LOCK(bo);
1949 		}
1950 	} while (bo->bo_numoutput > 0);
1951 	BO_UNLOCK(bo);
1952 
1953 	/*
1954 	 * Destroy the copy in the VM cache, too.
1955 	 */
1956 	if (bo->bo_object != NULL &&
1957 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1958 		VM_OBJECT_WLOCK(bo->bo_object);
1959 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1960 		    OBJPR_CLEANONLY : 0);
1961 		VM_OBJECT_WUNLOCK(bo->bo_object);
1962 	}
1963 
1964 #ifdef INVARIANTS
1965 	BO_LOCK(bo);
1966 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1967 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1968 	    bo->bo_clean.bv_cnt > 0))
1969 		panic("vinvalbuf: flush failed");
1970 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1971 	    bo->bo_dirty.bv_cnt > 0)
1972 		panic("vinvalbuf: flush dirty failed");
1973 	BO_UNLOCK(bo);
1974 #endif
1975 	return (0);
1976 }
1977 
1978 /*
1979  * Flush out and invalidate all buffers associated with a vnode.
1980  * Called with the underlying object locked.
1981  */
1982 int
1983 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1984 {
1985 
1986 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1987 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1988 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1989 		return (0);
1990 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1991 }
1992 
1993 /*
1994  * Flush out buffers on the specified list.
1995  *
1996  */
1997 static int
1998 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1999     int slptimeo)
2000 {
2001 	struct buf *bp, *nbp;
2002 	int retval, error;
2003 	daddr_t lblkno;
2004 	b_xflags_t xflags;
2005 
2006 	ASSERT_BO_WLOCKED(bo);
2007 
2008 	retval = 0;
2009 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2010 		/*
2011 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2012 		 * do not skip any buffers. If we are flushing only V_NORMAL
2013 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2014 		 * flushing only V_ALT buffers then skip buffers not marked
2015 		 * as BX_ALTDATA.
2016 		 */
2017 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2018 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2019 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2020 			continue;
2021 		}
2022 		if (nbp != NULL) {
2023 			lblkno = nbp->b_lblkno;
2024 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2025 		}
2026 		retval = EAGAIN;
2027 		error = BUF_TIMELOCK(bp,
2028 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2029 		    "flushbuf", slpflag, slptimeo);
2030 		if (error) {
2031 			BO_LOCK(bo);
2032 			return (error != ENOLCK ? error : EAGAIN);
2033 		}
2034 		KASSERT(bp->b_bufobj == bo,
2035 		    ("bp %p wrong b_bufobj %p should be %p",
2036 		    bp, bp->b_bufobj, bo));
2037 		/*
2038 		 * XXX Since there are no node locks for NFS, I
2039 		 * believe there is a slight chance that a delayed
2040 		 * write will occur while sleeping just above, so
2041 		 * check for it.
2042 		 */
2043 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2044 		    (flags & V_SAVE)) {
2045 			bremfree(bp);
2046 			bp->b_flags |= B_ASYNC;
2047 			bwrite(bp);
2048 			BO_LOCK(bo);
2049 			return (EAGAIN);	/* XXX: why not loop ? */
2050 		}
2051 		bremfree(bp);
2052 		bp->b_flags |= (B_INVAL | B_RELBUF);
2053 		bp->b_flags &= ~B_ASYNC;
2054 		brelse(bp);
2055 		BO_LOCK(bo);
2056 		if (nbp == NULL)
2057 			break;
2058 		nbp = gbincore(bo, lblkno);
2059 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2060 		    != xflags)
2061 			break;			/* nbp invalid */
2062 	}
2063 	return (retval);
2064 }
2065 
2066 int
2067 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2068 {
2069 	struct buf *bp;
2070 	int error;
2071 	daddr_t lblkno;
2072 
2073 	ASSERT_BO_LOCKED(bo);
2074 
2075 	for (lblkno = startn;;) {
2076 again:
2077 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2078 		if (bp == NULL || bp->b_lblkno >= endn ||
2079 		    bp->b_lblkno < startn)
2080 			break;
2081 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2082 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2083 		if (error != 0) {
2084 			BO_RLOCK(bo);
2085 			if (error == ENOLCK)
2086 				goto again;
2087 			return (error);
2088 		}
2089 		KASSERT(bp->b_bufobj == bo,
2090 		    ("bp %p wrong b_bufobj %p should be %p",
2091 		    bp, bp->b_bufobj, bo));
2092 		lblkno = bp->b_lblkno + 1;
2093 		if ((bp->b_flags & B_MANAGED) == 0)
2094 			bremfree(bp);
2095 		bp->b_flags |= B_RELBUF;
2096 		/*
2097 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2098 		 * pages backing each buffer in the range are unlikely to be
2099 		 * reused.  Dirty buffers will have the hint applied once
2100 		 * they've been written.
2101 		 */
2102 		if ((bp->b_flags & B_VMIO) != 0)
2103 			bp->b_flags |= B_NOREUSE;
2104 		brelse(bp);
2105 		BO_RLOCK(bo);
2106 	}
2107 	return (0);
2108 }
2109 
2110 /*
2111  * Truncate a file's buffer and pages to a specified length.  This
2112  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2113  * sync activity.
2114  */
2115 int
2116 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2117 {
2118 	struct buf *bp, *nbp;
2119 	struct bufobj *bo;
2120 	daddr_t startlbn;
2121 
2122 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2123 	    vp, blksize, (uintmax_t)length);
2124 
2125 	/*
2126 	 * Round up to the *next* lbn.
2127 	 */
2128 	startlbn = howmany(length, blksize);
2129 
2130 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2131 
2132 	bo = &vp->v_bufobj;
2133 restart_unlocked:
2134 	BO_LOCK(bo);
2135 
2136 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2137 		;
2138 
2139 	if (length > 0) {
2140 restartsync:
2141 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2142 			if (bp->b_lblkno > 0)
2143 				continue;
2144 			/*
2145 			 * Since we hold the vnode lock this should only
2146 			 * fail if we're racing with the buf daemon.
2147 			 */
2148 			if (BUF_LOCK(bp,
2149 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2150 			    BO_LOCKPTR(bo)) == ENOLCK)
2151 				goto restart_unlocked;
2152 
2153 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2154 			    ("buf(%p) on dirty queue without DELWRI", bp));
2155 
2156 			bremfree(bp);
2157 			bawrite(bp);
2158 			BO_LOCK(bo);
2159 			goto restartsync;
2160 		}
2161 	}
2162 
2163 	bufobj_wwait(bo, 0, 0);
2164 	BO_UNLOCK(bo);
2165 	vnode_pager_setsize(vp, length);
2166 
2167 	return (0);
2168 }
2169 
2170 /*
2171  * Invalidate the cached pages of a file's buffer within the range of block
2172  * numbers [startlbn, endlbn).
2173  */
2174 void
2175 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2176     int blksize)
2177 {
2178 	struct bufobj *bo;
2179 	off_t start, end;
2180 
2181 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2182 
2183 	start = blksize * startlbn;
2184 	end = blksize * endlbn;
2185 
2186 	bo = &vp->v_bufobj;
2187 	BO_LOCK(bo);
2188 	MPASS(blksize == bo->bo_bsize);
2189 
2190 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2191 		;
2192 
2193 	BO_UNLOCK(bo);
2194 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2195 }
2196 
2197 static int
2198 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2199     daddr_t startlbn, daddr_t endlbn)
2200 {
2201 	struct buf *bp, *nbp;
2202 	bool anyfreed;
2203 
2204 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2205 	ASSERT_BO_LOCKED(bo);
2206 
2207 	do {
2208 		anyfreed = false;
2209 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2210 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2211 				continue;
2212 			if (BUF_LOCK(bp,
2213 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2214 			    BO_LOCKPTR(bo)) == ENOLCK) {
2215 				BO_LOCK(bo);
2216 				return (EAGAIN);
2217 			}
2218 
2219 			bremfree(bp);
2220 			bp->b_flags |= B_INVAL | B_RELBUF;
2221 			bp->b_flags &= ~B_ASYNC;
2222 			brelse(bp);
2223 			anyfreed = true;
2224 
2225 			BO_LOCK(bo);
2226 			if (nbp != NULL &&
2227 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2228 			    nbp->b_vp != vp ||
2229 			    (nbp->b_flags & B_DELWRI) != 0))
2230 				return (EAGAIN);
2231 		}
2232 
2233 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2234 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2235 				continue;
2236 			if (BUF_LOCK(bp,
2237 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2238 			    BO_LOCKPTR(bo)) == ENOLCK) {
2239 				BO_LOCK(bo);
2240 				return (EAGAIN);
2241 			}
2242 			bremfree(bp);
2243 			bp->b_flags |= B_INVAL | B_RELBUF;
2244 			bp->b_flags &= ~B_ASYNC;
2245 			brelse(bp);
2246 			anyfreed = true;
2247 
2248 			BO_LOCK(bo);
2249 			if (nbp != NULL &&
2250 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2251 			    (nbp->b_vp != vp) ||
2252 			    (nbp->b_flags & B_DELWRI) == 0))
2253 				return (EAGAIN);
2254 		}
2255 	} while (anyfreed);
2256 	return (0);
2257 }
2258 
2259 static void
2260 buf_vlist_remove(struct buf *bp)
2261 {
2262 	struct bufv *bv;
2263 
2264 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2265 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2266 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
2267 	    (BX_VNDIRTY|BX_VNCLEAN),
2268 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
2269 	if (bp->b_xflags & BX_VNDIRTY)
2270 		bv = &bp->b_bufobj->bo_dirty;
2271 	else
2272 		bv = &bp->b_bufobj->bo_clean;
2273 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2274 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2275 	bv->bv_cnt--;
2276 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2277 }
2278 
2279 /*
2280  * Add the buffer to the sorted clean or dirty block list.
2281  *
2282  * NOTE: xflags is passed as a constant, optimizing this inline function!
2283  */
2284 static void
2285 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2286 {
2287 	struct bufv *bv;
2288 	struct buf *n;
2289 	int error;
2290 
2291 	ASSERT_BO_WLOCKED(bo);
2292 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2293 	    ("dead bo %p", bo));
2294 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2295 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2296 	bp->b_xflags |= xflags;
2297 	if (xflags & BX_VNDIRTY)
2298 		bv = &bo->bo_dirty;
2299 	else
2300 		bv = &bo->bo_clean;
2301 
2302 	/*
2303 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2304 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2305 	 * than _ge.
2306 	 */
2307 	if (bv->bv_cnt == 0 ||
2308 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2309 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2310 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2311 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2312 	else
2313 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2314 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2315 	if (error)
2316 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2317 	bv->bv_cnt++;
2318 }
2319 
2320 /*
2321  * Look up a buffer using the buffer tries.
2322  */
2323 struct buf *
2324 gbincore(struct bufobj *bo, daddr_t lblkno)
2325 {
2326 	struct buf *bp;
2327 
2328 	ASSERT_BO_LOCKED(bo);
2329 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2330 	if (bp != NULL)
2331 		return (bp);
2332 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2333 }
2334 
2335 /*
2336  * Associate a buffer with a vnode.
2337  */
2338 void
2339 bgetvp(struct vnode *vp, struct buf *bp)
2340 {
2341 	struct bufobj *bo;
2342 
2343 	bo = &vp->v_bufobj;
2344 	ASSERT_BO_WLOCKED(bo);
2345 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2346 
2347 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2348 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2349 	    ("bgetvp: bp already attached! %p", bp));
2350 
2351 	vhold(vp);
2352 	bp->b_vp = vp;
2353 	bp->b_bufobj = bo;
2354 	/*
2355 	 * Insert onto list for new vnode.
2356 	 */
2357 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2358 }
2359 
2360 /*
2361  * Disassociate a buffer from a vnode.
2362  */
2363 void
2364 brelvp(struct buf *bp)
2365 {
2366 	struct bufobj *bo;
2367 	struct vnode *vp;
2368 
2369 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2370 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2371 
2372 	/*
2373 	 * Delete from old vnode list, if on one.
2374 	 */
2375 	vp = bp->b_vp;		/* XXX */
2376 	bo = bp->b_bufobj;
2377 	BO_LOCK(bo);
2378 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2379 		buf_vlist_remove(bp);
2380 	else
2381 		panic("brelvp: Buffer %p not on queue.", bp);
2382 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2383 		bo->bo_flag &= ~BO_ONWORKLST;
2384 		mtx_lock(&sync_mtx);
2385 		LIST_REMOVE(bo, bo_synclist);
2386 		syncer_worklist_len--;
2387 		mtx_unlock(&sync_mtx);
2388 	}
2389 	bp->b_vp = NULL;
2390 	bp->b_bufobj = NULL;
2391 	BO_UNLOCK(bo);
2392 	vdrop(vp);
2393 }
2394 
2395 /*
2396  * Add an item to the syncer work queue.
2397  */
2398 static void
2399 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2400 {
2401 	int slot;
2402 
2403 	ASSERT_BO_WLOCKED(bo);
2404 
2405 	mtx_lock(&sync_mtx);
2406 	if (bo->bo_flag & BO_ONWORKLST)
2407 		LIST_REMOVE(bo, bo_synclist);
2408 	else {
2409 		bo->bo_flag |= BO_ONWORKLST;
2410 		syncer_worklist_len++;
2411 	}
2412 
2413 	if (delay > syncer_maxdelay - 2)
2414 		delay = syncer_maxdelay - 2;
2415 	slot = (syncer_delayno + delay) & syncer_mask;
2416 
2417 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2418 	mtx_unlock(&sync_mtx);
2419 }
2420 
2421 static int
2422 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2423 {
2424 	int error, len;
2425 
2426 	mtx_lock(&sync_mtx);
2427 	len = syncer_worklist_len - sync_vnode_count;
2428 	mtx_unlock(&sync_mtx);
2429 	error = SYSCTL_OUT(req, &len, sizeof(len));
2430 	return (error);
2431 }
2432 
2433 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2434     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2435     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2436 
2437 static struct proc *updateproc;
2438 static void sched_sync(void);
2439 static struct kproc_desc up_kp = {
2440 	"syncer",
2441 	sched_sync,
2442 	&updateproc
2443 };
2444 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2445 
2446 static int
2447 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2448 {
2449 	struct vnode *vp;
2450 	struct mount *mp;
2451 
2452 	*bo = LIST_FIRST(slp);
2453 	if (*bo == NULL)
2454 		return (0);
2455 	vp = bo2vnode(*bo);
2456 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2457 		return (1);
2458 	/*
2459 	 * We use vhold in case the vnode does not
2460 	 * successfully sync.  vhold prevents the vnode from
2461 	 * going away when we unlock the sync_mtx so that
2462 	 * we can acquire the vnode interlock.
2463 	 */
2464 	vholdl(vp);
2465 	mtx_unlock(&sync_mtx);
2466 	VI_UNLOCK(vp);
2467 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2468 		vdrop(vp);
2469 		mtx_lock(&sync_mtx);
2470 		return (*bo == LIST_FIRST(slp));
2471 	}
2472 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2473 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2474 	VOP_UNLOCK(vp);
2475 	vn_finished_write(mp);
2476 	BO_LOCK(*bo);
2477 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2478 		/*
2479 		 * Put us back on the worklist.  The worklist
2480 		 * routine will remove us from our current
2481 		 * position and then add us back in at a later
2482 		 * position.
2483 		 */
2484 		vn_syncer_add_to_worklist(*bo, syncdelay);
2485 	}
2486 	BO_UNLOCK(*bo);
2487 	vdrop(vp);
2488 	mtx_lock(&sync_mtx);
2489 	return (0);
2490 }
2491 
2492 static int first_printf = 1;
2493 
2494 /*
2495  * System filesystem synchronizer daemon.
2496  */
2497 static void
2498 sched_sync(void)
2499 {
2500 	struct synclist *next, *slp;
2501 	struct bufobj *bo;
2502 	long starttime;
2503 	struct thread *td = curthread;
2504 	int last_work_seen;
2505 	int net_worklist_len;
2506 	int syncer_final_iter;
2507 	int error;
2508 
2509 	last_work_seen = 0;
2510 	syncer_final_iter = 0;
2511 	syncer_state = SYNCER_RUNNING;
2512 	starttime = time_uptime;
2513 	td->td_pflags |= TDP_NORUNNINGBUF;
2514 
2515 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2516 	    SHUTDOWN_PRI_LAST);
2517 
2518 	mtx_lock(&sync_mtx);
2519 	for (;;) {
2520 		if (syncer_state == SYNCER_FINAL_DELAY &&
2521 		    syncer_final_iter == 0) {
2522 			mtx_unlock(&sync_mtx);
2523 			kproc_suspend_check(td->td_proc);
2524 			mtx_lock(&sync_mtx);
2525 		}
2526 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2527 		if (syncer_state != SYNCER_RUNNING &&
2528 		    starttime != time_uptime) {
2529 			if (first_printf) {
2530 				printf("\nSyncing disks, vnodes remaining... ");
2531 				first_printf = 0;
2532 			}
2533 			printf("%d ", net_worklist_len);
2534 		}
2535 		starttime = time_uptime;
2536 
2537 		/*
2538 		 * Push files whose dirty time has expired.  Be careful
2539 		 * of interrupt race on slp queue.
2540 		 *
2541 		 * Skip over empty worklist slots when shutting down.
2542 		 */
2543 		do {
2544 			slp = &syncer_workitem_pending[syncer_delayno];
2545 			syncer_delayno += 1;
2546 			if (syncer_delayno == syncer_maxdelay)
2547 				syncer_delayno = 0;
2548 			next = &syncer_workitem_pending[syncer_delayno];
2549 			/*
2550 			 * If the worklist has wrapped since the
2551 			 * it was emptied of all but syncer vnodes,
2552 			 * switch to the FINAL_DELAY state and run
2553 			 * for one more second.
2554 			 */
2555 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2556 			    net_worklist_len == 0 &&
2557 			    last_work_seen == syncer_delayno) {
2558 				syncer_state = SYNCER_FINAL_DELAY;
2559 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2560 			}
2561 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2562 		    syncer_worklist_len > 0);
2563 
2564 		/*
2565 		 * Keep track of the last time there was anything
2566 		 * on the worklist other than syncer vnodes.
2567 		 * Return to the SHUTTING_DOWN state if any
2568 		 * new work appears.
2569 		 */
2570 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2571 			last_work_seen = syncer_delayno;
2572 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2573 			syncer_state = SYNCER_SHUTTING_DOWN;
2574 		while (!LIST_EMPTY(slp)) {
2575 			error = sync_vnode(slp, &bo, td);
2576 			if (error == 1) {
2577 				LIST_REMOVE(bo, bo_synclist);
2578 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2579 				continue;
2580 			}
2581 
2582 			if (first_printf == 0) {
2583 				/*
2584 				 * Drop the sync mutex, because some watchdog
2585 				 * drivers need to sleep while patting
2586 				 */
2587 				mtx_unlock(&sync_mtx);
2588 				wdog_kern_pat(WD_LASTVAL);
2589 				mtx_lock(&sync_mtx);
2590 			}
2591 
2592 		}
2593 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2594 			syncer_final_iter--;
2595 		/*
2596 		 * The variable rushjob allows the kernel to speed up the
2597 		 * processing of the filesystem syncer process. A rushjob
2598 		 * value of N tells the filesystem syncer to process the next
2599 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2600 		 * is used by the soft update code to speed up the filesystem
2601 		 * syncer process when the incore state is getting so far
2602 		 * ahead of the disk that the kernel memory pool is being
2603 		 * threatened with exhaustion.
2604 		 */
2605 		if (rushjob > 0) {
2606 			rushjob -= 1;
2607 			continue;
2608 		}
2609 		/*
2610 		 * Just sleep for a short period of time between
2611 		 * iterations when shutting down to allow some I/O
2612 		 * to happen.
2613 		 *
2614 		 * If it has taken us less than a second to process the
2615 		 * current work, then wait. Otherwise start right over
2616 		 * again. We can still lose time if any single round
2617 		 * takes more than two seconds, but it does not really
2618 		 * matter as we are just trying to generally pace the
2619 		 * filesystem activity.
2620 		 */
2621 		if (syncer_state != SYNCER_RUNNING ||
2622 		    time_uptime == starttime) {
2623 			thread_lock(td);
2624 			sched_prio(td, PPAUSE);
2625 			thread_unlock(td);
2626 		}
2627 		if (syncer_state != SYNCER_RUNNING)
2628 			cv_timedwait(&sync_wakeup, &sync_mtx,
2629 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2630 		else if (time_uptime == starttime)
2631 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2632 	}
2633 }
2634 
2635 /*
2636  * Request the syncer daemon to speed up its work.
2637  * We never push it to speed up more than half of its
2638  * normal turn time, otherwise it could take over the cpu.
2639  */
2640 int
2641 speedup_syncer(void)
2642 {
2643 	int ret = 0;
2644 
2645 	mtx_lock(&sync_mtx);
2646 	if (rushjob < syncdelay / 2) {
2647 		rushjob += 1;
2648 		stat_rush_requests += 1;
2649 		ret = 1;
2650 	}
2651 	mtx_unlock(&sync_mtx);
2652 	cv_broadcast(&sync_wakeup);
2653 	return (ret);
2654 }
2655 
2656 /*
2657  * Tell the syncer to speed up its work and run though its work
2658  * list several times, then tell it to shut down.
2659  */
2660 static void
2661 syncer_shutdown(void *arg, int howto)
2662 {
2663 
2664 	if (howto & RB_NOSYNC)
2665 		return;
2666 	mtx_lock(&sync_mtx);
2667 	syncer_state = SYNCER_SHUTTING_DOWN;
2668 	rushjob = 0;
2669 	mtx_unlock(&sync_mtx);
2670 	cv_broadcast(&sync_wakeup);
2671 	kproc_shutdown(arg, howto);
2672 }
2673 
2674 void
2675 syncer_suspend(void)
2676 {
2677 
2678 	syncer_shutdown(updateproc, 0);
2679 }
2680 
2681 void
2682 syncer_resume(void)
2683 {
2684 
2685 	mtx_lock(&sync_mtx);
2686 	first_printf = 1;
2687 	syncer_state = SYNCER_RUNNING;
2688 	mtx_unlock(&sync_mtx);
2689 	cv_broadcast(&sync_wakeup);
2690 	kproc_resume(updateproc);
2691 }
2692 
2693 /*
2694  * Reassign a buffer from one vnode to another.
2695  * Used to assign file specific control information
2696  * (indirect blocks) to the vnode to which they belong.
2697  */
2698 void
2699 reassignbuf(struct buf *bp)
2700 {
2701 	struct vnode *vp;
2702 	struct bufobj *bo;
2703 	int delay;
2704 #ifdef INVARIANTS
2705 	struct bufv *bv;
2706 #endif
2707 
2708 	vp = bp->b_vp;
2709 	bo = bp->b_bufobj;
2710 	++reassignbufcalls;
2711 
2712 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2713 	    bp, bp->b_vp, bp->b_flags);
2714 	/*
2715 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2716 	 * is not fully linked in.
2717 	 */
2718 	if (bp->b_flags & B_PAGING)
2719 		panic("cannot reassign paging buffer");
2720 
2721 	/*
2722 	 * Delete from old vnode list, if on one.
2723 	 */
2724 	BO_LOCK(bo);
2725 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2726 		buf_vlist_remove(bp);
2727 	else
2728 		panic("reassignbuf: Buffer %p not on queue.", bp);
2729 	/*
2730 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2731 	 * of clean buffers.
2732 	 */
2733 	if (bp->b_flags & B_DELWRI) {
2734 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2735 			switch (vp->v_type) {
2736 			case VDIR:
2737 				delay = dirdelay;
2738 				break;
2739 			case VCHR:
2740 				delay = metadelay;
2741 				break;
2742 			default:
2743 				delay = filedelay;
2744 			}
2745 			vn_syncer_add_to_worklist(bo, delay);
2746 		}
2747 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2748 	} else {
2749 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2750 
2751 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2752 			mtx_lock(&sync_mtx);
2753 			LIST_REMOVE(bo, bo_synclist);
2754 			syncer_worklist_len--;
2755 			mtx_unlock(&sync_mtx);
2756 			bo->bo_flag &= ~BO_ONWORKLST;
2757 		}
2758 	}
2759 #ifdef INVARIANTS
2760 	bv = &bo->bo_clean;
2761 	bp = TAILQ_FIRST(&bv->bv_hd);
2762 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2763 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2764 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2765 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2766 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2767 	bv = &bo->bo_dirty;
2768 	bp = TAILQ_FIRST(&bv->bv_hd);
2769 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2770 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2771 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2772 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2773 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2774 #endif
2775 	BO_UNLOCK(bo);
2776 }
2777 
2778 static void
2779 v_init_counters(struct vnode *vp)
2780 {
2781 
2782 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2783 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2784 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2785 
2786 	refcount_init(&vp->v_holdcnt, 1);
2787 	refcount_init(&vp->v_usecount, 1);
2788 }
2789 
2790 /*
2791  * Increment si_usecount of the associated device, if any.
2792  */
2793 static void
2794 v_incr_devcount(struct vnode *vp)
2795 {
2796 
2797 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2798 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2799 		dev_lock();
2800 		vp->v_rdev->si_usecount++;
2801 		dev_unlock();
2802 	}
2803 }
2804 
2805 /*
2806  * Decrement si_usecount of the associated device, if any.
2807  *
2808  * The caller is required to hold the interlock when transitioning a VCHR use
2809  * count to zero. This prevents a race with devfs_reclaim_vchr() that would
2810  * leak a si_usecount reference. The vnode lock will also prevent this race
2811  * if it is held while dropping the last ref.
2812  *
2813  * The race is:
2814  *
2815  * CPU1					CPU2
2816  *				  	devfs_reclaim_vchr
2817  * make v_usecount == 0
2818  * 				    	  VI_LOCK
2819  * 				    	  sees v_usecount == 0, no updates
2820  * 				    	  vp->v_rdev = NULL;
2821  * 				    	  ...
2822  * 				    	  VI_UNLOCK
2823  * VI_LOCK
2824  * v_decr_devcount
2825  *   sees v_rdev == NULL, no updates
2826  *
2827  * In this scenario si_devcount decrement is not performed.
2828  */
2829 static void
2830 v_decr_devcount(struct vnode *vp)
2831 {
2832 
2833 	ASSERT_VOP_LOCKED(vp, __func__);
2834 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2835 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2836 		dev_lock();
2837 		VNPASS(vp->v_rdev->si_usecount > 0, vp);
2838 		vp->v_rdev->si_usecount--;
2839 		dev_unlock();
2840 	}
2841 }
2842 
2843 /*
2844  * Grab a particular vnode from the free list, increment its
2845  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2846  * is being destroyed.  Only callers who specify LK_RETRY will
2847  * see doomed vnodes.  If inactive processing was delayed in
2848  * vput try to do it here.
2849  *
2850  * usecount is manipulated using atomics without holding any locks.
2851  *
2852  * holdcnt can be manipulated using atomics without holding any locks,
2853  * except when transitioning 1<->0, in which case the interlock is held.
2854  */
2855 enum vgetstate
2856 vget_prep(struct vnode *vp)
2857 {
2858 	enum vgetstate vs;
2859 
2860 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2861 		vs = VGET_USECOUNT;
2862 	} else {
2863 		vhold(vp);
2864 		vs = VGET_HOLDCNT;
2865 	}
2866 	return (vs);
2867 }
2868 
2869 int
2870 vget(struct vnode *vp, int flags, struct thread *td)
2871 {
2872 	enum vgetstate vs;
2873 
2874 	MPASS(td == curthread);
2875 
2876 	vs = vget_prep(vp);
2877 	return (vget_finish(vp, flags, vs));
2878 }
2879 
2880 static int __noinline
2881 vget_finish_vchr(struct vnode *vp)
2882 {
2883 
2884 	VNASSERT(vp->v_type == VCHR, vp, ("type != VCHR)"));
2885 
2886 	/*
2887 	 * See the comment in vget_finish before usecount bump.
2888 	 */
2889 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2890 #ifdef INVARIANTS
2891 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2892 		VNASSERT(old > 0, vp, ("%s: wrong hold count %d", __func__, old));
2893 #else
2894 		refcount_release(&vp->v_holdcnt);
2895 #endif
2896 		return (0);
2897 	}
2898 
2899 	VI_LOCK(vp);
2900 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2901 #ifdef INVARIANTS
2902 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2903 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2904 #else
2905 		refcount_release(&vp->v_holdcnt);
2906 #endif
2907 		VI_UNLOCK(vp);
2908 		return (0);
2909 	}
2910 	v_incr_devcount(vp);
2911 	refcount_acquire(&vp->v_usecount);
2912 	VI_UNLOCK(vp);
2913 	return (0);
2914 }
2915 
2916 int
2917 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2918 {
2919 	int error, old;
2920 
2921 	if ((flags & LK_INTERLOCK) != 0)
2922 		ASSERT_VI_LOCKED(vp, __func__);
2923 	else
2924 		ASSERT_VI_UNLOCKED(vp, __func__);
2925 	VNPASS(vp->v_holdcnt > 0, vp);
2926 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
2927 
2928 	error = vn_lock(vp, flags);
2929 	if (__predict_false(error != 0)) {
2930 		if (vs == VGET_USECOUNT)
2931 			vrele(vp);
2932 		else
2933 			vdrop(vp);
2934 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2935 		    vp);
2936 		return (error);
2937 	}
2938 
2939 	if (vs == VGET_USECOUNT)
2940 		return (0);
2941 
2942 	if (__predict_false(vp->v_type == VCHR))
2943 		return (vget_finish_vchr(vp));
2944 
2945 	/*
2946 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
2947 	 * the vnode around. Otherwise someone else lended their hold count and
2948 	 * we have to drop ours.
2949 	 */
2950 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
2951 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
2952 	if (old != 0) {
2953 #ifdef INVARIANTS
2954 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2955 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2956 #else
2957 		refcount_release(&vp->v_holdcnt);
2958 #endif
2959 	}
2960 	return (0);
2961 }
2962 
2963 /*
2964  * Increase the reference (use) and hold count of a vnode.
2965  * This will also remove the vnode from the free list if it is presently free.
2966  */
2967 static void __noinline
2968 vref_vchr(struct vnode *vp, bool interlock)
2969 {
2970 
2971 	/*
2972 	 * See the comment in vget_finish before usecount bump.
2973 	 */
2974 	if (!interlock) {
2975 		if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2976 			VNODE_REFCOUNT_FENCE_ACQ();
2977 			VNASSERT(vp->v_holdcnt > 0, vp,
2978 			    ("%s: active vnode not held", __func__));
2979 			return;
2980 		}
2981 		VI_LOCK(vp);
2982 		/*
2983 		 * By the time we get here the vnode might have been doomed, at
2984 		 * which point the 0->1 use count transition is no longer
2985 		 * protected by the interlock. Since it can't bounce back to
2986 		 * VCHR and requires vref semantics, punt it back
2987 		 */
2988 		if (__predict_false(vp->v_type == VBAD)) {
2989 			VI_UNLOCK(vp);
2990 			vref(vp);
2991 			return;
2992 		}
2993 	}
2994 	VNASSERT(vp->v_type == VCHR, vp, ("type != VCHR)"));
2995 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2996 		VNODE_REFCOUNT_FENCE_ACQ();
2997 		VNASSERT(vp->v_holdcnt > 0, vp,
2998 		    ("%s: active vnode not held", __func__));
2999 		if (!interlock)
3000 			VI_UNLOCK(vp);
3001 		return;
3002 	}
3003 	vhold(vp);
3004 	v_incr_devcount(vp);
3005 	refcount_acquire(&vp->v_usecount);
3006 	if (!interlock)
3007 		VI_UNLOCK(vp);
3008 	return;
3009 }
3010 
3011 void
3012 vref(struct vnode *vp)
3013 {
3014 	int old;
3015 
3016 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3017 	if (__predict_false(vp->v_type == VCHR)) {
3018 		 vref_vchr(vp, false);
3019 		 return;
3020 	}
3021 
3022 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3023 		VNODE_REFCOUNT_FENCE_ACQ();
3024 		VNASSERT(vp->v_holdcnt > 0, vp,
3025 		    ("%s: active vnode not held", __func__));
3026 		return;
3027 	}
3028 	vhold(vp);
3029 	/*
3030 	 * See the comment in vget_finish.
3031 	 */
3032 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3033 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3034 	if (old != 0) {
3035 #ifdef INVARIANTS
3036 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3037 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3038 #else
3039 		refcount_release(&vp->v_holdcnt);
3040 #endif
3041 	}
3042 }
3043 
3044 void
3045 vrefl(struct vnode *vp)
3046 {
3047 
3048 	ASSERT_VI_LOCKED(vp, __func__);
3049 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3050 	if (__predict_false(vp->v_type == VCHR)) {
3051 		vref_vchr(vp, true);
3052 		return;
3053 	}
3054 	vref(vp);
3055 }
3056 
3057 void
3058 vrefact(struct vnode *vp)
3059 {
3060 
3061 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3062 #ifdef INVARIANTS
3063 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3064 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3065 #else
3066 	refcount_acquire(&vp->v_usecount);
3067 #endif
3068 }
3069 
3070 void
3071 vrefactn(struct vnode *vp, u_int n)
3072 {
3073 
3074 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3075 #ifdef INVARIANTS
3076 	int old = atomic_fetchadd_int(&vp->v_usecount, n);
3077 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3078 #else
3079 	atomic_add_int(&vp->v_usecount, n);
3080 #endif
3081 }
3082 
3083 /*
3084  * Return reference count of a vnode.
3085  *
3086  * The results of this call are only guaranteed when some mechanism is used to
3087  * stop other processes from gaining references to the vnode.  This may be the
3088  * case if the caller holds the only reference.  This is also useful when stale
3089  * data is acceptable as race conditions may be accounted for by some other
3090  * means.
3091  */
3092 int
3093 vrefcnt(struct vnode *vp)
3094 {
3095 
3096 	return (vp->v_usecount);
3097 }
3098 
3099 void
3100 vlazy(struct vnode *vp)
3101 {
3102 	struct mount *mp;
3103 
3104 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3105 
3106 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3107 		return;
3108 	/*
3109 	 * We may get here for inactive routines after the vnode got doomed.
3110 	 */
3111 	if (VN_IS_DOOMED(vp))
3112 		return;
3113 	mp = vp->v_mount;
3114 	mtx_lock(&mp->mnt_listmtx);
3115 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3116 		vp->v_mflag |= VMP_LAZYLIST;
3117 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3118 		mp->mnt_lazyvnodelistsize++;
3119 	}
3120 	mtx_unlock(&mp->mnt_listmtx);
3121 }
3122 
3123 /*
3124  * This routine is only meant to be called from vgonel prior to dooming
3125  * the vnode.
3126  */
3127 static void
3128 vunlazy_gone(struct vnode *vp)
3129 {
3130 	struct mount *mp;
3131 
3132 	ASSERT_VOP_ELOCKED(vp, __func__);
3133 	ASSERT_VI_LOCKED(vp, __func__);
3134 	VNPASS(!VN_IS_DOOMED(vp), vp);
3135 
3136 	if (vp->v_mflag & VMP_LAZYLIST) {
3137 		mp = vp->v_mount;
3138 		mtx_lock(&mp->mnt_listmtx);
3139 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3140 		vp->v_mflag &= ~VMP_LAZYLIST;
3141 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3142 		mp->mnt_lazyvnodelistsize--;
3143 		mtx_unlock(&mp->mnt_listmtx);
3144 	}
3145 }
3146 
3147 static void
3148 vdefer_inactive(struct vnode *vp)
3149 {
3150 
3151 	ASSERT_VI_LOCKED(vp, __func__);
3152 	VNASSERT(vp->v_holdcnt > 0, vp,
3153 	    ("%s: vnode without hold count", __func__));
3154 	if (VN_IS_DOOMED(vp)) {
3155 		vdropl(vp);
3156 		return;
3157 	}
3158 	if (vp->v_iflag & VI_DEFINACT) {
3159 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3160 		vdropl(vp);
3161 		return;
3162 	}
3163 	if (vp->v_usecount > 0) {
3164 		vp->v_iflag &= ~VI_OWEINACT;
3165 		vdropl(vp);
3166 		return;
3167 	}
3168 	vlazy(vp);
3169 	vp->v_iflag |= VI_DEFINACT;
3170 	VI_UNLOCK(vp);
3171 	counter_u64_add(deferred_inact, 1);
3172 }
3173 
3174 static void
3175 vdefer_inactive_unlocked(struct vnode *vp)
3176 {
3177 
3178 	VI_LOCK(vp);
3179 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3180 		vdropl(vp);
3181 		return;
3182 	}
3183 	vdefer_inactive(vp);
3184 }
3185 
3186 enum vput_op { VRELE, VPUT, VUNREF };
3187 
3188 /*
3189  * Handle ->v_usecount transitioning to 0.
3190  *
3191  * By releasing the last usecount we take ownership of the hold count which
3192  * provides liveness of the vnode, meaning we have to vdrop.
3193  *
3194  * If the vnode is of type VCHR we may need to decrement si_usecount, see
3195  * v_decr_devcount for details.
3196  *
3197  * For all vnodes we may need to perform inactive processing. It requires an
3198  * exclusive lock on the vnode, while it is legal to call here with only a
3199  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3200  * inactive processing gets deferred to the syncer.
3201  *
3202  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3203  * on the lock being held all the way until VOP_INACTIVE. This in particular
3204  * happens with UFS which adds half-constructed vnodes to the hash, where they
3205  * can be found by other code.
3206  */
3207 static void
3208 vput_final(struct vnode *vp, enum vput_op func)
3209 {
3210 	int error;
3211 	bool want_unlock;
3212 
3213 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3214 	VNPASS(vp->v_holdcnt > 0, vp);
3215 
3216 	VI_LOCK(vp);
3217 	if (__predict_false(vp->v_type == VCHR && func != VRELE))
3218 		v_decr_devcount(vp);
3219 
3220 	/*
3221 	 * By the time we got here someone else might have transitioned
3222 	 * the count back to > 0.
3223 	 */
3224 	if (vp->v_usecount > 0)
3225 		goto out;
3226 
3227 	/*
3228 	 * If the vnode is doomed vgone already performed inactive processing
3229 	 * (if needed).
3230 	 */
3231 	if (VN_IS_DOOMED(vp))
3232 		goto out;
3233 
3234 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3235 		goto out;
3236 
3237 	if (vp->v_iflag & VI_DOINGINACT)
3238 		goto out;
3239 
3240 	/*
3241 	 * Locking operations here will drop the interlock and possibly the
3242 	 * vnode lock, opening a window where the vnode can get doomed all the
3243 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3244 	 * perform inactive.
3245 	 */
3246 	vp->v_iflag |= VI_OWEINACT;
3247 	want_unlock = false;
3248 	error = 0;
3249 	switch (func) {
3250 	case VRELE:
3251 		switch (VOP_ISLOCKED(vp)) {
3252 		case LK_EXCLUSIVE:
3253 			break;
3254 		case LK_EXCLOTHER:
3255 		case 0:
3256 			want_unlock = true;
3257 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3258 			VI_LOCK(vp);
3259 			break;
3260 		default:
3261 			/*
3262 			 * The lock has at least one sharer, but we have no way
3263 			 * to conclude whether this is us. Play it safe and
3264 			 * defer processing.
3265 			 */
3266 			error = EAGAIN;
3267 			break;
3268 		}
3269 		break;
3270 	case VPUT:
3271 		want_unlock = true;
3272 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3273 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3274 			    LK_NOWAIT);
3275 			VI_LOCK(vp);
3276 		}
3277 		break;
3278 	case VUNREF:
3279 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3280 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3281 			VI_LOCK(vp);
3282 		}
3283 		break;
3284 	}
3285 	if (error == 0) {
3286 		vinactive(vp);
3287 		if (want_unlock)
3288 			VOP_UNLOCK(vp);
3289 		vdropl(vp);
3290 	} else {
3291 		vdefer_inactive(vp);
3292 	}
3293 	return;
3294 out:
3295 	if (func == VPUT)
3296 		VOP_UNLOCK(vp);
3297 	vdropl(vp);
3298 }
3299 
3300 /*
3301  * Decrement ->v_usecount for a vnode.
3302  *
3303  * Releasing the last use count requires additional processing, see vput_final
3304  * above for details.
3305  *
3306  * Note that releasing use count without the vnode lock requires special casing
3307  * for VCHR, see v_decr_devcount for details.
3308  *
3309  * Comment above each variant denotes lock state on entry and exit.
3310  */
3311 
3312 static void __noinline
3313 vrele_vchr(struct vnode *vp)
3314 {
3315 
3316 	if (refcount_release_if_not_last(&vp->v_usecount))
3317 		return;
3318 	VI_LOCK(vp);
3319 	if (!refcount_release(&vp->v_usecount)) {
3320 		VI_UNLOCK(vp);
3321 		return;
3322 	}
3323 	v_decr_devcount(vp);
3324 	VI_UNLOCK(vp);
3325 	vput_final(vp, VRELE);
3326 }
3327 
3328 /*
3329  * in: any
3330  * out: same as passed in
3331  */
3332 void
3333 vrele(struct vnode *vp)
3334 {
3335 
3336 	ASSERT_VI_UNLOCKED(vp, __func__);
3337 	if (__predict_false(vp->v_type == VCHR)) {
3338 		vrele_vchr(vp);
3339 		return;
3340 	}
3341 	if (!refcount_release(&vp->v_usecount))
3342 		return;
3343 	vput_final(vp, VRELE);
3344 }
3345 
3346 /*
3347  * in: locked
3348  * out: unlocked
3349  */
3350 void
3351 vput(struct vnode *vp)
3352 {
3353 
3354 	ASSERT_VOP_LOCKED(vp, __func__);
3355 	ASSERT_VI_UNLOCKED(vp, __func__);
3356 	if (!refcount_release(&vp->v_usecount)) {
3357 		VOP_UNLOCK(vp);
3358 		return;
3359 	}
3360 	vput_final(vp, VPUT);
3361 }
3362 
3363 /*
3364  * in: locked
3365  * out: locked
3366  */
3367 void
3368 vunref(struct vnode *vp)
3369 {
3370 
3371 	ASSERT_VOP_LOCKED(vp, __func__);
3372 	ASSERT_VI_UNLOCKED(vp, __func__);
3373 	if (!refcount_release(&vp->v_usecount))
3374 		return;
3375 	vput_final(vp, VUNREF);
3376 }
3377 
3378 void
3379 vhold(struct vnode *vp)
3380 {
3381 	struct vdbatch *vd;
3382 	int old;
3383 
3384 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3385 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3386 	VNASSERT(old >= 0, vp, ("%s: wrong hold count %d", __func__, old));
3387 	if (old != 0)
3388 		return;
3389 	critical_enter();
3390 	vd = DPCPU_PTR(vd);
3391 	vd->freevnodes--;
3392 	critical_exit();
3393 }
3394 
3395 void
3396 vholdl(struct vnode *vp)
3397 {
3398 
3399 	ASSERT_VI_LOCKED(vp, __func__);
3400 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3401 	vhold(vp);
3402 }
3403 
3404 void
3405 vholdnz(struct vnode *vp)
3406 {
3407 
3408 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3409 #ifdef INVARIANTS
3410 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3411 	VNASSERT(old > 0, vp, ("%s: wrong hold count %d", __func__, old));
3412 #else
3413 	atomic_add_int(&vp->v_holdcnt, 1);
3414 #endif
3415 }
3416 
3417 static void __noinline
3418 vdbatch_process(struct vdbatch *vd)
3419 {
3420 	struct vnode *vp;
3421 	int i;
3422 
3423 	mtx_assert(&vd->lock, MA_OWNED);
3424 	MPASS(curthread->td_pinned > 0);
3425 	MPASS(vd->index == VDBATCH_SIZE);
3426 
3427 	mtx_lock(&vnode_list_mtx);
3428 	critical_enter();
3429 	freevnodes += vd->freevnodes;
3430 	for (i = 0; i < VDBATCH_SIZE; i++) {
3431 		vp = vd->tab[i];
3432 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3433 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3434 		MPASS(vp->v_dbatchcpu != NOCPU);
3435 		vp->v_dbatchcpu = NOCPU;
3436 	}
3437 	mtx_unlock(&vnode_list_mtx);
3438 	vd->freevnodes = 0;
3439 	bzero(vd->tab, sizeof(vd->tab));
3440 	vd->index = 0;
3441 	critical_exit();
3442 }
3443 
3444 static void
3445 vdbatch_enqueue(struct vnode *vp)
3446 {
3447 	struct vdbatch *vd;
3448 
3449 	ASSERT_VI_LOCKED(vp, __func__);
3450 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3451 	    ("%s: deferring requeue of a doomed vnode", __func__));
3452 
3453 	critical_enter();
3454 	vd = DPCPU_PTR(vd);
3455 	vd->freevnodes++;
3456 	if (vp->v_dbatchcpu != NOCPU) {
3457 		VI_UNLOCK(vp);
3458 		critical_exit();
3459 		return;
3460 	}
3461 
3462 	sched_pin();
3463 	critical_exit();
3464 	mtx_lock(&vd->lock);
3465 	MPASS(vd->index < VDBATCH_SIZE);
3466 	MPASS(vd->tab[vd->index] == NULL);
3467 	/*
3468 	 * A hack: we depend on being pinned so that we know what to put in
3469 	 * ->v_dbatchcpu.
3470 	 */
3471 	vp->v_dbatchcpu = curcpu;
3472 	vd->tab[vd->index] = vp;
3473 	vd->index++;
3474 	VI_UNLOCK(vp);
3475 	if (vd->index == VDBATCH_SIZE)
3476 		vdbatch_process(vd);
3477 	mtx_unlock(&vd->lock);
3478 	sched_unpin();
3479 }
3480 
3481 /*
3482  * This routine must only be called for vnodes which are about to be
3483  * deallocated. Supporting dequeue for arbitrary vndoes would require
3484  * validating that the locked batch matches.
3485  */
3486 static void
3487 vdbatch_dequeue(struct vnode *vp)
3488 {
3489 	struct vdbatch *vd;
3490 	int i;
3491 	short cpu;
3492 
3493 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3494 	    ("%s: called for a used vnode\n", __func__));
3495 
3496 	cpu = vp->v_dbatchcpu;
3497 	if (cpu == NOCPU)
3498 		return;
3499 
3500 	vd = DPCPU_ID_PTR(cpu, vd);
3501 	mtx_lock(&vd->lock);
3502 	for (i = 0; i < vd->index; i++) {
3503 		if (vd->tab[i] != vp)
3504 			continue;
3505 		vp->v_dbatchcpu = NOCPU;
3506 		vd->index--;
3507 		vd->tab[i] = vd->tab[vd->index];
3508 		vd->tab[vd->index] = NULL;
3509 		break;
3510 	}
3511 	mtx_unlock(&vd->lock);
3512 	/*
3513 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3514 	 */
3515 	MPASS(vp->v_dbatchcpu == NOCPU);
3516 }
3517 
3518 /*
3519  * Drop the hold count of the vnode.  If this is the last reference to
3520  * the vnode we place it on the free list unless it has been vgone'd
3521  * (marked VIRF_DOOMED) in which case we will free it.
3522  *
3523  * Because the vnode vm object keeps a hold reference on the vnode if
3524  * there is at least one resident non-cached page, the vnode cannot
3525  * leave the active list without the page cleanup done.
3526  */
3527 static void
3528 vdrop_deactivate(struct vnode *vp)
3529 {
3530 	struct mount *mp;
3531 
3532 	ASSERT_VI_LOCKED(vp, __func__);
3533 	/*
3534 	 * Mark a vnode as free: remove it from its active list
3535 	 * and put it up for recycling on the freelist.
3536 	 */
3537 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3538 	    ("vdrop: returning doomed vnode"));
3539 	VNASSERT(vp->v_op != NULL, vp,
3540 	    ("vdrop: vnode already reclaimed."));
3541 	VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
3542 	    ("vnode with VI_OWEINACT set"));
3543 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp,
3544 	    ("vnode with VI_DEFINACT set"));
3545 	if (vp->v_mflag & VMP_LAZYLIST) {
3546 		mp = vp->v_mount;
3547 		mtx_lock(&mp->mnt_listmtx);
3548 		VNASSERT(vp->v_mflag & VMP_LAZYLIST, vp, ("lost VMP_LAZYLIST"));
3549 		/*
3550 		 * Don't remove the vnode from the lazy list if another thread
3551 		 * has increased the hold count. It may have re-enqueued the
3552 		 * vnode to the lazy list and is now responsible for its
3553 		 * removal.
3554 		 */
3555 		if (vp->v_holdcnt == 0) {
3556 			vp->v_mflag &= ~VMP_LAZYLIST;
3557 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3558 			mp->mnt_lazyvnodelistsize--;
3559 		}
3560 		mtx_unlock(&mp->mnt_listmtx);
3561 	}
3562 	vdbatch_enqueue(vp);
3563 }
3564 
3565 void
3566 vdrop(struct vnode *vp)
3567 {
3568 
3569 	ASSERT_VI_UNLOCKED(vp, __func__);
3570 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3571 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3572 		return;
3573 	VI_LOCK(vp);
3574 	vdropl(vp);
3575 }
3576 
3577 void
3578 vdropl(struct vnode *vp)
3579 {
3580 
3581 	ASSERT_VI_LOCKED(vp, __func__);
3582 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3583 	if (!refcount_release(&vp->v_holdcnt)) {
3584 		VI_UNLOCK(vp);
3585 		return;
3586 	}
3587 	if (VN_IS_DOOMED(vp)) {
3588 		freevnode(vp);
3589 		return;
3590 	}
3591 	vdrop_deactivate(vp);
3592 }
3593 
3594 /*
3595  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3596  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3597  */
3598 static void
3599 vinactivef(struct vnode *vp)
3600 {
3601 	struct vm_object *obj;
3602 
3603 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3604 	ASSERT_VI_LOCKED(vp, "vinactive");
3605 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3606 	    ("vinactive: recursed on VI_DOINGINACT"));
3607 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3608 	vp->v_iflag |= VI_DOINGINACT;
3609 	vp->v_iflag &= ~VI_OWEINACT;
3610 	VI_UNLOCK(vp);
3611 	/*
3612 	 * Before moving off the active list, we must be sure that any
3613 	 * modified pages are converted into the vnode's dirty
3614 	 * buffers, since these will no longer be checked once the
3615 	 * vnode is on the inactive list.
3616 	 *
3617 	 * The write-out of the dirty pages is asynchronous.  At the
3618 	 * point that VOP_INACTIVE() is called, there could still be
3619 	 * pending I/O and dirty pages in the object.
3620 	 */
3621 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3622 	    vm_object_mightbedirty(obj)) {
3623 		VM_OBJECT_WLOCK(obj);
3624 		vm_object_page_clean(obj, 0, 0, 0);
3625 		VM_OBJECT_WUNLOCK(obj);
3626 	}
3627 	VOP_INACTIVE(vp, curthread);
3628 	VI_LOCK(vp);
3629 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3630 	    ("vinactive: lost VI_DOINGINACT"));
3631 	vp->v_iflag &= ~VI_DOINGINACT;
3632 }
3633 
3634 void
3635 vinactive(struct vnode *vp)
3636 {
3637 
3638 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3639 	ASSERT_VI_LOCKED(vp, "vinactive");
3640 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3641 
3642 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3643 		return;
3644 	if (vp->v_iflag & VI_DOINGINACT)
3645 		return;
3646 	if (vp->v_usecount > 0) {
3647 		vp->v_iflag &= ~VI_OWEINACT;
3648 		return;
3649 	}
3650 	vinactivef(vp);
3651 }
3652 
3653 /*
3654  * Remove any vnodes in the vnode table belonging to mount point mp.
3655  *
3656  * If FORCECLOSE is not specified, there should not be any active ones,
3657  * return error if any are found (nb: this is a user error, not a
3658  * system error). If FORCECLOSE is specified, detach any active vnodes
3659  * that are found.
3660  *
3661  * If WRITECLOSE is set, only flush out regular file vnodes open for
3662  * writing.
3663  *
3664  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3665  *
3666  * `rootrefs' specifies the base reference count for the root vnode
3667  * of this filesystem. The root vnode is considered busy if its
3668  * v_usecount exceeds this value. On a successful return, vflush(, td)
3669  * will call vrele() on the root vnode exactly rootrefs times.
3670  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3671  * be zero.
3672  */
3673 #ifdef DIAGNOSTIC
3674 static int busyprt = 0;		/* print out busy vnodes */
3675 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3676 #endif
3677 
3678 int
3679 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3680 {
3681 	struct vnode *vp, *mvp, *rootvp = NULL;
3682 	struct vattr vattr;
3683 	int busy = 0, error;
3684 
3685 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3686 	    rootrefs, flags);
3687 	if (rootrefs > 0) {
3688 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3689 		    ("vflush: bad args"));
3690 		/*
3691 		 * Get the filesystem root vnode. We can vput() it
3692 		 * immediately, since with rootrefs > 0, it won't go away.
3693 		 */
3694 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3695 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3696 			    __func__, error);
3697 			return (error);
3698 		}
3699 		vput(rootvp);
3700 	}
3701 loop:
3702 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3703 		vholdl(vp);
3704 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3705 		if (error) {
3706 			vdrop(vp);
3707 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3708 			goto loop;
3709 		}
3710 		/*
3711 		 * Skip over a vnodes marked VV_SYSTEM.
3712 		 */
3713 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3714 			VOP_UNLOCK(vp);
3715 			vdrop(vp);
3716 			continue;
3717 		}
3718 		/*
3719 		 * If WRITECLOSE is set, flush out unlinked but still open
3720 		 * files (even if open only for reading) and regular file
3721 		 * vnodes open for writing.
3722 		 */
3723 		if (flags & WRITECLOSE) {
3724 			if (vp->v_object != NULL) {
3725 				VM_OBJECT_WLOCK(vp->v_object);
3726 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3727 				VM_OBJECT_WUNLOCK(vp->v_object);
3728 			}
3729 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3730 			if (error != 0) {
3731 				VOP_UNLOCK(vp);
3732 				vdrop(vp);
3733 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3734 				return (error);
3735 			}
3736 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3737 			VI_LOCK(vp);
3738 
3739 			if ((vp->v_type == VNON ||
3740 			    (error == 0 && vattr.va_nlink > 0)) &&
3741 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3742 				VOP_UNLOCK(vp);
3743 				vdropl(vp);
3744 				continue;
3745 			}
3746 		} else
3747 			VI_LOCK(vp);
3748 		/*
3749 		 * With v_usecount == 0, all we need to do is clear out the
3750 		 * vnode data structures and we are done.
3751 		 *
3752 		 * If FORCECLOSE is set, forcibly close the vnode.
3753 		 */
3754 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3755 			vgonel(vp);
3756 		} else {
3757 			busy++;
3758 #ifdef DIAGNOSTIC
3759 			if (busyprt)
3760 				vn_printf(vp, "vflush: busy vnode ");
3761 #endif
3762 		}
3763 		VOP_UNLOCK(vp);
3764 		vdropl(vp);
3765 	}
3766 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3767 		/*
3768 		 * If just the root vnode is busy, and if its refcount
3769 		 * is equal to `rootrefs', then go ahead and kill it.
3770 		 */
3771 		VI_LOCK(rootvp);
3772 		KASSERT(busy > 0, ("vflush: not busy"));
3773 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3774 		    ("vflush: usecount %d < rootrefs %d",
3775 		     rootvp->v_usecount, rootrefs));
3776 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3777 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3778 			vgone(rootvp);
3779 			VOP_UNLOCK(rootvp);
3780 			busy = 0;
3781 		} else
3782 			VI_UNLOCK(rootvp);
3783 	}
3784 	if (busy) {
3785 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3786 		    busy);
3787 		return (EBUSY);
3788 	}
3789 	for (; rootrefs > 0; rootrefs--)
3790 		vrele(rootvp);
3791 	return (0);
3792 }
3793 
3794 /*
3795  * Recycle an unused vnode to the front of the free list.
3796  */
3797 int
3798 vrecycle(struct vnode *vp)
3799 {
3800 	int recycled;
3801 
3802 	VI_LOCK(vp);
3803 	recycled = vrecyclel(vp);
3804 	VI_UNLOCK(vp);
3805 	return (recycled);
3806 }
3807 
3808 /*
3809  * vrecycle, with the vp interlock held.
3810  */
3811 int
3812 vrecyclel(struct vnode *vp)
3813 {
3814 	int recycled;
3815 
3816 	ASSERT_VOP_ELOCKED(vp, __func__);
3817 	ASSERT_VI_LOCKED(vp, __func__);
3818 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3819 	recycled = 0;
3820 	if (vp->v_usecount == 0) {
3821 		recycled = 1;
3822 		vgonel(vp);
3823 	}
3824 	return (recycled);
3825 }
3826 
3827 /*
3828  * Eliminate all activity associated with a vnode
3829  * in preparation for reuse.
3830  */
3831 void
3832 vgone(struct vnode *vp)
3833 {
3834 	VI_LOCK(vp);
3835 	vgonel(vp);
3836 	VI_UNLOCK(vp);
3837 }
3838 
3839 static void
3840 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3841     struct vnode *lowervp __unused)
3842 {
3843 }
3844 
3845 /*
3846  * Notify upper mounts about reclaimed or unlinked vnode.
3847  */
3848 void
3849 vfs_notify_upper(struct vnode *vp, int event)
3850 {
3851 	static struct vfsops vgonel_vfsops = {
3852 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3853 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3854 	};
3855 	struct mount *mp, *ump, *mmp;
3856 
3857 	mp = vp->v_mount;
3858 	if (mp == NULL)
3859 		return;
3860 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3861 		return;
3862 
3863 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3864 	mmp->mnt_op = &vgonel_vfsops;
3865 	mmp->mnt_kern_flag |= MNTK_MARKER;
3866 	MNT_ILOCK(mp);
3867 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3868 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3869 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3870 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3871 			continue;
3872 		}
3873 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3874 		MNT_IUNLOCK(mp);
3875 		switch (event) {
3876 		case VFS_NOTIFY_UPPER_RECLAIM:
3877 			VFS_RECLAIM_LOWERVP(ump, vp);
3878 			break;
3879 		case VFS_NOTIFY_UPPER_UNLINK:
3880 			VFS_UNLINK_LOWERVP(ump, vp);
3881 			break;
3882 		default:
3883 			KASSERT(0, ("invalid event %d", event));
3884 			break;
3885 		}
3886 		MNT_ILOCK(mp);
3887 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3888 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3889 	}
3890 	free(mmp, M_TEMP);
3891 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3892 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3893 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3894 		wakeup(&mp->mnt_uppers);
3895 	}
3896 	MNT_IUNLOCK(mp);
3897 }
3898 
3899 /*
3900  * vgone, with the vp interlock held.
3901  */
3902 static void
3903 vgonel(struct vnode *vp)
3904 {
3905 	struct thread *td;
3906 	struct mount *mp;
3907 	vm_object_t object;
3908 	bool active, oweinact;
3909 
3910 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3911 	ASSERT_VI_LOCKED(vp, "vgonel");
3912 	VNASSERT(vp->v_holdcnt, vp,
3913 	    ("vgonel: vp %p has no reference.", vp));
3914 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3915 	td = curthread;
3916 
3917 	/*
3918 	 * Don't vgonel if we're already doomed.
3919 	 */
3920 	if (vp->v_irflag & VIRF_DOOMED)
3921 		return;
3922 	vunlazy_gone(vp);
3923 	vp->v_irflag |= VIRF_DOOMED;
3924 
3925 	/*
3926 	 * Check to see if the vnode is in use.  If so, we have to call
3927 	 * VOP_CLOSE() and VOP_INACTIVE().
3928 	 */
3929 	active = vp->v_usecount > 0;
3930 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3931 	/*
3932 	 * If we need to do inactive VI_OWEINACT will be set.
3933 	 */
3934 	if (vp->v_iflag & VI_DEFINACT) {
3935 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3936 		vp->v_iflag &= ~VI_DEFINACT;
3937 		vdropl(vp);
3938 	} else {
3939 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
3940 		VI_UNLOCK(vp);
3941 	}
3942 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3943 
3944 	/*
3945 	 * If purging an active vnode, it must be closed and
3946 	 * deactivated before being reclaimed.
3947 	 */
3948 	if (active)
3949 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3950 	if (oweinact || active) {
3951 		VI_LOCK(vp);
3952 		vinactivef(vp);
3953 		VI_UNLOCK(vp);
3954 	}
3955 	if (vp->v_type == VSOCK)
3956 		vfs_unp_reclaim(vp);
3957 
3958 	/*
3959 	 * Clean out any buffers associated with the vnode.
3960 	 * If the flush fails, just toss the buffers.
3961 	 */
3962 	mp = NULL;
3963 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3964 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3965 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3966 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3967 			;
3968 	}
3969 
3970 	BO_LOCK(&vp->v_bufobj);
3971 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3972 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3973 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3974 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3975 	    ("vp %p bufobj not invalidated", vp));
3976 
3977 	/*
3978 	 * For VMIO bufobj, BO_DEAD is set later, or in
3979 	 * vm_object_terminate() after the object's page queue is
3980 	 * flushed.
3981 	 */
3982 	object = vp->v_bufobj.bo_object;
3983 	if (object == NULL)
3984 		vp->v_bufobj.bo_flag |= BO_DEAD;
3985 	BO_UNLOCK(&vp->v_bufobj);
3986 
3987 	/*
3988 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
3989 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
3990 	 * should not touch the object borrowed from the lower vnode
3991 	 * (the handle check).
3992 	 */
3993 	if (object != NULL && object->type == OBJT_VNODE &&
3994 	    object->handle == vp)
3995 		vnode_destroy_vobject(vp);
3996 
3997 	/*
3998 	 * Reclaim the vnode.
3999 	 */
4000 	if (VOP_RECLAIM(vp, td))
4001 		panic("vgone: cannot reclaim");
4002 	if (mp != NULL)
4003 		vn_finished_secondary_write(mp);
4004 	VNASSERT(vp->v_object == NULL, vp,
4005 	    ("vop_reclaim left v_object vp=%p", vp));
4006 	/*
4007 	 * Clear the advisory locks and wake up waiting threads.
4008 	 */
4009 	(void)VOP_ADVLOCKPURGE(vp);
4010 	vp->v_lockf = NULL;
4011 	/*
4012 	 * Delete from old mount point vnode list.
4013 	 */
4014 	delmntque(vp);
4015 	cache_purge(vp);
4016 	/*
4017 	 * Done with purge, reset to the standard lock and invalidate
4018 	 * the vnode.
4019 	 */
4020 	VI_LOCK(vp);
4021 	vp->v_vnlock = &vp->v_lock;
4022 	vp->v_op = &dead_vnodeops;
4023 	vp->v_type = VBAD;
4024 }
4025 
4026 /*
4027  * Calculate the total number of references to a special device.
4028  */
4029 int
4030 vcount(struct vnode *vp)
4031 {
4032 	int count;
4033 
4034 	dev_lock();
4035 	count = vp->v_rdev->si_usecount;
4036 	dev_unlock();
4037 	return (count);
4038 }
4039 
4040 /*
4041  * Print out a description of a vnode.
4042  */
4043 static const char * const typename[] =
4044 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4045  "VMARKER"};
4046 
4047 void
4048 vn_printf(struct vnode *vp, const char *fmt, ...)
4049 {
4050 	va_list ap;
4051 	char buf[256], buf2[16];
4052 	u_long flags;
4053 
4054 	va_start(ap, fmt);
4055 	vprintf(fmt, ap);
4056 	va_end(ap);
4057 	printf("%p: ", (void *)vp);
4058 	printf("type %s\n", typename[vp->v_type]);
4059 	printf("    usecount %d, writecount %d, refcount %d",
4060 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
4061 	switch (vp->v_type) {
4062 	case VDIR:
4063 		printf(" mountedhere %p\n", vp->v_mountedhere);
4064 		break;
4065 	case VCHR:
4066 		printf(" rdev %p\n", vp->v_rdev);
4067 		break;
4068 	case VSOCK:
4069 		printf(" socket %p\n", vp->v_unpcb);
4070 		break;
4071 	case VFIFO:
4072 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4073 		break;
4074 	default:
4075 		printf("\n");
4076 		break;
4077 	}
4078 	buf[0] = '\0';
4079 	buf[1] = '\0';
4080 	if (vp->v_irflag & VIRF_DOOMED)
4081 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4082 	flags = vp->v_irflag & ~(VIRF_DOOMED);
4083 	if (flags != 0) {
4084 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4085 		strlcat(buf, buf2, sizeof(buf));
4086 	}
4087 	if (vp->v_vflag & VV_ROOT)
4088 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4089 	if (vp->v_vflag & VV_ISTTY)
4090 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4091 	if (vp->v_vflag & VV_NOSYNC)
4092 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4093 	if (vp->v_vflag & VV_ETERNALDEV)
4094 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4095 	if (vp->v_vflag & VV_CACHEDLABEL)
4096 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4097 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4098 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4099 	if (vp->v_vflag & VV_COPYONWRITE)
4100 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4101 	if (vp->v_vflag & VV_SYSTEM)
4102 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4103 	if (vp->v_vflag & VV_PROCDEP)
4104 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4105 	if (vp->v_vflag & VV_NOKNOTE)
4106 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
4107 	if (vp->v_vflag & VV_DELETED)
4108 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4109 	if (vp->v_vflag & VV_MD)
4110 		strlcat(buf, "|VV_MD", sizeof(buf));
4111 	if (vp->v_vflag & VV_FORCEINSMQ)
4112 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4113 	if (vp->v_vflag & VV_READLINK)
4114 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4115 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4116 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
4117 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
4118 	if (flags != 0) {
4119 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4120 		strlcat(buf, buf2, sizeof(buf));
4121 	}
4122 	if (vp->v_iflag & VI_TEXT_REF)
4123 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
4124 	if (vp->v_iflag & VI_MOUNT)
4125 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4126 	if (vp->v_iflag & VI_DOINGINACT)
4127 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4128 	if (vp->v_iflag & VI_OWEINACT)
4129 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4130 	if (vp->v_iflag & VI_DEFINACT)
4131 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4132 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
4133 	    VI_OWEINACT | VI_DEFINACT);
4134 	if (flags != 0) {
4135 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4136 		strlcat(buf, buf2, sizeof(buf));
4137 	}
4138 	if (vp->v_mflag & VMP_LAZYLIST)
4139 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4140 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4141 	if (flags != 0) {
4142 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4143 		strlcat(buf, buf2, sizeof(buf));
4144 	}
4145 	printf("    flags (%s)\n", buf + 1);
4146 	if (mtx_owned(VI_MTX(vp)))
4147 		printf(" VI_LOCKed");
4148 	if (vp->v_object != NULL)
4149 		printf("    v_object %p ref %d pages %d "
4150 		    "cleanbuf %d dirtybuf %d\n",
4151 		    vp->v_object, vp->v_object->ref_count,
4152 		    vp->v_object->resident_page_count,
4153 		    vp->v_bufobj.bo_clean.bv_cnt,
4154 		    vp->v_bufobj.bo_dirty.bv_cnt);
4155 	printf("    ");
4156 	lockmgr_printinfo(vp->v_vnlock);
4157 	if (vp->v_data != NULL)
4158 		VOP_PRINT(vp);
4159 }
4160 
4161 #ifdef DDB
4162 /*
4163  * List all of the locked vnodes in the system.
4164  * Called when debugging the kernel.
4165  */
4166 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4167 {
4168 	struct mount *mp;
4169 	struct vnode *vp;
4170 
4171 	/*
4172 	 * Note: because this is DDB, we can't obey the locking semantics
4173 	 * for these structures, which means we could catch an inconsistent
4174 	 * state and dereference a nasty pointer.  Not much to be done
4175 	 * about that.
4176 	 */
4177 	db_printf("Locked vnodes\n");
4178 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4179 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4180 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4181 				vn_printf(vp, "vnode ");
4182 		}
4183 	}
4184 }
4185 
4186 /*
4187  * Show details about the given vnode.
4188  */
4189 DB_SHOW_COMMAND(vnode, db_show_vnode)
4190 {
4191 	struct vnode *vp;
4192 
4193 	if (!have_addr)
4194 		return;
4195 	vp = (struct vnode *)addr;
4196 	vn_printf(vp, "vnode ");
4197 }
4198 
4199 /*
4200  * Show details about the given mount point.
4201  */
4202 DB_SHOW_COMMAND(mount, db_show_mount)
4203 {
4204 	struct mount *mp;
4205 	struct vfsopt *opt;
4206 	struct statfs *sp;
4207 	struct vnode *vp;
4208 	char buf[512];
4209 	uint64_t mflags;
4210 	u_int flags;
4211 
4212 	if (!have_addr) {
4213 		/* No address given, print short info about all mount points. */
4214 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4215 			db_printf("%p %s on %s (%s)\n", mp,
4216 			    mp->mnt_stat.f_mntfromname,
4217 			    mp->mnt_stat.f_mntonname,
4218 			    mp->mnt_stat.f_fstypename);
4219 			if (db_pager_quit)
4220 				break;
4221 		}
4222 		db_printf("\nMore info: show mount <addr>\n");
4223 		return;
4224 	}
4225 
4226 	mp = (struct mount *)addr;
4227 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4228 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4229 
4230 	buf[0] = '\0';
4231 	mflags = mp->mnt_flag;
4232 #define	MNT_FLAG(flag)	do {						\
4233 	if (mflags & (flag)) {						\
4234 		if (buf[0] != '\0')					\
4235 			strlcat(buf, ", ", sizeof(buf));		\
4236 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4237 		mflags &= ~(flag);					\
4238 	}								\
4239 } while (0)
4240 	MNT_FLAG(MNT_RDONLY);
4241 	MNT_FLAG(MNT_SYNCHRONOUS);
4242 	MNT_FLAG(MNT_NOEXEC);
4243 	MNT_FLAG(MNT_NOSUID);
4244 	MNT_FLAG(MNT_NFS4ACLS);
4245 	MNT_FLAG(MNT_UNION);
4246 	MNT_FLAG(MNT_ASYNC);
4247 	MNT_FLAG(MNT_SUIDDIR);
4248 	MNT_FLAG(MNT_SOFTDEP);
4249 	MNT_FLAG(MNT_NOSYMFOLLOW);
4250 	MNT_FLAG(MNT_GJOURNAL);
4251 	MNT_FLAG(MNT_MULTILABEL);
4252 	MNT_FLAG(MNT_ACLS);
4253 	MNT_FLAG(MNT_NOATIME);
4254 	MNT_FLAG(MNT_NOCLUSTERR);
4255 	MNT_FLAG(MNT_NOCLUSTERW);
4256 	MNT_FLAG(MNT_SUJ);
4257 	MNT_FLAG(MNT_EXRDONLY);
4258 	MNT_FLAG(MNT_EXPORTED);
4259 	MNT_FLAG(MNT_DEFEXPORTED);
4260 	MNT_FLAG(MNT_EXPORTANON);
4261 	MNT_FLAG(MNT_EXKERB);
4262 	MNT_FLAG(MNT_EXPUBLIC);
4263 	MNT_FLAG(MNT_LOCAL);
4264 	MNT_FLAG(MNT_QUOTA);
4265 	MNT_FLAG(MNT_ROOTFS);
4266 	MNT_FLAG(MNT_USER);
4267 	MNT_FLAG(MNT_IGNORE);
4268 	MNT_FLAG(MNT_UPDATE);
4269 	MNT_FLAG(MNT_DELEXPORT);
4270 	MNT_FLAG(MNT_RELOAD);
4271 	MNT_FLAG(MNT_FORCE);
4272 	MNT_FLAG(MNT_SNAPSHOT);
4273 	MNT_FLAG(MNT_BYFSID);
4274 #undef MNT_FLAG
4275 	if (mflags != 0) {
4276 		if (buf[0] != '\0')
4277 			strlcat(buf, ", ", sizeof(buf));
4278 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4279 		    "0x%016jx", mflags);
4280 	}
4281 	db_printf("    mnt_flag = %s\n", buf);
4282 
4283 	buf[0] = '\0';
4284 	flags = mp->mnt_kern_flag;
4285 #define	MNT_KERN_FLAG(flag)	do {					\
4286 	if (flags & (flag)) {						\
4287 		if (buf[0] != '\0')					\
4288 			strlcat(buf, ", ", sizeof(buf));		\
4289 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4290 		flags &= ~(flag);					\
4291 	}								\
4292 } while (0)
4293 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4294 	MNT_KERN_FLAG(MNTK_ASYNC);
4295 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4296 	MNT_KERN_FLAG(MNTK_DRAINING);
4297 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4298 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4299 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4300 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4301 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
4302 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
4303 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4304 	MNT_KERN_FLAG(MNTK_MARKER);
4305 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4306 	MNT_KERN_FLAG(MNTK_NOASYNC);
4307 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4308 	MNT_KERN_FLAG(MNTK_MWAIT);
4309 	MNT_KERN_FLAG(MNTK_SUSPEND);
4310 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4311 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4312 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4313 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4314 #undef MNT_KERN_FLAG
4315 	if (flags != 0) {
4316 		if (buf[0] != '\0')
4317 			strlcat(buf, ", ", sizeof(buf));
4318 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4319 		    "0x%08x", flags);
4320 	}
4321 	db_printf("    mnt_kern_flag = %s\n", buf);
4322 
4323 	db_printf("    mnt_opt = ");
4324 	opt = TAILQ_FIRST(mp->mnt_opt);
4325 	if (opt != NULL) {
4326 		db_printf("%s", opt->name);
4327 		opt = TAILQ_NEXT(opt, link);
4328 		while (opt != NULL) {
4329 			db_printf(", %s", opt->name);
4330 			opt = TAILQ_NEXT(opt, link);
4331 		}
4332 	}
4333 	db_printf("\n");
4334 
4335 	sp = &mp->mnt_stat;
4336 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4337 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4338 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4339 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4340 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4341 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4342 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4343 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4344 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4345 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4346 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4347 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4348 
4349 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4350 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4351 	if (jailed(mp->mnt_cred))
4352 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4353 	db_printf(" }\n");
4354 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4355 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4356 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4357 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4358 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4359 	    mp->mnt_lazyvnodelistsize);
4360 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4361 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4362 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4363 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4364 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4365 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4366 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4367 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4368 	db_printf("    mnt_secondary_accwrites = %d\n",
4369 	    mp->mnt_secondary_accwrites);
4370 	db_printf("    mnt_gjprovider = %s\n",
4371 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4372 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4373 
4374 	db_printf("\n\nList of active vnodes\n");
4375 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4376 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4377 			vn_printf(vp, "vnode ");
4378 			if (db_pager_quit)
4379 				break;
4380 		}
4381 	}
4382 	db_printf("\n\nList of inactive vnodes\n");
4383 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4384 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4385 			vn_printf(vp, "vnode ");
4386 			if (db_pager_quit)
4387 				break;
4388 		}
4389 	}
4390 }
4391 #endif	/* DDB */
4392 
4393 /*
4394  * Fill in a struct xvfsconf based on a struct vfsconf.
4395  */
4396 static int
4397 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4398 {
4399 	struct xvfsconf xvfsp;
4400 
4401 	bzero(&xvfsp, sizeof(xvfsp));
4402 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4403 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4404 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4405 	xvfsp.vfc_flags = vfsp->vfc_flags;
4406 	/*
4407 	 * These are unused in userland, we keep them
4408 	 * to not break binary compatibility.
4409 	 */
4410 	xvfsp.vfc_vfsops = NULL;
4411 	xvfsp.vfc_next = NULL;
4412 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4413 }
4414 
4415 #ifdef COMPAT_FREEBSD32
4416 struct xvfsconf32 {
4417 	uint32_t	vfc_vfsops;
4418 	char		vfc_name[MFSNAMELEN];
4419 	int32_t		vfc_typenum;
4420 	int32_t		vfc_refcount;
4421 	int32_t		vfc_flags;
4422 	uint32_t	vfc_next;
4423 };
4424 
4425 static int
4426 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4427 {
4428 	struct xvfsconf32 xvfsp;
4429 
4430 	bzero(&xvfsp, sizeof(xvfsp));
4431 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4432 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4433 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4434 	xvfsp.vfc_flags = vfsp->vfc_flags;
4435 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4436 }
4437 #endif
4438 
4439 /*
4440  * Top level filesystem related information gathering.
4441  */
4442 static int
4443 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4444 {
4445 	struct vfsconf *vfsp;
4446 	int error;
4447 
4448 	error = 0;
4449 	vfsconf_slock();
4450 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4451 #ifdef COMPAT_FREEBSD32
4452 		if (req->flags & SCTL_MASK32)
4453 			error = vfsconf2x32(req, vfsp);
4454 		else
4455 #endif
4456 			error = vfsconf2x(req, vfsp);
4457 		if (error)
4458 			break;
4459 	}
4460 	vfsconf_sunlock();
4461 	return (error);
4462 }
4463 
4464 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4465     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4466     "S,xvfsconf", "List of all configured filesystems");
4467 
4468 #ifndef BURN_BRIDGES
4469 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4470 
4471 static int
4472 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4473 {
4474 	int *name = (int *)arg1 - 1;	/* XXX */
4475 	u_int namelen = arg2 + 1;	/* XXX */
4476 	struct vfsconf *vfsp;
4477 
4478 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4479 	    "please rebuild world\n");
4480 
4481 #if 1 || defined(COMPAT_PRELITE2)
4482 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4483 	if (namelen == 1)
4484 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4485 #endif
4486 
4487 	switch (name[1]) {
4488 	case VFS_MAXTYPENUM:
4489 		if (namelen != 2)
4490 			return (ENOTDIR);
4491 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4492 	case VFS_CONF:
4493 		if (namelen != 3)
4494 			return (ENOTDIR);	/* overloaded */
4495 		vfsconf_slock();
4496 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4497 			if (vfsp->vfc_typenum == name[2])
4498 				break;
4499 		}
4500 		vfsconf_sunlock();
4501 		if (vfsp == NULL)
4502 			return (EOPNOTSUPP);
4503 #ifdef COMPAT_FREEBSD32
4504 		if (req->flags & SCTL_MASK32)
4505 			return (vfsconf2x32(req, vfsp));
4506 		else
4507 #endif
4508 			return (vfsconf2x(req, vfsp));
4509 	}
4510 	return (EOPNOTSUPP);
4511 }
4512 
4513 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4514     CTLFLAG_MPSAFE, vfs_sysctl,
4515     "Generic filesystem");
4516 
4517 #if 1 || defined(COMPAT_PRELITE2)
4518 
4519 static int
4520 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4521 {
4522 	int error;
4523 	struct vfsconf *vfsp;
4524 	struct ovfsconf ovfs;
4525 
4526 	vfsconf_slock();
4527 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4528 		bzero(&ovfs, sizeof(ovfs));
4529 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4530 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4531 		ovfs.vfc_index = vfsp->vfc_typenum;
4532 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4533 		ovfs.vfc_flags = vfsp->vfc_flags;
4534 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4535 		if (error != 0) {
4536 			vfsconf_sunlock();
4537 			return (error);
4538 		}
4539 	}
4540 	vfsconf_sunlock();
4541 	return (0);
4542 }
4543 
4544 #endif /* 1 || COMPAT_PRELITE2 */
4545 #endif /* !BURN_BRIDGES */
4546 
4547 #define KINFO_VNODESLOP		10
4548 #ifdef notyet
4549 /*
4550  * Dump vnode list (via sysctl).
4551  */
4552 /* ARGSUSED */
4553 static int
4554 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4555 {
4556 	struct xvnode *xvn;
4557 	struct mount *mp;
4558 	struct vnode *vp;
4559 	int error, len, n;
4560 
4561 	/*
4562 	 * Stale numvnodes access is not fatal here.
4563 	 */
4564 	req->lock = 0;
4565 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4566 	if (!req->oldptr)
4567 		/* Make an estimate */
4568 		return (SYSCTL_OUT(req, 0, len));
4569 
4570 	error = sysctl_wire_old_buffer(req, 0);
4571 	if (error != 0)
4572 		return (error);
4573 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4574 	n = 0;
4575 	mtx_lock(&mountlist_mtx);
4576 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4577 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4578 			continue;
4579 		MNT_ILOCK(mp);
4580 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4581 			if (n == len)
4582 				break;
4583 			vref(vp);
4584 			xvn[n].xv_size = sizeof *xvn;
4585 			xvn[n].xv_vnode = vp;
4586 			xvn[n].xv_id = 0;	/* XXX compat */
4587 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4588 			XV_COPY(usecount);
4589 			XV_COPY(writecount);
4590 			XV_COPY(holdcnt);
4591 			XV_COPY(mount);
4592 			XV_COPY(numoutput);
4593 			XV_COPY(type);
4594 #undef XV_COPY
4595 			xvn[n].xv_flag = vp->v_vflag;
4596 
4597 			switch (vp->v_type) {
4598 			case VREG:
4599 			case VDIR:
4600 			case VLNK:
4601 				break;
4602 			case VBLK:
4603 			case VCHR:
4604 				if (vp->v_rdev == NULL) {
4605 					vrele(vp);
4606 					continue;
4607 				}
4608 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4609 				break;
4610 			case VSOCK:
4611 				xvn[n].xv_socket = vp->v_socket;
4612 				break;
4613 			case VFIFO:
4614 				xvn[n].xv_fifo = vp->v_fifoinfo;
4615 				break;
4616 			case VNON:
4617 			case VBAD:
4618 			default:
4619 				/* shouldn't happen? */
4620 				vrele(vp);
4621 				continue;
4622 			}
4623 			vrele(vp);
4624 			++n;
4625 		}
4626 		MNT_IUNLOCK(mp);
4627 		mtx_lock(&mountlist_mtx);
4628 		vfs_unbusy(mp);
4629 		if (n == len)
4630 			break;
4631 	}
4632 	mtx_unlock(&mountlist_mtx);
4633 
4634 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4635 	free(xvn, M_TEMP);
4636 	return (error);
4637 }
4638 
4639 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4640     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4641     "");
4642 #endif
4643 
4644 static void
4645 unmount_or_warn(struct mount *mp)
4646 {
4647 	int error;
4648 
4649 	error = dounmount(mp, MNT_FORCE, curthread);
4650 	if (error != 0) {
4651 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4652 		if (error == EBUSY)
4653 			printf("BUSY)\n");
4654 		else
4655 			printf("%d)\n", error);
4656 	}
4657 }
4658 
4659 /*
4660  * Unmount all filesystems. The list is traversed in reverse order
4661  * of mounting to avoid dependencies.
4662  */
4663 void
4664 vfs_unmountall(void)
4665 {
4666 	struct mount *mp, *tmp;
4667 
4668 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4669 
4670 	/*
4671 	 * Since this only runs when rebooting, it is not interlocked.
4672 	 */
4673 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4674 		vfs_ref(mp);
4675 
4676 		/*
4677 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4678 		 * unmount of the latter.
4679 		 */
4680 		if (mp == rootdevmp)
4681 			continue;
4682 
4683 		unmount_or_warn(mp);
4684 	}
4685 
4686 	if (rootdevmp != NULL)
4687 		unmount_or_warn(rootdevmp);
4688 }
4689 
4690 static void
4691 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4692 {
4693 
4694 	ASSERT_VI_LOCKED(vp, __func__);
4695 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4696 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4697 		vdropl(vp);
4698 		return;
4699 	}
4700 	if (vn_lock(vp, lkflags) == 0) {
4701 		VI_LOCK(vp);
4702 		vinactive(vp);
4703 		VOP_UNLOCK(vp);
4704 		vdropl(vp);
4705 		return;
4706 	}
4707 	vdefer_inactive_unlocked(vp);
4708 }
4709 
4710 static int
4711 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4712 {
4713 
4714 	return (vp->v_iflag & VI_DEFINACT);
4715 }
4716 
4717 static void __noinline
4718 vfs_periodic_inactive(struct mount *mp, int flags)
4719 {
4720 	struct vnode *vp, *mvp;
4721 	int lkflags;
4722 
4723 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4724 	if (flags != MNT_WAIT)
4725 		lkflags |= LK_NOWAIT;
4726 
4727 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4728 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4729 			VI_UNLOCK(vp);
4730 			continue;
4731 		}
4732 		vp->v_iflag &= ~VI_DEFINACT;
4733 		vfs_deferred_inactive(vp, lkflags);
4734 	}
4735 }
4736 
4737 static inline bool
4738 vfs_want_msync(struct vnode *vp)
4739 {
4740 	struct vm_object *obj;
4741 
4742 	/*
4743 	 * This test may be performed without any locks held.
4744 	 * We rely on vm_object's type stability.
4745 	 */
4746 	if (vp->v_vflag & VV_NOSYNC)
4747 		return (false);
4748 	obj = vp->v_object;
4749 	return (obj != NULL && vm_object_mightbedirty(obj));
4750 }
4751 
4752 static int
4753 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4754 {
4755 
4756 	if (vp->v_vflag & VV_NOSYNC)
4757 		return (false);
4758 	if (vp->v_iflag & VI_DEFINACT)
4759 		return (true);
4760 	return (vfs_want_msync(vp));
4761 }
4762 
4763 static void __noinline
4764 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4765 {
4766 	struct vnode *vp, *mvp;
4767 	struct vm_object *obj;
4768 	struct thread *td;
4769 	int lkflags, objflags;
4770 	bool seen_defer;
4771 
4772 	td = curthread;
4773 
4774 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4775 	if (flags != MNT_WAIT) {
4776 		lkflags |= LK_NOWAIT;
4777 		objflags = OBJPC_NOSYNC;
4778 	} else {
4779 		objflags = OBJPC_SYNC;
4780 	}
4781 
4782 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4783 		seen_defer = false;
4784 		if (vp->v_iflag & VI_DEFINACT) {
4785 			vp->v_iflag &= ~VI_DEFINACT;
4786 			seen_defer = true;
4787 		}
4788 		if (!vfs_want_msync(vp)) {
4789 			if (seen_defer)
4790 				vfs_deferred_inactive(vp, lkflags);
4791 			else
4792 				VI_UNLOCK(vp);
4793 			continue;
4794 		}
4795 		if (vget(vp, lkflags, td) == 0) {
4796 			obj = vp->v_object;
4797 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4798 				VM_OBJECT_WLOCK(obj);
4799 				vm_object_page_clean(obj, 0, 0, objflags);
4800 				VM_OBJECT_WUNLOCK(obj);
4801 			}
4802 			vput(vp);
4803 			if (seen_defer)
4804 				vdrop(vp);
4805 		} else {
4806 			if (seen_defer)
4807 				vdefer_inactive_unlocked(vp);
4808 		}
4809 	}
4810 }
4811 
4812 void
4813 vfs_periodic(struct mount *mp, int flags)
4814 {
4815 
4816 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4817 
4818 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4819 		vfs_periodic_inactive(mp, flags);
4820 	else
4821 		vfs_periodic_msync_inactive(mp, flags);
4822 }
4823 
4824 static void
4825 destroy_vpollinfo_free(struct vpollinfo *vi)
4826 {
4827 
4828 	knlist_destroy(&vi->vpi_selinfo.si_note);
4829 	mtx_destroy(&vi->vpi_lock);
4830 	uma_zfree(vnodepoll_zone, vi);
4831 }
4832 
4833 static void
4834 destroy_vpollinfo(struct vpollinfo *vi)
4835 {
4836 
4837 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4838 	seldrain(&vi->vpi_selinfo);
4839 	destroy_vpollinfo_free(vi);
4840 }
4841 
4842 /*
4843  * Initialize per-vnode helper structure to hold poll-related state.
4844  */
4845 void
4846 v_addpollinfo(struct vnode *vp)
4847 {
4848 	struct vpollinfo *vi;
4849 
4850 	if (vp->v_pollinfo != NULL)
4851 		return;
4852 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4853 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4854 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4855 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4856 	VI_LOCK(vp);
4857 	if (vp->v_pollinfo != NULL) {
4858 		VI_UNLOCK(vp);
4859 		destroy_vpollinfo_free(vi);
4860 		return;
4861 	}
4862 	vp->v_pollinfo = vi;
4863 	VI_UNLOCK(vp);
4864 }
4865 
4866 /*
4867  * Record a process's interest in events which might happen to
4868  * a vnode.  Because poll uses the historic select-style interface
4869  * internally, this routine serves as both the ``check for any
4870  * pending events'' and the ``record my interest in future events''
4871  * functions.  (These are done together, while the lock is held,
4872  * to avoid race conditions.)
4873  */
4874 int
4875 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4876 {
4877 
4878 	v_addpollinfo(vp);
4879 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4880 	if (vp->v_pollinfo->vpi_revents & events) {
4881 		/*
4882 		 * This leaves events we are not interested
4883 		 * in available for the other process which
4884 		 * which presumably had requested them
4885 		 * (otherwise they would never have been
4886 		 * recorded).
4887 		 */
4888 		events &= vp->v_pollinfo->vpi_revents;
4889 		vp->v_pollinfo->vpi_revents &= ~events;
4890 
4891 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4892 		return (events);
4893 	}
4894 	vp->v_pollinfo->vpi_events |= events;
4895 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4896 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4897 	return (0);
4898 }
4899 
4900 /*
4901  * Routine to create and manage a filesystem syncer vnode.
4902  */
4903 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4904 static int	sync_fsync(struct  vop_fsync_args *);
4905 static int	sync_inactive(struct  vop_inactive_args *);
4906 static int	sync_reclaim(struct  vop_reclaim_args *);
4907 
4908 static struct vop_vector sync_vnodeops = {
4909 	.vop_bypass =	VOP_EOPNOTSUPP,
4910 	.vop_close =	sync_close,		/* close */
4911 	.vop_fsync =	sync_fsync,		/* fsync */
4912 	.vop_inactive =	sync_inactive,	/* inactive */
4913 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4914 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4915 	.vop_lock1 =	vop_stdlock,	/* lock */
4916 	.vop_unlock =	vop_stdunlock,	/* unlock */
4917 	.vop_islocked =	vop_stdislocked,	/* islocked */
4918 };
4919 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4920 
4921 /*
4922  * Create a new filesystem syncer vnode for the specified mount point.
4923  */
4924 void
4925 vfs_allocate_syncvnode(struct mount *mp)
4926 {
4927 	struct vnode *vp;
4928 	struct bufobj *bo;
4929 	static long start, incr, next;
4930 	int error;
4931 
4932 	/* Allocate a new vnode */
4933 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4934 	if (error != 0)
4935 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4936 	vp->v_type = VNON;
4937 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4938 	vp->v_vflag |= VV_FORCEINSMQ;
4939 	error = insmntque(vp, mp);
4940 	if (error != 0)
4941 		panic("vfs_allocate_syncvnode: insmntque() failed");
4942 	vp->v_vflag &= ~VV_FORCEINSMQ;
4943 	VOP_UNLOCK(vp);
4944 	/*
4945 	 * Place the vnode onto the syncer worklist. We attempt to
4946 	 * scatter them about on the list so that they will go off
4947 	 * at evenly distributed times even if all the filesystems
4948 	 * are mounted at once.
4949 	 */
4950 	next += incr;
4951 	if (next == 0 || next > syncer_maxdelay) {
4952 		start /= 2;
4953 		incr /= 2;
4954 		if (start == 0) {
4955 			start = syncer_maxdelay / 2;
4956 			incr = syncer_maxdelay;
4957 		}
4958 		next = start;
4959 	}
4960 	bo = &vp->v_bufobj;
4961 	BO_LOCK(bo);
4962 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4963 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4964 	mtx_lock(&sync_mtx);
4965 	sync_vnode_count++;
4966 	if (mp->mnt_syncer == NULL) {
4967 		mp->mnt_syncer = vp;
4968 		vp = NULL;
4969 	}
4970 	mtx_unlock(&sync_mtx);
4971 	BO_UNLOCK(bo);
4972 	if (vp != NULL) {
4973 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4974 		vgone(vp);
4975 		vput(vp);
4976 	}
4977 }
4978 
4979 void
4980 vfs_deallocate_syncvnode(struct mount *mp)
4981 {
4982 	struct vnode *vp;
4983 
4984 	mtx_lock(&sync_mtx);
4985 	vp = mp->mnt_syncer;
4986 	if (vp != NULL)
4987 		mp->mnt_syncer = NULL;
4988 	mtx_unlock(&sync_mtx);
4989 	if (vp != NULL)
4990 		vrele(vp);
4991 }
4992 
4993 /*
4994  * Do a lazy sync of the filesystem.
4995  */
4996 static int
4997 sync_fsync(struct vop_fsync_args *ap)
4998 {
4999 	struct vnode *syncvp = ap->a_vp;
5000 	struct mount *mp = syncvp->v_mount;
5001 	int error, save;
5002 	struct bufobj *bo;
5003 
5004 	/*
5005 	 * We only need to do something if this is a lazy evaluation.
5006 	 */
5007 	if (ap->a_waitfor != MNT_LAZY)
5008 		return (0);
5009 
5010 	/*
5011 	 * Move ourselves to the back of the sync list.
5012 	 */
5013 	bo = &syncvp->v_bufobj;
5014 	BO_LOCK(bo);
5015 	vn_syncer_add_to_worklist(bo, syncdelay);
5016 	BO_UNLOCK(bo);
5017 
5018 	/*
5019 	 * Walk the list of vnodes pushing all that are dirty and
5020 	 * not already on the sync list.
5021 	 */
5022 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5023 		return (0);
5024 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
5025 		vfs_unbusy(mp);
5026 		return (0);
5027 	}
5028 	save = curthread_pflags_set(TDP_SYNCIO);
5029 	/*
5030 	 * The filesystem at hand may be idle with free vnodes stored in the
5031 	 * batch.  Return them instead of letting them stay there indefinitely.
5032 	 */
5033 	vfs_periodic(mp, MNT_NOWAIT);
5034 	error = VFS_SYNC(mp, MNT_LAZY);
5035 	curthread_pflags_restore(save);
5036 	vn_finished_write(mp);
5037 	vfs_unbusy(mp);
5038 	return (error);
5039 }
5040 
5041 /*
5042  * The syncer vnode is no referenced.
5043  */
5044 static int
5045 sync_inactive(struct vop_inactive_args *ap)
5046 {
5047 
5048 	vgone(ap->a_vp);
5049 	return (0);
5050 }
5051 
5052 /*
5053  * The syncer vnode is no longer needed and is being decommissioned.
5054  *
5055  * Modifications to the worklist must be protected by sync_mtx.
5056  */
5057 static int
5058 sync_reclaim(struct vop_reclaim_args *ap)
5059 {
5060 	struct vnode *vp = ap->a_vp;
5061 	struct bufobj *bo;
5062 
5063 	bo = &vp->v_bufobj;
5064 	BO_LOCK(bo);
5065 	mtx_lock(&sync_mtx);
5066 	if (vp->v_mount->mnt_syncer == vp)
5067 		vp->v_mount->mnt_syncer = NULL;
5068 	if (bo->bo_flag & BO_ONWORKLST) {
5069 		LIST_REMOVE(bo, bo_synclist);
5070 		syncer_worklist_len--;
5071 		sync_vnode_count--;
5072 		bo->bo_flag &= ~BO_ONWORKLST;
5073 	}
5074 	mtx_unlock(&sync_mtx);
5075 	BO_UNLOCK(bo);
5076 
5077 	return (0);
5078 }
5079 
5080 int
5081 vn_need_pageq_flush(struct vnode *vp)
5082 {
5083 	struct vm_object *obj;
5084 	int need;
5085 
5086 	MPASS(mtx_owned(VI_MTX(vp)));
5087 	need = 0;
5088 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5089 	    vm_object_mightbedirty(obj))
5090 		need = 1;
5091 	return (need);
5092 }
5093 
5094 /*
5095  * Check if vnode represents a disk device
5096  */
5097 int
5098 vn_isdisk(struct vnode *vp, int *errp)
5099 {
5100 	int error;
5101 
5102 	if (vp->v_type != VCHR) {
5103 		error = ENOTBLK;
5104 		goto out;
5105 	}
5106 	error = 0;
5107 	dev_lock();
5108 	if (vp->v_rdev == NULL)
5109 		error = ENXIO;
5110 	else if (vp->v_rdev->si_devsw == NULL)
5111 		error = ENXIO;
5112 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5113 		error = ENOTBLK;
5114 	dev_unlock();
5115 out:
5116 	if (errp != NULL)
5117 		*errp = error;
5118 	return (error == 0);
5119 }
5120 
5121 /*
5122  * Common filesystem object access control check routine.  Accepts a
5123  * vnode's type, "mode", uid and gid, requested access mode, credentials,
5124  * and optional call-by-reference privused argument allowing vaccess()
5125  * to indicate to the caller whether privilege was used to satisfy the
5126  * request (obsoleted).  Returns 0 on success, or an errno on failure.
5127  */
5128 int
5129 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5130     accmode_t accmode, struct ucred *cred, int *privused)
5131 {
5132 	accmode_t dac_granted;
5133 	accmode_t priv_granted;
5134 
5135 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5136 	    ("invalid bit in accmode"));
5137 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5138 	    ("VAPPEND without VWRITE"));
5139 
5140 	/*
5141 	 * Look for a normal, non-privileged way to access the file/directory
5142 	 * as requested.  If it exists, go with that.
5143 	 */
5144 
5145 	if (privused != NULL)
5146 		*privused = 0;
5147 
5148 	dac_granted = 0;
5149 
5150 	/* Check the owner. */
5151 	if (cred->cr_uid == file_uid) {
5152 		dac_granted |= VADMIN;
5153 		if (file_mode & S_IXUSR)
5154 			dac_granted |= VEXEC;
5155 		if (file_mode & S_IRUSR)
5156 			dac_granted |= VREAD;
5157 		if (file_mode & S_IWUSR)
5158 			dac_granted |= (VWRITE | VAPPEND);
5159 
5160 		if ((accmode & dac_granted) == accmode)
5161 			return (0);
5162 
5163 		goto privcheck;
5164 	}
5165 
5166 	/* Otherwise, check the groups (first match) */
5167 	if (groupmember(file_gid, cred)) {
5168 		if (file_mode & S_IXGRP)
5169 			dac_granted |= VEXEC;
5170 		if (file_mode & S_IRGRP)
5171 			dac_granted |= VREAD;
5172 		if (file_mode & S_IWGRP)
5173 			dac_granted |= (VWRITE | VAPPEND);
5174 
5175 		if ((accmode & dac_granted) == accmode)
5176 			return (0);
5177 
5178 		goto privcheck;
5179 	}
5180 
5181 	/* Otherwise, check everyone else. */
5182 	if (file_mode & S_IXOTH)
5183 		dac_granted |= VEXEC;
5184 	if (file_mode & S_IROTH)
5185 		dac_granted |= VREAD;
5186 	if (file_mode & S_IWOTH)
5187 		dac_granted |= (VWRITE | VAPPEND);
5188 	if ((accmode & dac_granted) == accmode)
5189 		return (0);
5190 
5191 privcheck:
5192 	/*
5193 	 * Build a privilege mask to determine if the set of privileges
5194 	 * satisfies the requirements when combined with the granted mask
5195 	 * from above.  For each privilege, if the privilege is required,
5196 	 * bitwise or the request type onto the priv_granted mask.
5197 	 */
5198 	priv_granted = 0;
5199 
5200 	if (type == VDIR) {
5201 		/*
5202 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5203 		 * requests, instead of PRIV_VFS_EXEC.
5204 		 */
5205 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5206 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5207 			priv_granted |= VEXEC;
5208 	} else {
5209 		/*
5210 		 * Ensure that at least one execute bit is on. Otherwise,
5211 		 * a privileged user will always succeed, and we don't want
5212 		 * this to happen unless the file really is executable.
5213 		 */
5214 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5215 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5216 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5217 			priv_granted |= VEXEC;
5218 	}
5219 
5220 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5221 	    !priv_check_cred(cred, PRIV_VFS_READ))
5222 		priv_granted |= VREAD;
5223 
5224 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5225 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5226 		priv_granted |= (VWRITE | VAPPEND);
5227 
5228 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5229 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5230 		priv_granted |= VADMIN;
5231 
5232 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5233 		/* XXX audit: privilege used */
5234 		if (privused != NULL)
5235 			*privused = 1;
5236 		return (0);
5237 	}
5238 
5239 	return ((accmode & VADMIN) ? EPERM : EACCES);
5240 }
5241 
5242 /*
5243  * Credential check based on process requesting service, and per-attribute
5244  * permissions.
5245  */
5246 int
5247 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5248     struct thread *td, accmode_t accmode)
5249 {
5250 
5251 	/*
5252 	 * Kernel-invoked always succeeds.
5253 	 */
5254 	if (cred == NOCRED)
5255 		return (0);
5256 
5257 	/*
5258 	 * Do not allow privileged processes in jail to directly manipulate
5259 	 * system attributes.
5260 	 */
5261 	switch (attrnamespace) {
5262 	case EXTATTR_NAMESPACE_SYSTEM:
5263 		/* Potentially should be: return (EPERM); */
5264 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5265 	case EXTATTR_NAMESPACE_USER:
5266 		return (VOP_ACCESS(vp, accmode, cred, td));
5267 	default:
5268 		return (EPERM);
5269 	}
5270 }
5271 
5272 #ifdef DEBUG_VFS_LOCKS
5273 /*
5274  * This only exists to suppress warnings from unlocked specfs accesses.  It is
5275  * no longer ok to have an unlocked VFS.
5276  */
5277 #define	IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL ||		\
5278 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
5279 
5280 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5281 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5282     "Drop into debugger on lock violation");
5283 
5284 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5285 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5286     0, "Check for interlock across VOPs");
5287 
5288 int vfs_badlock_print = 1;	/* Print lock violations. */
5289 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5290     0, "Print lock violations");
5291 
5292 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5293 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5294     0, "Print vnode details on lock violations");
5295 
5296 #ifdef KDB
5297 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5298 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5299     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5300 #endif
5301 
5302 static void
5303 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5304 {
5305 
5306 #ifdef KDB
5307 	if (vfs_badlock_backtrace)
5308 		kdb_backtrace();
5309 #endif
5310 	if (vfs_badlock_vnode)
5311 		vn_printf(vp, "vnode ");
5312 	if (vfs_badlock_print)
5313 		printf("%s: %p %s\n", str, (void *)vp, msg);
5314 	if (vfs_badlock_ddb)
5315 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5316 }
5317 
5318 void
5319 assert_vi_locked(struct vnode *vp, const char *str)
5320 {
5321 
5322 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5323 		vfs_badlock("interlock is not locked but should be", str, vp);
5324 }
5325 
5326 void
5327 assert_vi_unlocked(struct vnode *vp, const char *str)
5328 {
5329 
5330 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5331 		vfs_badlock("interlock is locked but should not be", str, vp);
5332 }
5333 
5334 void
5335 assert_vop_locked(struct vnode *vp, const char *str)
5336 {
5337 	int locked;
5338 
5339 	if (!IGNORE_LOCK(vp)) {
5340 		locked = VOP_ISLOCKED(vp);
5341 		if (locked == 0 || locked == LK_EXCLOTHER)
5342 			vfs_badlock("is not locked but should be", str, vp);
5343 	}
5344 }
5345 
5346 void
5347 assert_vop_unlocked(struct vnode *vp, const char *str)
5348 {
5349 
5350 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5351 		vfs_badlock("is locked but should not be", str, vp);
5352 }
5353 
5354 void
5355 assert_vop_elocked(struct vnode *vp, const char *str)
5356 {
5357 
5358 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5359 		vfs_badlock("is not exclusive locked but should be", str, vp);
5360 }
5361 #endif /* DEBUG_VFS_LOCKS */
5362 
5363 void
5364 vop_rename_fail(struct vop_rename_args *ap)
5365 {
5366 
5367 	if (ap->a_tvp != NULL)
5368 		vput(ap->a_tvp);
5369 	if (ap->a_tdvp == ap->a_tvp)
5370 		vrele(ap->a_tdvp);
5371 	else
5372 		vput(ap->a_tdvp);
5373 	vrele(ap->a_fdvp);
5374 	vrele(ap->a_fvp);
5375 }
5376 
5377 void
5378 vop_rename_pre(void *ap)
5379 {
5380 	struct vop_rename_args *a = ap;
5381 
5382 #ifdef DEBUG_VFS_LOCKS
5383 	if (a->a_tvp)
5384 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5385 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5386 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5387 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5388 
5389 	/* Check the source (from). */
5390 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5391 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5392 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5393 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5394 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5395 
5396 	/* Check the target. */
5397 	if (a->a_tvp)
5398 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5399 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5400 #endif
5401 	if (a->a_tdvp != a->a_fdvp)
5402 		vhold(a->a_fdvp);
5403 	if (a->a_tvp != a->a_fvp)
5404 		vhold(a->a_fvp);
5405 	vhold(a->a_tdvp);
5406 	if (a->a_tvp)
5407 		vhold(a->a_tvp);
5408 }
5409 
5410 #ifdef DEBUG_VFS_LOCKS
5411 void
5412 vop_strategy_pre(void *ap)
5413 {
5414 	struct vop_strategy_args *a;
5415 	struct buf *bp;
5416 
5417 	a = ap;
5418 	bp = a->a_bp;
5419 
5420 	/*
5421 	 * Cluster ops lock their component buffers but not the IO container.
5422 	 */
5423 	if ((bp->b_flags & B_CLUSTER) != 0)
5424 		return;
5425 
5426 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5427 		if (vfs_badlock_print)
5428 			printf(
5429 			    "VOP_STRATEGY: bp is not locked but should be\n");
5430 		if (vfs_badlock_ddb)
5431 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5432 	}
5433 }
5434 
5435 void
5436 vop_lock_pre(void *ap)
5437 {
5438 	struct vop_lock1_args *a = ap;
5439 
5440 	if ((a->a_flags & LK_INTERLOCK) == 0)
5441 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5442 	else
5443 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5444 }
5445 
5446 void
5447 vop_lock_post(void *ap, int rc)
5448 {
5449 	struct vop_lock1_args *a = ap;
5450 
5451 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5452 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5453 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5454 }
5455 
5456 void
5457 vop_unlock_pre(void *ap)
5458 {
5459 	struct vop_unlock_args *a = ap;
5460 
5461 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5462 }
5463 
5464 void
5465 vop_need_inactive_pre(void *ap)
5466 {
5467 	struct vop_need_inactive_args *a = ap;
5468 
5469 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5470 }
5471 
5472 void
5473 vop_need_inactive_post(void *ap, int rc)
5474 {
5475 	struct vop_need_inactive_args *a = ap;
5476 
5477 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5478 }
5479 #endif
5480 
5481 void
5482 vop_create_post(void *ap, int rc)
5483 {
5484 	struct vop_create_args *a = ap;
5485 
5486 	if (!rc)
5487 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5488 }
5489 
5490 void
5491 vop_deleteextattr_post(void *ap, int rc)
5492 {
5493 	struct vop_deleteextattr_args *a = ap;
5494 
5495 	if (!rc)
5496 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5497 }
5498 
5499 void
5500 vop_link_post(void *ap, int rc)
5501 {
5502 	struct vop_link_args *a = ap;
5503 
5504 	if (!rc) {
5505 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
5506 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
5507 	}
5508 }
5509 
5510 void
5511 vop_mkdir_post(void *ap, int rc)
5512 {
5513 	struct vop_mkdir_args *a = ap;
5514 
5515 	if (!rc)
5516 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5517 }
5518 
5519 void
5520 vop_mknod_post(void *ap, int rc)
5521 {
5522 	struct vop_mknod_args *a = ap;
5523 
5524 	if (!rc)
5525 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5526 }
5527 
5528 void
5529 vop_reclaim_post(void *ap, int rc)
5530 {
5531 	struct vop_reclaim_args *a = ap;
5532 
5533 	if (!rc)
5534 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
5535 }
5536 
5537 void
5538 vop_remove_post(void *ap, int rc)
5539 {
5540 	struct vop_remove_args *a = ap;
5541 
5542 	if (!rc) {
5543 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5544 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5545 	}
5546 }
5547 
5548 void
5549 vop_rename_post(void *ap, int rc)
5550 {
5551 	struct vop_rename_args *a = ap;
5552 	long hint;
5553 
5554 	if (!rc) {
5555 		hint = NOTE_WRITE;
5556 		if (a->a_fdvp == a->a_tdvp) {
5557 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5558 				hint |= NOTE_LINK;
5559 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5560 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5561 		} else {
5562 			hint |= NOTE_EXTEND;
5563 			if (a->a_fvp->v_type == VDIR)
5564 				hint |= NOTE_LINK;
5565 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5566 
5567 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5568 			    a->a_tvp->v_type == VDIR)
5569 				hint &= ~NOTE_LINK;
5570 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5571 		}
5572 
5573 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5574 		if (a->a_tvp)
5575 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5576 	}
5577 	if (a->a_tdvp != a->a_fdvp)
5578 		vdrop(a->a_fdvp);
5579 	if (a->a_tvp != a->a_fvp)
5580 		vdrop(a->a_fvp);
5581 	vdrop(a->a_tdvp);
5582 	if (a->a_tvp)
5583 		vdrop(a->a_tvp);
5584 }
5585 
5586 void
5587 vop_rmdir_post(void *ap, int rc)
5588 {
5589 	struct vop_rmdir_args *a = ap;
5590 
5591 	if (!rc) {
5592 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5593 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5594 	}
5595 }
5596 
5597 void
5598 vop_setattr_post(void *ap, int rc)
5599 {
5600 	struct vop_setattr_args *a = ap;
5601 
5602 	if (!rc)
5603 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5604 }
5605 
5606 void
5607 vop_setextattr_post(void *ap, int rc)
5608 {
5609 	struct vop_setextattr_args *a = ap;
5610 
5611 	if (!rc)
5612 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5613 }
5614 
5615 void
5616 vop_symlink_post(void *ap, int rc)
5617 {
5618 	struct vop_symlink_args *a = ap;
5619 
5620 	if (!rc)
5621 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5622 }
5623 
5624 void
5625 vop_open_post(void *ap, int rc)
5626 {
5627 	struct vop_open_args *a = ap;
5628 
5629 	if (!rc)
5630 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5631 }
5632 
5633 void
5634 vop_close_post(void *ap, int rc)
5635 {
5636 	struct vop_close_args *a = ap;
5637 
5638 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
5639 	    !VN_IS_DOOMED(a->a_vp))) {
5640 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
5641 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
5642 	}
5643 }
5644 
5645 void
5646 vop_read_post(void *ap, int rc)
5647 {
5648 	struct vop_read_args *a = ap;
5649 
5650 	if (!rc)
5651 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5652 }
5653 
5654 void
5655 vop_readdir_post(void *ap, int rc)
5656 {
5657 	struct vop_readdir_args *a = ap;
5658 
5659 	if (!rc)
5660 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5661 }
5662 
5663 static struct knlist fs_knlist;
5664 
5665 static void
5666 vfs_event_init(void *arg)
5667 {
5668 	knlist_init_mtx(&fs_knlist, NULL);
5669 }
5670 /* XXX - correct order? */
5671 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
5672 
5673 void
5674 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
5675 {
5676 
5677 	KNOTE_UNLOCKED(&fs_knlist, event);
5678 }
5679 
5680 static int	filt_fsattach(struct knote *kn);
5681 static void	filt_fsdetach(struct knote *kn);
5682 static int	filt_fsevent(struct knote *kn, long hint);
5683 
5684 struct filterops fs_filtops = {
5685 	.f_isfd = 0,
5686 	.f_attach = filt_fsattach,
5687 	.f_detach = filt_fsdetach,
5688 	.f_event = filt_fsevent
5689 };
5690 
5691 static int
5692 filt_fsattach(struct knote *kn)
5693 {
5694 
5695 	kn->kn_flags |= EV_CLEAR;
5696 	knlist_add(&fs_knlist, kn, 0);
5697 	return (0);
5698 }
5699 
5700 static void
5701 filt_fsdetach(struct knote *kn)
5702 {
5703 
5704 	knlist_remove(&fs_knlist, kn, 0);
5705 }
5706 
5707 static int
5708 filt_fsevent(struct knote *kn, long hint)
5709 {
5710 
5711 	kn->kn_fflags |= hint;
5712 	return (kn->kn_fflags != 0);
5713 }
5714 
5715 static int
5716 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
5717 {
5718 	struct vfsidctl vc;
5719 	int error;
5720 	struct mount *mp;
5721 
5722 	error = SYSCTL_IN(req, &vc, sizeof(vc));
5723 	if (error)
5724 		return (error);
5725 	if (vc.vc_vers != VFS_CTL_VERS1)
5726 		return (EINVAL);
5727 	mp = vfs_getvfs(&vc.vc_fsid);
5728 	if (mp == NULL)
5729 		return (ENOENT);
5730 	/* ensure that a specific sysctl goes to the right filesystem. */
5731 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
5732 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
5733 		vfs_rel(mp);
5734 		return (EINVAL);
5735 	}
5736 	VCTLTOREQ(&vc, req);
5737 	error = VFS_SYSCTL(mp, vc.vc_op, req);
5738 	vfs_rel(mp);
5739 	return (error);
5740 }
5741 
5742 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
5743     NULL, 0, sysctl_vfs_ctl, "",
5744     "Sysctl by fsid");
5745 
5746 /*
5747  * Function to initialize a va_filerev field sensibly.
5748  * XXX: Wouldn't a random number make a lot more sense ??
5749  */
5750 u_quad_t
5751 init_va_filerev(void)
5752 {
5753 	struct bintime bt;
5754 
5755 	getbinuptime(&bt);
5756 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5757 }
5758 
5759 static int	filt_vfsread(struct knote *kn, long hint);
5760 static int	filt_vfswrite(struct knote *kn, long hint);
5761 static int	filt_vfsvnode(struct knote *kn, long hint);
5762 static void	filt_vfsdetach(struct knote *kn);
5763 static struct filterops vfsread_filtops = {
5764 	.f_isfd = 1,
5765 	.f_detach = filt_vfsdetach,
5766 	.f_event = filt_vfsread
5767 };
5768 static struct filterops vfswrite_filtops = {
5769 	.f_isfd = 1,
5770 	.f_detach = filt_vfsdetach,
5771 	.f_event = filt_vfswrite
5772 };
5773 static struct filterops vfsvnode_filtops = {
5774 	.f_isfd = 1,
5775 	.f_detach = filt_vfsdetach,
5776 	.f_event = filt_vfsvnode
5777 };
5778 
5779 static void
5780 vfs_knllock(void *arg)
5781 {
5782 	struct vnode *vp = arg;
5783 
5784 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5785 }
5786 
5787 static void
5788 vfs_knlunlock(void *arg)
5789 {
5790 	struct vnode *vp = arg;
5791 
5792 	VOP_UNLOCK(vp);
5793 }
5794 
5795 static void
5796 vfs_knl_assert_locked(void *arg)
5797 {
5798 #ifdef DEBUG_VFS_LOCKS
5799 	struct vnode *vp = arg;
5800 
5801 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5802 #endif
5803 }
5804 
5805 static void
5806 vfs_knl_assert_unlocked(void *arg)
5807 {
5808 #ifdef DEBUG_VFS_LOCKS
5809 	struct vnode *vp = arg;
5810 
5811 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5812 #endif
5813 }
5814 
5815 int
5816 vfs_kqfilter(struct vop_kqfilter_args *ap)
5817 {
5818 	struct vnode *vp = ap->a_vp;
5819 	struct knote *kn = ap->a_kn;
5820 	struct knlist *knl;
5821 
5822 	switch (kn->kn_filter) {
5823 	case EVFILT_READ:
5824 		kn->kn_fop = &vfsread_filtops;
5825 		break;
5826 	case EVFILT_WRITE:
5827 		kn->kn_fop = &vfswrite_filtops;
5828 		break;
5829 	case EVFILT_VNODE:
5830 		kn->kn_fop = &vfsvnode_filtops;
5831 		break;
5832 	default:
5833 		return (EINVAL);
5834 	}
5835 
5836 	kn->kn_hook = (caddr_t)vp;
5837 
5838 	v_addpollinfo(vp);
5839 	if (vp->v_pollinfo == NULL)
5840 		return (ENOMEM);
5841 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5842 	vhold(vp);
5843 	knlist_add(knl, kn, 0);
5844 
5845 	return (0);
5846 }
5847 
5848 /*
5849  * Detach knote from vnode
5850  */
5851 static void
5852 filt_vfsdetach(struct knote *kn)
5853 {
5854 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5855 
5856 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5857 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5858 	vdrop(vp);
5859 }
5860 
5861 /*ARGSUSED*/
5862 static int
5863 filt_vfsread(struct knote *kn, long hint)
5864 {
5865 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5866 	struct vattr va;
5867 	int res;
5868 
5869 	/*
5870 	 * filesystem is gone, so set the EOF flag and schedule
5871 	 * the knote for deletion.
5872 	 */
5873 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5874 		VI_LOCK(vp);
5875 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5876 		VI_UNLOCK(vp);
5877 		return (1);
5878 	}
5879 
5880 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5881 		return (0);
5882 
5883 	VI_LOCK(vp);
5884 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5885 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5886 	VI_UNLOCK(vp);
5887 	return (res);
5888 }
5889 
5890 /*ARGSUSED*/
5891 static int
5892 filt_vfswrite(struct knote *kn, long hint)
5893 {
5894 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5895 
5896 	VI_LOCK(vp);
5897 
5898 	/*
5899 	 * filesystem is gone, so set the EOF flag and schedule
5900 	 * the knote for deletion.
5901 	 */
5902 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5903 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5904 
5905 	kn->kn_data = 0;
5906 	VI_UNLOCK(vp);
5907 	return (1);
5908 }
5909 
5910 static int
5911 filt_vfsvnode(struct knote *kn, long hint)
5912 {
5913 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5914 	int res;
5915 
5916 	VI_LOCK(vp);
5917 	if (kn->kn_sfflags & hint)
5918 		kn->kn_fflags |= hint;
5919 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5920 		kn->kn_flags |= EV_EOF;
5921 		VI_UNLOCK(vp);
5922 		return (1);
5923 	}
5924 	res = (kn->kn_fflags != 0);
5925 	VI_UNLOCK(vp);
5926 	return (res);
5927 }
5928 
5929 /*
5930  * Returns whether the directory is empty or not.
5931  * If it is empty, the return value is 0; otherwise
5932  * the return value is an error value (which may
5933  * be ENOTEMPTY).
5934  */
5935 int
5936 vfs_emptydir(struct vnode *vp)
5937 {
5938 	struct uio uio;
5939 	struct iovec iov;
5940 	struct dirent *dirent, *dp, *endp;
5941 	int error, eof;
5942 
5943 	error = 0;
5944 	eof = 0;
5945 
5946 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
5947 
5948 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
5949 	iov.iov_base = dirent;
5950 	iov.iov_len = sizeof(struct dirent);
5951 
5952 	uio.uio_iov = &iov;
5953 	uio.uio_iovcnt = 1;
5954 	uio.uio_offset = 0;
5955 	uio.uio_resid = sizeof(struct dirent);
5956 	uio.uio_segflg = UIO_SYSSPACE;
5957 	uio.uio_rw = UIO_READ;
5958 	uio.uio_td = curthread;
5959 
5960 	while (eof == 0 && error == 0) {
5961 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
5962 		    NULL, NULL);
5963 		if (error != 0)
5964 			break;
5965 		endp = (void *)((uint8_t *)dirent +
5966 		    sizeof(struct dirent) - uio.uio_resid);
5967 		for (dp = dirent; dp < endp;
5968 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
5969 			if (dp->d_type == DT_WHT)
5970 				continue;
5971 			if (dp->d_namlen == 0)
5972 				continue;
5973 			if (dp->d_type != DT_DIR &&
5974 			    dp->d_type != DT_UNKNOWN) {
5975 				error = ENOTEMPTY;
5976 				break;
5977 			}
5978 			if (dp->d_namlen > 2) {
5979 				error = ENOTEMPTY;
5980 				break;
5981 			}
5982 			if (dp->d_namlen == 1 &&
5983 			    dp->d_name[0] != '.') {
5984 				error = ENOTEMPTY;
5985 				break;
5986 			}
5987 			if (dp->d_namlen == 2 &&
5988 			    dp->d_name[1] != '.') {
5989 				error = ENOTEMPTY;
5990 				break;
5991 			}
5992 			uio.uio_resid = sizeof(struct dirent);
5993 		}
5994 	}
5995 	free(dirent, M_TEMP);
5996 	return (error);
5997 }
5998 
5999 int
6000 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6001 {
6002 	int error;
6003 
6004 	if (dp->d_reclen > ap->a_uio->uio_resid)
6005 		return (ENAMETOOLONG);
6006 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6007 	if (error) {
6008 		if (ap->a_ncookies != NULL) {
6009 			if (ap->a_cookies != NULL)
6010 				free(ap->a_cookies, M_TEMP);
6011 			ap->a_cookies = NULL;
6012 			*ap->a_ncookies = 0;
6013 		}
6014 		return (error);
6015 	}
6016 	if (ap->a_ncookies == NULL)
6017 		return (0);
6018 
6019 	KASSERT(ap->a_cookies,
6020 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6021 
6022 	*ap->a_cookies = realloc(*ap->a_cookies,
6023 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
6024 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6025 	*ap->a_ncookies += 1;
6026 	return (0);
6027 }
6028 
6029 /*
6030  * The purpose of this routine is to remove granularity from accmode_t,
6031  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6032  * VADMIN and VAPPEND.
6033  *
6034  * If it returns 0, the caller is supposed to continue with the usual
6035  * access checks using 'accmode' as modified by this routine.  If it
6036  * returns nonzero value, the caller is supposed to return that value
6037  * as errno.
6038  *
6039  * Note that after this routine runs, accmode may be zero.
6040  */
6041 int
6042 vfs_unixify_accmode(accmode_t *accmode)
6043 {
6044 	/*
6045 	 * There is no way to specify explicit "deny" rule using
6046 	 * file mode or POSIX.1e ACLs.
6047 	 */
6048 	if (*accmode & VEXPLICIT_DENY) {
6049 		*accmode = 0;
6050 		return (0);
6051 	}
6052 
6053 	/*
6054 	 * None of these can be translated into usual access bits.
6055 	 * Also, the common case for NFSv4 ACLs is to not contain
6056 	 * either of these bits. Caller should check for VWRITE
6057 	 * on the containing directory instead.
6058 	 */
6059 	if (*accmode & (VDELETE_CHILD | VDELETE))
6060 		return (EPERM);
6061 
6062 	if (*accmode & VADMIN_PERMS) {
6063 		*accmode &= ~VADMIN_PERMS;
6064 		*accmode |= VADMIN;
6065 	}
6066 
6067 	/*
6068 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6069 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6070 	 */
6071 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6072 
6073 	return (0);
6074 }
6075 
6076 /*
6077  * Clear out a doomed vnode (if any) and replace it with a new one as long
6078  * as the fs is not being unmounted. Return the root vnode to the caller.
6079  */
6080 static int __noinline
6081 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6082 {
6083 	struct vnode *vp;
6084 	int error;
6085 
6086 restart:
6087 	if (mp->mnt_rootvnode != NULL) {
6088 		MNT_ILOCK(mp);
6089 		vp = mp->mnt_rootvnode;
6090 		if (vp != NULL) {
6091 			if (!VN_IS_DOOMED(vp)) {
6092 				vrefact(vp);
6093 				MNT_IUNLOCK(mp);
6094 				error = vn_lock(vp, flags);
6095 				if (error == 0) {
6096 					*vpp = vp;
6097 					return (0);
6098 				}
6099 				vrele(vp);
6100 				goto restart;
6101 			}
6102 			/*
6103 			 * Clear the old one.
6104 			 */
6105 			mp->mnt_rootvnode = NULL;
6106 		}
6107 		MNT_IUNLOCK(mp);
6108 		if (vp != NULL) {
6109 			vfs_op_barrier_wait(mp);
6110 			vrele(vp);
6111 		}
6112 	}
6113 	error = VFS_CACHEDROOT(mp, flags, vpp);
6114 	if (error != 0)
6115 		return (error);
6116 	if (mp->mnt_vfs_ops == 0) {
6117 		MNT_ILOCK(mp);
6118 		if (mp->mnt_vfs_ops != 0) {
6119 			MNT_IUNLOCK(mp);
6120 			return (0);
6121 		}
6122 		if (mp->mnt_rootvnode == NULL) {
6123 			vrefact(*vpp);
6124 			mp->mnt_rootvnode = *vpp;
6125 		} else {
6126 			if (mp->mnt_rootvnode != *vpp) {
6127 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6128 					panic("%s: mismatch between vnode returned "
6129 					    " by VFS_CACHEDROOT and the one cached "
6130 					    " (%p != %p)",
6131 					    __func__, *vpp, mp->mnt_rootvnode);
6132 				}
6133 			}
6134 		}
6135 		MNT_IUNLOCK(mp);
6136 	}
6137 	return (0);
6138 }
6139 
6140 int
6141 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6142 {
6143 	struct vnode *vp;
6144 	int error;
6145 
6146 	if (!vfs_op_thread_enter(mp))
6147 		return (vfs_cache_root_fallback(mp, flags, vpp));
6148 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6149 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6150 		vfs_op_thread_exit(mp);
6151 		return (vfs_cache_root_fallback(mp, flags, vpp));
6152 	}
6153 	vrefact(vp);
6154 	vfs_op_thread_exit(mp);
6155 	error = vn_lock(vp, flags);
6156 	if (error != 0) {
6157 		vrele(vp);
6158 		return (vfs_cache_root_fallback(mp, flags, vpp));
6159 	}
6160 	*vpp = vp;
6161 	return (0);
6162 }
6163 
6164 struct vnode *
6165 vfs_cache_root_clear(struct mount *mp)
6166 {
6167 	struct vnode *vp;
6168 
6169 	/*
6170 	 * ops > 0 guarantees there is nobody who can see this vnode
6171 	 */
6172 	MPASS(mp->mnt_vfs_ops > 0);
6173 	vp = mp->mnt_rootvnode;
6174 	mp->mnt_rootvnode = NULL;
6175 	return (vp);
6176 }
6177 
6178 void
6179 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6180 {
6181 
6182 	MPASS(mp->mnt_vfs_ops > 0);
6183 	vrefact(vp);
6184 	mp->mnt_rootvnode = vp;
6185 }
6186 
6187 /*
6188  * These are helper functions for filesystems to traverse all
6189  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6190  *
6191  * This interface replaces MNT_VNODE_FOREACH.
6192  */
6193 
6194 struct vnode *
6195 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6196 {
6197 	struct vnode *vp;
6198 
6199 	if (should_yield())
6200 		kern_yield(PRI_USER);
6201 	MNT_ILOCK(mp);
6202 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6203 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6204 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6205 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6206 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6207 			continue;
6208 		VI_LOCK(vp);
6209 		if (VN_IS_DOOMED(vp)) {
6210 			VI_UNLOCK(vp);
6211 			continue;
6212 		}
6213 		break;
6214 	}
6215 	if (vp == NULL) {
6216 		__mnt_vnode_markerfree_all(mvp, mp);
6217 		/* MNT_IUNLOCK(mp); -- done in above function */
6218 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6219 		return (NULL);
6220 	}
6221 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6222 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6223 	MNT_IUNLOCK(mp);
6224 	return (vp);
6225 }
6226 
6227 struct vnode *
6228 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6229 {
6230 	struct vnode *vp;
6231 
6232 	*mvp = vn_alloc_marker(mp);
6233 	MNT_ILOCK(mp);
6234 	MNT_REF(mp);
6235 
6236 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6237 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6238 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6239 			continue;
6240 		VI_LOCK(vp);
6241 		if (VN_IS_DOOMED(vp)) {
6242 			VI_UNLOCK(vp);
6243 			continue;
6244 		}
6245 		break;
6246 	}
6247 	if (vp == NULL) {
6248 		MNT_REL(mp);
6249 		MNT_IUNLOCK(mp);
6250 		vn_free_marker(*mvp);
6251 		*mvp = NULL;
6252 		return (NULL);
6253 	}
6254 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6255 	MNT_IUNLOCK(mp);
6256 	return (vp);
6257 }
6258 
6259 void
6260 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6261 {
6262 
6263 	if (*mvp == NULL) {
6264 		MNT_IUNLOCK(mp);
6265 		return;
6266 	}
6267 
6268 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6269 
6270 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6271 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6272 	MNT_REL(mp);
6273 	MNT_IUNLOCK(mp);
6274 	vn_free_marker(*mvp);
6275 	*mvp = NULL;
6276 }
6277 
6278 /*
6279  * These are helper functions for filesystems to traverse their
6280  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6281  */
6282 static void
6283 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6284 {
6285 
6286 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6287 
6288 	MNT_ILOCK(mp);
6289 	MNT_REL(mp);
6290 	MNT_IUNLOCK(mp);
6291 	vn_free_marker(*mvp);
6292 	*mvp = NULL;
6293 }
6294 
6295 /*
6296  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6297  * conventional lock order during mnt_vnode_next_lazy iteration.
6298  *
6299  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6300  * The list lock is dropped and reacquired.  On success, both locks are held.
6301  * On failure, the mount vnode list lock is held but the vnode interlock is
6302  * not, and the procedure may have yielded.
6303  */
6304 static bool
6305 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6306     struct vnode *vp)
6307 {
6308 
6309 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6310 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6311 	    ("%s: bad marker", __func__));
6312 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6313 	    ("%s: inappropriate vnode", __func__));
6314 	ASSERT_VI_UNLOCKED(vp, __func__);
6315 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6316 
6317 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6318 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6319 
6320 	/*
6321 	 * Note we may be racing against vdrop which transitioned the hold
6322 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6323 	 * if we are the only user after we get the interlock we will just
6324 	 * vdrop.
6325 	 */
6326 	vhold(vp);
6327 	mtx_unlock(&mp->mnt_listmtx);
6328 	VI_LOCK(vp);
6329 	if (VN_IS_DOOMED(vp)) {
6330 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6331 		goto out_lost;
6332 	}
6333 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6334 	/*
6335 	 * There is nothing to do if we are the last user.
6336 	 */
6337 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6338 		goto out_lost;
6339 	mtx_lock(&mp->mnt_listmtx);
6340 	return (true);
6341 out_lost:
6342 	vdropl(vp);
6343 	maybe_yield();
6344 	mtx_lock(&mp->mnt_listmtx);
6345 	return (false);
6346 }
6347 
6348 static struct vnode *
6349 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6350     void *cbarg)
6351 {
6352 	struct vnode *vp;
6353 
6354 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6355 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6356 restart:
6357 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6358 	while (vp != NULL) {
6359 		if (vp->v_type == VMARKER) {
6360 			vp = TAILQ_NEXT(vp, v_lazylist);
6361 			continue;
6362 		}
6363 		/*
6364 		 * See if we want to process the vnode. Note we may encounter a
6365 		 * long string of vnodes we don't care about and hog the list
6366 		 * as a result. Check for it and requeue the marker.
6367 		 */
6368 		VNPASS(!VN_IS_DOOMED(vp), vp);
6369 		if (!cb(vp, cbarg)) {
6370 			if (!should_yield()) {
6371 				vp = TAILQ_NEXT(vp, v_lazylist);
6372 				continue;
6373 			}
6374 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6375 			    v_lazylist);
6376 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6377 			    v_lazylist);
6378 			mtx_unlock(&mp->mnt_listmtx);
6379 			kern_yield(PRI_USER);
6380 			mtx_lock(&mp->mnt_listmtx);
6381 			goto restart;
6382 		}
6383 		/*
6384 		 * Try-lock because this is the wrong lock order.
6385 		 */
6386 		if (!VI_TRYLOCK(vp) &&
6387 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6388 			goto restart;
6389 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6390 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6391 		    ("alien vnode on the lazy list %p %p", vp, mp));
6392 		VNPASS(vp->v_mount == mp, vp);
6393 		VNPASS(!VN_IS_DOOMED(vp), vp);
6394 		break;
6395 	}
6396 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6397 
6398 	/* Check if we are done */
6399 	if (vp == NULL) {
6400 		mtx_unlock(&mp->mnt_listmtx);
6401 		mnt_vnode_markerfree_lazy(mvp, mp);
6402 		return (NULL);
6403 	}
6404 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6405 	mtx_unlock(&mp->mnt_listmtx);
6406 	ASSERT_VI_LOCKED(vp, "lazy iter");
6407 	return (vp);
6408 }
6409 
6410 struct vnode *
6411 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6412     void *cbarg)
6413 {
6414 
6415 	if (should_yield())
6416 		kern_yield(PRI_USER);
6417 	mtx_lock(&mp->mnt_listmtx);
6418 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6419 }
6420 
6421 struct vnode *
6422 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6423     void *cbarg)
6424 {
6425 	struct vnode *vp;
6426 
6427 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6428 		return (NULL);
6429 
6430 	*mvp = vn_alloc_marker(mp);
6431 	MNT_ILOCK(mp);
6432 	MNT_REF(mp);
6433 	MNT_IUNLOCK(mp);
6434 
6435 	mtx_lock(&mp->mnt_listmtx);
6436 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6437 	if (vp == NULL) {
6438 		mtx_unlock(&mp->mnt_listmtx);
6439 		mnt_vnode_markerfree_lazy(mvp, mp);
6440 		return (NULL);
6441 	}
6442 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6443 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6444 }
6445 
6446 void
6447 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6448 {
6449 
6450 	if (*mvp == NULL)
6451 		return;
6452 
6453 	mtx_lock(&mp->mnt_listmtx);
6454 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6455 	mtx_unlock(&mp->mnt_listmtx);
6456 	mnt_vnode_markerfree_lazy(mvp, mp);
6457 }
6458 
6459 int
6460 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6461 {
6462 
6463 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6464 		cnp->cn_flags &= ~NOEXECCHECK;
6465 		return (0);
6466 	}
6467 
6468 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
6469 }
6470