xref: /freebsd/sys/kern/vfs_subr.c (revision 281a9715)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 #include "opt_ddb.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/capsicum.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/limits.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
102 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
103 #endif
104 
105 #ifdef DDB
106 #include <ddb/ddb.h>
107 #endif
108 
109 static void	delmntque(struct vnode *vp);
110 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
111 		    int slpflag, int slptimeo);
112 static void	syncer_shutdown(void *arg, int howto);
113 static int	vtryrecycle(struct vnode *vp);
114 static void	v_init_counters(struct vnode *);
115 static void	vn_seqc_init(struct vnode *);
116 static void	vn_seqc_write_end_free(struct vnode *vp);
117 static void	vgonel(struct vnode *);
118 static bool	vhold_recycle_free(struct vnode *);
119 static void	vdropl_recycle(struct vnode *vp);
120 static void	vdrop_recycle(struct vnode *vp);
121 static void	vfs_knllock(void *arg);
122 static void	vfs_knlunlock(void *arg);
123 static void	vfs_knl_assert_lock(void *arg, int what);
124 static void	destroy_vpollinfo(struct vpollinfo *vi);
125 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
126 		    daddr_t startlbn, daddr_t endlbn);
127 static void	vnlru_recalc(void);
128 
129 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
130     "vnode configuration and statistics");
131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "vnode configuration");
133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
134     "vnode statistics");
135 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
136     "vnode recycling");
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
141  */
142 static u_long __exclusive_cache_line numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence (legacy)");
146 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
147     "Number of vnodes in existence");
148 
149 static counter_u64_t vnodes_created;
150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode (legacy)");
152 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
153     "Number of vnodes created by getnewvnode");
154 
155 /*
156  * Conversion tables for conversion from vnode types to inode formats
157  * and back.
158  */
159 __enum_uint8(vtype) iftovt_tab[16] = {
160 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
161 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
162 };
163 int vttoif_tab[10] = {
164 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
165 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
166 };
167 
168 /*
169  * List of allocates vnodes in the system.
170  */
171 static TAILQ_HEAD(freelst, vnode) vnode_list;
172 static struct vnode *vnode_list_free_marker;
173 static struct vnode *vnode_list_reclaim_marker;
174 
175 /*
176  * "Free" vnode target.  Free vnodes are rarely completely free, but are
177  * just ones that are cheap to recycle.  Usually they are for files which
178  * have been stat'd but not read; these usually have inode and namecache
179  * data attached to them.  This target is the preferred minimum size of a
180  * sub-cache consisting mostly of such files. The system balances the size
181  * of this sub-cache with its complement to try to prevent either from
182  * thrashing while the other is relatively inactive.  The targets express
183  * a preference for the best balance.
184  *
185  * "Above" this target there are 2 further targets (watermarks) related
186  * to recyling of free vnodes.  In the best-operating case, the cache is
187  * exactly full, the free list has size between vlowat and vhiwat above the
188  * free target, and recycling from it and normal use maintains this state.
189  * Sometimes the free list is below vlowat or even empty, but this state
190  * is even better for immediate use provided the cache is not full.
191  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
192  * ones) to reach one of these states.  The watermarks are currently hard-
193  * coded as 4% and 9% of the available space higher.  These and the default
194  * of 25% for wantfreevnodes are too large if the memory size is large.
195  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
196  * whenever vnlru_proc() becomes active.
197  */
198 static long wantfreevnodes;
199 static long __exclusive_cache_line freevnodes;
200 static long freevnodes_old;
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets (legacy)");
205 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static counter_u64_t recycles_free_count;
209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
210     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
211 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
212     "Number of free vnodes recycled to meet vnode cache targets");
213 
214 static counter_u64_t vnode_skipped_requeues;
215 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
216     "Number of times LRU requeue was skipped due to lock contention");
217 
218 static u_long deferred_inact;
219 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
220     &deferred_inact, 0, "Number of times inactive processing was deferred");
221 
222 /* To keep more than one thread at a time from running vfs_getnewfsid */
223 static struct mtx mntid_mtx;
224 
225 /*
226  * Lock for any access to the following:
227  *	vnode_list
228  *	numvnodes
229  *	freevnodes
230  */
231 static struct mtx __exclusive_cache_line vnode_list_mtx;
232 
233 /* Publicly exported FS */
234 struct nfs_public nfs_pub;
235 
236 static uma_zone_t buf_trie_zone;
237 static smr_t buf_trie_smr;
238 
239 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
240 static uma_zone_t vnode_zone;
241 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
242 
243 __read_frequently smr_t vfs_smr;
244 
245 /*
246  * The workitem queue.
247  *
248  * It is useful to delay writes of file data and filesystem metadata
249  * for tens of seconds so that quickly created and deleted files need
250  * not waste disk bandwidth being created and removed. To realize this,
251  * we append vnodes to a "workitem" queue. When running with a soft
252  * updates implementation, most pending metadata dependencies should
253  * not wait for more than a few seconds. Thus, mounted on block devices
254  * are delayed only about a half the time that file data is delayed.
255  * Similarly, directory updates are more critical, so are only delayed
256  * about a third the time that file data is delayed. Thus, there are
257  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
258  * one each second (driven off the filesystem syncer process). The
259  * syncer_delayno variable indicates the next queue that is to be processed.
260  * Items that need to be processed soon are placed in this queue:
261  *
262  *	syncer_workitem_pending[syncer_delayno]
263  *
264  * A delay of fifteen seconds is done by placing the request fifteen
265  * entries later in the queue:
266  *
267  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
268  *
269  */
270 static int syncer_delayno;
271 static long syncer_mask;
272 LIST_HEAD(synclist, bufobj);
273 static struct synclist *syncer_workitem_pending;
274 /*
275  * The sync_mtx protects:
276  *	bo->bo_synclist
277  *	sync_vnode_count
278  *	syncer_delayno
279  *	syncer_state
280  *	syncer_workitem_pending
281  *	syncer_worklist_len
282  *	rushjob
283  */
284 static struct mtx sync_mtx;
285 static struct cv sync_wakeup;
286 
287 #define SYNCER_MAXDELAY		32
288 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
289 static int syncdelay = 30;		/* max time to delay syncing data */
290 static int filedelay = 30;		/* time to delay syncing files */
291 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
292     "Time to delay syncing files (in seconds)");
293 static int dirdelay = 29;		/* time to delay syncing directories */
294 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
295     "Time to delay syncing directories (in seconds)");
296 static int metadelay = 28;		/* time to delay syncing metadata */
297 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
298     "Time to delay syncing metadata (in seconds)");
299 static int rushjob;		/* number of slots to run ASAP */
300 static int stat_rush_requests;	/* number of times I/O speeded up */
301 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
302     "Number of times I/O speeded up (rush requests)");
303 
304 #define	VDBATCH_SIZE 8
305 struct vdbatch {
306 	u_int index;
307 	struct mtx lock;
308 	struct vnode *tab[VDBATCH_SIZE];
309 };
310 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
311 
312 static void	vdbatch_dequeue(struct vnode *vp);
313 
314 /*
315  * When shutting down the syncer, run it at four times normal speed.
316  */
317 #define SYNCER_SHUTDOWN_SPEEDUP		4
318 static int sync_vnode_count;
319 static int syncer_worklist_len;
320 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
321     syncer_state;
322 
323 /* Target for maximum number of vnodes. */
324 u_long desiredvnodes;
325 static u_long gapvnodes;		/* gap between wanted and desired */
326 static u_long vhiwat;		/* enough extras after expansion */
327 static u_long vlowat;		/* minimal extras before expansion */
328 static bool vstir;		/* nonzero to stir non-free vnodes */
329 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
330 
331 static u_long vnlru_read_freevnodes(void);
332 
333 /*
334  * Note that no attempt is made to sanitize these parameters.
335  */
336 static int
337 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
338 {
339 	u_long val;
340 	int error;
341 
342 	val = desiredvnodes;
343 	error = sysctl_handle_long(oidp, &val, 0, req);
344 	if (error != 0 || req->newptr == NULL)
345 		return (error);
346 
347 	if (val == desiredvnodes)
348 		return (0);
349 	mtx_lock(&vnode_list_mtx);
350 	desiredvnodes = val;
351 	wantfreevnodes = desiredvnodes / 4;
352 	vnlru_recalc();
353 	mtx_unlock(&vnode_list_mtx);
354 	/*
355 	 * XXX There is no protection against multiple threads changing
356 	 * desiredvnodes at the same time. Locking above only helps vnlru and
357 	 * getnewvnode.
358 	 */
359 	vfs_hash_changesize(desiredvnodes);
360 	cache_changesize(desiredvnodes);
361 	return (0);
362 }
363 
364 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
365     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
366     "LU", "Target for maximum number of vnodes (legacy)");
367 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
369     "LU", "Target for maximum number of vnodes");
370 
371 static int
372 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
373 {
374 	u_long rfreevnodes;
375 
376 	rfreevnodes = vnlru_read_freevnodes();
377 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
378 }
379 
380 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
381     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
382     "LU", "Number of \"free\" vnodes (legacy)");
383 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
384     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
385     "LU", "Number of \"free\" vnodes");
386 
387 static int
388 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
389 {
390 	u_long val;
391 	int error;
392 
393 	val = wantfreevnodes;
394 	error = sysctl_handle_long(oidp, &val, 0, req);
395 	if (error != 0 || req->newptr == NULL)
396 		return (error);
397 
398 	if (val == wantfreevnodes)
399 		return (0);
400 	mtx_lock(&vnode_list_mtx);
401 	wantfreevnodes = val;
402 	vnlru_recalc();
403 	mtx_unlock(&vnode_list_mtx);
404 	return (0);
405 }
406 
407 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
408     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
409     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
410 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
411     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
412     "LU", "Target for minimum number of \"free\" vnodes");
413 
414 static int vnlru_nowhere;
415 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
416     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
417 
418 static int
419 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
420 {
421 	struct vnode *vp;
422 	struct nameidata nd;
423 	char *buf;
424 	unsigned long ndflags;
425 	int error;
426 
427 	if (req->newptr == NULL)
428 		return (EINVAL);
429 	if (req->newlen >= PATH_MAX)
430 		return (E2BIG);
431 
432 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
433 	error = SYSCTL_IN(req, buf, req->newlen);
434 	if (error != 0)
435 		goto out;
436 
437 	buf[req->newlen] = '\0';
438 
439 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
440 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
441 	if ((error = namei(&nd)) != 0)
442 		goto out;
443 	vp = nd.ni_vp;
444 
445 	if (VN_IS_DOOMED(vp)) {
446 		/*
447 		 * This vnode is being recycled.  Return != 0 to let the caller
448 		 * know that the sysctl had no effect.  Return EAGAIN because a
449 		 * subsequent call will likely succeed (since namei will create
450 		 * a new vnode if necessary)
451 		 */
452 		error = EAGAIN;
453 		goto putvnode;
454 	}
455 
456 	counter_u64_add(recycles_count, 1);
457 	vgone(vp);
458 putvnode:
459 	vput(vp);
460 	NDFREE_PNBUF(&nd);
461 out:
462 	free(buf, M_TEMP);
463 	return (error);
464 }
465 
466 static int
467 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
468 {
469 	struct thread *td = curthread;
470 	struct vnode *vp;
471 	struct file *fp;
472 	int error;
473 	int fd;
474 
475 	if (req->newptr == NULL)
476 		return (EBADF);
477 
478         error = sysctl_handle_int(oidp, &fd, 0, req);
479         if (error != 0)
480                 return (error);
481 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
482 	if (error != 0)
483 		return (error);
484 	vp = fp->f_vnode;
485 
486 	error = vn_lock(vp, LK_EXCLUSIVE);
487 	if (error != 0)
488 		goto drop;
489 
490 	counter_u64_add(recycles_count, 1);
491 	vgone(vp);
492 	VOP_UNLOCK(vp);
493 drop:
494 	fdrop(fp, td);
495 	return (error);
496 }
497 
498 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
499     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
500     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
501 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
502     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
503     sysctl_ftry_reclaim_vnode, "I",
504     "Try to reclaim a vnode by its file descriptor");
505 
506 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
507 #define vnsz2log 8
508 #ifndef DEBUG_LOCKS
509 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
510     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
511     "vnsz2log needs to be updated");
512 #endif
513 
514 /*
515  * Support for the bufobj clean & dirty pctrie.
516  */
517 static void *
518 buf_trie_alloc(struct pctrie *ptree)
519 {
520 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
521 }
522 
523 static void
524 buf_trie_free(struct pctrie *ptree, void *node)
525 {
526 	uma_zfree_smr(buf_trie_zone, node);
527 }
528 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
529     buf_trie_smr);
530 
531 /*
532  * Initialize the vnode management data structures.
533  *
534  * Reevaluate the following cap on the number of vnodes after the physical
535  * memory size exceeds 512GB.  In the limit, as the physical memory size
536  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
537  */
538 #ifndef	MAXVNODES_MAX
539 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
540 #endif
541 
542 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
543 
544 static struct vnode *
545 vn_alloc_marker(struct mount *mp)
546 {
547 	struct vnode *vp;
548 
549 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
550 	vp->v_type = VMARKER;
551 	vp->v_mount = mp;
552 
553 	return (vp);
554 }
555 
556 static void
557 vn_free_marker(struct vnode *vp)
558 {
559 
560 	MPASS(vp->v_type == VMARKER);
561 	free(vp, M_VNODE_MARKER);
562 }
563 
564 #ifdef KASAN
565 static int
566 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
567 {
568 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
569 	return (0);
570 }
571 
572 static void
573 vnode_dtor(void *mem, int size, void *arg __unused)
574 {
575 	size_t end1, end2, off1, off2;
576 
577 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
578 	    offsetof(struct vnode, v_dbatchcpu),
579 	    "KASAN marks require updating");
580 
581 	off1 = offsetof(struct vnode, v_vnodelist);
582 	off2 = offsetof(struct vnode, v_dbatchcpu);
583 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
584 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
585 
586 	/*
587 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
588 	 * after the vnode has been freed.  Try to get some KASAN coverage by
589 	 * marking everything except those two fields as invalid.  Because
590 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
591 	 * the same 8-byte aligned word must also be marked valid.
592 	 */
593 
594 	/* Handle the area from the start until v_vnodelist... */
595 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
596 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
597 
598 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
599 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
600 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
601 	if (off2 > off1)
602 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
603 		    off2 - off1, KASAN_UMA_FREED);
604 
605 	/* ... and finally the area from v_dbatchcpu to the end. */
606 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
607 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
608 	    KASAN_UMA_FREED);
609 }
610 #endif /* KASAN */
611 
612 /*
613  * Initialize a vnode as it first enters the zone.
614  */
615 static int
616 vnode_init(void *mem, int size, int flags)
617 {
618 	struct vnode *vp;
619 
620 	vp = mem;
621 	bzero(vp, size);
622 	/*
623 	 * Setup locks.
624 	 */
625 	vp->v_vnlock = &vp->v_lock;
626 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
627 	/*
628 	 * By default, don't allow shared locks unless filesystems opt-in.
629 	 */
630 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
631 	    LK_NOSHARE | LK_IS_VNODE);
632 	/*
633 	 * Initialize bufobj.
634 	 */
635 	bufobj_init(&vp->v_bufobj, vp);
636 	/*
637 	 * Initialize namecache.
638 	 */
639 	cache_vnode_init(vp);
640 	/*
641 	 * Initialize rangelocks.
642 	 */
643 	rangelock_init(&vp->v_rl);
644 
645 	vp->v_dbatchcpu = NOCPU;
646 
647 	vp->v_state = VSTATE_DEAD;
648 
649 	/*
650 	 * Check vhold_recycle_free for an explanation.
651 	 */
652 	vp->v_holdcnt = VHOLD_NO_SMR;
653 	vp->v_type = VNON;
654 	mtx_lock(&vnode_list_mtx);
655 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
656 	mtx_unlock(&vnode_list_mtx);
657 	return (0);
658 }
659 
660 /*
661  * Free a vnode when it is cleared from the zone.
662  */
663 static void
664 vnode_fini(void *mem, int size)
665 {
666 	struct vnode *vp;
667 	struct bufobj *bo;
668 
669 	vp = mem;
670 	vdbatch_dequeue(vp);
671 	mtx_lock(&vnode_list_mtx);
672 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
673 	mtx_unlock(&vnode_list_mtx);
674 	rangelock_destroy(&vp->v_rl);
675 	lockdestroy(vp->v_vnlock);
676 	mtx_destroy(&vp->v_interlock);
677 	bo = &vp->v_bufobj;
678 	rw_destroy(BO_LOCKPTR(bo));
679 
680 	kasan_mark(mem, size, size, 0);
681 }
682 
683 /*
684  * Provide the size of NFS nclnode and NFS fh for calculation of the
685  * vnode memory consumption.  The size is specified directly to
686  * eliminate dependency on NFS-private header.
687  *
688  * Other filesystems may use bigger or smaller (like UFS and ZFS)
689  * private inode data, but the NFS-based estimation is ample enough.
690  * Still, we care about differences in the size between 64- and 32-bit
691  * platforms.
692  *
693  * Namecache structure size is heuristically
694  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
695  */
696 #ifdef _LP64
697 #define	NFS_NCLNODE_SZ	(528 + 64)
698 #define	NC_SZ		148
699 #else
700 #define	NFS_NCLNODE_SZ	(360 + 32)
701 #define	NC_SZ		92
702 #endif
703 
704 static void
705 vntblinit(void *dummy __unused)
706 {
707 	struct vdbatch *vd;
708 	uma_ctor ctor;
709 	uma_dtor dtor;
710 	int cpu, physvnodes, virtvnodes;
711 
712 	/*
713 	 * Desiredvnodes is a function of the physical memory size and the
714 	 * kernel's heap size.  Generally speaking, it scales with the
715 	 * physical memory size.  The ratio of desiredvnodes to the physical
716 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
717 	 * Thereafter, the
718 	 * marginal ratio of desiredvnodes to the physical memory size is
719 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
720 	 * size.  The memory required by desiredvnodes vnodes and vm objects
721 	 * must not exceed 1/10th of the kernel's heap size.
722 	 */
723 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
724 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
725 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
726 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
727 	desiredvnodes = min(physvnodes, virtvnodes);
728 	if (desiredvnodes > MAXVNODES_MAX) {
729 		if (bootverbose)
730 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
731 			    desiredvnodes, MAXVNODES_MAX);
732 		desiredvnodes = MAXVNODES_MAX;
733 	}
734 	wantfreevnodes = desiredvnodes / 4;
735 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
736 	TAILQ_INIT(&vnode_list);
737 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
738 	/*
739 	 * The lock is taken to appease WITNESS.
740 	 */
741 	mtx_lock(&vnode_list_mtx);
742 	vnlru_recalc();
743 	mtx_unlock(&vnode_list_mtx);
744 	vnode_list_free_marker = vn_alloc_marker(NULL);
745 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
746 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
747 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
748 
749 #ifdef KASAN
750 	ctor = vnode_ctor;
751 	dtor = vnode_dtor;
752 #else
753 	ctor = NULL;
754 	dtor = NULL;
755 #endif
756 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
757 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
758 	uma_zone_set_smr(vnode_zone, vfs_smr);
759 
760 	/*
761 	 * Preallocate enough nodes to support one-per buf so that
762 	 * we can not fail an insert.  reassignbuf() callers can not
763 	 * tolerate the insertion failure.
764 	 */
765 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
766 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
767 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
768 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
769 	uma_prealloc(buf_trie_zone, nbuf);
770 
771 	vnodes_created = counter_u64_alloc(M_WAITOK);
772 	recycles_count = counter_u64_alloc(M_WAITOK);
773 	recycles_free_count = counter_u64_alloc(M_WAITOK);
774 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
775 
776 	/*
777 	 * Initialize the filesystem syncer.
778 	 */
779 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
780 	    &syncer_mask);
781 	syncer_maxdelay = syncer_mask + 1;
782 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
783 	cv_init(&sync_wakeup, "syncer");
784 
785 	CPU_FOREACH(cpu) {
786 		vd = DPCPU_ID_PTR((cpu), vd);
787 		bzero(vd, sizeof(*vd));
788 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
789 	}
790 }
791 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
792 
793 /*
794  * Mark a mount point as busy. Used to synchronize access and to delay
795  * unmounting. Eventually, mountlist_mtx is not released on failure.
796  *
797  * vfs_busy() is a custom lock, it can block the caller.
798  * vfs_busy() only sleeps if the unmount is active on the mount point.
799  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
800  * vnode belonging to mp.
801  *
802  * Lookup uses vfs_busy() to traverse mount points.
803  * root fs			var fs
804  * / vnode lock		A	/ vnode lock (/var)		D
805  * /var vnode lock	B	/log vnode lock(/var/log)	E
806  * vfs_busy lock	C	vfs_busy lock			F
807  *
808  * Within each file system, the lock order is C->A->B and F->D->E.
809  *
810  * When traversing across mounts, the system follows that lock order:
811  *
812  *        C->A->B
813  *              |
814  *              +->F->D->E
815  *
816  * The lookup() process for namei("/var") illustrates the process:
817  *  1. VOP_LOOKUP() obtains B while A is held
818  *  2. vfs_busy() obtains a shared lock on F while A and B are held
819  *  3. vput() releases lock on B
820  *  4. vput() releases lock on A
821  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
822  *  6. vfs_unbusy() releases shared lock on F
823  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
824  *     Attempt to lock A (instead of vp_crossmp) while D is held would
825  *     violate the global order, causing deadlocks.
826  *
827  * dounmount() locks B while F is drained.  Note that for stacked
828  * filesystems, D and B in the example above may be the same lock,
829  * which introdues potential lock order reversal deadlock between
830  * dounmount() and step 5 above.  These filesystems may avoid the LOR
831  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
832  * remain held until after step 5.
833  */
834 int
835 vfs_busy(struct mount *mp, int flags)
836 {
837 	struct mount_pcpu *mpcpu;
838 
839 	MPASS((flags & ~MBF_MASK) == 0);
840 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
841 
842 	if (vfs_op_thread_enter(mp, mpcpu)) {
843 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
844 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
845 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
846 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
847 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
848 		vfs_op_thread_exit(mp, mpcpu);
849 		if (flags & MBF_MNTLSTLOCK)
850 			mtx_unlock(&mountlist_mtx);
851 		return (0);
852 	}
853 
854 	MNT_ILOCK(mp);
855 	vfs_assert_mount_counters(mp);
856 	MNT_REF(mp);
857 	/*
858 	 * If mount point is currently being unmounted, sleep until the
859 	 * mount point fate is decided.  If thread doing the unmounting fails,
860 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
861 	 * that this mount point has survived the unmount attempt and vfs_busy
862 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
863 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
864 	 * about to be really destroyed.  vfs_busy needs to release its
865 	 * reference on the mount point in this case and return with ENOENT,
866 	 * telling the caller the mount it tried to busy is no longer valid.
867 	 */
868 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
869 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
870 		    ("%s: non-empty upper mount list with pending unmount",
871 		    __func__));
872 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
873 			MNT_REL(mp);
874 			MNT_IUNLOCK(mp);
875 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
876 			    __func__);
877 			return (ENOENT);
878 		}
879 		if (flags & MBF_MNTLSTLOCK)
880 			mtx_unlock(&mountlist_mtx);
881 		mp->mnt_kern_flag |= MNTK_MWAIT;
882 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
883 		if (flags & MBF_MNTLSTLOCK)
884 			mtx_lock(&mountlist_mtx);
885 		MNT_ILOCK(mp);
886 	}
887 	if (flags & MBF_MNTLSTLOCK)
888 		mtx_unlock(&mountlist_mtx);
889 	mp->mnt_lockref++;
890 	MNT_IUNLOCK(mp);
891 	return (0);
892 }
893 
894 /*
895  * Free a busy filesystem.
896  */
897 void
898 vfs_unbusy(struct mount *mp)
899 {
900 	struct mount_pcpu *mpcpu;
901 	int c;
902 
903 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
904 
905 	if (vfs_op_thread_enter(mp, mpcpu)) {
906 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
907 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
908 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
909 		vfs_op_thread_exit(mp, mpcpu);
910 		return;
911 	}
912 
913 	MNT_ILOCK(mp);
914 	vfs_assert_mount_counters(mp);
915 	MNT_REL(mp);
916 	c = --mp->mnt_lockref;
917 	if (mp->mnt_vfs_ops == 0) {
918 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
919 		MNT_IUNLOCK(mp);
920 		return;
921 	}
922 	if (c < 0)
923 		vfs_dump_mount_counters(mp);
924 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
925 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
926 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
927 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
928 		wakeup(&mp->mnt_lockref);
929 	}
930 	MNT_IUNLOCK(mp);
931 }
932 
933 /*
934  * Lookup a mount point by filesystem identifier.
935  */
936 struct mount *
937 vfs_getvfs(fsid_t *fsid)
938 {
939 	struct mount *mp;
940 
941 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
942 	mtx_lock(&mountlist_mtx);
943 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
944 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
945 			vfs_ref(mp);
946 			mtx_unlock(&mountlist_mtx);
947 			return (mp);
948 		}
949 	}
950 	mtx_unlock(&mountlist_mtx);
951 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
952 	return ((struct mount *) 0);
953 }
954 
955 /*
956  * Lookup a mount point by filesystem identifier, busying it before
957  * returning.
958  *
959  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
960  * cache for popular filesystem identifiers.  The cache is lockess, using
961  * the fact that struct mount's are never freed.  In worst case we may
962  * get pointer to unmounted or even different filesystem, so we have to
963  * check what we got, and go slow way if so.
964  */
965 struct mount *
966 vfs_busyfs(fsid_t *fsid)
967 {
968 #define	FSID_CACHE_SIZE	256
969 	typedef struct mount * volatile vmp_t;
970 	static vmp_t cache[FSID_CACHE_SIZE];
971 	struct mount *mp;
972 	int error;
973 	uint32_t hash;
974 
975 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
976 	hash = fsid->val[0] ^ fsid->val[1];
977 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
978 	mp = cache[hash];
979 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
980 		goto slow;
981 	if (vfs_busy(mp, 0) != 0) {
982 		cache[hash] = NULL;
983 		goto slow;
984 	}
985 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
986 		return (mp);
987 	else
988 	    vfs_unbusy(mp);
989 
990 slow:
991 	mtx_lock(&mountlist_mtx);
992 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
993 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
994 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
995 			if (error) {
996 				cache[hash] = NULL;
997 				mtx_unlock(&mountlist_mtx);
998 				return (NULL);
999 			}
1000 			cache[hash] = mp;
1001 			return (mp);
1002 		}
1003 	}
1004 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1005 	mtx_unlock(&mountlist_mtx);
1006 	return ((struct mount *) 0);
1007 }
1008 
1009 /*
1010  * Check if a user can access privileged mount options.
1011  */
1012 int
1013 vfs_suser(struct mount *mp, struct thread *td)
1014 {
1015 	int error;
1016 
1017 	if (jailed(td->td_ucred)) {
1018 		/*
1019 		 * If the jail of the calling thread lacks permission for
1020 		 * this type of file system, deny immediately.
1021 		 */
1022 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1023 			return (EPERM);
1024 
1025 		/*
1026 		 * If the file system was mounted outside the jail of the
1027 		 * calling thread, deny immediately.
1028 		 */
1029 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1030 			return (EPERM);
1031 	}
1032 
1033 	/*
1034 	 * If file system supports delegated administration, we don't check
1035 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1036 	 * by the file system itself.
1037 	 * If this is not the user that did original mount, we check for
1038 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1039 	 */
1040 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1041 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1042 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1043 			return (error);
1044 	}
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1050  * will be used to create fake device numbers for stat().  Also try (but
1051  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1052  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1053  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1054  *
1055  * Keep in mind that several mounts may be running in parallel.  Starting
1056  * the search one past where the previous search terminated is both a
1057  * micro-optimization and a defense against returning the same fsid to
1058  * different mounts.
1059  */
1060 void
1061 vfs_getnewfsid(struct mount *mp)
1062 {
1063 	static uint16_t mntid_base;
1064 	struct mount *nmp;
1065 	fsid_t tfsid;
1066 	int mtype;
1067 
1068 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1069 	mtx_lock(&mntid_mtx);
1070 	mtype = mp->mnt_vfc->vfc_typenum;
1071 	tfsid.val[1] = mtype;
1072 	mtype = (mtype & 0xFF) << 24;
1073 	for (;;) {
1074 		tfsid.val[0] = makedev(255,
1075 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1076 		mntid_base++;
1077 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1078 			break;
1079 		vfs_rel(nmp);
1080 	}
1081 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1082 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1083 	mtx_unlock(&mntid_mtx);
1084 }
1085 
1086 /*
1087  * Knob to control the precision of file timestamps:
1088  *
1089  *   0 = seconds only; nanoseconds zeroed.
1090  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1091  *   2 = seconds and nanoseconds, truncated to microseconds.
1092  * >=3 = seconds and nanoseconds, maximum precision.
1093  */
1094 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1095 
1096 static int timestamp_precision = TSP_USEC;
1097 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1098     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1099     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1100     "3+: sec + ns (max. precision))");
1101 
1102 /*
1103  * Get a current timestamp.
1104  */
1105 void
1106 vfs_timestamp(struct timespec *tsp)
1107 {
1108 	struct timeval tv;
1109 
1110 	switch (timestamp_precision) {
1111 	case TSP_SEC:
1112 		tsp->tv_sec = time_second;
1113 		tsp->tv_nsec = 0;
1114 		break;
1115 	case TSP_HZ:
1116 		getnanotime(tsp);
1117 		break;
1118 	case TSP_USEC:
1119 		microtime(&tv);
1120 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1121 		break;
1122 	case TSP_NSEC:
1123 	default:
1124 		nanotime(tsp);
1125 		break;
1126 	}
1127 }
1128 
1129 /*
1130  * Set vnode attributes to VNOVAL
1131  */
1132 void
1133 vattr_null(struct vattr *vap)
1134 {
1135 
1136 	vap->va_type = VNON;
1137 	vap->va_size = VNOVAL;
1138 	vap->va_bytes = VNOVAL;
1139 	vap->va_mode = VNOVAL;
1140 	vap->va_nlink = VNOVAL;
1141 	vap->va_uid = VNOVAL;
1142 	vap->va_gid = VNOVAL;
1143 	vap->va_fsid = VNOVAL;
1144 	vap->va_fileid = VNOVAL;
1145 	vap->va_blocksize = VNOVAL;
1146 	vap->va_rdev = VNOVAL;
1147 	vap->va_atime.tv_sec = VNOVAL;
1148 	vap->va_atime.tv_nsec = VNOVAL;
1149 	vap->va_mtime.tv_sec = VNOVAL;
1150 	vap->va_mtime.tv_nsec = VNOVAL;
1151 	vap->va_ctime.tv_sec = VNOVAL;
1152 	vap->va_ctime.tv_nsec = VNOVAL;
1153 	vap->va_birthtime.tv_sec = VNOVAL;
1154 	vap->va_birthtime.tv_nsec = VNOVAL;
1155 	vap->va_flags = VNOVAL;
1156 	vap->va_gen = VNOVAL;
1157 	vap->va_vaflags = 0;
1158 }
1159 
1160 /*
1161  * Try to reduce the total number of vnodes.
1162  *
1163  * This routine (and its user) are buggy in at least the following ways:
1164  * - all parameters were picked years ago when RAM sizes were significantly
1165  *   smaller
1166  * - it can pick vnodes based on pages used by the vm object, but filesystems
1167  *   like ZFS don't use it making the pick broken
1168  * - since ZFS has its own aging policy it gets partially combated by this one
1169  * - a dedicated method should be provided for filesystems to let them decide
1170  *   whether the vnode should be recycled
1171  *
1172  * This routine is called when we have too many vnodes.  It attempts
1173  * to free <count> vnodes and will potentially free vnodes that still
1174  * have VM backing store (VM backing store is typically the cause
1175  * of a vnode blowout so we want to do this).  Therefore, this operation
1176  * is not considered cheap.
1177  *
1178  * A number of conditions may prevent a vnode from being reclaimed.
1179  * the buffer cache may have references on the vnode, a directory
1180  * vnode may still have references due to the namei cache representing
1181  * underlying files, or the vnode may be in active use.   It is not
1182  * desirable to reuse such vnodes.  These conditions may cause the
1183  * number of vnodes to reach some minimum value regardless of what
1184  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1185  *
1186  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1187  * 			 entries if this argument is strue
1188  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1189  *			 pages.
1190  * @param target	 How many vnodes to reclaim.
1191  * @return		 The number of vnodes that were reclaimed.
1192  */
1193 static int
1194 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1195 {
1196 	struct vnode *vp, *mvp;
1197 	struct mount *mp;
1198 	struct vm_object *object;
1199 	u_long done;
1200 	bool retried;
1201 
1202 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1203 
1204 	retried = false;
1205 	done = 0;
1206 
1207 	mvp = vnode_list_reclaim_marker;
1208 restart:
1209 	vp = mvp;
1210 	while (done < target) {
1211 		vp = TAILQ_NEXT(vp, v_vnodelist);
1212 		if (__predict_false(vp == NULL))
1213 			break;
1214 
1215 		if (__predict_false(vp->v_type == VMARKER))
1216 			continue;
1217 
1218 		/*
1219 		 * If it's been deconstructed already, it's still
1220 		 * referenced, or it exceeds the trigger, skip it.
1221 		 * Also skip free vnodes.  We are trying to make space
1222 		 * to expand the free list, not reduce it.
1223 		 */
1224 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1225 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1226 			goto next_iter;
1227 
1228 		if (vp->v_type == VBAD || vp->v_type == VNON)
1229 			goto next_iter;
1230 
1231 		object = atomic_load_ptr(&vp->v_object);
1232 		if (object == NULL || object->resident_page_count > trigger) {
1233 			goto next_iter;
1234 		}
1235 
1236 		/*
1237 		 * Handle races against vnode allocation. Filesystems lock the
1238 		 * vnode some time after it gets returned from getnewvnode,
1239 		 * despite type and hold count being manipulated earlier.
1240 		 * Resorting to checking v_mount restores guarantees present
1241 		 * before the global list was reworked to contain all vnodes.
1242 		 */
1243 		if (!VI_TRYLOCK(vp))
1244 			goto next_iter;
1245 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1246 			VI_UNLOCK(vp);
1247 			goto next_iter;
1248 		}
1249 		if (vp->v_mount == NULL) {
1250 			VI_UNLOCK(vp);
1251 			goto next_iter;
1252 		}
1253 		vholdl(vp);
1254 		VI_UNLOCK(vp);
1255 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1256 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1257 		mtx_unlock(&vnode_list_mtx);
1258 
1259 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1260 			vdrop_recycle(vp);
1261 			goto next_iter_unlocked;
1262 		}
1263 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1264 			vdrop_recycle(vp);
1265 			vn_finished_write(mp);
1266 			goto next_iter_unlocked;
1267 		}
1268 
1269 		VI_LOCK(vp);
1270 		if (vp->v_usecount > 0 ||
1271 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1272 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1273 		    vp->v_object->resident_page_count > trigger)) {
1274 			VOP_UNLOCK(vp);
1275 			vdropl_recycle(vp);
1276 			vn_finished_write(mp);
1277 			goto next_iter_unlocked;
1278 		}
1279 		counter_u64_add(recycles_count, 1);
1280 		vgonel(vp);
1281 		VOP_UNLOCK(vp);
1282 		vdropl_recycle(vp);
1283 		vn_finished_write(mp);
1284 		done++;
1285 next_iter_unlocked:
1286 		maybe_yield();
1287 		mtx_lock(&vnode_list_mtx);
1288 		goto restart;
1289 next_iter:
1290 		MPASS(vp->v_type != VMARKER);
1291 		if (!should_yield())
1292 			continue;
1293 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1294 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1295 		mtx_unlock(&vnode_list_mtx);
1296 		kern_yield(PRI_USER);
1297 		mtx_lock(&vnode_list_mtx);
1298 		goto restart;
1299 	}
1300 	if (done == 0 && !retried) {
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1303 		retried = true;
1304 		goto restart;
1305 	}
1306 	return (done);
1307 }
1308 
1309 static int max_free_per_call = 10000;
1310 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1311     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1312 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1313     &max_free_per_call, 0,
1314     "limit on vnode free requests per call to the vnlru_free routine");
1315 
1316 /*
1317  * Attempt to reduce the free list by the requested amount.
1318  */
1319 static int
1320 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1321 {
1322 	struct vnode *vp;
1323 	struct mount *mp;
1324 	int ocount;
1325 	bool retried;
1326 
1327 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1328 	if (count > max_free_per_call)
1329 		count = max_free_per_call;
1330 	if (count == 0) {
1331 		mtx_unlock(&vnode_list_mtx);
1332 		return (0);
1333 	}
1334 	ocount = count;
1335 	retried = false;
1336 	vp = mvp;
1337 	for (;;) {
1338 		vp = TAILQ_NEXT(vp, v_vnodelist);
1339 		if (__predict_false(vp == NULL)) {
1340 			/*
1341 			 * The free vnode marker can be past eligible vnodes:
1342 			 * 1. if vdbatch_process trylock failed
1343 			 * 2. if vtryrecycle failed
1344 			 *
1345 			 * If so, start the scan from scratch.
1346 			 */
1347 			if (!retried && vnlru_read_freevnodes() > 0) {
1348 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1349 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1350 				vp = mvp;
1351 				retried = true;
1352 				continue;
1353 			}
1354 
1355 			/*
1356 			 * Give up
1357 			 */
1358 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1359 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1360 			mtx_unlock(&vnode_list_mtx);
1361 			break;
1362 		}
1363 		if (__predict_false(vp->v_type == VMARKER))
1364 			continue;
1365 		if (vp->v_holdcnt > 0)
1366 			continue;
1367 		/*
1368 		 * Don't recycle if our vnode is from different type
1369 		 * of mount point.  Note that mp is type-safe, the
1370 		 * check does not reach unmapped address even if
1371 		 * vnode is reclaimed.
1372 		 */
1373 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1374 		    mp->mnt_op != mnt_op) {
1375 			continue;
1376 		}
1377 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1378 			continue;
1379 		}
1380 		if (!vhold_recycle_free(vp))
1381 			continue;
1382 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1383 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1384 		mtx_unlock(&vnode_list_mtx);
1385 		/*
1386 		 * FIXME: ignores the return value, meaning it may be nothing
1387 		 * got recycled but it claims otherwise to the caller.
1388 		 *
1389 		 * Originally the value started being ignored in 2005 with
1390 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1391 		 *
1392 		 * Respecting the value can run into significant stalls if most
1393 		 * vnodes belong to one file system and it has writes
1394 		 * suspended.  In presence of many threads and millions of
1395 		 * vnodes they keep contending on the vnode_list_mtx lock only
1396 		 * to find vnodes they can't recycle.
1397 		 *
1398 		 * The solution would be to pre-check if the vnode is likely to
1399 		 * be recycle-able, but it needs to happen with the
1400 		 * vnode_list_mtx lock held. This runs into a problem where
1401 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1402 		 * writes are frozen) can take locks which LOR against it.
1403 		 *
1404 		 * Check nullfs for one example (null_getwritemount).
1405 		 */
1406 		vtryrecycle(vp);
1407 		count--;
1408 		if (count == 0) {
1409 			break;
1410 		}
1411 		mtx_lock(&vnode_list_mtx);
1412 		vp = mvp;
1413 	}
1414 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1415 	return (ocount - count);
1416 }
1417 
1418 /*
1419  * XXX: returns without vnode_list_mtx locked!
1420  */
1421 static int
1422 vnlru_free_locked(int count)
1423 {
1424 	int ret;
1425 
1426 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1427 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker);
1428 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1429 	return (ret);
1430 }
1431 
1432 static int
1433 vnlru_free(int count)
1434 {
1435 
1436 	mtx_lock(&vnode_list_mtx);
1437 	return (vnlru_free_locked(count));
1438 }
1439 
1440 void
1441 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1442 {
1443 
1444 	MPASS(mnt_op != NULL);
1445 	MPASS(mvp != NULL);
1446 	VNPASS(mvp->v_type == VMARKER, mvp);
1447 	mtx_lock(&vnode_list_mtx);
1448 	vnlru_free_impl(count, mnt_op, mvp);
1449 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1450 }
1451 
1452 struct vnode *
1453 vnlru_alloc_marker(void)
1454 {
1455 	struct vnode *mvp;
1456 
1457 	mvp = vn_alloc_marker(NULL);
1458 	mtx_lock(&vnode_list_mtx);
1459 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1460 	mtx_unlock(&vnode_list_mtx);
1461 	return (mvp);
1462 }
1463 
1464 void
1465 vnlru_free_marker(struct vnode *mvp)
1466 {
1467 	mtx_lock(&vnode_list_mtx);
1468 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1469 	mtx_unlock(&vnode_list_mtx);
1470 	vn_free_marker(mvp);
1471 }
1472 
1473 static void
1474 vnlru_recalc(void)
1475 {
1476 
1477 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1478 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1479 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1480 	vlowat = vhiwat / 2;
1481 }
1482 
1483 /*
1484  * Attempt to recycle vnodes in a context that is always safe to block.
1485  * Calling vlrurecycle() from the bowels of filesystem code has some
1486  * interesting deadlock problems.
1487  */
1488 static struct proc *vnlruproc;
1489 static int vnlruproc_sig;
1490 static u_long vnlruproc_kicks;
1491 
1492 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1493     "Number of times vnlru got woken up due to vnode shortage");
1494 
1495 #define VNLRU_COUNT_SLOP 100
1496 
1497 /*
1498  * The main freevnodes counter is only updated when a counter local to CPU
1499  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1500  * walked to compute a more accurate total.
1501  *
1502  * Note: the actual value at any given moment can still exceed slop, but it
1503  * should not be by significant margin in practice.
1504  */
1505 #define VNLRU_FREEVNODES_SLOP 126
1506 
1507 static void __noinline
1508 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1509 {
1510 
1511 	atomic_add_long(&freevnodes, *lfreevnodes);
1512 	*lfreevnodes = 0;
1513 	critical_exit();
1514 }
1515 
1516 static __inline void
1517 vfs_freevnodes_inc(void)
1518 {
1519 	int8_t *lfreevnodes;
1520 
1521 	critical_enter();
1522 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1523 	(*lfreevnodes)++;
1524 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1525 		vfs_freevnodes_rollup(lfreevnodes);
1526 	else
1527 		critical_exit();
1528 }
1529 
1530 static __inline void
1531 vfs_freevnodes_dec(void)
1532 {
1533 	int8_t *lfreevnodes;
1534 
1535 	critical_enter();
1536 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1537 	(*lfreevnodes)--;
1538 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1539 		vfs_freevnodes_rollup(lfreevnodes);
1540 	else
1541 		critical_exit();
1542 }
1543 
1544 static u_long
1545 vnlru_read_freevnodes(void)
1546 {
1547 	long slop, rfreevnodes, rfreevnodes_old;
1548 	int cpu;
1549 
1550 	rfreevnodes = atomic_load_long(&freevnodes);
1551 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1552 
1553 	if (rfreevnodes > rfreevnodes_old)
1554 		slop = rfreevnodes - rfreevnodes_old;
1555 	else
1556 		slop = rfreevnodes_old - rfreevnodes;
1557 	if (slop < VNLRU_FREEVNODES_SLOP)
1558 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1559 	CPU_FOREACH(cpu) {
1560 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1561 	}
1562 	atomic_store_long(&freevnodes_old, rfreevnodes);
1563 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1564 }
1565 
1566 static bool
1567 vnlru_under(u_long rnumvnodes, u_long limit)
1568 {
1569 	u_long rfreevnodes, space;
1570 
1571 	if (__predict_false(rnumvnodes > desiredvnodes))
1572 		return (true);
1573 
1574 	space = desiredvnodes - rnumvnodes;
1575 	if (space < limit) {
1576 		rfreevnodes = vnlru_read_freevnodes();
1577 		if (rfreevnodes > wantfreevnodes)
1578 			space += rfreevnodes - wantfreevnodes;
1579 	}
1580 	return (space < limit);
1581 }
1582 
1583 static void
1584 vnlru_kick_locked(void)
1585 {
1586 
1587 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1588 	if (vnlruproc_sig == 0) {
1589 		vnlruproc_sig = 1;
1590 		vnlruproc_kicks++;
1591 		wakeup(vnlruproc);
1592 	}
1593 }
1594 
1595 static void
1596 vnlru_kick_cond(void)
1597 {
1598 
1599 	if (vnlru_read_freevnodes() > wantfreevnodes)
1600 		return;
1601 
1602 	if (vnlruproc_sig)
1603 		return;
1604 	mtx_lock(&vnode_list_mtx);
1605 	vnlru_kick_locked();
1606 	mtx_unlock(&vnode_list_mtx);
1607 }
1608 
1609 static void
1610 vnlru_proc_sleep(void)
1611 {
1612 
1613 	if (vnlruproc_sig) {
1614 		vnlruproc_sig = 0;
1615 		wakeup(&vnlruproc_sig);
1616 	}
1617 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1618 }
1619 
1620 /*
1621  * A lighter version of the machinery below.
1622  *
1623  * Tries to reach goals only by recycling free vnodes and does not invoke
1624  * uma_reclaim(UMA_RECLAIM_DRAIN).
1625  *
1626  * This works around pathological behavior in vnlru in presence of tons of free
1627  * vnodes, but without having to rewrite the machinery at this time. Said
1628  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1629  * (cycling through all levels of "force") when the count is transiently above
1630  * limit. This happens a lot when all vnodes are used up and vn_alloc
1631  * speculatively increments the counter.
1632  *
1633  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1634  * 1 million files in total and 20 find(1) processes stating them in parallel
1635  * (one per each tree).
1636  *
1637  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1638  * seconds to execute (time varies *wildly* between runs). With the workaround
1639  * it consistently stays around 20 seconds [it got further down with later
1640  * changes].
1641  *
1642  * That is to say the entire thing needs a fundamental redesign (most notably
1643  * to accommodate faster recycling), the above only tries to get it ouf the way.
1644  *
1645  * Return values are:
1646  * -1 -- fallback to regular vnlru loop
1647  *  0 -- do nothing, go to sleep
1648  * >0 -- recycle this many vnodes
1649  */
1650 static long
1651 vnlru_proc_light_pick(void)
1652 {
1653 	u_long rnumvnodes, rfreevnodes;
1654 
1655 	if (vstir || vnlruproc_sig == 1)
1656 		return (-1);
1657 
1658 	rnumvnodes = atomic_load_long(&numvnodes);
1659 	rfreevnodes = vnlru_read_freevnodes();
1660 
1661 	/*
1662 	 * vnode limit might have changed and now we may be at a significant
1663 	 * excess. Bail if we can't sort it out with free vnodes.
1664 	 *
1665 	 * Due to atomic updates the count can legitimately go above
1666 	 * the limit for a short period, don't bother doing anything in
1667 	 * that case.
1668 	 */
1669 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1670 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1671 		    rfreevnodes <= wantfreevnodes) {
1672 			return (-1);
1673 		}
1674 
1675 		return (rnumvnodes - desiredvnodes);
1676 	}
1677 
1678 	/*
1679 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1680 	 * to begin with.
1681 	 */
1682 	if (rnumvnodes < wantfreevnodes) {
1683 		return (0);
1684 	}
1685 
1686 	if (rfreevnodes < wantfreevnodes) {
1687 		return (-1);
1688 	}
1689 
1690 	return (0);
1691 }
1692 
1693 static bool
1694 vnlru_proc_light(void)
1695 {
1696 	long freecount;
1697 
1698 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1699 
1700 	freecount = vnlru_proc_light_pick();
1701 	if (freecount == -1)
1702 		return (false);
1703 
1704 	if (freecount != 0) {
1705 		vnlru_free(freecount);
1706 	}
1707 
1708 	mtx_lock(&vnode_list_mtx);
1709 	vnlru_proc_sleep();
1710 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1711 	return (true);
1712 }
1713 
1714 static void
1715 vnlru_proc(void)
1716 {
1717 	u_long rnumvnodes, rfreevnodes, target;
1718 	unsigned long onumvnodes;
1719 	int done, force, trigger, usevnodes;
1720 	bool reclaim_nc_src, want_reread;
1721 
1722 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1723 	    SHUTDOWN_PRI_FIRST);
1724 
1725 	force = 0;
1726 	want_reread = false;
1727 	for (;;) {
1728 		kproc_suspend_check(vnlruproc);
1729 
1730 		if (force == 0 && vnlru_proc_light())
1731 			continue;
1732 
1733 		mtx_lock(&vnode_list_mtx);
1734 		rnumvnodes = atomic_load_long(&numvnodes);
1735 
1736 		if (want_reread) {
1737 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1738 			want_reread = false;
1739 		}
1740 
1741 		/*
1742 		 * If numvnodes is too large (due to desiredvnodes being
1743 		 * adjusted using its sysctl, or emergency growth), first
1744 		 * try to reduce it by discarding from the free list.
1745 		 */
1746 		if (rnumvnodes > desiredvnodes + 10) {
1747 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1748 			mtx_lock(&vnode_list_mtx);
1749 			rnumvnodes = atomic_load_long(&numvnodes);
1750 		}
1751 		/*
1752 		 * Sleep if the vnode cache is in a good state.  This is
1753 		 * when it is not over-full and has space for about a 4%
1754 		 * or 9% expansion (by growing its size or inexcessively
1755 		 * reducing its free list).  Otherwise, try to reclaim
1756 		 * space for a 10% expansion.
1757 		 */
1758 		if (vstir && force == 0) {
1759 			force = 1;
1760 			vstir = false;
1761 		}
1762 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1763 			vnlru_proc_sleep();
1764 			continue;
1765 		}
1766 		rfreevnodes = vnlru_read_freevnodes();
1767 
1768 		onumvnodes = rnumvnodes;
1769 		/*
1770 		 * Calculate parameters for recycling.  These are the same
1771 		 * throughout the loop to give some semblance of fairness.
1772 		 * The trigger point is to avoid recycling vnodes with lots
1773 		 * of resident pages.  We aren't trying to free memory; we
1774 		 * are trying to recycle or at least free vnodes.
1775 		 */
1776 		if (rnumvnodes <= desiredvnodes)
1777 			usevnodes = rnumvnodes - rfreevnodes;
1778 		else
1779 			usevnodes = rnumvnodes;
1780 		if (usevnodes <= 0)
1781 			usevnodes = 1;
1782 		/*
1783 		 * The trigger value is chosen to give a conservatively
1784 		 * large value to ensure that it alone doesn't prevent
1785 		 * making progress.  The value can easily be so large that
1786 		 * it is effectively infinite in some congested and
1787 		 * misconfigured cases, and this is necessary.  Normally
1788 		 * it is about 8 to 100 (pages), which is quite large.
1789 		 */
1790 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1791 		if (force < 2)
1792 			trigger = vsmalltrigger;
1793 		reclaim_nc_src = force >= 3;
1794 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1795 		target = target / 10 + 1;
1796 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1797 		mtx_unlock(&vnode_list_mtx);
1798 		/*
1799 		 * Total number of vnodes can transiently go slightly above the
1800 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1801 		 * this happens.
1802 		 */
1803 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1804 		    numvnodes <= desiredvnodes)
1805 			uma_reclaim(UMA_RECLAIM_DRAIN);
1806 		if (done == 0) {
1807 			if (force == 0 || force == 1) {
1808 				force = 2;
1809 				continue;
1810 			}
1811 			if (force == 2) {
1812 				force = 3;
1813 				continue;
1814 			}
1815 			want_reread = true;
1816 			force = 0;
1817 			vnlru_nowhere++;
1818 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1819 		} else {
1820 			want_reread = true;
1821 			kern_yield(PRI_USER);
1822 		}
1823 	}
1824 }
1825 
1826 static struct kproc_desc vnlru_kp = {
1827 	"vnlru",
1828 	vnlru_proc,
1829 	&vnlruproc
1830 };
1831 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1832     &vnlru_kp);
1833 
1834 /*
1835  * Routines having to do with the management of the vnode table.
1836  */
1837 
1838 /*
1839  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1840  * before we actually vgone().  This function must be called with the vnode
1841  * held to prevent the vnode from being returned to the free list midway
1842  * through vgone().
1843  */
1844 static int
1845 vtryrecycle(struct vnode *vp)
1846 {
1847 	struct mount *vnmp;
1848 
1849 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1850 	VNPASS(vp->v_holdcnt > 0, vp);
1851 	/*
1852 	 * This vnode may found and locked via some other list, if so we
1853 	 * can't recycle it yet.
1854 	 */
1855 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1856 		CTR2(KTR_VFS,
1857 		    "%s: impossible to recycle, vp %p lock is already held",
1858 		    __func__, vp);
1859 		vdrop_recycle(vp);
1860 		return (EWOULDBLOCK);
1861 	}
1862 	/*
1863 	 * Don't recycle if its filesystem is being suspended.
1864 	 */
1865 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1866 		VOP_UNLOCK(vp);
1867 		CTR2(KTR_VFS,
1868 		    "%s: impossible to recycle, cannot start the write for %p",
1869 		    __func__, vp);
1870 		vdrop_recycle(vp);
1871 		return (EBUSY);
1872 	}
1873 	/*
1874 	 * If we got this far, we need to acquire the interlock and see if
1875 	 * anyone picked up this vnode from another list.  If not, we will
1876 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1877 	 * will skip over it.
1878 	 */
1879 	VI_LOCK(vp);
1880 	if (vp->v_usecount) {
1881 		VOP_UNLOCK(vp);
1882 		vdropl_recycle(vp);
1883 		vn_finished_write(vnmp);
1884 		CTR2(KTR_VFS,
1885 		    "%s: impossible to recycle, %p is already referenced",
1886 		    __func__, vp);
1887 		return (EBUSY);
1888 	}
1889 	if (!VN_IS_DOOMED(vp)) {
1890 		counter_u64_add(recycles_free_count, 1);
1891 		vgonel(vp);
1892 	}
1893 	VOP_UNLOCK(vp);
1894 	vdropl_recycle(vp);
1895 	vn_finished_write(vnmp);
1896 	return (0);
1897 }
1898 
1899 /*
1900  * Allocate a new vnode.
1901  *
1902  * The operation never returns an error. Returning an error was disabled
1903  * in r145385 (dated 2005) with the following comment:
1904  *
1905  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1906  *
1907  * Given the age of this commit (almost 15 years at the time of writing this
1908  * comment) restoring the ability to fail requires a significant audit of
1909  * all codepaths.
1910  *
1911  * The routine can try to free a vnode or stall for up to 1 second waiting for
1912  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1913  */
1914 static u_long vn_alloc_cyclecount;
1915 static u_long vn_alloc_sleeps;
1916 
1917 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1918     "Number of times vnode allocation blocked waiting on vnlru");
1919 
1920 static struct vnode * __noinline
1921 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1922 {
1923 	u_long rfreevnodes;
1924 
1925 	if (bumped) {
1926 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1927 			atomic_subtract_long(&numvnodes, 1);
1928 			bumped = false;
1929 		}
1930 	}
1931 
1932 	mtx_lock(&vnode_list_mtx);
1933 
1934 	if (vn_alloc_cyclecount != 0) {
1935 		rnumvnodes = atomic_load_long(&numvnodes);
1936 		if (rnumvnodes + 1 < desiredvnodes) {
1937 			vn_alloc_cyclecount = 0;
1938 			mtx_unlock(&vnode_list_mtx);
1939 			goto alloc;
1940 		}
1941 
1942 		rfreevnodes = vnlru_read_freevnodes();
1943 		if (rfreevnodes < wantfreevnodes) {
1944 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1945 				vn_alloc_cyclecount = 0;
1946 				vstir = true;
1947 			}
1948 		} else {
1949 			vn_alloc_cyclecount = 0;
1950 		}
1951 	}
1952 
1953 	/*
1954 	 * Grow the vnode cache if it will not be above its target max
1955 	 * after growing.  Otherwise, if the free list is nonempty, try
1956 	 * to reclaim 1 item from it before growing the cache (possibly
1957 	 * above its target max if the reclamation failed or is delayed).
1958 	 * Otherwise, wait for some space.  In all cases, schedule
1959 	 * vnlru_proc() if we are getting short of space.  The watermarks
1960 	 * should be chosen so that we never wait or even reclaim from
1961 	 * the free list to below its target minimum.
1962 	 */
1963 	if (vnlru_free_locked(1) > 0)
1964 		goto alloc;
1965 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1966 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1967 		/*
1968 		 * Wait for space for a new vnode.
1969 		 */
1970 		if (bumped) {
1971 			atomic_subtract_long(&numvnodes, 1);
1972 			bumped = false;
1973 		}
1974 		mtx_lock(&vnode_list_mtx);
1975 		vnlru_kick_locked();
1976 		vn_alloc_sleeps++;
1977 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1978 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1979 		    vnlru_read_freevnodes() > 1)
1980 			vnlru_free_locked(1);
1981 		else
1982 			mtx_unlock(&vnode_list_mtx);
1983 	}
1984 alloc:
1985 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1986 	if (!bumped)
1987 		atomic_add_long(&numvnodes, 1);
1988 	vnlru_kick_cond();
1989 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1990 }
1991 
1992 static struct vnode *
1993 vn_alloc(struct mount *mp)
1994 {
1995 	u_long rnumvnodes;
1996 
1997 	if (__predict_false(vn_alloc_cyclecount != 0))
1998 		return (vn_alloc_hard(mp, 0, false));
1999 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2000 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2001 		return (vn_alloc_hard(mp, rnumvnodes, true));
2002 	}
2003 
2004 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2005 }
2006 
2007 static void
2008 vn_free(struct vnode *vp)
2009 {
2010 
2011 	atomic_subtract_long(&numvnodes, 1);
2012 	uma_zfree_smr(vnode_zone, vp);
2013 }
2014 
2015 /*
2016  * Return the next vnode from the free list.
2017  */
2018 int
2019 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2020     struct vnode **vpp)
2021 {
2022 	struct vnode *vp;
2023 	struct thread *td;
2024 	struct lock_object *lo;
2025 
2026 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2027 
2028 	KASSERT(vops->registered,
2029 	    ("%s: not registered vector op %p\n", __func__, vops));
2030 	cache_validate_vop_vector(mp, vops);
2031 
2032 	td = curthread;
2033 	if (td->td_vp_reserved != NULL) {
2034 		vp = td->td_vp_reserved;
2035 		td->td_vp_reserved = NULL;
2036 	} else {
2037 		vp = vn_alloc(mp);
2038 	}
2039 	counter_u64_add(vnodes_created, 1);
2040 
2041 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2042 
2043 	/*
2044 	 * Locks are given the generic name "vnode" when created.
2045 	 * Follow the historic practice of using the filesystem
2046 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2047 	 *
2048 	 * Locks live in a witness group keyed on their name. Thus,
2049 	 * when a lock is renamed, it must also move from the witness
2050 	 * group of its old name to the witness group of its new name.
2051 	 *
2052 	 * The change only needs to be made when the vnode moves
2053 	 * from one filesystem type to another. We ensure that each
2054 	 * filesystem use a single static name pointer for its tag so
2055 	 * that we can compare pointers rather than doing a strcmp().
2056 	 */
2057 	lo = &vp->v_vnlock->lock_object;
2058 #ifdef WITNESS
2059 	if (lo->lo_name != tag) {
2060 #endif
2061 		lo->lo_name = tag;
2062 #ifdef WITNESS
2063 		WITNESS_DESTROY(lo);
2064 		WITNESS_INIT(lo, tag);
2065 	}
2066 #endif
2067 	/*
2068 	 * By default, don't allow shared locks unless filesystems opt-in.
2069 	 */
2070 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2071 	/*
2072 	 * Finalize various vnode identity bits.
2073 	 */
2074 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2075 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2076 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2077 	vp->v_type = VNON;
2078 	vp->v_op = vops;
2079 	vp->v_irflag = 0;
2080 	v_init_counters(vp);
2081 	vn_seqc_init(vp);
2082 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2083 #ifdef DIAGNOSTIC
2084 	if (mp == NULL && vops != &dead_vnodeops)
2085 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2086 #endif
2087 #ifdef MAC
2088 	mac_vnode_init(vp);
2089 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2090 		mac_vnode_associate_singlelabel(mp, vp);
2091 #endif
2092 	if (mp != NULL) {
2093 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2094 	}
2095 
2096 	/*
2097 	 * For the filesystems which do not use vfs_hash_insert(),
2098 	 * still initialize v_hash to have vfs_hash_index() useful.
2099 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2100 	 * its own hashing.
2101 	 */
2102 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2103 
2104 	*vpp = vp;
2105 	return (0);
2106 }
2107 
2108 void
2109 getnewvnode_reserve(void)
2110 {
2111 	struct thread *td;
2112 
2113 	td = curthread;
2114 	MPASS(td->td_vp_reserved == NULL);
2115 	td->td_vp_reserved = vn_alloc(NULL);
2116 }
2117 
2118 void
2119 getnewvnode_drop_reserve(void)
2120 {
2121 	struct thread *td;
2122 
2123 	td = curthread;
2124 	if (td->td_vp_reserved != NULL) {
2125 		vn_free(td->td_vp_reserved);
2126 		td->td_vp_reserved = NULL;
2127 	}
2128 }
2129 
2130 static void __noinline
2131 freevnode(struct vnode *vp)
2132 {
2133 	struct bufobj *bo;
2134 
2135 	/*
2136 	 * The vnode has been marked for destruction, so free it.
2137 	 *
2138 	 * The vnode will be returned to the zone where it will
2139 	 * normally remain until it is needed for another vnode. We
2140 	 * need to cleanup (or verify that the cleanup has already
2141 	 * been done) any residual data left from its current use
2142 	 * so as not to contaminate the freshly allocated vnode.
2143 	 */
2144 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2145 	/*
2146 	 * Paired with vgone.
2147 	 */
2148 	vn_seqc_write_end_free(vp);
2149 
2150 	bo = &vp->v_bufobj;
2151 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2152 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2153 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2154 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2155 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2156 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2157 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2158 	    ("clean blk trie not empty"));
2159 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2160 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2161 	    ("dirty blk trie not empty"));
2162 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2163 	    ("Dangling rangelock waiters"));
2164 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2165 	    ("Leaked inactivation"));
2166 	VI_UNLOCK(vp);
2167 	cache_assert_no_entries(vp);
2168 
2169 #ifdef MAC
2170 	mac_vnode_destroy(vp);
2171 #endif
2172 	if (vp->v_pollinfo != NULL) {
2173 		/*
2174 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2175 		 * here while having another vnode locked when trying to
2176 		 * satisfy a lookup and needing to recycle.
2177 		 */
2178 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2179 		destroy_vpollinfo(vp->v_pollinfo);
2180 		VOP_UNLOCK(vp);
2181 		vp->v_pollinfo = NULL;
2182 	}
2183 	vp->v_mountedhere = NULL;
2184 	vp->v_unpcb = NULL;
2185 	vp->v_rdev = NULL;
2186 	vp->v_fifoinfo = NULL;
2187 	vp->v_iflag = 0;
2188 	vp->v_vflag = 0;
2189 	bo->bo_flag = 0;
2190 	vn_free(vp);
2191 }
2192 
2193 /*
2194  * Delete from old mount point vnode list, if on one.
2195  */
2196 static void
2197 delmntque(struct vnode *vp)
2198 {
2199 	struct mount *mp;
2200 
2201 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2202 
2203 	mp = vp->v_mount;
2204 	MNT_ILOCK(mp);
2205 	VI_LOCK(vp);
2206 	vp->v_mount = NULL;
2207 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2208 		("bad mount point vnode list size"));
2209 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2210 	mp->mnt_nvnodelistsize--;
2211 	MNT_REL(mp);
2212 	MNT_IUNLOCK(mp);
2213 	/*
2214 	 * The caller expects the interlock to be still held.
2215 	 */
2216 	ASSERT_VI_LOCKED(vp, __func__);
2217 }
2218 
2219 static int
2220 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2221 {
2222 
2223 	KASSERT(vp->v_mount == NULL,
2224 		("insmntque: vnode already on per mount vnode list"));
2225 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2226 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2227 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2228 	} else {
2229 		KASSERT(!dtr,
2230 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2231 		    __func__));
2232 	}
2233 
2234 	/*
2235 	 * We acquire the vnode interlock early to ensure that the
2236 	 * vnode cannot be recycled by another process releasing a
2237 	 * holdcnt on it before we get it on both the vnode list
2238 	 * and the active vnode list. The mount mutex protects only
2239 	 * manipulation of the vnode list and the vnode freelist
2240 	 * mutex protects only manipulation of the active vnode list.
2241 	 * Hence the need to hold the vnode interlock throughout.
2242 	 */
2243 	MNT_ILOCK(mp);
2244 	VI_LOCK(vp);
2245 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2246 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2247 	    mp->mnt_nvnodelistsize == 0)) &&
2248 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2249 		VI_UNLOCK(vp);
2250 		MNT_IUNLOCK(mp);
2251 		if (dtr) {
2252 			vp->v_data = NULL;
2253 			vp->v_op = &dead_vnodeops;
2254 			vgone(vp);
2255 			vput(vp);
2256 		}
2257 		return (EBUSY);
2258 	}
2259 	vp->v_mount = mp;
2260 	MNT_REF(mp);
2261 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2262 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2263 		("neg mount point vnode list size"));
2264 	mp->mnt_nvnodelistsize++;
2265 	VI_UNLOCK(vp);
2266 	MNT_IUNLOCK(mp);
2267 	return (0);
2268 }
2269 
2270 /*
2271  * Insert into list of vnodes for the new mount point, if available.
2272  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2273  * leaves handling of the vnode to the caller.
2274  */
2275 int
2276 insmntque(struct vnode *vp, struct mount *mp)
2277 {
2278 	return (insmntque1_int(vp, mp, true));
2279 }
2280 
2281 int
2282 insmntque1(struct vnode *vp, struct mount *mp)
2283 {
2284 	return (insmntque1_int(vp, mp, false));
2285 }
2286 
2287 /*
2288  * Flush out and invalidate all buffers associated with a bufobj
2289  * Called with the underlying object locked.
2290  */
2291 int
2292 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2293 {
2294 	int error;
2295 
2296 	BO_LOCK(bo);
2297 	if (flags & V_SAVE) {
2298 		error = bufobj_wwait(bo, slpflag, slptimeo);
2299 		if (error) {
2300 			BO_UNLOCK(bo);
2301 			return (error);
2302 		}
2303 		if (bo->bo_dirty.bv_cnt > 0) {
2304 			BO_UNLOCK(bo);
2305 			do {
2306 				error = BO_SYNC(bo, MNT_WAIT);
2307 			} while (error == ERELOOKUP);
2308 			if (error != 0)
2309 				return (error);
2310 			BO_LOCK(bo);
2311 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2312 				BO_UNLOCK(bo);
2313 				return (EBUSY);
2314 			}
2315 		}
2316 	}
2317 	/*
2318 	 * If you alter this loop please notice that interlock is dropped and
2319 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2320 	 * no race conditions occur from this.
2321 	 */
2322 	do {
2323 		error = flushbuflist(&bo->bo_clean,
2324 		    flags, bo, slpflag, slptimeo);
2325 		if (error == 0 && !(flags & V_CLEANONLY))
2326 			error = flushbuflist(&bo->bo_dirty,
2327 			    flags, bo, slpflag, slptimeo);
2328 		if (error != 0 && error != EAGAIN) {
2329 			BO_UNLOCK(bo);
2330 			return (error);
2331 		}
2332 	} while (error != 0);
2333 
2334 	/*
2335 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2336 	 * have write I/O in-progress but if there is a VM object then the
2337 	 * VM object can also have read-I/O in-progress.
2338 	 */
2339 	do {
2340 		bufobj_wwait(bo, 0, 0);
2341 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2342 			BO_UNLOCK(bo);
2343 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2344 			BO_LOCK(bo);
2345 		}
2346 	} while (bo->bo_numoutput > 0);
2347 	BO_UNLOCK(bo);
2348 
2349 	/*
2350 	 * Destroy the copy in the VM cache, too.
2351 	 */
2352 	if (bo->bo_object != NULL &&
2353 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2354 		VM_OBJECT_WLOCK(bo->bo_object);
2355 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2356 		    OBJPR_CLEANONLY : 0);
2357 		VM_OBJECT_WUNLOCK(bo->bo_object);
2358 	}
2359 
2360 #ifdef INVARIANTS
2361 	BO_LOCK(bo);
2362 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2363 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2364 	    bo->bo_clean.bv_cnt > 0))
2365 		panic("vinvalbuf: flush failed");
2366 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2367 	    bo->bo_dirty.bv_cnt > 0)
2368 		panic("vinvalbuf: flush dirty failed");
2369 	BO_UNLOCK(bo);
2370 #endif
2371 	return (0);
2372 }
2373 
2374 /*
2375  * Flush out and invalidate all buffers associated with a vnode.
2376  * Called with the underlying object locked.
2377  */
2378 int
2379 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2380 {
2381 
2382 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2383 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2384 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2385 		return (0);
2386 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2387 }
2388 
2389 /*
2390  * Flush out buffers on the specified list.
2391  *
2392  */
2393 static int
2394 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2395     int slptimeo)
2396 {
2397 	struct buf *bp, *nbp;
2398 	int retval, error;
2399 	daddr_t lblkno;
2400 	b_xflags_t xflags;
2401 
2402 	ASSERT_BO_WLOCKED(bo);
2403 
2404 	retval = 0;
2405 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2406 		/*
2407 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2408 		 * do not skip any buffers. If we are flushing only V_NORMAL
2409 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2410 		 * flushing only V_ALT buffers then skip buffers not marked
2411 		 * as BX_ALTDATA.
2412 		 */
2413 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2414 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2415 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2416 			continue;
2417 		}
2418 		if (nbp != NULL) {
2419 			lblkno = nbp->b_lblkno;
2420 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2421 		}
2422 		retval = EAGAIN;
2423 		error = BUF_TIMELOCK(bp,
2424 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2425 		    "flushbuf", slpflag, slptimeo);
2426 		if (error) {
2427 			BO_LOCK(bo);
2428 			return (error != ENOLCK ? error : EAGAIN);
2429 		}
2430 		KASSERT(bp->b_bufobj == bo,
2431 		    ("bp %p wrong b_bufobj %p should be %p",
2432 		    bp, bp->b_bufobj, bo));
2433 		/*
2434 		 * XXX Since there are no node locks for NFS, I
2435 		 * believe there is a slight chance that a delayed
2436 		 * write will occur while sleeping just above, so
2437 		 * check for it.
2438 		 */
2439 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2440 		    (flags & V_SAVE)) {
2441 			bremfree(bp);
2442 			bp->b_flags |= B_ASYNC;
2443 			bwrite(bp);
2444 			BO_LOCK(bo);
2445 			return (EAGAIN);	/* XXX: why not loop ? */
2446 		}
2447 		bremfree(bp);
2448 		bp->b_flags |= (B_INVAL | B_RELBUF);
2449 		bp->b_flags &= ~B_ASYNC;
2450 		brelse(bp);
2451 		BO_LOCK(bo);
2452 		if (nbp == NULL)
2453 			break;
2454 		nbp = gbincore(bo, lblkno);
2455 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2456 		    != xflags)
2457 			break;			/* nbp invalid */
2458 	}
2459 	return (retval);
2460 }
2461 
2462 int
2463 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2464 {
2465 	struct buf *bp;
2466 	int error;
2467 	daddr_t lblkno;
2468 
2469 	ASSERT_BO_LOCKED(bo);
2470 
2471 	for (lblkno = startn;;) {
2472 again:
2473 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2474 		if (bp == NULL || bp->b_lblkno >= endn ||
2475 		    bp->b_lblkno < startn)
2476 			break;
2477 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2478 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2479 		if (error != 0) {
2480 			BO_RLOCK(bo);
2481 			if (error == ENOLCK)
2482 				goto again;
2483 			return (error);
2484 		}
2485 		KASSERT(bp->b_bufobj == bo,
2486 		    ("bp %p wrong b_bufobj %p should be %p",
2487 		    bp, bp->b_bufobj, bo));
2488 		lblkno = bp->b_lblkno + 1;
2489 		if ((bp->b_flags & B_MANAGED) == 0)
2490 			bremfree(bp);
2491 		bp->b_flags |= B_RELBUF;
2492 		/*
2493 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2494 		 * pages backing each buffer in the range are unlikely to be
2495 		 * reused.  Dirty buffers will have the hint applied once
2496 		 * they've been written.
2497 		 */
2498 		if ((bp->b_flags & B_VMIO) != 0)
2499 			bp->b_flags |= B_NOREUSE;
2500 		brelse(bp);
2501 		BO_RLOCK(bo);
2502 	}
2503 	return (0);
2504 }
2505 
2506 /*
2507  * Truncate a file's buffer and pages to a specified length.  This
2508  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2509  * sync activity.
2510  */
2511 int
2512 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2513 {
2514 	struct buf *bp, *nbp;
2515 	struct bufobj *bo;
2516 	daddr_t startlbn;
2517 
2518 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2519 	    vp, blksize, (uintmax_t)length);
2520 
2521 	/*
2522 	 * Round up to the *next* lbn.
2523 	 */
2524 	startlbn = howmany(length, blksize);
2525 
2526 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2527 
2528 	bo = &vp->v_bufobj;
2529 restart_unlocked:
2530 	BO_LOCK(bo);
2531 
2532 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2533 		;
2534 
2535 	if (length > 0) {
2536 restartsync:
2537 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2538 			if (bp->b_lblkno > 0)
2539 				continue;
2540 			/*
2541 			 * Since we hold the vnode lock this should only
2542 			 * fail if we're racing with the buf daemon.
2543 			 */
2544 			if (BUF_LOCK(bp,
2545 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2546 			    BO_LOCKPTR(bo)) == ENOLCK)
2547 				goto restart_unlocked;
2548 
2549 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2550 			    ("buf(%p) on dirty queue without DELWRI", bp));
2551 
2552 			bremfree(bp);
2553 			bawrite(bp);
2554 			BO_LOCK(bo);
2555 			goto restartsync;
2556 		}
2557 	}
2558 
2559 	bufobj_wwait(bo, 0, 0);
2560 	BO_UNLOCK(bo);
2561 	vnode_pager_setsize(vp, length);
2562 
2563 	return (0);
2564 }
2565 
2566 /*
2567  * Invalidate the cached pages of a file's buffer within the range of block
2568  * numbers [startlbn, endlbn).
2569  */
2570 void
2571 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2572     int blksize)
2573 {
2574 	struct bufobj *bo;
2575 	off_t start, end;
2576 
2577 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2578 
2579 	start = blksize * startlbn;
2580 	end = blksize * endlbn;
2581 
2582 	bo = &vp->v_bufobj;
2583 	BO_LOCK(bo);
2584 	MPASS(blksize == bo->bo_bsize);
2585 
2586 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2587 		;
2588 
2589 	BO_UNLOCK(bo);
2590 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2591 }
2592 
2593 static int
2594 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2595     daddr_t startlbn, daddr_t endlbn)
2596 {
2597 	struct buf *bp, *nbp;
2598 	bool anyfreed;
2599 
2600 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2601 	ASSERT_BO_LOCKED(bo);
2602 
2603 	do {
2604 		anyfreed = false;
2605 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2606 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2607 				continue;
2608 			if (BUF_LOCK(bp,
2609 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2610 			    BO_LOCKPTR(bo)) == ENOLCK) {
2611 				BO_LOCK(bo);
2612 				return (EAGAIN);
2613 			}
2614 
2615 			bremfree(bp);
2616 			bp->b_flags |= B_INVAL | B_RELBUF;
2617 			bp->b_flags &= ~B_ASYNC;
2618 			brelse(bp);
2619 			anyfreed = true;
2620 
2621 			BO_LOCK(bo);
2622 			if (nbp != NULL &&
2623 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2624 			    nbp->b_vp != vp ||
2625 			    (nbp->b_flags & B_DELWRI) != 0))
2626 				return (EAGAIN);
2627 		}
2628 
2629 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2630 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2631 				continue;
2632 			if (BUF_LOCK(bp,
2633 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2634 			    BO_LOCKPTR(bo)) == ENOLCK) {
2635 				BO_LOCK(bo);
2636 				return (EAGAIN);
2637 			}
2638 			bremfree(bp);
2639 			bp->b_flags |= B_INVAL | B_RELBUF;
2640 			bp->b_flags &= ~B_ASYNC;
2641 			brelse(bp);
2642 			anyfreed = true;
2643 
2644 			BO_LOCK(bo);
2645 			if (nbp != NULL &&
2646 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2647 			    (nbp->b_vp != vp) ||
2648 			    (nbp->b_flags & B_DELWRI) == 0))
2649 				return (EAGAIN);
2650 		}
2651 	} while (anyfreed);
2652 	return (0);
2653 }
2654 
2655 static void
2656 buf_vlist_remove(struct buf *bp)
2657 {
2658 	struct bufv *bv;
2659 	b_xflags_t flags;
2660 
2661 	flags = bp->b_xflags;
2662 
2663 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2664 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2665 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2666 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2667 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2668 
2669 	if ((flags & BX_VNDIRTY) != 0)
2670 		bv = &bp->b_bufobj->bo_dirty;
2671 	else
2672 		bv = &bp->b_bufobj->bo_clean;
2673 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2674 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2675 	bv->bv_cnt--;
2676 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2677 }
2678 
2679 /*
2680  * Add the buffer to the sorted clean or dirty block list.
2681  *
2682  * NOTE: xflags is passed as a constant, optimizing this inline function!
2683  */
2684 static void
2685 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2686 {
2687 	struct bufv *bv;
2688 	struct buf *n;
2689 	int error;
2690 
2691 	ASSERT_BO_WLOCKED(bo);
2692 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2693 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2694 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2695 	    ("dead bo %p", bo));
2696 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2697 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2698 	bp->b_xflags |= xflags;
2699 	if (xflags & BX_VNDIRTY)
2700 		bv = &bo->bo_dirty;
2701 	else
2702 		bv = &bo->bo_clean;
2703 
2704 	/*
2705 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2706 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2707 	 * than _ge.
2708 	 */
2709 	if (bv->bv_cnt == 0 ||
2710 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2711 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2712 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2713 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2714 	else
2715 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2716 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2717 	if (error)
2718 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2719 	bv->bv_cnt++;
2720 }
2721 
2722 /*
2723  * Look up a buffer using the buffer tries.
2724  */
2725 struct buf *
2726 gbincore(struct bufobj *bo, daddr_t lblkno)
2727 {
2728 	struct buf *bp;
2729 
2730 	ASSERT_BO_LOCKED(bo);
2731 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2732 	if (bp != NULL)
2733 		return (bp);
2734 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2735 }
2736 
2737 /*
2738  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2739  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2740  * stability of the result.  Like other lockless lookups, the found buf may
2741  * already be invalid by the time this function returns.
2742  */
2743 struct buf *
2744 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2745 {
2746 	struct buf *bp;
2747 
2748 	ASSERT_BO_UNLOCKED(bo);
2749 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2750 	if (bp != NULL)
2751 		return (bp);
2752 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2753 }
2754 
2755 /*
2756  * Associate a buffer with a vnode.
2757  */
2758 void
2759 bgetvp(struct vnode *vp, struct buf *bp)
2760 {
2761 	struct bufobj *bo;
2762 
2763 	bo = &vp->v_bufobj;
2764 	ASSERT_BO_WLOCKED(bo);
2765 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2766 
2767 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2768 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2769 	    ("bgetvp: bp already attached! %p", bp));
2770 
2771 	vhold(vp);
2772 	bp->b_vp = vp;
2773 	bp->b_bufobj = bo;
2774 	/*
2775 	 * Insert onto list for new vnode.
2776 	 */
2777 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2778 }
2779 
2780 /*
2781  * Disassociate a buffer from a vnode.
2782  */
2783 void
2784 brelvp(struct buf *bp)
2785 {
2786 	struct bufobj *bo;
2787 	struct vnode *vp;
2788 
2789 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2790 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2791 
2792 	/*
2793 	 * Delete from old vnode list, if on one.
2794 	 */
2795 	vp = bp->b_vp;		/* XXX */
2796 	bo = bp->b_bufobj;
2797 	BO_LOCK(bo);
2798 	buf_vlist_remove(bp);
2799 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2800 		bo->bo_flag &= ~BO_ONWORKLST;
2801 		mtx_lock(&sync_mtx);
2802 		LIST_REMOVE(bo, bo_synclist);
2803 		syncer_worklist_len--;
2804 		mtx_unlock(&sync_mtx);
2805 	}
2806 	bp->b_vp = NULL;
2807 	bp->b_bufobj = NULL;
2808 	BO_UNLOCK(bo);
2809 	vdrop(vp);
2810 }
2811 
2812 /*
2813  * Add an item to the syncer work queue.
2814  */
2815 static void
2816 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2817 {
2818 	int slot;
2819 
2820 	ASSERT_BO_WLOCKED(bo);
2821 
2822 	mtx_lock(&sync_mtx);
2823 	if (bo->bo_flag & BO_ONWORKLST)
2824 		LIST_REMOVE(bo, bo_synclist);
2825 	else {
2826 		bo->bo_flag |= BO_ONWORKLST;
2827 		syncer_worklist_len++;
2828 	}
2829 
2830 	if (delay > syncer_maxdelay - 2)
2831 		delay = syncer_maxdelay - 2;
2832 	slot = (syncer_delayno + delay) & syncer_mask;
2833 
2834 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2835 	mtx_unlock(&sync_mtx);
2836 }
2837 
2838 static int
2839 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2840 {
2841 	int error, len;
2842 
2843 	mtx_lock(&sync_mtx);
2844 	len = syncer_worklist_len - sync_vnode_count;
2845 	mtx_unlock(&sync_mtx);
2846 	error = SYSCTL_OUT(req, &len, sizeof(len));
2847 	return (error);
2848 }
2849 
2850 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2851     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2852     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2853 
2854 static struct proc *updateproc;
2855 static void sched_sync(void);
2856 static struct kproc_desc up_kp = {
2857 	"syncer",
2858 	sched_sync,
2859 	&updateproc
2860 };
2861 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2862 
2863 static int
2864 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2865 {
2866 	struct vnode *vp;
2867 	struct mount *mp;
2868 
2869 	*bo = LIST_FIRST(slp);
2870 	if (*bo == NULL)
2871 		return (0);
2872 	vp = bo2vnode(*bo);
2873 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2874 		return (1);
2875 	/*
2876 	 * We use vhold in case the vnode does not
2877 	 * successfully sync.  vhold prevents the vnode from
2878 	 * going away when we unlock the sync_mtx so that
2879 	 * we can acquire the vnode interlock.
2880 	 */
2881 	vholdl(vp);
2882 	mtx_unlock(&sync_mtx);
2883 	VI_UNLOCK(vp);
2884 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2885 		vdrop(vp);
2886 		mtx_lock(&sync_mtx);
2887 		return (*bo == LIST_FIRST(slp));
2888 	}
2889 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2890 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2891 	    ("suspended mp syncing vp %p", vp));
2892 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2893 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2894 	VOP_UNLOCK(vp);
2895 	vn_finished_write(mp);
2896 	BO_LOCK(*bo);
2897 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2898 		/*
2899 		 * Put us back on the worklist.  The worklist
2900 		 * routine will remove us from our current
2901 		 * position and then add us back in at a later
2902 		 * position.
2903 		 */
2904 		vn_syncer_add_to_worklist(*bo, syncdelay);
2905 	}
2906 	BO_UNLOCK(*bo);
2907 	vdrop(vp);
2908 	mtx_lock(&sync_mtx);
2909 	return (0);
2910 }
2911 
2912 static int first_printf = 1;
2913 
2914 /*
2915  * System filesystem synchronizer daemon.
2916  */
2917 static void
2918 sched_sync(void)
2919 {
2920 	struct synclist *next, *slp;
2921 	struct bufobj *bo;
2922 	long starttime;
2923 	struct thread *td = curthread;
2924 	int last_work_seen;
2925 	int net_worklist_len;
2926 	int syncer_final_iter;
2927 	int error;
2928 
2929 	last_work_seen = 0;
2930 	syncer_final_iter = 0;
2931 	syncer_state = SYNCER_RUNNING;
2932 	starttime = time_uptime;
2933 	td->td_pflags |= TDP_NORUNNINGBUF;
2934 
2935 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2936 	    SHUTDOWN_PRI_LAST);
2937 
2938 	mtx_lock(&sync_mtx);
2939 	for (;;) {
2940 		if (syncer_state == SYNCER_FINAL_DELAY &&
2941 		    syncer_final_iter == 0) {
2942 			mtx_unlock(&sync_mtx);
2943 			kproc_suspend_check(td->td_proc);
2944 			mtx_lock(&sync_mtx);
2945 		}
2946 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2947 		if (syncer_state != SYNCER_RUNNING &&
2948 		    starttime != time_uptime) {
2949 			if (first_printf) {
2950 				printf("\nSyncing disks, vnodes remaining... ");
2951 				first_printf = 0;
2952 			}
2953 			printf("%d ", net_worklist_len);
2954 		}
2955 		starttime = time_uptime;
2956 
2957 		/*
2958 		 * Push files whose dirty time has expired.  Be careful
2959 		 * of interrupt race on slp queue.
2960 		 *
2961 		 * Skip over empty worklist slots when shutting down.
2962 		 */
2963 		do {
2964 			slp = &syncer_workitem_pending[syncer_delayno];
2965 			syncer_delayno += 1;
2966 			if (syncer_delayno == syncer_maxdelay)
2967 				syncer_delayno = 0;
2968 			next = &syncer_workitem_pending[syncer_delayno];
2969 			/*
2970 			 * If the worklist has wrapped since the
2971 			 * it was emptied of all but syncer vnodes,
2972 			 * switch to the FINAL_DELAY state and run
2973 			 * for one more second.
2974 			 */
2975 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2976 			    net_worklist_len == 0 &&
2977 			    last_work_seen == syncer_delayno) {
2978 				syncer_state = SYNCER_FINAL_DELAY;
2979 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2980 			}
2981 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2982 		    syncer_worklist_len > 0);
2983 
2984 		/*
2985 		 * Keep track of the last time there was anything
2986 		 * on the worklist other than syncer vnodes.
2987 		 * Return to the SHUTTING_DOWN state if any
2988 		 * new work appears.
2989 		 */
2990 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2991 			last_work_seen = syncer_delayno;
2992 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2993 			syncer_state = SYNCER_SHUTTING_DOWN;
2994 		while (!LIST_EMPTY(slp)) {
2995 			error = sync_vnode(slp, &bo, td);
2996 			if (error == 1) {
2997 				LIST_REMOVE(bo, bo_synclist);
2998 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2999 				continue;
3000 			}
3001 
3002 			if (first_printf == 0) {
3003 				/*
3004 				 * Drop the sync mutex, because some watchdog
3005 				 * drivers need to sleep while patting
3006 				 */
3007 				mtx_unlock(&sync_mtx);
3008 				wdog_kern_pat(WD_LASTVAL);
3009 				mtx_lock(&sync_mtx);
3010 			}
3011 		}
3012 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3013 			syncer_final_iter--;
3014 		/*
3015 		 * The variable rushjob allows the kernel to speed up the
3016 		 * processing of the filesystem syncer process. A rushjob
3017 		 * value of N tells the filesystem syncer to process the next
3018 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3019 		 * is used by the soft update code to speed up the filesystem
3020 		 * syncer process when the incore state is getting so far
3021 		 * ahead of the disk that the kernel memory pool is being
3022 		 * threatened with exhaustion.
3023 		 */
3024 		if (rushjob > 0) {
3025 			rushjob -= 1;
3026 			continue;
3027 		}
3028 		/*
3029 		 * Just sleep for a short period of time between
3030 		 * iterations when shutting down to allow some I/O
3031 		 * to happen.
3032 		 *
3033 		 * If it has taken us less than a second to process the
3034 		 * current work, then wait. Otherwise start right over
3035 		 * again. We can still lose time if any single round
3036 		 * takes more than two seconds, but it does not really
3037 		 * matter as we are just trying to generally pace the
3038 		 * filesystem activity.
3039 		 */
3040 		if (syncer_state != SYNCER_RUNNING ||
3041 		    time_uptime == starttime) {
3042 			thread_lock(td);
3043 			sched_prio(td, PPAUSE);
3044 			thread_unlock(td);
3045 		}
3046 		if (syncer_state != SYNCER_RUNNING)
3047 			cv_timedwait(&sync_wakeup, &sync_mtx,
3048 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3049 		else if (time_uptime == starttime)
3050 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3051 	}
3052 }
3053 
3054 /*
3055  * Request the syncer daemon to speed up its work.
3056  * We never push it to speed up more than half of its
3057  * normal turn time, otherwise it could take over the cpu.
3058  */
3059 int
3060 speedup_syncer(void)
3061 {
3062 	int ret = 0;
3063 
3064 	mtx_lock(&sync_mtx);
3065 	if (rushjob < syncdelay / 2) {
3066 		rushjob += 1;
3067 		stat_rush_requests += 1;
3068 		ret = 1;
3069 	}
3070 	mtx_unlock(&sync_mtx);
3071 	cv_broadcast(&sync_wakeup);
3072 	return (ret);
3073 }
3074 
3075 /*
3076  * Tell the syncer to speed up its work and run though its work
3077  * list several times, then tell it to shut down.
3078  */
3079 static void
3080 syncer_shutdown(void *arg, int howto)
3081 {
3082 
3083 	if (howto & RB_NOSYNC)
3084 		return;
3085 	mtx_lock(&sync_mtx);
3086 	syncer_state = SYNCER_SHUTTING_DOWN;
3087 	rushjob = 0;
3088 	mtx_unlock(&sync_mtx);
3089 	cv_broadcast(&sync_wakeup);
3090 	kproc_shutdown(arg, howto);
3091 }
3092 
3093 void
3094 syncer_suspend(void)
3095 {
3096 
3097 	syncer_shutdown(updateproc, 0);
3098 }
3099 
3100 void
3101 syncer_resume(void)
3102 {
3103 
3104 	mtx_lock(&sync_mtx);
3105 	first_printf = 1;
3106 	syncer_state = SYNCER_RUNNING;
3107 	mtx_unlock(&sync_mtx);
3108 	cv_broadcast(&sync_wakeup);
3109 	kproc_resume(updateproc);
3110 }
3111 
3112 /*
3113  * Move the buffer between the clean and dirty lists of its vnode.
3114  */
3115 void
3116 reassignbuf(struct buf *bp)
3117 {
3118 	struct vnode *vp;
3119 	struct bufobj *bo;
3120 	int delay;
3121 #ifdef INVARIANTS
3122 	struct bufv *bv;
3123 #endif
3124 
3125 	vp = bp->b_vp;
3126 	bo = bp->b_bufobj;
3127 
3128 	KASSERT((bp->b_flags & B_PAGING) == 0,
3129 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3130 
3131 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3132 	    bp, bp->b_vp, bp->b_flags);
3133 
3134 	BO_LOCK(bo);
3135 	buf_vlist_remove(bp);
3136 
3137 	/*
3138 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3139 	 * of clean buffers.
3140 	 */
3141 	if (bp->b_flags & B_DELWRI) {
3142 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3143 			switch (vp->v_type) {
3144 			case VDIR:
3145 				delay = dirdelay;
3146 				break;
3147 			case VCHR:
3148 				delay = metadelay;
3149 				break;
3150 			default:
3151 				delay = filedelay;
3152 			}
3153 			vn_syncer_add_to_worklist(bo, delay);
3154 		}
3155 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3156 	} else {
3157 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3158 
3159 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3160 			mtx_lock(&sync_mtx);
3161 			LIST_REMOVE(bo, bo_synclist);
3162 			syncer_worklist_len--;
3163 			mtx_unlock(&sync_mtx);
3164 			bo->bo_flag &= ~BO_ONWORKLST;
3165 		}
3166 	}
3167 #ifdef INVARIANTS
3168 	bv = &bo->bo_clean;
3169 	bp = TAILQ_FIRST(&bv->bv_hd);
3170 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3171 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3172 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3173 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3174 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3175 	bv = &bo->bo_dirty;
3176 	bp = TAILQ_FIRST(&bv->bv_hd);
3177 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3178 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3179 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3180 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3181 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3182 #endif
3183 	BO_UNLOCK(bo);
3184 }
3185 
3186 static void
3187 v_init_counters(struct vnode *vp)
3188 {
3189 
3190 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3191 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3192 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3193 
3194 	refcount_init(&vp->v_holdcnt, 1);
3195 	refcount_init(&vp->v_usecount, 1);
3196 }
3197 
3198 /*
3199  * Grab a particular vnode from the free list, increment its
3200  * reference count and lock it.  VIRF_DOOMED is set if the vnode
3201  * is being destroyed.  Only callers who specify LK_RETRY will
3202  * see doomed vnodes.  If inactive processing was delayed in
3203  * vput try to do it here.
3204  *
3205  * usecount is manipulated using atomics without holding any locks.
3206  *
3207  * holdcnt can be manipulated using atomics without holding any locks,
3208  * except when transitioning 1<->0, in which case the interlock is held.
3209  *
3210  * Consumers which don't guarantee liveness of the vnode can use SMR to
3211  * try to get a reference. Note this operation can fail since the vnode
3212  * may be awaiting getting freed by the time they get to it.
3213  */
3214 enum vgetstate
3215 vget_prep_smr(struct vnode *vp)
3216 {
3217 	enum vgetstate vs;
3218 
3219 	VFS_SMR_ASSERT_ENTERED();
3220 
3221 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3222 		vs = VGET_USECOUNT;
3223 	} else {
3224 		if (vhold_smr(vp))
3225 			vs = VGET_HOLDCNT;
3226 		else
3227 			vs = VGET_NONE;
3228 	}
3229 	return (vs);
3230 }
3231 
3232 enum vgetstate
3233 vget_prep(struct vnode *vp)
3234 {
3235 	enum vgetstate vs;
3236 
3237 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3238 		vs = VGET_USECOUNT;
3239 	} else {
3240 		vhold(vp);
3241 		vs = VGET_HOLDCNT;
3242 	}
3243 	return (vs);
3244 }
3245 
3246 void
3247 vget_abort(struct vnode *vp, enum vgetstate vs)
3248 {
3249 
3250 	switch (vs) {
3251 	case VGET_USECOUNT:
3252 		vrele(vp);
3253 		break;
3254 	case VGET_HOLDCNT:
3255 		vdrop(vp);
3256 		break;
3257 	default:
3258 		__assert_unreachable();
3259 	}
3260 }
3261 
3262 int
3263 vget(struct vnode *vp, int flags)
3264 {
3265 	enum vgetstate vs;
3266 
3267 	vs = vget_prep(vp);
3268 	return (vget_finish(vp, flags, vs));
3269 }
3270 
3271 int
3272 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3273 {
3274 	int error;
3275 
3276 	if ((flags & LK_INTERLOCK) != 0)
3277 		ASSERT_VI_LOCKED(vp, __func__);
3278 	else
3279 		ASSERT_VI_UNLOCKED(vp, __func__);
3280 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3281 	VNPASS(vp->v_holdcnt > 0, vp);
3282 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3283 
3284 	error = vn_lock(vp, flags);
3285 	if (__predict_false(error != 0)) {
3286 		vget_abort(vp, vs);
3287 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3288 		    vp);
3289 		return (error);
3290 	}
3291 
3292 	vget_finish_ref(vp, vs);
3293 	return (0);
3294 }
3295 
3296 void
3297 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3298 {
3299 	int old;
3300 
3301 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3302 	VNPASS(vp->v_holdcnt > 0, vp);
3303 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3304 
3305 	if (vs == VGET_USECOUNT)
3306 		return;
3307 
3308 	/*
3309 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3310 	 * the vnode around. Otherwise someone else lended their hold count and
3311 	 * we have to drop ours.
3312 	 */
3313 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3314 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3315 	if (old != 0) {
3316 #ifdef INVARIANTS
3317 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3318 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3319 #else
3320 		refcount_release(&vp->v_holdcnt);
3321 #endif
3322 	}
3323 }
3324 
3325 void
3326 vref(struct vnode *vp)
3327 {
3328 	enum vgetstate vs;
3329 
3330 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3331 	vs = vget_prep(vp);
3332 	vget_finish_ref(vp, vs);
3333 }
3334 
3335 void
3336 vrefact(struct vnode *vp)
3337 {
3338 
3339 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3340 #ifdef INVARIANTS
3341 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3342 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3343 #else
3344 	refcount_acquire(&vp->v_usecount);
3345 #endif
3346 }
3347 
3348 void
3349 vlazy(struct vnode *vp)
3350 {
3351 	struct mount *mp;
3352 
3353 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3354 
3355 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3356 		return;
3357 	/*
3358 	 * We may get here for inactive routines after the vnode got doomed.
3359 	 */
3360 	if (VN_IS_DOOMED(vp))
3361 		return;
3362 	mp = vp->v_mount;
3363 	mtx_lock(&mp->mnt_listmtx);
3364 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3365 		vp->v_mflag |= VMP_LAZYLIST;
3366 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3367 		mp->mnt_lazyvnodelistsize++;
3368 	}
3369 	mtx_unlock(&mp->mnt_listmtx);
3370 }
3371 
3372 static void
3373 vunlazy(struct vnode *vp)
3374 {
3375 	struct mount *mp;
3376 
3377 	ASSERT_VI_LOCKED(vp, __func__);
3378 	VNPASS(!VN_IS_DOOMED(vp), vp);
3379 
3380 	mp = vp->v_mount;
3381 	mtx_lock(&mp->mnt_listmtx);
3382 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3383 	/*
3384 	 * Don't remove the vnode from the lazy list if another thread
3385 	 * has increased the hold count. It may have re-enqueued the
3386 	 * vnode to the lazy list and is now responsible for its
3387 	 * removal.
3388 	 */
3389 	if (vp->v_holdcnt == 0) {
3390 		vp->v_mflag &= ~VMP_LAZYLIST;
3391 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3392 		mp->mnt_lazyvnodelistsize--;
3393 	}
3394 	mtx_unlock(&mp->mnt_listmtx);
3395 }
3396 
3397 /*
3398  * This routine is only meant to be called from vgonel prior to dooming
3399  * the vnode.
3400  */
3401 static void
3402 vunlazy_gone(struct vnode *vp)
3403 {
3404 	struct mount *mp;
3405 
3406 	ASSERT_VOP_ELOCKED(vp, __func__);
3407 	ASSERT_VI_LOCKED(vp, __func__);
3408 	VNPASS(!VN_IS_DOOMED(vp), vp);
3409 
3410 	if (vp->v_mflag & VMP_LAZYLIST) {
3411 		mp = vp->v_mount;
3412 		mtx_lock(&mp->mnt_listmtx);
3413 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3414 		vp->v_mflag &= ~VMP_LAZYLIST;
3415 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3416 		mp->mnt_lazyvnodelistsize--;
3417 		mtx_unlock(&mp->mnt_listmtx);
3418 	}
3419 }
3420 
3421 static void
3422 vdefer_inactive(struct vnode *vp)
3423 {
3424 
3425 	ASSERT_VI_LOCKED(vp, __func__);
3426 	VNPASS(vp->v_holdcnt > 0, vp);
3427 	if (VN_IS_DOOMED(vp)) {
3428 		vdropl(vp);
3429 		return;
3430 	}
3431 	if (vp->v_iflag & VI_DEFINACT) {
3432 		VNPASS(vp->v_holdcnt > 1, vp);
3433 		vdropl(vp);
3434 		return;
3435 	}
3436 	if (vp->v_usecount > 0) {
3437 		vp->v_iflag &= ~VI_OWEINACT;
3438 		vdropl(vp);
3439 		return;
3440 	}
3441 	vlazy(vp);
3442 	vp->v_iflag |= VI_DEFINACT;
3443 	VI_UNLOCK(vp);
3444 	atomic_add_long(&deferred_inact, 1);
3445 }
3446 
3447 static void
3448 vdefer_inactive_unlocked(struct vnode *vp)
3449 {
3450 
3451 	VI_LOCK(vp);
3452 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3453 		vdropl(vp);
3454 		return;
3455 	}
3456 	vdefer_inactive(vp);
3457 }
3458 
3459 enum vput_op { VRELE, VPUT, VUNREF };
3460 
3461 /*
3462  * Handle ->v_usecount transitioning to 0.
3463  *
3464  * By releasing the last usecount we take ownership of the hold count which
3465  * provides liveness of the vnode, meaning we have to vdrop.
3466  *
3467  * For all vnodes we may need to perform inactive processing. It requires an
3468  * exclusive lock on the vnode, while it is legal to call here with only a
3469  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3470  * inactive processing gets deferred to the syncer.
3471  *
3472  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3473  * on the lock being held all the way until VOP_INACTIVE. This in particular
3474  * happens with UFS which adds half-constructed vnodes to the hash, where they
3475  * can be found by other code.
3476  */
3477 static void
3478 vput_final(struct vnode *vp, enum vput_op func)
3479 {
3480 	int error;
3481 	bool want_unlock;
3482 
3483 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3484 	VNPASS(vp->v_holdcnt > 0, vp);
3485 
3486 	VI_LOCK(vp);
3487 
3488 	/*
3489 	 * By the time we got here someone else might have transitioned
3490 	 * the count back to > 0.
3491 	 */
3492 	if (vp->v_usecount > 0)
3493 		goto out;
3494 
3495 	/*
3496 	 * If the vnode is doomed vgone already performed inactive processing
3497 	 * (if needed).
3498 	 */
3499 	if (VN_IS_DOOMED(vp))
3500 		goto out;
3501 
3502 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3503 		goto out;
3504 
3505 	if (vp->v_iflag & VI_DOINGINACT)
3506 		goto out;
3507 
3508 	/*
3509 	 * Locking operations here will drop the interlock and possibly the
3510 	 * vnode lock, opening a window where the vnode can get doomed all the
3511 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3512 	 * perform inactive.
3513 	 */
3514 	vp->v_iflag |= VI_OWEINACT;
3515 	want_unlock = false;
3516 	error = 0;
3517 	switch (func) {
3518 	case VRELE:
3519 		switch (VOP_ISLOCKED(vp)) {
3520 		case LK_EXCLUSIVE:
3521 			break;
3522 		case LK_EXCLOTHER:
3523 		case 0:
3524 			want_unlock = true;
3525 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3526 			VI_LOCK(vp);
3527 			break;
3528 		default:
3529 			/*
3530 			 * The lock has at least one sharer, but we have no way
3531 			 * to conclude whether this is us. Play it safe and
3532 			 * defer processing.
3533 			 */
3534 			error = EAGAIN;
3535 			break;
3536 		}
3537 		break;
3538 	case VPUT:
3539 		want_unlock = true;
3540 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3541 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3542 			    LK_NOWAIT);
3543 			VI_LOCK(vp);
3544 		}
3545 		break;
3546 	case VUNREF:
3547 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3548 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3549 			VI_LOCK(vp);
3550 		}
3551 		break;
3552 	}
3553 	if (error == 0) {
3554 		if (func == VUNREF) {
3555 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3556 			    ("recursive vunref"));
3557 			vp->v_vflag |= VV_UNREF;
3558 		}
3559 		for (;;) {
3560 			error = vinactive(vp);
3561 			if (want_unlock)
3562 				VOP_UNLOCK(vp);
3563 			if (error != ERELOOKUP || !want_unlock)
3564 				break;
3565 			VOP_LOCK(vp, LK_EXCLUSIVE);
3566 		}
3567 		if (func == VUNREF)
3568 			vp->v_vflag &= ~VV_UNREF;
3569 		vdropl(vp);
3570 	} else {
3571 		vdefer_inactive(vp);
3572 	}
3573 	return;
3574 out:
3575 	if (func == VPUT)
3576 		VOP_UNLOCK(vp);
3577 	vdropl(vp);
3578 }
3579 
3580 /*
3581  * Decrement ->v_usecount for a vnode.
3582  *
3583  * Releasing the last use count requires additional processing, see vput_final
3584  * above for details.
3585  *
3586  * Comment above each variant denotes lock state on entry and exit.
3587  */
3588 
3589 /*
3590  * in: any
3591  * out: same as passed in
3592  */
3593 void
3594 vrele(struct vnode *vp)
3595 {
3596 
3597 	ASSERT_VI_UNLOCKED(vp, __func__);
3598 	if (!refcount_release(&vp->v_usecount))
3599 		return;
3600 	vput_final(vp, VRELE);
3601 }
3602 
3603 /*
3604  * in: locked
3605  * out: unlocked
3606  */
3607 void
3608 vput(struct vnode *vp)
3609 {
3610 
3611 	ASSERT_VOP_LOCKED(vp, __func__);
3612 	ASSERT_VI_UNLOCKED(vp, __func__);
3613 	if (!refcount_release(&vp->v_usecount)) {
3614 		VOP_UNLOCK(vp);
3615 		return;
3616 	}
3617 	vput_final(vp, VPUT);
3618 }
3619 
3620 /*
3621  * in: locked
3622  * out: locked
3623  */
3624 void
3625 vunref(struct vnode *vp)
3626 {
3627 
3628 	ASSERT_VOP_LOCKED(vp, __func__);
3629 	ASSERT_VI_UNLOCKED(vp, __func__);
3630 	if (!refcount_release(&vp->v_usecount))
3631 		return;
3632 	vput_final(vp, VUNREF);
3633 }
3634 
3635 void
3636 vhold(struct vnode *vp)
3637 {
3638 	int old;
3639 
3640 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3641 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3642 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3643 	    ("%s: wrong hold count %d", __func__, old));
3644 	if (old == 0)
3645 		vfs_freevnodes_dec();
3646 }
3647 
3648 void
3649 vholdnz(struct vnode *vp)
3650 {
3651 
3652 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3653 #ifdef INVARIANTS
3654 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3655 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3656 	    ("%s: wrong hold count %d", __func__, old));
3657 #else
3658 	atomic_add_int(&vp->v_holdcnt, 1);
3659 #endif
3660 }
3661 
3662 /*
3663  * Grab a hold count unless the vnode is freed.
3664  *
3665  * Only use this routine if vfs smr is the only protection you have against
3666  * freeing the vnode.
3667  *
3668  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3669  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3670  * the thread which managed to set the flag.
3671  *
3672  * It may be tempting to replace the loop with:
3673  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3674  * if (count & VHOLD_NO_SMR) {
3675  *     backpedal and error out;
3676  * }
3677  *
3678  * However, while this is more performant, it hinders debugging by eliminating
3679  * the previously mentioned invariant.
3680  */
3681 bool
3682 vhold_smr(struct vnode *vp)
3683 {
3684 	int count;
3685 
3686 	VFS_SMR_ASSERT_ENTERED();
3687 
3688 	count = atomic_load_int(&vp->v_holdcnt);
3689 	for (;;) {
3690 		if (count & VHOLD_NO_SMR) {
3691 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3692 			    ("non-zero hold count with flags %d\n", count));
3693 			return (false);
3694 		}
3695 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3696 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3697 			if (count == 0)
3698 				vfs_freevnodes_dec();
3699 			return (true);
3700 		}
3701 	}
3702 }
3703 
3704 /*
3705  * Hold a free vnode for recycling.
3706  *
3707  * Note: vnode_init references this comment.
3708  *
3709  * Attempts to recycle only need the global vnode list lock and have no use for
3710  * SMR.
3711  *
3712  * However, vnodes get inserted into the global list before they get fully
3713  * initialized and stay there until UMA decides to free the memory. This in
3714  * particular means the target can be found before it becomes usable and after
3715  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3716  * VHOLD_NO_SMR.
3717  *
3718  * Note: the vnode may gain more references after we transition the count 0->1.
3719  */
3720 static bool
3721 vhold_recycle_free(struct vnode *vp)
3722 {
3723 	int count;
3724 
3725 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3726 
3727 	count = atomic_load_int(&vp->v_holdcnt);
3728 	for (;;) {
3729 		if (count & VHOLD_NO_SMR) {
3730 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3731 			    ("non-zero hold count with flags %d\n", count));
3732 			return (false);
3733 		}
3734 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3735 		if (count > 0) {
3736 			return (false);
3737 		}
3738 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3739 			vfs_freevnodes_dec();
3740 			return (true);
3741 		}
3742 	}
3743 }
3744 
3745 static void __noinline
3746 vdbatch_process(struct vdbatch *vd)
3747 {
3748 	struct vnode *vp;
3749 	int i;
3750 
3751 	mtx_assert(&vd->lock, MA_OWNED);
3752 	MPASS(curthread->td_pinned > 0);
3753 	MPASS(vd->index == VDBATCH_SIZE);
3754 
3755 	/*
3756 	 * Attempt to requeue the passed batch, but give up easily.
3757 	 *
3758 	 * Despite batching the mechanism is prone to transient *significant*
3759 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3760 	 * if multiple CPUs get here (one real-world example is highly parallel
3761 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3762 	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3763 	 * the problem. Parties which don't like it are welcome to implement
3764 	 * something better.
3765 	 */
3766 	critical_enter();
3767 	if (mtx_trylock(&vnode_list_mtx)) {
3768 		for (i = 0; i < VDBATCH_SIZE; i++) {
3769 			vp = vd->tab[i];
3770 			vd->tab[i] = NULL;
3771 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3772 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3773 			MPASS(vp->v_dbatchcpu != NOCPU);
3774 			vp->v_dbatchcpu = NOCPU;
3775 		}
3776 		mtx_unlock(&vnode_list_mtx);
3777 	} else {
3778 		counter_u64_add(vnode_skipped_requeues, 1);
3779 
3780 		for (i = 0; i < VDBATCH_SIZE; i++) {
3781 			vp = vd->tab[i];
3782 			vd->tab[i] = NULL;
3783 			MPASS(vp->v_dbatchcpu != NOCPU);
3784 			vp->v_dbatchcpu = NOCPU;
3785 		}
3786 	}
3787 	vd->index = 0;
3788 	critical_exit();
3789 }
3790 
3791 static void
3792 vdbatch_enqueue(struct vnode *vp)
3793 {
3794 	struct vdbatch *vd;
3795 
3796 	ASSERT_VI_LOCKED(vp, __func__);
3797 	VNPASS(!VN_IS_DOOMED(vp), vp);
3798 
3799 	if (vp->v_dbatchcpu != NOCPU) {
3800 		VI_UNLOCK(vp);
3801 		return;
3802 	}
3803 
3804 	sched_pin();
3805 	vd = DPCPU_PTR(vd);
3806 	mtx_lock(&vd->lock);
3807 	MPASS(vd->index < VDBATCH_SIZE);
3808 	MPASS(vd->tab[vd->index] == NULL);
3809 	/*
3810 	 * A hack: we depend on being pinned so that we know what to put in
3811 	 * ->v_dbatchcpu.
3812 	 */
3813 	vp->v_dbatchcpu = curcpu;
3814 	vd->tab[vd->index] = vp;
3815 	vd->index++;
3816 	VI_UNLOCK(vp);
3817 	if (vd->index == VDBATCH_SIZE)
3818 		vdbatch_process(vd);
3819 	mtx_unlock(&vd->lock);
3820 	sched_unpin();
3821 }
3822 
3823 /*
3824  * This routine must only be called for vnodes which are about to be
3825  * deallocated. Supporting dequeue for arbitrary vndoes would require
3826  * validating that the locked batch matches.
3827  */
3828 static void
3829 vdbatch_dequeue(struct vnode *vp)
3830 {
3831 	struct vdbatch *vd;
3832 	int i;
3833 	short cpu;
3834 
3835 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3836 
3837 	cpu = vp->v_dbatchcpu;
3838 	if (cpu == NOCPU)
3839 		return;
3840 
3841 	vd = DPCPU_ID_PTR(cpu, vd);
3842 	mtx_lock(&vd->lock);
3843 	for (i = 0; i < vd->index; i++) {
3844 		if (vd->tab[i] != vp)
3845 			continue;
3846 		vp->v_dbatchcpu = NOCPU;
3847 		vd->index--;
3848 		vd->tab[i] = vd->tab[vd->index];
3849 		vd->tab[vd->index] = NULL;
3850 		break;
3851 	}
3852 	mtx_unlock(&vd->lock);
3853 	/*
3854 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3855 	 */
3856 	MPASS(vp->v_dbatchcpu == NOCPU);
3857 }
3858 
3859 /*
3860  * Drop the hold count of the vnode.  If this is the last reference to
3861  * the vnode we place it on the free list unless it has been vgone'd
3862  * (marked VIRF_DOOMED) in which case we will free it.
3863  *
3864  * Because the vnode vm object keeps a hold reference on the vnode if
3865  * there is at least one resident non-cached page, the vnode cannot
3866  * leave the active list without the page cleanup done.
3867  */
3868 static void __noinline
3869 vdropl_final(struct vnode *vp)
3870 {
3871 
3872 	ASSERT_VI_LOCKED(vp, __func__);
3873 	VNPASS(VN_IS_DOOMED(vp), vp);
3874 	/*
3875 	 * Set the VHOLD_NO_SMR flag.
3876 	 *
3877 	 * We may be racing against vhold_smr. If they win we can just pretend
3878 	 * we never got this far, they will vdrop later.
3879 	 */
3880 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3881 		vfs_freevnodes_inc();
3882 		VI_UNLOCK(vp);
3883 		/*
3884 		 * We lost the aforementioned race. Any subsequent access is
3885 		 * invalid as they might have managed to vdropl on their own.
3886 		 */
3887 		return;
3888 	}
3889 	/*
3890 	 * Don't bump freevnodes as this one is going away.
3891 	 */
3892 	freevnode(vp);
3893 }
3894 
3895 void
3896 vdrop(struct vnode *vp)
3897 {
3898 
3899 	ASSERT_VI_UNLOCKED(vp, __func__);
3900 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3901 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3902 		return;
3903 	VI_LOCK(vp);
3904 	vdropl(vp);
3905 }
3906 
3907 static void __always_inline
3908 vdropl_impl(struct vnode *vp, bool enqueue)
3909 {
3910 
3911 	ASSERT_VI_LOCKED(vp, __func__);
3912 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3913 	if (!refcount_release(&vp->v_holdcnt)) {
3914 		VI_UNLOCK(vp);
3915 		return;
3916 	}
3917 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3918 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3919 	if (VN_IS_DOOMED(vp)) {
3920 		vdropl_final(vp);
3921 		return;
3922 	}
3923 
3924 	vfs_freevnodes_inc();
3925 	if (vp->v_mflag & VMP_LAZYLIST) {
3926 		vunlazy(vp);
3927 	}
3928 
3929 	if (!enqueue) {
3930 		VI_UNLOCK(vp);
3931 		return;
3932 	}
3933 
3934 	/*
3935 	 * Also unlocks the interlock. We can't assert on it as we
3936 	 * released our hold and by now the vnode might have been
3937 	 * freed.
3938 	 */
3939 	vdbatch_enqueue(vp);
3940 }
3941 
3942 void
3943 vdropl(struct vnode *vp)
3944 {
3945 
3946 	vdropl_impl(vp, true);
3947 }
3948 
3949 /*
3950  * vdrop a vnode when recycling
3951  *
3952  * This is a special case routine only to be used when recycling, differs from
3953  * regular vdrop by not requeieing the vnode on LRU.
3954  *
3955  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3956  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3957  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3958  * loop which can last for as long as writes are frozen.
3959  */
3960 static void
3961 vdropl_recycle(struct vnode *vp)
3962 {
3963 
3964 	vdropl_impl(vp, false);
3965 }
3966 
3967 static void
3968 vdrop_recycle(struct vnode *vp)
3969 {
3970 
3971 	VI_LOCK(vp);
3972 	vdropl_recycle(vp);
3973 }
3974 
3975 /*
3976  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3977  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3978  */
3979 static int
3980 vinactivef(struct vnode *vp)
3981 {
3982 	struct vm_object *obj;
3983 	int error;
3984 
3985 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3986 	ASSERT_VI_LOCKED(vp, "vinactive");
3987 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3988 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3989 	vp->v_iflag |= VI_DOINGINACT;
3990 	vp->v_iflag &= ~VI_OWEINACT;
3991 	VI_UNLOCK(vp);
3992 	/*
3993 	 * Before moving off the active list, we must be sure that any
3994 	 * modified pages are converted into the vnode's dirty
3995 	 * buffers, since these will no longer be checked once the
3996 	 * vnode is on the inactive list.
3997 	 *
3998 	 * The write-out of the dirty pages is asynchronous.  At the
3999 	 * point that VOP_INACTIVE() is called, there could still be
4000 	 * pending I/O and dirty pages in the object.
4001 	 */
4002 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
4003 	    vm_object_mightbedirty(obj)) {
4004 		VM_OBJECT_WLOCK(obj);
4005 		vm_object_page_clean(obj, 0, 0, 0);
4006 		VM_OBJECT_WUNLOCK(obj);
4007 	}
4008 	error = VOP_INACTIVE(vp);
4009 	VI_LOCK(vp);
4010 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4011 	vp->v_iflag &= ~VI_DOINGINACT;
4012 	return (error);
4013 }
4014 
4015 int
4016 vinactive(struct vnode *vp)
4017 {
4018 
4019 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4020 	ASSERT_VI_LOCKED(vp, "vinactive");
4021 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4022 
4023 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4024 		return (0);
4025 	if (vp->v_iflag & VI_DOINGINACT)
4026 		return (0);
4027 	if (vp->v_usecount > 0) {
4028 		vp->v_iflag &= ~VI_OWEINACT;
4029 		return (0);
4030 	}
4031 	return (vinactivef(vp));
4032 }
4033 
4034 /*
4035  * Remove any vnodes in the vnode table belonging to mount point mp.
4036  *
4037  * If FORCECLOSE is not specified, there should not be any active ones,
4038  * return error if any are found (nb: this is a user error, not a
4039  * system error). If FORCECLOSE is specified, detach any active vnodes
4040  * that are found.
4041  *
4042  * If WRITECLOSE is set, only flush out regular file vnodes open for
4043  * writing.
4044  *
4045  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4046  *
4047  * `rootrefs' specifies the base reference count for the root vnode
4048  * of this filesystem. The root vnode is considered busy if its
4049  * v_usecount exceeds this value. On a successful return, vflush(, td)
4050  * will call vrele() on the root vnode exactly rootrefs times.
4051  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4052  * be zero.
4053  */
4054 #ifdef DIAGNOSTIC
4055 static int busyprt = 0;		/* print out busy vnodes */
4056 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4057 #endif
4058 
4059 int
4060 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4061 {
4062 	struct vnode *vp, *mvp, *rootvp = NULL;
4063 	struct vattr vattr;
4064 	int busy = 0, error;
4065 
4066 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4067 	    rootrefs, flags);
4068 	if (rootrefs > 0) {
4069 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4070 		    ("vflush: bad args"));
4071 		/*
4072 		 * Get the filesystem root vnode. We can vput() it
4073 		 * immediately, since with rootrefs > 0, it won't go away.
4074 		 */
4075 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4076 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4077 			    __func__, error);
4078 			return (error);
4079 		}
4080 		vput(rootvp);
4081 	}
4082 loop:
4083 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4084 		vholdl(vp);
4085 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4086 		if (error) {
4087 			vdrop(vp);
4088 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4089 			goto loop;
4090 		}
4091 		/*
4092 		 * Skip over a vnodes marked VV_SYSTEM.
4093 		 */
4094 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4095 			VOP_UNLOCK(vp);
4096 			vdrop(vp);
4097 			continue;
4098 		}
4099 		/*
4100 		 * If WRITECLOSE is set, flush out unlinked but still open
4101 		 * files (even if open only for reading) and regular file
4102 		 * vnodes open for writing.
4103 		 */
4104 		if (flags & WRITECLOSE) {
4105 			if (vp->v_object != NULL) {
4106 				VM_OBJECT_WLOCK(vp->v_object);
4107 				vm_object_page_clean(vp->v_object, 0, 0, 0);
4108 				VM_OBJECT_WUNLOCK(vp->v_object);
4109 			}
4110 			do {
4111 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4112 			} while (error == ERELOOKUP);
4113 			if (error != 0) {
4114 				VOP_UNLOCK(vp);
4115 				vdrop(vp);
4116 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4117 				return (error);
4118 			}
4119 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4120 			VI_LOCK(vp);
4121 
4122 			if ((vp->v_type == VNON ||
4123 			    (error == 0 && vattr.va_nlink > 0)) &&
4124 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4125 				VOP_UNLOCK(vp);
4126 				vdropl(vp);
4127 				continue;
4128 			}
4129 		} else
4130 			VI_LOCK(vp);
4131 		/*
4132 		 * With v_usecount == 0, all we need to do is clear out the
4133 		 * vnode data structures and we are done.
4134 		 *
4135 		 * If FORCECLOSE is set, forcibly close the vnode.
4136 		 */
4137 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4138 			vgonel(vp);
4139 		} else {
4140 			busy++;
4141 #ifdef DIAGNOSTIC
4142 			if (busyprt)
4143 				vn_printf(vp, "vflush: busy vnode ");
4144 #endif
4145 		}
4146 		VOP_UNLOCK(vp);
4147 		vdropl(vp);
4148 	}
4149 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4150 		/*
4151 		 * If just the root vnode is busy, and if its refcount
4152 		 * is equal to `rootrefs', then go ahead and kill it.
4153 		 */
4154 		VI_LOCK(rootvp);
4155 		KASSERT(busy > 0, ("vflush: not busy"));
4156 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4157 		    ("vflush: usecount %d < rootrefs %d",
4158 		     rootvp->v_usecount, rootrefs));
4159 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4160 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4161 			vgone(rootvp);
4162 			VOP_UNLOCK(rootvp);
4163 			busy = 0;
4164 		} else
4165 			VI_UNLOCK(rootvp);
4166 	}
4167 	if (busy) {
4168 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4169 		    busy);
4170 		return (EBUSY);
4171 	}
4172 	for (; rootrefs > 0; rootrefs--)
4173 		vrele(rootvp);
4174 	return (0);
4175 }
4176 
4177 /*
4178  * Recycle an unused vnode to the front of the free list.
4179  */
4180 int
4181 vrecycle(struct vnode *vp)
4182 {
4183 	int recycled;
4184 
4185 	VI_LOCK(vp);
4186 	recycled = vrecyclel(vp);
4187 	VI_UNLOCK(vp);
4188 	return (recycled);
4189 }
4190 
4191 /*
4192  * vrecycle, with the vp interlock held.
4193  */
4194 int
4195 vrecyclel(struct vnode *vp)
4196 {
4197 	int recycled;
4198 
4199 	ASSERT_VOP_ELOCKED(vp, __func__);
4200 	ASSERT_VI_LOCKED(vp, __func__);
4201 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4202 	recycled = 0;
4203 	if (vp->v_usecount == 0) {
4204 		recycled = 1;
4205 		vgonel(vp);
4206 	}
4207 	return (recycled);
4208 }
4209 
4210 /*
4211  * Eliminate all activity associated with a vnode
4212  * in preparation for reuse.
4213  */
4214 void
4215 vgone(struct vnode *vp)
4216 {
4217 	VI_LOCK(vp);
4218 	vgonel(vp);
4219 	VI_UNLOCK(vp);
4220 }
4221 
4222 /*
4223  * Notify upper mounts about reclaimed or unlinked vnode.
4224  */
4225 void
4226 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4227 {
4228 	struct mount *mp;
4229 	struct mount_upper_node *ump;
4230 
4231 	mp = atomic_load_ptr(&vp->v_mount);
4232 	if (mp == NULL)
4233 		return;
4234 	if (TAILQ_EMPTY(&mp->mnt_notify))
4235 		return;
4236 
4237 	MNT_ILOCK(mp);
4238 	mp->mnt_upper_pending++;
4239 	KASSERT(mp->mnt_upper_pending > 0,
4240 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4241 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4242 		MNT_IUNLOCK(mp);
4243 		switch (event) {
4244 		case VFS_NOTIFY_UPPER_RECLAIM:
4245 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4246 			break;
4247 		case VFS_NOTIFY_UPPER_UNLINK:
4248 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4249 			break;
4250 		}
4251 		MNT_ILOCK(mp);
4252 	}
4253 	mp->mnt_upper_pending--;
4254 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4255 	    mp->mnt_upper_pending == 0) {
4256 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4257 		wakeup(&mp->mnt_uppers);
4258 	}
4259 	MNT_IUNLOCK(mp);
4260 }
4261 
4262 /*
4263  * vgone, with the vp interlock held.
4264  */
4265 static void
4266 vgonel(struct vnode *vp)
4267 {
4268 	struct thread *td;
4269 	struct mount *mp;
4270 	vm_object_t object;
4271 	bool active, doinginact, oweinact;
4272 
4273 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4274 	ASSERT_VI_LOCKED(vp, "vgonel");
4275 	VNASSERT(vp->v_holdcnt, vp,
4276 	    ("vgonel: vp %p has no reference.", vp));
4277 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4278 	td = curthread;
4279 
4280 	/*
4281 	 * Don't vgonel if we're already doomed.
4282 	 */
4283 	if (VN_IS_DOOMED(vp)) {
4284 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4285 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4286 		return;
4287 	}
4288 	/*
4289 	 * Paired with freevnode.
4290 	 */
4291 	vn_seqc_write_begin_locked(vp);
4292 	vunlazy_gone(vp);
4293 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4294 	vn_set_state(vp, VSTATE_DESTROYING);
4295 
4296 	/*
4297 	 * Check to see if the vnode is in use.  If so, we have to
4298 	 * call VOP_CLOSE() and VOP_INACTIVE().
4299 	 *
4300 	 * It could be that VOP_INACTIVE() requested reclamation, in
4301 	 * which case we should avoid recursion, so check
4302 	 * VI_DOINGINACT.  This is not precise but good enough.
4303 	 */
4304 	active = vp->v_usecount > 0;
4305 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4306 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4307 
4308 	/*
4309 	 * If we need to do inactive VI_OWEINACT will be set.
4310 	 */
4311 	if (vp->v_iflag & VI_DEFINACT) {
4312 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4313 		vp->v_iflag &= ~VI_DEFINACT;
4314 		vdropl(vp);
4315 	} else {
4316 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4317 		VI_UNLOCK(vp);
4318 	}
4319 	cache_purge_vgone(vp);
4320 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4321 
4322 	/*
4323 	 * If purging an active vnode, it must be closed and
4324 	 * deactivated before being reclaimed.
4325 	 */
4326 	if (active)
4327 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4328 	if (!doinginact) {
4329 		do {
4330 			if (oweinact || active) {
4331 				VI_LOCK(vp);
4332 				vinactivef(vp);
4333 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4334 				VI_UNLOCK(vp);
4335 			}
4336 		} while (oweinact);
4337 	}
4338 	if (vp->v_type == VSOCK)
4339 		vfs_unp_reclaim(vp);
4340 
4341 	/*
4342 	 * Clean out any buffers associated with the vnode.
4343 	 * If the flush fails, just toss the buffers.
4344 	 */
4345 	mp = NULL;
4346 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4347 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4348 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4349 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4350 			;
4351 	}
4352 
4353 	BO_LOCK(&vp->v_bufobj);
4354 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4355 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4356 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4357 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4358 	    ("vp %p bufobj not invalidated", vp));
4359 
4360 	/*
4361 	 * For VMIO bufobj, BO_DEAD is set later, or in
4362 	 * vm_object_terminate() after the object's page queue is
4363 	 * flushed.
4364 	 */
4365 	object = vp->v_bufobj.bo_object;
4366 	if (object == NULL)
4367 		vp->v_bufobj.bo_flag |= BO_DEAD;
4368 	BO_UNLOCK(&vp->v_bufobj);
4369 
4370 	/*
4371 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4372 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4373 	 * should not touch the object borrowed from the lower vnode
4374 	 * (the handle check).
4375 	 */
4376 	if (object != NULL && object->type == OBJT_VNODE &&
4377 	    object->handle == vp)
4378 		vnode_destroy_vobject(vp);
4379 
4380 	/*
4381 	 * Reclaim the vnode.
4382 	 */
4383 	if (VOP_RECLAIM(vp))
4384 		panic("vgone: cannot reclaim");
4385 	if (mp != NULL)
4386 		vn_finished_secondary_write(mp);
4387 	VNASSERT(vp->v_object == NULL, vp,
4388 	    ("vop_reclaim left v_object vp=%p", vp));
4389 	/*
4390 	 * Clear the advisory locks and wake up waiting threads.
4391 	 */
4392 	if (vp->v_lockf != NULL) {
4393 		(void)VOP_ADVLOCKPURGE(vp);
4394 		vp->v_lockf = NULL;
4395 	}
4396 	/*
4397 	 * Delete from old mount point vnode list.
4398 	 */
4399 	if (vp->v_mount == NULL) {
4400 		VI_LOCK(vp);
4401 	} else {
4402 		delmntque(vp);
4403 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4404 	}
4405 	/*
4406 	 * Done with purge, reset to the standard lock and invalidate
4407 	 * the vnode.
4408 	 */
4409 	vp->v_vnlock = &vp->v_lock;
4410 	vp->v_op = &dead_vnodeops;
4411 	vp->v_type = VBAD;
4412 	vn_set_state(vp, VSTATE_DEAD);
4413 }
4414 
4415 /*
4416  * Print out a description of a vnode.
4417  */
4418 static const char *const vtypename[] = {
4419 	[VNON] = "VNON",
4420 	[VREG] = "VREG",
4421 	[VDIR] = "VDIR",
4422 	[VBLK] = "VBLK",
4423 	[VCHR] = "VCHR",
4424 	[VLNK] = "VLNK",
4425 	[VSOCK] = "VSOCK",
4426 	[VFIFO] = "VFIFO",
4427 	[VBAD] = "VBAD",
4428 	[VMARKER] = "VMARKER",
4429 };
4430 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4431     "vnode type name not added to vtypename");
4432 
4433 static const char *const vstatename[] = {
4434 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4435 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4436 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4437 	[VSTATE_DEAD] = "VSTATE_DEAD",
4438 };
4439 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4440     "vnode state name not added to vstatename");
4441 
4442 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4443     "new hold count flag not added to vn_printf");
4444 
4445 void
4446 vn_printf(struct vnode *vp, const char *fmt, ...)
4447 {
4448 	va_list ap;
4449 	char buf[256], buf2[16];
4450 	u_long flags;
4451 	u_int holdcnt;
4452 	short irflag;
4453 
4454 	va_start(ap, fmt);
4455 	vprintf(fmt, ap);
4456 	va_end(ap);
4457 	printf("%p: ", (void *)vp);
4458 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4459 	    vstatename[vp->v_state], vp->v_op);
4460 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4461 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4462 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4463 	    vp->v_seqc_users);
4464 	switch (vp->v_type) {
4465 	case VDIR:
4466 		printf(" mountedhere %p\n", vp->v_mountedhere);
4467 		break;
4468 	case VCHR:
4469 		printf(" rdev %p\n", vp->v_rdev);
4470 		break;
4471 	case VSOCK:
4472 		printf(" socket %p\n", vp->v_unpcb);
4473 		break;
4474 	case VFIFO:
4475 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4476 		break;
4477 	default:
4478 		printf("\n");
4479 		break;
4480 	}
4481 	buf[0] = '\0';
4482 	buf[1] = '\0';
4483 	if (holdcnt & VHOLD_NO_SMR)
4484 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4485 	printf("    hold count flags (%s)\n", buf + 1);
4486 
4487 	buf[0] = '\0';
4488 	buf[1] = '\0';
4489 	irflag = vn_irflag_read(vp);
4490 	if (irflag & VIRF_DOOMED)
4491 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4492 	if (irflag & VIRF_PGREAD)
4493 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4494 	if (irflag & VIRF_MOUNTPOINT)
4495 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4496 	if (irflag & VIRF_TEXT_REF)
4497 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4498 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4499 	if (flags != 0) {
4500 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4501 		strlcat(buf, buf2, sizeof(buf));
4502 	}
4503 	if (vp->v_vflag & VV_ROOT)
4504 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4505 	if (vp->v_vflag & VV_ISTTY)
4506 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4507 	if (vp->v_vflag & VV_NOSYNC)
4508 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4509 	if (vp->v_vflag & VV_ETERNALDEV)
4510 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4511 	if (vp->v_vflag & VV_CACHEDLABEL)
4512 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4513 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4514 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4515 	if (vp->v_vflag & VV_COPYONWRITE)
4516 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4517 	if (vp->v_vflag & VV_SYSTEM)
4518 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4519 	if (vp->v_vflag & VV_PROCDEP)
4520 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4521 	if (vp->v_vflag & VV_DELETED)
4522 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4523 	if (vp->v_vflag & VV_MD)
4524 		strlcat(buf, "|VV_MD", sizeof(buf));
4525 	if (vp->v_vflag & VV_FORCEINSMQ)
4526 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4527 	if (vp->v_vflag & VV_READLINK)
4528 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4529 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4530 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4531 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4532 	if (flags != 0) {
4533 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4534 		strlcat(buf, buf2, sizeof(buf));
4535 	}
4536 	if (vp->v_iflag & VI_MOUNT)
4537 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4538 	if (vp->v_iflag & VI_DOINGINACT)
4539 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4540 	if (vp->v_iflag & VI_OWEINACT)
4541 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4542 	if (vp->v_iflag & VI_DEFINACT)
4543 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4544 	if (vp->v_iflag & VI_FOPENING)
4545 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4546 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4547 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4548 	if (flags != 0) {
4549 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4550 		strlcat(buf, buf2, sizeof(buf));
4551 	}
4552 	if (vp->v_mflag & VMP_LAZYLIST)
4553 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4554 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4555 	if (flags != 0) {
4556 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4557 		strlcat(buf, buf2, sizeof(buf));
4558 	}
4559 	printf("    flags (%s)", buf + 1);
4560 	if (mtx_owned(VI_MTX(vp)))
4561 		printf(" VI_LOCKed");
4562 	printf("\n");
4563 	if (vp->v_object != NULL)
4564 		printf("    v_object %p ref %d pages %d "
4565 		    "cleanbuf %d dirtybuf %d\n",
4566 		    vp->v_object, vp->v_object->ref_count,
4567 		    vp->v_object->resident_page_count,
4568 		    vp->v_bufobj.bo_clean.bv_cnt,
4569 		    vp->v_bufobj.bo_dirty.bv_cnt);
4570 	printf("    ");
4571 	lockmgr_printinfo(vp->v_vnlock);
4572 	if (vp->v_data != NULL)
4573 		VOP_PRINT(vp);
4574 }
4575 
4576 #ifdef DDB
4577 /*
4578  * List all of the locked vnodes in the system.
4579  * Called when debugging the kernel.
4580  */
4581 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4582 {
4583 	struct mount *mp;
4584 	struct vnode *vp;
4585 
4586 	/*
4587 	 * Note: because this is DDB, we can't obey the locking semantics
4588 	 * for these structures, which means we could catch an inconsistent
4589 	 * state and dereference a nasty pointer.  Not much to be done
4590 	 * about that.
4591 	 */
4592 	db_printf("Locked vnodes\n");
4593 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4594 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4595 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4596 				vn_printf(vp, "vnode ");
4597 		}
4598 	}
4599 }
4600 
4601 /*
4602  * Show details about the given vnode.
4603  */
4604 DB_SHOW_COMMAND(vnode, db_show_vnode)
4605 {
4606 	struct vnode *vp;
4607 
4608 	if (!have_addr)
4609 		return;
4610 	vp = (struct vnode *)addr;
4611 	vn_printf(vp, "vnode ");
4612 }
4613 
4614 /*
4615  * Show details about the given mount point.
4616  */
4617 DB_SHOW_COMMAND(mount, db_show_mount)
4618 {
4619 	struct mount *mp;
4620 	struct vfsopt *opt;
4621 	struct statfs *sp;
4622 	struct vnode *vp;
4623 	char buf[512];
4624 	uint64_t mflags;
4625 	u_int flags;
4626 
4627 	if (!have_addr) {
4628 		/* No address given, print short info about all mount points. */
4629 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4630 			db_printf("%p %s on %s (%s)\n", mp,
4631 			    mp->mnt_stat.f_mntfromname,
4632 			    mp->mnt_stat.f_mntonname,
4633 			    mp->mnt_stat.f_fstypename);
4634 			if (db_pager_quit)
4635 				break;
4636 		}
4637 		db_printf("\nMore info: show mount <addr>\n");
4638 		return;
4639 	}
4640 
4641 	mp = (struct mount *)addr;
4642 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4643 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4644 
4645 	buf[0] = '\0';
4646 	mflags = mp->mnt_flag;
4647 #define	MNT_FLAG(flag)	do {						\
4648 	if (mflags & (flag)) {						\
4649 		if (buf[0] != '\0')					\
4650 			strlcat(buf, ", ", sizeof(buf));		\
4651 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4652 		mflags &= ~(flag);					\
4653 	}								\
4654 } while (0)
4655 	MNT_FLAG(MNT_RDONLY);
4656 	MNT_FLAG(MNT_SYNCHRONOUS);
4657 	MNT_FLAG(MNT_NOEXEC);
4658 	MNT_FLAG(MNT_NOSUID);
4659 	MNT_FLAG(MNT_NFS4ACLS);
4660 	MNT_FLAG(MNT_UNION);
4661 	MNT_FLAG(MNT_ASYNC);
4662 	MNT_FLAG(MNT_SUIDDIR);
4663 	MNT_FLAG(MNT_SOFTDEP);
4664 	MNT_FLAG(MNT_NOSYMFOLLOW);
4665 	MNT_FLAG(MNT_GJOURNAL);
4666 	MNT_FLAG(MNT_MULTILABEL);
4667 	MNT_FLAG(MNT_ACLS);
4668 	MNT_FLAG(MNT_NOATIME);
4669 	MNT_FLAG(MNT_NOCLUSTERR);
4670 	MNT_FLAG(MNT_NOCLUSTERW);
4671 	MNT_FLAG(MNT_SUJ);
4672 	MNT_FLAG(MNT_EXRDONLY);
4673 	MNT_FLAG(MNT_EXPORTED);
4674 	MNT_FLAG(MNT_DEFEXPORTED);
4675 	MNT_FLAG(MNT_EXPORTANON);
4676 	MNT_FLAG(MNT_EXKERB);
4677 	MNT_FLAG(MNT_EXPUBLIC);
4678 	MNT_FLAG(MNT_LOCAL);
4679 	MNT_FLAG(MNT_QUOTA);
4680 	MNT_FLAG(MNT_ROOTFS);
4681 	MNT_FLAG(MNT_USER);
4682 	MNT_FLAG(MNT_IGNORE);
4683 	MNT_FLAG(MNT_UPDATE);
4684 	MNT_FLAG(MNT_DELEXPORT);
4685 	MNT_FLAG(MNT_RELOAD);
4686 	MNT_FLAG(MNT_FORCE);
4687 	MNT_FLAG(MNT_SNAPSHOT);
4688 	MNT_FLAG(MNT_BYFSID);
4689 #undef MNT_FLAG
4690 	if (mflags != 0) {
4691 		if (buf[0] != '\0')
4692 			strlcat(buf, ", ", sizeof(buf));
4693 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4694 		    "0x%016jx", mflags);
4695 	}
4696 	db_printf("    mnt_flag = %s\n", buf);
4697 
4698 	buf[0] = '\0';
4699 	flags = mp->mnt_kern_flag;
4700 #define	MNT_KERN_FLAG(flag)	do {					\
4701 	if (flags & (flag)) {						\
4702 		if (buf[0] != '\0')					\
4703 			strlcat(buf, ", ", sizeof(buf));		\
4704 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4705 		flags &= ~(flag);					\
4706 	}								\
4707 } while (0)
4708 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4709 	MNT_KERN_FLAG(MNTK_ASYNC);
4710 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4711 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4712 	MNT_KERN_FLAG(MNTK_DRAINING);
4713 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4714 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4715 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4716 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4717 	MNT_KERN_FLAG(MNTK_RECURSE);
4718 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4719 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4720 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4721 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4722 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4723 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4724 	MNT_KERN_FLAG(MNTK_NOASYNC);
4725 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4726 	MNT_KERN_FLAG(MNTK_MWAIT);
4727 	MNT_KERN_FLAG(MNTK_SUSPEND);
4728 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4729 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4730 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4731 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4732 #undef MNT_KERN_FLAG
4733 	if (flags != 0) {
4734 		if (buf[0] != '\0')
4735 			strlcat(buf, ", ", sizeof(buf));
4736 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4737 		    "0x%08x", flags);
4738 	}
4739 	db_printf("    mnt_kern_flag = %s\n", buf);
4740 
4741 	db_printf("    mnt_opt = ");
4742 	opt = TAILQ_FIRST(mp->mnt_opt);
4743 	if (opt != NULL) {
4744 		db_printf("%s", opt->name);
4745 		opt = TAILQ_NEXT(opt, link);
4746 		while (opt != NULL) {
4747 			db_printf(", %s", opt->name);
4748 			opt = TAILQ_NEXT(opt, link);
4749 		}
4750 	}
4751 	db_printf("\n");
4752 
4753 	sp = &mp->mnt_stat;
4754 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4755 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4756 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4757 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4758 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4759 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4760 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4761 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4762 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4763 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4764 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4765 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4766 
4767 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4768 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4769 	if (jailed(mp->mnt_cred))
4770 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4771 	db_printf(" }\n");
4772 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4773 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4774 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4775 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4776 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4777 	    mp->mnt_lazyvnodelistsize);
4778 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4779 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4780 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4781 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4782 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4783 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4784 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4785 	db_printf("    mnt_secondary_accwrites = %d\n",
4786 	    mp->mnt_secondary_accwrites);
4787 	db_printf("    mnt_gjprovider = %s\n",
4788 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4789 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4790 
4791 	db_printf("\n\nList of active vnodes\n");
4792 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4793 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4794 			vn_printf(vp, "vnode ");
4795 			if (db_pager_quit)
4796 				break;
4797 		}
4798 	}
4799 	db_printf("\n\nList of inactive vnodes\n");
4800 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4801 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4802 			vn_printf(vp, "vnode ");
4803 			if (db_pager_quit)
4804 				break;
4805 		}
4806 	}
4807 }
4808 #endif	/* DDB */
4809 
4810 /*
4811  * Fill in a struct xvfsconf based on a struct vfsconf.
4812  */
4813 static int
4814 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4815 {
4816 	struct xvfsconf xvfsp;
4817 
4818 	bzero(&xvfsp, sizeof(xvfsp));
4819 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4820 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4821 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4822 	xvfsp.vfc_flags = vfsp->vfc_flags;
4823 	/*
4824 	 * These are unused in userland, we keep them
4825 	 * to not break binary compatibility.
4826 	 */
4827 	xvfsp.vfc_vfsops = NULL;
4828 	xvfsp.vfc_next = NULL;
4829 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4830 }
4831 
4832 #ifdef COMPAT_FREEBSD32
4833 struct xvfsconf32 {
4834 	uint32_t	vfc_vfsops;
4835 	char		vfc_name[MFSNAMELEN];
4836 	int32_t		vfc_typenum;
4837 	int32_t		vfc_refcount;
4838 	int32_t		vfc_flags;
4839 	uint32_t	vfc_next;
4840 };
4841 
4842 static int
4843 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4844 {
4845 	struct xvfsconf32 xvfsp;
4846 
4847 	bzero(&xvfsp, sizeof(xvfsp));
4848 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4849 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4850 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4851 	xvfsp.vfc_flags = vfsp->vfc_flags;
4852 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4853 }
4854 #endif
4855 
4856 /*
4857  * Top level filesystem related information gathering.
4858  */
4859 static int
4860 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4861 {
4862 	struct vfsconf *vfsp;
4863 	int error;
4864 
4865 	error = 0;
4866 	vfsconf_slock();
4867 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4868 #ifdef COMPAT_FREEBSD32
4869 		if (req->flags & SCTL_MASK32)
4870 			error = vfsconf2x32(req, vfsp);
4871 		else
4872 #endif
4873 			error = vfsconf2x(req, vfsp);
4874 		if (error)
4875 			break;
4876 	}
4877 	vfsconf_sunlock();
4878 	return (error);
4879 }
4880 
4881 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4882     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4883     "S,xvfsconf", "List of all configured filesystems");
4884 
4885 #ifndef BURN_BRIDGES
4886 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4887 
4888 static int
4889 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4890 {
4891 	int *name = (int *)arg1 - 1;	/* XXX */
4892 	u_int namelen = arg2 + 1;	/* XXX */
4893 	struct vfsconf *vfsp;
4894 
4895 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4896 	    "please rebuild world\n");
4897 
4898 #if 1 || defined(COMPAT_PRELITE2)
4899 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4900 	if (namelen == 1)
4901 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4902 #endif
4903 
4904 	switch (name[1]) {
4905 	case VFS_MAXTYPENUM:
4906 		if (namelen != 2)
4907 			return (ENOTDIR);
4908 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4909 	case VFS_CONF:
4910 		if (namelen != 3)
4911 			return (ENOTDIR);	/* overloaded */
4912 		vfsconf_slock();
4913 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4914 			if (vfsp->vfc_typenum == name[2])
4915 				break;
4916 		}
4917 		vfsconf_sunlock();
4918 		if (vfsp == NULL)
4919 			return (EOPNOTSUPP);
4920 #ifdef COMPAT_FREEBSD32
4921 		if (req->flags & SCTL_MASK32)
4922 			return (vfsconf2x32(req, vfsp));
4923 		else
4924 #endif
4925 			return (vfsconf2x(req, vfsp));
4926 	}
4927 	return (EOPNOTSUPP);
4928 }
4929 
4930 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4931     CTLFLAG_MPSAFE, vfs_sysctl,
4932     "Generic filesystem");
4933 
4934 #if 1 || defined(COMPAT_PRELITE2)
4935 
4936 static int
4937 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4938 {
4939 	int error;
4940 	struct vfsconf *vfsp;
4941 	struct ovfsconf ovfs;
4942 
4943 	vfsconf_slock();
4944 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4945 		bzero(&ovfs, sizeof(ovfs));
4946 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4947 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4948 		ovfs.vfc_index = vfsp->vfc_typenum;
4949 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4950 		ovfs.vfc_flags = vfsp->vfc_flags;
4951 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4952 		if (error != 0) {
4953 			vfsconf_sunlock();
4954 			return (error);
4955 		}
4956 	}
4957 	vfsconf_sunlock();
4958 	return (0);
4959 }
4960 
4961 #endif /* 1 || COMPAT_PRELITE2 */
4962 #endif /* !BURN_BRIDGES */
4963 
4964 static void
4965 unmount_or_warn(struct mount *mp)
4966 {
4967 	int error;
4968 
4969 	error = dounmount(mp, MNT_FORCE, curthread);
4970 	if (error != 0) {
4971 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4972 		if (error == EBUSY)
4973 			printf("BUSY)\n");
4974 		else
4975 			printf("%d)\n", error);
4976 	}
4977 }
4978 
4979 /*
4980  * Unmount all filesystems. The list is traversed in reverse order
4981  * of mounting to avoid dependencies.
4982  */
4983 void
4984 vfs_unmountall(void)
4985 {
4986 	struct mount *mp, *tmp;
4987 
4988 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4989 
4990 	/*
4991 	 * Since this only runs when rebooting, it is not interlocked.
4992 	 */
4993 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4994 		vfs_ref(mp);
4995 
4996 		/*
4997 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4998 		 * unmount of the latter.
4999 		 */
5000 		if (mp == rootdevmp)
5001 			continue;
5002 
5003 		unmount_or_warn(mp);
5004 	}
5005 
5006 	if (rootdevmp != NULL)
5007 		unmount_or_warn(rootdevmp);
5008 }
5009 
5010 static void
5011 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5012 {
5013 
5014 	ASSERT_VI_LOCKED(vp, __func__);
5015 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5016 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5017 		vdropl(vp);
5018 		return;
5019 	}
5020 	if (vn_lock(vp, lkflags) == 0) {
5021 		VI_LOCK(vp);
5022 		vinactive(vp);
5023 		VOP_UNLOCK(vp);
5024 		vdropl(vp);
5025 		return;
5026 	}
5027 	vdefer_inactive_unlocked(vp);
5028 }
5029 
5030 static int
5031 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5032 {
5033 
5034 	return (vp->v_iflag & VI_DEFINACT);
5035 }
5036 
5037 static void __noinline
5038 vfs_periodic_inactive(struct mount *mp, int flags)
5039 {
5040 	struct vnode *vp, *mvp;
5041 	int lkflags;
5042 
5043 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5044 	if (flags != MNT_WAIT)
5045 		lkflags |= LK_NOWAIT;
5046 
5047 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5048 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5049 			VI_UNLOCK(vp);
5050 			continue;
5051 		}
5052 		vp->v_iflag &= ~VI_DEFINACT;
5053 		vfs_deferred_inactive(vp, lkflags);
5054 	}
5055 }
5056 
5057 static inline bool
5058 vfs_want_msync(struct vnode *vp)
5059 {
5060 	struct vm_object *obj;
5061 
5062 	/*
5063 	 * This test may be performed without any locks held.
5064 	 * We rely on vm_object's type stability.
5065 	 */
5066 	if (vp->v_vflag & VV_NOSYNC)
5067 		return (false);
5068 	obj = vp->v_object;
5069 	return (obj != NULL && vm_object_mightbedirty(obj));
5070 }
5071 
5072 static int
5073 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5074 {
5075 
5076 	if (vp->v_vflag & VV_NOSYNC)
5077 		return (false);
5078 	if (vp->v_iflag & VI_DEFINACT)
5079 		return (true);
5080 	return (vfs_want_msync(vp));
5081 }
5082 
5083 static void __noinline
5084 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5085 {
5086 	struct vnode *vp, *mvp;
5087 	struct vm_object *obj;
5088 	int lkflags, objflags;
5089 	bool seen_defer;
5090 
5091 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5092 	if (flags != MNT_WAIT) {
5093 		lkflags |= LK_NOWAIT;
5094 		objflags = OBJPC_NOSYNC;
5095 	} else {
5096 		objflags = OBJPC_SYNC;
5097 	}
5098 
5099 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5100 		seen_defer = false;
5101 		if (vp->v_iflag & VI_DEFINACT) {
5102 			vp->v_iflag &= ~VI_DEFINACT;
5103 			seen_defer = true;
5104 		}
5105 		if (!vfs_want_msync(vp)) {
5106 			if (seen_defer)
5107 				vfs_deferred_inactive(vp, lkflags);
5108 			else
5109 				VI_UNLOCK(vp);
5110 			continue;
5111 		}
5112 		if (vget(vp, lkflags) == 0) {
5113 			obj = vp->v_object;
5114 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
5115 				VM_OBJECT_WLOCK(obj);
5116 				vm_object_page_clean(obj, 0, 0, objflags);
5117 				VM_OBJECT_WUNLOCK(obj);
5118 			}
5119 			vput(vp);
5120 			if (seen_defer)
5121 				vdrop(vp);
5122 		} else {
5123 			if (seen_defer)
5124 				vdefer_inactive_unlocked(vp);
5125 		}
5126 	}
5127 }
5128 
5129 void
5130 vfs_periodic(struct mount *mp, int flags)
5131 {
5132 
5133 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5134 
5135 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5136 		vfs_periodic_inactive(mp, flags);
5137 	else
5138 		vfs_periodic_msync_inactive(mp, flags);
5139 }
5140 
5141 static void
5142 destroy_vpollinfo_free(struct vpollinfo *vi)
5143 {
5144 
5145 	knlist_destroy(&vi->vpi_selinfo.si_note);
5146 	mtx_destroy(&vi->vpi_lock);
5147 	free(vi, M_VNODEPOLL);
5148 }
5149 
5150 static void
5151 destroy_vpollinfo(struct vpollinfo *vi)
5152 {
5153 
5154 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5155 	seldrain(&vi->vpi_selinfo);
5156 	destroy_vpollinfo_free(vi);
5157 }
5158 
5159 /*
5160  * Initialize per-vnode helper structure to hold poll-related state.
5161  */
5162 void
5163 v_addpollinfo(struct vnode *vp)
5164 {
5165 	struct vpollinfo *vi;
5166 
5167 	if (vp->v_pollinfo != NULL)
5168 		return;
5169 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5170 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5171 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5172 	    vfs_knlunlock, vfs_knl_assert_lock);
5173 	VI_LOCK(vp);
5174 	if (vp->v_pollinfo != NULL) {
5175 		VI_UNLOCK(vp);
5176 		destroy_vpollinfo_free(vi);
5177 		return;
5178 	}
5179 	vp->v_pollinfo = vi;
5180 	VI_UNLOCK(vp);
5181 }
5182 
5183 /*
5184  * Record a process's interest in events which might happen to
5185  * a vnode.  Because poll uses the historic select-style interface
5186  * internally, this routine serves as both the ``check for any
5187  * pending events'' and the ``record my interest in future events''
5188  * functions.  (These are done together, while the lock is held,
5189  * to avoid race conditions.)
5190  */
5191 int
5192 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5193 {
5194 
5195 	v_addpollinfo(vp);
5196 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5197 	if (vp->v_pollinfo->vpi_revents & events) {
5198 		/*
5199 		 * This leaves events we are not interested
5200 		 * in available for the other process which
5201 		 * which presumably had requested them
5202 		 * (otherwise they would never have been
5203 		 * recorded).
5204 		 */
5205 		events &= vp->v_pollinfo->vpi_revents;
5206 		vp->v_pollinfo->vpi_revents &= ~events;
5207 
5208 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5209 		return (events);
5210 	}
5211 	vp->v_pollinfo->vpi_events |= events;
5212 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5213 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5214 	return (0);
5215 }
5216 
5217 /*
5218  * Routine to create and manage a filesystem syncer vnode.
5219  */
5220 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5221 static int	sync_fsync(struct  vop_fsync_args *);
5222 static int	sync_inactive(struct  vop_inactive_args *);
5223 static int	sync_reclaim(struct  vop_reclaim_args *);
5224 
5225 static struct vop_vector sync_vnodeops = {
5226 	.vop_bypass =	VOP_EOPNOTSUPP,
5227 	.vop_close =	sync_close,
5228 	.vop_fsync =	sync_fsync,
5229 	.vop_getwritemount = vop_stdgetwritemount,
5230 	.vop_inactive =	sync_inactive,
5231 	.vop_need_inactive = vop_stdneed_inactive,
5232 	.vop_reclaim =	sync_reclaim,
5233 	.vop_lock1 =	vop_stdlock,
5234 	.vop_unlock =	vop_stdunlock,
5235 	.vop_islocked =	vop_stdislocked,
5236 	.vop_fplookup_vexec = VOP_EAGAIN,
5237 	.vop_fplookup_symlink = VOP_EAGAIN,
5238 };
5239 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5240 
5241 /*
5242  * Create a new filesystem syncer vnode for the specified mount point.
5243  */
5244 void
5245 vfs_allocate_syncvnode(struct mount *mp)
5246 {
5247 	struct vnode *vp;
5248 	struct bufobj *bo;
5249 	static long start, incr, next;
5250 	int error;
5251 
5252 	/* Allocate a new vnode */
5253 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5254 	if (error != 0)
5255 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5256 	vp->v_type = VNON;
5257 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5258 	vp->v_vflag |= VV_FORCEINSMQ;
5259 	error = insmntque1(vp, mp);
5260 	if (error != 0)
5261 		panic("vfs_allocate_syncvnode: insmntque() failed");
5262 	vp->v_vflag &= ~VV_FORCEINSMQ;
5263 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5264 	VOP_UNLOCK(vp);
5265 	/*
5266 	 * Place the vnode onto the syncer worklist. We attempt to
5267 	 * scatter them about on the list so that they will go off
5268 	 * at evenly distributed times even if all the filesystems
5269 	 * are mounted at once.
5270 	 */
5271 	next += incr;
5272 	if (next == 0 || next > syncer_maxdelay) {
5273 		start /= 2;
5274 		incr /= 2;
5275 		if (start == 0) {
5276 			start = syncer_maxdelay / 2;
5277 			incr = syncer_maxdelay;
5278 		}
5279 		next = start;
5280 	}
5281 	bo = &vp->v_bufobj;
5282 	BO_LOCK(bo);
5283 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5284 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5285 	mtx_lock(&sync_mtx);
5286 	sync_vnode_count++;
5287 	if (mp->mnt_syncer == NULL) {
5288 		mp->mnt_syncer = vp;
5289 		vp = NULL;
5290 	}
5291 	mtx_unlock(&sync_mtx);
5292 	BO_UNLOCK(bo);
5293 	if (vp != NULL) {
5294 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5295 		vgone(vp);
5296 		vput(vp);
5297 	}
5298 }
5299 
5300 void
5301 vfs_deallocate_syncvnode(struct mount *mp)
5302 {
5303 	struct vnode *vp;
5304 
5305 	mtx_lock(&sync_mtx);
5306 	vp = mp->mnt_syncer;
5307 	if (vp != NULL)
5308 		mp->mnt_syncer = NULL;
5309 	mtx_unlock(&sync_mtx);
5310 	if (vp != NULL)
5311 		vrele(vp);
5312 }
5313 
5314 /*
5315  * Do a lazy sync of the filesystem.
5316  */
5317 static int
5318 sync_fsync(struct vop_fsync_args *ap)
5319 {
5320 	struct vnode *syncvp = ap->a_vp;
5321 	struct mount *mp = syncvp->v_mount;
5322 	int error, save;
5323 	struct bufobj *bo;
5324 
5325 	/*
5326 	 * We only need to do something if this is a lazy evaluation.
5327 	 */
5328 	if (ap->a_waitfor != MNT_LAZY)
5329 		return (0);
5330 
5331 	/*
5332 	 * Move ourselves to the back of the sync list.
5333 	 */
5334 	bo = &syncvp->v_bufobj;
5335 	BO_LOCK(bo);
5336 	vn_syncer_add_to_worklist(bo, syncdelay);
5337 	BO_UNLOCK(bo);
5338 
5339 	/*
5340 	 * Walk the list of vnodes pushing all that are dirty and
5341 	 * not already on the sync list.
5342 	 */
5343 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5344 		return (0);
5345 	VOP_UNLOCK(syncvp);
5346 	save = curthread_pflags_set(TDP_SYNCIO);
5347 	/*
5348 	 * The filesystem at hand may be idle with free vnodes stored in the
5349 	 * batch.  Return them instead of letting them stay there indefinitely.
5350 	 */
5351 	vfs_periodic(mp, MNT_NOWAIT);
5352 	error = VFS_SYNC(mp, MNT_LAZY);
5353 	curthread_pflags_restore(save);
5354 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5355 	vfs_unbusy(mp);
5356 	return (error);
5357 }
5358 
5359 /*
5360  * The syncer vnode is no referenced.
5361  */
5362 static int
5363 sync_inactive(struct vop_inactive_args *ap)
5364 {
5365 
5366 	vgone(ap->a_vp);
5367 	return (0);
5368 }
5369 
5370 /*
5371  * The syncer vnode is no longer needed and is being decommissioned.
5372  *
5373  * Modifications to the worklist must be protected by sync_mtx.
5374  */
5375 static int
5376 sync_reclaim(struct vop_reclaim_args *ap)
5377 {
5378 	struct vnode *vp = ap->a_vp;
5379 	struct bufobj *bo;
5380 
5381 	bo = &vp->v_bufobj;
5382 	BO_LOCK(bo);
5383 	mtx_lock(&sync_mtx);
5384 	if (vp->v_mount->mnt_syncer == vp)
5385 		vp->v_mount->mnt_syncer = NULL;
5386 	if (bo->bo_flag & BO_ONWORKLST) {
5387 		LIST_REMOVE(bo, bo_synclist);
5388 		syncer_worklist_len--;
5389 		sync_vnode_count--;
5390 		bo->bo_flag &= ~BO_ONWORKLST;
5391 	}
5392 	mtx_unlock(&sync_mtx);
5393 	BO_UNLOCK(bo);
5394 
5395 	return (0);
5396 }
5397 
5398 int
5399 vn_need_pageq_flush(struct vnode *vp)
5400 {
5401 	struct vm_object *obj;
5402 
5403 	obj = vp->v_object;
5404 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5405 	    vm_object_mightbedirty(obj));
5406 }
5407 
5408 /*
5409  * Check if vnode represents a disk device
5410  */
5411 bool
5412 vn_isdisk_error(struct vnode *vp, int *errp)
5413 {
5414 	int error;
5415 
5416 	if (vp->v_type != VCHR) {
5417 		error = ENOTBLK;
5418 		goto out;
5419 	}
5420 	error = 0;
5421 	dev_lock();
5422 	if (vp->v_rdev == NULL)
5423 		error = ENXIO;
5424 	else if (vp->v_rdev->si_devsw == NULL)
5425 		error = ENXIO;
5426 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5427 		error = ENOTBLK;
5428 	dev_unlock();
5429 out:
5430 	*errp = error;
5431 	return (error == 0);
5432 }
5433 
5434 bool
5435 vn_isdisk(struct vnode *vp)
5436 {
5437 	int error;
5438 
5439 	return (vn_isdisk_error(vp, &error));
5440 }
5441 
5442 /*
5443  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5444  * the comment above cache_fplookup for details.
5445  */
5446 int
5447 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5448 {
5449 	int error;
5450 
5451 	VFS_SMR_ASSERT_ENTERED();
5452 
5453 	/* Check the owner. */
5454 	if (cred->cr_uid == file_uid) {
5455 		if (file_mode & S_IXUSR)
5456 			return (0);
5457 		goto out_error;
5458 	}
5459 
5460 	/* Otherwise, check the groups (first match) */
5461 	if (groupmember(file_gid, cred)) {
5462 		if (file_mode & S_IXGRP)
5463 			return (0);
5464 		goto out_error;
5465 	}
5466 
5467 	/* Otherwise, check everyone else. */
5468 	if (file_mode & S_IXOTH)
5469 		return (0);
5470 out_error:
5471 	/*
5472 	 * Permission check failed, but it is possible denial will get overwritten
5473 	 * (e.g., when root is traversing through a 700 directory owned by someone
5474 	 * else).
5475 	 *
5476 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5477 	 * modules overriding this result. It's quite unclear what semantics
5478 	 * are allowed for them to operate, thus for safety we don't call them
5479 	 * from within the SMR section. This also means if any such modules
5480 	 * are present, we have to let the regular lookup decide.
5481 	 */
5482 	error = priv_check_cred_vfs_lookup_nomac(cred);
5483 	switch (error) {
5484 	case 0:
5485 		return (0);
5486 	case EAGAIN:
5487 		/*
5488 		 * MAC modules present.
5489 		 */
5490 		return (EAGAIN);
5491 	case EPERM:
5492 		return (EACCES);
5493 	default:
5494 		return (error);
5495 	}
5496 }
5497 
5498 /*
5499  * Common filesystem object access control check routine.  Accepts a
5500  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5501  * Returns 0 on success, or an errno on failure.
5502  */
5503 int
5504 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5505     accmode_t accmode, struct ucred *cred)
5506 {
5507 	accmode_t dac_granted;
5508 	accmode_t priv_granted;
5509 
5510 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5511 	    ("invalid bit in accmode"));
5512 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5513 	    ("VAPPEND without VWRITE"));
5514 
5515 	/*
5516 	 * Look for a normal, non-privileged way to access the file/directory
5517 	 * as requested.  If it exists, go with that.
5518 	 */
5519 
5520 	dac_granted = 0;
5521 
5522 	/* Check the owner. */
5523 	if (cred->cr_uid == file_uid) {
5524 		dac_granted |= VADMIN;
5525 		if (file_mode & S_IXUSR)
5526 			dac_granted |= VEXEC;
5527 		if (file_mode & S_IRUSR)
5528 			dac_granted |= VREAD;
5529 		if (file_mode & S_IWUSR)
5530 			dac_granted |= (VWRITE | VAPPEND);
5531 
5532 		if ((accmode & dac_granted) == accmode)
5533 			return (0);
5534 
5535 		goto privcheck;
5536 	}
5537 
5538 	/* Otherwise, check the groups (first match) */
5539 	if (groupmember(file_gid, cred)) {
5540 		if (file_mode & S_IXGRP)
5541 			dac_granted |= VEXEC;
5542 		if (file_mode & S_IRGRP)
5543 			dac_granted |= VREAD;
5544 		if (file_mode & S_IWGRP)
5545 			dac_granted |= (VWRITE | VAPPEND);
5546 
5547 		if ((accmode & dac_granted) == accmode)
5548 			return (0);
5549 
5550 		goto privcheck;
5551 	}
5552 
5553 	/* Otherwise, check everyone else. */
5554 	if (file_mode & S_IXOTH)
5555 		dac_granted |= VEXEC;
5556 	if (file_mode & S_IROTH)
5557 		dac_granted |= VREAD;
5558 	if (file_mode & S_IWOTH)
5559 		dac_granted |= (VWRITE | VAPPEND);
5560 	if ((accmode & dac_granted) == accmode)
5561 		return (0);
5562 
5563 privcheck:
5564 	/*
5565 	 * Build a privilege mask to determine if the set of privileges
5566 	 * satisfies the requirements when combined with the granted mask
5567 	 * from above.  For each privilege, if the privilege is required,
5568 	 * bitwise or the request type onto the priv_granted mask.
5569 	 */
5570 	priv_granted = 0;
5571 
5572 	if (type == VDIR) {
5573 		/*
5574 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5575 		 * requests, instead of PRIV_VFS_EXEC.
5576 		 */
5577 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5578 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5579 			priv_granted |= VEXEC;
5580 	} else {
5581 		/*
5582 		 * Ensure that at least one execute bit is on. Otherwise,
5583 		 * a privileged user will always succeed, and we don't want
5584 		 * this to happen unless the file really is executable.
5585 		 */
5586 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5587 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5588 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5589 			priv_granted |= VEXEC;
5590 	}
5591 
5592 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5593 	    !priv_check_cred(cred, PRIV_VFS_READ))
5594 		priv_granted |= VREAD;
5595 
5596 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5597 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5598 		priv_granted |= (VWRITE | VAPPEND);
5599 
5600 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5601 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5602 		priv_granted |= VADMIN;
5603 
5604 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5605 		return (0);
5606 	}
5607 
5608 	return ((accmode & VADMIN) ? EPERM : EACCES);
5609 }
5610 
5611 /*
5612  * Credential check based on process requesting service, and per-attribute
5613  * permissions.
5614  */
5615 int
5616 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5617     struct thread *td, accmode_t accmode)
5618 {
5619 
5620 	/*
5621 	 * Kernel-invoked always succeeds.
5622 	 */
5623 	if (cred == NOCRED)
5624 		return (0);
5625 
5626 	/*
5627 	 * Do not allow privileged processes in jail to directly manipulate
5628 	 * system attributes.
5629 	 */
5630 	switch (attrnamespace) {
5631 	case EXTATTR_NAMESPACE_SYSTEM:
5632 		/* Potentially should be: return (EPERM); */
5633 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5634 	case EXTATTR_NAMESPACE_USER:
5635 		return (VOP_ACCESS(vp, accmode, cred, td));
5636 	default:
5637 		return (EPERM);
5638 	}
5639 }
5640 
5641 #ifdef DEBUG_VFS_LOCKS
5642 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5643 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5644     "Drop into debugger on lock violation");
5645 
5646 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5647 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5648     0, "Check for interlock across VOPs");
5649 
5650 int vfs_badlock_print = 1;	/* Print lock violations. */
5651 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5652     0, "Print lock violations");
5653 
5654 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5655 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5656     0, "Print vnode details on lock violations");
5657 
5658 #ifdef KDB
5659 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5660 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5661     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5662 #endif
5663 
5664 static void
5665 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5666 {
5667 
5668 #ifdef KDB
5669 	if (vfs_badlock_backtrace)
5670 		kdb_backtrace();
5671 #endif
5672 	if (vfs_badlock_vnode)
5673 		vn_printf(vp, "vnode ");
5674 	if (vfs_badlock_print)
5675 		printf("%s: %p %s\n", str, (void *)vp, msg);
5676 	if (vfs_badlock_ddb)
5677 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5678 }
5679 
5680 void
5681 assert_vi_locked(struct vnode *vp, const char *str)
5682 {
5683 
5684 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5685 		vfs_badlock("interlock is not locked but should be", str, vp);
5686 }
5687 
5688 void
5689 assert_vi_unlocked(struct vnode *vp, const char *str)
5690 {
5691 
5692 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5693 		vfs_badlock("interlock is locked but should not be", str, vp);
5694 }
5695 
5696 void
5697 assert_vop_locked(struct vnode *vp, const char *str)
5698 {
5699 	if (KERNEL_PANICKED() || vp == NULL)
5700 		return;
5701 
5702 #ifdef WITNESS
5703 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5704 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5705 #else
5706 	int locked = VOP_ISLOCKED(vp);
5707 	if (locked == 0 || locked == LK_EXCLOTHER)
5708 #endif
5709 		vfs_badlock("is not locked but should be", str, vp);
5710 }
5711 
5712 void
5713 assert_vop_unlocked(struct vnode *vp, const char *str)
5714 {
5715 	if (KERNEL_PANICKED() || vp == NULL)
5716 		return;
5717 
5718 #ifdef WITNESS
5719 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5720 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5721 #else
5722 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5723 #endif
5724 		vfs_badlock("is locked but should not be", str, vp);
5725 }
5726 
5727 void
5728 assert_vop_elocked(struct vnode *vp, const char *str)
5729 {
5730 	if (KERNEL_PANICKED() || vp == NULL)
5731 		return;
5732 
5733 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5734 		vfs_badlock("is not exclusive locked but should be", str, vp);
5735 }
5736 #endif /* DEBUG_VFS_LOCKS */
5737 
5738 void
5739 vop_rename_fail(struct vop_rename_args *ap)
5740 {
5741 
5742 	if (ap->a_tvp != NULL)
5743 		vput(ap->a_tvp);
5744 	if (ap->a_tdvp == ap->a_tvp)
5745 		vrele(ap->a_tdvp);
5746 	else
5747 		vput(ap->a_tdvp);
5748 	vrele(ap->a_fdvp);
5749 	vrele(ap->a_fvp);
5750 }
5751 
5752 void
5753 vop_rename_pre(void *ap)
5754 {
5755 	struct vop_rename_args *a = ap;
5756 
5757 #ifdef DEBUG_VFS_LOCKS
5758 	if (a->a_tvp)
5759 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5760 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5761 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5762 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5763 
5764 	/* Check the source (from). */
5765 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5766 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5767 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5768 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5769 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5770 
5771 	/* Check the target. */
5772 	if (a->a_tvp)
5773 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5774 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5775 #endif
5776 	/*
5777 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5778 	 * in vop_rename_post but that's not going to work out since some
5779 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5780 	 *
5781 	 * For now filesystems are expected to do the relevant calls after they
5782 	 * decide what vnodes to operate on.
5783 	 */
5784 	if (a->a_tdvp != a->a_fdvp)
5785 		vhold(a->a_fdvp);
5786 	if (a->a_tvp != a->a_fvp)
5787 		vhold(a->a_fvp);
5788 	vhold(a->a_tdvp);
5789 	if (a->a_tvp)
5790 		vhold(a->a_tvp);
5791 }
5792 
5793 #ifdef DEBUG_VFS_LOCKS
5794 void
5795 vop_fplookup_vexec_debugpre(void *ap __unused)
5796 {
5797 
5798 	VFS_SMR_ASSERT_ENTERED();
5799 }
5800 
5801 void
5802 vop_fplookup_vexec_debugpost(void *ap, int rc)
5803 {
5804 	struct vop_fplookup_vexec_args *a;
5805 	struct vnode *vp;
5806 
5807 	a = ap;
5808 	vp = a->a_vp;
5809 
5810 	VFS_SMR_ASSERT_ENTERED();
5811 	if (rc == EOPNOTSUPP)
5812 		VNPASS(VN_IS_DOOMED(vp), vp);
5813 }
5814 
5815 void
5816 vop_fplookup_symlink_debugpre(void *ap __unused)
5817 {
5818 
5819 	VFS_SMR_ASSERT_ENTERED();
5820 }
5821 
5822 void
5823 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5824 {
5825 
5826 	VFS_SMR_ASSERT_ENTERED();
5827 }
5828 
5829 static void
5830 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5831 {
5832 	if (vp->v_type == VCHR)
5833 		;
5834 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5835 		ASSERT_VOP_LOCKED(vp, name);
5836 	else
5837 		ASSERT_VOP_ELOCKED(vp, name);
5838 }
5839 
5840 void
5841 vop_fsync_debugpre(void *a)
5842 {
5843 	struct vop_fsync_args *ap;
5844 
5845 	ap = a;
5846 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5847 }
5848 
5849 void
5850 vop_fsync_debugpost(void *a, int rc __unused)
5851 {
5852 	struct vop_fsync_args *ap;
5853 
5854 	ap = a;
5855 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5856 }
5857 
5858 void
5859 vop_fdatasync_debugpre(void *a)
5860 {
5861 	struct vop_fdatasync_args *ap;
5862 
5863 	ap = a;
5864 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5865 }
5866 
5867 void
5868 vop_fdatasync_debugpost(void *a, int rc __unused)
5869 {
5870 	struct vop_fdatasync_args *ap;
5871 
5872 	ap = a;
5873 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5874 }
5875 
5876 void
5877 vop_strategy_debugpre(void *ap)
5878 {
5879 	struct vop_strategy_args *a;
5880 	struct buf *bp;
5881 
5882 	a = ap;
5883 	bp = a->a_bp;
5884 
5885 	/*
5886 	 * Cluster ops lock their component buffers but not the IO container.
5887 	 */
5888 	if ((bp->b_flags & B_CLUSTER) != 0)
5889 		return;
5890 
5891 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5892 		if (vfs_badlock_print)
5893 			printf(
5894 			    "VOP_STRATEGY: bp is not locked but should be\n");
5895 		if (vfs_badlock_ddb)
5896 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5897 	}
5898 }
5899 
5900 void
5901 vop_lock_debugpre(void *ap)
5902 {
5903 	struct vop_lock1_args *a = ap;
5904 
5905 	if ((a->a_flags & LK_INTERLOCK) == 0)
5906 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5907 	else
5908 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5909 }
5910 
5911 void
5912 vop_lock_debugpost(void *ap, int rc)
5913 {
5914 	struct vop_lock1_args *a = ap;
5915 
5916 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5917 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5918 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5919 }
5920 
5921 void
5922 vop_unlock_debugpre(void *ap)
5923 {
5924 	struct vop_unlock_args *a = ap;
5925 	struct vnode *vp = a->a_vp;
5926 
5927 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5928 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5929 }
5930 
5931 void
5932 vop_need_inactive_debugpre(void *ap)
5933 {
5934 	struct vop_need_inactive_args *a = ap;
5935 
5936 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5937 }
5938 
5939 void
5940 vop_need_inactive_debugpost(void *ap, int rc)
5941 {
5942 	struct vop_need_inactive_args *a = ap;
5943 
5944 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5945 }
5946 #endif
5947 
5948 void
5949 vop_create_pre(void *ap)
5950 {
5951 	struct vop_create_args *a;
5952 	struct vnode *dvp;
5953 
5954 	a = ap;
5955 	dvp = a->a_dvp;
5956 	vn_seqc_write_begin(dvp);
5957 }
5958 
5959 void
5960 vop_create_post(void *ap, int rc)
5961 {
5962 	struct vop_create_args *a;
5963 	struct vnode *dvp;
5964 
5965 	a = ap;
5966 	dvp = a->a_dvp;
5967 	vn_seqc_write_end(dvp);
5968 	if (!rc)
5969 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5970 }
5971 
5972 void
5973 vop_whiteout_pre(void *ap)
5974 {
5975 	struct vop_whiteout_args *a;
5976 	struct vnode *dvp;
5977 
5978 	a = ap;
5979 	dvp = a->a_dvp;
5980 	vn_seqc_write_begin(dvp);
5981 }
5982 
5983 void
5984 vop_whiteout_post(void *ap, int rc)
5985 {
5986 	struct vop_whiteout_args *a;
5987 	struct vnode *dvp;
5988 
5989 	a = ap;
5990 	dvp = a->a_dvp;
5991 	vn_seqc_write_end(dvp);
5992 }
5993 
5994 void
5995 vop_deleteextattr_pre(void *ap)
5996 {
5997 	struct vop_deleteextattr_args *a;
5998 	struct vnode *vp;
5999 
6000 	a = ap;
6001 	vp = a->a_vp;
6002 	vn_seqc_write_begin(vp);
6003 }
6004 
6005 void
6006 vop_deleteextattr_post(void *ap, int rc)
6007 {
6008 	struct vop_deleteextattr_args *a;
6009 	struct vnode *vp;
6010 
6011 	a = ap;
6012 	vp = a->a_vp;
6013 	vn_seqc_write_end(vp);
6014 	if (!rc)
6015 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6016 }
6017 
6018 void
6019 vop_link_pre(void *ap)
6020 {
6021 	struct vop_link_args *a;
6022 	struct vnode *vp, *tdvp;
6023 
6024 	a = ap;
6025 	vp = a->a_vp;
6026 	tdvp = a->a_tdvp;
6027 	vn_seqc_write_begin(vp);
6028 	vn_seqc_write_begin(tdvp);
6029 }
6030 
6031 void
6032 vop_link_post(void *ap, int rc)
6033 {
6034 	struct vop_link_args *a;
6035 	struct vnode *vp, *tdvp;
6036 
6037 	a = ap;
6038 	vp = a->a_vp;
6039 	tdvp = a->a_tdvp;
6040 	vn_seqc_write_end(vp);
6041 	vn_seqc_write_end(tdvp);
6042 	if (!rc) {
6043 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6044 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6045 	}
6046 }
6047 
6048 void
6049 vop_mkdir_pre(void *ap)
6050 {
6051 	struct vop_mkdir_args *a;
6052 	struct vnode *dvp;
6053 
6054 	a = ap;
6055 	dvp = a->a_dvp;
6056 	vn_seqc_write_begin(dvp);
6057 }
6058 
6059 void
6060 vop_mkdir_post(void *ap, int rc)
6061 {
6062 	struct vop_mkdir_args *a;
6063 	struct vnode *dvp;
6064 
6065 	a = ap;
6066 	dvp = a->a_dvp;
6067 	vn_seqc_write_end(dvp);
6068 	if (!rc)
6069 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6070 }
6071 
6072 #ifdef DEBUG_VFS_LOCKS
6073 void
6074 vop_mkdir_debugpost(void *ap, int rc)
6075 {
6076 	struct vop_mkdir_args *a;
6077 
6078 	a = ap;
6079 	if (!rc)
6080 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6081 }
6082 #endif
6083 
6084 void
6085 vop_mknod_pre(void *ap)
6086 {
6087 	struct vop_mknod_args *a;
6088 	struct vnode *dvp;
6089 
6090 	a = ap;
6091 	dvp = a->a_dvp;
6092 	vn_seqc_write_begin(dvp);
6093 }
6094 
6095 void
6096 vop_mknod_post(void *ap, int rc)
6097 {
6098 	struct vop_mknod_args *a;
6099 	struct vnode *dvp;
6100 
6101 	a = ap;
6102 	dvp = a->a_dvp;
6103 	vn_seqc_write_end(dvp);
6104 	if (!rc)
6105 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6106 }
6107 
6108 void
6109 vop_reclaim_post(void *ap, int rc)
6110 {
6111 	struct vop_reclaim_args *a;
6112 	struct vnode *vp;
6113 
6114 	a = ap;
6115 	vp = a->a_vp;
6116 	ASSERT_VOP_IN_SEQC(vp);
6117 	if (!rc)
6118 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6119 }
6120 
6121 void
6122 vop_remove_pre(void *ap)
6123 {
6124 	struct vop_remove_args *a;
6125 	struct vnode *dvp, *vp;
6126 
6127 	a = ap;
6128 	dvp = a->a_dvp;
6129 	vp = a->a_vp;
6130 	vn_seqc_write_begin(dvp);
6131 	vn_seqc_write_begin(vp);
6132 }
6133 
6134 void
6135 vop_remove_post(void *ap, int rc)
6136 {
6137 	struct vop_remove_args *a;
6138 	struct vnode *dvp, *vp;
6139 
6140 	a = ap;
6141 	dvp = a->a_dvp;
6142 	vp = a->a_vp;
6143 	vn_seqc_write_end(dvp);
6144 	vn_seqc_write_end(vp);
6145 	if (!rc) {
6146 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6147 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6148 	}
6149 }
6150 
6151 void
6152 vop_rename_post(void *ap, int rc)
6153 {
6154 	struct vop_rename_args *a = ap;
6155 	long hint;
6156 
6157 	if (!rc) {
6158 		hint = NOTE_WRITE;
6159 		if (a->a_fdvp == a->a_tdvp) {
6160 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6161 				hint |= NOTE_LINK;
6162 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6163 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6164 		} else {
6165 			hint |= NOTE_EXTEND;
6166 			if (a->a_fvp->v_type == VDIR)
6167 				hint |= NOTE_LINK;
6168 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6169 
6170 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6171 			    a->a_tvp->v_type == VDIR)
6172 				hint &= ~NOTE_LINK;
6173 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6174 		}
6175 
6176 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6177 		if (a->a_tvp)
6178 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6179 	}
6180 	if (a->a_tdvp != a->a_fdvp)
6181 		vdrop(a->a_fdvp);
6182 	if (a->a_tvp != a->a_fvp)
6183 		vdrop(a->a_fvp);
6184 	vdrop(a->a_tdvp);
6185 	if (a->a_tvp)
6186 		vdrop(a->a_tvp);
6187 }
6188 
6189 void
6190 vop_rmdir_pre(void *ap)
6191 {
6192 	struct vop_rmdir_args *a;
6193 	struct vnode *dvp, *vp;
6194 
6195 	a = ap;
6196 	dvp = a->a_dvp;
6197 	vp = a->a_vp;
6198 	vn_seqc_write_begin(dvp);
6199 	vn_seqc_write_begin(vp);
6200 }
6201 
6202 void
6203 vop_rmdir_post(void *ap, int rc)
6204 {
6205 	struct vop_rmdir_args *a;
6206 	struct vnode *dvp, *vp;
6207 
6208 	a = ap;
6209 	dvp = a->a_dvp;
6210 	vp = a->a_vp;
6211 	vn_seqc_write_end(dvp);
6212 	vn_seqc_write_end(vp);
6213 	if (!rc) {
6214 		vp->v_vflag |= VV_UNLINKED;
6215 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6216 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6217 	}
6218 }
6219 
6220 void
6221 vop_setattr_pre(void *ap)
6222 {
6223 	struct vop_setattr_args *a;
6224 	struct vnode *vp;
6225 
6226 	a = ap;
6227 	vp = a->a_vp;
6228 	vn_seqc_write_begin(vp);
6229 }
6230 
6231 void
6232 vop_setattr_post(void *ap, int rc)
6233 {
6234 	struct vop_setattr_args *a;
6235 	struct vnode *vp;
6236 
6237 	a = ap;
6238 	vp = a->a_vp;
6239 	vn_seqc_write_end(vp);
6240 	if (!rc)
6241 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6242 }
6243 
6244 void
6245 vop_setacl_pre(void *ap)
6246 {
6247 	struct vop_setacl_args *a;
6248 	struct vnode *vp;
6249 
6250 	a = ap;
6251 	vp = a->a_vp;
6252 	vn_seqc_write_begin(vp);
6253 }
6254 
6255 void
6256 vop_setacl_post(void *ap, int rc __unused)
6257 {
6258 	struct vop_setacl_args *a;
6259 	struct vnode *vp;
6260 
6261 	a = ap;
6262 	vp = a->a_vp;
6263 	vn_seqc_write_end(vp);
6264 }
6265 
6266 void
6267 vop_setextattr_pre(void *ap)
6268 {
6269 	struct vop_setextattr_args *a;
6270 	struct vnode *vp;
6271 
6272 	a = ap;
6273 	vp = a->a_vp;
6274 	vn_seqc_write_begin(vp);
6275 }
6276 
6277 void
6278 vop_setextattr_post(void *ap, int rc)
6279 {
6280 	struct vop_setextattr_args *a;
6281 	struct vnode *vp;
6282 
6283 	a = ap;
6284 	vp = a->a_vp;
6285 	vn_seqc_write_end(vp);
6286 	if (!rc)
6287 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6288 }
6289 
6290 void
6291 vop_symlink_pre(void *ap)
6292 {
6293 	struct vop_symlink_args *a;
6294 	struct vnode *dvp;
6295 
6296 	a = ap;
6297 	dvp = a->a_dvp;
6298 	vn_seqc_write_begin(dvp);
6299 }
6300 
6301 void
6302 vop_symlink_post(void *ap, int rc)
6303 {
6304 	struct vop_symlink_args *a;
6305 	struct vnode *dvp;
6306 
6307 	a = ap;
6308 	dvp = a->a_dvp;
6309 	vn_seqc_write_end(dvp);
6310 	if (!rc)
6311 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6312 }
6313 
6314 void
6315 vop_open_post(void *ap, int rc)
6316 {
6317 	struct vop_open_args *a = ap;
6318 
6319 	if (!rc)
6320 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6321 }
6322 
6323 void
6324 vop_close_post(void *ap, int rc)
6325 {
6326 	struct vop_close_args *a = ap;
6327 
6328 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6329 	    !VN_IS_DOOMED(a->a_vp))) {
6330 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6331 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6332 	}
6333 }
6334 
6335 void
6336 vop_read_post(void *ap, int rc)
6337 {
6338 	struct vop_read_args *a = ap;
6339 
6340 	if (!rc)
6341 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6342 }
6343 
6344 void
6345 vop_read_pgcache_post(void *ap, int rc)
6346 {
6347 	struct vop_read_pgcache_args *a = ap;
6348 
6349 	if (!rc)
6350 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6351 }
6352 
6353 void
6354 vop_readdir_post(void *ap, int rc)
6355 {
6356 	struct vop_readdir_args *a = ap;
6357 
6358 	if (!rc)
6359 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6360 }
6361 
6362 static struct knlist fs_knlist;
6363 
6364 static void
6365 vfs_event_init(void *arg)
6366 {
6367 	knlist_init_mtx(&fs_knlist, NULL);
6368 }
6369 /* XXX - correct order? */
6370 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6371 
6372 void
6373 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6374 {
6375 
6376 	KNOTE_UNLOCKED(&fs_knlist, event);
6377 }
6378 
6379 static int	filt_fsattach(struct knote *kn);
6380 static void	filt_fsdetach(struct knote *kn);
6381 static int	filt_fsevent(struct knote *kn, long hint);
6382 
6383 struct filterops fs_filtops = {
6384 	.f_isfd = 0,
6385 	.f_attach = filt_fsattach,
6386 	.f_detach = filt_fsdetach,
6387 	.f_event = filt_fsevent
6388 };
6389 
6390 static int
6391 filt_fsattach(struct knote *kn)
6392 {
6393 
6394 	kn->kn_flags |= EV_CLEAR;
6395 	knlist_add(&fs_knlist, kn, 0);
6396 	return (0);
6397 }
6398 
6399 static void
6400 filt_fsdetach(struct knote *kn)
6401 {
6402 
6403 	knlist_remove(&fs_knlist, kn, 0);
6404 }
6405 
6406 static int
6407 filt_fsevent(struct knote *kn, long hint)
6408 {
6409 
6410 	kn->kn_fflags |= kn->kn_sfflags & hint;
6411 
6412 	return (kn->kn_fflags != 0);
6413 }
6414 
6415 static int
6416 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6417 {
6418 	struct vfsidctl vc;
6419 	int error;
6420 	struct mount *mp;
6421 
6422 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6423 	if (error)
6424 		return (error);
6425 	if (vc.vc_vers != VFS_CTL_VERS1)
6426 		return (EINVAL);
6427 	mp = vfs_getvfs(&vc.vc_fsid);
6428 	if (mp == NULL)
6429 		return (ENOENT);
6430 	/* ensure that a specific sysctl goes to the right filesystem. */
6431 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6432 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6433 		vfs_rel(mp);
6434 		return (EINVAL);
6435 	}
6436 	VCTLTOREQ(&vc, req);
6437 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6438 	vfs_rel(mp);
6439 	return (error);
6440 }
6441 
6442 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6443     NULL, 0, sysctl_vfs_ctl, "",
6444     "Sysctl by fsid");
6445 
6446 /*
6447  * Function to initialize a va_filerev field sensibly.
6448  * XXX: Wouldn't a random number make a lot more sense ??
6449  */
6450 u_quad_t
6451 init_va_filerev(void)
6452 {
6453 	struct bintime bt;
6454 
6455 	getbinuptime(&bt);
6456 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6457 }
6458 
6459 static int	filt_vfsread(struct knote *kn, long hint);
6460 static int	filt_vfswrite(struct knote *kn, long hint);
6461 static int	filt_vfsvnode(struct knote *kn, long hint);
6462 static void	filt_vfsdetach(struct knote *kn);
6463 static struct filterops vfsread_filtops = {
6464 	.f_isfd = 1,
6465 	.f_detach = filt_vfsdetach,
6466 	.f_event = filt_vfsread
6467 };
6468 static struct filterops vfswrite_filtops = {
6469 	.f_isfd = 1,
6470 	.f_detach = filt_vfsdetach,
6471 	.f_event = filt_vfswrite
6472 };
6473 static struct filterops vfsvnode_filtops = {
6474 	.f_isfd = 1,
6475 	.f_detach = filt_vfsdetach,
6476 	.f_event = filt_vfsvnode
6477 };
6478 
6479 static void
6480 vfs_knllock(void *arg)
6481 {
6482 	struct vnode *vp = arg;
6483 
6484 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6485 }
6486 
6487 static void
6488 vfs_knlunlock(void *arg)
6489 {
6490 	struct vnode *vp = arg;
6491 
6492 	VOP_UNLOCK(vp);
6493 }
6494 
6495 static void
6496 vfs_knl_assert_lock(void *arg, int what)
6497 {
6498 #ifdef DEBUG_VFS_LOCKS
6499 	struct vnode *vp = arg;
6500 
6501 	if (what == LA_LOCKED)
6502 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6503 	else
6504 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6505 #endif
6506 }
6507 
6508 int
6509 vfs_kqfilter(struct vop_kqfilter_args *ap)
6510 {
6511 	struct vnode *vp = ap->a_vp;
6512 	struct knote *kn = ap->a_kn;
6513 	struct knlist *knl;
6514 
6515 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6516 	    kn->kn_filter != EVFILT_WRITE),
6517 	    ("READ/WRITE filter on a FIFO leaked through"));
6518 	switch (kn->kn_filter) {
6519 	case EVFILT_READ:
6520 		kn->kn_fop = &vfsread_filtops;
6521 		break;
6522 	case EVFILT_WRITE:
6523 		kn->kn_fop = &vfswrite_filtops;
6524 		break;
6525 	case EVFILT_VNODE:
6526 		kn->kn_fop = &vfsvnode_filtops;
6527 		break;
6528 	default:
6529 		return (EINVAL);
6530 	}
6531 
6532 	kn->kn_hook = (caddr_t)vp;
6533 
6534 	v_addpollinfo(vp);
6535 	if (vp->v_pollinfo == NULL)
6536 		return (ENOMEM);
6537 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6538 	vhold(vp);
6539 	knlist_add(knl, kn, 0);
6540 
6541 	return (0);
6542 }
6543 
6544 /*
6545  * Detach knote from vnode
6546  */
6547 static void
6548 filt_vfsdetach(struct knote *kn)
6549 {
6550 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6551 
6552 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6553 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6554 	vdrop(vp);
6555 }
6556 
6557 /*ARGSUSED*/
6558 static int
6559 filt_vfsread(struct knote *kn, long hint)
6560 {
6561 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6562 	off_t size;
6563 	int res;
6564 
6565 	/*
6566 	 * filesystem is gone, so set the EOF flag and schedule
6567 	 * the knote for deletion.
6568 	 */
6569 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6570 		VI_LOCK(vp);
6571 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6572 		VI_UNLOCK(vp);
6573 		return (1);
6574 	}
6575 
6576 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6577 		return (0);
6578 
6579 	VI_LOCK(vp);
6580 	kn->kn_data = size - kn->kn_fp->f_offset;
6581 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6582 	VI_UNLOCK(vp);
6583 	return (res);
6584 }
6585 
6586 /*ARGSUSED*/
6587 static int
6588 filt_vfswrite(struct knote *kn, long hint)
6589 {
6590 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6591 
6592 	VI_LOCK(vp);
6593 
6594 	/*
6595 	 * filesystem is gone, so set the EOF flag and schedule
6596 	 * the knote for deletion.
6597 	 */
6598 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6599 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6600 
6601 	kn->kn_data = 0;
6602 	VI_UNLOCK(vp);
6603 	return (1);
6604 }
6605 
6606 static int
6607 filt_vfsvnode(struct knote *kn, long hint)
6608 {
6609 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6610 	int res;
6611 
6612 	VI_LOCK(vp);
6613 	if (kn->kn_sfflags & hint)
6614 		kn->kn_fflags |= hint;
6615 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6616 		kn->kn_flags |= EV_EOF;
6617 		VI_UNLOCK(vp);
6618 		return (1);
6619 	}
6620 	res = (kn->kn_fflags != 0);
6621 	VI_UNLOCK(vp);
6622 	return (res);
6623 }
6624 
6625 int
6626 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6627 {
6628 	int error;
6629 
6630 	if (dp->d_reclen > ap->a_uio->uio_resid)
6631 		return (ENAMETOOLONG);
6632 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6633 	if (error) {
6634 		if (ap->a_ncookies != NULL) {
6635 			if (ap->a_cookies != NULL)
6636 				free(ap->a_cookies, M_TEMP);
6637 			ap->a_cookies = NULL;
6638 			*ap->a_ncookies = 0;
6639 		}
6640 		return (error);
6641 	}
6642 	if (ap->a_ncookies == NULL)
6643 		return (0);
6644 
6645 	KASSERT(ap->a_cookies,
6646 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6647 
6648 	*ap->a_cookies = realloc(*ap->a_cookies,
6649 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6650 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6651 	*ap->a_ncookies += 1;
6652 	return (0);
6653 }
6654 
6655 /*
6656  * The purpose of this routine is to remove granularity from accmode_t,
6657  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6658  * VADMIN and VAPPEND.
6659  *
6660  * If it returns 0, the caller is supposed to continue with the usual
6661  * access checks using 'accmode' as modified by this routine.  If it
6662  * returns nonzero value, the caller is supposed to return that value
6663  * as errno.
6664  *
6665  * Note that after this routine runs, accmode may be zero.
6666  */
6667 int
6668 vfs_unixify_accmode(accmode_t *accmode)
6669 {
6670 	/*
6671 	 * There is no way to specify explicit "deny" rule using
6672 	 * file mode or POSIX.1e ACLs.
6673 	 */
6674 	if (*accmode & VEXPLICIT_DENY) {
6675 		*accmode = 0;
6676 		return (0);
6677 	}
6678 
6679 	/*
6680 	 * None of these can be translated into usual access bits.
6681 	 * Also, the common case for NFSv4 ACLs is to not contain
6682 	 * either of these bits. Caller should check for VWRITE
6683 	 * on the containing directory instead.
6684 	 */
6685 	if (*accmode & (VDELETE_CHILD | VDELETE))
6686 		return (EPERM);
6687 
6688 	if (*accmode & VADMIN_PERMS) {
6689 		*accmode &= ~VADMIN_PERMS;
6690 		*accmode |= VADMIN;
6691 	}
6692 
6693 	/*
6694 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6695 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6696 	 */
6697 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6698 
6699 	return (0);
6700 }
6701 
6702 /*
6703  * Clear out a doomed vnode (if any) and replace it with a new one as long
6704  * as the fs is not being unmounted. Return the root vnode to the caller.
6705  */
6706 static int __noinline
6707 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6708 {
6709 	struct vnode *vp;
6710 	int error;
6711 
6712 restart:
6713 	if (mp->mnt_rootvnode != NULL) {
6714 		MNT_ILOCK(mp);
6715 		vp = mp->mnt_rootvnode;
6716 		if (vp != NULL) {
6717 			if (!VN_IS_DOOMED(vp)) {
6718 				vrefact(vp);
6719 				MNT_IUNLOCK(mp);
6720 				error = vn_lock(vp, flags);
6721 				if (error == 0) {
6722 					*vpp = vp;
6723 					return (0);
6724 				}
6725 				vrele(vp);
6726 				goto restart;
6727 			}
6728 			/*
6729 			 * Clear the old one.
6730 			 */
6731 			mp->mnt_rootvnode = NULL;
6732 		}
6733 		MNT_IUNLOCK(mp);
6734 		if (vp != NULL) {
6735 			vfs_op_barrier_wait(mp);
6736 			vrele(vp);
6737 		}
6738 	}
6739 	error = VFS_CACHEDROOT(mp, flags, vpp);
6740 	if (error != 0)
6741 		return (error);
6742 	if (mp->mnt_vfs_ops == 0) {
6743 		MNT_ILOCK(mp);
6744 		if (mp->mnt_vfs_ops != 0) {
6745 			MNT_IUNLOCK(mp);
6746 			return (0);
6747 		}
6748 		if (mp->mnt_rootvnode == NULL) {
6749 			vrefact(*vpp);
6750 			mp->mnt_rootvnode = *vpp;
6751 		} else {
6752 			if (mp->mnt_rootvnode != *vpp) {
6753 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6754 					panic("%s: mismatch between vnode returned "
6755 					    " by VFS_CACHEDROOT and the one cached "
6756 					    " (%p != %p)",
6757 					    __func__, *vpp, mp->mnt_rootvnode);
6758 				}
6759 			}
6760 		}
6761 		MNT_IUNLOCK(mp);
6762 	}
6763 	return (0);
6764 }
6765 
6766 int
6767 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6768 {
6769 	struct mount_pcpu *mpcpu;
6770 	struct vnode *vp;
6771 	int error;
6772 
6773 	if (!vfs_op_thread_enter(mp, mpcpu))
6774 		return (vfs_cache_root_fallback(mp, flags, vpp));
6775 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6776 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6777 		vfs_op_thread_exit(mp, mpcpu);
6778 		return (vfs_cache_root_fallback(mp, flags, vpp));
6779 	}
6780 	vrefact(vp);
6781 	vfs_op_thread_exit(mp, mpcpu);
6782 	error = vn_lock(vp, flags);
6783 	if (error != 0) {
6784 		vrele(vp);
6785 		return (vfs_cache_root_fallback(mp, flags, vpp));
6786 	}
6787 	*vpp = vp;
6788 	return (0);
6789 }
6790 
6791 struct vnode *
6792 vfs_cache_root_clear(struct mount *mp)
6793 {
6794 	struct vnode *vp;
6795 
6796 	/*
6797 	 * ops > 0 guarantees there is nobody who can see this vnode
6798 	 */
6799 	MPASS(mp->mnt_vfs_ops > 0);
6800 	vp = mp->mnt_rootvnode;
6801 	if (vp != NULL)
6802 		vn_seqc_write_begin(vp);
6803 	mp->mnt_rootvnode = NULL;
6804 	return (vp);
6805 }
6806 
6807 void
6808 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6809 {
6810 
6811 	MPASS(mp->mnt_vfs_ops > 0);
6812 	vrefact(vp);
6813 	mp->mnt_rootvnode = vp;
6814 }
6815 
6816 /*
6817  * These are helper functions for filesystems to traverse all
6818  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6819  *
6820  * This interface replaces MNT_VNODE_FOREACH.
6821  */
6822 
6823 struct vnode *
6824 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6825 {
6826 	struct vnode *vp;
6827 
6828 	maybe_yield();
6829 	MNT_ILOCK(mp);
6830 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6831 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6832 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6833 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6834 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6835 			continue;
6836 		VI_LOCK(vp);
6837 		if (VN_IS_DOOMED(vp)) {
6838 			VI_UNLOCK(vp);
6839 			continue;
6840 		}
6841 		break;
6842 	}
6843 	if (vp == NULL) {
6844 		__mnt_vnode_markerfree_all(mvp, mp);
6845 		/* MNT_IUNLOCK(mp); -- done in above function */
6846 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6847 		return (NULL);
6848 	}
6849 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6850 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6851 	MNT_IUNLOCK(mp);
6852 	return (vp);
6853 }
6854 
6855 struct vnode *
6856 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6857 {
6858 	struct vnode *vp;
6859 
6860 	*mvp = vn_alloc_marker(mp);
6861 	MNT_ILOCK(mp);
6862 	MNT_REF(mp);
6863 
6864 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6865 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6866 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6867 			continue;
6868 		VI_LOCK(vp);
6869 		if (VN_IS_DOOMED(vp)) {
6870 			VI_UNLOCK(vp);
6871 			continue;
6872 		}
6873 		break;
6874 	}
6875 	if (vp == NULL) {
6876 		MNT_REL(mp);
6877 		MNT_IUNLOCK(mp);
6878 		vn_free_marker(*mvp);
6879 		*mvp = NULL;
6880 		return (NULL);
6881 	}
6882 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6883 	MNT_IUNLOCK(mp);
6884 	return (vp);
6885 }
6886 
6887 void
6888 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6889 {
6890 
6891 	if (*mvp == NULL) {
6892 		MNT_IUNLOCK(mp);
6893 		return;
6894 	}
6895 
6896 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6897 
6898 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6899 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6900 	MNT_REL(mp);
6901 	MNT_IUNLOCK(mp);
6902 	vn_free_marker(*mvp);
6903 	*mvp = NULL;
6904 }
6905 
6906 /*
6907  * These are helper functions for filesystems to traverse their
6908  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6909  */
6910 static void
6911 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6912 {
6913 
6914 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6915 
6916 	MNT_ILOCK(mp);
6917 	MNT_REL(mp);
6918 	MNT_IUNLOCK(mp);
6919 	vn_free_marker(*mvp);
6920 	*mvp = NULL;
6921 }
6922 
6923 /*
6924  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6925  * conventional lock order during mnt_vnode_next_lazy iteration.
6926  *
6927  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6928  * The list lock is dropped and reacquired.  On success, both locks are held.
6929  * On failure, the mount vnode list lock is held but the vnode interlock is
6930  * not, and the procedure may have yielded.
6931  */
6932 static bool
6933 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6934     struct vnode *vp)
6935 {
6936 
6937 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6938 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6939 	    ("%s: bad marker", __func__));
6940 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6941 	    ("%s: inappropriate vnode", __func__));
6942 	ASSERT_VI_UNLOCKED(vp, __func__);
6943 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6944 
6945 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6946 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6947 
6948 	/*
6949 	 * Note we may be racing against vdrop which transitioned the hold
6950 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6951 	 * if we are the only user after we get the interlock we will just
6952 	 * vdrop.
6953 	 */
6954 	vhold(vp);
6955 	mtx_unlock(&mp->mnt_listmtx);
6956 	VI_LOCK(vp);
6957 	if (VN_IS_DOOMED(vp)) {
6958 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6959 		goto out_lost;
6960 	}
6961 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6962 	/*
6963 	 * There is nothing to do if we are the last user.
6964 	 */
6965 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6966 		goto out_lost;
6967 	mtx_lock(&mp->mnt_listmtx);
6968 	return (true);
6969 out_lost:
6970 	vdropl(vp);
6971 	maybe_yield();
6972 	mtx_lock(&mp->mnt_listmtx);
6973 	return (false);
6974 }
6975 
6976 static struct vnode *
6977 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6978     void *cbarg)
6979 {
6980 	struct vnode *vp;
6981 
6982 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6983 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6984 restart:
6985 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6986 	while (vp != NULL) {
6987 		if (vp->v_type == VMARKER) {
6988 			vp = TAILQ_NEXT(vp, v_lazylist);
6989 			continue;
6990 		}
6991 		/*
6992 		 * See if we want to process the vnode. Note we may encounter a
6993 		 * long string of vnodes we don't care about and hog the list
6994 		 * as a result. Check for it and requeue the marker.
6995 		 */
6996 		VNPASS(!VN_IS_DOOMED(vp), vp);
6997 		if (!cb(vp, cbarg)) {
6998 			if (!should_yield()) {
6999 				vp = TAILQ_NEXT(vp, v_lazylist);
7000 				continue;
7001 			}
7002 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7003 			    v_lazylist);
7004 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7005 			    v_lazylist);
7006 			mtx_unlock(&mp->mnt_listmtx);
7007 			kern_yield(PRI_USER);
7008 			mtx_lock(&mp->mnt_listmtx);
7009 			goto restart;
7010 		}
7011 		/*
7012 		 * Try-lock because this is the wrong lock order.
7013 		 */
7014 		if (!VI_TRYLOCK(vp) &&
7015 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7016 			goto restart;
7017 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7018 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7019 		    ("alien vnode on the lazy list %p %p", vp, mp));
7020 		VNPASS(vp->v_mount == mp, vp);
7021 		VNPASS(!VN_IS_DOOMED(vp), vp);
7022 		break;
7023 	}
7024 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7025 
7026 	/* Check if we are done */
7027 	if (vp == NULL) {
7028 		mtx_unlock(&mp->mnt_listmtx);
7029 		mnt_vnode_markerfree_lazy(mvp, mp);
7030 		return (NULL);
7031 	}
7032 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7033 	mtx_unlock(&mp->mnt_listmtx);
7034 	ASSERT_VI_LOCKED(vp, "lazy iter");
7035 	return (vp);
7036 }
7037 
7038 struct vnode *
7039 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7040     void *cbarg)
7041 {
7042 
7043 	maybe_yield();
7044 	mtx_lock(&mp->mnt_listmtx);
7045 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7046 }
7047 
7048 struct vnode *
7049 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7050     void *cbarg)
7051 {
7052 	struct vnode *vp;
7053 
7054 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7055 		return (NULL);
7056 
7057 	*mvp = vn_alloc_marker(mp);
7058 	MNT_ILOCK(mp);
7059 	MNT_REF(mp);
7060 	MNT_IUNLOCK(mp);
7061 
7062 	mtx_lock(&mp->mnt_listmtx);
7063 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7064 	if (vp == NULL) {
7065 		mtx_unlock(&mp->mnt_listmtx);
7066 		mnt_vnode_markerfree_lazy(mvp, mp);
7067 		return (NULL);
7068 	}
7069 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7070 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7071 }
7072 
7073 void
7074 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7075 {
7076 
7077 	if (*mvp == NULL)
7078 		return;
7079 
7080 	mtx_lock(&mp->mnt_listmtx);
7081 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7082 	mtx_unlock(&mp->mnt_listmtx);
7083 	mnt_vnode_markerfree_lazy(mvp, mp);
7084 }
7085 
7086 int
7087 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7088 {
7089 
7090 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7091 		cnp->cn_flags &= ~NOEXECCHECK;
7092 		return (0);
7093 	}
7094 
7095 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7096 }
7097 
7098 /*
7099  * Do not use this variant unless you have means other than the hold count
7100  * to prevent the vnode from getting freed.
7101  */
7102 void
7103 vn_seqc_write_begin_locked(struct vnode *vp)
7104 {
7105 
7106 	ASSERT_VI_LOCKED(vp, __func__);
7107 	VNPASS(vp->v_holdcnt > 0, vp);
7108 	VNPASS(vp->v_seqc_users >= 0, vp);
7109 	vp->v_seqc_users++;
7110 	if (vp->v_seqc_users == 1)
7111 		seqc_sleepable_write_begin(&vp->v_seqc);
7112 }
7113 
7114 void
7115 vn_seqc_write_begin(struct vnode *vp)
7116 {
7117 
7118 	VI_LOCK(vp);
7119 	vn_seqc_write_begin_locked(vp);
7120 	VI_UNLOCK(vp);
7121 }
7122 
7123 void
7124 vn_seqc_write_end_locked(struct vnode *vp)
7125 {
7126 
7127 	ASSERT_VI_LOCKED(vp, __func__);
7128 	VNPASS(vp->v_seqc_users > 0, vp);
7129 	vp->v_seqc_users--;
7130 	if (vp->v_seqc_users == 0)
7131 		seqc_sleepable_write_end(&vp->v_seqc);
7132 }
7133 
7134 void
7135 vn_seqc_write_end(struct vnode *vp)
7136 {
7137 
7138 	VI_LOCK(vp);
7139 	vn_seqc_write_end_locked(vp);
7140 	VI_UNLOCK(vp);
7141 }
7142 
7143 /*
7144  * Special case handling for allocating and freeing vnodes.
7145  *
7146  * The counter remains unchanged on free so that a doomed vnode will
7147  * keep testing as in modify as long as it is accessible with SMR.
7148  */
7149 static void
7150 vn_seqc_init(struct vnode *vp)
7151 {
7152 
7153 	vp->v_seqc = 0;
7154 	vp->v_seqc_users = 0;
7155 }
7156 
7157 static void
7158 vn_seqc_write_end_free(struct vnode *vp)
7159 {
7160 
7161 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7162 	VNPASS(vp->v_seqc_users == 1, vp);
7163 }
7164 
7165 void
7166 vn_irflag_set_locked(struct vnode *vp, short toset)
7167 {
7168 	short flags;
7169 
7170 	ASSERT_VI_LOCKED(vp, __func__);
7171 	flags = vn_irflag_read(vp);
7172 	VNASSERT((flags & toset) == 0, vp,
7173 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7174 	    __func__, flags, toset));
7175 	atomic_store_short(&vp->v_irflag, flags | toset);
7176 }
7177 
7178 void
7179 vn_irflag_set(struct vnode *vp, short toset)
7180 {
7181 
7182 	VI_LOCK(vp);
7183 	vn_irflag_set_locked(vp, toset);
7184 	VI_UNLOCK(vp);
7185 }
7186 
7187 void
7188 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7189 {
7190 	short flags;
7191 
7192 	ASSERT_VI_LOCKED(vp, __func__);
7193 	flags = vn_irflag_read(vp);
7194 	atomic_store_short(&vp->v_irflag, flags | toset);
7195 }
7196 
7197 void
7198 vn_irflag_set_cond(struct vnode *vp, short toset)
7199 {
7200 
7201 	VI_LOCK(vp);
7202 	vn_irflag_set_cond_locked(vp, toset);
7203 	VI_UNLOCK(vp);
7204 }
7205 
7206 void
7207 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7208 {
7209 	short flags;
7210 
7211 	ASSERT_VI_LOCKED(vp, __func__);
7212 	flags = vn_irflag_read(vp);
7213 	VNASSERT((flags & tounset) == tounset, vp,
7214 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7215 	    __func__, flags, tounset));
7216 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7217 }
7218 
7219 void
7220 vn_irflag_unset(struct vnode *vp, short tounset)
7221 {
7222 
7223 	VI_LOCK(vp);
7224 	vn_irflag_unset_locked(vp, tounset);
7225 	VI_UNLOCK(vp);
7226 }
7227 
7228 int
7229 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7230 {
7231 	struct vattr vattr;
7232 	int error;
7233 
7234 	ASSERT_VOP_LOCKED(vp, __func__);
7235 	error = VOP_GETATTR(vp, &vattr, cred);
7236 	if (__predict_true(error == 0)) {
7237 		if (vattr.va_size <= OFF_MAX)
7238 			*size = vattr.va_size;
7239 		else
7240 			error = EFBIG;
7241 	}
7242 	return (error);
7243 }
7244 
7245 int
7246 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7247 {
7248 	int error;
7249 
7250 	VOP_LOCK(vp, LK_SHARED);
7251 	error = vn_getsize_locked(vp, size, cred);
7252 	VOP_UNLOCK(vp);
7253 	return (error);
7254 }
7255 
7256 #ifdef INVARIANTS
7257 void
7258 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7259 {
7260 
7261 	switch (vp->v_state) {
7262 	case VSTATE_UNINITIALIZED:
7263 		switch (state) {
7264 		case VSTATE_CONSTRUCTED:
7265 		case VSTATE_DESTROYING:
7266 			return;
7267 		default:
7268 			break;
7269 		}
7270 		break;
7271 	case VSTATE_CONSTRUCTED:
7272 		ASSERT_VOP_ELOCKED(vp, __func__);
7273 		switch (state) {
7274 		case VSTATE_DESTROYING:
7275 			return;
7276 		default:
7277 			break;
7278 		}
7279 		break;
7280 	case VSTATE_DESTROYING:
7281 		ASSERT_VOP_ELOCKED(vp, __func__);
7282 		switch (state) {
7283 		case VSTATE_DEAD:
7284 			return;
7285 		default:
7286 			break;
7287 		}
7288 		break;
7289 	case VSTATE_DEAD:
7290 		switch (state) {
7291 		case VSTATE_UNINITIALIZED:
7292 			return;
7293 		default:
7294 			break;
7295 		}
7296 		break;
7297 	}
7298 
7299 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7300 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7301 }
7302 #endif
7303