xref: /freebsd/sys/kern/vfs_subr.c (revision 2a58b312)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/limits.h>
70 #include <sys/lockf.h>
71 #include <sys/malloc.h>
72 #include <sys/mount.h>
73 #include <sys/namei.h>
74 #include <sys/pctrie.h>
75 #include <sys/priv.h>
76 #include <sys/reboot.h>
77 #include <sys/refcount.h>
78 #include <sys/rwlock.h>
79 #include <sys/sched.h>
80 #include <sys/sleepqueue.h>
81 #include <sys/smr.h>
82 #include <sys/smp.h>
83 #include <sys/stat.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
86 #include <sys/vmmeter.h>
87 #include <sys/vnode.h>
88 #include <sys/watchdog.h>
89 
90 #include <machine/stdarg.h>
91 
92 #include <security/mac/mac_framework.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_extern.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_map.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_kern.h>
101 #include <vm/uma.h>
102 
103 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
104 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
105 #endif
106 
107 #ifdef DDB
108 #include <ddb/ddb.h>
109 #endif
110 
111 static void	delmntque(struct vnode *vp);
112 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
113 		    int slpflag, int slptimeo);
114 static void	syncer_shutdown(void *arg, int howto);
115 static int	vtryrecycle(struct vnode *vp);
116 static void	v_init_counters(struct vnode *);
117 static void	vn_seqc_init(struct vnode *);
118 static void	vn_seqc_write_end_free(struct vnode *vp);
119 static void	vgonel(struct vnode *);
120 static bool	vhold_recycle_free(struct vnode *);
121 static void	vdropl_recycle(struct vnode *vp);
122 static void	vdrop_recycle(struct vnode *vp);
123 static void	vfs_knllock(void *arg);
124 static void	vfs_knlunlock(void *arg);
125 static void	vfs_knl_assert_lock(void *arg, int what);
126 static void	destroy_vpollinfo(struct vpollinfo *vi);
127 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
128 		    daddr_t startlbn, daddr_t endlbn);
129 static void	vnlru_recalc(void);
130 
131 /*
132  * Number of vnodes in existence.  Increased whenever getnewvnode()
133  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
134  */
135 static u_long __exclusive_cache_line numvnodes;
136 
137 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
138     "Number of vnodes in existence");
139 
140 static counter_u64_t vnodes_created;
141 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
142     "Number of vnodes created by getnewvnode");
143 
144 /*
145  * Conversion tables for conversion from vnode types to inode formats
146  * and back.
147  */
148 enum vtype iftovt_tab[16] = {
149 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
150 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
151 };
152 int vttoif_tab[10] = {
153 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
154 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
155 };
156 
157 /*
158  * List of allocates vnodes in the system.
159  */
160 static TAILQ_HEAD(freelst, vnode) vnode_list;
161 static struct vnode *vnode_list_free_marker;
162 static struct vnode *vnode_list_reclaim_marker;
163 
164 /*
165  * "Free" vnode target.  Free vnodes are rarely completely free, but are
166  * just ones that are cheap to recycle.  Usually they are for files which
167  * have been stat'd but not read; these usually have inode and namecache
168  * data attached to them.  This target is the preferred minimum size of a
169  * sub-cache consisting mostly of such files. The system balances the size
170  * of this sub-cache with its complement to try to prevent either from
171  * thrashing while the other is relatively inactive.  The targets express
172  * a preference for the best balance.
173  *
174  * "Above" this target there are 2 further targets (watermarks) related
175  * to recyling of free vnodes.  In the best-operating case, the cache is
176  * exactly full, the free list has size between vlowat and vhiwat above the
177  * free target, and recycling from it and normal use maintains this state.
178  * Sometimes the free list is below vlowat or even empty, but this state
179  * is even better for immediate use provided the cache is not full.
180  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
181  * ones) to reach one of these states.  The watermarks are currently hard-
182  * coded as 4% and 9% of the available space higher.  These and the default
183  * of 25% for wantfreevnodes are too large if the memory size is large.
184  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
185  * whenever vnlru_proc() becomes active.
186  */
187 static long wantfreevnodes;
188 static long __exclusive_cache_line freevnodes;
189 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
190     &freevnodes, 0, "Number of \"free\" vnodes");
191 static long freevnodes_old;
192 
193 static counter_u64_t recycles_count;
194 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
195     "Number of vnodes recycled to meet vnode cache targets");
196 
197 static counter_u64_t recycles_free_count;
198 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
199     "Number of free vnodes recycled to meet vnode cache targets");
200 
201 static u_long deferred_inact;
202 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
203     &deferred_inact, 0, "Number of times inactive processing was deferred");
204 
205 /* To keep more than one thread at a time from running vfs_getnewfsid */
206 static struct mtx mntid_mtx;
207 
208 /*
209  * Lock for any access to the following:
210  *	vnode_list
211  *	numvnodes
212  *	freevnodes
213  */
214 static struct mtx __exclusive_cache_line vnode_list_mtx;
215 
216 /* Publicly exported FS */
217 struct nfs_public nfs_pub;
218 
219 static uma_zone_t buf_trie_zone;
220 static smr_t buf_trie_smr;
221 
222 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
223 static uma_zone_t vnode_zone;
224 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
225 
226 __read_frequently smr_t vfs_smr;
227 
228 /*
229  * The workitem queue.
230  *
231  * It is useful to delay writes of file data and filesystem metadata
232  * for tens of seconds so that quickly created and deleted files need
233  * not waste disk bandwidth being created and removed. To realize this,
234  * we append vnodes to a "workitem" queue. When running with a soft
235  * updates implementation, most pending metadata dependencies should
236  * not wait for more than a few seconds. Thus, mounted on block devices
237  * are delayed only about a half the time that file data is delayed.
238  * Similarly, directory updates are more critical, so are only delayed
239  * about a third the time that file data is delayed. Thus, there are
240  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
241  * one each second (driven off the filesystem syncer process). The
242  * syncer_delayno variable indicates the next queue that is to be processed.
243  * Items that need to be processed soon are placed in this queue:
244  *
245  *	syncer_workitem_pending[syncer_delayno]
246  *
247  * A delay of fifteen seconds is done by placing the request fifteen
248  * entries later in the queue:
249  *
250  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
251  *
252  */
253 static int syncer_delayno;
254 static long syncer_mask;
255 LIST_HEAD(synclist, bufobj);
256 static struct synclist *syncer_workitem_pending;
257 /*
258  * The sync_mtx protects:
259  *	bo->bo_synclist
260  *	sync_vnode_count
261  *	syncer_delayno
262  *	syncer_state
263  *	syncer_workitem_pending
264  *	syncer_worklist_len
265  *	rushjob
266  */
267 static struct mtx sync_mtx;
268 static struct cv sync_wakeup;
269 
270 #define SYNCER_MAXDELAY		32
271 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
272 static int syncdelay = 30;		/* max time to delay syncing data */
273 static int filedelay = 30;		/* time to delay syncing files */
274 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
275     "Time to delay syncing files (in seconds)");
276 static int dirdelay = 29;		/* time to delay syncing directories */
277 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
278     "Time to delay syncing directories (in seconds)");
279 static int metadelay = 28;		/* time to delay syncing metadata */
280 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
281     "Time to delay syncing metadata (in seconds)");
282 static int rushjob;		/* number of slots to run ASAP */
283 static int stat_rush_requests;	/* number of times I/O speeded up */
284 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
285     "Number of times I/O speeded up (rush requests)");
286 
287 #define	VDBATCH_SIZE 8
288 struct vdbatch {
289 	u_int index;
290 	struct mtx lock;
291 	struct vnode *tab[VDBATCH_SIZE];
292 };
293 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
294 
295 static void	vdbatch_dequeue(struct vnode *vp);
296 
297 /*
298  * When shutting down the syncer, run it at four times normal speed.
299  */
300 #define SYNCER_SHUTDOWN_SPEEDUP		4
301 static int sync_vnode_count;
302 static int syncer_worklist_len;
303 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
304     syncer_state;
305 
306 /* Target for maximum number of vnodes. */
307 u_long desiredvnodes;
308 static u_long gapvnodes;		/* gap between wanted and desired */
309 static u_long vhiwat;		/* enough extras after expansion */
310 static u_long vlowat;		/* minimal extras before expansion */
311 static u_long vstir;		/* nonzero to stir non-free vnodes */
312 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
313 
314 static u_long vnlru_read_freevnodes(void);
315 
316 /*
317  * Note that no attempt is made to sanitize these parameters.
318  */
319 static int
320 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
321 {
322 	u_long val;
323 	int error;
324 
325 	val = desiredvnodes;
326 	error = sysctl_handle_long(oidp, &val, 0, req);
327 	if (error != 0 || req->newptr == NULL)
328 		return (error);
329 
330 	if (val == desiredvnodes)
331 		return (0);
332 	mtx_lock(&vnode_list_mtx);
333 	desiredvnodes = val;
334 	wantfreevnodes = desiredvnodes / 4;
335 	vnlru_recalc();
336 	mtx_unlock(&vnode_list_mtx);
337 	/*
338 	 * XXX There is no protection against multiple threads changing
339 	 * desiredvnodes at the same time. Locking above only helps vnlru and
340 	 * getnewvnode.
341 	 */
342 	vfs_hash_changesize(desiredvnodes);
343 	cache_changesize(desiredvnodes);
344 	return (0);
345 }
346 
347 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
348     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
349     "LU", "Target for maximum number of vnodes");
350 
351 static int
352 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
353 {
354 	u_long val;
355 	int error;
356 
357 	val = wantfreevnodes;
358 	error = sysctl_handle_long(oidp, &val, 0, req);
359 	if (error != 0 || req->newptr == NULL)
360 		return (error);
361 
362 	if (val == wantfreevnodes)
363 		return (0);
364 	mtx_lock(&vnode_list_mtx);
365 	wantfreevnodes = val;
366 	vnlru_recalc();
367 	mtx_unlock(&vnode_list_mtx);
368 	return (0);
369 }
370 
371 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
372     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
373     "LU", "Target for minimum number of \"free\" vnodes");
374 
375 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
376     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
377 static int vnlru_nowhere;
378 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW | CTLFLAG_STATS,
379     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
380 
381 static int
382 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
383 {
384 	struct vnode *vp;
385 	struct nameidata nd;
386 	char *buf;
387 	unsigned long ndflags;
388 	int error;
389 
390 	if (req->newptr == NULL)
391 		return (EINVAL);
392 	if (req->newlen >= PATH_MAX)
393 		return (E2BIG);
394 
395 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
396 	error = SYSCTL_IN(req, buf, req->newlen);
397 	if (error != 0)
398 		goto out;
399 
400 	buf[req->newlen] = '\0';
401 
402 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
403 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
404 	if ((error = namei(&nd)) != 0)
405 		goto out;
406 	vp = nd.ni_vp;
407 
408 	if (VN_IS_DOOMED(vp)) {
409 		/*
410 		 * This vnode is being recycled.  Return != 0 to let the caller
411 		 * know that the sysctl had no effect.  Return EAGAIN because a
412 		 * subsequent call will likely succeed (since namei will create
413 		 * a new vnode if necessary)
414 		 */
415 		error = EAGAIN;
416 		goto putvnode;
417 	}
418 
419 	counter_u64_add(recycles_count, 1);
420 	vgone(vp);
421 putvnode:
422 	vput(vp);
423 	NDFREE_PNBUF(&nd);
424 out:
425 	free(buf, M_TEMP);
426 	return (error);
427 }
428 
429 static int
430 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
431 {
432 	struct thread *td = curthread;
433 	struct vnode *vp;
434 	struct file *fp;
435 	int error;
436 	int fd;
437 
438 	if (req->newptr == NULL)
439 		return (EBADF);
440 
441         error = sysctl_handle_int(oidp, &fd, 0, req);
442         if (error != 0)
443                 return (error);
444 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
445 	if (error != 0)
446 		return (error);
447 	vp = fp->f_vnode;
448 
449 	error = vn_lock(vp, LK_EXCLUSIVE);
450 	if (error != 0)
451 		goto drop;
452 
453 	counter_u64_add(recycles_count, 1);
454 	vgone(vp);
455 	VOP_UNLOCK(vp);
456 drop:
457 	fdrop(fp, td);
458 	return (error);
459 }
460 
461 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
462     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
463     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
464 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
465     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
466     sysctl_ftry_reclaim_vnode, "I",
467     "Try to reclaim a vnode by its file descriptor");
468 
469 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
470 #define vnsz2log 8
471 #ifndef DEBUG_LOCKS
472 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
473     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
474     "vnsz2log needs to be updated");
475 #endif
476 
477 /*
478  * Support for the bufobj clean & dirty pctrie.
479  */
480 static void *
481 buf_trie_alloc(struct pctrie *ptree)
482 {
483 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
484 }
485 
486 static void
487 buf_trie_free(struct pctrie *ptree, void *node)
488 {
489 	uma_zfree_smr(buf_trie_zone, node);
490 }
491 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
492     buf_trie_smr);
493 
494 /*
495  * Initialize the vnode management data structures.
496  *
497  * Reevaluate the following cap on the number of vnodes after the physical
498  * memory size exceeds 512GB.  In the limit, as the physical memory size
499  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
500  */
501 #ifndef	MAXVNODES_MAX
502 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
503 #endif
504 
505 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
506 
507 static struct vnode *
508 vn_alloc_marker(struct mount *mp)
509 {
510 	struct vnode *vp;
511 
512 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
513 	vp->v_type = VMARKER;
514 	vp->v_mount = mp;
515 
516 	return (vp);
517 }
518 
519 static void
520 vn_free_marker(struct vnode *vp)
521 {
522 
523 	MPASS(vp->v_type == VMARKER);
524 	free(vp, M_VNODE_MARKER);
525 }
526 
527 #ifdef KASAN
528 static int
529 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
530 {
531 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
532 	return (0);
533 }
534 
535 static void
536 vnode_dtor(void *mem, int size, void *arg __unused)
537 {
538 	size_t end1, end2, off1, off2;
539 
540 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
541 	    offsetof(struct vnode, v_dbatchcpu),
542 	    "KASAN marks require updating");
543 
544 	off1 = offsetof(struct vnode, v_vnodelist);
545 	off2 = offsetof(struct vnode, v_dbatchcpu);
546 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
547 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
548 
549 	/*
550 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
551 	 * after the vnode has been freed.  Try to get some KASAN coverage by
552 	 * marking everything except those two fields as invalid.  Because
553 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
554 	 * the same 8-byte aligned word must also be marked valid.
555 	 */
556 
557 	/* Handle the area from the start until v_vnodelist... */
558 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
559 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
560 
561 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
562 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
563 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
564 	if (off2 > off1)
565 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
566 		    off2 - off1, KASAN_UMA_FREED);
567 
568 	/* ... and finally the area from v_dbatchcpu to the end. */
569 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
570 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
571 	    KASAN_UMA_FREED);
572 }
573 #endif /* KASAN */
574 
575 /*
576  * Initialize a vnode as it first enters the zone.
577  */
578 static int
579 vnode_init(void *mem, int size, int flags)
580 {
581 	struct vnode *vp;
582 
583 	vp = mem;
584 	bzero(vp, size);
585 	/*
586 	 * Setup locks.
587 	 */
588 	vp->v_vnlock = &vp->v_lock;
589 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
590 	/*
591 	 * By default, don't allow shared locks unless filesystems opt-in.
592 	 */
593 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
594 	    LK_NOSHARE | LK_IS_VNODE);
595 	/*
596 	 * Initialize bufobj.
597 	 */
598 	bufobj_init(&vp->v_bufobj, vp);
599 	/*
600 	 * Initialize namecache.
601 	 */
602 	cache_vnode_init(vp);
603 	/*
604 	 * Initialize rangelocks.
605 	 */
606 	rangelock_init(&vp->v_rl);
607 
608 	vp->v_dbatchcpu = NOCPU;
609 
610 	vp->v_state = VSTATE_DEAD;
611 
612 	/*
613 	 * Check vhold_recycle_free for an explanation.
614 	 */
615 	vp->v_holdcnt = VHOLD_NO_SMR;
616 	vp->v_type = VNON;
617 	mtx_lock(&vnode_list_mtx);
618 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
619 	mtx_unlock(&vnode_list_mtx);
620 	return (0);
621 }
622 
623 /*
624  * Free a vnode when it is cleared from the zone.
625  */
626 static void
627 vnode_fini(void *mem, int size)
628 {
629 	struct vnode *vp;
630 	struct bufobj *bo;
631 
632 	vp = mem;
633 	vdbatch_dequeue(vp);
634 	mtx_lock(&vnode_list_mtx);
635 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
636 	mtx_unlock(&vnode_list_mtx);
637 	rangelock_destroy(&vp->v_rl);
638 	lockdestroy(vp->v_vnlock);
639 	mtx_destroy(&vp->v_interlock);
640 	bo = &vp->v_bufobj;
641 	rw_destroy(BO_LOCKPTR(bo));
642 
643 	kasan_mark(mem, size, size, 0);
644 }
645 
646 /*
647  * Provide the size of NFS nclnode and NFS fh for calculation of the
648  * vnode memory consumption.  The size is specified directly to
649  * eliminate dependency on NFS-private header.
650  *
651  * Other filesystems may use bigger or smaller (like UFS and ZFS)
652  * private inode data, but the NFS-based estimation is ample enough.
653  * Still, we care about differences in the size between 64- and 32-bit
654  * platforms.
655  *
656  * Namecache structure size is heuristically
657  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
658  */
659 #ifdef _LP64
660 #define	NFS_NCLNODE_SZ	(528 + 64)
661 #define	NC_SZ		148
662 #else
663 #define	NFS_NCLNODE_SZ	(360 + 32)
664 #define	NC_SZ		92
665 #endif
666 
667 static void
668 vntblinit(void *dummy __unused)
669 {
670 	struct vdbatch *vd;
671 	uma_ctor ctor;
672 	uma_dtor dtor;
673 	int cpu, physvnodes, virtvnodes;
674 
675 	/*
676 	 * Desiredvnodes is a function of the physical memory size and the
677 	 * kernel's heap size.  Generally speaking, it scales with the
678 	 * physical memory size.  The ratio of desiredvnodes to the physical
679 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
680 	 * Thereafter, the
681 	 * marginal ratio of desiredvnodes to the physical memory size is
682 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
683 	 * size.  The memory required by desiredvnodes vnodes and vm objects
684 	 * must not exceed 1/10th of the kernel's heap size.
685 	 */
686 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
687 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
688 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
689 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
690 	desiredvnodes = min(physvnodes, virtvnodes);
691 	if (desiredvnodes > MAXVNODES_MAX) {
692 		if (bootverbose)
693 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
694 			    desiredvnodes, MAXVNODES_MAX);
695 		desiredvnodes = MAXVNODES_MAX;
696 	}
697 	wantfreevnodes = desiredvnodes / 4;
698 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
699 	TAILQ_INIT(&vnode_list);
700 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
701 	/*
702 	 * The lock is taken to appease WITNESS.
703 	 */
704 	mtx_lock(&vnode_list_mtx);
705 	vnlru_recalc();
706 	mtx_unlock(&vnode_list_mtx);
707 	vnode_list_free_marker = vn_alloc_marker(NULL);
708 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
709 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
710 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
711 
712 #ifdef KASAN
713 	ctor = vnode_ctor;
714 	dtor = vnode_dtor;
715 #else
716 	ctor = NULL;
717 	dtor = NULL;
718 #endif
719 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
720 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
721 	uma_zone_set_smr(vnode_zone, vfs_smr);
722 
723 	/*
724 	 * Preallocate enough nodes to support one-per buf so that
725 	 * we can not fail an insert.  reassignbuf() callers can not
726 	 * tolerate the insertion failure.
727 	 */
728 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
729 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
730 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
731 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
732 	uma_prealloc(buf_trie_zone, nbuf);
733 
734 	vnodes_created = counter_u64_alloc(M_WAITOK);
735 	recycles_count = counter_u64_alloc(M_WAITOK);
736 	recycles_free_count = counter_u64_alloc(M_WAITOK);
737 
738 	/*
739 	 * Initialize the filesystem syncer.
740 	 */
741 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
742 	    &syncer_mask);
743 	syncer_maxdelay = syncer_mask + 1;
744 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
745 	cv_init(&sync_wakeup, "syncer");
746 
747 	CPU_FOREACH(cpu) {
748 		vd = DPCPU_ID_PTR((cpu), vd);
749 		bzero(vd, sizeof(*vd));
750 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
751 	}
752 }
753 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
754 
755 /*
756  * Mark a mount point as busy. Used to synchronize access and to delay
757  * unmounting. Eventually, mountlist_mtx is not released on failure.
758  *
759  * vfs_busy() is a custom lock, it can block the caller.
760  * vfs_busy() only sleeps if the unmount is active on the mount point.
761  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
762  * vnode belonging to mp.
763  *
764  * Lookup uses vfs_busy() to traverse mount points.
765  * root fs			var fs
766  * / vnode lock		A	/ vnode lock (/var)		D
767  * /var vnode lock	B	/log vnode lock(/var/log)	E
768  * vfs_busy lock	C	vfs_busy lock			F
769  *
770  * Within each file system, the lock order is C->A->B and F->D->E.
771  *
772  * When traversing across mounts, the system follows that lock order:
773  *
774  *        C->A->B
775  *              |
776  *              +->F->D->E
777  *
778  * The lookup() process for namei("/var") illustrates the process:
779  *  1. VOP_LOOKUP() obtains B while A is held
780  *  2. vfs_busy() obtains a shared lock on F while A and B are held
781  *  3. vput() releases lock on B
782  *  4. vput() releases lock on A
783  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
784  *  6. vfs_unbusy() releases shared lock on F
785  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
786  *     Attempt to lock A (instead of vp_crossmp) while D is held would
787  *     violate the global order, causing deadlocks.
788  *
789  * dounmount() locks B while F is drained.  Note that for stacked
790  * filesystems, D and B in the example above may be the same lock,
791  * which introdues potential lock order reversal deadlock between
792  * dounmount() and step 5 above.  These filesystems may avoid the LOR
793  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
794  * remain held until after step 5.
795  */
796 int
797 vfs_busy(struct mount *mp, int flags)
798 {
799 	struct mount_pcpu *mpcpu;
800 
801 	MPASS((flags & ~MBF_MASK) == 0);
802 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
803 
804 	if (vfs_op_thread_enter(mp, mpcpu)) {
805 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
806 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
807 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
808 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
809 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
810 		vfs_op_thread_exit(mp, mpcpu);
811 		if (flags & MBF_MNTLSTLOCK)
812 			mtx_unlock(&mountlist_mtx);
813 		return (0);
814 	}
815 
816 	MNT_ILOCK(mp);
817 	vfs_assert_mount_counters(mp);
818 	MNT_REF(mp);
819 	/*
820 	 * If mount point is currently being unmounted, sleep until the
821 	 * mount point fate is decided.  If thread doing the unmounting fails,
822 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
823 	 * that this mount point has survived the unmount attempt and vfs_busy
824 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
825 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
826 	 * about to be really destroyed.  vfs_busy needs to release its
827 	 * reference on the mount point in this case and return with ENOENT,
828 	 * telling the caller the mount it tried to busy is no longer valid.
829 	 */
830 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
831 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
832 		    ("%s: non-empty upper mount list with pending unmount",
833 		    __func__));
834 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
835 			MNT_REL(mp);
836 			MNT_IUNLOCK(mp);
837 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
838 			    __func__);
839 			return (ENOENT);
840 		}
841 		if (flags & MBF_MNTLSTLOCK)
842 			mtx_unlock(&mountlist_mtx);
843 		mp->mnt_kern_flag |= MNTK_MWAIT;
844 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
845 		if (flags & MBF_MNTLSTLOCK)
846 			mtx_lock(&mountlist_mtx);
847 		MNT_ILOCK(mp);
848 	}
849 	if (flags & MBF_MNTLSTLOCK)
850 		mtx_unlock(&mountlist_mtx);
851 	mp->mnt_lockref++;
852 	MNT_IUNLOCK(mp);
853 	return (0);
854 }
855 
856 /*
857  * Free a busy filesystem.
858  */
859 void
860 vfs_unbusy(struct mount *mp)
861 {
862 	struct mount_pcpu *mpcpu;
863 	int c;
864 
865 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
866 
867 	if (vfs_op_thread_enter(mp, mpcpu)) {
868 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
869 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
870 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
871 		vfs_op_thread_exit(mp, mpcpu);
872 		return;
873 	}
874 
875 	MNT_ILOCK(mp);
876 	vfs_assert_mount_counters(mp);
877 	MNT_REL(mp);
878 	c = --mp->mnt_lockref;
879 	if (mp->mnt_vfs_ops == 0) {
880 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
881 		MNT_IUNLOCK(mp);
882 		return;
883 	}
884 	if (c < 0)
885 		vfs_dump_mount_counters(mp);
886 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
887 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
888 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
889 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
890 		wakeup(&mp->mnt_lockref);
891 	}
892 	MNT_IUNLOCK(mp);
893 }
894 
895 /*
896  * Lookup a mount point by filesystem identifier.
897  */
898 struct mount *
899 vfs_getvfs(fsid_t *fsid)
900 {
901 	struct mount *mp;
902 
903 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
904 	mtx_lock(&mountlist_mtx);
905 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
906 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
907 			vfs_ref(mp);
908 			mtx_unlock(&mountlist_mtx);
909 			return (mp);
910 		}
911 	}
912 	mtx_unlock(&mountlist_mtx);
913 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
914 	return ((struct mount *) 0);
915 }
916 
917 /*
918  * Lookup a mount point by filesystem identifier, busying it before
919  * returning.
920  *
921  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
922  * cache for popular filesystem identifiers.  The cache is lockess, using
923  * the fact that struct mount's are never freed.  In worst case we may
924  * get pointer to unmounted or even different filesystem, so we have to
925  * check what we got, and go slow way if so.
926  */
927 struct mount *
928 vfs_busyfs(fsid_t *fsid)
929 {
930 #define	FSID_CACHE_SIZE	256
931 	typedef struct mount * volatile vmp_t;
932 	static vmp_t cache[FSID_CACHE_SIZE];
933 	struct mount *mp;
934 	int error;
935 	uint32_t hash;
936 
937 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
938 	hash = fsid->val[0] ^ fsid->val[1];
939 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
940 	mp = cache[hash];
941 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
942 		goto slow;
943 	if (vfs_busy(mp, 0) != 0) {
944 		cache[hash] = NULL;
945 		goto slow;
946 	}
947 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
948 		return (mp);
949 	else
950 	    vfs_unbusy(mp);
951 
952 slow:
953 	mtx_lock(&mountlist_mtx);
954 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
955 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
956 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
957 			if (error) {
958 				cache[hash] = NULL;
959 				mtx_unlock(&mountlist_mtx);
960 				return (NULL);
961 			}
962 			cache[hash] = mp;
963 			return (mp);
964 		}
965 	}
966 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
967 	mtx_unlock(&mountlist_mtx);
968 	return ((struct mount *) 0);
969 }
970 
971 /*
972  * Check if a user can access privileged mount options.
973  */
974 int
975 vfs_suser(struct mount *mp, struct thread *td)
976 {
977 	int error;
978 
979 	if (jailed(td->td_ucred)) {
980 		/*
981 		 * If the jail of the calling thread lacks permission for
982 		 * this type of file system, deny immediately.
983 		 */
984 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
985 			return (EPERM);
986 
987 		/*
988 		 * If the file system was mounted outside the jail of the
989 		 * calling thread, deny immediately.
990 		 */
991 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
992 			return (EPERM);
993 	}
994 
995 	/*
996 	 * If file system supports delegated administration, we don't check
997 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
998 	 * by the file system itself.
999 	 * If this is not the user that did original mount, we check for
1000 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1001 	 */
1002 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1003 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1004 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1005 			return (error);
1006 	}
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1012  * will be used to create fake device numbers for stat().  Also try (but
1013  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1014  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1015  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1016  *
1017  * Keep in mind that several mounts may be running in parallel.  Starting
1018  * the search one past where the previous search terminated is both a
1019  * micro-optimization and a defense against returning the same fsid to
1020  * different mounts.
1021  */
1022 void
1023 vfs_getnewfsid(struct mount *mp)
1024 {
1025 	static uint16_t mntid_base;
1026 	struct mount *nmp;
1027 	fsid_t tfsid;
1028 	int mtype;
1029 
1030 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1031 	mtx_lock(&mntid_mtx);
1032 	mtype = mp->mnt_vfc->vfc_typenum;
1033 	tfsid.val[1] = mtype;
1034 	mtype = (mtype & 0xFF) << 24;
1035 	for (;;) {
1036 		tfsid.val[0] = makedev(255,
1037 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1038 		mntid_base++;
1039 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1040 			break;
1041 		vfs_rel(nmp);
1042 	}
1043 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1044 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1045 	mtx_unlock(&mntid_mtx);
1046 }
1047 
1048 /*
1049  * Knob to control the precision of file timestamps:
1050  *
1051  *   0 = seconds only; nanoseconds zeroed.
1052  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1053  *   2 = seconds and nanoseconds, truncated to microseconds.
1054  * >=3 = seconds and nanoseconds, maximum precision.
1055  */
1056 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1057 
1058 static int timestamp_precision = TSP_USEC;
1059 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1060     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1061     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1062     "3+: sec + ns (max. precision))");
1063 
1064 /*
1065  * Get a current timestamp.
1066  */
1067 void
1068 vfs_timestamp(struct timespec *tsp)
1069 {
1070 	struct timeval tv;
1071 
1072 	switch (timestamp_precision) {
1073 	case TSP_SEC:
1074 		tsp->tv_sec = time_second;
1075 		tsp->tv_nsec = 0;
1076 		break;
1077 	case TSP_HZ:
1078 		getnanotime(tsp);
1079 		break;
1080 	case TSP_USEC:
1081 		microtime(&tv);
1082 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1083 		break;
1084 	case TSP_NSEC:
1085 	default:
1086 		nanotime(tsp);
1087 		break;
1088 	}
1089 }
1090 
1091 /*
1092  * Set vnode attributes to VNOVAL
1093  */
1094 void
1095 vattr_null(struct vattr *vap)
1096 {
1097 
1098 	vap->va_type = VNON;
1099 	vap->va_size = VNOVAL;
1100 	vap->va_bytes = VNOVAL;
1101 	vap->va_mode = VNOVAL;
1102 	vap->va_nlink = VNOVAL;
1103 	vap->va_uid = VNOVAL;
1104 	vap->va_gid = VNOVAL;
1105 	vap->va_fsid = VNOVAL;
1106 	vap->va_fileid = VNOVAL;
1107 	vap->va_blocksize = VNOVAL;
1108 	vap->va_rdev = VNOVAL;
1109 	vap->va_atime.tv_sec = VNOVAL;
1110 	vap->va_atime.tv_nsec = VNOVAL;
1111 	vap->va_mtime.tv_sec = VNOVAL;
1112 	vap->va_mtime.tv_nsec = VNOVAL;
1113 	vap->va_ctime.tv_sec = VNOVAL;
1114 	vap->va_ctime.tv_nsec = VNOVAL;
1115 	vap->va_birthtime.tv_sec = VNOVAL;
1116 	vap->va_birthtime.tv_nsec = VNOVAL;
1117 	vap->va_flags = VNOVAL;
1118 	vap->va_gen = VNOVAL;
1119 	vap->va_vaflags = 0;
1120 }
1121 
1122 /*
1123  * Try to reduce the total number of vnodes.
1124  *
1125  * This routine (and its user) are buggy in at least the following ways:
1126  * - all parameters were picked years ago when RAM sizes were significantly
1127  *   smaller
1128  * - it can pick vnodes based on pages used by the vm object, but filesystems
1129  *   like ZFS don't use it making the pick broken
1130  * - since ZFS has its own aging policy it gets partially combated by this one
1131  * - a dedicated method should be provided for filesystems to let them decide
1132  *   whether the vnode should be recycled
1133  *
1134  * This routine is called when we have too many vnodes.  It attempts
1135  * to free <count> vnodes and will potentially free vnodes that still
1136  * have VM backing store (VM backing store is typically the cause
1137  * of a vnode blowout so we want to do this).  Therefore, this operation
1138  * is not considered cheap.
1139  *
1140  * A number of conditions may prevent a vnode from being reclaimed.
1141  * the buffer cache may have references on the vnode, a directory
1142  * vnode may still have references due to the namei cache representing
1143  * underlying files, or the vnode may be in active use.   It is not
1144  * desirable to reuse such vnodes.  These conditions may cause the
1145  * number of vnodes to reach some minimum value regardless of what
1146  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1147  *
1148  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1149  * 			 entries if this argument is strue
1150  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1151  *			 pages.
1152  * @param target	 How many vnodes to reclaim.
1153  * @return		 The number of vnodes that were reclaimed.
1154  */
1155 static int
1156 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1157 {
1158 	struct vnode *vp, *mvp;
1159 	struct mount *mp;
1160 	struct vm_object *object;
1161 	u_long done;
1162 	bool retried;
1163 
1164 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1165 
1166 	retried = false;
1167 	done = 0;
1168 
1169 	mvp = vnode_list_reclaim_marker;
1170 restart:
1171 	vp = mvp;
1172 	while (done < target) {
1173 		vp = TAILQ_NEXT(vp, v_vnodelist);
1174 		if (__predict_false(vp == NULL))
1175 			break;
1176 
1177 		if (__predict_false(vp->v_type == VMARKER))
1178 			continue;
1179 
1180 		/*
1181 		 * If it's been deconstructed already, it's still
1182 		 * referenced, or it exceeds the trigger, skip it.
1183 		 * Also skip free vnodes.  We are trying to make space
1184 		 * to expand the free list, not reduce it.
1185 		 */
1186 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1187 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1188 			goto next_iter;
1189 
1190 		if (vp->v_type == VBAD || vp->v_type == VNON)
1191 			goto next_iter;
1192 
1193 		object = atomic_load_ptr(&vp->v_object);
1194 		if (object == NULL || object->resident_page_count > trigger) {
1195 			goto next_iter;
1196 		}
1197 
1198 		/*
1199 		 * Handle races against vnode allocation. Filesystems lock the
1200 		 * vnode some time after it gets returned from getnewvnode,
1201 		 * despite type and hold count being manipulated earlier.
1202 		 * Resorting to checking v_mount restores guarantees present
1203 		 * before the global list was reworked to contain all vnodes.
1204 		 */
1205 		if (!VI_TRYLOCK(vp))
1206 			goto next_iter;
1207 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1208 			VI_UNLOCK(vp);
1209 			goto next_iter;
1210 		}
1211 		if (vp->v_mount == NULL) {
1212 			VI_UNLOCK(vp);
1213 			goto next_iter;
1214 		}
1215 		vholdl(vp);
1216 		VI_UNLOCK(vp);
1217 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1218 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1219 		mtx_unlock(&vnode_list_mtx);
1220 
1221 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1222 			vdrop_recycle(vp);
1223 			goto next_iter_unlocked;
1224 		}
1225 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1226 			vdrop_recycle(vp);
1227 			vn_finished_write(mp);
1228 			goto next_iter_unlocked;
1229 		}
1230 
1231 		VI_LOCK(vp);
1232 		if (vp->v_usecount > 0 ||
1233 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1234 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1235 		    vp->v_object->resident_page_count > trigger)) {
1236 			VOP_UNLOCK(vp);
1237 			vdropl_recycle(vp);
1238 			vn_finished_write(mp);
1239 			goto next_iter_unlocked;
1240 		}
1241 		counter_u64_add(recycles_count, 1);
1242 		vgonel(vp);
1243 		VOP_UNLOCK(vp);
1244 		vdropl_recycle(vp);
1245 		vn_finished_write(mp);
1246 		done++;
1247 next_iter_unlocked:
1248 		maybe_yield();
1249 		mtx_lock(&vnode_list_mtx);
1250 		goto restart;
1251 next_iter:
1252 		MPASS(vp->v_type != VMARKER);
1253 		if (!should_yield())
1254 			continue;
1255 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1256 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1257 		mtx_unlock(&vnode_list_mtx);
1258 		kern_yield(PRI_USER);
1259 		mtx_lock(&vnode_list_mtx);
1260 		goto restart;
1261 	}
1262 	if (done == 0 && !retried) {
1263 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1264 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1265 		retried = true;
1266 		goto restart;
1267 	}
1268 	return (done);
1269 }
1270 
1271 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1272 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1273     0,
1274     "limit on vnode free requests per call to the vnlru_free routine");
1275 
1276 /*
1277  * Attempt to reduce the free list by the requested amount.
1278  */
1279 static int
1280 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1281 {
1282 	struct vnode *vp;
1283 	struct mount *mp;
1284 	int ocount;
1285 
1286 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1287 	if (count > max_vnlru_free)
1288 		count = max_vnlru_free;
1289 	ocount = count;
1290 	vp = mvp;
1291 	for (;;) {
1292 		if (count == 0) {
1293 			break;
1294 		}
1295 		vp = TAILQ_NEXT(vp, v_vnodelist);
1296 		if (__predict_false(vp == NULL)) {
1297 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1299 			break;
1300 		}
1301 		if (__predict_false(vp->v_type == VMARKER))
1302 			continue;
1303 		if (vp->v_holdcnt > 0)
1304 			continue;
1305 		/*
1306 		 * Don't recycle if our vnode is from different type
1307 		 * of mount point.  Note that mp is type-safe, the
1308 		 * check does not reach unmapped address even if
1309 		 * vnode is reclaimed.
1310 		 */
1311 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1312 		    mp->mnt_op != mnt_op) {
1313 			continue;
1314 		}
1315 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1316 			continue;
1317 		}
1318 		if (!vhold_recycle_free(vp))
1319 			continue;
1320 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1321 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1322 		mtx_unlock(&vnode_list_mtx);
1323 		/*
1324 		 * FIXME: ignores the return value, meaning it may be nothing
1325 		 * got recycled but it claims otherwise to the caller.
1326 		 *
1327 		 * Originally the value started being ignored in 2005 with
1328 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1329 		 *
1330 		 * Respecting the value can run into significant stalls if most
1331 		 * vnodes belong to one file system and it has writes
1332 		 * suspended.  In presence of many threads and millions of
1333 		 * vnodes they keep contending on the vnode_list_mtx lock only
1334 		 * to find vnodes they can't recycle.
1335 		 *
1336 		 * The solution would be to pre-check if the vnode is likely to
1337 		 * be recycle-able, but it needs to happen with the
1338 		 * vnode_list_mtx lock held. This runs into a problem where
1339 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1340 		 * writes are frozen) can take locks which LOR against it.
1341 		 *
1342 		 * Check nullfs for one example (null_getwritemount).
1343 		 */
1344 		vtryrecycle(vp);
1345 		count--;
1346 		mtx_lock(&vnode_list_mtx);
1347 		vp = mvp;
1348 	}
1349 	return (ocount - count);
1350 }
1351 
1352 static int
1353 vnlru_free_locked(int count)
1354 {
1355 
1356 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1357 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1358 }
1359 
1360 void
1361 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1362 {
1363 
1364 	MPASS(mnt_op != NULL);
1365 	MPASS(mvp != NULL);
1366 	VNPASS(mvp->v_type == VMARKER, mvp);
1367 	mtx_lock(&vnode_list_mtx);
1368 	vnlru_free_impl(count, mnt_op, mvp);
1369 	mtx_unlock(&vnode_list_mtx);
1370 }
1371 
1372 struct vnode *
1373 vnlru_alloc_marker(void)
1374 {
1375 	struct vnode *mvp;
1376 
1377 	mvp = vn_alloc_marker(NULL);
1378 	mtx_lock(&vnode_list_mtx);
1379 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1380 	mtx_unlock(&vnode_list_mtx);
1381 	return (mvp);
1382 }
1383 
1384 void
1385 vnlru_free_marker(struct vnode *mvp)
1386 {
1387 	mtx_lock(&vnode_list_mtx);
1388 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1389 	mtx_unlock(&vnode_list_mtx);
1390 	vn_free_marker(mvp);
1391 }
1392 
1393 static void
1394 vnlru_recalc(void)
1395 {
1396 
1397 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1398 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1399 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1400 	vlowat = vhiwat / 2;
1401 }
1402 
1403 /*
1404  * Attempt to recycle vnodes in a context that is always safe to block.
1405  * Calling vlrurecycle() from the bowels of filesystem code has some
1406  * interesting deadlock problems.
1407  */
1408 static struct proc *vnlruproc;
1409 static int vnlruproc_sig;
1410 
1411 /*
1412  * The main freevnodes counter is only updated when threads requeue their vnode
1413  * batches. CPUs are conditionally walked to compute a more accurate total.
1414  *
1415  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1416  * at any given moment can still exceed slop, but it should not be by significant
1417  * margin in practice.
1418  */
1419 #define VNLRU_FREEVNODES_SLOP 126
1420 
1421 static void __noinline
1422 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1423 {
1424 
1425 	atomic_add_long(&freevnodes, *lfreevnodes);
1426 	*lfreevnodes = 0;
1427 	critical_exit();
1428 }
1429 
1430 static __inline void
1431 vfs_freevnodes_inc(void)
1432 {
1433 	int8_t *lfreevnodes;
1434 
1435 	critical_enter();
1436 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1437 	(*lfreevnodes)++;
1438 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1439 		vfs_freevnodes_rollup(lfreevnodes);
1440 	else
1441 		critical_exit();
1442 }
1443 
1444 static __inline void
1445 vfs_freevnodes_dec(void)
1446 {
1447 	int8_t *lfreevnodes;
1448 
1449 	critical_enter();
1450 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1451 	(*lfreevnodes)--;
1452 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1453 		vfs_freevnodes_rollup(lfreevnodes);
1454 	else
1455 		critical_exit();
1456 }
1457 
1458 static u_long
1459 vnlru_read_freevnodes(void)
1460 {
1461 	long slop, rfreevnodes;
1462 	int cpu;
1463 
1464 	rfreevnodes = atomic_load_long(&freevnodes);
1465 
1466 	if (rfreevnodes > freevnodes_old)
1467 		slop = rfreevnodes - freevnodes_old;
1468 	else
1469 		slop = freevnodes_old - rfreevnodes;
1470 	if (slop < VNLRU_FREEVNODES_SLOP)
1471 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1472 	freevnodes_old = rfreevnodes;
1473 	CPU_FOREACH(cpu) {
1474 		freevnodes_old += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1475 	}
1476 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1477 }
1478 
1479 static bool
1480 vnlru_under(u_long rnumvnodes, u_long limit)
1481 {
1482 	u_long rfreevnodes, space;
1483 
1484 	if (__predict_false(rnumvnodes > desiredvnodes))
1485 		return (true);
1486 
1487 	space = desiredvnodes - rnumvnodes;
1488 	if (space < limit) {
1489 		rfreevnodes = vnlru_read_freevnodes();
1490 		if (rfreevnodes > wantfreevnodes)
1491 			space += rfreevnodes - wantfreevnodes;
1492 	}
1493 	return (space < limit);
1494 }
1495 
1496 static bool
1497 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1498 {
1499 	long rfreevnodes, space;
1500 
1501 	if (__predict_false(rnumvnodes > desiredvnodes))
1502 		return (true);
1503 
1504 	space = desiredvnodes - rnumvnodes;
1505 	if (space < limit) {
1506 		rfreevnodes = atomic_load_long(&freevnodes);
1507 		if (rfreevnodes > wantfreevnodes)
1508 			space += rfreevnodes - wantfreevnodes;
1509 	}
1510 	return (space < limit);
1511 }
1512 
1513 static void
1514 vnlru_kick(void)
1515 {
1516 
1517 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1518 	if (vnlruproc_sig == 0) {
1519 		vnlruproc_sig = 1;
1520 		wakeup(vnlruproc);
1521 	}
1522 }
1523 
1524 static void
1525 vnlru_proc(void)
1526 {
1527 	u_long rnumvnodes, rfreevnodes, target;
1528 	unsigned long onumvnodes;
1529 	int done, force, trigger, usevnodes;
1530 	bool reclaim_nc_src, want_reread;
1531 
1532 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1533 	    SHUTDOWN_PRI_FIRST);
1534 
1535 	force = 0;
1536 	want_reread = false;
1537 	for (;;) {
1538 		kproc_suspend_check(vnlruproc);
1539 		mtx_lock(&vnode_list_mtx);
1540 		rnumvnodes = atomic_load_long(&numvnodes);
1541 
1542 		if (want_reread) {
1543 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1544 			want_reread = false;
1545 		}
1546 
1547 		/*
1548 		 * If numvnodes is too large (due to desiredvnodes being
1549 		 * adjusted using its sysctl, or emergency growth), first
1550 		 * try to reduce it by discarding from the free list.
1551 		 */
1552 		if (rnumvnodes > desiredvnodes) {
1553 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1554 			rnumvnodes = atomic_load_long(&numvnodes);
1555 		}
1556 		/*
1557 		 * Sleep if the vnode cache is in a good state.  This is
1558 		 * when it is not over-full and has space for about a 4%
1559 		 * or 9% expansion (by growing its size or inexcessively
1560 		 * reducing its free list).  Otherwise, try to reclaim
1561 		 * space for a 10% expansion.
1562 		 */
1563 		if (vstir && force == 0) {
1564 			force = 1;
1565 			vstir = 0;
1566 		}
1567 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1568 			vnlruproc_sig = 0;
1569 			wakeup(&vnlruproc_sig);
1570 			msleep(vnlruproc, &vnode_list_mtx,
1571 			    PVFS|PDROP, "vlruwt", hz);
1572 			continue;
1573 		}
1574 		rfreevnodes = vnlru_read_freevnodes();
1575 
1576 		onumvnodes = rnumvnodes;
1577 		/*
1578 		 * Calculate parameters for recycling.  These are the same
1579 		 * throughout the loop to give some semblance of fairness.
1580 		 * The trigger point is to avoid recycling vnodes with lots
1581 		 * of resident pages.  We aren't trying to free memory; we
1582 		 * are trying to recycle or at least free vnodes.
1583 		 */
1584 		if (rnumvnodes <= desiredvnodes)
1585 			usevnodes = rnumvnodes - rfreevnodes;
1586 		else
1587 			usevnodes = rnumvnodes;
1588 		if (usevnodes <= 0)
1589 			usevnodes = 1;
1590 		/*
1591 		 * The trigger value is chosen to give a conservatively
1592 		 * large value to ensure that it alone doesn't prevent
1593 		 * making progress.  The value can easily be so large that
1594 		 * it is effectively infinite in some congested and
1595 		 * misconfigured cases, and this is necessary.  Normally
1596 		 * it is about 8 to 100 (pages), which is quite large.
1597 		 */
1598 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1599 		if (force < 2)
1600 			trigger = vsmalltrigger;
1601 		reclaim_nc_src = force >= 3;
1602 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1603 		target = target / 10 + 1;
1604 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1605 		mtx_unlock(&vnode_list_mtx);
1606 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1607 			uma_reclaim(UMA_RECLAIM_DRAIN);
1608 		if (done == 0) {
1609 			if (force == 0 || force == 1) {
1610 				force = 2;
1611 				continue;
1612 			}
1613 			if (force == 2) {
1614 				force = 3;
1615 				continue;
1616 			}
1617 			want_reread = true;
1618 			force = 0;
1619 			vnlru_nowhere++;
1620 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1621 		} else {
1622 			want_reread = true;
1623 			kern_yield(PRI_USER);
1624 		}
1625 	}
1626 }
1627 
1628 static struct kproc_desc vnlru_kp = {
1629 	"vnlru",
1630 	vnlru_proc,
1631 	&vnlruproc
1632 };
1633 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1634     &vnlru_kp);
1635 
1636 /*
1637  * Routines having to do with the management of the vnode table.
1638  */
1639 
1640 /*
1641  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1642  * before we actually vgone().  This function must be called with the vnode
1643  * held to prevent the vnode from being returned to the free list midway
1644  * through vgone().
1645  */
1646 static int
1647 vtryrecycle(struct vnode *vp)
1648 {
1649 	struct mount *vnmp;
1650 
1651 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1652 	VNPASS(vp->v_holdcnt > 0, vp);
1653 	/*
1654 	 * This vnode may found and locked via some other list, if so we
1655 	 * can't recycle it yet.
1656 	 */
1657 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1658 		CTR2(KTR_VFS,
1659 		    "%s: impossible to recycle, vp %p lock is already held",
1660 		    __func__, vp);
1661 		vdrop_recycle(vp);
1662 		return (EWOULDBLOCK);
1663 	}
1664 	/*
1665 	 * Don't recycle if its filesystem is being suspended.
1666 	 */
1667 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1668 		VOP_UNLOCK(vp);
1669 		CTR2(KTR_VFS,
1670 		    "%s: impossible to recycle, cannot start the write for %p",
1671 		    __func__, vp);
1672 		vdrop_recycle(vp);
1673 		return (EBUSY);
1674 	}
1675 	/*
1676 	 * If we got this far, we need to acquire the interlock and see if
1677 	 * anyone picked up this vnode from another list.  If not, we will
1678 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1679 	 * will skip over it.
1680 	 */
1681 	VI_LOCK(vp);
1682 	if (vp->v_usecount) {
1683 		VOP_UNLOCK(vp);
1684 		vdropl_recycle(vp);
1685 		vn_finished_write(vnmp);
1686 		CTR2(KTR_VFS,
1687 		    "%s: impossible to recycle, %p is already referenced",
1688 		    __func__, vp);
1689 		return (EBUSY);
1690 	}
1691 	if (!VN_IS_DOOMED(vp)) {
1692 		counter_u64_add(recycles_free_count, 1);
1693 		vgonel(vp);
1694 	}
1695 	VOP_UNLOCK(vp);
1696 	vdropl_recycle(vp);
1697 	vn_finished_write(vnmp);
1698 	return (0);
1699 }
1700 
1701 /*
1702  * Allocate a new vnode.
1703  *
1704  * The operation never returns an error. Returning an error was disabled
1705  * in r145385 (dated 2005) with the following comment:
1706  *
1707  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1708  *
1709  * Given the age of this commit (almost 15 years at the time of writing this
1710  * comment) restoring the ability to fail requires a significant audit of
1711  * all codepaths.
1712  *
1713  * The routine can try to free a vnode or stall for up to 1 second waiting for
1714  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1715  */
1716 static u_long vn_alloc_cyclecount;
1717 
1718 static struct vnode * __noinline
1719 vn_alloc_hard(struct mount *mp)
1720 {
1721 	u_long rnumvnodes, rfreevnodes;
1722 
1723 	mtx_lock(&vnode_list_mtx);
1724 	rnumvnodes = atomic_load_long(&numvnodes);
1725 	if (rnumvnodes + 1 < desiredvnodes) {
1726 		vn_alloc_cyclecount = 0;
1727 		goto alloc;
1728 	}
1729 	rfreevnodes = vnlru_read_freevnodes();
1730 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1731 		vn_alloc_cyclecount = 0;
1732 		vstir = 1;
1733 	}
1734 	/*
1735 	 * Grow the vnode cache if it will not be above its target max
1736 	 * after growing.  Otherwise, if the free list is nonempty, try
1737 	 * to reclaim 1 item from it before growing the cache (possibly
1738 	 * above its target max if the reclamation failed or is delayed).
1739 	 * Otherwise, wait for some space.  In all cases, schedule
1740 	 * vnlru_proc() if we are getting short of space.  The watermarks
1741 	 * should be chosen so that we never wait or even reclaim from
1742 	 * the free list to below its target minimum.
1743 	 */
1744 	if (vnlru_free_locked(1) > 0)
1745 		goto alloc;
1746 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1747 		/*
1748 		 * Wait for space for a new vnode.
1749 		 */
1750 		vnlru_kick();
1751 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1752 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1753 		    vnlru_read_freevnodes() > 1)
1754 			vnlru_free_locked(1);
1755 	}
1756 alloc:
1757 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1758 	if (vnlru_under(rnumvnodes, vlowat))
1759 		vnlru_kick();
1760 	mtx_unlock(&vnode_list_mtx);
1761 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1762 }
1763 
1764 static struct vnode *
1765 vn_alloc(struct mount *mp)
1766 {
1767 	u_long rnumvnodes;
1768 
1769 	if (__predict_false(vn_alloc_cyclecount != 0))
1770 		return (vn_alloc_hard(mp));
1771 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1772 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1773 		atomic_subtract_long(&numvnodes, 1);
1774 		return (vn_alloc_hard(mp));
1775 	}
1776 
1777 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1778 }
1779 
1780 static void
1781 vn_free(struct vnode *vp)
1782 {
1783 
1784 	atomic_subtract_long(&numvnodes, 1);
1785 	uma_zfree_smr(vnode_zone, vp);
1786 }
1787 
1788 /*
1789  * Return the next vnode from the free list.
1790  */
1791 int
1792 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1793     struct vnode **vpp)
1794 {
1795 	struct vnode *vp;
1796 	struct thread *td;
1797 	struct lock_object *lo;
1798 
1799 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1800 
1801 	KASSERT(vops->registered,
1802 	    ("%s: not registered vector op %p\n", __func__, vops));
1803 
1804 	td = curthread;
1805 	if (td->td_vp_reserved != NULL) {
1806 		vp = td->td_vp_reserved;
1807 		td->td_vp_reserved = NULL;
1808 	} else {
1809 		vp = vn_alloc(mp);
1810 	}
1811 	counter_u64_add(vnodes_created, 1);
1812 
1813 	vn_set_state(vp, VSTATE_UNINITIALIZED);
1814 
1815 	/*
1816 	 * Locks are given the generic name "vnode" when created.
1817 	 * Follow the historic practice of using the filesystem
1818 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1819 	 *
1820 	 * Locks live in a witness group keyed on their name. Thus,
1821 	 * when a lock is renamed, it must also move from the witness
1822 	 * group of its old name to the witness group of its new name.
1823 	 *
1824 	 * The change only needs to be made when the vnode moves
1825 	 * from one filesystem type to another. We ensure that each
1826 	 * filesystem use a single static name pointer for its tag so
1827 	 * that we can compare pointers rather than doing a strcmp().
1828 	 */
1829 	lo = &vp->v_vnlock->lock_object;
1830 #ifdef WITNESS
1831 	if (lo->lo_name != tag) {
1832 #endif
1833 		lo->lo_name = tag;
1834 #ifdef WITNESS
1835 		WITNESS_DESTROY(lo);
1836 		WITNESS_INIT(lo, tag);
1837 	}
1838 #endif
1839 	/*
1840 	 * By default, don't allow shared locks unless filesystems opt-in.
1841 	 */
1842 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1843 	/*
1844 	 * Finalize various vnode identity bits.
1845 	 */
1846 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1847 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1848 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1849 	vp->v_type = VNON;
1850 	vp->v_op = vops;
1851 	vp->v_irflag = 0;
1852 	v_init_counters(vp);
1853 	vn_seqc_init(vp);
1854 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1855 #ifdef DIAGNOSTIC
1856 	if (mp == NULL && vops != &dead_vnodeops)
1857 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1858 #endif
1859 #ifdef MAC
1860 	mac_vnode_init(vp);
1861 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1862 		mac_vnode_associate_singlelabel(mp, vp);
1863 #endif
1864 	if (mp != NULL) {
1865 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1866 	}
1867 
1868 	/*
1869 	 * For the filesystems which do not use vfs_hash_insert(),
1870 	 * still initialize v_hash to have vfs_hash_index() useful.
1871 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1872 	 * its own hashing.
1873 	 */
1874 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1875 
1876 	*vpp = vp;
1877 	return (0);
1878 }
1879 
1880 void
1881 getnewvnode_reserve(void)
1882 {
1883 	struct thread *td;
1884 
1885 	td = curthread;
1886 	MPASS(td->td_vp_reserved == NULL);
1887 	td->td_vp_reserved = vn_alloc(NULL);
1888 }
1889 
1890 void
1891 getnewvnode_drop_reserve(void)
1892 {
1893 	struct thread *td;
1894 
1895 	td = curthread;
1896 	if (td->td_vp_reserved != NULL) {
1897 		vn_free(td->td_vp_reserved);
1898 		td->td_vp_reserved = NULL;
1899 	}
1900 }
1901 
1902 static void __noinline
1903 freevnode(struct vnode *vp)
1904 {
1905 	struct bufobj *bo;
1906 
1907 	/*
1908 	 * The vnode has been marked for destruction, so free it.
1909 	 *
1910 	 * The vnode will be returned to the zone where it will
1911 	 * normally remain until it is needed for another vnode. We
1912 	 * need to cleanup (or verify that the cleanup has already
1913 	 * been done) any residual data left from its current use
1914 	 * so as not to contaminate the freshly allocated vnode.
1915 	 */
1916 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1917 	/*
1918 	 * Paired with vgone.
1919 	 */
1920 	vn_seqc_write_end_free(vp);
1921 
1922 	bo = &vp->v_bufobj;
1923 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1924 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1925 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1926 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1927 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1928 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1929 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1930 	    ("clean blk trie not empty"));
1931 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1932 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1933 	    ("dirty blk trie not empty"));
1934 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1935 	    ("Dangling rangelock waiters"));
1936 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1937 	    ("Leaked inactivation"));
1938 	VI_UNLOCK(vp);
1939 	cache_assert_no_entries(vp);
1940 
1941 #ifdef MAC
1942 	mac_vnode_destroy(vp);
1943 #endif
1944 	if (vp->v_pollinfo != NULL) {
1945 		/*
1946 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
1947 		 * here while having another vnode locked when trying to
1948 		 * satisfy a lookup and needing to recycle.
1949 		 */
1950 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
1951 		destroy_vpollinfo(vp->v_pollinfo);
1952 		VOP_UNLOCK(vp);
1953 		vp->v_pollinfo = NULL;
1954 	}
1955 	vp->v_mountedhere = NULL;
1956 	vp->v_unpcb = NULL;
1957 	vp->v_rdev = NULL;
1958 	vp->v_fifoinfo = NULL;
1959 	vp->v_iflag = 0;
1960 	vp->v_vflag = 0;
1961 	bo->bo_flag = 0;
1962 	vn_free(vp);
1963 }
1964 
1965 /*
1966  * Delete from old mount point vnode list, if on one.
1967  */
1968 static void
1969 delmntque(struct vnode *vp)
1970 {
1971 	struct mount *mp;
1972 
1973 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1974 
1975 	mp = vp->v_mount;
1976 	MNT_ILOCK(mp);
1977 	VI_LOCK(vp);
1978 	vp->v_mount = NULL;
1979 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1980 		("bad mount point vnode list size"));
1981 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1982 	mp->mnt_nvnodelistsize--;
1983 	MNT_REL(mp);
1984 	MNT_IUNLOCK(mp);
1985 	/*
1986 	 * The caller expects the interlock to be still held.
1987 	 */
1988 	ASSERT_VI_LOCKED(vp, __func__);
1989 }
1990 
1991 static int
1992 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1993 {
1994 
1995 	KASSERT(vp->v_mount == NULL,
1996 		("insmntque: vnode already on per mount vnode list"));
1997 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1998 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1999 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2000 	} else {
2001 		KASSERT(!dtr,
2002 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2003 		    __func__));
2004 	}
2005 
2006 	/*
2007 	 * We acquire the vnode interlock early to ensure that the
2008 	 * vnode cannot be recycled by another process releasing a
2009 	 * holdcnt on it before we get it on both the vnode list
2010 	 * and the active vnode list. The mount mutex protects only
2011 	 * manipulation of the vnode list and the vnode freelist
2012 	 * mutex protects only manipulation of the active vnode list.
2013 	 * Hence the need to hold the vnode interlock throughout.
2014 	 */
2015 	MNT_ILOCK(mp);
2016 	VI_LOCK(vp);
2017 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2018 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2019 	    mp->mnt_nvnodelistsize == 0)) &&
2020 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2021 		VI_UNLOCK(vp);
2022 		MNT_IUNLOCK(mp);
2023 		if (dtr) {
2024 			vp->v_data = NULL;
2025 			vp->v_op = &dead_vnodeops;
2026 			vgone(vp);
2027 			vput(vp);
2028 		}
2029 		return (EBUSY);
2030 	}
2031 	vp->v_mount = mp;
2032 	MNT_REF(mp);
2033 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2034 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2035 		("neg mount point vnode list size"));
2036 	mp->mnt_nvnodelistsize++;
2037 	VI_UNLOCK(vp);
2038 	MNT_IUNLOCK(mp);
2039 	return (0);
2040 }
2041 
2042 /*
2043  * Insert into list of vnodes for the new mount point, if available.
2044  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2045  * leaves handling of the vnode to the caller.
2046  */
2047 int
2048 insmntque(struct vnode *vp, struct mount *mp)
2049 {
2050 	return (insmntque1_int(vp, mp, true));
2051 }
2052 
2053 int
2054 insmntque1(struct vnode *vp, struct mount *mp)
2055 {
2056 	return (insmntque1_int(vp, mp, false));
2057 }
2058 
2059 /*
2060  * Flush out and invalidate all buffers associated with a bufobj
2061  * Called with the underlying object locked.
2062  */
2063 int
2064 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2065 {
2066 	int error;
2067 
2068 	BO_LOCK(bo);
2069 	if (flags & V_SAVE) {
2070 		error = bufobj_wwait(bo, slpflag, slptimeo);
2071 		if (error) {
2072 			BO_UNLOCK(bo);
2073 			return (error);
2074 		}
2075 		if (bo->bo_dirty.bv_cnt > 0) {
2076 			BO_UNLOCK(bo);
2077 			do {
2078 				error = BO_SYNC(bo, MNT_WAIT);
2079 			} while (error == ERELOOKUP);
2080 			if (error != 0)
2081 				return (error);
2082 			BO_LOCK(bo);
2083 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2084 				BO_UNLOCK(bo);
2085 				return (EBUSY);
2086 			}
2087 		}
2088 	}
2089 	/*
2090 	 * If you alter this loop please notice that interlock is dropped and
2091 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2092 	 * no race conditions occur from this.
2093 	 */
2094 	do {
2095 		error = flushbuflist(&bo->bo_clean,
2096 		    flags, bo, slpflag, slptimeo);
2097 		if (error == 0 && !(flags & V_CLEANONLY))
2098 			error = flushbuflist(&bo->bo_dirty,
2099 			    flags, bo, slpflag, slptimeo);
2100 		if (error != 0 && error != EAGAIN) {
2101 			BO_UNLOCK(bo);
2102 			return (error);
2103 		}
2104 	} while (error != 0);
2105 
2106 	/*
2107 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2108 	 * have write I/O in-progress but if there is a VM object then the
2109 	 * VM object can also have read-I/O in-progress.
2110 	 */
2111 	do {
2112 		bufobj_wwait(bo, 0, 0);
2113 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2114 			BO_UNLOCK(bo);
2115 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2116 			BO_LOCK(bo);
2117 		}
2118 	} while (bo->bo_numoutput > 0);
2119 	BO_UNLOCK(bo);
2120 
2121 	/*
2122 	 * Destroy the copy in the VM cache, too.
2123 	 */
2124 	if (bo->bo_object != NULL &&
2125 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2126 		VM_OBJECT_WLOCK(bo->bo_object);
2127 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2128 		    OBJPR_CLEANONLY : 0);
2129 		VM_OBJECT_WUNLOCK(bo->bo_object);
2130 	}
2131 
2132 #ifdef INVARIANTS
2133 	BO_LOCK(bo);
2134 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2135 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2136 	    bo->bo_clean.bv_cnt > 0))
2137 		panic("vinvalbuf: flush failed");
2138 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2139 	    bo->bo_dirty.bv_cnt > 0)
2140 		panic("vinvalbuf: flush dirty failed");
2141 	BO_UNLOCK(bo);
2142 #endif
2143 	return (0);
2144 }
2145 
2146 /*
2147  * Flush out and invalidate all buffers associated with a vnode.
2148  * Called with the underlying object locked.
2149  */
2150 int
2151 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2152 {
2153 
2154 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2155 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2156 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2157 		return (0);
2158 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2159 }
2160 
2161 /*
2162  * Flush out buffers on the specified list.
2163  *
2164  */
2165 static int
2166 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2167     int slptimeo)
2168 {
2169 	struct buf *bp, *nbp;
2170 	int retval, error;
2171 	daddr_t lblkno;
2172 	b_xflags_t xflags;
2173 
2174 	ASSERT_BO_WLOCKED(bo);
2175 
2176 	retval = 0;
2177 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2178 		/*
2179 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2180 		 * do not skip any buffers. If we are flushing only V_NORMAL
2181 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2182 		 * flushing only V_ALT buffers then skip buffers not marked
2183 		 * as BX_ALTDATA.
2184 		 */
2185 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2186 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2187 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2188 			continue;
2189 		}
2190 		if (nbp != NULL) {
2191 			lblkno = nbp->b_lblkno;
2192 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2193 		}
2194 		retval = EAGAIN;
2195 		error = BUF_TIMELOCK(bp,
2196 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2197 		    "flushbuf", slpflag, slptimeo);
2198 		if (error) {
2199 			BO_LOCK(bo);
2200 			return (error != ENOLCK ? error : EAGAIN);
2201 		}
2202 		KASSERT(bp->b_bufobj == bo,
2203 		    ("bp %p wrong b_bufobj %p should be %p",
2204 		    bp, bp->b_bufobj, bo));
2205 		/*
2206 		 * XXX Since there are no node locks for NFS, I
2207 		 * believe there is a slight chance that a delayed
2208 		 * write will occur while sleeping just above, so
2209 		 * check for it.
2210 		 */
2211 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2212 		    (flags & V_SAVE)) {
2213 			bremfree(bp);
2214 			bp->b_flags |= B_ASYNC;
2215 			bwrite(bp);
2216 			BO_LOCK(bo);
2217 			return (EAGAIN);	/* XXX: why not loop ? */
2218 		}
2219 		bremfree(bp);
2220 		bp->b_flags |= (B_INVAL | B_RELBUF);
2221 		bp->b_flags &= ~B_ASYNC;
2222 		brelse(bp);
2223 		BO_LOCK(bo);
2224 		if (nbp == NULL)
2225 			break;
2226 		nbp = gbincore(bo, lblkno);
2227 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2228 		    != xflags)
2229 			break;			/* nbp invalid */
2230 	}
2231 	return (retval);
2232 }
2233 
2234 int
2235 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2236 {
2237 	struct buf *bp;
2238 	int error;
2239 	daddr_t lblkno;
2240 
2241 	ASSERT_BO_LOCKED(bo);
2242 
2243 	for (lblkno = startn;;) {
2244 again:
2245 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2246 		if (bp == NULL || bp->b_lblkno >= endn ||
2247 		    bp->b_lblkno < startn)
2248 			break;
2249 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2250 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2251 		if (error != 0) {
2252 			BO_RLOCK(bo);
2253 			if (error == ENOLCK)
2254 				goto again;
2255 			return (error);
2256 		}
2257 		KASSERT(bp->b_bufobj == bo,
2258 		    ("bp %p wrong b_bufobj %p should be %p",
2259 		    bp, bp->b_bufobj, bo));
2260 		lblkno = bp->b_lblkno + 1;
2261 		if ((bp->b_flags & B_MANAGED) == 0)
2262 			bremfree(bp);
2263 		bp->b_flags |= B_RELBUF;
2264 		/*
2265 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2266 		 * pages backing each buffer in the range are unlikely to be
2267 		 * reused.  Dirty buffers will have the hint applied once
2268 		 * they've been written.
2269 		 */
2270 		if ((bp->b_flags & B_VMIO) != 0)
2271 			bp->b_flags |= B_NOREUSE;
2272 		brelse(bp);
2273 		BO_RLOCK(bo);
2274 	}
2275 	return (0);
2276 }
2277 
2278 /*
2279  * Truncate a file's buffer and pages to a specified length.  This
2280  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2281  * sync activity.
2282  */
2283 int
2284 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2285 {
2286 	struct buf *bp, *nbp;
2287 	struct bufobj *bo;
2288 	daddr_t startlbn;
2289 
2290 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2291 	    vp, blksize, (uintmax_t)length);
2292 
2293 	/*
2294 	 * Round up to the *next* lbn.
2295 	 */
2296 	startlbn = howmany(length, blksize);
2297 
2298 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2299 
2300 	bo = &vp->v_bufobj;
2301 restart_unlocked:
2302 	BO_LOCK(bo);
2303 
2304 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2305 		;
2306 
2307 	if (length > 0) {
2308 restartsync:
2309 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2310 			if (bp->b_lblkno > 0)
2311 				continue;
2312 			/*
2313 			 * Since we hold the vnode lock this should only
2314 			 * fail if we're racing with the buf daemon.
2315 			 */
2316 			if (BUF_LOCK(bp,
2317 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2318 			    BO_LOCKPTR(bo)) == ENOLCK)
2319 				goto restart_unlocked;
2320 
2321 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2322 			    ("buf(%p) on dirty queue without DELWRI", bp));
2323 
2324 			bremfree(bp);
2325 			bawrite(bp);
2326 			BO_LOCK(bo);
2327 			goto restartsync;
2328 		}
2329 	}
2330 
2331 	bufobj_wwait(bo, 0, 0);
2332 	BO_UNLOCK(bo);
2333 	vnode_pager_setsize(vp, length);
2334 
2335 	return (0);
2336 }
2337 
2338 /*
2339  * Invalidate the cached pages of a file's buffer within the range of block
2340  * numbers [startlbn, endlbn).
2341  */
2342 void
2343 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2344     int blksize)
2345 {
2346 	struct bufobj *bo;
2347 	off_t start, end;
2348 
2349 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2350 
2351 	start = blksize * startlbn;
2352 	end = blksize * endlbn;
2353 
2354 	bo = &vp->v_bufobj;
2355 	BO_LOCK(bo);
2356 	MPASS(blksize == bo->bo_bsize);
2357 
2358 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2359 		;
2360 
2361 	BO_UNLOCK(bo);
2362 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2363 }
2364 
2365 static int
2366 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2367     daddr_t startlbn, daddr_t endlbn)
2368 {
2369 	struct buf *bp, *nbp;
2370 	bool anyfreed;
2371 
2372 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2373 	ASSERT_BO_LOCKED(bo);
2374 
2375 	do {
2376 		anyfreed = false;
2377 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2378 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2379 				continue;
2380 			if (BUF_LOCK(bp,
2381 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2382 			    BO_LOCKPTR(bo)) == ENOLCK) {
2383 				BO_LOCK(bo);
2384 				return (EAGAIN);
2385 			}
2386 
2387 			bremfree(bp);
2388 			bp->b_flags |= B_INVAL | B_RELBUF;
2389 			bp->b_flags &= ~B_ASYNC;
2390 			brelse(bp);
2391 			anyfreed = true;
2392 
2393 			BO_LOCK(bo);
2394 			if (nbp != NULL &&
2395 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2396 			    nbp->b_vp != vp ||
2397 			    (nbp->b_flags & B_DELWRI) != 0))
2398 				return (EAGAIN);
2399 		}
2400 
2401 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2402 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2403 				continue;
2404 			if (BUF_LOCK(bp,
2405 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2406 			    BO_LOCKPTR(bo)) == ENOLCK) {
2407 				BO_LOCK(bo);
2408 				return (EAGAIN);
2409 			}
2410 			bremfree(bp);
2411 			bp->b_flags |= B_INVAL | B_RELBUF;
2412 			bp->b_flags &= ~B_ASYNC;
2413 			brelse(bp);
2414 			anyfreed = true;
2415 
2416 			BO_LOCK(bo);
2417 			if (nbp != NULL &&
2418 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2419 			    (nbp->b_vp != vp) ||
2420 			    (nbp->b_flags & B_DELWRI) == 0))
2421 				return (EAGAIN);
2422 		}
2423 	} while (anyfreed);
2424 	return (0);
2425 }
2426 
2427 static void
2428 buf_vlist_remove(struct buf *bp)
2429 {
2430 	struct bufv *bv;
2431 	b_xflags_t flags;
2432 
2433 	flags = bp->b_xflags;
2434 
2435 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2436 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2437 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2438 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2439 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2440 
2441 	if ((flags & BX_VNDIRTY) != 0)
2442 		bv = &bp->b_bufobj->bo_dirty;
2443 	else
2444 		bv = &bp->b_bufobj->bo_clean;
2445 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2446 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2447 	bv->bv_cnt--;
2448 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2449 }
2450 
2451 /*
2452  * Add the buffer to the sorted clean or dirty block list.
2453  *
2454  * NOTE: xflags is passed as a constant, optimizing this inline function!
2455  */
2456 static void
2457 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2458 {
2459 	struct bufv *bv;
2460 	struct buf *n;
2461 	int error;
2462 
2463 	ASSERT_BO_WLOCKED(bo);
2464 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2465 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2466 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2467 	    ("dead bo %p", bo));
2468 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2469 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2470 	bp->b_xflags |= xflags;
2471 	if (xflags & BX_VNDIRTY)
2472 		bv = &bo->bo_dirty;
2473 	else
2474 		bv = &bo->bo_clean;
2475 
2476 	/*
2477 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2478 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2479 	 * than _ge.
2480 	 */
2481 	if (bv->bv_cnt == 0 ||
2482 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2483 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2484 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2485 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2486 	else
2487 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2488 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2489 	if (error)
2490 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2491 	bv->bv_cnt++;
2492 }
2493 
2494 /*
2495  * Look up a buffer using the buffer tries.
2496  */
2497 struct buf *
2498 gbincore(struct bufobj *bo, daddr_t lblkno)
2499 {
2500 	struct buf *bp;
2501 
2502 	ASSERT_BO_LOCKED(bo);
2503 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2504 	if (bp != NULL)
2505 		return (bp);
2506 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2507 }
2508 
2509 /*
2510  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2511  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2512  * stability of the result.  Like other lockless lookups, the found buf may
2513  * already be invalid by the time this function returns.
2514  */
2515 struct buf *
2516 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2517 {
2518 	struct buf *bp;
2519 
2520 	ASSERT_BO_UNLOCKED(bo);
2521 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2522 	if (bp != NULL)
2523 		return (bp);
2524 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2525 }
2526 
2527 /*
2528  * Associate a buffer with a vnode.
2529  */
2530 void
2531 bgetvp(struct vnode *vp, struct buf *bp)
2532 {
2533 	struct bufobj *bo;
2534 
2535 	bo = &vp->v_bufobj;
2536 	ASSERT_BO_WLOCKED(bo);
2537 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2538 
2539 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2540 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2541 	    ("bgetvp: bp already attached! %p", bp));
2542 
2543 	vhold(vp);
2544 	bp->b_vp = vp;
2545 	bp->b_bufobj = bo;
2546 	/*
2547 	 * Insert onto list for new vnode.
2548 	 */
2549 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2550 }
2551 
2552 /*
2553  * Disassociate a buffer from a vnode.
2554  */
2555 void
2556 brelvp(struct buf *bp)
2557 {
2558 	struct bufobj *bo;
2559 	struct vnode *vp;
2560 
2561 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2562 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2563 
2564 	/*
2565 	 * Delete from old vnode list, if on one.
2566 	 */
2567 	vp = bp->b_vp;		/* XXX */
2568 	bo = bp->b_bufobj;
2569 	BO_LOCK(bo);
2570 	buf_vlist_remove(bp);
2571 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2572 		bo->bo_flag &= ~BO_ONWORKLST;
2573 		mtx_lock(&sync_mtx);
2574 		LIST_REMOVE(bo, bo_synclist);
2575 		syncer_worklist_len--;
2576 		mtx_unlock(&sync_mtx);
2577 	}
2578 	bp->b_vp = NULL;
2579 	bp->b_bufobj = NULL;
2580 	BO_UNLOCK(bo);
2581 	vdrop(vp);
2582 }
2583 
2584 /*
2585  * Add an item to the syncer work queue.
2586  */
2587 static void
2588 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2589 {
2590 	int slot;
2591 
2592 	ASSERT_BO_WLOCKED(bo);
2593 
2594 	mtx_lock(&sync_mtx);
2595 	if (bo->bo_flag & BO_ONWORKLST)
2596 		LIST_REMOVE(bo, bo_synclist);
2597 	else {
2598 		bo->bo_flag |= BO_ONWORKLST;
2599 		syncer_worklist_len++;
2600 	}
2601 
2602 	if (delay > syncer_maxdelay - 2)
2603 		delay = syncer_maxdelay - 2;
2604 	slot = (syncer_delayno + delay) & syncer_mask;
2605 
2606 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2607 	mtx_unlock(&sync_mtx);
2608 }
2609 
2610 static int
2611 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2612 {
2613 	int error, len;
2614 
2615 	mtx_lock(&sync_mtx);
2616 	len = syncer_worklist_len - sync_vnode_count;
2617 	mtx_unlock(&sync_mtx);
2618 	error = SYSCTL_OUT(req, &len, sizeof(len));
2619 	return (error);
2620 }
2621 
2622 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2623     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2624     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2625 
2626 static struct proc *updateproc;
2627 static void sched_sync(void);
2628 static struct kproc_desc up_kp = {
2629 	"syncer",
2630 	sched_sync,
2631 	&updateproc
2632 };
2633 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2634 
2635 static int
2636 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2637 {
2638 	struct vnode *vp;
2639 	struct mount *mp;
2640 
2641 	*bo = LIST_FIRST(slp);
2642 	if (*bo == NULL)
2643 		return (0);
2644 	vp = bo2vnode(*bo);
2645 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2646 		return (1);
2647 	/*
2648 	 * We use vhold in case the vnode does not
2649 	 * successfully sync.  vhold prevents the vnode from
2650 	 * going away when we unlock the sync_mtx so that
2651 	 * we can acquire the vnode interlock.
2652 	 */
2653 	vholdl(vp);
2654 	mtx_unlock(&sync_mtx);
2655 	VI_UNLOCK(vp);
2656 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2657 		vdrop(vp);
2658 		mtx_lock(&sync_mtx);
2659 		return (*bo == LIST_FIRST(slp));
2660 	}
2661 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2662 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2663 	VOP_UNLOCK(vp);
2664 	vn_finished_write(mp);
2665 	BO_LOCK(*bo);
2666 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2667 		/*
2668 		 * Put us back on the worklist.  The worklist
2669 		 * routine will remove us from our current
2670 		 * position and then add us back in at a later
2671 		 * position.
2672 		 */
2673 		vn_syncer_add_to_worklist(*bo, syncdelay);
2674 	}
2675 	BO_UNLOCK(*bo);
2676 	vdrop(vp);
2677 	mtx_lock(&sync_mtx);
2678 	return (0);
2679 }
2680 
2681 static int first_printf = 1;
2682 
2683 /*
2684  * System filesystem synchronizer daemon.
2685  */
2686 static void
2687 sched_sync(void)
2688 {
2689 	struct synclist *next, *slp;
2690 	struct bufobj *bo;
2691 	long starttime;
2692 	struct thread *td = curthread;
2693 	int last_work_seen;
2694 	int net_worklist_len;
2695 	int syncer_final_iter;
2696 	int error;
2697 
2698 	last_work_seen = 0;
2699 	syncer_final_iter = 0;
2700 	syncer_state = SYNCER_RUNNING;
2701 	starttime = time_uptime;
2702 	td->td_pflags |= TDP_NORUNNINGBUF;
2703 
2704 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2705 	    SHUTDOWN_PRI_LAST);
2706 
2707 	mtx_lock(&sync_mtx);
2708 	for (;;) {
2709 		if (syncer_state == SYNCER_FINAL_DELAY &&
2710 		    syncer_final_iter == 0) {
2711 			mtx_unlock(&sync_mtx);
2712 			kproc_suspend_check(td->td_proc);
2713 			mtx_lock(&sync_mtx);
2714 		}
2715 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2716 		if (syncer_state != SYNCER_RUNNING &&
2717 		    starttime != time_uptime) {
2718 			if (first_printf) {
2719 				printf("\nSyncing disks, vnodes remaining... ");
2720 				first_printf = 0;
2721 			}
2722 			printf("%d ", net_worklist_len);
2723 		}
2724 		starttime = time_uptime;
2725 
2726 		/*
2727 		 * Push files whose dirty time has expired.  Be careful
2728 		 * of interrupt race on slp queue.
2729 		 *
2730 		 * Skip over empty worklist slots when shutting down.
2731 		 */
2732 		do {
2733 			slp = &syncer_workitem_pending[syncer_delayno];
2734 			syncer_delayno += 1;
2735 			if (syncer_delayno == syncer_maxdelay)
2736 				syncer_delayno = 0;
2737 			next = &syncer_workitem_pending[syncer_delayno];
2738 			/*
2739 			 * If the worklist has wrapped since the
2740 			 * it was emptied of all but syncer vnodes,
2741 			 * switch to the FINAL_DELAY state and run
2742 			 * for one more second.
2743 			 */
2744 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2745 			    net_worklist_len == 0 &&
2746 			    last_work_seen == syncer_delayno) {
2747 				syncer_state = SYNCER_FINAL_DELAY;
2748 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2749 			}
2750 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2751 		    syncer_worklist_len > 0);
2752 
2753 		/*
2754 		 * Keep track of the last time there was anything
2755 		 * on the worklist other than syncer vnodes.
2756 		 * Return to the SHUTTING_DOWN state if any
2757 		 * new work appears.
2758 		 */
2759 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2760 			last_work_seen = syncer_delayno;
2761 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2762 			syncer_state = SYNCER_SHUTTING_DOWN;
2763 		while (!LIST_EMPTY(slp)) {
2764 			error = sync_vnode(slp, &bo, td);
2765 			if (error == 1) {
2766 				LIST_REMOVE(bo, bo_synclist);
2767 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2768 				continue;
2769 			}
2770 
2771 			if (first_printf == 0) {
2772 				/*
2773 				 * Drop the sync mutex, because some watchdog
2774 				 * drivers need to sleep while patting
2775 				 */
2776 				mtx_unlock(&sync_mtx);
2777 				wdog_kern_pat(WD_LASTVAL);
2778 				mtx_lock(&sync_mtx);
2779 			}
2780 		}
2781 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2782 			syncer_final_iter--;
2783 		/*
2784 		 * The variable rushjob allows the kernel to speed up the
2785 		 * processing of the filesystem syncer process. A rushjob
2786 		 * value of N tells the filesystem syncer to process the next
2787 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2788 		 * is used by the soft update code to speed up the filesystem
2789 		 * syncer process when the incore state is getting so far
2790 		 * ahead of the disk that the kernel memory pool is being
2791 		 * threatened with exhaustion.
2792 		 */
2793 		if (rushjob > 0) {
2794 			rushjob -= 1;
2795 			continue;
2796 		}
2797 		/*
2798 		 * Just sleep for a short period of time between
2799 		 * iterations when shutting down to allow some I/O
2800 		 * to happen.
2801 		 *
2802 		 * If it has taken us less than a second to process the
2803 		 * current work, then wait. Otherwise start right over
2804 		 * again. We can still lose time if any single round
2805 		 * takes more than two seconds, but it does not really
2806 		 * matter as we are just trying to generally pace the
2807 		 * filesystem activity.
2808 		 */
2809 		if (syncer_state != SYNCER_RUNNING ||
2810 		    time_uptime == starttime) {
2811 			thread_lock(td);
2812 			sched_prio(td, PPAUSE);
2813 			thread_unlock(td);
2814 		}
2815 		if (syncer_state != SYNCER_RUNNING)
2816 			cv_timedwait(&sync_wakeup, &sync_mtx,
2817 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2818 		else if (time_uptime == starttime)
2819 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2820 	}
2821 }
2822 
2823 /*
2824  * Request the syncer daemon to speed up its work.
2825  * We never push it to speed up more than half of its
2826  * normal turn time, otherwise it could take over the cpu.
2827  */
2828 int
2829 speedup_syncer(void)
2830 {
2831 	int ret = 0;
2832 
2833 	mtx_lock(&sync_mtx);
2834 	if (rushjob < syncdelay / 2) {
2835 		rushjob += 1;
2836 		stat_rush_requests += 1;
2837 		ret = 1;
2838 	}
2839 	mtx_unlock(&sync_mtx);
2840 	cv_broadcast(&sync_wakeup);
2841 	return (ret);
2842 }
2843 
2844 /*
2845  * Tell the syncer to speed up its work and run though its work
2846  * list several times, then tell it to shut down.
2847  */
2848 static void
2849 syncer_shutdown(void *arg, int howto)
2850 {
2851 
2852 	if (howto & RB_NOSYNC)
2853 		return;
2854 	mtx_lock(&sync_mtx);
2855 	syncer_state = SYNCER_SHUTTING_DOWN;
2856 	rushjob = 0;
2857 	mtx_unlock(&sync_mtx);
2858 	cv_broadcast(&sync_wakeup);
2859 	kproc_shutdown(arg, howto);
2860 }
2861 
2862 void
2863 syncer_suspend(void)
2864 {
2865 
2866 	syncer_shutdown(updateproc, 0);
2867 }
2868 
2869 void
2870 syncer_resume(void)
2871 {
2872 
2873 	mtx_lock(&sync_mtx);
2874 	first_printf = 1;
2875 	syncer_state = SYNCER_RUNNING;
2876 	mtx_unlock(&sync_mtx);
2877 	cv_broadcast(&sync_wakeup);
2878 	kproc_resume(updateproc);
2879 }
2880 
2881 /*
2882  * Move the buffer between the clean and dirty lists of its vnode.
2883  */
2884 void
2885 reassignbuf(struct buf *bp)
2886 {
2887 	struct vnode *vp;
2888 	struct bufobj *bo;
2889 	int delay;
2890 #ifdef INVARIANTS
2891 	struct bufv *bv;
2892 #endif
2893 
2894 	vp = bp->b_vp;
2895 	bo = bp->b_bufobj;
2896 
2897 	KASSERT((bp->b_flags & B_PAGING) == 0,
2898 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2899 
2900 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2901 	    bp, bp->b_vp, bp->b_flags);
2902 
2903 	BO_LOCK(bo);
2904 	buf_vlist_remove(bp);
2905 
2906 	/*
2907 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2908 	 * of clean buffers.
2909 	 */
2910 	if (bp->b_flags & B_DELWRI) {
2911 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2912 			switch (vp->v_type) {
2913 			case VDIR:
2914 				delay = dirdelay;
2915 				break;
2916 			case VCHR:
2917 				delay = metadelay;
2918 				break;
2919 			default:
2920 				delay = filedelay;
2921 			}
2922 			vn_syncer_add_to_worklist(bo, delay);
2923 		}
2924 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2925 	} else {
2926 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2927 
2928 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2929 			mtx_lock(&sync_mtx);
2930 			LIST_REMOVE(bo, bo_synclist);
2931 			syncer_worklist_len--;
2932 			mtx_unlock(&sync_mtx);
2933 			bo->bo_flag &= ~BO_ONWORKLST;
2934 		}
2935 	}
2936 #ifdef INVARIANTS
2937 	bv = &bo->bo_clean;
2938 	bp = TAILQ_FIRST(&bv->bv_hd);
2939 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2940 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2941 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2942 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2943 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2944 	bv = &bo->bo_dirty;
2945 	bp = TAILQ_FIRST(&bv->bv_hd);
2946 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2947 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2948 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2949 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2950 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2951 #endif
2952 	BO_UNLOCK(bo);
2953 }
2954 
2955 static void
2956 v_init_counters(struct vnode *vp)
2957 {
2958 
2959 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2960 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2961 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2962 
2963 	refcount_init(&vp->v_holdcnt, 1);
2964 	refcount_init(&vp->v_usecount, 1);
2965 }
2966 
2967 /*
2968  * Grab a particular vnode from the free list, increment its
2969  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2970  * is being destroyed.  Only callers who specify LK_RETRY will
2971  * see doomed vnodes.  If inactive processing was delayed in
2972  * vput try to do it here.
2973  *
2974  * usecount is manipulated using atomics without holding any locks.
2975  *
2976  * holdcnt can be manipulated using atomics without holding any locks,
2977  * except when transitioning 1<->0, in which case the interlock is held.
2978  *
2979  * Consumers which don't guarantee liveness of the vnode can use SMR to
2980  * try to get a reference. Note this operation can fail since the vnode
2981  * may be awaiting getting freed by the time they get to it.
2982  */
2983 enum vgetstate
2984 vget_prep_smr(struct vnode *vp)
2985 {
2986 	enum vgetstate vs;
2987 
2988 	VFS_SMR_ASSERT_ENTERED();
2989 
2990 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2991 		vs = VGET_USECOUNT;
2992 	} else {
2993 		if (vhold_smr(vp))
2994 			vs = VGET_HOLDCNT;
2995 		else
2996 			vs = VGET_NONE;
2997 	}
2998 	return (vs);
2999 }
3000 
3001 enum vgetstate
3002 vget_prep(struct vnode *vp)
3003 {
3004 	enum vgetstate vs;
3005 
3006 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3007 		vs = VGET_USECOUNT;
3008 	} else {
3009 		vhold(vp);
3010 		vs = VGET_HOLDCNT;
3011 	}
3012 	return (vs);
3013 }
3014 
3015 void
3016 vget_abort(struct vnode *vp, enum vgetstate vs)
3017 {
3018 
3019 	switch (vs) {
3020 	case VGET_USECOUNT:
3021 		vrele(vp);
3022 		break;
3023 	case VGET_HOLDCNT:
3024 		vdrop(vp);
3025 		break;
3026 	default:
3027 		__assert_unreachable();
3028 	}
3029 }
3030 
3031 int
3032 vget(struct vnode *vp, int flags)
3033 {
3034 	enum vgetstate vs;
3035 
3036 	vs = vget_prep(vp);
3037 	return (vget_finish(vp, flags, vs));
3038 }
3039 
3040 int
3041 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3042 {
3043 	int error;
3044 
3045 	if ((flags & LK_INTERLOCK) != 0)
3046 		ASSERT_VI_LOCKED(vp, __func__);
3047 	else
3048 		ASSERT_VI_UNLOCKED(vp, __func__);
3049 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3050 	VNPASS(vp->v_holdcnt > 0, vp);
3051 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3052 
3053 	error = vn_lock(vp, flags);
3054 	if (__predict_false(error != 0)) {
3055 		vget_abort(vp, vs);
3056 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3057 		    vp);
3058 		return (error);
3059 	}
3060 
3061 	vget_finish_ref(vp, vs);
3062 	return (0);
3063 }
3064 
3065 void
3066 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3067 {
3068 	int old;
3069 
3070 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3071 	VNPASS(vp->v_holdcnt > 0, vp);
3072 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3073 
3074 	if (vs == VGET_USECOUNT)
3075 		return;
3076 
3077 	/*
3078 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3079 	 * the vnode around. Otherwise someone else lended their hold count and
3080 	 * we have to drop ours.
3081 	 */
3082 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3083 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3084 	if (old != 0) {
3085 #ifdef INVARIANTS
3086 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3087 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3088 #else
3089 		refcount_release(&vp->v_holdcnt);
3090 #endif
3091 	}
3092 }
3093 
3094 void
3095 vref(struct vnode *vp)
3096 {
3097 	enum vgetstate vs;
3098 
3099 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3100 	vs = vget_prep(vp);
3101 	vget_finish_ref(vp, vs);
3102 }
3103 
3104 void
3105 vrefact(struct vnode *vp)
3106 {
3107 
3108 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3109 #ifdef INVARIANTS
3110 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3111 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3112 #else
3113 	refcount_acquire(&vp->v_usecount);
3114 #endif
3115 }
3116 
3117 void
3118 vlazy(struct vnode *vp)
3119 {
3120 	struct mount *mp;
3121 
3122 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3123 
3124 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3125 		return;
3126 	/*
3127 	 * We may get here for inactive routines after the vnode got doomed.
3128 	 */
3129 	if (VN_IS_DOOMED(vp))
3130 		return;
3131 	mp = vp->v_mount;
3132 	mtx_lock(&mp->mnt_listmtx);
3133 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3134 		vp->v_mflag |= VMP_LAZYLIST;
3135 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3136 		mp->mnt_lazyvnodelistsize++;
3137 	}
3138 	mtx_unlock(&mp->mnt_listmtx);
3139 }
3140 
3141 static void
3142 vunlazy(struct vnode *vp)
3143 {
3144 	struct mount *mp;
3145 
3146 	ASSERT_VI_LOCKED(vp, __func__);
3147 	VNPASS(!VN_IS_DOOMED(vp), vp);
3148 
3149 	mp = vp->v_mount;
3150 	mtx_lock(&mp->mnt_listmtx);
3151 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3152 	/*
3153 	 * Don't remove the vnode from the lazy list if another thread
3154 	 * has increased the hold count. It may have re-enqueued the
3155 	 * vnode to the lazy list and is now responsible for its
3156 	 * removal.
3157 	 */
3158 	if (vp->v_holdcnt == 0) {
3159 		vp->v_mflag &= ~VMP_LAZYLIST;
3160 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3161 		mp->mnt_lazyvnodelistsize--;
3162 	}
3163 	mtx_unlock(&mp->mnt_listmtx);
3164 }
3165 
3166 /*
3167  * This routine is only meant to be called from vgonel prior to dooming
3168  * the vnode.
3169  */
3170 static void
3171 vunlazy_gone(struct vnode *vp)
3172 {
3173 	struct mount *mp;
3174 
3175 	ASSERT_VOP_ELOCKED(vp, __func__);
3176 	ASSERT_VI_LOCKED(vp, __func__);
3177 	VNPASS(!VN_IS_DOOMED(vp), vp);
3178 
3179 	if (vp->v_mflag & VMP_LAZYLIST) {
3180 		mp = vp->v_mount;
3181 		mtx_lock(&mp->mnt_listmtx);
3182 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3183 		vp->v_mflag &= ~VMP_LAZYLIST;
3184 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3185 		mp->mnt_lazyvnodelistsize--;
3186 		mtx_unlock(&mp->mnt_listmtx);
3187 	}
3188 }
3189 
3190 static void
3191 vdefer_inactive(struct vnode *vp)
3192 {
3193 
3194 	ASSERT_VI_LOCKED(vp, __func__);
3195 	VNPASS(vp->v_holdcnt > 0, vp);
3196 	if (VN_IS_DOOMED(vp)) {
3197 		vdropl(vp);
3198 		return;
3199 	}
3200 	if (vp->v_iflag & VI_DEFINACT) {
3201 		VNPASS(vp->v_holdcnt > 1, vp);
3202 		vdropl(vp);
3203 		return;
3204 	}
3205 	if (vp->v_usecount > 0) {
3206 		vp->v_iflag &= ~VI_OWEINACT;
3207 		vdropl(vp);
3208 		return;
3209 	}
3210 	vlazy(vp);
3211 	vp->v_iflag |= VI_DEFINACT;
3212 	VI_UNLOCK(vp);
3213 	atomic_add_long(&deferred_inact, 1);
3214 }
3215 
3216 static void
3217 vdefer_inactive_unlocked(struct vnode *vp)
3218 {
3219 
3220 	VI_LOCK(vp);
3221 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3222 		vdropl(vp);
3223 		return;
3224 	}
3225 	vdefer_inactive(vp);
3226 }
3227 
3228 enum vput_op { VRELE, VPUT, VUNREF };
3229 
3230 /*
3231  * Handle ->v_usecount transitioning to 0.
3232  *
3233  * By releasing the last usecount we take ownership of the hold count which
3234  * provides liveness of the vnode, meaning we have to vdrop.
3235  *
3236  * For all vnodes we may need to perform inactive processing. It requires an
3237  * exclusive lock on the vnode, while it is legal to call here with only a
3238  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3239  * inactive processing gets deferred to the syncer.
3240  *
3241  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3242  * on the lock being held all the way until VOP_INACTIVE. This in particular
3243  * happens with UFS which adds half-constructed vnodes to the hash, where they
3244  * can be found by other code.
3245  */
3246 static void
3247 vput_final(struct vnode *vp, enum vput_op func)
3248 {
3249 	int error;
3250 	bool want_unlock;
3251 
3252 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3253 	VNPASS(vp->v_holdcnt > 0, vp);
3254 
3255 	VI_LOCK(vp);
3256 
3257 	/*
3258 	 * By the time we got here someone else might have transitioned
3259 	 * the count back to > 0.
3260 	 */
3261 	if (vp->v_usecount > 0)
3262 		goto out;
3263 
3264 	/*
3265 	 * If the vnode is doomed vgone already performed inactive processing
3266 	 * (if needed).
3267 	 */
3268 	if (VN_IS_DOOMED(vp))
3269 		goto out;
3270 
3271 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3272 		goto out;
3273 
3274 	if (vp->v_iflag & VI_DOINGINACT)
3275 		goto out;
3276 
3277 	/*
3278 	 * Locking operations here will drop the interlock and possibly the
3279 	 * vnode lock, opening a window where the vnode can get doomed all the
3280 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3281 	 * perform inactive.
3282 	 */
3283 	vp->v_iflag |= VI_OWEINACT;
3284 	want_unlock = false;
3285 	error = 0;
3286 	switch (func) {
3287 	case VRELE:
3288 		switch (VOP_ISLOCKED(vp)) {
3289 		case LK_EXCLUSIVE:
3290 			break;
3291 		case LK_EXCLOTHER:
3292 		case 0:
3293 			want_unlock = true;
3294 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3295 			VI_LOCK(vp);
3296 			break;
3297 		default:
3298 			/*
3299 			 * The lock has at least one sharer, but we have no way
3300 			 * to conclude whether this is us. Play it safe and
3301 			 * defer processing.
3302 			 */
3303 			error = EAGAIN;
3304 			break;
3305 		}
3306 		break;
3307 	case VPUT:
3308 		want_unlock = true;
3309 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3310 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3311 			    LK_NOWAIT);
3312 			VI_LOCK(vp);
3313 		}
3314 		break;
3315 	case VUNREF:
3316 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3317 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3318 			VI_LOCK(vp);
3319 		}
3320 		break;
3321 	}
3322 	if (error == 0) {
3323 		if (func == VUNREF) {
3324 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3325 			    ("recursive vunref"));
3326 			vp->v_vflag |= VV_UNREF;
3327 		}
3328 		for (;;) {
3329 			error = vinactive(vp);
3330 			if (want_unlock)
3331 				VOP_UNLOCK(vp);
3332 			if (error != ERELOOKUP || !want_unlock)
3333 				break;
3334 			VOP_LOCK(vp, LK_EXCLUSIVE);
3335 		}
3336 		if (func == VUNREF)
3337 			vp->v_vflag &= ~VV_UNREF;
3338 		vdropl(vp);
3339 	} else {
3340 		vdefer_inactive(vp);
3341 	}
3342 	return;
3343 out:
3344 	if (func == VPUT)
3345 		VOP_UNLOCK(vp);
3346 	vdropl(vp);
3347 }
3348 
3349 /*
3350  * Decrement ->v_usecount for a vnode.
3351  *
3352  * Releasing the last use count requires additional processing, see vput_final
3353  * above for details.
3354  *
3355  * Comment above each variant denotes lock state on entry and exit.
3356  */
3357 
3358 /*
3359  * in: any
3360  * out: same as passed in
3361  */
3362 void
3363 vrele(struct vnode *vp)
3364 {
3365 
3366 	ASSERT_VI_UNLOCKED(vp, __func__);
3367 	if (!refcount_release(&vp->v_usecount))
3368 		return;
3369 	vput_final(vp, VRELE);
3370 }
3371 
3372 /*
3373  * in: locked
3374  * out: unlocked
3375  */
3376 void
3377 vput(struct vnode *vp)
3378 {
3379 
3380 	ASSERT_VOP_LOCKED(vp, __func__);
3381 	ASSERT_VI_UNLOCKED(vp, __func__);
3382 	if (!refcount_release(&vp->v_usecount)) {
3383 		VOP_UNLOCK(vp);
3384 		return;
3385 	}
3386 	vput_final(vp, VPUT);
3387 }
3388 
3389 /*
3390  * in: locked
3391  * out: locked
3392  */
3393 void
3394 vunref(struct vnode *vp)
3395 {
3396 
3397 	ASSERT_VOP_LOCKED(vp, __func__);
3398 	ASSERT_VI_UNLOCKED(vp, __func__);
3399 	if (!refcount_release(&vp->v_usecount))
3400 		return;
3401 	vput_final(vp, VUNREF);
3402 }
3403 
3404 void
3405 vhold(struct vnode *vp)
3406 {
3407 	int old;
3408 
3409 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3410 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3411 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3412 	    ("%s: wrong hold count %d", __func__, old));
3413 	if (old == 0)
3414 		vfs_freevnodes_dec();
3415 }
3416 
3417 void
3418 vholdnz(struct vnode *vp)
3419 {
3420 
3421 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3422 #ifdef INVARIANTS
3423 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3424 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3425 	    ("%s: wrong hold count %d", __func__, old));
3426 #else
3427 	atomic_add_int(&vp->v_holdcnt, 1);
3428 #endif
3429 }
3430 
3431 /*
3432  * Grab a hold count unless the vnode is freed.
3433  *
3434  * Only use this routine if vfs smr is the only protection you have against
3435  * freeing the vnode.
3436  *
3437  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3438  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3439  * the thread which managed to set the flag.
3440  *
3441  * It may be tempting to replace the loop with:
3442  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3443  * if (count & VHOLD_NO_SMR) {
3444  *     backpedal and error out;
3445  * }
3446  *
3447  * However, while this is more performant, it hinders debugging by eliminating
3448  * the previously mentioned invariant.
3449  */
3450 bool
3451 vhold_smr(struct vnode *vp)
3452 {
3453 	int count;
3454 
3455 	VFS_SMR_ASSERT_ENTERED();
3456 
3457 	count = atomic_load_int(&vp->v_holdcnt);
3458 	for (;;) {
3459 		if (count & VHOLD_NO_SMR) {
3460 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3461 			    ("non-zero hold count with flags %d\n", count));
3462 			return (false);
3463 		}
3464 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3465 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3466 			if (count == 0)
3467 				vfs_freevnodes_dec();
3468 			return (true);
3469 		}
3470 	}
3471 }
3472 
3473 /*
3474  * Hold a free vnode for recycling.
3475  *
3476  * Note: vnode_init references this comment.
3477  *
3478  * Attempts to recycle only need the global vnode list lock and have no use for
3479  * SMR.
3480  *
3481  * However, vnodes get inserted into the global list before they get fully
3482  * initialized and stay there until UMA decides to free the memory. This in
3483  * particular means the target can be found before it becomes usable and after
3484  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3485  * VHOLD_NO_SMR.
3486  *
3487  * Note: the vnode may gain more references after we transition the count 0->1.
3488  */
3489 static bool
3490 vhold_recycle_free(struct vnode *vp)
3491 {
3492 	int count;
3493 
3494 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3495 
3496 	count = atomic_load_int(&vp->v_holdcnt);
3497 	for (;;) {
3498 		if (count & VHOLD_NO_SMR) {
3499 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3500 			    ("non-zero hold count with flags %d\n", count));
3501 			return (false);
3502 		}
3503 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3504 		if (count > 0) {
3505 			return (false);
3506 		}
3507 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3508 			vfs_freevnodes_dec();
3509 			return (true);
3510 		}
3511 	}
3512 }
3513 
3514 static void __noinline
3515 vdbatch_process(struct vdbatch *vd)
3516 {
3517 	struct vnode *vp;
3518 	int i;
3519 
3520 	mtx_assert(&vd->lock, MA_OWNED);
3521 	MPASS(curthread->td_pinned > 0);
3522 	MPASS(vd->index == VDBATCH_SIZE);
3523 
3524 	critical_enter();
3525 	if (mtx_trylock(&vnode_list_mtx)) {
3526 		for (i = 0; i < VDBATCH_SIZE; i++) {
3527 			vp = vd->tab[i];
3528 			vd->tab[i] = NULL;
3529 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3530 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3531 			MPASS(vp->v_dbatchcpu != NOCPU);
3532 			vp->v_dbatchcpu = NOCPU;
3533 		}
3534 		mtx_unlock(&vnode_list_mtx);
3535 	} else {
3536 		for (i = 0; i < VDBATCH_SIZE; i++) {
3537 			vp = vd->tab[i];
3538 			vd->tab[i] = NULL;
3539 			MPASS(vp->v_dbatchcpu != NOCPU);
3540 			vp->v_dbatchcpu = NOCPU;
3541 		}
3542 	}
3543 	vd->index = 0;
3544 	critical_exit();
3545 }
3546 
3547 static void
3548 vdbatch_enqueue(struct vnode *vp)
3549 {
3550 	struct vdbatch *vd;
3551 
3552 	ASSERT_VI_LOCKED(vp, __func__);
3553 	VNPASS(!VN_IS_DOOMED(vp), vp);
3554 
3555 	if (vp->v_dbatchcpu != NOCPU) {
3556 		VI_UNLOCK(vp);
3557 		return;
3558 	}
3559 
3560 	sched_pin();
3561 	vd = DPCPU_PTR(vd);
3562 	mtx_lock(&vd->lock);
3563 	MPASS(vd->index < VDBATCH_SIZE);
3564 	MPASS(vd->tab[vd->index] == NULL);
3565 	/*
3566 	 * A hack: we depend on being pinned so that we know what to put in
3567 	 * ->v_dbatchcpu.
3568 	 */
3569 	vp->v_dbatchcpu = curcpu;
3570 	vd->tab[vd->index] = vp;
3571 	vd->index++;
3572 	VI_UNLOCK(vp);
3573 	if (vd->index == VDBATCH_SIZE)
3574 		vdbatch_process(vd);
3575 	mtx_unlock(&vd->lock);
3576 	sched_unpin();
3577 }
3578 
3579 /*
3580  * This routine must only be called for vnodes which are about to be
3581  * deallocated. Supporting dequeue for arbitrary vndoes would require
3582  * validating that the locked batch matches.
3583  */
3584 static void
3585 vdbatch_dequeue(struct vnode *vp)
3586 {
3587 	struct vdbatch *vd;
3588 	int i;
3589 	short cpu;
3590 
3591 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3592 
3593 	cpu = vp->v_dbatchcpu;
3594 	if (cpu == NOCPU)
3595 		return;
3596 
3597 	vd = DPCPU_ID_PTR(cpu, vd);
3598 	mtx_lock(&vd->lock);
3599 	for (i = 0; i < vd->index; i++) {
3600 		if (vd->tab[i] != vp)
3601 			continue;
3602 		vp->v_dbatchcpu = NOCPU;
3603 		vd->index--;
3604 		vd->tab[i] = vd->tab[vd->index];
3605 		vd->tab[vd->index] = NULL;
3606 		break;
3607 	}
3608 	mtx_unlock(&vd->lock);
3609 	/*
3610 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3611 	 */
3612 	MPASS(vp->v_dbatchcpu == NOCPU);
3613 }
3614 
3615 /*
3616  * Drop the hold count of the vnode.  If this is the last reference to
3617  * the vnode we place it on the free list unless it has been vgone'd
3618  * (marked VIRF_DOOMED) in which case we will free it.
3619  *
3620  * Because the vnode vm object keeps a hold reference on the vnode if
3621  * there is at least one resident non-cached page, the vnode cannot
3622  * leave the active list without the page cleanup done.
3623  */
3624 static void __noinline
3625 vdropl_final(struct vnode *vp)
3626 {
3627 
3628 	ASSERT_VI_LOCKED(vp, __func__);
3629 	VNPASS(VN_IS_DOOMED(vp), vp);
3630 	/*
3631 	 * Set the VHOLD_NO_SMR flag.
3632 	 *
3633 	 * We may be racing against vhold_smr. If they win we can just pretend
3634 	 * we never got this far, they will vdrop later.
3635 	 */
3636 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3637 		vfs_freevnodes_inc();
3638 		VI_UNLOCK(vp);
3639 		/*
3640 		 * We lost the aforementioned race. Any subsequent access is
3641 		 * invalid as they might have managed to vdropl on their own.
3642 		 */
3643 		return;
3644 	}
3645 	/*
3646 	 * Don't bump freevnodes as this one is going away.
3647 	 */
3648 	freevnode(vp);
3649 }
3650 
3651 void
3652 vdrop(struct vnode *vp)
3653 {
3654 
3655 	ASSERT_VI_UNLOCKED(vp, __func__);
3656 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3657 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3658 		return;
3659 	VI_LOCK(vp);
3660 	vdropl(vp);
3661 }
3662 
3663 static void __always_inline
3664 vdropl_impl(struct vnode *vp, bool enqueue)
3665 {
3666 
3667 	ASSERT_VI_LOCKED(vp, __func__);
3668 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3669 	if (!refcount_release(&vp->v_holdcnt)) {
3670 		VI_UNLOCK(vp);
3671 		return;
3672 	}
3673 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3674 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3675 	if (VN_IS_DOOMED(vp)) {
3676 		vdropl_final(vp);
3677 		return;
3678 	}
3679 
3680 	vfs_freevnodes_inc();
3681 	if (vp->v_mflag & VMP_LAZYLIST) {
3682 		vunlazy(vp);
3683 	}
3684 
3685 	if (!enqueue) {
3686 		VI_UNLOCK(vp);
3687 		return;
3688 	}
3689 
3690 	/*
3691 	 * Also unlocks the interlock. We can't assert on it as we
3692 	 * released our hold and by now the vnode might have been
3693 	 * freed.
3694 	 */
3695 	vdbatch_enqueue(vp);
3696 }
3697 
3698 void
3699 vdropl(struct vnode *vp)
3700 {
3701 
3702 	vdropl_impl(vp, true);
3703 }
3704 
3705 /*
3706  * vdrop a vnode when recycling
3707  *
3708  * This is a special case routine only to be used when recycling, differs from
3709  * regular vdrop by not requeieing the vnode on LRU.
3710  *
3711  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3712  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3713  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3714  * loop which can last for as long as writes are frozen.
3715  */
3716 static void
3717 vdropl_recycle(struct vnode *vp)
3718 {
3719 
3720 	vdropl_impl(vp, false);
3721 }
3722 
3723 static void
3724 vdrop_recycle(struct vnode *vp)
3725 {
3726 
3727 	VI_LOCK(vp);
3728 	vdropl_recycle(vp);
3729 }
3730 
3731 /*
3732  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3733  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3734  */
3735 static int
3736 vinactivef(struct vnode *vp)
3737 {
3738 	struct vm_object *obj;
3739 	int error;
3740 
3741 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3742 	ASSERT_VI_LOCKED(vp, "vinactive");
3743 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3744 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3745 	vp->v_iflag |= VI_DOINGINACT;
3746 	vp->v_iflag &= ~VI_OWEINACT;
3747 	VI_UNLOCK(vp);
3748 	/*
3749 	 * Before moving off the active list, we must be sure that any
3750 	 * modified pages are converted into the vnode's dirty
3751 	 * buffers, since these will no longer be checked once the
3752 	 * vnode is on the inactive list.
3753 	 *
3754 	 * The write-out of the dirty pages is asynchronous.  At the
3755 	 * point that VOP_INACTIVE() is called, there could still be
3756 	 * pending I/O and dirty pages in the object.
3757 	 */
3758 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3759 	    vm_object_mightbedirty(obj)) {
3760 		VM_OBJECT_WLOCK(obj);
3761 		vm_object_page_clean(obj, 0, 0, 0);
3762 		VM_OBJECT_WUNLOCK(obj);
3763 	}
3764 	error = VOP_INACTIVE(vp);
3765 	VI_LOCK(vp);
3766 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
3767 	vp->v_iflag &= ~VI_DOINGINACT;
3768 	return (error);
3769 }
3770 
3771 int
3772 vinactive(struct vnode *vp)
3773 {
3774 
3775 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3776 	ASSERT_VI_LOCKED(vp, "vinactive");
3777 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3778 
3779 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3780 		return (0);
3781 	if (vp->v_iflag & VI_DOINGINACT)
3782 		return (0);
3783 	if (vp->v_usecount > 0) {
3784 		vp->v_iflag &= ~VI_OWEINACT;
3785 		return (0);
3786 	}
3787 	return (vinactivef(vp));
3788 }
3789 
3790 /*
3791  * Remove any vnodes in the vnode table belonging to mount point mp.
3792  *
3793  * If FORCECLOSE is not specified, there should not be any active ones,
3794  * return error if any are found (nb: this is a user error, not a
3795  * system error). If FORCECLOSE is specified, detach any active vnodes
3796  * that are found.
3797  *
3798  * If WRITECLOSE is set, only flush out regular file vnodes open for
3799  * writing.
3800  *
3801  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3802  *
3803  * `rootrefs' specifies the base reference count for the root vnode
3804  * of this filesystem. The root vnode is considered busy if its
3805  * v_usecount exceeds this value. On a successful return, vflush(, td)
3806  * will call vrele() on the root vnode exactly rootrefs times.
3807  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3808  * be zero.
3809  */
3810 #ifdef DIAGNOSTIC
3811 static int busyprt = 0;		/* print out busy vnodes */
3812 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3813 #endif
3814 
3815 int
3816 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3817 {
3818 	struct vnode *vp, *mvp, *rootvp = NULL;
3819 	struct vattr vattr;
3820 	int busy = 0, error;
3821 
3822 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3823 	    rootrefs, flags);
3824 	if (rootrefs > 0) {
3825 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3826 		    ("vflush: bad args"));
3827 		/*
3828 		 * Get the filesystem root vnode. We can vput() it
3829 		 * immediately, since with rootrefs > 0, it won't go away.
3830 		 */
3831 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3832 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3833 			    __func__, error);
3834 			return (error);
3835 		}
3836 		vput(rootvp);
3837 	}
3838 loop:
3839 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3840 		vholdl(vp);
3841 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3842 		if (error) {
3843 			vdrop(vp);
3844 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3845 			goto loop;
3846 		}
3847 		/*
3848 		 * Skip over a vnodes marked VV_SYSTEM.
3849 		 */
3850 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3851 			VOP_UNLOCK(vp);
3852 			vdrop(vp);
3853 			continue;
3854 		}
3855 		/*
3856 		 * If WRITECLOSE is set, flush out unlinked but still open
3857 		 * files (even if open only for reading) and regular file
3858 		 * vnodes open for writing.
3859 		 */
3860 		if (flags & WRITECLOSE) {
3861 			if (vp->v_object != NULL) {
3862 				VM_OBJECT_WLOCK(vp->v_object);
3863 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3864 				VM_OBJECT_WUNLOCK(vp->v_object);
3865 			}
3866 			do {
3867 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3868 			} while (error == ERELOOKUP);
3869 			if (error != 0) {
3870 				VOP_UNLOCK(vp);
3871 				vdrop(vp);
3872 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3873 				return (error);
3874 			}
3875 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3876 			VI_LOCK(vp);
3877 
3878 			if ((vp->v_type == VNON ||
3879 			    (error == 0 && vattr.va_nlink > 0)) &&
3880 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3881 				VOP_UNLOCK(vp);
3882 				vdropl(vp);
3883 				continue;
3884 			}
3885 		} else
3886 			VI_LOCK(vp);
3887 		/*
3888 		 * With v_usecount == 0, all we need to do is clear out the
3889 		 * vnode data structures and we are done.
3890 		 *
3891 		 * If FORCECLOSE is set, forcibly close the vnode.
3892 		 */
3893 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3894 			vgonel(vp);
3895 		} else {
3896 			busy++;
3897 #ifdef DIAGNOSTIC
3898 			if (busyprt)
3899 				vn_printf(vp, "vflush: busy vnode ");
3900 #endif
3901 		}
3902 		VOP_UNLOCK(vp);
3903 		vdropl(vp);
3904 	}
3905 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3906 		/*
3907 		 * If just the root vnode is busy, and if its refcount
3908 		 * is equal to `rootrefs', then go ahead and kill it.
3909 		 */
3910 		VI_LOCK(rootvp);
3911 		KASSERT(busy > 0, ("vflush: not busy"));
3912 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3913 		    ("vflush: usecount %d < rootrefs %d",
3914 		     rootvp->v_usecount, rootrefs));
3915 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3916 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3917 			vgone(rootvp);
3918 			VOP_UNLOCK(rootvp);
3919 			busy = 0;
3920 		} else
3921 			VI_UNLOCK(rootvp);
3922 	}
3923 	if (busy) {
3924 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3925 		    busy);
3926 		return (EBUSY);
3927 	}
3928 	for (; rootrefs > 0; rootrefs--)
3929 		vrele(rootvp);
3930 	return (0);
3931 }
3932 
3933 /*
3934  * Recycle an unused vnode to the front of the free list.
3935  */
3936 int
3937 vrecycle(struct vnode *vp)
3938 {
3939 	int recycled;
3940 
3941 	VI_LOCK(vp);
3942 	recycled = vrecyclel(vp);
3943 	VI_UNLOCK(vp);
3944 	return (recycled);
3945 }
3946 
3947 /*
3948  * vrecycle, with the vp interlock held.
3949  */
3950 int
3951 vrecyclel(struct vnode *vp)
3952 {
3953 	int recycled;
3954 
3955 	ASSERT_VOP_ELOCKED(vp, __func__);
3956 	ASSERT_VI_LOCKED(vp, __func__);
3957 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3958 	recycled = 0;
3959 	if (vp->v_usecount == 0) {
3960 		recycled = 1;
3961 		vgonel(vp);
3962 	}
3963 	return (recycled);
3964 }
3965 
3966 /*
3967  * Eliminate all activity associated with a vnode
3968  * in preparation for reuse.
3969  */
3970 void
3971 vgone(struct vnode *vp)
3972 {
3973 	VI_LOCK(vp);
3974 	vgonel(vp);
3975 	VI_UNLOCK(vp);
3976 }
3977 
3978 /*
3979  * Notify upper mounts about reclaimed or unlinked vnode.
3980  */
3981 void
3982 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3983 {
3984 	struct mount *mp;
3985 	struct mount_upper_node *ump;
3986 
3987 	mp = atomic_load_ptr(&vp->v_mount);
3988 	if (mp == NULL)
3989 		return;
3990 	if (TAILQ_EMPTY(&mp->mnt_notify))
3991 		return;
3992 
3993 	MNT_ILOCK(mp);
3994 	mp->mnt_upper_pending++;
3995 	KASSERT(mp->mnt_upper_pending > 0,
3996 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3997 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3998 		MNT_IUNLOCK(mp);
3999 		switch (event) {
4000 		case VFS_NOTIFY_UPPER_RECLAIM:
4001 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4002 			break;
4003 		case VFS_NOTIFY_UPPER_UNLINK:
4004 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4005 			break;
4006 		}
4007 		MNT_ILOCK(mp);
4008 	}
4009 	mp->mnt_upper_pending--;
4010 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4011 	    mp->mnt_upper_pending == 0) {
4012 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4013 		wakeup(&mp->mnt_uppers);
4014 	}
4015 	MNT_IUNLOCK(mp);
4016 }
4017 
4018 /*
4019  * vgone, with the vp interlock held.
4020  */
4021 static void
4022 vgonel(struct vnode *vp)
4023 {
4024 	struct thread *td;
4025 	struct mount *mp;
4026 	vm_object_t object;
4027 	bool active, doinginact, oweinact;
4028 
4029 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4030 	ASSERT_VI_LOCKED(vp, "vgonel");
4031 	VNASSERT(vp->v_holdcnt, vp,
4032 	    ("vgonel: vp %p has no reference.", vp));
4033 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4034 	td = curthread;
4035 
4036 	/*
4037 	 * Don't vgonel if we're already doomed.
4038 	 */
4039 	if (VN_IS_DOOMED(vp)) {
4040 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4041 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4042 		return;
4043 	}
4044 	/*
4045 	 * Paired with freevnode.
4046 	 */
4047 	vn_seqc_write_begin_locked(vp);
4048 	vunlazy_gone(vp);
4049 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4050 	vn_set_state(vp, VSTATE_DESTROYING);
4051 
4052 	/*
4053 	 * Check to see if the vnode is in use.  If so, we have to
4054 	 * call VOP_CLOSE() and VOP_INACTIVE().
4055 	 *
4056 	 * It could be that VOP_INACTIVE() requested reclamation, in
4057 	 * which case we should avoid recursion, so check
4058 	 * VI_DOINGINACT.  This is not precise but good enough.
4059 	 */
4060 	active = vp->v_usecount > 0;
4061 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4062 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4063 
4064 	/*
4065 	 * If we need to do inactive VI_OWEINACT will be set.
4066 	 */
4067 	if (vp->v_iflag & VI_DEFINACT) {
4068 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4069 		vp->v_iflag &= ~VI_DEFINACT;
4070 		vdropl(vp);
4071 	} else {
4072 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4073 		VI_UNLOCK(vp);
4074 	}
4075 	cache_purge_vgone(vp);
4076 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4077 
4078 	/*
4079 	 * If purging an active vnode, it must be closed and
4080 	 * deactivated before being reclaimed.
4081 	 */
4082 	if (active)
4083 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4084 	if (!doinginact) {
4085 		do {
4086 			if (oweinact || active) {
4087 				VI_LOCK(vp);
4088 				vinactivef(vp);
4089 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4090 				VI_UNLOCK(vp);
4091 			}
4092 		} while (oweinact);
4093 	}
4094 	if (vp->v_type == VSOCK)
4095 		vfs_unp_reclaim(vp);
4096 
4097 	/*
4098 	 * Clean out any buffers associated with the vnode.
4099 	 * If the flush fails, just toss the buffers.
4100 	 */
4101 	mp = NULL;
4102 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4103 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4104 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4105 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4106 			;
4107 	}
4108 
4109 	BO_LOCK(&vp->v_bufobj);
4110 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4111 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4112 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4113 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4114 	    ("vp %p bufobj not invalidated", vp));
4115 
4116 	/*
4117 	 * For VMIO bufobj, BO_DEAD is set later, or in
4118 	 * vm_object_terminate() after the object's page queue is
4119 	 * flushed.
4120 	 */
4121 	object = vp->v_bufobj.bo_object;
4122 	if (object == NULL)
4123 		vp->v_bufobj.bo_flag |= BO_DEAD;
4124 	BO_UNLOCK(&vp->v_bufobj);
4125 
4126 	/*
4127 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4128 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4129 	 * should not touch the object borrowed from the lower vnode
4130 	 * (the handle check).
4131 	 */
4132 	if (object != NULL && object->type == OBJT_VNODE &&
4133 	    object->handle == vp)
4134 		vnode_destroy_vobject(vp);
4135 
4136 	/*
4137 	 * Reclaim the vnode.
4138 	 */
4139 	if (VOP_RECLAIM(vp))
4140 		panic("vgone: cannot reclaim");
4141 	if (mp != NULL)
4142 		vn_finished_secondary_write(mp);
4143 	VNASSERT(vp->v_object == NULL, vp,
4144 	    ("vop_reclaim left v_object vp=%p", vp));
4145 	/*
4146 	 * Clear the advisory locks and wake up waiting threads.
4147 	 */
4148 	if (vp->v_lockf != NULL) {
4149 		(void)VOP_ADVLOCKPURGE(vp);
4150 		vp->v_lockf = NULL;
4151 	}
4152 	/*
4153 	 * Delete from old mount point vnode list.
4154 	 */
4155 	if (vp->v_mount == NULL) {
4156 		VI_LOCK(vp);
4157 	} else {
4158 		delmntque(vp);
4159 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4160 	}
4161 	/*
4162 	 * Done with purge, reset to the standard lock and invalidate
4163 	 * the vnode.
4164 	 */
4165 	vp->v_vnlock = &vp->v_lock;
4166 	vp->v_op = &dead_vnodeops;
4167 	vp->v_type = VBAD;
4168 	vn_set_state(vp, VSTATE_DEAD);
4169 }
4170 
4171 /*
4172  * Print out a description of a vnode.
4173  */
4174 static const char *const vtypename[] = {
4175 	[VNON] = "VNON",
4176 	[VREG] = "VREG",
4177 	[VDIR] = "VDIR",
4178 	[VBLK] = "VBLK",
4179 	[VCHR] = "VCHR",
4180 	[VLNK] = "VLNK",
4181 	[VSOCK] = "VSOCK",
4182 	[VFIFO] = "VFIFO",
4183 	[VBAD] = "VBAD",
4184 	[VMARKER] = "VMARKER",
4185 };
4186 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4187     "vnode type name not added to vtypename");
4188 
4189 static const char *const vstatename[] = {
4190 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4191 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4192 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4193 	[VSTATE_DEAD] = "VSTATE_DEAD",
4194 };
4195 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4196     "vnode state name not added to vstatename");
4197 
4198 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4199     "new hold count flag not added to vn_printf");
4200 
4201 void
4202 vn_printf(struct vnode *vp, const char *fmt, ...)
4203 {
4204 	va_list ap;
4205 	char buf[256], buf2[16];
4206 	u_long flags;
4207 	u_int holdcnt;
4208 	short irflag;
4209 
4210 	va_start(ap, fmt);
4211 	vprintf(fmt, ap);
4212 	va_end(ap);
4213 	printf("%p: ", (void *)vp);
4214 	printf("type %s state %s\n", vtypename[vp->v_type], vstatename[vp->v_state]);
4215 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4216 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4217 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4218 	    vp->v_seqc_users);
4219 	switch (vp->v_type) {
4220 	case VDIR:
4221 		printf(" mountedhere %p\n", vp->v_mountedhere);
4222 		break;
4223 	case VCHR:
4224 		printf(" rdev %p\n", vp->v_rdev);
4225 		break;
4226 	case VSOCK:
4227 		printf(" socket %p\n", vp->v_unpcb);
4228 		break;
4229 	case VFIFO:
4230 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4231 		break;
4232 	default:
4233 		printf("\n");
4234 		break;
4235 	}
4236 	buf[0] = '\0';
4237 	buf[1] = '\0';
4238 	if (holdcnt & VHOLD_NO_SMR)
4239 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4240 	printf("    hold count flags (%s)\n", buf + 1);
4241 
4242 	buf[0] = '\0';
4243 	buf[1] = '\0';
4244 	irflag = vn_irflag_read(vp);
4245 	if (irflag & VIRF_DOOMED)
4246 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4247 	if (irflag & VIRF_PGREAD)
4248 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4249 	if (irflag & VIRF_MOUNTPOINT)
4250 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4251 	if (irflag & VIRF_TEXT_REF)
4252 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4253 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4254 	if (flags != 0) {
4255 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4256 		strlcat(buf, buf2, sizeof(buf));
4257 	}
4258 	if (vp->v_vflag & VV_ROOT)
4259 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4260 	if (vp->v_vflag & VV_ISTTY)
4261 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4262 	if (vp->v_vflag & VV_NOSYNC)
4263 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4264 	if (vp->v_vflag & VV_ETERNALDEV)
4265 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4266 	if (vp->v_vflag & VV_CACHEDLABEL)
4267 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4268 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4269 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4270 	if (vp->v_vflag & VV_COPYONWRITE)
4271 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4272 	if (vp->v_vflag & VV_SYSTEM)
4273 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4274 	if (vp->v_vflag & VV_PROCDEP)
4275 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4276 	if (vp->v_vflag & VV_DELETED)
4277 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4278 	if (vp->v_vflag & VV_MD)
4279 		strlcat(buf, "|VV_MD", sizeof(buf));
4280 	if (vp->v_vflag & VV_FORCEINSMQ)
4281 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4282 	if (vp->v_vflag & VV_READLINK)
4283 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4284 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4285 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4286 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4287 	if (flags != 0) {
4288 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4289 		strlcat(buf, buf2, sizeof(buf));
4290 	}
4291 	if (vp->v_iflag & VI_MOUNT)
4292 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4293 	if (vp->v_iflag & VI_DOINGINACT)
4294 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4295 	if (vp->v_iflag & VI_OWEINACT)
4296 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4297 	if (vp->v_iflag & VI_DEFINACT)
4298 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4299 	if (vp->v_iflag & VI_FOPENING)
4300 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4301 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4302 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4303 	if (flags != 0) {
4304 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4305 		strlcat(buf, buf2, sizeof(buf));
4306 	}
4307 	if (vp->v_mflag & VMP_LAZYLIST)
4308 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4309 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4310 	if (flags != 0) {
4311 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4312 		strlcat(buf, buf2, sizeof(buf));
4313 	}
4314 	printf("    flags (%s)", buf + 1);
4315 	if (mtx_owned(VI_MTX(vp)))
4316 		printf(" VI_LOCKed");
4317 	printf("\n");
4318 	if (vp->v_object != NULL)
4319 		printf("    v_object %p ref %d pages %d "
4320 		    "cleanbuf %d dirtybuf %d\n",
4321 		    vp->v_object, vp->v_object->ref_count,
4322 		    vp->v_object->resident_page_count,
4323 		    vp->v_bufobj.bo_clean.bv_cnt,
4324 		    vp->v_bufobj.bo_dirty.bv_cnt);
4325 	printf("    ");
4326 	lockmgr_printinfo(vp->v_vnlock);
4327 	if (vp->v_data != NULL)
4328 		VOP_PRINT(vp);
4329 }
4330 
4331 #ifdef DDB
4332 /*
4333  * List all of the locked vnodes in the system.
4334  * Called when debugging the kernel.
4335  */
4336 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4337 {
4338 	struct mount *mp;
4339 	struct vnode *vp;
4340 
4341 	/*
4342 	 * Note: because this is DDB, we can't obey the locking semantics
4343 	 * for these structures, which means we could catch an inconsistent
4344 	 * state and dereference a nasty pointer.  Not much to be done
4345 	 * about that.
4346 	 */
4347 	db_printf("Locked vnodes\n");
4348 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4349 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4350 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4351 				vn_printf(vp, "vnode ");
4352 		}
4353 	}
4354 }
4355 
4356 /*
4357  * Show details about the given vnode.
4358  */
4359 DB_SHOW_COMMAND(vnode, db_show_vnode)
4360 {
4361 	struct vnode *vp;
4362 
4363 	if (!have_addr)
4364 		return;
4365 	vp = (struct vnode *)addr;
4366 	vn_printf(vp, "vnode ");
4367 }
4368 
4369 /*
4370  * Show details about the given mount point.
4371  */
4372 DB_SHOW_COMMAND(mount, db_show_mount)
4373 {
4374 	struct mount *mp;
4375 	struct vfsopt *opt;
4376 	struct statfs *sp;
4377 	struct vnode *vp;
4378 	char buf[512];
4379 	uint64_t mflags;
4380 	u_int flags;
4381 
4382 	if (!have_addr) {
4383 		/* No address given, print short info about all mount points. */
4384 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4385 			db_printf("%p %s on %s (%s)\n", mp,
4386 			    mp->mnt_stat.f_mntfromname,
4387 			    mp->mnt_stat.f_mntonname,
4388 			    mp->mnt_stat.f_fstypename);
4389 			if (db_pager_quit)
4390 				break;
4391 		}
4392 		db_printf("\nMore info: show mount <addr>\n");
4393 		return;
4394 	}
4395 
4396 	mp = (struct mount *)addr;
4397 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4398 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4399 
4400 	buf[0] = '\0';
4401 	mflags = mp->mnt_flag;
4402 #define	MNT_FLAG(flag)	do {						\
4403 	if (mflags & (flag)) {						\
4404 		if (buf[0] != '\0')					\
4405 			strlcat(buf, ", ", sizeof(buf));		\
4406 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4407 		mflags &= ~(flag);					\
4408 	}								\
4409 } while (0)
4410 	MNT_FLAG(MNT_RDONLY);
4411 	MNT_FLAG(MNT_SYNCHRONOUS);
4412 	MNT_FLAG(MNT_NOEXEC);
4413 	MNT_FLAG(MNT_NOSUID);
4414 	MNT_FLAG(MNT_NFS4ACLS);
4415 	MNT_FLAG(MNT_UNION);
4416 	MNT_FLAG(MNT_ASYNC);
4417 	MNT_FLAG(MNT_SUIDDIR);
4418 	MNT_FLAG(MNT_SOFTDEP);
4419 	MNT_FLAG(MNT_NOSYMFOLLOW);
4420 	MNT_FLAG(MNT_GJOURNAL);
4421 	MNT_FLAG(MNT_MULTILABEL);
4422 	MNT_FLAG(MNT_ACLS);
4423 	MNT_FLAG(MNT_NOATIME);
4424 	MNT_FLAG(MNT_NOCLUSTERR);
4425 	MNT_FLAG(MNT_NOCLUSTERW);
4426 	MNT_FLAG(MNT_SUJ);
4427 	MNT_FLAG(MNT_EXRDONLY);
4428 	MNT_FLAG(MNT_EXPORTED);
4429 	MNT_FLAG(MNT_DEFEXPORTED);
4430 	MNT_FLAG(MNT_EXPORTANON);
4431 	MNT_FLAG(MNT_EXKERB);
4432 	MNT_FLAG(MNT_EXPUBLIC);
4433 	MNT_FLAG(MNT_LOCAL);
4434 	MNT_FLAG(MNT_QUOTA);
4435 	MNT_FLAG(MNT_ROOTFS);
4436 	MNT_FLAG(MNT_USER);
4437 	MNT_FLAG(MNT_IGNORE);
4438 	MNT_FLAG(MNT_UPDATE);
4439 	MNT_FLAG(MNT_DELEXPORT);
4440 	MNT_FLAG(MNT_RELOAD);
4441 	MNT_FLAG(MNT_FORCE);
4442 	MNT_FLAG(MNT_SNAPSHOT);
4443 	MNT_FLAG(MNT_BYFSID);
4444 #undef MNT_FLAG
4445 	if (mflags != 0) {
4446 		if (buf[0] != '\0')
4447 			strlcat(buf, ", ", sizeof(buf));
4448 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4449 		    "0x%016jx", mflags);
4450 	}
4451 	db_printf("    mnt_flag = %s\n", buf);
4452 
4453 	buf[0] = '\0';
4454 	flags = mp->mnt_kern_flag;
4455 #define	MNT_KERN_FLAG(flag)	do {					\
4456 	if (flags & (flag)) {						\
4457 		if (buf[0] != '\0')					\
4458 			strlcat(buf, ", ", sizeof(buf));		\
4459 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4460 		flags &= ~(flag);					\
4461 	}								\
4462 } while (0)
4463 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4464 	MNT_KERN_FLAG(MNTK_ASYNC);
4465 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4466 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4467 	MNT_KERN_FLAG(MNTK_DRAINING);
4468 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4469 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4470 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4471 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4472 	MNT_KERN_FLAG(MNTK_RECURSE);
4473 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4474 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4475 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4476 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4477 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4478 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4479 	MNT_KERN_FLAG(MNTK_NOASYNC);
4480 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4481 	MNT_KERN_FLAG(MNTK_MWAIT);
4482 	MNT_KERN_FLAG(MNTK_SUSPEND);
4483 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4484 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4485 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4486 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4487 #undef MNT_KERN_FLAG
4488 	if (flags != 0) {
4489 		if (buf[0] != '\0')
4490 			strlcat(buf, ", ", sizeof(buf));
4491 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4492 		    "0x%08x", flags);
4493 	}
4494 	db_printf("    mnt_kern_flag = %s\n", buf);
4495 
4496 	db_printf("    mnt_opt = ");
4497 	opt = TAILQ_FIRST(mp->mnt_opt);
4498 	if (opt != NULL) {
4499 		db_printf("%s", opt->name);
4500 		opt = TAILQ_NEXT(opt, link);
4501 		while (opt != NULL) {
4502 			db_printf(", %s", opt->name);
4503 			opt = TAILQ_NEXT(opt, link);
4504 		}
4505 	}
4506 	db_printf("\n");
4507 
4508 	sp = &mp->mnt_stat;
4509 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4510 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4511 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4512 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4513 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4514 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4515 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4516 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4517 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4518 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4519 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4520 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4521 
4522 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4523 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4524 	if (jailed(mp->mnt_cred))
4525 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4526 	db_printf(" }\n");
4527 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4528 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4529 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4530 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4531 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4532 	    mp->mnt_lazyvnodelistsize);
4533 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4534 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4535 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4536 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4537 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4538 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4539 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4540 	db_printf("    mnt_secondary_accwrites = %d\n",
4541 	    mp->mnt_secondary_accwrites);
4542 	db_printf("    mnt_gjprovider = %s\n",
4543 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4544 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4545 
4546 	db_printf("\n\nList of active vnodes\n");
4547 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4548 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4549 			vn_printf(vp, "vnode ");
4550 			if (db_pager_quit)
4551 				break;
4552 		}
4553 	}
4554 	db_printf("\n\nList of inactive vnodes\n");
4555 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4556 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4557 			vn_printf(vp, "vnode ");
4558 			if (db_pager_quit)
4559 				break;
4560 		}
4561 	}
4562 }
4563 #endif	/* DDB */
4564 
4565 /*
4566  * Fill in a struct xvfsconf based on a struct vfsconf.
4567  */
4568 static int
4569 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4570 {
4571 	struct xvfsconf xvfsp;
4572 
4573 	bzero(&xvfsp, sizeof(xvfsp));
4574 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4575 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4576 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4577 	xvfsp.vfc_flags = vfsp->vfc_flags;
4578 	/*
4579 	 * These are unused in userland, we keep them
4580 	 * to not break binary compatibility.
4581 	 */
4582 	xvfsp.vfc_vfsops = NULL;
4583 	xvfsp.vfc_next = NULL;
4584 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4585 }
4586 
4587 #ifdef COMPAT_FREEBSD32
4588 struct xvfsconf32 {
4589 	uint32_t	vfc_vfsops;
4590 	char		vfc_name[MFSNAMELEN];
4591 	int32_t		vfc_typenum;
4592 	int32_t		vfc_refcount;
4593 	int32_t		vfc_flags;
4594 	uint32_t	vfc_next;
4595 };
4596 
4597 static int
4598 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4599 {
4600 	struct xvfsconf32 xvfsp;
4601 
4602 	bzero(&xvfsp, sizeof(xvfsp));
4603 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4604 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4605 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4606 	xvfsp.vfc_flags = vfsp->vfc_flags;
4607 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4608 }
4609 #endif
4610 
4611 /*
4612  * Top level filesystem related information gathering.
4613  */
4614 static int
4615 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4616 {
4617 	struct vfsconf *vfsp;
4618 	int error;
4619 
4620 	error = 0;
4621 	vfsconf_slock();
4622 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4623 #ifdef COMPAT_FREEBSD32
4624 		if (req->flags & SCTL_MASK32)
4625 			error = vfsconf2x32(req, vfsp);
4626 		else
4627 #endif
4628 			error = vfsconf2x(req, vfsp);
4629 		if (error)
4630 			break;
4631 	}
4632 	vfsconf_sunlock();
4633 	return (error);
4634 }
4635 
4636 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4637     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4638     "S,xvfsconf", "List of all configured filesystems");
4639 
4640 #ifndef BURN_BRIDGES
4641 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4642 
4643 static int
4644 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4645 {
4646 	int *name = (int *)arg1 - 1;	/* XXX */
4647 	u_int namelen = arg2 + 1;	/* XXX */
4648 	struct vfsconf *vfsp;
4649 
4650 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4651 	    "please rebuild world\n");
4652 
4653 #if 1 || defined(COMPAT_PRELITE2)
4654 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4655 	if (namelen == 1)
4656 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4657 #endif
4658 
4659 	switch (name[1]) {
4660 	case VFS_MAXTYPENUM:
4661 		if (namelen != 2)
4662 			return (ENOTDIR);
4663 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4664 	case VFS_CONF:
4665 		if (namelen != 3)
4666 			return (ENOTDIR);	/* overloaded */
4667 		vfsconf_slock();
4668 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4669 			if (vfsp->vfc_typenum == name[2])
4670 				break;
4671 		}
4672 		vfsconf_sunlock();
4673 		if (vfsp == NULL)
4674 			return (EOPNOTSUPP);
4675 #ifdef COMPAT_FREEBSD32
4676 		if (req->flags & SCTL_MASK32)
4677 			return (vfsconf2x32(req, vfsp));
4678 		else
4679 #endif
4680 			return (vfsconf2x(req, vfsp));
4681 	}
4682 	return (EOPNOTSUPP);
4683 }
4684 
4685 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4686     CTLFLAG_MPSAFE, vfs_sysctl,
4687     "Generic filesystem");
4688 
4689 #if 1 || defined(COMPAT_PRELITE2)
4690 
4691 static int
4692 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4693 {
4694 	int error;
4695 	struct vfsconf *vfsp;
4696 	struct ovfsconf ovfs;
4697 
4698 	vfsconf_slock();
4699 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4700 		bzero(&ovfs, sizeof(ovfs));
4701 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4702 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4703 		ovfs.vfc_index = vfsp->vfc_typenum;
4704 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4705 		ovfs.vfc_flags = vfsp->vfc_flags;
4706 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4707 		if (error != 0) {
4708 			vfsconf_sunlock();
4709 			return (error);
4710 		}
4711 	}
4712 	vfsconf_sunlock();
4713 	return (0);
4714 }
4715 
4716 #endif /* 1 || COMPAT_PRELITE2 */
4717 #endif /* !BURN_BRIDGES */
4718 
4719 static void
4720 unmount_or_warn(struct mount *mp)
4721 {
4722 	int error;
4723 
4724 	error = dounmount(mp, MNT_FORCE, curthread);
4725 	if (error != 0) {
4726 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4727 		if (error == EBUSY)
4728 			printf("BUSY)\n");
4729 		else
4730 			printf("%d)\n", error);
4731 	}
4732 }
4733 
4734 /*
4735  * Unmount all filesystems. The list is traversed in reverse order
4736  * of mounting to avoid dependencies.
4737  */
4738 void
4739 vfs_unmountall(void)
4740 {
4741 	struct mount *mp, *tmp;
4742 
4743 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4744 
4745 	/*
4746 	 * Since this only runs when rebooting, it is not interlocked.
4747 	 */
4748 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4749 		vfs_ref(mp);
4750 
4751 		/*
4752 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4753 		 * unmount of the latter.
4754 		 */
4755 		if (mp == rootdevmp)
4756 			continue;
4757 
4758 		unmount_or_warn(mp);
4759 	}
4760 
4761 	if (rootdevmp != NULL)
4762 		unmount_or_warn(rootdevmp);
4763 }
4764 
4765 static void
4766 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4767 {
4768 
4769 	ASSERT_VI_LOCKED(vp, __func__);
4770 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4771 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4772 		vdropl(vp);
4773 		return;
4774 	}
4775 	if (vn_lock(vp, lkflags) == 0) {
4776 		VI_LOCK(vp);
4777 		vinactive(vp);
4778 		VOP_UNLOCK(vp);
4779 		vdropl(vp);
4780 		return;
4781 	}
4782 	vdefer_inactive_unlocked(vp);
4783 }
4784 
4785 static int
4786 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4787 {
4788 
4789 	return (vp->v_iflag & VI_DEFINACT);
4790 }
4791 
4792 static void __noinline
4793 vfs_periodic_inactive(struct mount *mp, int flags)
4794 {
4795 	struct vnode *vp, *mvp;
4796 	int lkflags;
4797 
4798 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4799 	if (flags != MNT_WAIT)
4800 		lkflags |= LK_NOWAIT;
4801 
4802 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4803 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4804 			VI_UNLOCK(vp);
4805 			continue;
4806 		}
4807 		vp->v_iflag &= ~VI_DEFINACT;
4808 		vfs_deferred_inactive(vp, lkflags);
4809 	}
4810 }
4811 
4812 static inline bool
4813 vfs_want_msync(struct vnode *vp)
4814 {
4815 	struct vm_object *obj;
4816 
4817 	/*
4818 	 * This test may be performed without any locks held.
4819 	 * We rely on vm_object's type stability.
4820 	 */
4821 	if (vp->v_vflag & VV_NOSYNC)
4822 		return (false);
4823 	obj = vp->v_object;
4824 	return (obj != NULL && vm_object_mightbedirty(obj));
4825 }
4826 
4827 static int
4828 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4829 {
4830 
4831 	if (vp->v_vflag & VV_NOSYNC)
4832 		return (false);
4833 	if (vp->v_iflag & VI_DEFINACT)
4834 		return (true);
4835 	return (vfs_want_msync(vp));
4836 }
4837 
4838 static void __noinline
4839 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4840 {
4841 	struct vnode *vp, *mvp;
4842 	struct vm_object *obj;
4843 	int lkflags, objflags;
4844 	bool seen_defer;
4845 
4846 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4847 	if (flags != MNT_WAIT) {
4848 		lkflags |= LK_NOWAIT;
4849 		objflags = OBJPC_NOSYNC;
4850 	} else {
4851 		objflags = OBJPC_SYNC;
4852 	}
4853 
4854 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4855 		seen_defer = false;
4856 		if (vp->v_iflag & VI_DEFINACT) {
4857 			vp->v_iflag &= ~VI_DEFINACT;
4858 			seen_defer = true;
4859 		}
4860 		if (!vfs_want_msync(vp)) {
4861 			if (seen_defer)
4862 				vfs_deferred_inactive(vp, lkflags);
4863 			else
4864 				VI_UNLOCK(vp);
4865 			continue;
4866 		}
4867 		if (vget(vp, lkflags) == 0) {
4868 			obj = vp->v_object;
4869 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4870 				VM_OBJECT_WLOCK(obj);
4871 				vm_object_page_clean(obj, 0, 0, objflags);
4872 				VM_OBJECT_WUNLOCK(obj);
4873 			}
4874 			vput(vp);
4875 			if (seen_defer)
4876 				vdrop(vp);
4877 		} else {
4878 			if (seen_defer)
4879 				vdefer_inactive_unlocked(vp);
4880 		}
4881 	}
4882 }
4883 
4884 void
4885 vfs_periodic(struct mount *mp, int flags)
4886 {
4887 
4888 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4889 
4890 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4891 		vfs_periodic_inactive(mp, flags);
4892 	else
4893 		vfs_periodic_msync_inactive(mp, flags);
4894 }
4895 
4896 static void
4897 destroy_vpollinfo_free(struct vpollinfo *vi)
4898 {
4899 
4900 	knlist_destroy(&vi->vpi_selinfo.si_note);
4901 	mtx_destroy(&vi->vpi_lock);
4902 	free(vi, M_VNODEPOLL);
4903 }
4904 
4905 static void
4906 destroy_vpollinfo(struct vpollinfo *vi)
4907 {
4908 
4909 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4910 	seldrain(&vi->vpi_selinfo);
4911 	destroy_vpollinfo_free(vi);
4912 }
4913 
4914 /*
4915  * Initialize per-vnode helper structure to hold poll-related state.
4916  */
4917 void
4918 v_addpollinfo(struct vnode *vp)
4919 {
4920 	struct vpollinfo *vi;
4921 
4922 	if (vp->v_pollinfo != NULL)
4923 		return;
4924 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4925 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4926 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4927 	    vfs_knlunlock, vfs_knl_assert_lock);
4928 	VI_LOCK(vp);
4929 	if (vp->v_pollinfo != NULL) {
4930 		VI_UNLOCK(vp);
4931 		destroy_vpollinfo_free(vi);
4932 		return;
4933 	}
4934 	vp->v_pollinfo = vi;
4935 	VI_UNLOCK(vp);
4936 }
4937 
4938 /*
4939  * Record a process's interest in events which might happen to
4940  * a vnode.  Because poll uses the historic select-style interface
4941  * internally, this routine serves as both the ``check for any
4942  * pending events'' and the ``record my interest in future events''
4943  * functions.  (These are done together, while the lock is held,
4944  * to avoid race conditions.)
4945  */
4946 int
4947 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4948 {
4949 
4950 	v_addpollinfo(vp);
4951 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4952 	if (vp->v_pollinfo->vpi_revents & events) {
4953 		/*
4954 		 * This leaves events we are not interested
4955 		 * in available for the other process which
4956 		 * which presumably had requested them
4957 		 * (otherwise they would never have been
4958 		 * recorded).
4959 		 */
4960 		events &= vp->v_pollinfo->vpi_revents;
4961 		vp->v_pollinfo->vpi_revents &= ~events;
4962 
4963 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4964 		return (events);
4965 	}
4966 	vp->v_pollinfo->vpi_events |= events;
4967 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4968 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4969 	return (0);
4970 }
4971 
4972 /*
4973  * Routine to create and manage a filesystem syncer vnode.
4974  */
4975 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4976 static int	sync_fsync(struct  vop_fsync_args *);
4977 static int	sync_inactive(struct  vop_inactive_args *);
4978 static int	sync_reclaim(struct  vop_reclaim_args *);
4979 
4980 static struct vop_vector sync_vnodeops = {
4981 	.vop_bypass =	VOP_EOPNOTSUPP,
4982 	.vop_close =	sync_close,		/* close */
4983 	.vop_fsync =	sync_fsync,		/* fsync */
4984 	.vop_inactive =	sync_inactive,	/* inactive */
4985 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4986 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4987 	.vop_lock1 =	vop_stdlock,	/* lock */
4988 	.vop_unlock =	vop_stdunlock,	/* unlock */
4989 	.vop_islocked =	vop_stdislocked,	/* islocked */
4990 };
4991 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4992 
4993 /*
4994  * Create a new filesystem syncer vnode for the specified mount point.
4995  */
4996 void
4997 vfs_allocate_syncvnode(struct mount *mp)
4998 {
4999 	struct vnode *vp;
5000 	struct bufobj *bo;
5001 	static long start, incr, next;
5002 	int error;
5003 
5004 	/* Allocate a new vnode */
5005 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5006 	if (error != 0)
5007 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5008 	vp->v_type = VNON;
5009 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5010 	vp->v_vflag |= VV_FORCEINSMQ;
5011 	error = insmntque1(vp, mp);
5012 	if (error != 0)
5013 		panic("vfs_allocate_syncvnode: insmntque() failed");
5014 	vp->v_vflag &= ~VV_FORCEINSMQ;
5015 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5016 	VOP_UNLOCK(vp);
5017 	/*
5018 	 * Place the vnode onto the syncer worklist. We attempt to
5019 	 * scatter them about on the list so that they will go off
5020 	 * at evenly distributed times even if all the filesystems
5021 	 * are mounted at once.
5022 	 */
5023 	next += incr;
5024 	if (next == 0 || next > syncer_maxdelay) {
5025 		start /= 2;
5026 		incr /= 2;
5027 		if (start == 0) {
5028 			start = syncer_maxdelay / 2;
5029 			incr = syncer_maxdelay;
5030 		}
5031 		next = start;
5032 	}
5033 	bo = &vp->v_bufobj;
5034 	BO_LOCK(bo);
5035 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5036 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5037 	mtx_lock(&sync_mtx);
5038 	sync_vnode_count++;
5039 	if (mp->mnt_syncer == NULL) {
5040 		mp->mnt_syncer = vp;
5041 		vp = NULL;
5042 	}
5043 	mtx_unlock(&sync_mtx);
5044 	BO_UNLOCK(bo);
5045 	if (vp != NULL) {
5046 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5047 		vgone(vp);
5048 		vput(vp);
5049 	}
5050 }
5051 
5052 void
5053 vfs_deallocate_syncvnode(struct mount *mp)
5054 {
5055 	struct vnode *vp;
5056 
5057 	mtx_lock(&sync_mtx);
5058 	vp = mp->mnt_syncer;
5059 	if (vp != NULL)
5060 		mp->mnt_syncer = NULL;
5061 	mtx_unlock(&sync_mtx);
5062 	if (vp != NULL)
5063 		vrele(vp);
5064 }
5065 
5066 /*
5067  * Do a lazy sync of the filesystem.
5068  */
5069 static int
5070 sync_fsync(struct vop_fsync_args *ap)
5071 {
5072 	struct vnode *syncvp = ap->a_vp;
5073 	struct mount *mp = syncvp->v_mount;
5074 	int error, save;
5075 	struct bufobj *bo;
5076 
5077 	/*
5078 	 * We only need to do something if this is a lazy evaluation.
5079 	 */
5080 	if (ap->a_waitfor != MNT_LAZY)
5081 		return (0);
5082 
5083 	/*
5084 	 * Move ourselves to the back of the sync list.
5085 	 */
5086 	bo = &syncvp->v_bufobj;
5087 	BO_LOCK(bo);
5088 	vn_syncer_add_to_worklist(bo, syncdelay);
5089 	BO_UNLOCK(bo);
5090 
5091 	/*
5092 	 * Walk the list of vnodes pushing all that are dirty and
5093 	 * not already on the sync list.
5094 	 */
5095 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5096 		return (0);
5097 	VOP_UNLOCK(syncvp);
5098 	save = curthread_pflags_set(TDP_SYNCIO);
5099 	/*
5100 	 * The filesystem at hand may be idle with free vnodes stored in the
5101 	 * batch.  Return them instead of letting them stay there indefinitely.
5102 	 */
5103 	vfs_periodic(mp, MNT_NOWAIT);
5104 	error = VFS_SYNC(mp, MNT_LAZY);
5105 	curthread_pflags_restore(save);
5106 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5107 	vfs_unbusy(mp);
5108 	return (error);
5109 }
5110 
5111 /*
5112  * The syncer vnode is no referenced.
5113  */
5114 static int
5115 sync_inactive(struct vop_inactive_args *ap)
5116 {
5117 
5118 	vgone(ap->a_vp);
5119 	return (0);
5120 }
5121 
5122 /*
5123  * The syncer vnode is no longer needed and is being decommissioned.
5124  *
5125  * Modifications to the worklist must be protected by sync_mtx.
5126  */
5127 static int
5128 sync_reclaim(struct vop_reclaim_args *ap)
5129 {
5130 	struct vnode *vp = ap->a_vp;
5131 	struct bufobj *bo;
5132 
5133 	bo = &vp->v_bufobj;
5134 	BO_LOCK(bo);
5135 	mtx_lock(&sync_mtx);
5136 	if (vp->v_mount->mnt_syncer == vp)
5137 		vp->v_mount->mnt_syncer = NULL;
5138 	if (bo->bo_flag & BO_ONWORKLST) {
5139 		LIST_REMOVE(bo, bo_synclist);
5140 		syncer_worklist_len--;
5141 		sync_vnode_count--;
5142 		bo->bo_flag &= ~BO_ONWORKLST;
5143 	}
5144 	mtx_unlock(&sync_mtx);
5145 	BO_UNLOCK(bo);
5146 
5147 	return (0);
5148 }
5149 
5150 int
5151 vn_need_pageq_flush(struct vnode *vp)
5152 {
5153 	struct vm_object *obj;
5154 
5155 	obj = vp->v_object;
5156 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5157 	    vm_object_mightbedirty(obj));
5158 }
5159 
5160 /*
5161  * Check if vnode represents a disk device
5162  */
5163 bool
5164 vn_isdisk_error(struct vnode *vp, int *errp)
5165 {
5166 	int error;
5167 
5168 	if (vp->v_type != VCHR) {
5169 		error = ENOTBLK;
5170 		goto out;
5171 	}
5172 	error = 0;
5173 	dev_lock();
5174 	if (vp->v_rdev == NULL)
5175 		error = ENXIO;
5176 	else if (vp->v_rdev->si_devsw == NULL)
5177 		error = ENXIO;
5178 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5179 		error = ENOTBLK;
5180 	dev_unlock();
5181 out:
5182 	*errp = error;
5183 	return (error == 0);
5184 }
5185 
5186 bool
5187 vn_isdisk(struct vnode *vp)
5188 {
5189 	int error;
5190 
5191 	return (vn_isdisk_error(vp, &error));
5192 }
5193 
5194 /*
5195  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5196  * the comment above cache_fplookup for details.
5197  */
5198 int
5199 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5200 {
5201 	int error;
5202 
5203 	VFS_SMR_ASSERT_ENTERED();
5204 
5205 	/* Check the owner. */
5206 	if (cred->cr_uid == file_uid) {
5207 		if (file_mode & S_IXUSR)
5208 			return (0);
5209 		goto out_error;
5210 	}
5211 
5212 	/* Otherwise, check the groups (first match) */
5213 	if (groupmember(file_gid, cred)) {
5214 		if (file_mode & S_IXGRP)
5215 			return (0);
5216 		goto out_error;
5217 	}
5218 
5219 	/* Otherwise, check everyone else. */
5220 	if (file_mode & S_IXOTH)
5221 		return (0);
5222 out_error:
5223 	/*
5224 	 * Permission check failed, but it is possible denial will get overwritten
5225 	 * (e.g., when root is traversing through a 700 directory owned by someone
5226 	 * else).
5227 	 *
5228 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5229 	 * modules overriding this result. It's quite unclear what semantics
5230 	 * are allowed for them to operate, thus for safety we don't call them
5231 	 * from within the SMR section. This also means if any such modules
5232 	 * are present, we have to let the regular lookup decide.
5233 	 */
5234 	error = priv_check_cred_vfs_lookup_nomac(cred);
5235 	switch (error) {
5236 	case 0:
5237 		return (0);
5238 	case EAGAIN:
5239 		/*
5240 		 * MAC modules present.
5241 		 */
5242 		return (EAGAIN);
5243 	case EPERM:
5244 		return (EACCES);
5245 	default:
5246 		return (error);
5247 	}
5248 }
5249 
5250 /*
5251  * Common filesystem object access control check routine.  Accepts a
5252  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5253  * Returns 0 on success, or an errno on failure.
5254  */
5255 int
5256 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5257     accmode_t accmode, struct ucred *cred)
5258 {
5259 	accmode_t dac_granted;
5260 	accmode_t priv_granted;
5261 
5262 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5263 	    ("invalid bit in accmode"));
5264 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5265 	    ("VAPPEND without VWRITE"));
5266 
5267 	/*
5268 	 * Look for a normal, non-privileged way to access the file/directory
5269 	 * as requested.  If it exists, go with that.
5270 	 */
5271 
5272 	dac_granted = 0;
5273 
5274 	/* Check the owner. */
5275 	if (cred->cr_uid == file_uid) {
5276 		dac_granted |= VADMIN;
5277 		if (file_mode & S_IXUSR)
5278 			dac_granted |= VEXEC;
5279 		if (file_mode & S_IRUSR)
5280 			dac_granted |= VREAD;
5281 		if (file_mode & S_IWUSR)
5282 			dac_granted |= (VWRITE | VAPPEND);
5283 
5284 		if ((accmode & dac_granted) == accmode)
5285 			return (0);
5286 
5287 		goto privcheck;
5288 	}
5289 
5290 	/* Otherwise, check the groups (first match) */
5291 	if (groupmember(file_gid, cred)) {
5292 		if (file_mode & S_IXGRP)
5293 			dac_granted |= VEXEC;
5294 		if (file_mode & S_IRGRP)
5295 			dac_granted |= VREAD;
5296 		if (file_mode & S_IWGRP)
5297 			dac_granted |= (VWRITE | VAPPEND);
5298 
5299 		if ((accmode & dac_granted) == accmode)
5300 			return (0);
5301 
5302 		goto privcheck;
5303 	}
5304 
5305 	/* Otherwise, check everyone else. */
5306 	if (file_mode & S_IXOTH)
5307 		dac_granted |= VEXEC;
5308 	if (file_mode & S_IROTH)
5309 		dac_granted |= VREAD;
5310 	if (file_mode & S_IWOTH)
5311 		dac_granted |= (VWRITE | VAPPEND);
5312 	if ((accmode & dac_granted) == accmode)
5313 		return (0);
5314 
5315 privcheck:
5316 	/*
5317 	 * Build a privilege mask to determine if the set of privileges
5318 	 * satisfies the requirements when combined with the granted mask
5319 	 * from above.  For each privilege, if the privilege is required,
5320 	 * bitwise or the request type onto the priv_granted mask.
5321 	 */
5322 	priv_granted = 0;
5323 
5324 	if (type == VDIR) {
5325 		/*
5326 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5327 		 * requests, instead of PRIV_VFS_EXEC.
5328 		 */
5329 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5330 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5331 			priv_granted |= VEXEC;
5332 	} else {
5333 		/*
5334 		 * Ensure that at least one execute bit is on. Otherwise,
5335 		 * a privileged user will always succeed, and we don't want
5336 		 * this to happen unless the file really is executable.
5337 		 */
5338 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5339 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5340 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5341 			priv_granted |= VEXEC;
5342 	}
5343 
5344 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5345 	    !priv_check_cred(cred, PRIV_VFS_READ))
5346 		priv_granted |= VREAD;
5347 
5348 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5349 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5350 		priv_granted |= (VWRITE | VAPPEND);
5351 
5352 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5353 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5354 		priv_granted |= VADMIN;
5355 
5356 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5357 		return (0);
5358 	}
5359 
5360 	return ((accmode & VADMIN) ? EPERM : EACCES);
5361 }
5362 
5363 /*
5364  * Credential check based on process requesting service, and per-attribute
5365  * permissions.
5366  */
5367 int
5368 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5369     struct thread *td, accmode_t accmode)
5370 {
5371 
5372 	/*
5373 	 * Kernel-invoked always succeeds.
5374 	 */
5375 	if (cred == NOCRED)
5376 		return (0);
5377 
5378 	/*
5379 	 * Do not allow privileged processes in jail to directly manipulate
5380 	 * system attributes.
5381 	 */
5382 	switch (attrnamespace) {
5383 	case EXTATTR_NAMESPACE_SYSTEM:
5384 		/* Potentially should be: return (EPERM); */
5385 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5386 	case EXTATTR_NAMESPACE_USER:
5387 		return (VOP_ACCESS(vp, accmode, cred, td));
5388 	default:
5389 		return (EPERM);
5390 	}
5391 }
5392 
5393 #ifdef DEBUG_VFS_LOCKS
5394 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5395 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5396     "Drop into debugger on lock violation");
5397 
5398 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5399 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5400     0, "Check for interlock across VOPs");
5401 
5402 int vfs_badlock_print = 1;	/* Print lock violations. */
5403 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5404     0, "Print lock violations");
5405 
5406 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5407 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5408     0, "Print vnode details on lock violations");
5409 
5410 #ifdef KDB
5411 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5412 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5413     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5414 #endif
5415 
5416 static void
5417 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5418 {
5419 
5420 #ifdef KDB
5421 	if (vfs_badlock_backtrace)
5422 		kdb_backtrace();
5423 #endif
5424 	if (vfs_badlock_vnode)
5425 		vn_printf(vp, "vnode ");
5426 	if (vfs_badlock_print)
5427 		printf("%s: %p %s\n", str, (void *)vp, msg);
5428 	if (vfs_badlock_ddb)
5429 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5430 }
5431 
5432 void
5433 assert_vi_locked(struct vnode *vp, const char *str)
5434 {
5435 
5436 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5437 		vfs_badlock("interlock is not locked but should be", str, vp);
5438 }
5439 
5440 void
5441 assert_vi_unlocked(struct vnode *vp, const char *str)
5442 {
5443 
5444 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5445 		vfs_badlock("interlock is locked but should not be", str, vp);
5446 }
5447 
5448 void
5449 assert_vop_locked(struct vnode *vp, const char *str)
5450 {
5451 	int locked;
5452 
5453 	if (KERNEL_PANICKED() || vp == NULL)
5454 		return;
5455 
5456 	locked = VOP_ISLOCKED(vp);
5457 	if (locked == 0 || locked == LK_EXCLOTHER)
5458 		vfs_badlock("is not locked but should be", str, vp);
5459 }
5460 
5461 void
5462 assert_vop_unlocked(struct vnode *vp, const char *str)
5463 {
5464 	if (KERNEL_PANICKED() || vp == NULL)
5465 		return;
5466 
5467 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5468 		vfs_badlock("is locked but should not be", str, vp);
5469 }
5470 
5471 void
5472 assert_vop_elocked(struct vnode *vp, const char *str)
5473 {
5474 	if (KERNEL_PANICKED() || vp == NULL)
5475 		return;
5476 
5477 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5478 		vfs_badlock("is not exclusive locked but should be", str, vp);
5479 }
5480 #endif /* DEBUG_VFS_LOCKS */
5481 
5482 void
5483 vop_rename_fail(struct vop_rename_args *ap)
5484 {
5485 
5486 	if (ap->a_tvp != NULL)
5487 		vput(ap->a_tvp);
5488 	if (ap->a_tdvp == ap->a_tvp)
5489 		vrele(ap->a_tdvp);
5490 	else
5491 		vput(ap->a_tdvp);
5492 	vrele(ap->a_fdvp);
5493 	vrele(ap->a_fvp);
5494 }
5495 
5496 void
5497 vop_rename_pre(void *ap)
5498 {
5499 	struct vop_rename_args *a = ap;
5500 
5501 #ifdef DEBUG_VFS_LOCKS
5502 	if (a->a_tvp)
5503 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5504 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5505 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5506 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5507 
5508 	/* Check the source (from). */
5509 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5510 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5511 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5512 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5513 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5514 
5515 	/* Check the target. */
5516 	if (a->a_tvp)
5517 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5518 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5519 #endif
5520 	/*
5521 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5522 	 * in vop_rename_post but that's not going to work out since some
5523 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5524 	 *
5525 	 * For now filesystems are expected to do the relevant calls after they
5526 	 * decide what vnodes to operate on.
5527 	 */
5528 	if (a->a_tdvp != a->a_fdvp)
5529 		vhold(a->a_fdvp);
5530 	if (a->a_tvp != a->a_fvp)
5531 		vhold(a->a_fvp);
5532 	vhold(a->a_tdvp);
5533 	if (a->a_tvp)
5534 		vhold(a->a_tvp);
5535 }
5536 
5537 #ifdef DEBUG_VFS_LOCKS
5538 void
5539 vop_fplookup_vexec_debugpre(void *ap __unused)
5540 {
5541 
5542 	VFS_SMR_ASSERT_ENTERED();
5543 }
5544 
5545 void
5546 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5547 {
5548 
5549 	VFS_SMR_ASSERT_ENTERED();
5550 }
5551 
5552 void
5553 vop_fplookup_symlink_debugpre(void *ap __unused)
5554 {
5555 
5556 	VFS_SMR_ASSERT_ENTERED();
5557 }
5558 
5559 void
5560 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5561 {
5562 
5563 	VFS_SMR_ASSERT_ENTERED();
5564 }
5565 
5566 static void
5567 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5568 {
5569 	if (vp->v_type == VCHR)
5570 		;
5571 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5572 		ASSERT_VOP_LOCKED(vp, name);
5573 	else
5574 		ASSERT_VOP_ELOCKED(vp, name);
5575 }
5576 
5577 void
5578 vop_fsync_debugpre(void *a)
5579 {
5580 	struct vop_fsync_args *ap;
5581 
5582 	ap = a;
5583 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5584 }
5585 
5586 void
5587 vop_fsync_debugpost(void *a, int rc __unused)
5588 {
5589 	struct vop_fsync_args *ap;
5590 
5591 	ap = a;
5592 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5593 }
5594 
5595 void
5596 vop_fdatasync_debugpre(void *a)
5597 {
5598 	struct vop_fdatasync_args *ap;
5599 
5600 	ap = a;
5601 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5602 }
5603 
5604 void
5605 vop_fdatasync_debugpost(void *a, int rc __unused)
5606 {
5607 	struct vop_fdatasync_args *ap;
5608 
5609 	ap = a;
5610 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5611 }
5612 
5613 void
5614 vop_strategy_debugpre(void *ap)
5615 {
5616 	struct vop_strategy_args *a;
5617 	struct buf *bp;
5618 
5619 	a = ap;
5620 	bp = a->a_bp;
5621 
5622 	/*
5623 	 * Cluster ops lock their component buffers but not the IO container.
5624 	 */
5625 	if ((bp->b_flags & B_CLUSTER) != 0)
5626 		return;
5627 
5628 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5629 		if (vfs_badlock_print)
5630 			printf(
5631 			    "VOP_STRATEGY: bp is not locked but should be\n");
5632 		if (vfs_badlock_ddb)
5633 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5634 	}
5635 }
5636 
5637 void
5638 vop_lock_debugpre(void *ap)
5639 {
5640 	struct vop_lock1_args *a = ap;
5641 
5642 	if ((a->a_flags & LK_INTERLOCK) == 0)
5643 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5644 	else
5645 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5646 }
5647 
5648 void
5649 vop_lock_debugpost(void *ap, int rc)
5650 {
5651 	struct vop_lock1_args *a = ap;
5652 
5653 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5654 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5655 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5656 }
5657 
5658 void
5659 vop_unlock_debugpre(void *ap)
5660 {
5661 	struct vop_unlock_args *a = ap;
5662 	struct vnode *vp = a->a_vp;
5663 
5664 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5665 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5666 }
5667 
5668 void
5669 vop_need_inactive_debugpre(void *ap)
5670 {
5671 	struct vop_need_inactive_args *a = ap;
5672 
5673 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5674 }
5675 
5676 void
5677 vop_need_inactive_debugpost(void *ap, int rc)
5678 {
5679 	struct vop_need_inactive_args *a = ap;
5680 
5681 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5682 }
5683 #endif
5684 
5685 void
5686 vop_create_pre(void *ap)
5687 {
5688 	struct vop_create_args *a;
5689 	struct vnode *dvp;
5690 
5691 	a = ap;
5692 	dvp = a->a_dvp;
5693 	vn_seqc_write_begin(dvp);
5694 }
5695 
5696 void
5697 vop_create_post(void *ap, int rc)
5698 {
5699 	struct vop_create_args *a;
5700 	struct vnode *dvp;
5701 
5702 	a = ap;
5703 	dvp = a->a_dvp;
5704 	vn_seqc_write_end(dvp);
5705 	if (!rc)
5706 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5707 }
5708 
5709 void
5710 vop_whiteout_pre(void *ap)
5711 {
5712 	struct vop_whiteout_args *a;
5713 	struct vnode *dvp;
5714 
5715 	a = ap;
5716 	dvp = a->a_dvp;
5717 	vn_seqc_write_begin(dvp);
5718 }
5719 
5720 void
5721 vop_whiteout_post(void *ap, int rc)
5722 {
5723 	struct vop_whiteout_args *a;
5724 	struct vnode *dvp;
5725 
5726 	a = ap;
5727 	dvp = a->a_dvp;
5728 	vn_seqc_write_end(dvp);
5729 }
5730 
5731 void
5732 vop_deleteextattr_pre(void *ap)
5733 {
5734 	struct vop_deleteextattr_args *a;
5735 	struct vnode *vp;
5736 
5737 	a = ap;
5738 	vp = a->a_vp;
5739 	vn_seqc_write_begin(vp);
5740 }
5741 
5742 void
5743 vop_deleteextattr_post(void *ap, int rc)
5744 {
5745 	struct vop_deleteextattr_args *a;
5746 	struct vnode *vp;
5747 
5748 	a = ap;
5749 	vp = a->a_vp;
5750 	vn_seqc_write_end(vp);
5751 	if (!rc)
5752 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5753 }
5754 
5755 void
5756 vop_link_pre(void *ap)
5757 {
5758 	struct vop_link_args *a;
5759 	struct vnode *vp, *tdvp;
5760 
5761 	a = ap;
5762 	vp = a->a_vp;
5763 	tdvp = a->a_tdvp;
5764 	vn_seqc_write_begin(vp);
5765 	vn_seqc_write_begin(tdvp);
5766 }
5767 
5768 void
5769 vop_link_post(void *ap, int rc)
5770 {
5771 	struct vop_link_args *a;
5772 	struct vnode *vp, *tdvp;
5773 
5774 	a = ap;
5775 	vp = a->a_vp;
5776 	tdvp = a->a_tdvp;
5777 	vn_seqc_write_end(vp);
5778 	vn_seqc_write_end(tdvp);
5779 	if (!rc) {
5780 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5781 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5782 	}
5783 }
5784 
5785 void
5786 vop_mkdir_pre(void *ap)
5787 {
5788 	struct vop_mkdir_args *a;
5789 	struct vnode *dvp;
5790 
5791 	a = ap;
5792 	dvp = a->a_dvp;
5793 	vn_seqc_write_begin(dvp);
5794 }
5795 
5796 void
5797 vop_mkdir_post(void *ap, int rc)
5798 {
5799 	struct vop_mkdir_args *a;
5800 	struct vnode *dvp;
5801 
5802 	a = ap;
5803 	dvp = a->a_dvp;
5804 	vn_seqc_write_end(dvp);
5805 	if (!rc)
5806 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5807 }
5808 
5809 #ifdef DEBUG_VFS_LOCKS
5810 void
5811 vop_mkdir_debugpost(void *ap, int rc)
5812 {
5813 	struct vop_mkdir_args *a;
5814 
5815 	a = ap;
5816 	if (!rc)
5817 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5818 }
5819 #endif
5820 
5821 void
5822 vop_mknod_pre(void *ap)
5823 {
5824 	struct vop_mknod_args *a;
5825 	struct vnode *dvp;
5826 
5827 	a = ap;
5828 	dvp = a->a_dvp;
5829 	vn_seqc_write_begin(dvp);
5830 }
5831 
5832 void
5833 vop_mknod_post(void *ap, int rc)
5834 {
5835 	struct vop_mknod_args *a;
5836 	struct vnode *dvp;
5837 
5838 	a = ap;
5839 	dvp = a->a_dvp;
5840 	vn_seqc_write_end(dvp);
5841 	if (!rc)
5842 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5843 }
5844 
5845 void
5846 vop_reclaim_post(void *ap, int rc)
5847 {
5848 	struct vop_reclaim_args *a;
5849 	struct vnode *vp;
5850 
5851 	a = ap;
5852 	vp = a->a_vp;
5853 	ASSERT_VOP_IN_SEQC(vp);
5854 	if (!rc)
5855 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5856 }
5857 
5858 void
5859 vop_remove_pre(void *ap)
5860 {
5861 	struct vop_remove_args *a;
5862 	struct vnode *dvp, *vp;
5863 
5864 	a = ap;
5865 	dvp = a->a_dvp;
5866 	vp = a->a_vp;
5867 	vn_seqc_write_begin(dvp);
5868 	vn_seqc_write_begin(vp);
5869 }
5870 
5871 void
5872 vop_remove_post(void *ap, int rc)
5873 {
5874 	struct vop_remove_args *a;
5875 	struct vnode *dvp, *vp;
5876 
5877 	a = ap;
5878 	dvp = a->a_dvp;
5879 	vp = a->a_vp;
5880 	vn_seqc_write_end(dvp);
5881 	vn_seqc_write_end(vp);
5882 	if (!rc) {
5883 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5884 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5885 	}
5886 }
5887 
5888 void
5889 vop_rename_post(void *ap, int rc)
5890 {
5891 	struct vop_rename_args *a = ap;
5892 	long hint;
5893 
5894 	if (!rc) {
5895 		hint = NOTE_WRITE;
5896 		if (a->a_fdvp == a->a_tdvp) {
5897 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5898 				hint |= NOTE_LINK;
5899 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5900 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5901 		} else {
5902 			hint |= NOTE_EXTEND;
5903 			if (a->a_fvp->v_type == VDIR)
5904 				hint |= NOTE_LINK;
5905 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5906 
5907 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5908 			    a->a_tvp->v_type == VDIR)
5909 				hint &= ~NOTE_LINK;
5910 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5911 		}
5912 
5913 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5914 		if (a->a_tvp)
5915 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5916 	}
5917 	if (a->a_tdvp != a->a_fdvp)
5918 		vdrop(a->a_fdvp);
5919 	if (a->a_tvp != a->a_fvp)
5920 		vdrop(a->a_fvp);
5921 	vdrop(a->a_tdvp);
5922 	if (a->a_tvp)
5923 		vdrop(a->a_tvp);
5924 }
5925 
5926 void
5927 vop_rmdir_pre(void *ap)
5928 {
5929 	struct vop_rmdir_args *a;
5930 	struct vnode *dvp, *vp;
5931 
5932 	a = ap;
5933 	dvp = a->a_dvp;
5934 	vp = a->a_vp;
5935 	vn_seqc_write_begin(dvp);
5936 	vn_seqc_write_begin(vp);
5937 }
5938 
5939 void
5940 vop_rmdir_post(void *ap, int rc)
5941 {
5942 	struct vop_rmdir_args *a;
5943 	struct vnode *dvp, *vp;
5944 
5945 	a = ap;
5946 	dvp = a->a_dvp;
5947 	vp = a->a_vp;
5948 	vn_seqc_write_end(dvp);
5949 	vn_seqc_write_end(vp);
5950 	if (!rc) {
5951 		vp->v_vflag |= VV_UNLINKED;
5952 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5953 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5954 	}
5955 }
5956 
5957 void
5958 vop_setattr_pre(void *ap)
5959 {
5960 	struct vop_setattr_args *a;
5961 	struct vnode *vp;
5962 
5963 	a = ap;
5964 	vp = a->a_vp;
5965 	vn_seqc_write_begin(vp);
5966 }
5967 
5968 void
5969 vop_setattr_post(void *ap, int rc)
5970 {
5971 	struct vop_setattr_args *a;
5972 	struct vnode *vp;
5973 
5974 	a = ap;
5975 	vp = a->a_vp;
5976 	vn_seqc_write_end(vp);
5977 	if (!rc)
5978 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5979 }
5980 
5981 void
5982 vop_setacl_pre(void *ap)
5983 {
5984 	struct vop_setacl_args *a;
5985 	struct vnode *vp;
5986 
5987 	a = ap;
5988 	vp = a->a_vp;
5989 	vn_seqc_write_begin(vp);
5990 }
5991 
5992 void
5993 vop_setacl_post(void *ap, int rc __unused)
5994 {
5995 	struct vop_setacl_args *a;
5996 	struct vnode *vp;
5997 
5998 	a = ap;
5999 	vp = a->a_vp;
6000 	vn_seqc_write_end(vp);
6001 }
6002 
6003 void
6004 vop_setextattr_pre(void *ap)
6005 {
6006 	struct vop_setextattr_args *a;
6007 	struct vnode *vp;
6008 
6009 	a = ap;
6010 	vp = a->a_vp;
6011 	vn_seqc_write_begin(vp);
6012 }
6013 
6014 void
6015 vop_setextattr_post(void *ap, int rc)
6016 {
6017 	struct vop_setextattr_args *a;
6018 	struct vnode *vp;
6019 
6020 	a = ap;
6021 	vp = a->a_vp;
6022 	vn_seqc_write_end(vp);
6023 	if (!rc)
6024 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6025 }
6026 
6027 void
6028 vop_symlink_pre(void *ap)
6029 {
6030 	struct vop_symlink_args *a;
6031 	struct vnode *dvp;
6032 
6033 	a = ap;
6034 	dvp = a->a_dvp;
6035 	vn_seqc_write_begin(dvp);
6036 }
6037 
6038 void
6039 vop_symlink_post(void *ap, int rc)
6040 {
6041 	struct vop_symlink_args *a;
6042 	struct vnode *dvp;
6043 
6044 	a = ap;
6045 	dvp = a->a_dvp;
6046 	vn_seqc_write_end(dvp);
6047 	if (!rc)
6048 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6049 }
6050 
6051 void
6052 vop_open_post(void *ap, int rc)
6053 {
6054 	struct vop_open_args *a = ap;
6055 
6056 	if (!rc)
6057 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6058 }
6059 
6060 void
6061 vop_close_post(void *ap, int rc)
6062 {
6063 	struct vop_close_args *a = ap;
6064 
6065 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6066 	    !VN_IS_DOOMED(a->a_vp))) {
6067 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6068 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6069 	}
6070 }
6071 
6072 void
6073 vop_read_post(void *ap, int rc)
6074 {
6075 	struct vop_read_args *a = ap;
6076 
6077 	if (!rc)
6078 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6079 }
6080 
6081 void
6082 vop_read_pgcache_post(void *ap, int rc)
6083 {
6084 	struct vop_read_pgcache_args *a = ap;
6085 
6086 	if (!rc)
6087 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6088 }
6089 
6090 void
6091 vop_readdir_post(void *ap, int rc)
6092 {
6093 	struct vop_readdir_args *a = ap;
6094 
6095 	if (!rc)
6096 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6097 }
6098 
6099 static struct knlist fs_knlist;
6100 
6101 static void
6102 vfs_event_init(void *arg)
6103 {
6104 	knlist_init_mtx(&fs_knlist, NULL);
6105 }
6106 /* XXX - correct order? */
6107 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6108 
6109 void
6110 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6111 {
6112 
6113 	KNOTE_UNLOCKED(&fs_knlist, event);
6114 }
6115 
6116 static int	filt_fsattach(struct knote *kn);
6117 static void	filt_fsdetach(struct knote *kn);
6118 static int	filt_fsevent(struct knote *kn, long hint);
6119 
6120 struct filterops fs_filtops = {
6121 	.f_isfd = 0,
6122 	.f_attach = filt_fsattach,
6123 	.f_detach = filt_fsdetach,
6124 	.f_event = filt_fsevent
6125 };
6126 
6127 static int
6128 filt_fsattach(struct knote *kn)
6129 {
6130 
6131 	kn->kn_flags |= EV_CLEAR;
6132 	knlist_add(&fs_knlist, kn, 0);
6133 	return (0);
6134 }
6135 
6136 static void
6137 filt_fsdetach(struct knote *kn)
6138 {
6139 
6140 	knlist_remove(&fs_knlist, kn, 0);
6141 }
6142 
6143 static int
6144 filt_fsevent(struct knote *kn, long hint)
6145 {
6146 
6147 	kn->kn_fflags |= kn->kn_sfflags & hint;
6148 
6149 	return (kn->kn_fflags != 0);
6150 }
6151 
6152 static int
6153 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6154 {
6155 	struct vfsidctl vc;
6156 	int error;
6157 	struct mount *mp;
6158 
6159 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6160 	if (error)
6161 		return (error);
6162 	if (vc.vc_vers != VFS_CTL_VERS1)
6163 		return (EINVAL);
6164 	mp = vfs_getvfs(&vc.vc_fsid);
6165 	if (mp == NULL)
6166 		return (ENOENT);
6167 	/* ensure that a specific sysctl goes to the right filesystem. */
6168 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6169 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6170 		vfs_rel(mp);
6171 		return (EINVAL);
6172 	}
6173 	VCTLTOREQ(&vc, req);
6174 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6175 	vfs_rel(mp);
6176 	return (error);
6177 }
6178 
6179 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6180     NULL, 0, sysctl_vfs_ctl, "",
6181     "Sysctl by fsid");
6182 
6183 /*
6184  * Function to initialize a va_filerev field sensibly.
6185  * XXX: Wouldn't a random number make a lot more sense ??
6186  */
6187 u_quad_t
6188 init_va_filerev(void)
6189 {
6190 	struct bintime bt;
6191 
6192 	getbinuptime(&bt);
6193 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6194 }
6195 
6196 static int	filt_vfsread(struct knote *kn, long hint);
6197 static int	filt_vfswrite(struct knote *kn, long hint);
6198 static int	filt_vfsvnode(struct knote *kn, long hint);
6199 static void	filt_vfsdetach(struct knote *kn);
6200 static struct filterops vfsread_filtops = {
6201 	.f_isfd = 1,
6202 	.f_detach = filt_vfsdetach,
6203 	.f_event = filt_vfsread
6204 };
6205 static struct filterops vfswrite_filtops = {
6206 	.f_isfd = 1,
6207 	.f_detach = filt_vfsdetach,
6208 	.f_event = filt_vfswrite
6209 };
6210 static struct filterops vfsvnode_filtops = {
6211 	.f_isfd = 1,
6212 	.f_detach = filt_vfsdetach,
6213 	.f_event = filt_vfsvnode
6214 };
6215 
6216 static void
6217 vfs_knllock(void *arg)
6218 {
6219 	struct vnode *vp = arg;
6220 
6221 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6222 }
6223 
6224 static void
6225 vfs_knlunlock(void *arg)
6226 {
6227 	struct vnode *vp = arg;
6228 
6229 	VOP_UNLOCK(vp);
6230 }
6231 
6232 static void
6233 vfs_knl_assert_lock(void *arg, int what)
6234 {
6235 #ifdef DEBUG_VFS_LOCKS
6236 	struct vnode *vp = arg;
6237 
6238 	if (what == LA_LOCKED)
6239 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6240 	else
6241 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6242 #endif
6243 }
6244 
6245 int
6246 vfs_kqfilter(struct vop_kqfilter_args *ap)
6247 {
6248 	struct vnode *vp = ap->a_vp;
6249 	struct knote *kn = ap->a_kn;
6250 	struct knlist *knl;
6251 
6252 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6253 	    kn->kn_filter != EVFILT_WRITE),
6254 	    ("READ/WRITE filter on a FIFO leaked through"));
6255 	switch (kn->kn_filter) {
6256 	case EVFILT_READ:
6257 		kn->kn_fop = &vfsread_filtops;
6258 		break;
6259 	case EVFILT_WRITE:
6260 		kn->kn_fop = &vfswrite_filtops;
6261 		break;
6262 	case EVFILT_VNODE:
6263 		kn->kn_fop = &vfsvnode_filtops;
6264 		break;
6265 	default:
6266 		return (EINVAL);
6267 	}
6268 
6269 	kn->kn_hook = (caddr_t)vp;
6270 
6271 	v_addpollinfo(vp);
6272 	if (vp->v_pollinfo == NULL)
6273 		return (ENOMEM);
6274 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6275 	vhold(vp);
6276 	knlist_add(knl, kn, 0);
6277 
6278 	return (0);
6279 }
6280 
6281 /*
6282  * Detach knote from vnode
6283  */
6284 static void
6285 filt_vfsdetach(struct knote *kn)
6286 {
6287 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6288 
6289 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6290 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6291 	vdrop(vp);
6292 }
6293 
6294 /*ARGSUSED*/
6295 static int
6296 filt_vfsread(struct knote *kn, long hint)
6297 {
6298 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6299 	off_t size;
6300 	int res;
6301 
6302 	/*
6303 	 * filesystem is gone, so set the EOF flag and schedule
6304 	 * the knote for deletion.
6305 	 */
6306 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6307 		VI_LOCK(vp);
6308 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6309 		VI_UNLOCK(vp);
6310 		return (1);
6311 	}
6312 
6313 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6314 		return (0);
6315 
6316 	VI_LOCK(vp);
6317 	kn->kn_data = size - kn->kn_fp->f_offset;
6318 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6319 	VI_UNLOCK(vp);
6320 	return (res);
6321 }
6322 
6323 /*ARGSUSED*/
6324 static int
6325 filt_vfswrite(struct knote *kn, long hint)
6326 {
6327 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6328 
6329 	VI_LOCK(vp);
6330 
6331 	/*
6332 	 * filesystem is gone, so set the EOF flag and schedule
6333 	 * the knote for deletion.
6334 	 */
6335 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6336 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6337 
6338 	kn->kn_data = 0;
6339 	VI_UNLOCK(vp);
6340 	return (1);
6341 }
6342 
6343 static int
6344 filt_vfsvnode(struct knote *kn, long hint)
6345 {
6346 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6347 	int res;
6348 
6349 	VI_LOCK(vp);
6350 	if (kn->kn_sfflags & hint)
6351 		kn->kn_fflags |= hint;
6352 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6353 		kn->kn_flags |= EV_EOF;
6354 		VI_UNLOCK(vp);
6355 		return (1);
6356 	}
6357 	res = (kn->kn_fflags != 0);
6358 	VI_UNLOCK(vp);
6359 	return (res);
6360 }
6361 
6362 /*
6363  * Returns whether the directory is empty or not.
6364  * If it is empty, the return value is 0; otherwise
6365  * the return value is an error value (which may
6366  * be ENOTEMPTY).
6367  */
6368 int
6369 vfs_emptydir(struct vnode *vp)
6370 {
6371 	struct uio uio;
6372 	struct iovec iov;
6373 	struct dirent *dirent, *dp, *endp;
6374 	int error, eof;
6375 
6376 	error = 0;
6377 	eof = 0;
6378 
6379 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6380 	VNPASS(vp->v_type == VDIR, vp);
6381 
6382 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6383 	iov.iov_base = dirent;
6384 	iov.iov_len = sizeof(struct dirent);
6385 
6386 	uio.uio_iov = &iov;
6387 	uio.uio_iovcnt = 1;
6388 	uio.uio_offset = 0;
6389 	uio.uio_resid = sizeof(struct dirent);
6390 	uio.uio_segflg = UIO_SYSSPACE;
6391 	uio.uio_rw = UIO_READ;
6392 	uio.uio_td = curthread;
6393 
6394 	while (eof == 0 && error == 0) {
6395 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6396 		    NULL, NULL);
6397 		if (error != 0)
6398 			break;
6399 		endp = (void *)((uint8_t *)dirent +
6400 		    sizeof(struct dirent) - uio.uio_resid);
6401 		for (dp = dirent; dp < endp;
6402 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6403 			if (dp->d_type == DT_WHT)
6404 				continue;
6405 			if (dp->d_namlen == 0)
6406 				continue;
6407 			if (dp->d_type != DT_DIR &&
6408 			    dp->d_type != DT_UNKNOWN) {
6409 				error = ENOTEMPTY;
6410 				break;
6411 			}
6412 			if (dp->d_namlen > 2) {
6413 				error = ENOTEMPTY;
6414 				break;
6415 			}
6416 			if (dp->d_namlen == 1 &&
6417 			    dp->d_name[0] != '.') {
6418 				error = ENOTEMPTY;
6419 				break;
6420 			}
6421 			if (dp->d_namlen == 2 &&
6422 			    dp->d_name[1] != '.') {
6423 				error = ENOTEMPTY;
6424 				break;
6425 			}
6426 			uio.uio_resid = sizeof(struct dirent);
6427 		}
6428 	}
6429 	free(dirent, M_TEMP);
6430 	return (error);
6431 }
6432 
6433 int
6434 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6435 {
6436 	int error;
6437 
6438 	if (dp->d_reclen > ap->a_uio->uio_resid)
6439 		return (ENAMETOOLONG);
6440 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6441 	if (error) {
6442 		if (ap->a_ncookies != NULL) {
6443 			if (ap->a_cookies != NULL)
6444 				free(ap->a_cookies, M_TEMP);
6445 			ap->a_cookies = NULL;
6446 			*ap->a_ncookies = 0;
6447 		}
6448 		return (error);
6449 	}
6450 	if (ap->a_ncookies == NULL)
6451 		return (0);
6452 
6453 	KASSERT(ap->a_cookies,
6454 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6455 
6456 	*ap->a_cookies = realloc(*ap->a_cookies,
6457 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6458 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6459 	*ap->a_ncookies += 1;
6460 	return (0);
6461 }
6462 
6463 /*
6464  * The purpose of this routine is to remove granularity from accmode_t,
6465  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6466  * VADMIN and VAPPEND.
6467  *
6468  * If it returns 0, the caller is supposed to continue with the usual
6469  * access checks using 'accmode' as modified by this routine.  If it
6470  * returns nonzero value, the caller is supposed to return that value
6471  * as errno.
6472  *
6473  * Note that after this routine runs, accmode may be zero.
6474  */
6475 int
6476 vfs_unixify_accmode(accmode_t *accmode)
6477 {
6478 	/*
6479 	 * There is no way to specify explicit "deny" rule using
6480 	 * file mode or POSIX.1e ACLs.
6481 	 */
6482 	if (*accmode & VEXPLICIT_DENY) {
6483 		*accmode = 0;
6484 		return (0);
6485 	}
6486 
6487 	/*
6488 	 * None of these can be translated into usual access bits.
6489 	 * Also, the common case for NFSv4 ACLs is to not contain
6490 	 * either of these bits. Caller should check for VWRITE
6491 	 * on the containing directory instead.
6492 	 */
6493 	if (*accmode & (VDELETE_CHILD | VDELETE))
6494 		return (EPERM);
6495 
6496 	if (*accmode & VADMIN_PERMS) {
6497 		*accmode &= ~VADMIN_PERMS;
6498 		*accmode |= VADMIN;
6499 	}
6500 
6501 	/*
6502 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6503 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6504 	 */
6505 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6506 
6507 	return (0);
6508 }
6509 
6510 /*
6511  * Clear out a doomed vnode (if any) and replace it with a new one as long
6512  * as the fs is not being unmounted. Return the root vnode to the caller.
6513  */
6514 static int __noinline
6515 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6516 {
6517 	struct vnode *vp;
6518 	int error;
6519 
6520 restart:
6521 	if (mp->mnt_rootvnode != NULL) {
6522 		MNT_ILOCK(mp);
6523 		vp = mp->mnt_rootvnode;
6524 		if (vp != NULL) {
6525 			if (!VN_IS_DOOMED(vp)) {
6526 				vrefact(vp);
6527 				MNT_IUNLOCK(mp);
6528 				error = vn_lock(vp, flags);
6529 				if (error == 0) {
6530 					*vpp = vp;
6531 					return (0);
6532 				}
6533 				vrele(vp);
6534 				goto restart;
6535 			}
6536 			/*
6537 			 * Clear the old one.
6538 			 */
6539 			mp->mnt_rootvnode = NULL;
6540 		}
6541 		MNT_IUNLOCK(mp);
6542 		if (vp != NULL) {
6543 			vfs_op_barrier_wait(mp);
6544 			vrele(vp);
6545 		}
6546 	}
6547 	error = VFS_CACHEDROOT(mp, flags, vpp);
6548 	if (error != 0)
6549 		return (error);
6550 	if (mp->mnt_vfs_ops == 0) {
6551 		MNT_ILOCK(mp);
6552 		if (mp->mnt_vfs_ops != 0) {
6553 			MNT_IUNLOCK(mp);
6554 			return (0);
6555 		}
6556 		if (mp->mnt_rootvnode == NULL) {
6557 			vrefact(*vpp);
6558 			mp->mnt_rootvnode = *vpp;
6559 		} else {
6560 			if (mp->mnt_rootvnode != *vpp) {
6561 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6562 					panic("%s: mismatch between vnode returned "
6563 					    " by VFS_CACHEDROOT and the one cached "
6564 					    " (%p != %p)",
6565 					    __func__, *vpp, mp->mnt_rootvnode);
6566 				}
6567 			}
6568 		}
6569 		MNT_IUNLOCK(mp);
6570 	}
6571 	return (0);
6572 }
6573 
6574 int
6575 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6576 {
6577 	struct mount_pcpu *mpcpu;
6578 	struct vnode *vp;
6579 	int error;
6580 
6581 	if (!vfs_op_thread_enter(mp, mpcpu))
6582 		return (vfs_cache_root_fallback(mp, flags, vpp));
6583 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6584 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6585 		vfs_op_thread_exit(mp, mpcpu);
6586 		return (vfs_cache_root_fallback(mp, flags, vpp));
6587 	}
6588 	vrefact(vp);
6589 	vfs_op_thread_exit(mp, mpcpu);
6590 	error = vn_lock(vp, flags);
6591 	if (error != 0) {
6592 		vrele(vp);
6593 		return (vfs_cache_root_fallback(mp, flags, vpp));
6594 	}
6595 	*vpp = vp;
6596 	return (0);
6597 }
6598 
6599 struct vnode *
6600 vfs_cache_root_clear(struct mount *mp)
6601 {
6602 	struct vnode *vp;
6603 
6604 	/*
6605 	 * ops > 0 guarantees there is nobody who can see this vnode
6606 	 */
6607 	MPASS(mp->mnt_vfs_ops > 0);
6608 	vp = mp->mnt_rootvnode;
6609 	if (vp != NULL)
6610 		vn_seqc_write_begin(vp);
6611 	mp->mnt_rootvnode = NULL;
6612 	return (vp);
6613 }
6614 
6615 void
6616 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6617 {
6618 
6619 	MPASS(mp->mnt_vfs_ops > 0);
6620 	vrefact(vp);
6621 	mp->mnt_rootvnode = vp;
6622 }
6623 
6624 /*
6625  * These are helper functions for filesystems to traverse all
6626  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6627  *
6628  * This interface replaces MNT_VNODE_FOREACH.
6629  */
6630 
6631 struct vnode *
6632 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6633 {
6634 	struct vnode *vp;
6635 
6636 	maybe_yield();
6637 	MNT_ILOCK(mp);
6638 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6639 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6640 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6641 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6642 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6643 			continue;
6644 		VI_LOCK(vp);
6645 		if (VN_IS_DOOMED(vp)) {
6646 			VI_UNLOCK(vp);
6647 			continue;
6648 		}
6649 		break;
6650 	}
6651 	if (vp == NULL) {
6652 		__mnt_vnode_markerfree_all(mvp, mp);
6653 		/* MNT_IUNLOCK(mp); -- done in above function */
6654 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6655 		return (NULL);
6656 	}
6657 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6658 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6659 	MNT_IUNLOCK(mp);
6660 	return (vp);
6661 }
6662 
6663 struct vnode *
6664 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6665 {
6666 	struct vnode *vp;
6667 
6668 	*mvp = vn_alloc_marker(mp);
6669 	MNT_ILOCK(mp);
6670 	MNT_REF(mp);
6671 
6672 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6673 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6674 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6675 			continue;
6676 		VI_LOCK(vp);
6677 		if (VN_IS_DOOMED(vp)) {
6678 			VI_UNLOCK(vp);
6679 			continue;
6680 		}
6681 		break;
6682 	}
6683 	if (vp == NULL) {
6684 		MNT_REL(mp);
6685 		MNT_IUNLOCK(mp);
6686 		vn_free_marker(*mvp);
6687 		*mvp = NULL;
6688 		return (NULL);
6689 	}
6690 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6691 	MNT_IUNLOCK(mp);
6692 	return (vp);
6693 }
6694 
6695 void
6696 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6697 {
6698 
6699 	if (*mvp == NULL) {
6700 		MNT_IUNLOCK(mp);
6701 		return;
6702 	}
6703 
6704 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6705 
6706 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6707 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6708 	MNT_REL(mp);
6709 	MNT_IUNLOCK(mp);
6710 	vn_free_marker(*mvp);
6711 	*mvp = NULL;
6712 }
6713 
6714 /*
6715  * These are helper functions for filesystems to traverse their
6716  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6717  */
6718 static void
6719 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6720 {
6721 
6722 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6723 
6724 	MNT_ILOCK(mp);
6725 	MNT_REL(mp);
6726 	MNT_IUNLOCK(mp);
6727 	vn_free_marker(*mvp);
6728 	*mvp = NULL;
6729 }
6730 
6731 /*
6732  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6733  * conventional lock order during mnt_vnode_next_lazy iteration.
6734  *
6735  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6736  * The list lock is dropped and reacquired.  On success, both locks are held.
6737  * On failure, the mount vnode list lock is held but the vnode interlock is
6738  * not, and the procedure may have yielded.
6739  */
6740 static bool
6741 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6742     struct vnode *vp)
6743 {
6744 
6745 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6746 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6747 	    ("%s: bad marker", __func__));
6748 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6749 	    ("%s: inappropriate vnode", __func__));
6750 	ASSERT_VI_UNLOCKED(vp, __func__);
6751 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6752 
6753 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6754 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6755 
6756 	/*
6757 	 * Note we may be racing against vdrop which transitioned the hold
6758 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6759 	 * if we are the only user after we get the interlock we will just
6760 	 * vdrop.
6761 	 */
6762 	vhold(vp);
6763 	mtx_unlock(&mp->mnt_listmtx);
6764 	VI_LOCK(vp);
6765 	if (VN_IS_DOOMED(vp)) {
6766 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6767 		goto out_lost;
6768 	}
6769 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6770 	/*
6771 	 * There is nothing to do if we are the last user.
6772 	 */
6773 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6774 		goto out_lost;
6775 	mtx_lock(&mp->mnt_listmtx);
6776 	return (true);
6777 out_lost:
6778 	vdropl(vp);
6779 	maybe_yield();
6780 	mtx_lock(&mp->mnt_listmtx);
6781 	return (false);
6782 }
6783 
6784 static struct vnode *
6785 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6786     void *cbarg)
6787 {
6788 	struct vnode *vp;
6789 
6790 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6791 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6792 restart:
6793 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6794 	while (vp != NULL) {
6795 		if (vp->v_type == VMARKER) {
6796 			vp = TAILQ_NEXT(vp, v_lazylist);
6797 			continue;
6798 		}
6799 		/*
6800 		 * See if we want to process the vnode. Note we may encounter a
6801 		 * long string of vnodes we don't care about and hog the list
6802 		 * as a result. Check for it and requeue the marker.
6803 		 */
6804 		VNPASS(!VN_IS_DOOMED(vp), vp);
6805 		if (!cb(vp, cbarg)) {
6806 			if (!should_yield()) {
6807 				vp = TAILQ_NEXT(vp, v_lazylist);
6808 				continue;
6809 			}
6810 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6811 			    v_lazylist);
6812 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6813 			    v_lazylist);
6814 			mtx_unlock(&mp->mnt_listmtx);
6815 			kern_yield(PRI_USER);
6816 			mtx_lock(&mp->mnt_listmtx);
6817 			goto restart;
6818 		}
6819 		/*
6820 		 * Try-lock because this is the wrong lock order.
6821 		 */
6822 		if (!VI_TRYLOCK(vp) &&
6823 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6824 			goto restart;
6825 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6826 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6827 		    ("alien vnode on the lazy list %p %p", vp, mp));
6828 		VNPASS(vp->v_mount == mp, vp);
6829 		VNPASS(!VN_IS_DOOMED(vp), vp);
6830 		break;
6831 	}
6832 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6833 
6834 	/* Check if we are done */
6835 	if (vp == NULL) {
6836 		mtx_unlock(&mp->mnt_listmtx);
6837 		mnt_vnode_markerfree_lazy(mvp, mp);
6838 		return (NULL);
6839 	}
6840 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6841 	mtx_unlock(&mp->mnt_listmtx);
6842 	ASSERT_VI_LOCKED(vp, "lazy iter");
6843 	return (vp);
6844 }
6845 
6846 struct vnode *
6847 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6848     void *cbarg)
6849 {
6850 
6851 	maybe_yield();
6852 	mtx_lock(&mp->mnt_listmtx);
6853 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6854 }
6855 
6856 struct vnode *
6857 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6858     void *cbarg)
6859 {
6860 	struct vnode *vp;
6861 
6862 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6863 		return (NULL);
6864 
6865 	*mvp = vn_alloc_marker(mp);
6866 	MNT_ILOCK(mp);
6867 	MNT_REF(mp);
6868 	MNT_IUNLOCK(mp);
6869 
6870 	mtx_lock(&mp->mnt_listmtx);
6871 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6872 	if (vp == NULL) {
6873 		mtx_unlock(&mp->mnt_listmtx);
6874 		mnt_vnode_markerfree_lazy(mvp, mp);
6875 		return (NULL);
6876 	}
6877 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6878 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6879 }
6880 
6881 void
6882 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6883 {
6884 
6885 	if (*mvp == NULL)
6886 		return;
6887 
6888 	mtx_lock(&mp->mnt_listmtx);
6889 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6890 	mtx_unlock(&mp->mnt_listmtx);
6891 	mnt_vnode_markerfree_lazy(mvp, mp);
6892 }
6893 
6894 int
6895 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6896 {
6897 
6898 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6899 		cnp->cn_flags &= ~NOEXECCHECK;
6900 		return (0);
6901 	}
6902 
6903 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6904 }
6905 
6906 /*
6907  * Do not use this variant unless you have means other than the hold count
6908  * to prevent the vnode from getting freed.
6909  */
6910 void
6911 vn_seqc_write_begin_locked(struct vnode *vp)
6912 {
6913 
6914 	ASSERT_VI_LOCKED(vp, __func__);
6915 	VNPASS(vp->v_holdcnt > 0, vp);
6916 	VNPASS(vp->v_seqc_users >= 0, vp);
6917 	vp->v_seqc_users++;
6918 	if (vp->v_seqc_users == 1)
6919 		seqc_sleepable_write_begin(&vp->v_seqc);
6920 }
6921 
6922 void
6923 vn_seqc_write_begin(struct vnode *vp)
6924 {
6925 
6926 	VI_LOCK(vp);
6927 	vn_seqc_write_begin_locked(vp);
6928 	VI_UNLOCK(vp);
6929 }
6930 
6931 void
6932 vn_seqc_write_end_locked(struct vnode *vp)
6933 {
6934 
6935 	ASSERT_VI_LOCKED(vp, __func__);
6936 	VNPASS(vp->v_seqc_users > 0, vp);
6937 	vp->v_seqc_users--;
6938 	if (vp->v_seqc_users == 0)
6939 		seqc_sleepable_write_end(&vp->v_seqc);
6940 }
6941 
6942 void
6943 vn_seqc_write_end(struct vnode *vp)
6944 {
6945 
6946 	VI_LOCK(vp);
6947 	vn_seqc_write_end_locked(vp);
6948 	VI_UNLOCK(vp);
6949 }
6950 
6951 /*
6952  * Special case handling for allocating and freeing vnodes.
6953  *
6954  * The counter remains unchanged on free so that a doomed vnode will
6955  * keep testing as in modify as long as it is accessible with SMR.
6956  */
6957 static void
6958 vn_seqc_init(struct vnode *vp)
6959 {
6960 
6961 	vp->v_seqc = 0;
6962 	vp->v_seqc_users = 0;
6963 }
6964 
6965 static void
6966 vn_seqc_write_end_free(struct vnode *vp)
6967 {
6968 
6969 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
6970 	VNPASS(vp->v_seqc_users == 1, vp);
6971 }
6972 
6973 void
6974 vn_irflag_set_locked(struct vnode *vp, short toset)
6975 {
6976 	short flags;
6977 
6978 	ASSERT_VI_LOCKED(vp, __func__);
6979 	flags = vn_irflag_read(vp);
6980 	VNASSERT((flags & toset) == 0, vp,
6981 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
6982 	    __func__, flags, toset));
6983 	atomic_store_short(&vp->v_irflag, flags | toset);
6984 }
6985 
6986 void
6987 vn_irflag_set(struct vnode *vp, short toset)
6988 {
6989 
6990 	VI_LOCK(vp);
6991 	vn_irflag_set_locked(vp, toset);
6992 	VI_UNLOCK(vp);
6993 }
6994 
6995 void
6996 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
6997 {
6998 	short flags;
6999 
7000 	ASSERT_VI_LOCKED(vp, __func__);
7001 	flags = vn_irflag_read(vp);
7002 	atomic_store_short(&vp->v_irflag, flags | toset);
7003 }
7004 
7005 void
7006 vn_irflag_set_cond(struct vnode *vp, short toset)
7007 {
7008 
7009 	VI_LOCK(vp);
7010 	vn_irflag_set_cond_locked(vp, toset);
7011 	VI_UNLOCK(vp);
7012 }
7013 
7014 void
7015 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7016 {
7017 	short flags;
7018 
7019 	ASSERT_VI_LOCKED(vp, __func__);
7020 	flags = vn_irflag_read(vp);
7021 	VNASSERT((flags & tounset) == tounset, vp,
7022 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7023 	    __func__, flags, tounset));
7024 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7025 }
7026 
7027 void
7028 vn_irflag_unset(struct vnode *vp, short tounset)
7029 {
7030 
7031 	VI_LOCK(vp);
7032 	vn_irflag_unset_locked(vp, tounset);
7033 	VI_UNLOCK(vp);
7034 }
7035 
7036 int
7037 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7038 {
7039 	struct vattr vattr;
7040 	int error;
7041 
7042 	ASSERT_VOP_LOCKED(vp, __func__);
7043 	error = VOP_GETATTR(vp, &vattr, cred);
7044 	if (__predict_true(error == 0)) {
7045 		if (vattr.va_size <= OFF_MAX)
7046 			*size = vattr.va_size;
7047 		else
7048 			error = EFBIG;
7049 	}
7050 	return (error);
7051 }
7052 
7053 int
7054 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7055 {
7056 	int error;
7057 
7058 	VOP_LOCK(vp, LK_SHARED);
7059 	error = vn_getsize_locked(vp, size, cred);
7060 	VOP_UNLOCK(vp);
7061 	return (error);
7062 }
7063 
7064 #ifdef INVARIANTS
7065 void
7066 vn_set_state_validate(struct vnode *vp, enum vstate state)
7067 {
7068 
7069 	switch (vp->v_state) {
7070 	case VSTATE_UNINITIALIZED:
7071 		switch (state) {
7072 		case VSTATE_CONSTRUCTED:
7073 		case VSTATE_DESTROYING:
7074 			return;
7075 		default:
7076 			break;
7077 		}
7078 		break;
7079 	case VSTATE_CONSTRUCTED:
7080 		ASSERT_VOP_ELOCKED(vp, __func__);
7081 		switch (state) {
7082 		case VSTATE_DESTROYING:
7083 			return;
7084 		default:
7085 			break;
7086 		}
7087 		break;
7088 	case VSTATE_DESTROYING:
7089 		ASSERT_VOP_ELOCKED(vp, __func__);
7090 		switch (state) {
7091 		case VSTATE_DEAD:
7092 			return;
7093 		default:
7094 			break;
7095 		}
7096 		break;
7097 	case VSTATE_DEAD:
7098 		switch (state) {
7099 		case VSTATE_UNINITIALIZED:
7100 			return;
7101 		default:
7102 			break;
7103 		}
7104 		break;
7105 	}
7106 
7107 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7108 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7109 }
7110 #endif
7111