xref: /freebsd/sys/kern/vfs_subr.c (revision 27f4eda3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/uma.h>
98 
99 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
100 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
101 #endif
102 
103 #ifdef DDB
104 #include <ddb/ddb.h>
105 #endif
106 
107 static void	delmntque(struct vnode *vp);
108 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
109 		    int slpflag, int slptimeo);
110 static void	syncer_shutdown(void *arg, int howto);
111 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
112 static void	v_init_counters(struct vnode *);
113 static void	vn_seqc_init(struct vnode *);
114 static void	vn_seqc_write_end_free(struct vnode *vp);
115 static void	vgonel(struct vnode *);
116 static bool	vhold_recycle_free(struct vnode *);
117 static void	vdropl_recycle(struct vnode *vp);
118 static void	vdrop_recycle(struct vnode *vp);
119 static void	vfs_knllock(void *arg);
120 static void	vfs_knlunlock(void *arg);
121 static void	vfs_knl_assert_lock(void *arg, int what);
122 static void	destroy_vpollinfo(struct vpollinfo *vi);
123 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
124 		    daddr_t startlbn, daddr_t endlbn);
125 static void	vnlru_recalc(void);
126 
127 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
128     "vnode configuration and statistics");
129 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
130     "vnode configuration");
131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "vnode statistics");
133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
134     "vnode recycling");
135 
136 /*
137  * Number of vnodes in existence.  Increased whenever getnewvnode()
138  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
139  */
140 static u_long __exclusive_cache_line numvnodes;
141 
142 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
143     "Number of vnodes in existence (legacy)");
144 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence");
146 
147 static counter_u64_t vnodes_created;
148 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
149     "Number of vnodes created by getnewvnode (legacy)");
150 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode");
152 
153 /*
154  * Conversion tables for conversion from vnode types to inode formats
155  * and back.
156  */
157 __enum_uint8(vtype) iftovt_tab[16] = {
158 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
159 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
160 };
161 int vttoif_tab[10] = {
162 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
163 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
164 };
165 
166 /*
167  * List of allocates vnodes in the system.
168  */
169 static TAILQ_HEAD(freelst, vnode) vnode_list;
170 static struct vnode *vnode_list_free_marker;
171 static struct vnode *vnode_list_reclaim_marker;
172 
173 /*
174  * "Free" vnode target.  Free vnodes are rarely completely free, but are
175  * just ones that are cheap to recycle.  Usually they are for files which
176  * have been stat'd but not read; these usually have inode and namecache
177  * data attached to them.  This target is the preferred minimum size of a
178  * sub-cache consisting mostly of such files. The system balances the size
179  * of this sub-cache with its complement to try to prevent either from
180  * thrashing while the other is relatively inactive.  The targets express
181  * a preference for the best balance.
182  *
183  * "Above" this target there are 2 further targets (watermarks) related
184  * to recyling of free vnodes.  In the best-operating case, the cache is
185  * exactly full, the free list has size between vlowat and vhiwat above the
186  * free target, and recycling from it and normal use maintains this state.
187  * Sometimes the free list is below vlowat or even empty, but this state
188  * is even better for immediate use provided the cache is not full.
189  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
190  * ones) to reach one of these states.  The watermarks are currently hard-
191  * coded as 4% and 9% of the available space higher.  These and the default
192  * of 25% for wantfreevnodes are too large if the memory size is large.
193  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
194  * whenever vnlru_proc() becomes active.
195  */
196 static long wantfreevnodes;
197 static long __exclusive_cache_line freevnodes;
198 static long freevnodes_old;
199 
200 static u_long recycles_count;
201 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
202     "Number of vnodes recycled to meet vnode cache targets (legacy)");
203 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
204     &recycles_count, 0,
205     "Number of vnodes recycled to meet vnode cache targets");
206 
207 static u_long recycles_free_count;
208 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209     &recycles_free_count, 0,
210     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
211 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
212     &recycles_free_count, 0,
213     "Number of free vnodes recycled to meet vnode cache targets");
214 
215 static counter_u64_t direct_recycles_free_count;
216 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
217     &direct_recycles_free_count,
218     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
219 
220 static counter_u64_t vnode_skipped_requeues;
221 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
222     "Number of times LRU requeue was skipped due to lock contention");
223 
224 static u_long deferred_inact;
225 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
226     &deferred_inact, 0, "Number of times inactive processing was deferred");
227 
228 /* To keep more than one thread at a time from running vfs_getnewfsid */
229 static struct mtx mntid_mtx;
230 
231 /*
232  * Lock for any access to the following:
233  *	vnode_list
234  *	numvnodes
235  *	freevnodes
236  */
237 static struct mtx __exclusive_cache_line vnode_list_mtx;
238 
239 /* Publicly exported FS */
240 struct nfs_public nfs_pub;
241 
242 static uma_zone_t buf_trie_zone;
243 static smr_t buf_trie_smr;
244 
245 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
246 static uma_zone_t vnode_zone;
247 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
248 
249 __read_frequently smr_t vfs_smr;
250 
251 /*
252  * The workitem queue.
253  *
254  * It is useful to delay writes of file data and filesystem metadata
255  * for tens of seconds so that quickly created and deleted files need
256  * not waste disk bandwidth being created and removed. To realize this,
257  * we append vnodes to a "workitem" queue. When running with a soft
258  * updates implementation, most pending metadata dependencies should
259  * not wait for more than a few seconds. Thus, mounted on block devices
260  * are delayed only about a half the time that file data is delayed.
261  * Similarly, directory updates are more critical, so are only delayed
262  * about a third the time that file data is delayed. Thus, there are
263  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
264  * one each second (driven off the filesystem syncer process). The
265  * syncer_delayno variable indicates the next queue that is to be processed.
266  * Items that need to be processed soon are placed in this queue:
267  *
268  *	syncer_workitem_pending[syncer_delayno]
269  *
270  * A delay of fifteen seconds is done by placing the request fifteen
271  * entries later in the queue:
272  *
273  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
274  *
275  */
276 static int syncer_delayno;
277 static long syncer_mask;
278 LIST_HEAD(synclist, bufobj);
279 static struct synclist *syncer_workitem_pending;
280 /*
281  * The sync_mtx protects:
282  *	bo->bo_synclist
283  *	sync_vnode_count
284  *	syncer_delayno
285  *	syncer_state
286  *	syncer_workitem_pending
287  *	syncer_worklist_len
288  *	rushjob
289  */
290 static struct mtx sync_mtx;
291 static struct cv sync_wakeup;
292 
293 #define SYNCER_MAXDELAY		32
294 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
295 static int syncdelay = 30;		/* max time to delay syncing data */
296 static int filedelay = 30;		/* time to delay syncing files */
297 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
298     "Time to delay syncing files (in seconds)");
299 static int dirdelay = 29;		/* time to delay syncing directories */
300 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
301     "Time to delay syncing directories (in seconds)");
302 static int metadelay = 28;		/* time to delay syncing metadata */
303 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
304     "Time to delay syncing metadata (in seconds)");
305 static int rushjob;		/* number of slots to run ASAP */
306 static int stat_rush_requests;	/* number of times I/O speeded up */
307 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
308     "Number of times I/O speeded up (rush requests)");
309 
310 #define	VDBATCH_SIZE 8
311 struct vdbatch {
312 	u_int index;
313 	struct mtx lock;
314 	struct vnode *tab[VDBATCH_SIZE];
315 };
316 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
317 
318 static void	vdbatch_dequeue(struct vnode *vp);
319 
320 /*
321  * When shutting down the syncer, run it at four times normal speed.
322  */
323 #define SYNCER_SHUTDOWN_SPEEDUP		4
324 static int sync_vnode_count;
325 static int syncer_worklist_len;
326 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
327     syncer_state;
328 
329 /* Target for maximum number of vnodes. */
330 u_long desiredvnodes;
331 static u_long gapvnodes;		/* gap between wanted and desired */
332 static u_long vhiwat;		/* enough extras after expansion */
333 static u_long vlowat;		/* minimal extras before expansion */
334 static bool vstir;		/* nonzero to stir non-free vnodes */
335 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
336 
337 static u_long vnlru_read_freevnodes(void);
338 
339 /*
340  * Note that no attempt is made to sanitize these parameters.
341  */
342 static int
343 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
344 {
345 	u_long val;
346 	int error;
347 
348 	val = desiredvnodes;
349 	error = sysctl_handle_long(oidp, &val, 0, req);
350 	if (error != 0 || req->newptr == NULL)
351 		return (error);
352 
353 	if (val == desiredvnodes)
354 		return (0);
355 	mtx_lock(&vnode_list_mtx);
356 	desiredvnodes = val;
357 	wantfreevnodes = desiredvnodes / 4;
358 	vnlru_recalc();
359 	mtx_unlock(&vnode_list_mtx);
360 	/*
361 	 * XXX There is no protection against multiple threads changing
362 	 * desiredvnodes at the same time. Locking above only helps vnlru and
363 	 * getnewvnode.
364 	 */
365 	vfs_hash_changesize(desiredvnodes);
366 	cache_changesize(desiredvnodes);
367 	return (0);
368 }
369 
370 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
371     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
372     "LU", "Target for maximum number of vnodes (legacy)");
373 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
374     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
375     "LU", "Target for maximum number of vnodes");
376 
377 static int
378 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
379 {
380 	u_long rfreevnodes;
381 
382 	rfreevnodes = vnlru_read_freevnodes();
383 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
384 }
385 
386 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
387     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
388     "LU", "Number of \"free\" vnodes (legacy)");
389 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
390     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
391     "LU", "Number of \"free\" vnodes");
392 
393 static int
394 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
395 {
396 	u_long val;
397 	int error;
398 
399 	val = wantfreevnodes;
400 	error = sysctl_handle_long(oidp, &val, 0, req);
401 	if (error != 0 || req->newptr == NULL)
402 		return (error);
403 
404 	if (val == wantfreevnodes)
405 		return (0);
406 	mtx_lock(&vnode_list_mtx);
407 	wantfreevnodes = val;
408 	vnlru_recalc();
409 	mtx_unlock(&vnode_list_mtx);
410 	return (0);
411 }
412 
413 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
414     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
415     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
416 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
417     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
418     "LU", "Target for minimum number of \"free\" vnodes");
419 
420 static int vnlru_nowhere;
421 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
422     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
423 
424 static int
425 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
426 {
427 	struct vnode *vp;
428 	struct nameidata nd;
429 	char *buf;
430 	unsigned long ndflags;
431 	int error;
432 
433 	if (req->newptr == NULL)
434 		return (EINVAL);
435 	if (req->newlen >= PATH_MAX)
436 		return (E2BIG);
437 
438 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
439 	error = SYSCTL_IN(req, buf, req->newlen);
440 	if (error != 0)
441 		goto out;
442 
443 	buf[req->newlen] = '\0';
444 
445 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
446 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
447 	if ((error = namei(&nd)) != 0)
448 		goto out;
449 	vp = nd.ni_vp;
450 
451 	if (VN_IS_DOOMED(vp)) {
452 		/*
453 		 * This vnode is being recycled.  Return != 0 to let the caller
454 		 * know that the sysctl had no effect.  Return EAGAIN because a
455 		 * subsequent call will likely succeed (since namei will create
456 		 * a new vnode if necessary)
457 		 */
458 		error = EAGAIN;
459 		goto putvnode;
460 	}
461 
462 	vgone(vp);
463 putvnode:
464 	vput(vp);
465 	NDFREE_PNBUF(&nd);
466 out:
467 	free(buf, M_TEMP);
468 	return (error);
469 }
470 
471 static int
472 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
473 {
474 	struct thread *td = curthread;
475 	struct vnode *vp;
476 	struct file *fp;
477 	int error;
478 	int fd;
479 
480 	if (req->newptr == NULL)
481 		return (EBADF);
482 
483         error = sysctl_handle_int(oidp, &fd, 0, req);
484         if (error != 0)
485                 return (error);
486 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
487 	if (error != 0)
488 		return (error);
489 	vp = fp->f_vnode;
490 
491 	error = vn_lock(vp, LK_EXCLUSIVE);
492 	if (error != 0)
493 		goto drop;
494 
495 	vgone(vp);
496 	VOP_UNLOCK(vp);
497 drop:
498 	fdrop(fp, td);
499 	return (error);
500 }
501 
502 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
503     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
504     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
505 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
506     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
507     sysctl_ftry_reclaim_vnode, "I",
508     "Try to reclaim a vnode by its file descriptor");
509 
510 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
511 #define vnsz2log 8
512 #ifndef DEBUG_LOCKS
513 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
514     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
515     "vnsz2log needs to be updated");
516 #endif
517 
518 /*
519  * Support for the bufobj clean & dirty pctrie.
520  */
521 static void *
522 buf_trie_alloc(struct pctrie *ptree)
523 {
524 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
525 }
526 
527 static void
528 buf_trie_free(struct pctrie *ptree, void *node)
529 {
530 	uma_zfree_smr(buf_trie_zone, node);
531 }
532 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
533     buf_trie_smr);
534 
535 /*
536  * Initialize the vnode management data structures.
537  *
538  * Reevaluate the following cap on the number of vnodes after the physical
539  * memory size exceeds 512GB.  In the limit, as the physical memory size
540  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
541  */
542 #ifndef	MAXVNODES_MAX
543 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
544 #endif
545 
546 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
547 
548 static struct vnode *
549 vn_alloc_marker(struct mount *mp)
550 {
551 	struct vnode *vp;
552 
553 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
554 	vp->v_type = VMARKER;
555 	vp->v_mount = mp;
556 
557 	return (vp);
558 }
559 
560 static void
561 vn_free_marker(struct vnode *vp)
562 {
563 
564 	MPASS(vp->v_type == VMARKER);
565 	free(vp, M_VNODE_MARKER);
566 }
567 
568 #ifdef KASAN
569 static int
570 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
571 {
572 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
573 	return (0);
574 }
575 
576 static void
577 vnode_dtor(void *mem, int size, void *arg __unused)
578 {
579 	size_t end1, end2, off1, off2;
580 
581 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
582 	    offsetof(struct vnode, v_dbatchcpu),
583 	    "KASAN marks require updating");
584 
585 	off1 = offsetof(struct vnode, v_vnodelist);
586 	off2 = offsetof(struct vnode, v_dbatchcpu);
587 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
588 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
589 
590 	/*
591 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
592 	 * after the vnode has been freed.  Try to get some KASAN coverage by
593 	 * marking everything except those two fields as invalid.  Because
594 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
595 	 * the same 8-byte aligned word must also be marked valid.
596 	 */
597 
598 	/* Handle the area from the start until v_vnodelist... */
599 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
600 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
601 
602 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
603 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
604 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
605 	if (off2 > off1)
606 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
607 		    off2 - off1, KASAN_UMA_FREED);
608 
609 	/* ... and finally the area from v_dbatchcpu to the end. */
610 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
611 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
612 	    KASAN_UMA_FREED);
613 }
614 #endif /* KASAN */
615 
616 /*
617  * Initialize a vnode as it first enters the zone.
618  */
619 static int
620 vnode_init(void *mem, int size, int flags)
621 {
622 	struct vnode *vp;
623 
624 	vp = mem;
625 	bzero(vp, size);
626 	/*
627 	 * Setup locks.
628 	 */
629 	vp->v_vnlock = &vp->v_lock;
630 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
631 	/*
632 	 * By default, don't allow shared locks unless filesystems opt-in.
633 	 */
634 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
635 	    LK_NOSHARE | LK_IS_VNODE);
636 	/*
637 	 * Initialize bufobj.
638 	 */
639 	bufobj_init(&vp->v_bufobj, vp);
640 	/*
641 	 * Initialize namecache.
642 	 */
643 	cache_vnode_init(vp);
644 	/*
645 	 * Initialize rangelocks.
646 	 */
647 	rangelock_init(&vp->v_rl);
648 
649 	vp->v_dbatchcpu = NOCPU;
650 
651 	vp->v_state = VSTATE_DEAD;
652 
653 	/*
654 	 * Check vhold_recycle_free for an explanation.
655 	 */
656 	vp->v_holdcnt = VHOLD_NO_SMR;
657 	vp->v_type = VNON;
658 	mtx_lock(&vnode_list_mtx);
659 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
660 	mtx_unlock(&vnode_list_mtx);
661 	return (0);
662 }
663 
664 /*
665  * Free a vnode when it is cleared from the zone.
666  */
667 static void
668 vnode_fini(void *mem, int size)
669 {
670 	struct vnode *vp;
671 	struct bufobj *bo;
672 
673 	vp = mem;
674 	vdbatch_dequeue(vp);
675 	mtx_lock(&vnode_list_mtx);
676 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
677 	mtx_unlock(&vnode_list_mtx);
678 	rangelock_destroy(&vp->v_rl);
679 	lockdestroy(vp->v_vnlock);
680 	mtx_destroy(&vp->v_interlock);
681 	bo = &vp->v_bufobj;
682 	rw_destroy(BO_LOCKPTR(bo));
683 
684 	kasan_mark(mem, size, size, 0);
685 }
686 
687 /*
688  * Provide the size of NFS nclnode and NFS fh for calculation of the
689  * vnode memory consumption.  The size is specified directly to
690  * eliminate dependency on NFS-private header.
691  *
692  * Other filesystems may use bigger or smaller (like UFS and ZFS)
693  * private inode data, but the NFS-based estimation is ample enough.
694  * Still, we care about differences in the size between 64- and 32-bit
695  * platforms.
696  *
697  * Namecache structure size is heuristically
698  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
699  */
700 #ifdef _LP64
701 #define	NFS_NCLNODE_SZ	(528 + 64)
702 #define	NC_SZ		148
703 #else
704 #define	NFS_NCLNODE_SZ	(360 + 32)
705 #define	NC_SZ		92
706 #endif
707 
708 static void
709 vntblinit(void *dummy __unused)
710 {
711 	struct vdbatch *vd;
712 	uma_ctor ctor;
713 	uma_dtor dtor;
714 	int cpu, physvnodes, virtvnodes;
715 
716 	/*
717 	 * Desiredvnodes is a function of the physical memory size and the
718 	 * kernel's heap size.  Generally speaking, it scales with the
719 	 * physical memory size.  The ratio of desiredvnodes to the physical
720 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
721 	 * Thereafter, the
722 	 * marginal ratio of desiredvnodes to the physical memory size is
723 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
724 	 * size.  The memory required by desiredvnodes vnodes and vm objects
725 	 * must not exceed 1/10th of the kernel's heap size.
726 	 */
727 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
728 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
729 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
730 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
731 	desiredvnodes = min(physvnodes, virtvnodes);
732 	if (desiredvnodes > MAXVNODES_MAX) {
733 		if (bootverbose)
734 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
735 			    desiredvnodes, MAXVNODES_MAX);
736 		desiredvnodes = MAXVNODES_MAX;
737 	}
738 	wantfreevnodes = desiredvnodes / 4;
739 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
740 	TAILQ_INIT(&vnode_list);
741 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
742 	/*
743 	 * The lock is taken to appease WITNESS.
744 	 */
745 	mtx_lock(&vnode_list_mtx);
746 	vnlru_recalc();
747 	mtx_unlock(&vnode_list_mtx);
748 	vnode_list_free_marker = vn_alloc_marker(NULL);
749 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
750 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
751 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
752 
753 #ifdef KASAN
754 	ctor = vnode_ctor;
755 	dtor = vnode_dtor;
756 #else
757 	ctor = NULL;
758 	dtor = NULL;
759 #endif
760 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
761 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
762 	uma_zone_set_smr(vnode_zone, vfs_smr);
763 
764 	/*
765 	 * Preallocate enough nodes to support one-per buf so that
766 	 * we can not fail an insert.  reassignbuf() callers can not
767 	 * tolerate the insertion failure.
768 	 */
769 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
770 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
771 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
772 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
773 	uma_prealloc(buf_trie_zone, nbuf);
774 
775 	vnodes_created = counter_u64_alloc(M_WAITOK);
776 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
777 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
778 
779 	/*
780 	 * Initialize the filesystem syncer.
781 	 */
782 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
783 	    &syncer_mask);
784 	syncer_maxdelay = syncer_mask + 1;
785 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
786 	cv_init(&sync_wakeup, "syncer");
787 
788 	CPU_FOREACH(cpu) {
789 		vd = DPCPU_ID_PTR((cpu), vd);
790 		bzero(vd, sizeof(*vd));
791 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
792 	}
793 }
794 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
795 
796 /*
797  * Mark a mount point as busy. Used to synchronize access and to delay
798  * unmounting. Eventually, mountlist_mtx is not released on failure.
799  *
800  * vfs_busy() is a custom lock, it can block the caller.
801  * vfs_busy() only sleeps if the unmount is active on the mount point.
802  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
803  * vnode belonging to mp.
804  *
805  * Lookup uses vfs_busy() to traverse mount points.
806  * root fs			var fs
807  * / vnode lock		A	/ vnode lock (/var)		D
808  * /var vnode lock	B	/log vnode lock(/var/log)	E
809  * vfs_busy lock	C	vfs_busy lock			F
810  *
811  * Within each file system, the lock order is C->A->B and F->D->E.
812  *
813  * When traversing across mounts, the system follows that lock order:
814  *
815  *        C->A->B
816  *              |
817  *              +->F->D->E
818  *
819  * The lookup() process for namei("/var") illustrates the process:
820  *  1. VOP_LOOKUP() obtains B while A is held
821  *  2. vfs_busy() obtains a shared lock on F while A and B are held
822  *  3. vput() releases lock on B
823  *  4. vput() releases lock on A
824  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
825  *  6. vfs_unbusy() releases shared lock on F
826  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
827  *     Attempt to lock A (instead of vp_crossmp) while D is held would
828  *     violate the global order, causing deadlocks.
829  *
830  * dounmount() locks B while F is drained.  Note that for stacked
831  * filesystems, D and B in the example above may be the same lock,
832  * which introdues potential lock order reversal deadlock between
833  * dounmount() and step 5 above.  These filesystems may avoid the LOR
834  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
835  * remain held until after step 5.
836  */
837 int
838 vfs_busy(struct mount *mp, int flags)
839 {
840 	struct mount_pcpu *mpcpu;
841 
842 	MPASS((flags & ~MBF_MASK) == 0);
843 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
844 
845 	if (vfs_op_thread_enter(mp, mpcpu)) {
846 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
847 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
848 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
849 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
850 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
851 		vfs_op_thread_exit(mp, mpcpu);
852 		if (flags & MBF_MNTLSTLOCK)
853 			mtx_unlock(&mountlist_mtx);
854 		return (0);
855 	}
856 
857 	MNT_ILOCK(mp);
858 	vfs_assert_mount_counters(mp);
859 	MNT_REF(mp);
860 	/*
861 	 * If mount point is currently being unmounted, sleep until the
862 	 * mount point fate is decided.  If thread doing the unmounting fails,
863 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
864 	 * that this mount point has survived the unmount attempt and vfs_busy
865 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
866 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
867 	 * about to be really destroyed.  vfs_busy needs to release its
868 	 * reference on the mount point in this case and return with ENOENT,
869 	 * telling the caller the mount it tried to busy is no longer valid.
870 	 */
871 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
872 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
873 		    ("%s: non-empty upper mount list with pending unmount",
874 		    __func__));
875 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
876 			MNT_REL(mp);
877 			MNT_IUNLOCK(mp);
878 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
879 			    __func__);
880 			return (ENOENT);
881 		}
882 		if (flags & MBF_MNTLSTLOCK)
883 			mtx_unlock(&mountlist_mtx);
884 		mp->mnt_kern_flag |= MNTK_MWAIT;
885 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
886 		if (flags & MBF_MNTLSTLOCK)
887 			mtx_lock(&mountlist_mtx);
888 		MNT_ILOCK(mp);
889 	}
890 	if (flags & MBF_MNTLSTLOCK)
891 		mtx_unlock(&mountlist_mtx);
892 	mp->mnt_lockref++;
893 	MNT_IUNLOCK(mp);
894 	return (0);
895 }
896 
897 /*
898  * Free a busy filesystem.
899  */
900 void
901 vfs_unbusy(struct mount *mp)
902 {
903 	struct mount_pcpu *mpcpu;
904 	int c;
905 
906 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
907 
908 	if (vfs_op_thread_enter(mp, mpcpu)) {
909 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
910 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
911 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
912 		vfs_op_thread_exit(mp, mpcpu);
913 		return;
914 	}
915 
916 	MNT_ILOCK(mp);
917 	vfs_assert_mount_counters(mp);
918 	MNT_REL(mp);
919 	c = --mp->mnt_lockref;
920 	if (mp->mnt_vfs_ops == 0) {
921 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
922 		MNT_IUNLOCK(mp);
923 		return;
924 	}
925 	if (c < 0)
926 		vfs_dump_mount_counters(mp);
927 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
928 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
929 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
930 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
931 		wakeup(&mp->mnt_lockref);
932 	}
933 	MNT_IUNLOCK(mp);
934 }
935 
936 /*
937  * Lookup a mount point by filesystem identifier.
938  */
939 struct mount *
940 vfs_getvfs(fsid_t *fsid)
941 {
942 	struct mount *mp;
943 
944 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
945 	mtx_lock(&mountlist_mtx);
946 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
947 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
948 			vfs_ref(mp);
949 			mtx_unlock(&mountlist_mtx);
950 			return (mp);
951 		}
952 	}
953 	mtx_unlock(&mountlist_mtx);
954 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
955 	return ((struct mount *) 0);
956 }
957 
958 /*
959  * Lookup a mount point by filesystem identifier, busying it before
960  * returning.
961  *
962  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
963  * cache for popular filesystem identifiers.  The cache is lockess, using
964  * the fact that struct mount's are never freed.  In worst case we may
965  * get pointer to unmounted or even different filesystem, so we have to
966  * check what we got, and go slow way if so.
967  */
968 struct mount *
969 vfs_busyfs(fsid_t *fsid)
970 {
971 #define	FSID_CACHE_SIZE	256
972 	typedef struct mount * volatile vmp_t;
973 	static vmp_t cache[FSID_CACHE_SIZE];
974 	struct mount *mp;
975 	int error;
976 	uint32_t hash;
977 
978 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
979 	hash = fsid->val[0] ^ fsid->val[1];
980 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
981 	mp = cache[hash];
982 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
983 		goto slow;
984 	if (vfs_busy(mp, 0) != 0) {
985 		cache[hash] = NULL;
986 		goto slow;
987 	}
988 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
989 		return (mp);
990 	else
991 	    vfs_unbusy(mp);
992 
993 slow:
994 	mtx_lock(&mountlist_mtx);
995 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
996 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
997 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
998 			if (error) {
999 				cache[hash] = NULL;
1000 				mtx_unlock(&mountlist_mtx);
1001 				return (NULL);
1002 			}
1003 			cache[hash] = mp;
1004 			return (mp);
1005 		}
1006 	}
1007 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1008 	mtx_unlock(&mountlist_mtx);
1009 	return ((struct mount *) 0);
1010 }
1011 
1012 /*
1013  * Check if a user can access privileged mount options.
1014  */
1015 int
1016 vfs_suser(struct mount *mp, struct thread *td)
1017 {
1018 	int error;
1019 
1020 	if (jailed(td->td_ucred)) {
1021 		/*
1022 		 * If the jail of the calling thread lacks permission for
1023 		 * this type of file system, deny immediately.
1024 		 */
1025 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1026 			return (EPERM);
1027 
1028 		/*
1029 		 * If the file system was mounted outside the jail of the
1030 		 * calling thread, deny immediately.
1031 		 */
1032 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1033 			return (EPERM);
1034 	}
1035 
1036 	/*
1037 	 * If file system supports delegated administration, we don't check
1038 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1039 	 * by the file system itself.
1040 	 * If this is not the user that did original mount, we check for
1041 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1042 	 */
1043 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1044 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1045 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1046 			return (error);
1047 	}
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1053  * will be used to create fake device numbers for stat().  Also try (but
1054  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1055  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1056  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1057  *
1058  * Keep in mind that several mounts may be running in parallel.  Starting
1059  * the search one past where the previous search terminated is both a
1060  * micro-optimization and a defense against returning the same fsid to
1061  * different mounts.
1062  */
1063 void
1064 vfs_getnewfsid(struct mount *mp)
1065 {
1066 	static uint16_t mntid_base;
1067 	struct mount *nmp;
1068 	fsid_t tfsid;
1069 	int mtype;
1070 
1071 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1072 	mtx_lock(&mntid_mtx);
1073 	mtype = mp->mnt_vfc->vfc_typenum;
1074 	tfsid.val[1] = mtype;
1075 	mtype = (mtype & 0xFF) << 24;
1076 	for (;;) {
1077 		tfsid.val[0] = makedev(255,
1078 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1079 		mntid_base++;
1080 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1081 			break;
1082 		vfs_rel(nmp);
1083 	}
1084 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1085 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1086 	mtx_unlock(&mntid_mtx);
1087 }
1088 
1089 /*
1090  * Knob to control the precision of file timestamps:
1091  *
1092  *   0 = seconds only; nanoseconds zeroed.
1093  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1094  *   2 = seconds and nanoseconds, truncated to microseconds.
1095  * >=3 = seconds and nanoseconds, maximum precision.
1096  */
1097 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1098 
1099 static int timestamp_precision = TSP_USEC;
1100 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1101     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1102     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1103     "3+: sec + ns (max. precision))");
1104 
1105 /*
1106  * Get a current timestamp.
1107  */
1108 void
1109 vfs_timestamp(struct timespec *tsp)
1110 {
1111 	struct timeval tv;
1112 
1113 	switch (timestamp_precision) {
1114 	case TSP_SEC:
1115 		tsp->tv_sec = time_second;
1116 		tsp->tv_nsec = 0;
1117 		break;
1118 	case TSP_HZ:
1119 		getnanotime(tsp);
1120 		break;
1121 	case TSP_USEC:
1122 		microtime(&tv);
1123 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1124 		break;
1125 	case TSP_NSEC:
1126 	default:
1127 		nanotime(tsp);
1128 		break;
1129 	}
1130 }
1131 
1132 /*
1133  * Set vnode attributes to VNOVAL
1134  */
1135 void
1136 vattr_null(struct vattr *vap)
1137 {
1138 
1139 	vap->va_type = VNON;
1140 	vap->va_size = VNOVAL;
1141 	vap->va_bytes = VNOVAL;
1142 	vap->va_mode = VNOVAL;
1143 	vap->va_nlink = VNOVAL;
1144 	vap->va_uid = VNOVAL;
1145 	vap->va_gid = VNOVAL;
1146 	vap->va_fsid = VNOVAL;
1147 	vap->va_fileid = VNOVAL;
1148 	vap->va_blocksize = VNOVAL;
1149 	vap->va_rdev = VNOVAL;
1150 	vap->va_atime.tv_sec = VNOVAL;
1151 	vap->va_atime.tv_nsec = VNOVAL;
1152 	vap->va_mtime.tv_sec = VNOVAL;
1153 	vap->va_mtime.tv_nsec = VNOVAL;
1154 	vap->va_ctime.tv_sec = VNOVAL;
1155 	vap->va_ctime.tv_nsec = VNOVAL;
1156 	vap->va_birthtime.tv_sec = VNOVAL;
1157 	vap->va_birthtime.tv_nsec = VNOVAL;
1158 	vap->va_flags = VNOVAL;
1159 	vap->va_gen = VNOVAL;
1160 	vap->va_vaflags = 0;
1161 }
1162 
1163 /*
1164  * Try to reduce the total number of vnodes.
1165  *
1166  * This routine (and its user) are buggy in at least the following ways:
1167  * - all parameters were picked years ago when RAM sizes were significantly
1168  *   smaller
1169  * - it can pick vnodes based on pages used by the vm object, but filesystems
1170  *   like ZFS don't use it making the pick broken
1171  * - since ZFS has its own aging policy it gets partially combated by this one
1172  * - a dedicated method should be provided for filesystems to let them decide
1173  *   whether the vnode should be recycled
1174  *
1175  * This routine is called when we have too many vnodes.  It attempts
1176  * to free <count> vnodes and will potentially free vnodes that still
1177  * have VM backing store (VM backing store is typically the cause
1178  * of a vnode blowout so we want to do this).  Therefore, this operation
1179  * is not considered cheap.
1180  *
1181  * A number of conditions may prevent a vnode from being reclaimed.
1182  * the buffer cache may have references on the vnode, a directory
1183  * vnode may still have references due to the namei cache representing
1184  * underlying files, or the vnode may be in active use.   It is not
1185  * desirable to reuse such vnodes.  These conditions may cause the
1186  * number of vnodes to reach some minimum value regardless of what
1187  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1188  *
1189  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1190  * 			 entries if this argument is strue
1191  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1192  *			 pages.
1193  * @param target	 How many vnodes to reclaim.
1194  * @return		 The number of vnodes that were reclaimed.
1195  */
1196 static int
1197 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1198 {
1199 	struct vnode *vp, *mvp;
1200 	struct mount *mp;
1201 	struct vm_object *object;
1202 	u_long done;
1203 	bool retried;
1204 
1205 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1206 
1207 	retried = false;
1208 	done = 0;
1209 
1210 	mvp = vnode_list_reclaim_marker;
1211 restart:
1212 	vp = mvp;
1213 	while (done < target) {
1214 		vp = TAILQ_NEXT(vp, v_vnodelist);
1215 		if (__predict_false(vp == NULL))
1216 			break;
1217 
1218 		if (__predict_false(vp->v_type == VMARKER))
1219 			continue;
1220 
1221 		/*
1222 		 * If it's been deconstructed already, it's still
1223 		 * referenced, or it exceeds the trigger, skip it.
1224 		 * Also skip free vnodes.  We are trying to make space
1225 		 * for more free vnodes, not reduce their count.
1226 		 */
1227 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1228 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1229 			goto next_iter;
1230 
1231 		if (vp->v_type == VBAD || vp->v_type == VNON)
1232 			goto next_iter;
1233 
1234 		object = atomic_load_ptr(&vp->v_object);
1235 		if (object == NULL || object->resident_page_count > trigger) {
1236 			goto next_iter;
1237 		}
1238 
1239 		/*
1240 		 * Handle races against vnode allocation. Filesystems lock the
1241 		 * vnode some time after it gets returned from getnewvnode,
1242 		 * despite type and hold count being manipulated earlier.
1243 		 * Resorting to checking v_mount restores guarantees present
1244 		 * before the global list was reworked to contain all vnodes.
1245 		 */
1246 		if (!VI_TRYLOCK(vp))
1247 			goto next_iter;
1248 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1249 			VI_UNLOCK(vp);
1250 			goto next_iter;
1251 		}
1252 		if (vp->v_mount == NULL) {
1253 			VI_UNLOCK(vp);
1254 			goto next_iter;
1255 		}
1256 		vholdl(vp);
1257 		VI_UNLOCK(vp);
1258 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1259 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1260 		mtx_unlock(&vnode_list_mtx);
1261 
1262 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1263 			vdrop_recycle(vp);
1264 			goto next_iter_unlocked;
1265 		}
1266 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1267 			vdrop_recycle(vp);
1268 			vn_finished_write(mp);
1269 			goto next_iter_unlocked;
1270 		}
1271 
1272 		VI_LOCK(vp);
1273 		if (vp->v_usecount > 0 ||
1274 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1275 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1276 		    vp->v_object->resident_page_count > trigger)) {
1277 			VOP_UNLOCK(vp);
1278 			vdropl_recycle(vp);
1279 			vn_finished_write(mp);
1280 			goto next_iter_unlocked;
1281 		}
1282 		recycles_count++;
1283 		vgonel(vp);
1284 		VOP_UNLOCK(vp);
1285 		vdropl_recycle(vp);
1286 		vn_finished_write(mp);
1287 		done++;
1288 next_iter_unlocked:
1289 		maybe_yield();
1290 		mtx_lock(&vnode_list_mtx);
1291 		goto restart;
1292 next_iter:
1293 		MPASS(vp->v_type != VMARKER);
1294 		if (!should_yield())
1295 			continue;
1296 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1297 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1298 		mtx_unlock(&vnode_list_mtx);
1299 		kern_yield(PRI_USER);
1300 		mtx_lock(&vnode_list_mtx);
1301 		goto restart;
1302 	}
1303 	if (done == 0 && !retried) {
1304 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1305 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1306 		retried = true;
1307 		goto restart;
1308 	}
1309 	return (done);
1310 }
1311 
1312 static int max_free_per_call = 10000;
1313 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1314     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1315 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1316     &max_free_per_call, 0,
1317     "limit on vnode free requests per call to the vnlru_free routine");
1318 
1319 /*
1320  * Attempt to recycle requested amount of free vnodes.
1321  */
1322 static int
1323 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1324 {
1325 	struct vnode *vp;
1326 	struct mount *mp;
1327 	int ocount;
1328 	bool retried;
1329 
1330 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1331 	if (count > max_free_per_call)
1332 		count = max_free_per_call;
1333 	if (count == 0) {
1334 		mtx_unlock(&vnode_list_mtx);
1335 		return (0);
1336 	}
1337 	ocount = count;
1338 	retried = false;
1339 	vp = mvp;
1340 	for (;;) {
1341 		vp = TAILQ_NEXT(vp, v_vnodelist);
1342 		if (__predict_false(vp == NULL)) {
1343 			/*
1344 			 * The free vnode marker can be past eligible vnodes:
1345 			 * 1. if vdbatch_process trylock failed
1346 			 * 2. if vtryrecycle failed
1347 			 *
1348 			 * If so, start the scan from scratch.
1349 			 */
1350 			if (!retried && vnlru_read_freevnodes() > 0) {
1351 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1352 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1353 				vp = mvp;
1354 				retried = true;
1355 				continue;
1356 			}
1357 
1358 			/*
1359 			 * Give up
1360 			 */
1361 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1362 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1363 			mtx_unlock(&vnode_list_mtx);
1364 			break;
1365 		}
1366 		if (__predict_false(vp->v_type == VMARKER))
1367 			continue;
1368 		if (vp->v_holdcnt > 0)
1369 			continue;
1370 		/*
1371 		 * Don't recycle if our vnode is from different type
1372 		 * of mount point.  Note that mp is type-safe, the
1373 		 * check does not reach unmapped address even if
1374 		 * vnode is reclaimed.
1375 		 */
1376 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1377 		    mp->mnt_op != mnt_op) {
1378 			continue;
1379 		}
1380 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1381 			continue;
1382 		}
1383 		if (!vhold_recycle_free(vp))
1384 			continue;
1385 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1386 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1387 		mtx_unlock(&vnode_list_mtx);
1388 		/*
1389 		 * FIXME: ignores the return value, meaning it may be nothing
1390 		 * got recycled but it claims otherwise to the caller.
1391 		 *
1392 		 * Originally the value started being ignored in 2005 with
1393 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1394 		 *
1395 		 * Respecting the value can run into significant stalls if most
1396 		 * vnodes belong to one file system and it has writes
1397 		 * suspended.  In presence of many threads and millions of
1398 		 * vnodes they keep contending on the vnode_list_mtx lock only
1399 		 * to find vnodes they can't recycle.
1400 		 *
1401 		 * The solution would be to pre-check if the vnode is likely to
1402 		 * be recycle-able, but it needs to happen with the
1403 		 * vnode_list_mtx lock held. This runs into a problem where
1404 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1405 		 * writes are frozen) can take locks which LOR against it.
1406 		 *
1407 		 * Check nullfs for one example (null_getwritemount).
1408 		 */
1409 		vtryrecycle(vp, isvnlru);
1410 		count--;
1411 		if (count == 0) {
1412 			break;
1413 		}
1414 		mtx_lock(&vnode_list_mtx);
1415 		vp = mvp;
1416 	}
1417 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1418 	return (ocount - count);
1419 }
1420 
1421 /*
1422  * XXX: returns without vnode_list_mtx locked!
1423  */
1424 static int
1425 vnlru_free_locked_direct(int count)
1426 {
1427 	int ret;
1428 
1429 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1430 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1431 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1432 	return (ret);
1433 }
1434 
1435 static int
1436 vnlru_free_locked_vnlru(int count)
1437 {
1438 	int ret;
1439 
1440 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1441 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1442 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1443 	return (ret);
1444 }
1445 
1446 static int
1447 vnlru_free_vnlru(int count)
1448 {
1449 
1450 	mtx_lock(&vnode_list_mtx);
1451 	return (vnlru_free_locked_vnlru(count));
1452 }
1453 
1454 void
1455 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1456 {
1457 
1458 	MPASS(mnt_op != NULL);
1459 	MPASS(mvp != NULL);
1460 	VNPASS(mvp->v_type == VMARKER, mvp);
1461 	mtx_lock(&vnode_list_mtx);
1462 	vnlru_free_impl(count, mnt_op, mvp, true);
1463 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1464 }
1465 
1466 struct vnode *
1467 vnlru_alloc_marker(void)
1468 {
1469 	struct vnode *mvp;
1470 
1471 	mvp = vn_alloc_marker(NULL);
1472 	mtx_lock(&vnode_list_mtx);
1473 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1474 	mtx_unlock(&vnode_list_mtx);
1475 	return (mvp);
1476 }
1477 
1478 void
1479 vnlru_free_marker(struct vnode *mvp)
1480 {
1481 	mtx_lock(&vnode_list_mtx);
1482 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1483 	mtx_unlock(&vnode_list_mtx);
1484 	vn_free_marker(mvp);
1485 }
1486 
1487 static void
1488 vnlru_recalc(void)
1489 {
1490 
1491 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1492 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1493 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1494 	vlowat = vhiwat / 2;
1495 }
1496 
1497 /*
1498  * Attempt to recycle vnodes in a context that is always safe to block.
1499  * Calling vlrurecycle() from the bowels of filesystem code has some
1500  * interesting deadlock problems.
1501  */
1502 static struct proc *vnlruproc;
1503 static int vnlruproc_sig;
1504 static u_long vnlruproc_kicks;
1505 
1506 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1507     "Number of times vnlru awakened due to vnode shortage");
1508 
1509 #define VNLRU_COUNT_SLOP 100
1510 
1511 /*
1512  * The main freevnodes counter is only updated when a counter local to CPU
1513  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1514  * walked to compute a more accurate total.
1515  *
1516  * Note: the actual value at any given moment can still exceed slop, but it
1517  * should not be by significant margin in practice.
1518  */
1519 #define VNLRU_FREEVNODES_SLOP 126
1520 
1521 static void __noinline
1522 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1523 {
1524 
1525 	atomic_add_long(&freevnodes, *lfreevnodes);
1526 	*lfreevnodes = 0;
1527 	critical_exit();
1528 }
1529 
1530 static __inline void
1531 vfs_freevnodes_inc(void)
1532 {
1533 	int8_t *lfreevnodes;
1534 
1535 	critical_enter();
1536 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1537 	(*lfreevnodes)++;
1538 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1539 		vfs_freevnodes_rollup(lfreevnodes);
1540 	else
1541 		critical_exit();
1542 }
1543 
1544 static __inline void
1545 vfs_freevnodes_dec(void)
1546 {
1547 	int8_t *lfreevnodes;
1548 
1549 	critical_enter();
1550 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1551 	(*lfreevnodes)--;
1552 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1553 		vfs_freevnodes_rollup(lfreevnodes);
1554 	else
1555 		critical_exit();
1556 }
1557 
1558 static u_long
1559 vnlru_read_freevnodes(void)
1560 {
1561 	long slop, rfreevnodes, rfreevnodes_old;
1562 	int cpu;
1563 
1564 	rfreevnodes = atomic_load_long(&freevnodes);
1565 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1566 
1567 	if (rfreevnodes > rfreevnodes_old)
1568 		slop = rfreevnodes - rfreevnodes_old;
1569 	else
1570 		slop = rfreevnodes_old - rfreevnodes;
1571 	if (slop < VNLRU_FREEVNODES_SLOP)
1572 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1573 	CPU_FOREACH(cpu) {
1574 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1575 	}
1576 	atomic_store_long(&freevnodes_old, rfreevnodes);
1577 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1578 }
1579 
1580 static bool
1581 vnlru_under(u_long rnumvnodes, u_long limit)
1582 {
1583 	u_long rfreevnodes, space;
1584 
1585 	if (__predict_false(rnumvnodes > desiredvnodes))
1586 		return (true);
1587 
1588 	space = desiredvnodes - rnumvnodes;
1589 	if (space < limit) {
1590 		rfreevnodes = vnlru_read_freevnodes();
1591 		if (rfreevnodes > wantfreevnodes)
1592 			space += rfreevnodes - wantfreevnodes;
1593 	}
1594 	return (space < limit);
1595 }
1596 
1597 static void
1598 vnlru_kick_locked(void)
1599 {
1600 
1601 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1602 	if (vnlruproc_sig == 0) {
1603 		vnlruproc_sig = 1;
1604 		vnlruproc_kicks++;
1605 		wakeup(vnlruproc);
1606 	}
1607 }
1608 
1609 static void
1610 vnlru_kick_cond(void)
1611 {
1612 
1613 	if (vnlru_read_freevnodes() > wantfreevnodes)
1614 		return;
1615 
1616 	if (vnlruproc_sig)
1617 		return;
1618 	mtx_lock(&vnode_list_mtx);
1619 	vnlru_kick_locked();
1620 	mtx_unlock(&vnode_list_mtx);
1621 }
1622 
1623 static void
1624 vnlru_proc_sleep(void)
1625 {
1626 
1627 	if (vnlruproc_sig) {
1628 		vnlruproc_sig = 0;
1629 		wakeup(&vnlruproc_sig);
1630 	}
1631 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1632 }
1633 
1634 /*
1635  * A lighter version of the machinery below.
1636  *
1637  * Tries to reach goals only by recycling free vnodes and does not invoke
1638  * uma_reclaim(UMA_RECLAIM_DRAIN).
1639  *
1640  * This works around pathological behavior in vnlru in presence of tons of free
1641  * vnodes, but without having to rewrite the machinery at this time. Said
1642  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1643  * (cycling through all levels of "force") when the count is transiently above
1644  * limit. This happens a lot when all vnodes are used up and vn_alloc
1645  * speculatively increments the counter.
1646  *
1647  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1648  * 1 million files in total and 20 find(1) processes stating them in parallel
1649  * (one per each tree).
1650  *
1651  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1652  * seconds to execute (time varies *wildly* between runs). With the workaround
1653  * it consistently stays around 20 seconds [it got further down with later
1654  * changes].
1655  *
1656  * That is to say the entire thing needs a fundamental redesign (most notably
1657  * to accommodate faster recycling), the above only tries to get it ouf the way.
1658  *
1659  * Return values are:
1660  * -1 -- fallback to regular vnlru loop
1661  *  0 -- do nothing, go to sleep
1662  * >0 -- recycle this many vnodes
1663  */
1664 static long
1665 vnlru_proc_light_pick(void)
1666 {
1667 	u_long rnumvnodes, rfreevnodes;
1668 
1669 	if (vstir || vnlruproc_sig == 1)
1670 		return (-1);
1671 
1672 	rnumvnodes = atomic_load_long(&numvnodes);
1673 	rfreevnodes = vnlru_read_freevnodes();
1674 
1675 	/*
1676 	 * vnode limit might have changed and now we may be at a significant
1677 	 * excess. Bail if we can't sort it out with free vnodes.
1678 	 *
1679 	 * Due to atomic updates the count can legitimately go above
1680 	 * the limit for a short period, don't bother doing anything in
1681 	 * that case.
1682 	 */
1683 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1684 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1685 		    rfreevnodes <= wantfreevnodes) {
1686 			return (-1);
1687 		}
1688 
1689 		return (rnumvnodes - desiredvnodes);
1690 	}
1691 
1692 	/*
1693 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1694 	 * to begin with.
1695 	 */
1696 	if (rnumvnodes < wantfreevnodes) {
1697 		return (0);
1698 	}
1699 
1700 	if (rfreevnodes < wantfreevnodes) {
1701 		return (-1);
1702 	}
1703 
1704 	return (0);
1705 }
1706 
1707 static bool
1708 vnlru_proc_light(void)
1709 {
1710 	long freecount;
1711 
1712 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1713 
1714 	freecount = vnlru_proc_light_pick();
1715 	if (freecount == -1)
1716 		return (false);
1717 
1718 	if (freecount != 0) {
1719 		vnlru_free_vnlru(freecount);
1720 	}
1721 
1722 	mtx_lock(&vnode_list_mtx);
1723 	vnlru_proc_sleep();
1724 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1725 	return (true);
1726 }
1727 
1728 static u_long uma_reclaim_calls;
1729 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1730     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1731 
1732 static void
1733 vnlru_proc(void)
1734 {
1735 	u_long rnumvnodes, rfreevnodes, target;
1736 	unsigned long onumvnodes;
1737 	int done, force, trigger, usevnodes;
1738 	bool reclaim_nc_src, want_reread;
1739 
1740 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1741 	    SHUTDOWN_PRI_FIRST);
1742 
1743 	force = 0;
1744 	want_reread = false;
1745 	for (;;) {
1746 		kproc_suspend_check(vnlruproc);
1747 
1748 		if (force == 0 && vnlru_proc_light())
1749 			continue;
1750 
1751 		mtx_lock(&vnode_list_mtx);
1752 		rnumvnodes = atomic_load_long(&numvnodes);
1753 
1754 		if (want_reread) {
1755 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1756 			want_reread = false;
1757 		}
1758 
1759 		/*
1760 		 * If numvnodes is too large (due to desiredvnodes being
1761 		 * adjusted using its sysctl, or emergency growth), first
1762 		 * try to reduce it by discarding free vnodes.
1763 		 */
1764 		if (rnumvnodes > desiredvnodes + 10) {
1765 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1766 			mtx_lock(&vnode_list_mtx);
1767 			rnumvnodes = atomic_load_long(&numvnodes);
1768 		}
1769 		/*
1770 		 * Sleep if the vnode cache is in a good state.  This is
1771 		 * when it is not over-full and has space for about a 4%
1772 		 * or 9% expansion (by growing its size or inexcessively
1773 		 * reducing free vnode count).  Otherwise, try to reclaim
1774 		 * space for a 10% expansion.
1775 		 */
1776 		if (vstir && force == 0) {
1777 			force = 1;
1778 			vstir = false;
1779 		}
1780 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1781 			vnlru_proc_sleep();
1782 			continue;
1783 		}
1784 		rfreevnodes = vnlru_read_freevnodes();
1785 
1786 		onumvnodes = rnumvnodes;
1787 		/*
1788 		 * Calculate parameters for recycling.  These are the same
1789 		 * throughout the loop to give some semblance of fairness.
1790 		 * The trigger point is to avoid recycling vnodes with lots
1791 		 * of resident pages.  We aren't trying to free memory; we
1792 		 * are trying to recycle or at least free vnodes.
1793 		 */
1794 		if (rnumvnodes <= desiredvnodes)
1795 			usevnodes = rnumvnodes - rfreevnodes;
1796 		else
1797 			usevnodes = rnumvnodes;
1798 		if (usevnodes <= 0)
1799 			usevnodes = 1;
1800 		/*
1801 		 * The trigger value is chosen to give a conservatively
1802 		 * large value to ensure that it alone doesn't prevent
1803 		 * making progress.  The value can easily be so large that
1804 		 * it is effectively infinite in some congested and
1805 		 * misconfigured cases, and this is necessary.  Normally
1806 		 * it is about 8 to 100 (pages), which is quite large.
1807 		 */
1808 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1809 		if (force < 2)
1810 			trigger = vsmalltrigger;
1811 		reclaim_nc_src = force >= 3;
1812 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1813 		target = target / 10 + 1;
1814 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1815 		mtx_unlock(&vnode_list_mtx);
1816 		/*
1817 		 * Total number of vnodes can transiently go slightly above the
1818 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1819 		 * this happens.
1820 		 */
1821 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1822 		    numvnodes <= desiredvnodes) {
1823 			uma_reclaim_calls++;
1824 			uma_reclaim(UMA_RECLAIM_DRAIN);
1825 		}
1826 		if (done == 0) {
1827 			if (force == 0 || force == 1) {
1828 				force = 2;
1829 				continue;
1830 			}
1831 			if (force == 2) {
1832 				force = 3;
1833 				continue;
1834 			}
1835 			want_reread = true;
1836 			force = 0;
1837 			vnlru_nowhere++;
1838 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1839 		} else {
1840 			want_reread = true;
1841 			kern_yield(PRI_USER);
1842 		}
1843 	}
1844 }
1845 
1846 static struct kproc_desc vnlru_kp = {
1847 	"vnlru",
1848 	vnlru_proc,
1849 	&vnlruproc
1850 };
1851 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1852     &vnlru_kp);
1853 
1854 /*
1855  * Routines having to do with the management of the vnode table.
1856  */
1857 
1858 /*
1859  * Try to recycle a freed vnode.
1860  */
1861 static int
1862 vtryrecycle(struct vnode *vp, bool isvnlru)
1863 {
1864 	struct mount *vnmp;
1865 
1866 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1867 	VNPASS(vp->v_holdcnt > 0, vp);
1868 	/*
1869 	 * This vnode may found and locked via some other list, if so we
1870 	 * can't recycle it yet.
1871 	 */
1872 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1873 		CTR2(KTR_VFS,
1874 		    "%s: impossible to recycle, vp %p lock is already held",
1875 		    __func__, vp);
1876 		vdrop_recycle(vp);
1877 		return (EWOULDBLOCK);
1878 	}
1879 	/*
1880 	 * Don't recycle if its filesystem is being suspended.
1881 	 */
1882 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1883 		VOP_UNLOCK(vp);
1884 		CTR2(KTR_VFS,
1885 		    "%s: impossible to recycle, cannot start the write for %p",
1886 		    __func__, vp);
1887 		vdrop_recycle(vp);
1888 		return (EBUSY);
1889 	}
1890 	/*
1891 	 * If we got this far, we need to acquire the interlock and see if
1892 	 * anyone picked up this vnode from another list.  If not, we will
1893 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1894 	 * will skip over it.
1895 	 */
1896 	VI_LOCK(vp);
1897 	if (vp->v_usecount) {
1898 		VOP_UNLOCK(vp);
1899 		vdropl_recycle(vp);
1900 		vn_finished_write(vnmp);
1901 		CTR2(KTR_VFS,
1902 		    "%s: impossible to recycle, %p is already referenced",
1903 		    __func__, vp);
1904 		return (EBUSY);
1905 	}
1906 	if (!VN_IS_DOOMED(vp)) {
1907 		if (isvnlru)
1908 			recycles_free_count++;
1909 		else
1910 			counter_u64_add(direct_recycles_free_count, 1);
1911 		vgonel(vp);
1912 	}
1913 	VOP_UNLOCK(vp);
1914 	vdropl_recycle(vp);
1915 	vn_finished_write(vnmp);
1916 	return (0);
1917 }
1918 
1919 /*
1920  * Allocate a new vnode.
1921  *
1922  * The operation never returns an error. Returning an error was disabled
1923  * in r145385 (dated 2005) with the following comment:
1924  *
1925  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1926  *
1927  * Given the age of this commit (almost 15 years at the time of writing this
1928  * comment) restoring the ability to fail requires a significant audit of
1929  * all codepaths.
1930  *
1931  * The routine can try to free a vnode or stall for up to 1 second waiting for
1932  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1933  */
1934 static u_long vn_alloc_cyclecount;
1935 static u_long vn_alloc_sleeps;
1936 
1937 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1938     "Number of times vnode allocation blocked waiting on vnlru");
1939 
1940 static struct vnode * __noinline
1941 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1942 {
1943 	u_long rfreevnodes;
1944 
1945 	if (bumped) {
1946 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1947 			atomic_subtract_long(&numvnodes, 1);
1948 			bumped = false;
1949 		}
1950 	}
1951 
1952 	mtx_lock(&vnode_list_mtx);
1953 
1954 	if (vn_alloc_cyclecount != 0) {
1955 		rnumvnodes = atomic_load_long(&numvnodes);
1956 		if (rnumvnodes + 1 < desiredvnodes) {
1957 			vn_alloc_cyclecount = 0;
1958 			mtx_unlock(&vnode_list_mtx);
1959 			goto alloc;
1960 		}
1961 
1962 		rfreevnodes = vnlru_read_freevnodes();
1963 		if (rfreevnodes < wantfreevnodes) {
1964 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1965 				vn_alloc_cyclecount = 0;
1966 				vstir = true;
1967 			}
1968 		} else {
1969 			vn_alloc_cyclecount = 0;
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * Grow the vnode cache if it will not be above its target max after
1975 	 * growing.  Otherwise, if there is at least one free vnode, try to
1976 	 * reclaim 1 item from it before growing the cache (possibly above its
1977 	 * target max if the reclamation failed or is delayed).
1978 	 */
1979 	if (vnlru_free_locked_direct(1) > 0)
1980 		goto alloc;
1981 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1982 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1983 		/*
1984 		 * Wait for space for a new vnode.
1985 		 */
1986 		if (bumped) {
1987 			atomic_subtract_long(&numvnodes, 1);
1988 			bumped = false;
1989 		}
1990 		mtx_lock(&vnode_list_mtx);
1991 		vnlru_kick_locked();
1992 		vn_alloc_sleeps++;
1993 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1994 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1995 		    vnlru_read_freevnodes() > 1)
1996 			vnlru_free_locked_direct(1);
1997 		else
1998 			mtx_unlock(&vnode_list_mtx);
1999 	}
2000 alloc:
2001 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2002 	if (!bumped)
2003 		atomic_add_long(&numvnodes, 1);
2004 	vnlru_kick_cond();
2005 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2006 }
2007 
2008 static struct vnode *
2009 vn_alloc(struct mount *mp)
2010 {
2011 	u_long rnumvnodes;
2012 
2013 	if (__predict_false(vn_alloc_cyclecount != 0))
2014 		return (vn_alloc_hard(mp, 0, false));
2015 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2016 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2017 		return (vn_alloc_hard(mp, rnumvnodes, true));
2018 	}
2019 
2020 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2021 }
2022 
2023 static void
2024 vn_free(struct vnode *vp)
2025 {
2026 
2027 	atomic_subtract_long(&numvnodes, 1);
2028 	uma_zfree_smr(vnode_zone, vp);
2029 }
2030 
2031 /*
2032  * Allocate a new vnode.
2033  */
2034 int
2035 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2036     struct vnode **vpp)
2037 {
2038 	struct vnode *vp;
2039 	struct thread *td;
2040 	struct lock_object *lo;
2041 
2042 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2043 
2044 	KASSERT(vops->registered,
2045 	    ("%s: not registered vector op %p\n", __func__, vops));
2046 	cache_validate_vop_vector(mp, vops);
2047 
2048 	td = curthread;
2049 	if (td->td_vp_reserved != NULL) {
2050 		vp = td->td_vp_reserved;
2051 		td->td_vp_reserved = NULL;
2052 	} else {
2053 		vp = vn_alloc(mp);
2054 	}
2055 	counter_u64_add(vnodes_created, 1);
2056 
2057 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2058 
2059 	/*
2060 	 * Locks are given the generic name "vnode" when created.
2061 	 * Follow the historic practice of using the filesystem
2062 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2063 	 *
2064 	 * Locks live in a witness group keyed on their name. Thus,
2065 	 * when a lock is renamed, it must also move from the witness
2066 	 * group of its old name to the witness group of its new name.
2067 	 *
2068 	 * The change only needs to be made when the vnode moves
2069 	 * from one filesystem type to another. We ensure that each
2070 	 * filesystem use a single static name pointer for its tag so
2071 	 * that we can compare pointers rather than doing a strcmp().
2072 	 */
2073 	lo = &vp->v_vnlock->lock_object;
2074 #ifdef WITNESS
2075 	if (lo->lo_name != tag) {
2076 #endif
2077 		lo->lo_name = tag;
2078 #ifdef WITNESS
2079 		WITNESS_DESTROY(lo);
2080 		WITNESS_INIT(lo, tag);
2081 	}
2082 #endif
2083 	/*
2084 	 * By default, don't allow shared locks unless filesystems opt-in.
2085 	 */
2086 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2087 	/*
2088 	 * Finalize various vnode identity bits.
2089 	 */
2090 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2091 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2092 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2093 	vp->v_type = VNON;
2094 	vp->v_op = vops;
2095 	vp->v_irflag = 0;
2096 	v_init_counters(vp);
2097 	vn_seqc_init(vp);
2098 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2099 #ifdef DIAGNOSTIC
2100 	if (mp == NULL && vops != &dead_vnodeops)
2101 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2102 #endif
2103 #ifdef MAC
2104 	mac_vnode_init(vp);
2105 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2106 		mac_vnode_associate_singlelabel(mp, vp);
2107 #endif
2108 	if (mp != NULL) {
2109 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2110 	}
2111 
2112 	/*
2113 	 * For the filesystems which do not use vfs_hash_insert(),
2114 	 * still initialize v_hash to have vfs_hash_index() useful.
2115 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2116 	 * its own hashing.
2117 	 */
2118 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2119 
2120 	*vpp = vp;
2121 	return (0);
2122 }
2123 
2124 void
2125 getnewvnode_reserve(void)
2126 {
2127 	struct thread *td;
2128 
2129 	td = curthread;
2130 	MPASS(td->td_vp_reserved == NULL);
2131 	td->td_vp_reserved = vn_alloc(NULL);
2132 }
2133 
2134 void
2135 getnewvnode_drop_reserve(void)
2136 {
2137 	struct thread *td;
2138 
2139 	td = curthread;
2140 	if (td->td_vp_reserved != NULL) {
2141 		vn_free(td->td_vp_reserved);
2142 		td->td_vp_reserved = NULL;
2143 	}
2144 }
2145 
2146 static void __noinline
2147 freevnode(struct vnode *vp)
2148 {
2149 	struct bufobj *bo;
2150 
2151 	/*
2152 	 * The vnode has been marked for destruction, so free it.
2153 	 *
2154 	 * The vnode will be returned to the zone where it will
2155 	 * normally remain until it is needed for another vnode. We
2156 	 * need to cleanup (or verify that the cleanup has already
2157 	 * been done) any residual data left from its current use
2158 	 * so as not to contaminate the freshly allocated vnode.
2159 	 */
2160 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2161 	/*
2162 	 * Paired with vgone.
2163 	 */
2164 	vn_seqc_write_end_free(vp);
2165 
2166 	bo = &vp->v_bufobj;
2167 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2168 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2169 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2170 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2171 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2172 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2173 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2174 	    ("clean blk trie not empty"));
2175 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2176 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2177 	    ("dirty blk trie not empty"));
2178 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2179 	    ("Dangling rangelock waiters"));
2180 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2181 	    ("Leaked inactivation"));
2182 	VI_UNLOCK(vp);
2183 	cache_assert_no_entries(vp);
2184 
2185 #ifdef MAC
2186 	mac_vnode_destroy(vp);
2187 #endif
2188 	if (vp->v_pollinfo != NULL) {
2189 		/*
2190 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2191 		 * here while having another vnode locked when trying to
2192 		 * satisfy a lookup and needing to recycle.
2193 		 */
2194 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2195 		destroy_vpollinfo(vp->v_pollinfo);
2196 		VOP_UNLOCK(vp);
2197 		vp->v_pollinfo = NULL;
2198 	}
2199 	vp->v_mountedhere = NULL;
2200 	vp->v_unpcb = NULL;
2201 	vp->v_rdev = NULL;
2202 	vp->v_fifoinfo = NULL;
2203 	vp->v_iflag = 0;
2204 	vp->v_vflag = 0;
2205 	bo->bo_flag = 0;
2206 	vn_free(vp);
2207 }
2208 
2209 /*
2210  * Delete from old mount point vnode list, if on one.
2211  */
2212 static void
2213 delmntque(struct vnode *vp)
2214 {
2215 	struct mount *mp;
2216 
2217 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2218 
2219 	mp = vp->v_mount;
2220 	MNT_ILOCK(mp);
2221 	VI_LOCK(vp);
2222 	vp->v_mount = NULL;
2223 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2224 		("bad mount point vnode list size"));
2225 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2226 	mp->mnt_nvnodelistsize--;
2227 	MNT_REL(mp);
2228 	MNT_IUNLOCK(mp);
2229 	/*
2230 	 * The caller expects the interlock to be still held.
2231 	 */
2232 	ASSERT_VI_LOCKED(vp, __func__);
2233 }
2234 
2235 static int
2236 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2237 {
2238 
2239 	KASSERT(vp->v_mount == NULL,
2240 		("insmntque: vnode already on per mount vnode list"));
2241 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2242 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2243 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2244 	} else {
2245 		KASSERT(!dtr,
2246 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2247 		    __func__));
2248 	}
2249 
2250 	/*
2251 	 * We acquire the vnode interlock early to ensure that the
2252 	 * vnode cannot be recycled by another process releasing a
2253 	 * holdcnt on it before we get it on both the vnode list
2254 	 * and the active vnode list. The mount mutex protects only
2255 	 * manipulation of the vnode list and the vnode freelist
2256 	 * mutex protects only manipulation of the active vnode list.
2257 	 * Hence the need to hold the vnode interlock throughout.
2258 	 */
2259 	MNT_ILOCK(mp);
2260 	VI_LOCK(vp);
2261 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2262 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2263 	    mp->mnt_nvnodelistsize == 0)) &&
2264 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2265 		VI_UNLOCK(vp);
2266 		MNT_IUNLOCK(mp);
2267 		if (dtr) {
2268 			vp->v_data = NULL;
2269 			vp->v_op = &dead_vnodeops;
2270 			vgone(vp);
2271 			vput(vp);
2272 		}
2273 		return (EBUSY);
2274 	}
2275 	vp->v_mount = mp;
2276 	MNT_REF(mp);
2277 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2278 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2279 		("neg mount point vnode list size"));
2280 	mp->mnt_nvnodelistsize++;
2281 	VI_UNLOCK(vp);
2282 	MNT_IUNLOCK(mp);
2283 	return (0);
2284 }
2285 
2286 /*
2287  * Insert into list of vnodes for the new mount point, if available.
2288  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2289  * leaves handling of the vnode to the caller.
2290  */
2291 int
2292 insmntque(struct vnode *vp, struct mount *mp)
2293 {
2294 	return (insmntque1_int(vp, mp, true));
2295 }
2296 
2297 int
2298 insmntque1(struct vnode *vp, struct mount *mp)
2299 {
2300 	return (insmntque1_int(vp, mp, false));
2301 }
2302 
2303 /*
2304  * Flush out and invalidate all buffers associated with a bufobj
2305  * Called with the underlying object locked.
2306  */
2307 int
2308 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2309 {
2310 	int error;
2311 
2312 	BO_LOCK(bo);
2313 	if (flags & V_SAVE) {
2314 		error = bufobj_wwait(bo, slpflag, slptimeo);
2315 		if (error) {
2316 			BO_UNLOCK(bo);
2317 			return (error);
2318 		}
2319 		if (bo->bo_dirty.bv_cnt > 0) {
2320 			BO_UNLOCK(bo);
2321 			do {
2322 				error = BO_SYNC(bo, MNT_WAIT);
2323 			} while (error == ERELOOKUP);
2324 			if (error != 0)
2325 				return (error);
2326 			BO_LOCK(bo);
2327 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2328 				BO_UNLOCK(bo);
2329 				return (EBUSY);
2330 			}
2331 		}
2332 	}
2333 	/*
2334 	 * If you alter this loop please notice that interlock is dropped and
2335 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2336 	 * no race conditions occur from this.
2337 	 */
2338 	do {
2339 		error = flushbuflist(&bo->bo_clean,
2340 		    flags, bo, slpflag, slptimeo);
2341 		if (error == 0 && !(flags & V_CLEANONLY))
2342 			error = flushbuflist(&bo->bo_dirty,
2343 			    flags, bo, slpflag, slptimeo);
2344 		if (error != 0 && error != EAGAIN) {
2345 			BO_UNLOCK(bo);
2346 			return (error);
2347 		}
2348 	} while (error != 0);
2349 
2350 	/*
2351 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2352 	 * have write I/O in-progress but if there is a VM object then the
2353 	 * VM object can also have read-I/O in-progress.
2354 	 */
2355 	do {
2356 		bufobj_wwait(bo, 0, 0);
2357 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2358 			BO_UNLOCK(bo);
2359 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2360 			BO_LOCK(bo);
2361 		}
2362 	} while (bo->bo_numoutput > 0);
2363 	BO_UNLOCK(bo);
2364 
2365 	/*
2366 	 * Destroy the copy in the VM cache, too.
2367 	 */
2368 	if (bo->bo_object != NULL &&
2369 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2370 		VM_OBJECT_WLOCK(bo->bo_object);
2371 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2372 		    OBJPR_CLEANONLY : 0);
2373 		VM_OBJECT_WUNLOCK(bo->bo_object);
2374 	}
2375 
2376 #ifdef INVARIANTS
2377 	BO_LOCK(bo);
2378 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2379 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2380 	    bo->bo_clean.bv_cnt > 0))
2381 		panic("vinvalbuf: flush failed");
2382 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2383 	    bo->bo_dirty.bv_cnt > 0)
2384 		panic("vinvalbuf: flush dirty failed");
2385 	BO_UNLOCK(bo);
2386 #endif
2387 	return (0);
2388 }
2389 
2390 /*
2391  * Flush out and invalidate all buffers associated with a vnode.
2392  * Called with the underlying object locked.
2393  */
2394 int
2395 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2396 {
2397 
2398 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2399 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2400 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2401 		return (0);
2402 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2403 }
2404 
2405 /*
2406  * Flush out buffers on the specified list.
2407  *
2408  */
2409 static int
2410 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2411     int slptimeo)
2412 {
2413 	struct buf *bp, *nbp;
2414 	int retval, error;
2415 	daddr_t lblkno;
2416 	b_xflags_t xflags;
2417 
2418 	ASSERT_BO_WLOCKED(bo);
2419 
2420 	retval = 0;
2421 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2422 		/*
2423 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2424 		 * do not skip any buffers. If we are flushing only V_NORMAL
2425 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2426 		 * flushing only V_ALT buffers then skip buffers not marked
2427 		 * as BX_ALTDATA.
2428 		 */
2429 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2430 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2431 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2432 			continue;
2433 		}
2434 		if (nbp != NULL) {
2435 			lblkno = nbp->b_lblkno;
2436 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2437 		}
2438 		retval = EAGAIN;
2439 		error = BUF_TIMELOCK(bp,
2440 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2441 		    "flushbuf", slpflag, slptimeo);
2442 		if (error) {
2443 			BO_LOCK(bo);
2444 			return (error != ENOLCK ? error : EAGAIN);
2445 		}
2446 		KASSERT(bp->b_bufobj == bo,
2447 		    ("bp %p wrong b_bufobj %p should be %p",
2448 		    bp, bp->b_bufobj, bo));
2449 		/*
2450 		 * XXX Since there are no node locks for NFS, I
2451 		 * believe there is a slight chance that a delayed
2452 		 * write will occur while sleeping just above, so
2453 		 * check for it.
2454 		 */
2455 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2456 		    (flags & V_SAVE)) {
2457 			bremfree(bp);
2458 			bp->b_flags |= B_ASYNC;
2459 			bwrite(bp);
2460 			BO_LOCK(bo);
2461 			return (EAGAIN);	/* XXX: why not loop ? */
2462 		}
2463 		bremfree(bp);
2464 		bp->b_flags |= (B_INVAL | B_RELBUF);
2465 		bp->b_flags &= ~B_ASYNC;
2466 		brelse(bp);
2467 		BO_LOCK(bo);
2468 		if (nbp == NULL)
2469 			break;
2470 		nbp = gbincore(bo, lblkno);
2471 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2472 		    != xflags)
2473 			break;			/* nbp invalid */
2474 	}
2475 	return (retval);
2476 }
2477 
2478 int
2479 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2480 {
2481 	struct buf *bp;
2482 	int error;
2483 	daddr_t lblkno;
2484 
2485 	ASSERT_BO_LOCKED(bo);
2486 
2487 	for (lblkno = startn;;) {
2488 again:
2489 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2490 		if (bp == NULL || bp->b_lblkno >= endn ||
2491 		    bp->b_lblkno < startn)
2492 			break;
2493 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2494 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2495 		if (error != 0) {
2496 			BO_RLOCK(bo);
2497 			if (error == ENOLCK)
2498 				goto again;
2499 			return (error);
2500 		}
2501 		KASSERT(bp->b_bufobj == bo,
2502 		    ("bp %p wrong b_bufobj %p should be %p",
2503 		    bp, bp->b_bufobj, bo));
2504 		lblkno = bp->b_lblkno + 1;
2505 		if ((bp->b_flags & B_MANAGED) == 0)
2506 			bremfree(bp);
2507 		bp->b_flags |= B_RELBUF;
2508 		/*
2509 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2510 		 * pages backing each buffer in the range are unlikely to be
2511 		 * reused.  Dirty buffers will have the hint applied once
2512 		 * they've been written.
2513 		 */
2514 		if ((bp->b_flags & B_VMIO) != 0)
2515 			bp->b_flags |= B_NOREUSE;
2516 		brelse(bp);
2517 		BO_RLOCK(bo);
2518 	}
2519 	return (0);
2520 }
2521 
2522 /*
2523  * Truncate a file's buffer and pages to a specified length.  This
2524  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2525  * sync activity.
2526  */
2527 int
2528 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2529 {
2530 	struct buf *bp, *nbp;
2531 	struct bufobj *bo;
2532 	daddr_t startlbn;
2533 
2534 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2535 	    vp, blksize, (uintmax_t)length);
2536 
2537 	/*
2538 	 * Round up to the *next* lbn.
2539 	 */
2540 	startlbn = howmany(length, blksize);
2541 
2542 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2543 
2544 	bo = &vp->v_bufobj;
2545 restart_unlocked:
2546 	BO_LOCK(bo);
2547 
2548 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2549 		;
2550 
2551 	if (length > 0) {
2552 restartsync:
2553 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2554 			if (bp->b_lblkno > 0)
2555 				continue;
2556 			/*
2557 			 * Since we hold the vnode lock this should only
2558 			 * fail if we're racing with the buf daemon.
2559 			 */
2560 			if (BUF_LOCK(bp,
2561 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2562 			    BO_LOCKPTR(bo)) == ENOLCK)
2563 				goto restart_unlocked;
2564 
2565 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2566 			    ("buf(%p) on dirty queue without DELWRI", bp));
2567 
2568 			bremfree(bp);
2569 			bawrite(bp);
2570 			BO_LOCK(bo);
2571 			goto restartsync;
2572 		}
2573 	}
2574 
2575 	bufobj_wwait(bo, 0, 0);
2576 	BO_UNLOCK(bo);
2577 	vnode_pager_setsize(vp, length);
2578 
2579 	return (0);
2580 }
2581 
2582 /*
2583  * Invalidate the cached pages of a file's buffer within the range of block
2584  * numbers [startlbn, endlbn).
2585  */
2586 void
2587 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2588     int blksize)
2589 {
2590 	struct bufobj *bo;
2591 	off_t start, end;
2592 
2593 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2594 
2595 	start = blksize * startlbn;
2596 	end = blksize * endlbn;
2597 
2598 	bo = &vp->v_bufobj;
2599 	BO_LOCK(bo);
2600 	MPASS(blksize == bo->bo_bsize);
2601 
2602 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2603 		;
2604 
2605 	BO_UNLOCK(bo);
2606 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2607 }
2608 
2609 static int
2610 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2611     daddr_t startlbn, daddr_t endlbn)
2612 {
2613 	struct buf *bp, *nbp;
2614 	bool anyfreed;
2615 
2616 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2617 	ASSERT_BO_LOCKED(bo);
2618 
2619 	do {
2620 		anyfreed = false;
2621 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2622 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2623 				continue;
2624 			if (BUF_LOCK(bp,
2625 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2626 			    BO_LOCKPTR(bo)) == ENOLCK) {
2627 				BO_LOCK(bo);
2628 				return (EAGAIN);
2629 			}
2630 
2631 			bremfree(bp);
2632 			bp->b_flags |= B_INVAL | B_RELBUF;
2633 			bp->b_flags &= ~B_ASYNC;
2634 			brelse(bp);
2635 			anyfreed = true;
2636 
2637 			BO_LOCK(bo);
2638 			if (nbp != NULL &&
2639 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2640 			    nbp->b_vp != vp ||
2641 			    (nbp->b_flags & B_DELWRI) != 0))
2642 				return (EAGAIN);
2643 		}
2644 
2645 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2646 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2647 				continue;
2648 			if (BUF_LOCK(bp,
2649 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2650 			    BO_LOCKPTR(bo)) == ENOLCK) {
2651 				BO_LOCK(bo);
2652 				return (EAGAIN);
2653 			}
2654 			bremfree(bp);
2655 			bp->b_flags |= B_INVAL | B_RELBUF;
2656 			bp->b_flags &= ~B_ASYNC;
2657 			brelse(bp);
2658 			anyfreed = true;
2659 
2660 			BO_LOCK(bo);
2661 			if (nbp != NULL &&
2662 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2663 			    (nbp->b_vp != vp) ||
2664 			    (nbp->b_flags & B_DELWRI) == 0))
2665 				return (EAGAIN);
2666 		}
2667 	} while (anyfreed);
2668 	return (0);
2669 }
2670 
2671 static void
2672 buf_vlist_remove(struct buf *bp)
2673 {
2674 	struct bufv *bv;
2675 	b_xflags_t flags;
2676 
2677 	flags = bp->b_xflags;
2678 
2679 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2680 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2681 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2682 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2683 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2684 
2685 	if ((flags & BX_VNDIRTY) != 0)
2686 		bv = &bp->b_bufobj->bo_dirty;
2687 	else
2688 		bv = &bp->b_bufobj->bo_clean;
2689 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2690 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2691 	bv->bv_cnt--;
2692 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2693 }
2694 
2695 /*
2696  * Add the buffer to the sorted clean or dirty block list.
2697  *
2698  * NOTE: xflags is passed as a constant, optimizing this inline function!
2699  */
2700 static void
2701 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2702 {
2703 	struct bufv *bv;
2704 	struct buf *n;
2705 	int error;
2706 
2707 	ASSERT_BO_WLOCKED(bo);
2708 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2709 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2710 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2711 	    ("dead bo %p", bo));
2712 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2713 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2714 	bp->b_xflags |= xflags;
2715 	if (xflags & BX_VNDIRTY)
2716 		bv = &bo->bo_dirty;
2717 	else
2718 		bv = &bo->bo_clean;
2719 
2720 	/*
2721 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2722 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2723 	 * than _ge.
2724 	 */
2725 	if (bv->bv_cnt == 0 ||
2726 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2727 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2728 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2729 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2730 	else
2731 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2732 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2733 	if (error)
2734 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2735 	bv->bv_cnt++;
2736 }
2737 
2738 /*
2739  * Look up a buffer using the buffer tries.
2740  */
2741 struct buf *
2742 gbincore(struct bufobj *bo, daddr_t lblkno)
2743 {
2744 	struct buf *bp;
2745 
2746 	ASSERT_BO_LOCKED(bo);
2747 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2748 	if (bp != NULL)
2749 		return (bp);
2750 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2751 }
2752 
2753 /*
2754  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2755  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2756  * stability of the result.  Like other lockless lookups, the found buf may
2757  * already be invalid by the time this function returns.
2758  */
2759 struct buf *
2760 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2761 {
2762 	struct buf *bp;
2763 
2764 	ASSERT_BO_UNLOCKED(bo);
2765 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2766 	if (bp != NULL)
2767 		return (bp);
2768 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2769 }
2770 
2771 /*
2772  * Associate a buffer with a vnode.
2773  */
2774 void
2775 bgetvp(struct vnode *vp, struct buf *bp)
2776 {
2777 	struct bufobj *bo;
2778 
2779 	bo = &vp->v_bufobj;
2780 	ASSERT_BO_WLOCKED(bo);
2781 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2782 
2783 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2784 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2785 	    ("bgetvp: bp already attached! %p", bp));
2786 
2787 	vhold(vp);
2788 	bp->b_vp = vp;
2789 	bp->b_bufobj = bo;
2790 	/*
2791 	 * Insert onto list for new vnode.
2792 	 */
2793 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2794 }
2795 
2796 /*
2797  * Disassociate a buffer from a vnode.
2798  */
2799 void
2800 brelvp(struct buf *bp)
2801 {
2802 	struct bufobj *bo;
2803 	struct vnode *vp;
2804 
2805 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2806 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2807 
2808 	/*
2809 	 * Delete from old vnode list, if on one.
2810 	 */
2811 	vp = bp->b_vp;		/* XXX */
2812 	bo = bp->b_bufobj;
2813 	BO_LOCK(bo);
2814 	buf_vlist_remove(bp);
2815 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2816 		bo->bo_flag &= ~BO_ONWORKLST;
2817 		mtx_lock(&sync_mtx);
2818 		LIST_REMOVE(bo, bo_synclist);
2819 		syncer_worklist_len--;
2820 		mtx_unlock(&sync_mtx);
2821 	}
2822 	bp->b_vp = NULL;
2823 	bp->b_bufobj = NULL;
2824 	BO_UNLOCK(bo);
2825 	vdrop(vp);
2826 }
2827 
2828 /*
2829  * Add an item to the syncer work queue.
2830  */
2831 static void
2832 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2833 {
2834 	int slot;
2835 
2836 	ASSERT_BO_WLOCKED(bo);
2837 
2838 	mtx_lock(&sync_mtx);
2839 	if (bo->bo_flag & BO_ONWORKLST)
2840 		LIST_REMOVE(bo, bo_synclist);
2841 	else {
2842 		bo->bo_flag |= BO_ONWORKLST;
2843 		syncer_worklist_len++;
2844 	}
2845 
2846 	if (delay > syncer_maxdelay - 2)
2847 		delay = syncer_maxdelay - 2;
2848 	slot = (syncer_delayno + delay) & syncer_mask;
2849 
2850 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2851 	mtx_unlock(&sync_mtx);
2852 }
2853 
2854 static int
2855 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2856 {
2857 	int error, len;
2858 
2859 	mtx_lock(&sync_mtx);
2860 	len = syncer_worklist_len - sync_vnode_count;
2861 	mtx_unlock(&sync_mtx);
2862 	error = SYSCTL_OUT(req, &len, sizeof(len));
2863 	return (error);
2864 }
2865 
2866 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2867     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2868     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2869 
2870 static struct proc *updateproc;
2871 static void sched_sync(void);
2872 static struct kproc_desc up_kp = {
2873 	"syncer",
2874 	sched_sync,
2875 	&updateproc
2876 };
2877 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2878 
2879 static int
2880 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2881 {
2882 	struct vnode *vp;
2883 	struct mount *mp;
2884 
2885 	*bo = LIST_FIRST(slp);
2886 	if (*bo == NULL)
2887 		return (0);
2888 	vp = bo2vnode(*bo);
2889 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2890 		return (1);
2891 	/*
2892 	 * We use vhold in case the vnode does not
2893 	 * successfully sync.  vhold prevents the vnode from
2894 	 * going away when we unlock the sync_mtx so that
2895 	 * we can acquire the vnode interlock.
2896 	 */
2897 	vholdl(vp);
2898 	mtx_unlock(&sync_mtx);
2899 	VI_UNLOCK(vp);
2900 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2901 		vdrop(vp);
2902 		mtx_lock(&sync_mtx);
2903 		return (*bo == LIST_FIRST(slp));
2904 	}
2905 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2906 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2907 	    ("suspended mp syncing vp %p", vp));
2908 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2909 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2910 	VOP_UNLOCK(vp);
2911 	vn_finished_write(mp);
2912 	BO_LOCK(*bo);
2913 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2914 		/*
2915 		 * Put us back on the worklist.  The worklist
2916 		 * routine will remove us from our current
2917 		 * position and then add us back in at a later
2918 		 * position.
2919 		 */
2920 		vn_syncer_add_to_worklist(*bo, syncdelay);
2921 	}
2922 	BO_UNLOCK(*bo);
2923 	vdrop(vp);
2924 	mtx_lock(&sync_mtx);
2925 	return (0);
2926 }
2927 
2928 static int first_printf = 1;
2929 
2930 /*
2931  * System filesystem synchronizer daemon.
2932  */
2933 static void
2934 sched_sync(void)
2935 {
2936 	struct synclist *next, *slp;
2937 	struct bufobj *bo;
2938 	long starttime;
2939 	struct thread *td = curthread;
2940 	int last_work_seen;
2941 	int net_worklist_len;
2942 	int syncer_final_iter;
2943 	int error;
2944 
2945 	last_work_seen = 0;
2946 	syncer_final_iter = 0;
2947 	syncer_state = SYNCER_RUNNING;
2948 	starttime = time_uptime;
2949 	td->td_pflags |= TDP_NORUNNINGBUF;
2950 
2951 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2952 	    SHUTDOWN_PRI_LAST);
2953 
2954 	mtx_lock(&sync_mtx);
2955 	for (;;) {
2956 		if (syncer_state == SYNCER_FINAL_DELAY &&
2957 		    syncer_final_iter == 0) {
2958 			mtx_unlock(&sync_mtx);
2959 			kproc_suspend_check(td->td_proc);
2960 			mtx_lock(&sync_mtx);
2961 		}
2962 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2963 		if (syncer_state != SYNCER_RUNNING &&
2964 		    starttime != time_uptime) {
2965 			if (first_printf) {
2966 				printf("\nSyncing disks, vnodes remaining... ");
2967 				first_printf = 0;
2968 			}
2969 			printf("%d ", net_worklist_len);
2970 		}
2971 		starttime = time_uptime;
2972 
2973 		/*
2974 		 * Push files whose dirty time has expired.  Be careful
2975 		 * of interrupt race on slp queue.
2976 		 *
2977 		 * Skip over empty worklist slots when shutting down.
2978 		 */
2979 		do {
2980 			slp = &syncer_workitem_pending[syncer_delayno];
2981 			syncer_delayno += 1;
2982 			if (syncer_delayno == syncer_maxdelay)
2983 				syncer_delayno = 0;
2984 			next = &syncer_workitem_pending[syncer_delayno];
2985 			/*
2986 			 * If the worklist has wrapped since the
2987 			 * it was emptied of all but syncer vnodes,
2988 			 * switch to the FINAL_DELAY state and run
2989 			 * for one more second.
2990 			 */
2991 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2992 			    net_worklist_len == 0 &&
2993 			    last_work_seen == syncer_delayno) {
2994 				syncer_state = SYNCER_FINAL_DELAY;
2995 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2996 			}
2997 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2998 		    syncer_worklist_len > 0);
2999 
3000 		/*
3001 		 * Keep track of the last time there was anything
3002 		 * on the worklist other than syncer vnodes.
3003 		 * Return to the SHUTTING_DOWN state if any
3004 		 * new work appears.
3005 		 */
3006 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3007 			last_work_seen = syncer_delayno;
3008 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3009 			syncer_state = SYNCER_SHUTTING_DOWN;
3010 		while (!LIST_EMPTY(slp)) {
3011 			error = sync_vnode(slp, &bo, td);
3012 			if (error == 1) {
3013 				LIST_REMOVE(bo, bo_synclist);
3014 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3015 				continue;
3016 			}
3017 
3018 			if (first_printf == 0) {
3019 				/*
3020 				 * Drop the sync mutex, because some watchdog
3021 				 * drivers need to sleep while patting
3022 				 */
3023 				mtx_unlock(&sync_mtx);
3024 				wdog_kern_pat(WD_LASTVAL);
3025 				mtx_lock(&sync_mtx);
3026 			}
3027 		}
3028 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3029 			syncer_final_iter--;
3030 		/*
3031 		 * The variable rushjob allows the kernel to speed up the
3032 		 * processing of the filesystem syncer process. A rushjob
3033 		 * value of N tells the filesystem syncer to process the next
3034 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3035 		 * is used by the soft update code to speed up the filesystem
3036 		 * syncer process when the incore state is getting so far
3037 		 * ahead of the disk that the kernel memory pool is being
3038 		 * threatened with exhaustion.
3039 		 */
3040 		if (rushjob > 0) {
3041 			rushjob -= 1;
3042 			continue;
3043 		}
3044 		/*
3045 		 * Just sleep for a short period of time between
3046 		 * iterations when shutting down to allow some I/O
3047 		 * to happen.
3048 		 *
3049 		 * If it has taken us less than a second to process the
3050 		 * current work, then wait. Otherwise start right over
3051 		 * again. We can still lose time if any single round
3052 		 * takes more than two seconds, but it does not really
3053 		 * matter as we are just trying to generally pace the
3054 		 * filesystem activity.
3055 		 */
3056 		if (syncer_state != SYNCER_RUNNING ||
3057 		    time_uptime == starttime) {
3058 			thread_lock(td);
3059 			sched_prio(td, PPAUSE);
3060 			thread_unlock(td);
3061 		}
3062 		if (syncer_state != SYNCER_RUNNING)
3063 			cv_timedwait(&sync_wakeup, &sync_mtx,
3064 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3065 		else if (time_uptime == starttime)
3066 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3067 	}
3068 }
3069 
3070 /*
3071  * Request the syncer daemon to speed up its work.
3072  * We never push it to speed up more than half of its
3073  * normal turn time, otherwise it could take over the cpu.
3074  */
3075 int
3076 speedup_syncer(void)
3077 {
3078 	int ret = 0;
3079 
3080 	mtx_lock(&sync_mtx);
3081 	if (rushjob < syncdelay / 2) {
3082 		rushjob += 1;
3083 		stat_rush_requests += 1;
3084 		ret = 1;
3085 	}
3086 	mtx_unlock(&sync_mtx);
3087 	cv_broadcast(&sync_wakeup);
3088 	return (ret);
3089 }
3090 
3091 /*
3092  * Tell the syncer to speed up its work and run though its work
3093  * list several times, then tell it to shut down.
3094  */
3095 static void
3096 syncer_shutdown(void *arg, int howto)
3097 {
3098 
3099 	if (howto & RB_NOSYNC)
3100 		return;
3101 	mtx_lock(&sync_mtx);
3102 	syncer_state = SYNCER_SHUTTING_DOWN;
3103 	rushjob = 0;
3104 	mtx_unlock(&sync_mtx);
3105 	cv_broadcast(&sync_wakeup);
3106 	kproc_shutdown(arg, howto);
3107 }
3108 
3109 void
3110 syncer_suspend(void)
3111 {
3112 
3113 	syncer_shutdown(updateproc, 0);
3114 }
3115 
3116 void
3117 syncer_resume(void)
3118 {
3119 
3120 	mtx_lock(&sync_mtx);
3121 	first_printf = 1;
3122 	syncer_state = SYNCER_RUNNING;
3123 	mtx_unlock(&sync_mtx);
3124 	cv_broadcast(&sync_wakeup);
3125 	kproc_resume(updateproc);
3126 }
3127 
3128 /*
3129  * Move the buffer between the clean and dirty lists of its vnode.
3130  */
3131 void
3132 reassignbuf(struct buf *bp)
3133 {
3134 	struct vnode *vp;
3135 	struct bufobj *bo;
3136 	int delay;
3137 #ifdef INVARIANTS
3138 	struct bufv *bv;
3139 #endif
3140 
3141 	vp = bp->b_vp;
3142 	bo = bp->b_bufobj;
3143 
3144 	KASSERT((bp->b_flags & B_PAGING) == 0,
3145 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3146 
3147 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3148 	    bp, bp->b_vp, bp->b_flags);
3149 
3150 	BO_LOCK(bo);
3151 	buf_vlist_remove(bp);
3152 
3153 	/*
3154 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3155 	 * of clean buffers.
3156 	 */
3157 	if (bp->b_flags & B_DELWRI) {
3158 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3159 			switch (vp->v_type) {
3160 			case VDIR:
3161 				delay = dirdelay;
3162 				break;
3163 			case VCHR:
3164 				delay = metadelay;
3165 				break;
3166 			default:
3167 				delay = filedelay;
3168 			}
3169 			vn_syncer_add_to_worklist(bo, delay);
3170 		}
3171 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3172 	} else {
3173 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3174 
3175 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3176 			mtx_lock(&sync_mtx);
3177 			LIST_REMOVE(bo, bo_synclist);
3178 			syncer_worklist_len--;
3179 			mtx_unlock(&sync_mtx);
3180 			bo->bo_flag &= ~BO_ONWORKLST;
3181 		}
3182 	}
3183 #ifdef INVARIANTS
3184 	bv = &bo->bo_clean;
3185 	bp = TAILQ_FIRST(&bv->bv_hd);
3186 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3187 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3188 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3189 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3190 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3191 	bv = &bo->bo_dirty;
3192 	bp = TAILQ_FIRST(&bv->bv_hd);
3193 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3194 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3195 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3196 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3197 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3198 #endif
3199 	BO_UNLOCK(bo);
3200 }
3201 
3202 static void
3203 v_init_counters(struct vnode *vp)
3204 {
3205 
3206 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3207 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3208 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3209 
3210 	refcount_init(&vp->v_holdcnt, 1);
3211 	refcount_init(&vp->v_usecount, 1);
3212 }
3213 
3214 /*
3215  * Get a usecount on a vnode.
3216  *
3217  * vget and vget_finish may fail to lock the vnode if they lose a race against
3218  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3219  *
3220  * Consumers which don't guarantee liveness of the vnode can use SMR to
3221  * try to get a reference. Note this operation can fail since the vnode
3222  * may be awaiting getting freed by the time they get to it.
3223  */
3224 enum vgetstate
3225 vget_prep_smr(struct vnode *vp)
3226 {
3227 	enum vgetstate vs;
3228 
3229 	VFS_SMR_ASSERT_ENTERED();
3230 
3231 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3232 		vs = VGET_USECOUNT;
3233 	} else {
3234 		if (vhold_smr(vp))
3235 			vs = VGET_HOLDCNT;
3236 		else
3237 			vs = VGET_NONE;
3238 	}
3239 	return (vs);
3240 }
3241 
3242 enum vgetstate
3243 vget_prep(struct vnode *vp)
3244 {
3245 	enum vgetstate vs;
3246 
3247 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3248 		vs = VGET_USECOUNT;
3249 	} else {
3250 		vhold(vp);
3251 		vs = VGET_HOLDCNT;
3252 	}
3253 	return (vs);
3254 }
3255 
3256 void
3257 vget_abort(struct vnode *vp, enum vgetstate vs)
3258 {
3259 
3260 	switch (vs) {
3261 	case VGET_USECOUNT:
3262 		vrele(vp);
3263 		break;
3264 	case VGET_HOLDCNT:
3265 		vdrop(vp);
3266 		break;
3267 	default:
3268 		__assert_unreachable();
3269 	}
3270 }
3271 
3272 int
3273 vget(struct vnode *vp, int flags)
3274 {
3275 	enum vgetstate vs;
3276 
3277 	vs = vget_prep(vp);
3278 	return (vget_finish(vp, flags, vs));
3279 }
3280 
3281 int
3282 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3283 {
3284 	int error;
3285 
3286 	if ((flags & LK_INTERLOCK) != 0)
3287 		ASSERT_VI_LOCKED(vp, __func__);
3288 	else
3289 		ASSERT_VI_UNLOCKED(vp, __func__);
3290 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3291 	VNPASS(vp->v_holdcnt > 0, vp);
3292 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3293 
3294 	error = vn_lock(vp, flags);
3295 	if (__predict_false(error != 0)) {
3296 		vget_abort(vp, vs);
3297 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3298 		    vp);
3299 		return (error);
3300 	}
3301 
3302 	vget_finish_ref(vp, vs);
3303 	return (0);
3304 }
3305 
3306 void
3307 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3308 {
3309 	int old;
3310 
3311 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3312 	VNPASS(vp->v_holdcnt > 0, vp);
3313 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3314 
3315 	if (vs == VGET_USECOUNT)
3316 		return;
3317 
3318 	/*
3319 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3320 	 * the vnode around. Otherwise someone else lended their hold count and
3321 	 * we have to drop ours.
3322 	 */
3323 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3324 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3325 	if (old != 0) {
3326 #ifdef INVARIANTS
3327 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3328 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3329 #else
3330 		refcount_release(&vp->v_holdcnt);
3331 #endif
3332 	}
3333 }
3334 
3335 void
3336 vref(struct vnode *vp)
3337 {
3338 	enum vgetstate vs;
3339 
3340 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3341 	vs = vget_prep(vp);
3342 	vget_finish_ref(vp, vs);
3343 }
3344 
3345 void
3346 vrefact(struct vnode *vp)
3347 {
3348 	int old __diagused;
3349 
3350 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3351 	old = refcount_acquire(&vp->v_usecount);
3352 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3353 }
3354 
3355 void
3356 vlazy(struct vnode *vp)
3357 {
3358 	struct mount *mp;
3359 
3360 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3361 
3362 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3363 		return;
3364 	/*
3365 	 * We may get here for inactive routines after the vnode got doomed.
3366 	 */
3367 	if (VN_IS_DOOMED(vp))
3368 		return;
3369 	mp = vp->v_mount;
3370 	mtx_lock(&mp->mnt_listmtx);
3371 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3372 		vp->v_mflag |= VMP_LAZYLIST;
3373 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3374 		mp->mnt_lazyvnodelistsize++;
3375 	}
3376 	mtx_unlock(&mp->mnt_listmtx);
3377 }
3378 
3379 static void
3380 vunlazy(struct vnode *vp)
3381 {
3382 	struct mount *mp;
3383 
3384 	ASSERT_VI_LOCKED(vp, __func__);
3385 	VNPASS(!VN_IS_DOOMED(vp), vp);
3386 
3387 	mp = vp->v_mount;
3388 	mtx_lock(&mp->mnt_listmtx);
3389 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3390 	/*
3391 	 * Don't remove the vnode from the lazy list if another thread
3392 	 * has increased the hold count. It may have re-enqueued the
3393 	 * vnode to the lazy list and is now responsible for its
3394 	 * removal.
3395 	 */
3396 	if (vp->v_holdcnt == 0) {
3397 		vp->v_mflag &= ~VMP_LAZYLIST;
3398 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3399 		mp->mnt_lazyvnodelistsize--;
3400 	}
3401 	mtx_unlock(&mp->mnt_listmtx);
3402 }
3403 
3404 /*
3405  * This routine is only meant to be called from vgonel prior to dooming
3406  * the vnode.
3407  */
3408 static void
3409 vunlazy_gone(struct vnode *vp)
3410 {
3411 	struct mount *mp;
3412 
3413 	ASSERT_VOP_ELOCKED(vp, __func__);
3414 	ASSERT_VI_LOCKED(vp, __func__);
3415 	VNPASS(!VN_IS_DOOMED(vp), vp);
3416 
3417 	if (vp->v_mflag & VMP_LAZYLIST) {
3418 		mp = vp->v_mount;
3419 		mtx_lock(&mp->mnt_listmtx);
3420 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3421 		vp->v_mflag &= ~VMP_LAZYLIST;
3422 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3423 		mp->mnt_lazyvnodelistsize--;
3424 		mtx_unlock(&mp->mnt_listmtx);
3425 	}
3426 }
3427 
3428 static void
3429 vdefer_inactive(struct vnode *vp)
3430 {
3431 
3432 	ASSERT_VI_LOCKED(vp, __func__);
3433 	VNPASS(vp->v_holdcnt > 0, vp);
3434 	if (VN_IS_DOOMED(vp)) {
3435 		vdropl(vp);
3436 		return;
3437 	}
3438 	if (vp->v_iflag & VI_DEFINACT) {
3439 		VNPASS(vp->v_holdcnt > 1, vp);
3440 		vdropl(vp);
3441 		return;
3442 	}
3443 	if (vp->v_usecount > 0) {
3444 		vp->v_iflag &= ~VI_OWEINACT;
3445 		vdropl(vp);
3446 		return;
3447 	}
3448 	vlazy(vp);
3449 	vp->v_iflag |= VI_DEFINACT;
3450 	VI_UNLOCK(vp);
3451 	atomic_add_long(&deferred_inact, 1);
3452 }
3453 
3454 static void
3455 vdefer_inactive_unlocked(struct vnode *vp)
3456 {
3457 
3458 	VI_LOCK(vp);
3459 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3460 		vdropl(vp);
3461 		return;
3462 	}
3463 	vdefer_inactive(vp);
3464 }
3465 
3466 enum vput_op { VRELE, VPUT, VUNREF };
3467 
3468 /*
3469  * Handle ->v_usecount transitioning to 0.
3470  *
3471  * By releasing the last usecount we take ownership of the hold count which
3472  * provides liveness of the vnode, meaning we have to vdrop.
3473  *
3474  * For all vnodes we may need to perform inactive processing. It requires an
3475  * exclusive lock on the vnode, while it is legal to call here with only a
3476  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3477  * inactive processing gets deferred to the syncer.
3478  *
3479  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3480  * on the lock being held all the way until VOP_INACTIVE. This in particular
3481  * happens with UFS which adds half-constructed vnodes to the hash, where they
3482  * can be found by other code.
3483  */
3484 static void
3485 vput_final(struct vnode *vp, enum vput_op func)
3486 {
3487 	int error;
3488 	bool want_unlock;
3489 
3490 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3491 	VNPASS(vp->v_holdcnt > 0, vp);
3492 
3493 	VI_LOCK(vp);
3494 
3495 	/*
3496 	 * By the time we got here someone else might have transitioned
3497 	 * the count back to > 0.
3498 	 */
3499 	if (vp->v_usecount > 0)
3500 		goto out;
3501 
3502 	/*
3503 	 * If the vnode is doomed vgone already performed inactive processing
3504 	 * (if needed).
3505 	 */
3506 	if (VN_IS_DOOMED(vp))
3507 		goto out;
3508 
3509 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3510 		goto out;
3511 
3512 	if (vp->v_iflag & VI_DOINGINACT)
3513 		goto out;
3514 
3515 	/*
3516 	 * Locking operations here will drop the interlock and possibly the
3517 	 * vnode lock, opening a window where the vnode can get doomed all the
3518 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3519 	 * perform inactive.
3520 	 */
3521 	vp->v_iflag |= VI_OWEINACT;
3522 	want_unlock = false;
3523 	error = 0;
3524 	switch (func) {
3525 	case VRELE:
3526 		switch (VOP_ISLOCKED(vp)) {
3527 		case LK_EXCLUSIVE:
3528 			break;
3529 		case LK_EXCLOTHER:
3530 		case 0:
3531 			want_unlock = true;
3532 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3533 			VI_LOCK(vp);
3534 			break;
3535 		default:
3536 			/*
3537 			 * The lock has at least one sharer, but we have no way
3538 			 * to conclude whether this is us. Play it safe and
3539 			 * defer processing.
3540 			 */
3541 			error = EAGAIN;
3542 			break;
3543 		}
3544 		break;
3545 	case VPUT:
3546 		want_unlock = true;
3547 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3548 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3549 			    LK_NOWAIT);
3550 			VI_LOCK(vp);
3551 		}
3552 		break;
3553 	case VUNREF:
3554 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3555 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3556 			VI_LOCK(vp);
3557 		}
3558 		break;
3559 	}
3560 	if (error == 0) {
3561 		if (func == VUNREF) {
3562 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3563 			    ("recursive vunref"));
3564 			vp->v_vflag |= VV_UNREF;
3565 		}
3566 		for (;;) {
3567 			error = vinactive(vp);
3568 			if (want_unlock)
3569 				VOP_UNLOCK(vp);
3570 			if (error != ERELOOKUP || !want_unlock)
3571 				break;
3572 			VOP_LOCK(vp, LK_EXCLUSIVE);
3573 		}
3574 		if (func == VUNREF)
3575 			vp->v_vflag &= ~VV_UNREF;
3576 		vdropl(vp);
3577 	} else {
3578 		vdefer_inactive(vp);
3579 	}
3580 	return;
3581 out:
3582 	if (func == VPUT)
3583 		VOP_UNLOCK(vp);
3584 	vdropl(vp);
3585 }
3586 
3587 /*
3588  * Decrement ->v_usecount for a vnode.
3589  *
3590  * Releasing the last use count requires additional processing, see vput_final
3591  * above for details.
3592  *
3593  * Comment above each variant denotes lock state on entry and exit.
3594  */
3595 
3596 /*
3597  * in: any
3598  * out: same as passed in
3599  */
3600 void
3601 vrele(struct vnode *vp)
3602 {
3603 
3604 	ASSERT_VI_UNLOCKED(vp, __func__);
3605 	if (!refcount_release(&vp->v_usecount))
3606 		return;
3607 	vput_final(vp, VRELE);
3608 }
3609 
3610 /*
3611  * in: locked
3612  * out: unlocked
3613  */
3614 void
3615 vput(struct vnode *vp)
3616 {
3617 
3618 	ASSERT_VOP_LOCKED(vp, __func__);
3619 	ASSERT_VI_UNLOCKED(vp, __func__);
3620 	if (!refcount_release(&vp->v_usecount)) {
3621 		VOP_UNLOCK(vp);
3622 		return;
3623 	}
3624 	vput_final(vp, VPUT);
3625 }
3626 
3627 /*
3628  * in: locked
3629  * out: locked
3630  */
3631 void
3632 vunref(struct vnode *vp)
3633 {
3634 
3635 	ASSERT_VOP_LOCKED(vp, __func__);
3636 	ASSERT_VI_UNLOCKED(vp, __func__);
3637 	if (!refcount_release(&vp->v_usecount))
3638 		return;
3639 	vput_final(vp, VUNREF);
3640 }
3641 
3642 void
3643 vhold(struct vnode *vp)
3644 {
3645 	int old;
3646 
3647 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3648 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3649 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3650 	    ("%s: wrong hold count %d", __func__, old));
3651 	if (old == 0)
3652 		vfs_freevnodes_dec();
3653 }
3654 
3655 void
3656 vholdnz(struct vnode *vp)
3657 {
3658 
3659 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3660 #ifdef INVARIANTS
3661 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3662 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3663 	    ("%s: wrong hold count %d", __func__, old));
3664 #else
3665 	atomic_add_int(&vp->v_holdcnt, 1);
3666 #endif
3667 }
3668 
3669 /*
3670  * Grab a hold count unless the vnode is freed.
3671  *
3672  * Only use this routine if vfs smr is the only protection you have against
3673  * freeing the vnode.
3674  *
3675  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3676  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3677  * the thread which managed to set the flag.
3678  *
3679  * It may be tempting to replace the loop with:
3680  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3681  * if (count & VHOLD_NO_SMR) {
3682  *     backpedal and error out;
3683  * }
3684  *
3685  * However, while this is more performant, it hinders debugging by eliminating
3686  * the previously mentioned invariant.
3687  */
3688 bool
3689 vhold_smr(struct vnode *vp)
3690 {
3691 	int count;
3692 
3693 	VFS_SMR_ASSERT_ENTERED();
3694 
3695 	count = atomic_load_int(&vp->v_holdcnt);
3696 	for (;;) {
3697 		if (count & VHOLD_NO_SMR) {
3698 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3699 			    ("non-zero hold count with flags %d\n", count));
3700 			return (false);
3701 		}
3702 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3703 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3704 			if (count == 0)
3705 				vfs_freevnodes_dec();
3706 			return (true);
3707 		}
3708 	}
3709 }
3710 
3711 /*
3712  * Hold a free vnode for recycling.
3713  *
3714  * Note: vnode_init references this comment.
3715  *
3716  * Attempts to recycle only need the global vnode list lock and have no use for
3717  * SMR.
3718  *
3719  * However, vnodes get inserted into the global list before they get fully
3720  * initialized and stay there until UMA decides to free the memory. This in
3721  * particular means the target can be found before it becomes usable and after
3722  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3723  * VHOLD_NO_SMR.
3724  *
3725  * Note: the vnode may gain more references after we transition the count 0->1.
3726  */
3727 static bool
3728 vhold_recycle_free(struct vnode *vp)
3729 {
3730 	int count;
3731 
3732 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3733 
3734 	count = atomic_load_int(&vp->v_holdcnt);
3735 	for (;;) {
3736 		if (count & VHOLD_NO_SMR) {
3737 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3738 			    ("non-zero hold count with flags %d\n", count));
3739 			return (false);
3740 		}
3741 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3742 		if (count > 0) {
3743 			return (false);
3744 		}
3745 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3746 			vfs_freevnodes_dec();
3747 			return (true);
3748 		}
3749 	}
3750 }
3751 
3752 static void __noinline
3753 vdbatch_process(struct vdbatch *vd)
3754 {
3755 	struct vnode *vp;
3756 	int i;
3757 
3758 	mtx_assert(&vd->lock, MA_OWNED);
3759 	MPASS(curthread->td_pinned > 0);
3760 	MPASS(vd->index == VDBATCH_SIZE);
3761 
3762 	/*
3763 	 * Attempt to requeue the passed batch, but give up easily.
3764 	 *
3765 	 * Despite batching the mechanism is prone to transient *significant*
3766 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3767 	 * if multiple CPUs get here (one real-world example is highly parallel
3768 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3769 	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3770 	 * the problem. Parties which don't like it are welcome to implement
3771 	 * something better.
3772 	 */
3773 	critical_enter();
3774 	if (mtx_trylock(&vnode_list_mtx)) {
3775 		for (i = 0; i < VDBATCH_SIZE; i++) {
3776 			vp = vd->tab[i];
3777 			vd->tab[i] = NULL;
3778 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3779 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3780 			MPASS(vp->v_dbatchcpu != NOCPU);
3781 			vp->v_dbatchcpu = NOCPU;
3782 		}
3783 		mtx_unlock(&vnode_list_mtx);
3784 	} else {
3785 		counter_u64_add(vnode_skipped_requeues, 1);
3786 
3787 		for (i = 0; i < VDBATCH_SIZE; i++) {
3788 			vp = vd->tab[i];
3789 			vd->tab[i] = NULL;
3790 			MPASS(vp->v_dbatchcpu != NOCPU);
3791 			vp->v_dbatchcpu = NOCPU;
3792 		}
3793 	}
3794 	vd->index = 0;
3795 	critical_exit();
3796 }
3797 
3798 static void
3799 vdbatch_enqueue(struct vnode *vp)
3800 {
3801 	struct vdbatch *vd;
3802 
3803 	ASSERT_VI_LOCKED(vp, __func__);
3804 	VNPASS(!VN_IS_DOOMED(vp), vp);
3805 
3806 	if (vp->v_dbatchcpu != NOCPU) {
3807 		VI_UNLOCK(vp);
3808 		return;
3809 	}
3810 
3811 	sched_pin();
3812 	vd = DPCPU_PTR(vd);
3813 	mtx_lock(&vd->lock);
3814 	MPASS(vd->index < VDBATCH_SIZE);
3815 	MPASS(vd->tab[vd->index] == NULL);
3816 	/*
3817 	 * A hack: we depend on being pinned so that we know what to put in
3818 	 * ->v_dbatchcpu.
3819 	 */
3820 	vp->v_dbatchcpu = curcpu;
3821 	vd->tab[vd->index] = vp;
3822 	vd->index++;
3823 	VI_UNLOCK(vp);
3824 	if (vd->index == VDBATCH_SIZE)
3825 		vdbatch_process(vd);
3826 	mtx_unlock(&vd->lock);
3827 	sched_unpin();
3828 }
3829 
3830 /*
3831  * This routine must only be called for vnodes which are about to be
3832  * deallocated. Supporting dequeue for arbitrary vndoes would require
3833  * validating that the locked batch matches.
3834  */
3835 static void
3836 vdbatch_dequeue(struct vnode *vp)
3837 {
3838 	struct vdbatch *vd;
3839 	int i;
3840 	short cpu;
3841 
3842 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3843 
3844 	cpu = vp->v_dbatchcpu;
3845 	if (cpu == NOCPU)
3846 		return;
3847 
3848 	vd = DPCPU_ID_PTR(cpu, vd);
3849 	mtx_lock(&vd->lock);
3850 	for (i = 0; i < vd->index; i++) {
3851 		if (vd->tab[i] != vp)
3852 			continue;
3853 		vp->v_dbatchcpu = NOCPU;
3854 		vd->index--;
3855 		vd->tab[i] = vd->tab[vd->index];
3856 		vd->tab[vd->index] = NULL;
3857 		break;
3858 	}
3859 	mtx_unlock(&vd->lock);
3860 	/*
3861 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3862 	 */
3863 	MPASS(vp->v_dbatchcpu == NOCPU);
3864 }
3865 
3866 /*
3867  * Drop the hold count of the vnode.
3868  *
3869  * It will only get freed if this is the last hold *and* it has been vgone'd.
3870  *
3871  * Because the vnode vm object keeps a hold reference on the vnode if
3872  * there is at least one resident non-cached page, the vnode cannot
3873  * leave the active list without the page cleanup done.
3874  */
3875 static void __noinline
3876 vdropl_final(struct vnode *vp)
3877 {
3878 
3879 	ASSERT_VI_LOCKED(vp, __func__);
3880 	VNPASS(VN_IS_DOOMED(vp), vp);
3881 	/*
3882 	 * Set the VHOLD_NO_SMR flag.
3883 	 *
3884 	 * We may be racing against vhold_smr. If they win we can just pretend
3885 	 * we never got this far, they will vdrop later.
3886 	 */
3887 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3888 		vfs_freevnodes_inc();
3889 		VI_UNLOCK(vp);
3890 		/*
3891 		 * We lost the aforementioned race. Any subsequent access is
3892 		 * invalid as they might have managed to vdropl on their own.
3893 		 */
3894 		return;
3895 	}
3896 	/*
3897 	 * Don't bump freevnodes as this one is going away.
3898 	 */
3899 	freevnode(vp);
3900 }
3901 
3902 void
3903 vdrop(struct vnode *vp)
3904 {
3905 
3906 	ASSERT_VI_UNLOCKED(vp, __func__);
3907 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3908 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3909 		return;
3910 	VI_LOCK(vp);
3911 	vdropl(vp);
3912 }
3913 
3914 static void __always_inline
3915 vdropl_impl(struct vnode *vp, bool enqueue)
3916 {
3917 
3918 	ASSERT_VI_LOCKED(vp, __func__);
3919 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3920 	if (!refcount_release(&vp->v_holdcnt)) {
3921 		VI_UNLOCK(vp);
3922 		return;
3923 	}
3924 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3925 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3926 	if (VN_IS_DOOMED(vp)) {
3927 		vdropl_final(vp);
3928 		return;
3929 	}
3930 
3931 	vfs_freevnodes_inc();
3932 	if (vp->v_mflag & VMP_LAZYLIST) {
3933 		vunlazy(vp);
3934 	}
3935 
3936 	if (!enqueue) {
3937 		VI_UNLOCK(vp);
3938 		return;
3939 	}
3940 
3941 	/*
3942 	 * Also unlocks the interlock. We can't assert on it as we
3943 	 * released our hold and by now the vnode might have been
3944 	 * freed.
3945 	 */
3946 	vdbatch_enqueue(vp);
3947 }
3948 
3949 void
3950 vdropl(struct vnode *vp)
3951 {
3952 
3953 	vdropl_impl(vp, true);
3954 }
3955 
3956 /*
3957  * vdrop a vnode when recycling
3958  *
3959  * This is a special case routine only to be used when recycling, differs from
3960  * regular vdrop by not requeieing the vnode on LRU.
3961  *
3962  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3963  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3964  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3965  * loop which can last for as long as writes are frozen.
3966  */
3967 static void
3968 vdropl_recycle(struct vnode *vp)
3969 {
3970 
3971 	vdropl_impl(vp, false);
3972 }
3973 
3974 static void
3975 vdrop_recycle(struct vnode *vp)
3976 {
3977 
3978 	VI_LOCK(vp);
3979 	vdropl_recycle(vp);
3980 }
3981 
3982 /*
3983  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3984  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3985  */
3986 static int
3987 vinactivef(struct vnode *vp)
3988 {
3989 	struct vm_object *obj;
3990 	int error;
3991 
3992 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3993 	ASSERT_VI_LOCKED(vp, "vinactive");
3994 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3995 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3996 	vp->v_iflag |= VI_DOINGINACT;
3997 	vp->v_iflag &= ~VI_OWEINACT;
3998 	VI_UNLOCK(vp);
3999 	/*
4000 	 * Before moving off the active list, we must be sure that any
4001 	 * modified pages are converted into the vnode's dirty
4002 	 * buffers, since these will no longer be checked once the
4003 	 * vnode is on the inactive list.
4004 	 *
4005 	 * The write-out of the dirty pages is asynchronous.  At the
4006 	 * point that VOP_INACTIVE() is called, there could still be
4007 	 * pending I/O and dirty pages in the object.
4008 	 */
4009 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
4010 	    vm_object_mightbedirty(obj)) {
4011 		VM_OBJECT_WLOCK(obj);
4012 		vm_object_page_clean(obj, 0, 0, 0);
4013 		VM_OBJECT_WUNLOCK(obj);
4014 	}
4015 	error = VOP_INACTIVE(vp);
4016 	VI_LOCK(vp);
4017 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4018 	vp->v_iflag &= ~VI_DOINGINACT;
4019 	return (error);
4020 }
4021 
4022 int
4023 vinactive(struct vnode *vp)
4024 {
4025 
4026 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4027 	ASSERT_VI_LOCKED(vp, "vinactive");
4028 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4029 
4030 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4031 		return (0);
4032 	if (vp->v_iflag & VI_DOINGINACT)
4033 		return (0);
4034 	if (vp->v_usecount > 0) {
4035 		vp->v_iflag &= ~VI_OWEINACT;
4036 		return (0);
4037 	}
4038 	return (vinactivef(vp));
4039 }
4040 
4041 /*
4042  * Remove any vnodes in the vnode table belonging to mount point mp.
4043  *
4044  * If FORCECLOSE is not specified, there should not be any active ones,
4045  * return error if any are found (nb: this is a user error, not a
4046  * system error). If FORCECLOSE is specified, detach any active vnodes
4047  * that are found.
4048  *
4049  * If WRITECLOSE is set, only flush out regular file vnodes open for
4050  * writing.
4051  *
4052  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4053  *
4054  * `rootrefs' specifies the base reference count for the root vnode
4055  * of this filesystem. The root vnode is considered busy if its
4056  * v_usecount exceeds this value. On a successful return, vflush(, td)
4057  * will call vrele() on the root vnode exactly rootrefs times.
4058  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4059  * be zero.
4060  */
4061 #ifdef DIAGNOSTIC
4062 static int busyprt = 0;		/* print out busy vnodes */
4063 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4064 #endif
4065 
4066 int
4067 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4068 {
4069 	struct vnode *vp, *mvp, *rootvp = NULL;
4070 	struct vattr vattr;
4071 	int busy = 0, error;
4072 
4073 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4074 	    rootrefs, flags);
4075 	if (rootrefs > 0) {
4076 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4077 		    ("vflush: bad args"));
4078 		/*
4079 		 * Get the filesystem root vnode. We can vput() it
4080 		 * immediately, since with rootrefs > 0, it won't go away.
4081 		 */
4082 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4083 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4084 			    __func__, error);
4085 			return (error);
4086 		}
4087 		vput(rootvp);
4088 	}
4089 loop:
4090 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4091 		vholdl(vp);
4092 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4093 		if (error) {
4094 			vdrop(vp);
4095 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4096 			goto loop;
4097 		}
4098 		/*
4099 		 * Skip over a vnodes marked VV_SYSTEM.
4100 		 */
4101 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4102 			VOP_UNLOCK(vp);
4103 			vdrop(vp);
4104 			continue;
4105 		}
4106 		/*
4107 		 * If WRITECLOSE is set, flush out unlinked but still open
4108 		 * files (even if open only for reading) and regular file
4109 		 * vnodes open for writing.
4110 		 */
4111 		if (flags & WRITECLOSE) {
4112 			if (vp->v_object != NULL) {
4113 				VM_OBJECT_WLOCK(vp->v_object);
4114 				vm_object_page_clean(vp->v_object, 0, 0, 0);
4115 				VM_OBJECT_WUNLOCK(vp->v_object);
4116 			}
4117 			do {
4118 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4119 			} while (error == ERELOOKUP);
4120 			if (error != 0) {
4121 				VOP_UNLOCK(vp);
4122 				vdrop(vp);
4123 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4124 				return (error);
4125 			}
4126 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4127 			VI_LOCK(vp);
4128 
4129 			if ((vp->v_type == VNON ||
4130 			    (error == 0 && vattr.va_nlink > 0)) &&
4131 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4132 				VOP_UNLOCK(vp);
4133 				vdropl(vp);
4134 				continue;
4135 			}
4136 		} else
4137 			VI_LOCK(vp);
4138 		/*
4139 		 * With v_usecount == 0, all we need to do is clear out the
4140 		 * vnode data structures and we are done.
4141 		 *
4142 		 * If FORCECLOSE is set, forcibly close the vnode.
4143 		 */
4144 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4145 			vgonel(vp);
4146 		} else {
4147 			busy++;
4148 #ifdef DIAGNOSTIC
4149 			if (busyprt)
4150 				vn_printf(vp, "vflush: busy vnode ");
4151 #endif
4152 		}
4153 		VOP_UNLOCK(vp);
4154 		vdropl(vp);
4155 	}
4156 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4157 		/*
4158 		 * If just the root vnode is busy, and if its refcount
4159 		 * is equal to `rootrefs', then go ahead and kill it.
4160 		 */
4161 		VI_LOCK(rootvp);
4162 		KASSERT(busy > 0, ("vflush: not busy"));
4163 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4164 		    ("vflush: usecount %d < rootrefs %d",
4165 		     rootvp->v_usecount, rootrefs));
4166 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4167 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4168 			vgone(rootvp);
4169 			VOP_UNLOCK(rootvp);
4170 			busy = 0;
4171 		} else
4172 			VI_UNLOCK(rootvp);
4173 	}
4174 	if (busy) {
4175 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4176 		    busy);
4177 		return (EBUSY);
4178 	}
4179 	for (; rootrefs > 0; rootrefs--)
4180 		vrele(rootvp);
4181 	return (0);
4182 }
4183 
4184 /*
4185  * Recycle an unused vnode.
4186  */
4187 int
4188 vrecycle(struct vnode *vp)
4189 {
4190 	int recycled;
4191 
4192 	VI_LOCK(vp);
4193 	recycled = vrecyclel(vp);
4194 	VI_UNLOCK(vp);
4195 	return (recycled);
4196 }
4197 
4198 /*
4199  * vrecycle, with the vp interlock held.
4200  */
4201 int
4202 vrecyclel(struct vnode *vp)
4203 {
4204 	int recycled;
4205 
4206 	ASSERT_VOP_ELOCKED(vp, __func__);
4207 	ASSERT_VI_LOCKED(vp, __func__);
4208 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4209 	recycled = 0;
4210 	if (vp->v_usecount == 0) {
4211 		recycled = 1;
4212 		vgonel(vp);
4213 	}
4214 	return (recycled);
4215 }
4216 
4217 /*
4218  * Eliminate all activity associated with a vnode
4219  * in preparation for reuse.
4220  */
4221 void
4222 vgone(struct vnode *vp)
4223 {
4224 	VI_LOCK(vp);
4225 	vgonel(vp);
4226 	VI_UNLOCK(vp);
4227 }
4228 
4229 /*
4230  * Notify upper mounts about reclaimed or unlinked vnode.
4231  */
4232 void
4233 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4234 {
4235 	struct mount *mp;
4236 	struct mount_upper_node *ump;
4237 
4238 	mp = atomic_load_ptr(&vp->v_mount);
4239 	if (mp == NULL)
4240 		return;
4241 	if (TAILQ_EMPTY(&mp->mnt_notify))
4242 		return;
4243 
4244 	MNT_ILOCK(mp);
4245 	mp->mnt_upper_pending++;
4246 	KASSERT(mp->mnt_upper_pending > 0,
4247 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4248 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4249 		MNT_IUNLOCK(mp);
4250 		switch (event) {
4251 		case VFS_NOTIFY_UPPER_RECLAIM:
4252 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4253 			break;
4254 		case VFS_NOTIFY_UPPER_UNLINK:
4255 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4256 			break;
4257 		}
4258 		MNT_ILOCK(mp);
4259 	}
4260 	mp->mnt_upper_pending--;
4261 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4262 	    mp->mnt_upper_pending == 0) {
4263 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4264 		wakeup(&mp->mnt_uppers);
4265 	}
4266 	MNT_IUNLOCK(mp);
4267 }
4268 
4269 /*
4270  * vgone, with the vp interlock held.
4271  */
4272 static void
4273 vgonel(struct vnode *vp)
4274 {
4275 	struct thread *td;
4276 	struct mount *mp;
4277 	vm_object_t object;
4278 	bool active, doinginact, oweinact;
4279 
4280 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4281 	ASSERT_VI_LOCKED(vp, "vgonel");
4282 	VNASSERT(vp->v_holdcnt, vp,
4283 	    ("vgonel: vp %p has no reference.", vp));
4284 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4285 	td = curthread;
4286 
4287 	/*
4288 	 * Don't vgonel if we're already doomed.
4289 	 */
4290 	if (VN_IS_DOOMED(vp)) {
4291 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4292 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4293 		return;
4294 	}
4295 	/*
4296 	 * Paired with freevnode.
4297 	 */
4298 	vn_seqc_write_begin_locked(vp);
4299 	vunlazy_gone(vp);
4300 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4301 	vn_set_state(vp, VSTATE_DESTROYING);
4302 
4303 	/*
4304 	 * Check to see if the vnode is in use.  If so, we have to
4305 	 * call VOP_CLOSE() and VOP_INACTIVE().
4306 	 *
4307 	 * It could be that VOP_INACTIVE() requested reclamation, in
4308 	 * which case we should avoid recursion, so check
4309 	 * VI_DOINGINACT.  This is not precise but good enough.
4310 	 */
4311 	active = vp->v_usecount > 0;
4312 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4313 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4314 
4315 	/*
4316 	 * If we need to do inactive VI_OWEINACT will be set.
4317 	 */
4318 	if (vp->v_iflag & VI_DEFINACT) {
4319 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4320 		vp->v_iflag &= ~VI_DEFINACT;
4321 		vdropl(vp);
4322 	} else {
4323 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4324 		VI_UNLOCK(vp);
4325 	}
4326 	cache_purge_vgone(vp);
4327 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4328 
4329 	/*
4330 	 * If purging an active vnode, it must be closed and
4331 	 * deactivated before being reclaimed.
4332 	 */
4333 	if (active)
4334 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4335 	if (!doinginact) {
4336 		do {
4337 			if (oweinact || active) {
4338 				VI_LOCK(vp);
4339 				vinactivef(vp);
4340 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4341 				VI_UNLOCK(vp);
4342 			}
4343 		} while (oweinact);
4344 	}
4345 	if (vp->v_type == VSOCK)
4346 		vfs_unp_reclaim(vp);
4347 
4348 	/*
4349 	 * Clean out any buffers associated with the vnode.
4350 	 * If the flush fails, just toss the buffers.
4351 	 */
4352 	mp = NULL;
4353 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4354 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4355 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4356 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4357 			;
4358 	}
4359 
4360 	BO_LOCK(&vp->v_bufobj);
4361 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4362 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4363 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4364 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4365 	    ("vp %p bufobj not invalidated", vp));
4366 
4367 	/*
4368 	 * For VMIO bufobj, BO_DEAD is set later, or in
4369 	 * vm_object_terminate() after the object's page queue is
4370 	 * flushed.
4371 	 */
4372 	object = vp->v_bufobj.bo_object;
4373 	if (object == NULL)
4374 		vp->v_bufobj.bo_flag |= BO_DEAD;
4375 	BO_UNLOCK(&vp->v_bufobj);
4376 
4377 	/*
4378 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4379 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4380 	 * should not touch the object borrowed from the lower vnode
4381 	 * (the handle check).
4382 	 */
4383 	if (object != NULL && object->type == OBJT_VNODE &&
4384 	    object->handle == vp)
4385 		vnode_destroy_vobject(vp);
4386 
4387 	/*
4388 	 * Reclaim the vnode.
4389 	 */
4390 	if (VOP_RECLAIM(vp))
4391 		panic("vgone: cannot reclaim");
4392 	if (mp != NULL)
4393 		vn_finished_secondary_write(mp);
4394 	VNASSERT(vp->v_object == NULL, vp,
4395 	    ("vop_reclaim left v_object vp=%p", vp));
4396 	/*
4397 	 * Clear the advisory locks and wake up waiting threads.
4398 	 */
4399 	if (vp->v_lockf != NULL) {
4400 		(void)VOP_ADVLOCKPURGE(vp);
4401 		vp->v_lockf = NULL;
4402 	}
4403 	/*
4404 	 * Delete from old mount point vnode list.
4405 	 */
4406 	if (vp->v_mount == NULL) {
4407 		VI_LOCK(vp);
4408 	} else {
4409 		delmntque(vp);
4410 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4411 	}
4412 	/*
4413 	 * Done with purge, reset to the standard lock and invalidate
4414 	 * the vnode.
4415 	 */
4416 	vp->v_vnlock = &vp->v_lock;
4417 	vp->v_op = &dead_vnodeops;
4418 	vp->v_type = VBAD;
4419 	vn_set_state(vp, VSTATE_DEAD);
4420 }
4421 
4422 /*
4423  * Print out a description of a vnode.
4424  */
4425 static const char *const vtypename[] = {
4426 	[VNON] = "VNON",
4427 	[VREG] = "VREG",
4428 	[VDIR] = "VDIR",
4429 	[VBLK] = "VBLK",
4430 	[VCHR] = "VCHR",
4431 	[VLNK] = "VLNK",
4432 	[VSOCK] = "VSOCK",
4433 	[VFIFO] = "VFIFO",
4434 	[VBAD] = "VBAD",
4435 	[VMARKER] = "VMARKER",
4436 };
4437 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4438     "vnode type name not added to vtypename");
4439 
4440 static const char *const vstatename[] = {
4441 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4442 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4443 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4444 	[VSTATE_DEAD] = "VSTATE_DEAD",
4445 };
4446 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4447     "vnode state name not added to vstatename");
4448 
4449 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4450     "new hold count flag not added to vn_printf");
4451 
4452 void
4453 vn_printf(struct vnode *vp, const char *fmt, ...)
4454 {
4455 	va_list ap;
4456 	char buf[256], buf2[16];
4457 	u_long flags;
4458 	u_int holdcnt;
4459 	short irflag;
4460 
4461 	va_start(ap, fmt);
4462 	vprintf(fmt, ap);
4463 	va_end(ap);
4464 	printf("%p: ", (void *)vp);
4465 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4466 	    vstatename[vp->v_state], vp->v_op);
4467 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4468 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4469 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4470 	    vp->v_seqc_users);
4471 	switch (vp->v_type) {
4472 	case VDIR:
4473 		printf(" mountedhere %p\n", vp->v_mountedhere);
4474 		break;
4475 	case VCHR:
4476 		printf(" rdev %p\n", vp->v_rdev);
4477 		break;
4478 	case VSOCK:
4479 		printf(" socket %p\n", vp->v_unpcb);
4480 		break;
4481 	case VFIFO:
4482 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4483 		break;
4484 	default:
4485 		printf("\n");
4486 		break;
4487 	}
4488 	buf[0] = '\0';
4489 	buf[1] = '\0';
4490 	if (holdcnt & VHOLD_NO_SMR)
4491 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4492 	printf("    hold count flags (%s)\n", buf + 1);
4493 
4494 	buf[0] = '\0';
4495 	buf[1] = '\0';
4496 	irflag = vn_irflag_read(vp);
4497 	if (irflag & VIRF_DOOMED)
4498 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4499 	if (irflag & VIRF_PGREAD)
4500 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4501 	if (irflag & VIRF_MOUNTPOINT)
4502 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4503 	if (irflag & VIRF_TEXT_REF)
4504 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4505 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4506 	if (flags != 0) {
4507 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4508 		strlcat(buf, buf2, sizeof(buf));
4509 	}
4510 	if (vp->v_vflag & VV_ROOT)
4511 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4512 	if (vp->v_vflag & VV_ISTTY)
4513 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4514 	if (vp->v_vflag & VV_NOSYNC)
4515 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4516 	if (vp->v_vflag & VV_ETERNALDEV)
4517 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4518 	if (vp->v_vflag & VV_CACHEDLABEL)
4519 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4520 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4521 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4522 	if (vp->v_vflag & VV_COPYONWRITE)
4523 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4524 	if (vp->v_vflag & VV_SYSTEM)
4525 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4526 	if (vp->v_vflag & VV_PROCDEP)
4527 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4528 	if (vp->v_vflag & VV_DELETED)
4529 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4530 	if (vp->v_vflag & VV_MD)
4531 		strlcat(buf, "|VV_MD", sizeof(buf));
4532 	if (vp->v_vflag & VV_FORCEINSMQ)
4533 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4534 	if (vp->v_vflag & VV_READLINK)
4535 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4536 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4537 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4538 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4539 	if (flags != 0) {
4540 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4541 		strlcat(buf, buf2, sizeof(buf));
4542 	}
4543 	if (vp->v_iflag & VI_MOUNT)
4544 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4545 	if (vp->v_iflag & VI_DOINGINACT)
4546 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4547 	if (vp->v_iflag & VI_OWEINACT)
4548 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4549 	if (vp->v_iflag & VI_DEFINACT)
4550 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4551 	if (vp->v_iflag & VI_FOPENING)
4552 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4553 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4554 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4555 	if (flags != 0) {
4556 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4557 		strlcat(buf, buf2, sizeof(buf));
4558 	}
4559 	if (vp->v_mflag & VMP_LAZYLIST)
4560 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4561 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4562 	if (flags != 0) {
4563 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4564 		strlcat(buf, buf2, sizeof(buf));
4565 	}
4566 	printf("    flags (%s)", buf + 1);
4567 	if (mtx_owned(VI_MTX(vp)))
4568 		printf(" VI_LOCKed");
4569 	printf("\n");
4570 	if (vp->v_object != NULL)
4571 		printf("    v_object %p ref %d pages %d "
4572 		    "cleanbuf %d dirtybuf %d\n",
4573 		    vp->v_object, vp->v_object->ref_count,
4574 		    vp->v_object->resident_page_count,
4575 		    vp->v_bufobj.bo_clean.bv_cnt,
4576 		    vp->v_bufobj.bo_dirty.bv_cnt);
4577 	printf("    ");
4578 	lockmgr_printinfo(vp->v_vnlock);
4579 	if (vp->v_data != NULL)
4580 		VOP_PRINT(vp);
4581 }
4582 
4583 #ifdef DDB
4584 /*
4585  * List all of the locked vnodes in the system.
4586  * Called when debugging the kernel.
4587  */
4588 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4589 {
4590 	struct mount *mp;
4591 	struct vnode *vp;
4592 
4593 	/*
4594 	 * Note: because this is DDB, we can't obey the locking semantics
4595 	 * for these structures, which means we could catch an inconsistent
4596 	 * state and dereference a nasty pointer.  Not much to be done
4597 	 * about that.
4598 	 */
4599 	db_printf("Locked vnodes\n");
4600 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4601 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4602 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4603 				vn_printf(vp, "vnode ");
4604 		}
4605 	}
4606 }
4607 
4608 /*
4609  * Show details about the given vnode.
4610  */
4611 DB_SHOW_COMMAND(vnode, db_show_vnode)
4612 {
4613 	struct vnode *vp;
4614 
4615 	if (!have_addr)
4616 		return;
4617 	vp = (struct vnode *)addr;
4618 	vn_printf(vp, "vnode ");
4619 }
4620 
4621 /*
4622  * Show details about the given mount point.
4623  */
4624 DB_SHOW_COMMAND(mount, db_show_mount)
4625 {
4626 	struct mount *mp;
4627 	struct vfsopt *opt;
4628 	struct statfs *sp;
4629 	struct vnode *vp;
4630 	char buf[512];
4631 	uint64_t mflags;
4632 	u_int flags;
4633 
4634 	if (!have_addr) {
4635 		/* No address given, print short info about all mount points. */
4636 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4637 			db_printf("%p %s on %s (%s)\n", mp,
4638 			    mp->mnt_stat.f_mntfromname,
4639 			    mp->mnt_stat.f_mntonname,
4640 			    mp->mnt_stat.f_fstypename);
4641 			if (db_pager_quit)
4642 				break;
4643 		}
4644 		db_printf("\nMore info: show mount <addr>\n");
4645 		return;
4646 	}
4647 
4648 	mp = (struct mount *)addr;
4649 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4650 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4651 
4652 	buf[0] = '\0';
4653 	mflags = mp->mnt_flag;
4654 #define	MNT_FLAG(flag)	do {						\
4655 	if (mflags & (flag)) {						\
4656 		if (buf[0] != '\0')					\
4657 			strlcat(buf, ", ", sizeof(buf));		\
4658 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4659 		mflags &= ~(flag);					\
4660 	}								\
4661 } while (0)
4662 	MNT_FLAG(MNT_RDONLY);
4663 	MNT_FLAG(MNT_SYNCHRONOUS);
4664 	MNT_FLAG(MNT_NOEXEC);
4665 	MNT_FLAG(MNT_NOSUID);
4666 	MNT_FLAG(MNT_NFS4ACLS);
4667 	MNT_FLAG(MNT_UNION);
4668 	MNT_FLAG(MNT_ASYNC);
4669 	MNT_FLAG(MNT_SUIDDIR);
4670 	MNT_FLAG(MNT_SOFTDEP);
4671 	MNT_FLAG(MNT_NOSYMFOLLOW);
4672 	MNT_FLAG(MNT_GJOURNAL);
4673 	MNT_FLAG(MNT_MULTILABEL);
4674 	MNT_FLAG(MNT_ACLS);
4675 	MNT_FLAG(MNT_NOATIME);
4676 	MNT_FLAG(MNT_NOCLUSTERR);
4677 	MNT_FLAG(MNT_NOCLUSTERW);
4678 	MNT_FLAG(MNT_SUJ);
4679 	MNT_FLAG(MNT_EXRDONLY);
4680 	MNT_FLAG(MNT_EXPORTED);
4681 	MNT_FLAG(MNT_DEFEXPORTED);
4682 	MNT_FLAG(MNT_EXPORTANON);
4683 	MNT_FLAG(MNT_EXKERB);
4684 	MNT_FLAG(MNT_EXPUBLIC);
4685 	MNT_FLAG(MNT_LOCAL);
4686 	MNT_FLAG(MNT_QUOTA);
4687 	MNT_FLAG(MNT_ROOTFS);
4688 	MNT_FLAG(MNT_USER);
4689 	MNT_FLAG(MNT_IGNORE);
4690 	MNT_FLAG(MNT_UPDATE);
4691 	MNT_FLAG(MNT_DELEXPORT);
4692 	MNT_FLAG(MNT_RELOAD);
4693 	MNT_FLAG(MNT_FORCE);
4694 	MNT_FLAG(MNT_SNAPSHOT);
4695 	MNT_FLAG(MNT_BYFSID);
4696 #undef MNT_FLAG
4697 	if (mflags != 0) {
4698 		if (buf[0] != '\0')
4699 			strlcat(buf, ", ", sizeof(buf));
4700 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4701 		    "0x%016jx", mflags);
4702 	}
4703 	db_printf("    mnt_flag = %s\n", buf);
4704 
4705 	buf[0] = '\0';
4706 	flags = mp->mnt_kern_flag;
4707 #define	MNT_KERN_FLAG(flag)	do {					\
4708 	if (flags & (flag)) {						\
4709 		if (buf[0] != '\0')					\
4710 			strlcat(buf, ", ", sizeof(buf));		\
4711 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4712 		flags &= ~(flag);					\
4713 	}								\
4714 } while (0)
4715 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4716 	MNT_KERN_FLAG(MNTK_ASYNC);
4717 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4718 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4719 	MNT_KERN_FLAG(MNTK_DRAINING);
4720 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4721 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4722 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4723 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4724 	MNT_KERN_FLAG(MNTK_RECURSE);
4725 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4726 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4727 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4728 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4729 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4730 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4731 	MNT_KERN_FLAG(MNTK_NOASYNC);
4732 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4733 	MNT_KERN_FLAG(MNTK_MWAIT);
4734 	MNT_KERN_FLAG(MNTK_SUSPEND);
4735 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4736 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4737 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4738 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4739 #undef MNT_KERN_FLAG
4740 	if (flags != 0) {
4741 		if (buf[0] != '\0')
4742 			strlcat(buf, ", ", sizeof(buf));
4743 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4744 		    "0x%08x", flags);
4745 	}
4746 	db_printf("    mnt_kern_flag = %s\n", buf);
4747 
4748 	db_printf("    mnt_opt = ");
4749 	opt = TAILQ_FIRST(mp->mnt_opt);
4750 	if (opt != NULL) {
4751 		db_printf("%s", opt->name);
4752 		opt = TAILQ_NEXT(opt, link);
4753 		while (opt != NULL) {
4754 			db_printf(", %s", opt->name);
4755 			opt = TAILQ_NEXT(opt, link);
4756 		}
4757 	}
4758 	db_printf("\n");
4759 
4760 	sp = &mp->mnt_stat;
4761 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4762 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4763 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4764 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4765 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4766 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4767 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4768 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4769 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4770 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4771 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4772 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4773 
4774 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4775 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4776 	if (jailed(mp->mnt_cred))
4777 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4778 	db_printf(" }\n");
4779 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4780 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4781 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4782 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4783 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4784 	    mp->mnt_lazyvnodelistsize);
4785 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4786 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4787 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4788 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4789 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4790 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4791 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4792 	db_printf("    mnt_secondary_accwrites = %d\n",
4793 	    mp->mnt_secondary_accwrites);
4794 	db_printf("    mnt_gjprovider = %s\n",
4795 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4796 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4797 
4798 	db_printf("\n\nList of active vnodes\n");
4799 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4800 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4801 			vn_printf(vp, "vnode ");
4802 			if (db_pager_quit)
4803 				break;
4804 		}
4805 	}
4806 	db_printf("\n\nList of inactive vnodes\n");
4807 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4808 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4809 			vn_printf(vp, "vnode ");
4810 			if (db_pager_quit)
4811 				break;
4812 		}
4813 	}
4814 }
4815 #endif	/* DDB */
4816 
4817 /*
4818  * Fill in a struct xvfsconf based on a struct vfsconf.
4819  */
4820 static int
4821 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4822 {
4823 	struct xvfsconf xvfsp;
4824 
4825 	bzero(&xvfsp, sizeof(xvfsp));
4826 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4827 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4828 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4829 	xvfsp.vfc_flags = vfsp->vfc_flags;
4830 	/*
4831 	 * These are unused in userland, we keep them
4832 	 * to not break binary compatibility.
4833 	 */
4834 	xvfsp.vfc_vfsops = NULL;
4835 	xvfsp.vfc_next = NULL;
4836 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4837 }
4838 
4839 #ifdef COMPAT_FREEBSD32
4840 struct xvfsconf32 {
4841 	uint32_t	vfc_vfsops;
4842 	char		vfc_name[MFSNAMELEN];
4843 	int32_t		vfc_typenum;
4844 	int32_t		vfc_refcount;
4845 	int32_t		vfc_flags;
4846 	uint32_t	vfc_next;
4847 };
4848 
4849 static int
4850 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4851 {
4852 	struct xvfsconf32 xvfsp;
4853 
4854 	bzero(&xvfsp, sizeof(xvfsp));
4855 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4856 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4857 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4858 	xvfsp.vfc_flags = vfsp->vfc_flags;
4859 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4860 }
4861 #endif
4862 
4863 /*
4864  * Top level filesystem related information gathering.
4865  */
4866 static int
4867 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4868 {
4869 	struct vfsconf *vfsp;
4870 	int error;
4871 
4872 	error = 0;
4873 	vfsconf_slock();
4874 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4875 #ifdef COMPAT_FREEBSD32
4876 		if (req->flags & SCTL_MASK32)
4877 			error = vfsconf2x32(req, vfsp);
4878 		else
4879 #endif
4880 			error = vfsconf2x(req, vfsp);
4881 		if (error)
4882 			break;
4883 	}
4884 	vfsconf_sunlock();
4885 	return (error);
4886 }
4887 
4888 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4889     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4890     "S,xvfsconf", "List of all configured filesystems");
4891 
4892 #ifndef BURN_BRIDGES
4893 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4894 
4895 static int
4896 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4897 {
4898 	int *name = (int *)arg1 - 1;	/* XXX */
4899 	u_int namelen = arg2 + 1;	/* XXX */
4900 	struct vfsconf *vfsp;
4901 
4902 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4903 	    "please rebuild world\n");
4904 
4905 #if 1 || defined(COMPAT_PRELITE2)
4906 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4907 	if (namelen == 1)
4908 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4909 #endif
4910 
4911 	switch (name[1]) {
4912 	case VFS_MAXTYPENUM:
4913 		if (namelen != 2)
4914 			return (ENOTDIR);
4915 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4916 	case VFS_CONF:
4917 		if (namelen != 3)
4918 			return (ENOTDIR);	/* overloaded */
4919 		vfsconf_slock();
4920 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4921 			if (vfsp->vfc_typenum == name[2])
4922 				break;
4923 		}
4924 		vfsconf_sunlock();
4925 		if (vfsp == NULL)
4926 			return (EOPNOTSUPP);
4927 #ifdef COMPAT_FREEBSD32
4928 		if (req->flags & SCTL_MASK32)
4929 			return (vfsconf2x32(req, vfsp));
4930 		else
4931 #endif
4932 			return (vfsconf2x(req, vfsp));
4933 	}
4934 	return (EOPNOTSUPP);
4935 }
4936 
4937 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4938     CTLFLAG_MPSAFE, vfs_sysctl,
4939     "Generic filesystem");
4940 
4941 #if 1 || defined(COMPAT_PRELITE2)
4942 
4943 static int
4944 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4945 {
4946 	int error;
4947 	struct vfsconf *vfsp;
4948 	struct ovfsconf ovfs;
4949 
4950 	vfsconf_slock();
4951 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4952 		bzero(&ovfs, sizeof(ovfs));
4953 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4954 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4955 		ovfs.vfc_index = vfsp->vfc_typenum;
4956 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4957 		ovfs.vfc_flags = vfsp->vfc_flags;
4958 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4959 		if (error != 0) {
4960 			vfsconf_sunlock();
4961 			return (error);
4962 		}
4963 	}
4964 	vfsconf_sunlock();
4965 	return (0);
4966 }
4967 
4968 #endif /* 1 || COMPAT_PRELITE2 */
4969 #endif /* !BURN_BRIDGES */
4970 
4971 static void
4972 unmount_or_warn(struct mount *mp)
4973 {
4974 	int error;
4975 
4976 	error = dounmount(mp, MNT_FORCE, curthread);
4977 	if (error != 0) {
4978 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4979 		if (error == EBUSY)
4980 			printf("BUSY)\n");
4981 		else
4982 			printf("%d)\n", error);
4983 	}
4984 }
4985 
4986 /*
4987  * Unmount all filesystems. The list is traversed in reverse order
4988  * of mounting to avoid dependencies.
4989  */
4990 void
4991 vfs_unmountall(void)
4992 {
4993 	struct mount *mp, *tmp;
4994 
4995 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4996 
4997 	/*
4998 	 * Since this only runs when rebooting, it is not interlocked.
4999 	 */
5000 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5001 		vfs_ref(mp);
5002 
5003 		/*
5004 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5005 		 * unmount of the latter.
5006 		 */
5007 		if (mp == rootdevmp)
5008 			continue;
5009 
5010 		unmount_or_warn(mp);
5011 	}
5012 
5013 	if (rootdevmp != NULL)
5014 		unmount_or_warn(rootdevmp);
5015 }
5016 
5017 static void
5018 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5019 {
5020 
5021 	ASSERT_VI_LOCKED(vp, __func__);
5022 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5023 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5024 		vdropl(vp);
5025 		return;
5026 	}
5027 	if (vn_lock(vp, lkflags) == 0) {
5028 		VI_LOCK(vp);
5029 		vinactive(vp);
5030 		VOP_UNLOCK(vp);
5031 		vdropl(vp);
5032 		return;
5033 	}
5034 	vdefer_inactive_unlocked(vp);
5035 }
5036 
5037 static int
5038 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5039 {
5040 
5041 	return (vp->v_iflag & VI_DEFINACT);
5042 }
5043 
5044 static void __noinline
5045 vfs_periodic_inactive(struct mount *mp, int flags)
5046 {
5047 	struct vnode *vp, *mvp;
5048 	int lkflags;
5049 
5050 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5051 	if (flags != MNT_WAIT)
5052 		lkflags |= LK_NOWAIT;
5053 
5054 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5055 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5056 			VI_UNLOCK(vp);
5057 			continue;
5058 		}
5059 		vp->v_iflag &= ~VI_DEFINACT;
5060 		vfs_deferred_inactive(vp, lkflags);
5061 	}
5062 }
5063 
5064 static inline bool
5065 vfs_want_msync(struct vnode *vp)
5066 {
5067 	struct vm_object *obj;
5068 
5069 	/*
5070 	 * This test may be performed without any locks held.
5071 	 * We rely on vm_object's type stability.
5072 	 */
5073 	if (vp->v_vflag & VV_NOSYNC)
5074 		return (false);
5075 	obj = vp->v_object;
5076 	return (obj != NULL && vm_object_mightbedirty(obj));
5077 }
5078 
5079 static int
5080 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5081 {
5082 
5083 	if (vp->v_vflag & VV_NOSYNC)
5084 		return (false);
5085 	if (vp->v_iflag & VI_DEFINACT)
5086 		return (true);
5087 	return (vfs_want_msync(vp));
5088 }
5089 
5090 static void __noinline
5091 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5092 {
5093 	struct vnode *vp, *mvp;
5094 	struct vm_object *obj;
5095 	int lkflags, objflags;
5096 	bool seen_defer;
5097 
5098 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5099 	if (flags != MNT_WAIT) {
5100 		lkflags |= LK_NOWAIT;
5101 		objflags = OBJPC_NOSYNC;
5102 	} else {
5103 		objflags = OBJPC_SYNC;
5104 	}
5105 
5106 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5107 		seen_defer = false;
5108 		if (vp->v_iflag & VI_DEFINACT) {
5109 			vp->v_iflag &= ~VI_DEFINACT;
5110 			seen_defer = true;
5111 		}
5112 		if (!vfs_want_msync(vp)) {
5113 			if (seen_defer)
5114 				vfs_deferred_inactive(vp, lkflags);
5115 			else
5116 				VI_UNLOCK(vp);
5117 			continue;
5118 		}
5119 		if (vget(vp, lkflags) == 0) {
5120 			obj = vp->v_object;
5121 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
5122 				VM_OBJECT_WLOCK(obj);
5123 				vm_object_page_clean(obj, 0, 0, objflags);
5124 				VM_OBJECT_WUNLOCK(obj);
5125 			}
5126 			vput(vp);
5127 			if (seen_defer)
5128 				vdrop(vp);
5129 		} else {
5130 			if (seen_defer)
5131 				vdefer_inactive_unlocked(vp);
5132 		}
5133 	}
5134 }
5135 
5136 void
5137 vfs_periodic(struct mount *mp, int flags)
5138 {
5139 
5140 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5141 
5142 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5143 		vfs_periodic_inactive(mp, flags);
5144 	else
5145 		vfs_periodic_msync_inactive(mp, flags);
5146 }
5147 
5148 static void
5149 destroy_vpollinfo_free(struct vpollinfo *vi)
5150 {
5151 
5152 	knlist_destroy(&vi->vpi_selinfo.si_note);
5153 	mtx_destroy(&vi->vpi_lock);
5154 	free(vi, M_VNODEPOLL);
5155 }
5156 
5157 static void
5158 destroy_vpollinfo(struct vpollinfo *vi)
5159 {
5160 
5161 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5162 	seldrain(&vi->vpi_selinfo);
5163 	destroy_vpollinfo_free(vi);
5164 }
5165 
5166 /*
5167  * Initialize per-vnode helper structure to hold poll-related state.
5168  */
5169 void
5170 v_addpollinfo(struct vnode *vp)
5171 {
5172 	struct vpollinfo *vi;
5173 
5174 	if (vp->v_pollinfo != NULL)
5175 		return;
5176 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5177 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5178 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5179 	    vfs_knlunlock, vfs_knl_assert_lock);
5180 	VI_LOCK(vp);
5181 	if (vp->v_pollinfo != NULL) {
5182 		VI_UNLOCK(vp);
5183 		destroy_vpollinfo_free(vi);
5184 		return;
5185 	}
5186 	vp->v_pollinfo = vi;
5187 	VI_UNLOCK(vp);
5188 }
5189 
5190 /*
5191  * Record a process's interest in events which might happen to
5192  * a vnode.  Because poll uses the historic select-style interface
5193  * internally, this routine serves as both the ``check for any
5194  * pending events'' and the ``record my interest in future events''
5195  * functions.  (These are done together, while the lock is held,
5196  * to avoid race conditions.)
5197  */
5198 int
5199 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5200 {
5201 
5202 	v_addpollinfo(vp);
5203 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5204 	if (vp->v_pollinfo->vpi_revents & events) {
5205 		/*
5206 		 * This leaves events we are not interested
5207 		 * in available for the other process which
5208 		 * which presumably had requested them
5209 		 * (otherwise they would never have been
5210 		 * recorded).
5211 		 */
5212 		events &= vp->v_pollinfo->vpi_revents;
5213 		vp->v_pollinfo->vpi_revents &= ~events;
5214 
5215 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5216 		return (events);
5217 	}
5218 	vp->v_pollinfo->vpi_events |= events;
5219 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5220 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5221 	return (0);
5222 }
5223 
5224 /*
5225  * Routine to create and manage a filesystem syncer vnode.
5226  */
5227 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5228 static int	sync_fsync(struct  vop_fsync_args *);
5229 static int	sync_inactive(struct  vop_inactive_args *);
5230 static int	sync_reclaim(struct  vop_reclaim_args *);
5231 
5232 static struct vop_vector sync_vnodeops = {
5233 	.vop_bypass =	VOP_EOPNOTSUPP,
5234 	.vop_close =	sync_close,
5235 	.vop_fsync =	sync_fsync,
5236 	.vop_getwritemount = vop_stdgetwritemount,
5237 	.vop_inactive =	sync_inactive,
5238 	.vop_need_inactive = vop_stdneed_inactive,
5239 	.vop_reclaim =	sync_reclaim,
5240 	.vop_lock1 =	vop_stdlock,
5241 	.vop_unlock =	vop_stdunlock,
5242 	.vop_islocked =	vop_stdislocked,
5243 	.vop_fplookup_vexec = VOP_EAGAIN,
5244 	.vop_fplookup_symlink = VOP_EAGAIN,
5245 };
5246 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5247 
5248 /*
5249  * Create a new filesystem syncer vnode for the specified mount point.
5250  */
5251 void
5252 vfs_allocate_syncvnode(struct mount *mp)
5253 {
5254 	struct vnode *vp;
5255 	struct bufobj *bo;
5256 	static long start, incr, next;
5257 	int error;
5258 
5259 	/* Allocate a new vnode */
5260 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5261 	if (error != 0)
5262 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5263 	vp->v_type = VNON;
5264 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5265 	vp->v_vflag |= VV_FORCEINSMQ;
5266 	error = insmntque1(vp, mp);
5267 	if (error != 0)
5268 		panic("vfs_allocate_syncvnode: insmntque() failed");
5269 	vp->v_vflag &= ~VV_FORCEINSMQ;
5270 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5271 	VOP_UNLOCK(vp);
5272 	/*
5273 	 * Place the vnode onto the syncer worklist. We attempt to
5274 	 * scatter them about on the list so that they will go off
5275 	 * at evenly distributed times even if all the filesystems
5276 	 * are mounted at once.
5277 	 */
5278 	next += incr;
5279 	if (next == 0 || next > syncer_maxdelay) {
5280 		start /= 2;
5281 		incr /= 2;
5282 		if (start == 0) {
5283 			start = syncer_maxdelay / 2;
5284 			incr = syncer_maxdelay;
5285 		}
5286 		next = start;
5287 	}
5288 	bo = &vp->v_bufobj;
5289 	BO_LOCK(bo);
5290 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5291 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5292 	mtx_lock(&sync_mtx);
5293 	sync_vnode_count++;
5294 	if (mp->mnt_syncer == NULL) {
5295 		mp->mnt_syncer = vp;
5296 		vp = NULL;
5297 	}
5298 	mtx_unlock(&sync_mtx);
5299 	BO_UNLOCK(bo);
5300 	if (vp != NULL) {
5301 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5302 		vgone(vp);
5303 		vput(vp);
5304 	}
5305 }
5306 
5307 void
5308 vfs_deallocate_syncvnode(struct mount *mp)
5309 {
5310 	struct vnode *vp;
5311 
5312 	mtx_lock(&sync_mtx);
5313 	vp = mp->mnt_syncer;
5314 	if (vp != NULL)
5315 		mp->mnt_syncer = NULL;
5316 	mtx_unlock(&sync_mtx);
5317 	if (vp != NULL)
5318 		vrele(vp);
5319 }
5320 
5321 /*
5322  * Do a lazy sync of the filesystem.
5323  */
5324 static int
5325 sync_fsync(struct vop_fsync_args *ap)
5326 {
5327 	struct vnode *syncvp = ap->a_vp;
5328 	struct mount *mp = syncvp->v_mount;
5329 	int error, save;
5330 	struct bufobj *bo;
5331 
5332 	/*
5333 	 * We only need to do something if this is a lazy evaluation.
5334 	 */
5335 	if (ap->a_waitfor != MNT_LAZY)
5336 		return (0);
5337 
5338 	/*
5339 	 * Move ourselves to the back of the sync list.
5340 	 */
5341 	bo = &syncvp->v_bufobj;
5342 	BO_LOCK(bo);
5343 	vn_syncer_add_to_worklist(bo, syncdelay);
5344 	BO_UNLOCK(bo);
5345 
5346 	/*
5347 	 * Walk the list of vnodes pushing all that are dirty and
5348 	 * not already on the sync list.
5349 	 */
5350 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5351 		return (0);
5352 	VOP_UNLOCK(syncvp);
5353 	save = curthread_pflags_set(TDP_SYNCIO);
5354 	/*
5355 	 * The filesystem at hand may be idle with free vnodes stored in the
5356 	 * batch.  Return them instead of letting them stay there indefinitely.
5357 	 */
5358 	vfs_periodic(mp, MNT_NOWAIT);
5359 	error = VFS_SYNC(mp, MNT_LAZY);
5360 	curthread_pflags_restore(save);
5361 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5362 	vfs_unbusy(mp);
5363 	return (error);
5364 }
5365 
5366 /*
5367  * The syncer vnode is no referenced.
5368  */
5369 static int
5370 sync_inactive(struct vop_inactive_args *ap)
5371 {
5372 
5373 	vgone(ap->a_vp);
5374 	return (0);
5375 }
5376 
5377 /*
5378  * The syncer vnode is no longer needed and is being decommissioned.
5379  *
5380  * Modifications to the worklist must be protected by sync_mtx.
5381  */
5382 static int
5383 sync_reclaim(struct vop_reclaim_args *ap)
5384 {
5385 	struct vnode *vp = ap->a_vp;
5386 	struct bufobj *bo;
5387 
5388 	bo = &vp->v_bufobj;
5389 	BO_LOCK(bo);
5390 	mtx_lock(&sync_mtx);
5391 	if (vp->v_mount->mnt_syncer == vp)
5392 		vp->v_mount->mnt_syncer = NULL;
5393 	if (bo->bo_flag & BO_ONWORKLST) {
5394 		LIST_REMOVE(bo, bo_synclist);
5395 		syncer_worklist_len--;
5396 		sync_vnode_count--;
5397 		bo->bo_flag &= ~BO_ONWORKLST;
5398 	}
5399 	mtx_unlock(&sync_mtx);
5400 	BO_UNLOCK(bo);
5401 
5402 	return (0);
5403 }
5404 
5405 int
5406 vn_need_pageq_flush(struct vnode *vp)
5407 {
5408 	struct vm_object *obj;
5409 
5410 	obj = vp->v_object;
5411 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5412 	    vm_object_mightbedirty(obj));
5413 }
5414 
5415 /*
5416  * Check if vnode represents a disk device
5417  */
5418 bool
5419 vn_isdisk_error(struct vnode *vp, int *errp)
5420 {
5421 	int error;
5422 
5423 	if (vp->v_type != VCHR) {
5424 		error = ENOTBLK;
5425 		goto out;
5426 	}
5427 	error = 0;
5428 	dev_lock();
5429 	if (vp->v_rdev == NULL)
5430 		error = ENXIO;
5431 	else if (vp->v_rdev->si_devsw == NULL)
5432 		error = ENXIO;
5433 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5434 		error = ENOTBLK;
5435 	dev_unlock();
5436 out:
5437 	*errp = error;
5438 	return (error == 0);
5439 }
5440 
5441 bool
5442 vn_isdisk(struct vnode *vp)
5443 {
5444 	int error;
5445 
5446 	return (vn_isdisk_error(vp, &error));
5447 }
5448 
5449 /*
5450  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5451  * the comment above cache_fplookup for details.
5452  */
5453 int
5454 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5455 {
5456 	int error;
5457 
5458 	VFS_SMR_ASSERT_ENTERED();
5459 
5460 	/* Check the owner. */
5461 	if (cred->cr_uid == file_uid) {
5462 		if (file_mode & S_IXUSR)
5463 			return (0);
5464 		goto out_error;
5465 	}
5466 
5467 	/* Otherwise, check the groups (first match) */
5468 	if (groupmember(file_gid, cred)) {
5469 		if (file_mode & S_IXGRP)
5470 			return (0);
5471 		goto out_error;
5472 	}
5473 
5474 	/* Otherwise, check everyone else. */
5475 	if (file_mode & S_IXOTH)
5476 		return (0);
5477 out_error:
5478 	/*
5479 	 * Permission check failed, but it is possible denial will get overwritten
5480 	 * (e.g., when root is traversing through a 700 directory owned by someone
5481 	 * else).
5482 	 *
5483 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5484 	 * modules overriding this result. It's quite unclear what semantics
5485 	 * are allowed for them to operate, thus for safety we don't call them
5486 	 * from within the SMR section. This also means if any such modules
5487 	 * are present, we have to let the regular lookup decide.
5488 	 */
5489 	error = priv_check_cred_vfs_lookup_nomac(cred);
5490 	switch (error) {
5491 	case 0:
5492 		return (0);
5493 	case EAGAIN:
5494 		/*
5495 		 * MAC modules present.
5496 		 */
5497 		return (EAGAIN);
5498 	case EPERM:
5499 		return (EACCES);
5500 	default:
5501 		return (error);
5502 	}
5503 }
5504 
5505 /*
5506  * Common filesystem object access control check routine.  Accepts a
5507  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5508  * Returns 0 on success, or an errno on failure.
5509  */
5510 int
5511 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5512     accmode_t accmode, struct ucred *cred)
5513 {
5514 	accmode_t dac_granted;
5515 	accmode_t priv_granted;
5516 
5517 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5518 	    ("invalid bit in accmode"));
5519 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5520 	    ("VAPPEND without VWRITE"));
5521 
5522 	/*
5523 	 * Look for a normal, non-privileged way to access the file/directory
5524 	 * as requested.  If it exists, go with that.
5525 	 */
5526 
5527 	dac_granted = 0;
5528 
5529 	/* Check the owner. */
5530 	if (cred->cr_uid == file_uid) {
5531 		dac_granted |= VADMIN;
5532 		if (file_mode & S_IXUSR)
5533 			dac_granted |= VEXEC;
5534 		if (file_mode & S_IRUSR)
5535 			dac_granted |= VREAD;
5536 		if (file_mode & S_IWUSR)
5537 			dac_granted |= (VWRITE | VAPPEND);
5538 
5539 		if ((accmode & dac_granted) == accmode)
5540 			return (0);
5541 
5542 		goto privcheck;
5543 	}
5544 
5545 	/* Otherwise, check the groups (first match) */
5546 	if (groupmember(file_gid, cred)) {
5547 		if (file_mode & S_IXGRP)
5548 			dac_granted |= VEXEC;
5549 		if (file_mode & S_IRGRP)
5550 			dac_granted |= VREAD;
5551 		if (file_mode & S_IWGRP)
5552 			dac_granted |= (VWRITE | VAPPEND);
5553 
5554 		if ((accmode & dac_granted) == accmode)
5555 			return (0);
5556 
5557 		goto privcheck;
5558 	}
5559 
5560 	/* Otherwise, check everyone else. */
5561 	if (file_mode & S_IXOTH)
5562 		dac_granted |= VEXEC;
5563 	if (file_mode & S_IROTH)
5564 		dac_granted |= VREAD;
5565 	if (file_mode & S_IWOTH)
5566 		dac_granted |= (VWRITE | VAPPEND);
5567 	if ((accmode & dac_granted) == accmode)
5568 		return (0);
5569 
5570 privcheck:
5571 	/*
5572 	 * Build a privilege mask to determine if the set of privileges
5573 	 * satisfies the requirements when combined with the granted mask
5574 	 * from above.  For each privilege, if the privilege is required,
5575 	 * bitwise or the request type onto the priv_granted mask.
5576 	 */
5577 	priv_granted = 0;
5578 
5579 	if (type == VDIR) {
5580 		/*
5581 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5582 		 * requests, instead of PRIV_VFS_EXEC.
5583 		 */
5584 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5585 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5586 			priv_granted |= VEXEC;
5587 	} else {
5588 		/*
5589 		 * Ensure that at least one execute bit is on. Otherwise,
5590 		 * a privileged user will always succeed, and we don't want
5591 		 * this to happen unless the file really is executable.
5592 		 */
5593 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5594 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5595 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5596 			priv_granted |= VEXEC;
5597 	}
5598 
5599 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5600 	    !priv_check_cred(cred, PRIV_VFS_READ))
5601 		priv_granted |= VREAD;
5602 
5603 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5604 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5605 		priv_granted |= (VWRITE | VAPPEND);
5606 
5607 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5608 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5609 		priv_granted |= VADMIN;
5610 
5611 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5612 		return (0);
5613 	}
5614 
5615 	return ((accmode & VADMIN) ? EPERM : EACCES);
5616 }
5617 
5618 /*
5619  * Credential check based on process requesting service, and per-attribute
5620  * permissions.
5621  */
5622 int
5623 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5624     struct thread *td, accmode_t accmode)
5625 {
5626 
5627 	/*
5628 	 * Kernel-invoked always succeeds.
5629 	 */
5630 	if (cred == NOCRED)
5631 		return (0);
5632 
5633 	/*
5634 	 * Do not allow privileged processes in jail to directly manipulate
5635 	 * system attributes.
5636 	 */
5637 	switch (attrnamespace) {
5638 	case EXTATTR_NAMESPACE_SYSTEM:
5639 		/* Potentially should be: return (EPERM); */
5640 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5641 	case EXTATTR_NAMESPACE_USER:
5642 		return (VOP_ACCESS(vp, accmode, cred, td));
5643 	default:
5644 		return (EPERM);
5645 	}
5646 }
5647 
5648 #ifdef DEBUG_VFS_LOCKS
5649 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5650 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5651     "Drop into debugger on lock violation");
5652 
5653 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5654 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5655     0, "Check for interlock across VOPs");
5656 
5657 int vfs_badlock_print = 1;	/* Print lock violations. */
5658 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5659     0, "Print lock violations");
5660 
5661 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5662 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5663     0, "Print vnode details on lock violations");
5664 
5665 #ifdef KDB
5666 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5667 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5668     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5669 #endif
5670 
5671 static void
5672 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5673 {
5674 
5675 #ifdef KDB
5676 	if (vfs_badlock_backtrace)
5677 		kdb_backtrace();
5678 #endif
5679 	if (vfs_badlock_vnode)
5680 		vn_printf(vp, "vnode ");
5681 	if (vfs_badlock_print)
5682 		printf("%s: %p %s\n", str, (void *)vp, msg);
5683 	if (vfs_badlock_ddb)
5684 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5685 }
5686 
5687 void
5688 assert_vi_locked(struct vnode *vp, const char *str)
5689 {
5690 
5691 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5692 		vfs_badlock("interlock is not locked but should be", str, vp);
5693 }
5694 
5695 void
5696 assert_vi_unlocked(struct vnode *vp, const char *str)
5697 {
5698 
5699 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5700 		vfs_badlock("interlock is locked but should not be", str, vp);
5701 }
5702 
5703 void
5704 assert_vop_locked(struct vnode *vp, const char *str)
5705 {
5706 	if (KERNEL_PANICKED() || vp == NULL)
5707 		return;
5708 
5709 #ifdef WITNESS
5710 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5711 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5712 #else
5713 	int locked = VOP_ISLOCKED(vp);
5714 	if (locked == 0 || locked == LK_EXCLOTHER)
5715 #endif
5716 		vfs_badlock("is not locked but should be", str, vp);
5717 }
5718 
5719 void
5720 assert_vop_unlocked(struct vnode *vp, const char *str)
5721 {
5722 	if (KERNEL_PANICKED() || vp == NULL)
5723 		return;
5724 
5725 #ifdef WITNESS
5726 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5727 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5728 #else
5729 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5730 #endif
5731 		vfs_badlock("is locked but should not be", str, vp);
5732 }
5733 
5734 void
5735 assert_vop_elocked(struct vnode *vp, const char *str)
5736 {
5737 	if (KERNEL_PANICKED() || vp == NULL)
5738 		return;
5739 
5740 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5741 		vfs_badlock("is not exclusive locked but should be", str, vp);
5742 }
5743 #endif /* DEBUG_VFS_LOCKS */
5744 
5745 void
5746 vop_rename_fail(struct vop_rename_args *ap)
5747 {
5748 
5749 	if (ap->a_tvp != NULL)
5750 		vput(ap->a_tvp);
5751 	if (ap->a_tdvp == ap->a_tvp)
5752 		vrele(ap->a_tdvp);
5753 	else
5754 		vput(ap->a_tdvp);
5755 	vrele(ap->a_fdvp);
5756 	vrele(ap->a_fvp);
5757 }
5758 
5759 void
5760 vop_rename_pre(void *ap)
5761 {
5762 	struct vop_rename_args *a = ap;
5763 
5764 #ifdef DEBUG_VFS_LOCKS
5765 	if (a->a_tvp)
5766 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5767 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5768 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5769 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5770 
5771 	/* Check the source (from). */
5772 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5773 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5774 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5775 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5776 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5777 
5778 	/* Check the target. */
5779 	if (a->a_tvp)
5780 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5781 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5782 #endif
5783 	/*
5784 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5785 	 * in vop_rename_post but that's not going to work out since some
5786 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5787 	 *
5788 	 * For now filesystems are expected to do the relevant calls after they
5789 	 * decide what vnodes to operate on.
5790 	 */
5791 	if (a->a_tdvp != a->a_fdvp)
5792 		vhold(a->a_fdvp);
5793 	if (a->a_tvp != a->a_fvp)
5794 		vhold(a->a_fvp);
5795 	vhold(a->a_tdvp);
5796 	if (a->a_tvp)
5797 		vhold(a->a_tvp);
5798 }
5799 
5800 #ifdef DEBUG_VFS_LOCKS
5801 void
5802 vop_fplookup_vexec_debugpre(void *ap __unused)
5803 {
5804 
5805 	VFS_SMR_ASSERT_ENTERED();
5806 }
5807 
5808 void
5809 vop_fplookup_vexec_debugpost(void *ap, int rc)
5810 {
5811 	struct vop_fplookup_vexec_args *a;
5812 	struct vnode *vp;
5813 
5814 	a = ap;
5815 	vp = a->a_vp;
5816 
5817 	VFS_SMR_ASSERT_ENTERED();
5818 	if (rc == EOPNOTSUPP)
5819 		VNPASS(VN_IS_DOOMED(vp), vp);
5820 }
5821 
5822 void
5823 vop_fplookup_symlink_debugpre(void *ap __unused)
5824 {
5825 
5826 	VFS_SMR_ASSERT_ENTERED();
5827 }
5828 
5829 void
5830 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5831 {
5832 
5833 	VFS_SMR_ASSERT_ENTERED();
5834 }
5835 
5836 static void
5837 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5838 {
5839 	if (vp->v_type == VCHR)
5840 		;
5841 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5842 		ASSERT_VOP_LOCKED(vp, name);
5843 	else
5844 		ASSERT_VOP_ELOCKED(vp, name);
5845 }
5846 
5847 void
5848 vop_fsync_debugpre(void *a)
5849 {
5850 	struct vop_fsync_args *ap;
5851 
5852 	ap = a;
5853 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5854 }
5855 
5856 void
5857 vop_fsync_debugpost(void *a, int rc __unused)
5858 {
5859 	struct vop_fsync_args *ap;
5860 
5861 	ap = a;
5862 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5863 }
5864 
5865 void
5866 vop_fdatasync_debugpre(void *a)
5867 {
5868 	struct vop_fdatasync_args *ap;
5869 
5870 	ap = a;
5871 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5872 }
5873 
5874 void
5875 vop_fdatasync_debugpost(void *a, int rc __unused)
5876 {
5877 	struct vop_fdatasync_args *ap;
5878 
5879 	ap = a;
5880 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5881 }
5882 
5883 void
5884 vop_strategy_debugpre(void *ap)
5885 {
5886 	struct vop_strategy_args *a;
5887 	struct buf *bp;
5888 
5889 	a = ap;
5890 	bp = a->a_bp;
5891 
5892 	/*
5893 	 * Cluster ops lock their component buffers but not the IO container.
5894 	 */
5895 	if ((bp->b_flags & B_CLUSTER) != 0)
5896 		return;
5897 
5898 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5899 		if (vfs_badlock_print)
5900 			printf(
5901 			    "VOP_STRATEGY: bp is not locked but should be\n");
5902 		if (vfs_badlock_ddb)
5903 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5904 	}
5905 }
5906 
5907 void
5908 vop_lock_debugpre(void *ap)
5909 {
5910 	struct vop_lock1_args *a = ap;
5911 
5912 	if ((a->a_flags & LK_INTERLOCK) == 0)
5913 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5914 	else
5915 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5916 }
5917 
5918 void
5919 vop_lock_debugpost(void *ap, int rc)
5920 {
5921 	struct vop_lock1_args *a = ap;
5922 
5923 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5924 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5925 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5926 }
5927 
5928 void
5929 vop_unlock_debugpre(void *ap)
5930 {
5931 	struct vop_unlock_args *a = ap;
5932 	struct vnode *vp = a->a_vp;
5933 
5934 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5935 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5936 }
5937 
5938 void
5939 vop_need_inactive_debugpre(void *ap)
5940 {
5941 	struct vop_need_inactive_args *a = ap;
5942 
5943 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5944 }
5945 
5946 void
5947 vop_need_inactive_debugpost(void *ap, int rc)
5948 {
5949 	struct vop_need_inactive_args *a = ap;
5950 
5951 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5952 }
5953 #endif
5954 
5955 void
5956 vop_create_pre(void *ap)
5957 {
5958 	struct vop_create_args *a;
5959 	struct vnode *dvp;
5960 
5961 	a = ap;
5962 	dvp = a->a_dvp;
5963 	vn_seqc_write_begin(dvp);
5964 }
5965 
5966 void
5967 vop_create_post(void *ap, int rc)
5968 {
5969 	struct vop_create_args *a;
5970 	struct vnode *dvp;
5971 
5972 	a = ap;
5973 	dvp = a->a_dvp;
5974 	vn_seqc_write_end(dvp);
5975 	if (!rc)
5976 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5977 }
5978 
5979 void
5980 vop_whiteout_pre(void *ap)
5981 {
5982 	struct vop_whiteout_args *a;
5983 	struct vnode *dvp;
5984 
5985 	a = ap;
5986 	dvp = a->a_dvp;
5987 	vn_seqc_write_begin(dvp);
5988 }
5989 
5990 void
5991 vop_whiteout_post(void *ap, int rc)
5992 {
5993 	struct vop_whiteout_args *a;
5994 	struct vnode *dvp;
5995 
5996 	a = ap;
5997 	dvp = a->a_dvp;
5998 	vn_seqc_write_end(dvp);
5999 }
6000 
6001 void
6002 vop_deleteextattr_pre(void *ap)
6003 {
6004 	struct vop_deleteextattr_args *a;
6005 	struct vnode *vp;
6006 
6007 	a = ap;
6008 	vp = a->a_vp;
6009 	vn_seqc_write_begin(vp);
6010 }
6011 
6012 void
6013 vop_deleteextattr_post(void *ap, int rc)
6014 {
6015 	struct vop_deleteextattr_args *a;
6016 	struct vnode *vp;
6017 
6018 	a = ap;
6019 	vp = a->a_vp;
6020 	vn_seqc_write_end(vp);
6021 	if (!rc)
6022 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6023 }
6024 
6025 void
6026 vop_link_pre(void *ap)
6027 {
6028 	struct vop_link_args *a;
6029 	struct vnode *vp, *tdvp;
6030 
6031 	a = ap;
6032 	vp = a->a_vp;
6033 	tdvp = a->a_tdvp;
6034 	vn_seqc_write_begin(vp);
6035 	vn_seqc_write_begin(tdvp);
6036 }
6037 
6038 void
6039 vop_link_post(void *ap, int rc)
6040 {
6041 	struct vop_link_args *a;
6042 	struct vnode *vp, *tdvp;
6043 
6044 	a = ap;
6045 	vp = a->a_vp;
6046 	tdvp = a->a_tdvp;
6047 	vn_seqc_write_end(vp);
6048 	vn_seqc_write_end(tdvp);
6049 	if (!rc) {
6050 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6051 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6052 	}
6053 }
6054 
6055 void
6056 vop_mkdir_pre(void *ap)
6057 {
6058 	struct vop_mkdir_args *a;
6059 	struct vnode *dvp;
6060 
6061 	a = ap;
6062 	dvp = a->a_dvp;
6063 	vn_seqc_write_begin(dvp);
6064 }
6065 
6066 void
6067 vop_mkdir_post(void *ap, int rc)
6068 {
6069 	struct vop_mkdir_args *a;
6070 	struct vnode *dvp;
6071 
6072 	a = ap;
6073 	dvp = a->a_dvp;
6074 	vn_seqc_write_end(dvp);
6075 	if (!rc)
6076 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6077 }
6078 
6079 #ifdef DEBUG_VFS_LOCKS
6080 void
6081 vop_mkdir_debugpost(void *ap, int rc)
6082 {
6083 	struct vop_mkdir_args *a;
6084 
6085 	a = ap;
6086 	if (!rc)
6087 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6088 }
6089 #endif
6090 
6091 void
6092 vop_mknod_pre(void *ap)
6093 {
6094 	struct vop_mknod_args *a;
6095 	struct vnode *dvp;
6096 
6097 	a = ap;
6098 	dvp = a->a_dvp;
6099 	vn_seqc_write_begin(dvp);
6100 }
6101 
6102 void
6103 vop_mknod_post(void *ap, int rc)
6104 {
6105 	struct vop_mknod_args *a;
6106 	struct vnode *dvp;
6107 
6108 	a = ap;
6109 	dvp = a->a_dvp;
6110 	vn_seqc_write_end(dvp);
6111 	if (!rc)
6112 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6113 }
6114 
6115 void
6116 vop_reclaim_post(void *ap, int rc)
6117 {
6118 	struct vop_reclaim_args *a;
6119 	struct vnode *vp;
6120 
6121 	a = ap;
6122 	vp = a->a_vp;
6123 	ASSERT_VOP_IN_SEQC(vp);
6124 	if (!rc)
6125 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6126 }
6127 
6128 void
6129 vop_remove_pre(void *ap)
6130 {
6131 	struct vop_remove_args *a;
6132 	struct vnode *dvp, *vp;
6133 
6134 	a = ap;
6135 	dvp = a->a_dvp;
6136 	vp = a->a_vp;
6137 	vn_seqc_write_begin(dvp);
6138 	vn_seqc_write_begin(vp);
6139 }
6140 
6141 void
6142 vop_remove_post(void *ap, int rc)
6143 {
6144 	struct vop_remove_args *a;
6145 	struct vnode *dvp, *vp;
6146 
6147 	a = ap;
6148 	dvp = a->a_dvp;
6149 	vp = a->a_vp;
6150 	vn_seqc_write_end(dvp);
6151 	vn_seqc_write_end(vp);
6152 	if (!rc) {
6153 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6154 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6155 	}
6156 }
6157 
6158 void
6159 vop_rename_post(void *ap, int rc)
6160 {
6161 	struct vop_rename_args *a = ap;
6162 	long hint;
6163 
6164 	if (!rc) {
6165 		hint = NOTE_WRITE;
6166 		if (a->a_fdvp == a->a_tdvp) {
6167 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6168 				hint |= NOTE_LINK;
6169 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6170 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6171 		} else {
6172 			hint |= NOTE_EXTEND;
6173 			if (a->a_fvp->v_type == VDIR)
6174 				hint |= NOTE_LINK;
6175 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6176 
6177 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6178 			    a->a_tvp->v_type == VDIR)
6179 				hint &= ~NOTE_LINK;
6180 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6181 		}
6182 
6183 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6184 		if (a->a_tvp)
6185 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6186 	}
6187 	if (a->a_tdvp != a->a_fdvp)
6188 		vdrop(a->a_fdvp);
6189 	if (a->a_tvp != a->a_fvp)
6190 		vdrop(a->a_fvp);
6191 	vdrop(a->a_tdvp);
6192 	if (a->a_tvp)
6193 		vdrop(a->a_tvp);
6194 }
6195 
6196 void
6197 vop_rmdir_pre(void *ap)
6198 {
6199 	struct vop_rmdir_args *a;
6200 	struct vnode *dvp, *vp;
6201 
6202 	a = ap;
6203 	dvp = a->a_dvp;
6204 	vp = a->a_vp;
6205 	vn_seqc_write_begin(dvp);
6206 	vn_seqc_write_begin(vp);
6207 }
6208 
6209 void
6210 vop_rmdir_post(void *ap, int rc)
6211 {
6212 	struct vop_rmdir_args *a;
6213 	struct vnode *dvp, *vp;
6214 
6215 	a = ap;
6216 	dvp = a->a_dvp;
6217 	vp = a->a_vp;
6218 	vn_seqc_write_end(dvp);
6219 	vn_seqc_write_end(vp);
6220 	if (!rc) {
6221 		vp->v_vflag |= VV_UNLINKED;
6222 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6223 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6224 	}
6225 }
6226 
6227 void
6228 vop_setattr_pre(void *ap)
6229 {
6230 	struct vop_setattr_args *a;
6231 	struct vnode *vp;
6232 
6233 	a = ap;
6234 	vp = a->a_vp;
6235 	vn_seqc_write_begin(vp);
6236 }
6237 
6238 void
6239 vop_setattr_post(void *ap, int rc)
6240 {
6241 	struct vop_setattr_args *a;
6242 	struct vnode *vp;
6243 
6244 	a = ap;
6245 	vp = a->a_vp;
6246 	vn_seqc_write_end(vp);
6247 	if (!rc)
6248 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6249 }
6250 
6251 void
6252 vop_setacl_pre(void *ap)
6253 {
6254 	struct vop_setacl_args *a;
6255 	struct vnode *vp;
6256 
6257 	a = ap;
6258 	vp = a->a_vp;
6259 	vn_seqc_write_begin(vp);
6260 }
6261 
6262 void
6263 vop_setacl_post(void *ap, int rc __unused)
6264 {
6265 	struct vop_setacl_args *a;
6266 	struct vnode *vp;
6267 
6268 	a = ap;
6269 	vp = a->a_vp;
6270 	vn_seqc_write_end(vp);
6271 }
6272 
6273 void
6274 vop_setextattr_pre(void *ap)
6275 {
6276 	struct vop_setextattr_args *a;
6277 	struct vnode *vp;
6278 
6279 	a = ap;
6280 	vp = a->a_vp;
6281 	vn_seqc_write_begin(vp);
6282 }
6283 
6284 void
6285 vop_setextattr_post(void *ap, int rc)
6286 {
6287 	struct vop_setextattr_args *a;
6288 	struct vnode *vp;
6289 
6290 	a = ap;
6291 	vp = a->a_vp;
6292 	vn_seqc_write_end(vp);
6293 	if (!rc)
6294 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6295 }
6296 
6297 void
6298 vop_symlink_pre(void *ap)
6299 {
6300 	struct vop_symlink_args *a;
6301 	struct vnode *dvp;
6302 
6303 	a = ap;
6304 	dvp = a->a_dvp;
6305 	vn_seqc_write_begin(dvp);
6306 }
6307 
6308 void
6309 vop_symlink_post(void *ap, int rc)
6310 {
6311 	struct vop_symlink_args *a;
6312 	struct vnode *dvp;
6313 
6314 	a = ap;
6315 	dvp = a->a_dvp;
6316 	vn_seqc_write_end(dvp);
6317 	if (!rc)
6318 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6319 }
6320 
6321 void
6322 vop_open_post(void *ap, int rc)
6323 {
6324 	struct vop_open_args *a = ap;
6325 
6326 	if (!rc)
6327 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6328 }
6329 
6330 void
6331 vop_close_post(void *ap, int rc)
6332 {
6333 	struct vop_close_args *a = ap;
6334 
6335 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6336 	    !VN_IS_DOOMED(a->a_vp))) {
6337 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6338 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6339 	}
6340 }
6341 
6342 void
6343 vop_read_post(void *ap, int rc)
6344 {
6345 	struct vop_read_args *a = ap;
6346 
6347 	if (!rc)
6348 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6349 }
6350 
6351 void
6352 vop_read_pgcache_post(void *ap, int rc)
6353 {
6354 	struct vop_read_pgcache_args *a = ap;
6355 
6356 	if (!rc)
6357 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6358 }
6359 
6360 void
6361 vop_readdir_post(void *ap, int rc)
6362 {
6363 	struct vop_readdir_args *a = ap;
6364 
6365 	if (!rc)
6366 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6367 }
6368 
6369 static struct knlist fs_knlist;
6370 
6371 static void
6372 vfs_event_init(void *arg)
6373 {
6374 	knlist_init_mtx(&fs_knlist, NULL);
6375 }
6376 /* XXX - correct order? */
6377 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6378 
6379 void
6380 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6381 {
6382 
6383 	KNOTE_UNLOCKED(&fs_knlist, event);
6384 }
6385 
6386 static int	filt_fsattach(struct knote *kn);
6387 static void	filt_fsdetach(struct knote *kn);
6388 static int	filt_fsevent(struct knote *kn, long hint);
6389 
6390 struct filterops fs_filtops = {
6391 	.f_isfd = 0,
6392 	.f_attach = filt_fsattach,
6393 	.f_detach = filt_fsdetach,
6394 	.f_event = filt_fsevent
6395 };
6396 
6397 static int
6398 filt_fsattach(struct knote *kn)
6399 {
6400 
6401 	kn->kn_flags |= EV_CLEAR;
6402 	knlist_add(&fs_knlist, kn, 0);
6403 	return (0);
6404 }
6405 
6406 static void
6407 filt_fsdetach(struct knote *kn)
6408 {
6409 
6410 	knlist_remove(&fs_knlist, kn, 0);
6411 }
6412 
6413 static int
6414 filt_fsevent(struct knote *kn, long hint)
6415 {
6416 
6417 	kn->kn_fflags |= kn->kn_sfflags & hint;
6418 
6419 	return (kn->kn_fflags != 0);
6420 }
6421 
6422 static int
6423 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6424 {
6425 	struct vfsidctl vc;
6426 	int error;
6427 	struct mount *mp;
6428 
6429 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6430 	if (error)
6431 		return (error);
6432 	if (vc.vc_vers != VFS_CTL_VERS1)
6433 		return (EINVAL);
6434 	mp = vfs_getvfs(&vc.vc_fsid);
6435 	if (mp == NULL)
6436 		return (ENOENT);
6437 	/* ensure that a specific sysctl goes to the right filesystem. */
6438 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6439 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6440 		vfs_rel(mp);
6441 		return (EINVAL);
6442 	}
6443 	VCTLTOREQ(&vc, req);
6444 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6445 	vfs_rel(mp);
6446 	return (error);
6447 }
6448 
6449 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6450     NULL, 0, sysctl_vfs_ctl, "",
6451     "Sysctl by fsid");
6452 
6453 /*
6454  * Function to initialize a va_filerev field sensibly.
6455  * XXX: Wouldn't a random number make a lot more sense ??
6456  */
6457 u_quad_t
6458 init_va_filerev(void)
6459 {
6460 	struct bintime bt;
6461 
6462 	getbinuptime(&bt);
6463 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6464 }
6465 
6466 static int	filt_vfsread(struct knote *kn, long hint);
6467 static int	filt_vfswrite(struct knote *kn, long hint);
6468 static int	filt_vfsvnode(struct knote *kn, long hint);
6469 static void	filt_vfsdetach(struct knote *kn);
6470 static struct filterops vfsread_filtops = {
6471 	.f_isfd = 1,
6472 	.f_detach = filt_vfsdetach,
6473 	.f_event = filt_vfsread
6474 };
6475 static struct filterops vfswrite_filtops = {
6476 	.f_isfd = 1,
6477 	.f_detach = filt_vfsdetach,
6478 	.f_event = filt_vfswrite
6479 };
6480 static struct filterops vfsvnode_filtops = {
6481 	.f_isfd = 1,
6482 	.f_detach = filt_vfsdetach,
6483 	.f_event = filt_vfsvnode
6484 };
6485 
6486 static void
6487 vfs_knllock(void *arg)
6488 {
6489 	struct vnode *vp = arg;
6490 
6491 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6492 }
6493 
6494 static void
6495 vfs_knlunlock(void *arg)
6496 {
6497 	struct vnode *vp = arg;
6498 
6499 	VOP_UNLOCK(vp);
6500 }
6501 
6502 static void
6503 vfs_knl_assert_lock(void *arg, int what)
6504 {
6505 #ifdef DEBUG_VFS_LOCKS
6506 	struct vnode *vp = arg;
6507 
6508 	if (what == LA_LOCKED)
6509 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6510 	else
6511 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6512 #endif
6513 }
6514 
6515 int
6516 vfs_kqfilter(struct vop_kqfilter_args *ap)
6517 {
6518 	struct vnode *vp = ap->a_vp;
6519 	struct knote *kn = ap->a_kn;
6520 	struct knlist *knl;
6521 
6522 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6523 	    kn->kn_filter != EVFILT_WRITE),
6524 	    ("READ/WRITE filter on a FIFO leaked through"));
6525 	switch (kn->kn_filter) {
6526 	case EVFILT_READ:
6527 		kn->kn_fop = &vfsread_filtops;
6528 		break;
6529 	case EVFILT_WRITE:
6530 		kn->kn_fop = &vfswrite_filtops;
6531 		break;
6532 	case EVFILT_VNODE:
6533 		kn->kn_fop = &vfsvnode_filtops;
6534 		break;
6535 	default:
6536 		return (EINVAL);
6537 	}
6538 
6539 	kn->kn_hook = (caddr_t)vp;
6540 
6541 	v_addpollinfo(vp);
6542 	if (vp->v_pollinfo == NULL)
6543 		return (ENOMEM);
6544 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6545 	vhold(vp);
6546 	knlist_add(knl, kn, 0);
6547 
6548 	return (0);
6549 }
6550 
6551 /*
6552  * Detach knote from vnode
6553  */
6554 static void
6555 filt_vfsdetach(struct knote *kn)
6556 {
6557 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6558 
6559 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6560 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6561 	vdrop(vp);
6562 }
6563 
6564 /*ARGSUSED*/
6565 static int
6566 filt_vfsread(struct knote *kn, long hint)
6567 {
6568 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6569 	off_t size;
6570 	int res;
6571 
6572 	/*
6573 	 * filesystem is gone, so set the EOF flag and schedule
6574 	 * the knote for deletion.
6575 	 */
6576 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6577 		VI_LOCK(vp);
6578 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6579 		VI_UNLOCK(vp);
6580 		return (1);
6581 	}
6582 
6583 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6584 		return (0);
6585 
6586 	VI_LOCK(vp);
6587 	kn->kn_data = size - kn->kn_fp->f_offset;
6588 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6589 	VI_UNLOCK(vp);
6590 	return (res);
6591 }
6592 
6593 /*ARGSUSED*/
6594 static int
6595 filt_vfswrite(struct knote *kn, long hint)
6596 {
6597 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6598 
6599 	VI_LOCK(vp);
6600 
6601 	/*
6602 	 * filesystem is gone, so set the EOF flag and schedule
6603 	 * the knote for deletion.
6604 	 */
6605 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6606 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6607 
6608 	kn->kn_data = 0;
6609 	VI_UNLOCK(vp);
6610 	return (1);
6611 }
6612 
6613 static int
6614 filt_vfsvnode(struct knote *kn, long hint)
6615 {
6616 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6617 	int res;
6618 
6619 	VI_LOCK(vp);
6620 	if (kn->kn_sfflags & hint)
6621 		kn->kn_fflags |= hint;
6622 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6623 		kn->kn_flags |= EV_EOF;
6624 		VI_UNLOCK(vp);
6625 		return (1);
6626 	}
6627 	res = (kn->kn_fflags != 0);
6628 	VI_UNLOCK(vp);
6629 	return (res);
6630 }
6631 
6632 int
6633 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6634 {
6635 	int error;
6636 
6637 	if (dp->d_reclen > ap->a_uio->uio_resid)
6638 		return (ENAMETOOLONG);
6639 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6640 	if (error) {
6641 		if (ap->a_ncookies != NULL) {
6642 			if (ap->a_cookies != NULL)
6643 				free(ap->a_cookies, M_TEMP);
6644 			ap->a_cookies = NULL;
6645 			*ap->a_ncookies = 0;
6646 		}
6647 		return (error);
6648 	}
6649 	if (ap->a_ncookies == NULL)
6650 		return (0);
6651 
6652 	KASSERT(ap->a_cookies,
6653 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6654 
6655 	*ap->a_cookies = realloc(*ap->a_cookies,
6656 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6657 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6658 	*ap->a_ncookies += 1;
6659 	return (0);
6660 }
6661 
6662 /*
6663  * The purpose of this routine is to remove granularity from accmode_t,
6664  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6665  * VADMIN and VAPPEND.
6666  *
6667  * If it returns 0, the caller is supposed to continue with the usual
6668  * access checks using 'accmode' as modified by this routine.  If it
6669  * returns nonzero value, the caller is supposed to return that value
6670  * as errno.
6671  *
6672  * Note that after this routine runs, accmode may be zero.
6673  */
6674 int
6675 vfs_unixify_accmode(accmode_t *accmode)
6676 {
6677 	/*
6678 	 * There is no way to specify explicit "deny" rule using
6679 	 * file mode or POSIX.1e ACLs.
6680 	 */
6681 	if (*accmode & VEXPLICIT_DENY) {
6682 		*accmode = 0;
6683 		return (0);
6684 	}
6685 
6686 	/*
6687 	 * None of these can be translated into usual access bits.
6688 	 * Also, the common case for NFSv4 ACLs is to not contain
6689 	 * either of these bits. Caller should check for VWRITE
6690 	 * on the containing directory instead.
6691 	 */
6692 	if (*accmode & (VDELETE_CHILD | VDELETE))
6693 		return (EPERM);
6694 
6695 	if (*accmode & VADMIN_PERMS) {
6696 		*accmode &= ~VADMIN_PERMS;
6697 		*accmode |= VADMIN;
6698 	}
6699 
6700 	/*
6701 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6702 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6703 	 */
6704 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6705 
6706 	return (0);
6707 }
6708 
6709 /*
6710  * Clear out a doomed vnode (if any) and replace it with a new one as long
6711  * as the fs is not being unmounted. Return the root vnode to the caller.
6712  */
6713 static int __noinline
6714 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6715 {
6716 	struct vnode *vp;
6717 	int error;
6718 
6719 restart:
6720 	if (mp->mnt_rootvnode != NULL) {
6721 		MNT_ILOCK(mp);
6722 		vp = mp->mnt_rootvnode;
6723 		if (vp != NULL) {
6724 			if (!VN_IS_DOOMED(vp)) {
6725 				vrefact(vp);
6726 				MNT_IUNLOCK(mp);
6727 				error = vn_lock(vp, flags);
6728 				if (error == 0) {
6729 					*vpp = vp;
6730 					return (0);
6731 				}
6732 				vrele(vp);
6733 				goto restart;
6734 			}
6735 			/*
6736 			 * Clear the old one.
6737 			 */
6738 			mp->mnt_rootvnode = NULL;
6739 		}
6740 		MNT_IUNLOCK(mp);
6741 		if (vp != NULL) {
6742 			vfs_op_barrier_wait(mp);
6743 			vrele(vp);
6744 		}
6745 	}
6746 	error = VFS_CACHEDROOT(mp, flags, vpp);
6747 	if (error != 0)
6748 		return (error);
6749 	if (mp->mnt_vfs_ops == 0) {
6750 		MNT_ILOCK(mp);
6751 		if (mp->mnt_vfs_ops != 0) {
6752 			MNT_IUNLOCK(mp);
6753 			return (0);
6754 		}
6755 		if (mp->mnt_rootvnode == NULL) {
6756 			vrefact(*vpp);
6757 			mp->mnt_rootvnode = *vpp;
6758 		} else {
6759 			if (mp->mnt_rootvnode != *vpp) {
6760 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6761 					panic("%s: mismatch between vnode returned "
6762 					    " by VFS_CACHEDROOT and the one cached "
6763 					    " (%p != %p)",
6764 					    __func__, *vpp, mp->mnt_rootvnode);
6765 				}
6766 			}
6767 		}
6768 		MNT_IUNLOCK(mp);
6769 	}
6770 	return (0);
6771 }
6772 
6773 int
6774 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6775 {
6776 	struct mount_pcpu *mpcpu;
6777 	struct vnode *vp;
6778 	int error;
6779 
6780 	if (!vfs_op_thread_enter(mp, mpcpu))
6781 		return (vfs_cache_root_fallback(mp, flags, vpp));
6782 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6783 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6784 		vfs_op_thread_exit(mp, mpcpu);
6785 		return (vfs_cache_root_fallback(mp, flags, vpp));
6786 	}
6787 	vrefact(vp);
6788 	vfs_op_thread_exit(mp, mpcpu);
6789 	error = vn_lock(vp, flags);
6790 	if (error != 0) {
6791 		vrele(vp);
6792 		return (vfs_cache_root_fallback(mp, flags, vpp));
6793 	}
6794 	*vpp = vp;
6795 	return (0);
6796 }
6797 
6798 struct vnode *
6799 vfs_cache_root_clear(struct mount *mp)
6800 {
6801 	struct vnode *vp;
6802 
6803 	/*
6804 	 * ops > 0 guarantees there is nobody who can see this vnode
6805 	 */
6806 	MPASS(mp->mnt_vfs_ops > 0);
6807 	vp = mp->mnt_rootvnode;
6808 	if (vp != NULL)
6809 		vn_seqc_write_begin(vp);
6810 	mp->mnt_rootvnode = NULL;
6811 	return (vp);
6812 }
6813 
6814 void
6815 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6816 {
6817 
6818 	MPASS(mp->mnt_vfs_ops > 0);
6819 	vrefact(vp);
6820 	mp->mnt_rootvnode = vp;
6821 }
6822 
6823 /*
6824  * These are helper functions for filesystems to traverse all
6825  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6826  *
6827  * This interface replaces MNT_VNODE_FOREACH.
6828  */
6829 
6830 struct vnode *
6831 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6832 {
6833 	struct vnode *vp;
6834 
6835 	maybe_yield();
6836 	MNT_ILOCK(mp);
6837 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6838 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6839 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6840 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6841 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6842 			continue;
6843 		VI_LOCK(vp);
6844 		if (VN_IS_DOOMED(vp)) {
6845 			VI_UNLOCK(vp);
6846 			continue;
6847 		}
6848 		break;
6849 	}
6850 	if (vp == NULL) {
6851 		__mnt_vnode_markerfree_all(mvp, mp);
6852 		/* MNT_IUNLOCK(mp); -- done in above function */
6853 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6854 		return (NULL);
6855 	}
6856 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6857 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6858 	MNT_IUNLOCK(mp);
6859 	return (vp);
6860 }
6861 
6862 struct vnode *
6863 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6864 {
6865 	struct vnode *vp;
6866 
6867 	*mvp = vn_alloc_marker(mp);
6868 	MNT_ILOCK(mp);
6869 	MNT_REF(mp);
6870 
6871 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6872 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6873 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6874 			continue;
6875 		VI_LOCK(vp);
6876 		if (VN_IS_DOOMED(vp)) {
6877 			VI_UNLOCK(vp);
6878 			continue;
6879 		}
6880 		break;
6881 	}
6882 	if (vp == NULL) {
6883 		MNT_REL(mp);
6884 		MNT_IUNLOCK(mp);
6885 		vn_free_marker(*mvp);
6886 		*mvp = NULL;
6887 		return (NULL);
6888 	}
6889 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6890 	MNT_IUNLOCK(mp);
6891 	return (vp);
6892 }
6893 
6894 void
6895 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6896 {
6897 
6898 	if (*mvp == NULL) {
6899 		MNT_IUNLOCK(mp);
6900 		return;
6901 	}
6902 
6903 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6904 
6905 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6906 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6907 	MNT_REL(mp);
6908 	MNT_IUNLOCK(mp);
6909 	vn_free_marker(*mvp);
6910 	*mvp = NULL;
6911 }
6912 
6913 /*
6914  * These are helper functions for filesystems to traverse their
6915  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6916  */
6917 static void
6918 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6919 {
6920 
6921 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6922 
6923 	MNT_ILOCK(mp);
6924 	MNT_REL(mp);
6925 	MNT_IUNLOCK(mp);
6926 	vn_free_marker(*mvp);
6927 	*mvp = NULL;
6928 }
6929 
6930 /*
6931  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6932  * conventional lock order during mnt_vnode_next_lazy iteration.
6933  *
6934  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6935  * The list lock is dropped and reacquired.  On success, both locks are held.
6936  * On failure, the mount vnode list lock is held but the vnode interlock is
6937  * not, and the procedure may have yielded.
6938  */
6939 static bool
6940 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6941     struct vnode *vp)
6942 {
6943 
6944 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6945 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6946 	    ("%s: bad marker", __func__));
6947 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6948 	    ("%s: inappropriate vnode", __func__));
6949 	ASSERT_VI_UNLOCKED(vp, __func__);
6950 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6951 
6952 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6953 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6954 
6955 	/*
6956 	 * Note we may be racing against vdrop which transitioned the hold
6957 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6958 	 * if we are the only user after we get the interlock we will just
6959 	 * vdrop.
6960 	 */
6961 	vhold(vp);
6962 	mtx_unlock(&mp->mnt_listmtx);
6963 	VI_LOCK(vp);
6964 	if (VN_IS_DOOMED(vp)) {
6965 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6966 		goto out_lost;
6967 	}
6968 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6969 	/*
6970 	 * There is nothing to do if we are the last user.
6971 	 */
6972 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6973 		goto out_lost;
6974 	mtx_lock(&mp->mnt_listmtx);
6975 	return (true);
6976 out_lost:
6977 	vdropl(vp);
6978 	maybe_yield();
6979 	mtx_lock(&mp->mnt_listmtx);
6980 	return (false);
6981 }
6982 
6983 static struct vnode *
6984 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6985     void *cbarg)
6986 {
6987 	struct vnode *vp;
6988 
6989 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6990 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6991 restart:
6992 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6993 	while (vp != NULL) {
6994 		if (vp->v_type == VMARKER) {
6995 			vp = TAILQ_NEXT(vp, v_lazylist);
6996 			continue;
6997 		}
6998 		/*
6999 		 * See if we want to process the vnode. Note we may encounter a
7000 		 * long string of vnodes we don't care about and hog the list
7001 		 * as a result. Check for it and requeue the marker.
7002 		 */
7003 		VNPASS(!VN_IS_DOOMED(vp), vp);
7004 		if (!cb(vp, cbarg)) {
7005 			if (!should_yield()) {
7006 				vp = TAILQ_NEXT(vp, v_lazylist);
7007 				continue;
7008 			}
7009 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7010 			    v_lazylist);
7011 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7012 			    v_lazylist);
7013 			mtx_unlock(&mp->mnt_listmtx);
7014 			kern_yield(PRI_USER);
7015 			mtx_lock(&mp->mnt_listmtx);
7016 			goto restart;
7017 		}
7018 		/*
7019 		 * Try-lock because this is the wrong lock order.
7020 		 */
7021 		if (!VI_TRYLOCK(vp) &&
7022 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7023 			goto restart;
7024 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7025 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7026 		    ("alien vnode on the lazy list %p %p", vp, mp));
7027 		VNPASS(vp->v_mount == mp, vp);
7028 		VNPASS(!VN_IS_DOOMED(vp), vp);
7029 		break;
7030 	}
7031 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7032 
7033 	/* Check if we are done */
7034 	if (vp == NULL) {
7035 		mtx_unlock(&mp->mnt_listmtx);
7036 		mnt_vnode_markerfree_lazy(mvp, mp);
7037 		return (NULL);
7038 	}
7039 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7040 	mtx_unlock(&mp->mnt_listmtx);
7041 	ASSERT_VI_LOCKED(vp, "lazy iter");
7042 	return (vp);
7043 }
7044 
7045 struct vnode *
7046 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7047     void *cbarg)
7048 {
7049 
7050 	maybe_yield();
7051 	mtx_lock(&mp->mnt_listmtx);
7052 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7053 }
7054 
7055 struct vnode *
7056 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7057     void *cbarg)
7058 {
7059 	struct vnode *vp;
7060 
7061 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7062 		return (NULL);
7063 
7064 	*mvp = vn_alloc_marker(mp);
7065 	MNT_ILOCK(mp);
7066 	MNT_REF(mp);
7067 	MNT_IUNLOCK(mp);
7068 
7069 	mtx_lock(&mp->mnt_listmtx);
7070 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7071 	if (vp == NULL) {
7072 		mtx_unlock(&mp->mnt_listmtx);
7073 		mnt_vnode_markerfree_lazy(mvp, mp);
7074 		return (NULL);
7075 	}
7076 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7077 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7078 }
7079 
7080 void
7081 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7082 {
7083 
7084 	if (*mvp == NULL)
7085 		return;
7086 
7087 	mtx_lock(&mp->mnt_listmtx);
7088 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7089 	mtx_unlock(&mp->mnt_listmtx);
7090 	mnt_vnode_markerfree_lazy(mvp, mp);
7091 }
7092 
7093 int
7094 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7095 {
7096 
7097 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7098 		cnp->cn_flags &= ~NOEXECCHECK;
7099 		return (0);
7100 	}
7101 
7102 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7103 }
7104 
7105 /*
7106  * Do not use this variant unless you have means other than the hold count
7107  * to prevent the vnode from getting freed.
7108  */
7109 void
7110 vn_seqc_write_begin_locked(struct vnode *vp)
7111 {
7112 
7113 	ASSERT_VI_LOCKED(vp, __func__);
7114 	VNPASS(vp->v_holdcnt > 0, vp);
7115 	VNPASS(vp->v_seqc_users >= 0, vp);
7116 	vp->v_seqc_users++;
7117 	if (vp->v_seqc_users == 1)
7118 		seqc_sleepable_write_begin(&vp->v_seqc);
7119 }
7120 
7121 void
7122 vn_seqc_write_begin(struct vnode *vp)
7123 {
7124 
7125 	VI_LOCK(vp);
7126 	vn_seqc_write_begin_locked(vp);
7127 	VI_UNLOCK(vp);
7128 }
7129 
7130 void
7131 vn_seqc_write_end_locked(struct vnode *vp)
7132 {
7133 
7134 	ASSERT_VI_LOCKED(vp, __func__);
7135 	VNPASS(vp->v_seqc_users > 0, vp);
7136 	vp->v_seqc_users--;
7137 	if (vp->v_seqc_users == 0)
7138 		seqc_sleepable_write_end(&vp->v_seqc);
7139 }
7140 
7141 void
7142 vn_seqc_write_end(struct vnode *vp)
7143 {
7144 
7145 	VI_LOCK(vp);
7146 	vn_seqc_write_end_locked(vp);
7147 	VI_UNLOCK(vp);
7148 }
7149 
7150 /*
7151  * Special case handling for allocating and freeing vnodes.
7152  *
7153  * The counter remains unchanged on free so that a doomed vnode will
7154  * keep testing as in modify as long as it is accessible with SMR.
7155  */
7156 static void
7157 vn_seqc_init(struct vnode *vp)
7158 {
7159 
7160 	vp->v_seqc = 0;
7161 	vp->v_seqc_users = 0;
7162 }
7163 
7164 static void
7165 vn_seqc_write_end_free(struct vnode *vp)
7166 {
7167 
7168 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7169 	VNPASS(vp->v_seqc_users == 1, vp);
7170 }
7171 
7172 void
7173 vn_irflag_set_locked(struct vnode *vp, short toset)
7174 {
7175 	short flags;
7176 
7177 	ASSERT_VI_LOCKED(vp, __func__);
7178 	flags = vn_irflag_read(vp);
7179 	VNASSERT((flags & toset) == 0, vp,
7180 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7181 	    __func__, flags, toset));
7182 	atomic_store_short(&vp->v_irflag, flags | toset);
7183 }
7184 
7185 void
7186 vn_irflag_set(struct vnode *vp, short toset)
7187 {
7188 
7189 	VI_LOCK(vp);
7190 	vn_irflag_set_locked(vp, toset);
7191 	VI_UNLOCK(vp);
7192 }
7193 
7194 void
7195 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7196 {
7197 	short flags;
7198 
7199 	ASSERT_VI_LOCKED(vp, __func__);
7200 	flags = vn_irflag_read(vp);
7201 	atomic_store_short(&vp->v_irflag, flags | toset);
7202 }
7203 
7204 void
7205 vn_irflag_set_cond(struct vnode *vp, short toset)
7206 {
7207 
7208 	VI_LOCK(vp);
7209 	vn_irflag_set_cond_locked(vp, toset);
7210 	VI_UNLOCK(vp);
7211 }
7212 
7213 void
7214 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7215 {
7216 	short flags;
7217 
7218 	ASSERT_VI_LOCKED(vp, __func__);
7219 	flags = vn_irflag_read(vp);
7220 	VNASSERT((flags & tounset) == tounset, vp,
7221 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7222 	    __func__, flags, tounset));
7223 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7224 }
7225 
7226 void
7227 vn_irflag_unset(struct vnode *vp, short tounset)
7228 {
7229 
7230 	VI_LOCK(vp);
7231 	vn_irflag_unset_locked(vp, tounset);
7232 	VI_UNLOCK(vp);
7233 }
7234 
7235 int
7236 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7237 {
7238 	struct vattr vattr;
7239 	int error;
7240 
7241 	ASSERT_VOP_LOCKED(vp, __func__);
7242 	error = VOP_GETATTR(vp, &vattr, cred);
7243 	if (__predict_true(error == 0)) {
7244 		if (vattr.va_size <= OFF_MAX)
7245 			*size = vattr.va_size;
7246 		else
7247 			error = EFBIG;
7248 	}
7249 	return (error);
7250 }
7251 
7252 int
7253 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7254 {
7255 	int error;
7256 
7257 	VOP_LOCK(vp, LK_SHARED);
7258 	error = vn_getsize_locked(vp, size, cred);
7259 	VOP_UNLOCK(vp);
7260 	return (error);
7261 }
7262 
7263 #ifdef INVARIANTS
7264 void
7265 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7266 {
7267 
7268 	switch (vp->v_state) {
7269 	case VSTATE_UNINITIALIZED:
7270 		switch (state) {
7271 		case VSTATE_CONSTRUCTED:
7272 		case VSTATE_DESTROYING:
7273 			return;
7274 		default:
7275 			break;
7276 		}
7277 		break;
7278 	case VSTATE_CONSTRUCTED:
7279 		ASSERT_VOP_ELOCKED(vp, __func__);
7280 		switch (state) {
7281 		case VSTATE_DESTROYING:
7282 			return;
7283 		default:
7284 			break;
7285 		}
7286 		break;
7287 	case VSTATE_DESTROYING:
7288 		ASSERT_VOP_ELOCKED(vp, __func__);
7289 		switch (state) {
7290 		case VSTATE_DEAD:
7291 			return;
7292 		default:
7293 			break;
7294 		}
7295 		break;
7296 	case VSTATE_DEAD:
7297 		switch (state) {
7298 		case VSTATE_UNINITIALIZED:
7299 			return;
7300 		default:
7301 			break;
7302 		}
7303 		break;
7304 	}
7305 
7306 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7307 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7308 }
7309 #endif
7310