xref: /freebsd/sys/kern/vfs_subr.c (revision 2d33ad48)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/uma.h>
98 
99 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
100 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
101 #endif
102 
103 #ifdef DDB
104 #include <ddb/ddb.h>
105 #endif
106 
107 static void	delmntque(struct vnode *vp);
108 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
109 		    int slpflag, int slptimeo);
110 static void	syncer_shutdown(void *arg, int howto);
111 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
112 static void	v_init_counters(struct vnode *);
113 static void	vn_seqc_init(struct vnode *);
114 static void	vn_seqc_write_end_free(struct vnode *vp);
115 static void	vgonel(struct vnode *);
116 static bool	vhold_recycle_free(struct vnode *);
117 static void	vdropl_recycle(struct vnode *vp);
118 static void	vdrop_recycle(struct vnode *vp);
119 static void	vfs_knllock(void *arg);
120 static void	vfs_knlunlock(void *arg);
121 static void	vfs_knl_assert_lock(void *arg, int what);
122 static void	destroy_vpollinfo(struct vpollinfo *vi);
123 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
124 		    daddr_t startlbn, daddr_t endlbn);
125 static void	vnlru_recalc(void);
126 
127 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
128     "vnode configuration and statistics");
129 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
130     "vnode configuration");
131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "vnode statistics");
133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
134     "vnode recycling");
135 
136 /*
137  * Number of vnodes in existence.  Increased whenever getnewvnode()
138  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
139  */
140 static u_long __exclusive_cache_line numvnodes;
141 
142 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
143     "Number of vnodes in existence (legacy)");
144 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence");
146 
147 static counter_u64_t vnodes_created;
148 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
149     "Number of vnodes created by getnewvnode (legacy)");
150 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode");
152 
153 /*
154  * Conversion tables for conversion from vnode types to inode formats
155  * and back.
156  */
157 __enum_uint8(vtype) iftovt_tab[16] = {
158 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
159 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
160 };
161 int vttoif_tab[10] = {
162 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
163 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
164 };
165 
166 /*
167  * List of allocates vnodes in the system.
168  */
169 static TAILQ_HEAD(freelst, vnode) vnode_list;
170 static struct vnode *vnode_list_free_marker;
171 static struct vnode *vnode_list_reclaim_marker;
172 
173 /*
174  * "Free" vnode target.  Free vnodes are rarely completely free, but are
175  * just ones that are cheap to recycle.  Usually they are for files which
176  * have been stat'd but not read; these usually have inode and namecache
177  * data attached to them.  This target is the preferred minimum size of a
178  * sub-cache consisting mostly of such files. The system balances the size
179  * of this sub-cache with its complement to try to prevent either from
180  * thrashing while the other is relatively inactive.  The targets express
181  * a preference for the best balance.
182  *
183  * "Above" this target there are 2 further targets (watermarks) related
184  * to recyling of free vnodes.  In the best-operating case, the cache is
185  * exactly full, the free list has size between vlowat and vhiwat above the
186  * free target, and recycling from it and normal use maintains this state.
187  * Sometimes the free list is below vlowat or even empty, but this state
188  * is even better for immediate use provided the cache is not full.
189  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
190  * ones) to reach one of these states.  The watermarks are currently hard-
191  * coded as 4% and 9% of the available space higher.  These and the default
192  * of 25% for wantfreevnodes are too large if the memory size is large.
193  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
194  * whenever vnlru_proc() becomes active.
195  */
196 static long wantfreevnodes;
197 static long __exclusive_cache_line freevnodes;
198 static long freevnodes_old;
199 
200 static u_long recycles_count;
201 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
202     "Number of vnodes recycled to meet vnode cache targets (legacy)");
203 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
204     &recycles_count, 0,
205     "Number of vnodes recycled to meet vnode cache targets");
206 
207 static u_long recycles_free_count;
208 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209     &recycles_free_count, 0,
210     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
211 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
212     &recycles_free_count, 0,
213     "Number of free vnodes recycled to meet vnode cache targets");
214 
215 static counter_u64_t direct_recycles_free_count;
216 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
217     &direct_recycles_free_count,
218     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
219 
220 static counter_u64_t vnode_skipped_requeues;
221 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
222     "Number of times LRU requeue was skipped due to lock contention");
223 
224 static u_long deferred_inact;
225 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
226     &deferred_inact, 0, "Number of times inactive processing was deferred");
227 
228 /* To keep more than one thread at a time from running vfs_getnewfsid */
229 static struct mtx mntid_mtx;
230 
231 /*
232  * Lock for any access to the following:
233  *	vnode_list
234  *	numvnodes
235  *	freevnodes
236  */
237 static struct mtx __exclusive_cache_line vnode_list_mtx;
238 
239 /* Publicly exported FS */
240 struct nfs_public nfs_pub;
241 
242 static uma_zone_t buf_trie_zone;
243 static smr_t buf_trie_smr;
244 
245 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
246 static uma_zone_t vnode_zone;
247 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
248 
249 __read_frequently smr_t vfs_smr;
250 
251 /*
252  * The workitem queue.
253  *
254  * It is useful to delay writes of file data and filesystem metadata
255  * for tens of seconds so that quickly created and deleted files need
256  * not waste disk bandwidth being created and removed. To realize this,
257  * we append vnodes to a "workitem" queue. When running with a soft
258  * updates implementation, most pending metadata dependencies should
259  * not wait for more than a few seconds. Thus, mounted on block devices
260  * are delayed only about a half the time that file data is delayed.
261  * Similarly, directory updates are more critical, so are only delayed
262  * about a third the time that file data is delayed. Thus, there are
263  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
264  * one each second (driven off the filesystem syncer process). The
265  * syncer_delayno variable indicates the next queue that is to be processed.
266  * Items that need to be processed soon are placed in this queue:
267  *
268  *	syncer_workitem_pending[syncer_delayno]
269  *
270  * A delay of fifteen seconds is done by placing the request fifteen
271  * entries later in the queue:
272  *
273  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
274  *
275  */
276 static int syncer_delayno;
277 static long syncer_mask;
278 LIST_HEAD(synclist, bufobj);
279 static struct synclist *syncer_workitem_pending;
280 /*
281  * The sync_mtx protects:
282  *	bo->bo_synclist
283  *	sync_vnode_count
284  *	syncer_delayno
285  *	syncer_state
286  *	syncer_workitem_pending
287  *	syncer_worklist_len
288  *	rushjob
289  */
290 static struct mtx sync_mtx;
291 static struct cv sync_wakeup;
292 
293 #define SYNCER_MAXDELAY		32
294 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
295 static int syncdelay = 30;		/* max time to delay syncing data */
296 static int filedelay = 30;		/* time to delay syncing files */
297 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
298     "Time to delay syncing files (in seconds)");
299 static int dirdelay = 29;		/* time to delay syncing directories */
300 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
301     "Time to delay syncing directories (in seconds)");
302 static int metadelay = 28;		/* time to delay syncing metadata */
303 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
304     "Time to delay syncing metadata (in seconds)");
305 static int rushjob;		/* number of slots to run ASAP */
306 static int stat_rush_requests;	/* number of times I/O speeded up */
307 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
308     "Number of times I/O speeded up (rush requests)");
309 
310 #define	VDBATCH_SIZE 8
311 struct vdbatch {
312 	u_int index;
313 	struct mtx lock;
314 	struct vnode *tab[VDBATCH_SIZE];
315 };
316 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
317 
318 static void	vdbatch_dequeue(struct vnode *vp);
319 
320 /*
321  * When shutting down the syncer, run it at four times normal speed.
322  */
323 #define SYNCER_SHUTDOWN_SPEEDUP		4
324 static int sync_vnode_count;
325 static int syncer_worklist_len;
326 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
327     syncer_state;
328 
329 /* Target for maximum number of vnodes. */
330 u_long desiredvnodes;
331 static u_long gapvnodes;		/* gap between wanted and desired */
332 static u_long vhiwat;		/* enough extras after expansion */
333 static u_long vlowat;		/* minimal extras before expansion */
334 static bool vstir;		/* nonzero to stir non-free vnodes */
335 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
336 
337 static u_long vnlru_read_freevnodes(void);
338 
339 /*
340  * Note that no attempt is made to sanitize these parameters.
341  */
342 static int
343 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
344 {
345 	u_long val;
346 	int error;
347 
348 	val = desiredvnodes;
349 	error = sysctl_handle_long(oidp, &val, 0, req);
350 	if (error != 0 || req->newptr == NULL)
351 		return (error);
352 
353 	if (val == desiredvnodes)
354 		return (0);
355 	mtx_lock(&vnode_list_mtx);
356 	desiredvnodes = val;
357 	wantfreevnodes = desiredvnodes / 4;
358 	vnlru_recalc();
359 	mtx_unlock(&vnode_list_mtx);
360 	/*
361 	 * XXX There is no protection against multiple threads changing
362 	 * desiredvnodes at the same time. Locking above only helps vnlru and
363 	 * getnewvnode.
364 	 */
365 	vfs_hash_changesize(desiredvnodes);
366 	cache_changesize(desiredvnodes);
367 	return (0);
368 }
369 
370 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
371     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
372     "LU", "Target for maximum number of vnodes (legacy)");
373 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
374     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
375     "LU", "Target for maximum number of vnodes");
376 
377 static int
378 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
379 {
380 	u_long rfreevnodes;
381 
382 	rfreevnodes = vnlru_read_freevnodes();
383 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
384 }
385 
386 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
387     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
388     "LU", "Number of \"free\" vnodes (legacy)");
389 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
390     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
391     "LU", "Number of \"free\" vnodes");
392 
393 static int
394 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
395 {
396 	u_long val;
397 	int error;
398 
399 	val = wantfreevnodes;
400 	error = sysctl_handle_long(oidp, &val, 0, req);
401 	if (error != 0 || req->newptr == NULL)
402 		return (error);
403 
404 	if (val == wantfreevnodes)
405 		return (0);
406 	mtx_lock(&vnode_list_mtx);
407 	wantfreevnodes = val;
408 	vnlru_recalc();
409 	mtx_unlock(&vnode_list_mtx);
410 	return (0);
411 }
412 
413 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
414     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
415     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
416 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
417     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
418     "LU", "Target for minimum number of \"free\" vnodes");
419 
420 static int vnlru_nowhere;
421 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
422     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
423 
424 static int
425 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
426 {
427 	struct vnode *vp;
428 	struct nameidata nd;
429 	char *buf;
430 	unsigned long ndflags;
431 	int error;
432 
433 	if (req->newptr == NULL)
434 		return (EINVAL);
435 	if (req->newlen >= PATH_MAX)
436 		return (E2BIG);
437 
438 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
439 	error = SYSCTL_IN(req, buf, req->newlen);
440 	if (error != 0)
441 		goto out;
442 
443 	buf[req->newlen] = '\0';
444 
445 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
446 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
447 	if ((error = namei(&nd)) != 0)
448 		goto out;
449 	vp = nd.ni_vp;
450 
451 	if (VN_IS_DOOMED(vp)) {
452 		/*
453 		 * This vnode is being recycled.  Return != 0 to let the caller
454 		 * know that the sysctl had no effect.  Return EAGAIN because a
455 		 * subsequent call will likely succeed (since namei will create
456 		 * a new vnode if necessary)
457 		 */
458 		error = EAGAIN;
459 		goto putvnode;
460 	}
461 
462 	vgone(vp);
463 putvnode:
464 	vput(vp);
465 	NDFREE_PNBUF(&nd);
466 out:
467 	free(buf, M_TEMP);
468 	return (error);
469 }
470 
471 static int
472 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
473 {
474 	struct thread *td = curthread;
475 	struct vnode *vp;
476 	struct file *fp;
477 	int error;
478 	int fd;
479 
480 	if (req->newptr == NULL)
481 		return (EBADF);
482 
483         error = sysctl_handle_int(oidp, &fd, 0, req);
484         if (error != 0)
485                 return (error);
486 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
487 	if (error != 0)
488 		return (error);
489 	vp = fp->f_vnode;
490 
491 	error = vn_lock(vp, LK_EXCLUSIVE);
492 	if (error != 0)
493 		goto drop;
494 
495 	vgone(vp);
496 	VOP_UNLOCK(vp);
497 drop:
498 	fdrop(fp, td);
499 	return (error);
500 }
501 
502 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
503     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
504     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
505 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
506     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
507     sysctl_ftry_reclaim_vnode, "I",
508     "Try to reclaim a vnode by its file descriptor");
509 
510 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
511 #define vnsz2log 8
512 #ifndef DEBUG_LOCKS
513 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
514     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
515     "vnsz2log needs to be updated");
516 #endif
517 
518 /*
519  * Support for the bufobj clean & dirty pctrie.
520  */
521 static void *
522 buf_trie_alloc(struct pctrie *ptree)
523 {
524 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
525 }
526 
527 static void
528 buf_trie_free(struct pctrie *ptree, void *node)
529 {
530 	uma_zfree_smr(buf_trie_zone, node);
531 }
532 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
533     buf_trie_smr);
534 
535 /*
536  * Initialize the vnode management data structures.
537  *
538  * Reevaluate the following cap on the number of vnodes after the physical
539  * memory size exceeds 512GB.  In the limit, as the physical memory size
540  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
541  */
542 #ifndef	MAXVNODES_MAX
543 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
544 #endif
545 
546 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
547 
548 static struct vnode *
549 vn_alloc_marker(struct mount *mp)
550 {
551 	struct vnode *vp;
552 
553 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
554 	vp->v_type = VMARKER;
555 	vp->v_mount = mp;
556 
557 	return (vp);
558 }
559 
560 static void
561 vn_free_marker(struct vnode *vp)
562 {
563 
564 	MPASS(vp->v_type == VMARKER);
565 	free(vp, M_VNODE_MARKER);
566 }
567 
568 #ifdef KASAN
569 static int
570 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
571 {
572 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
573 	return (0);
574 }
575 
576 static void
577 vnode_dtor(void *mem, int size, void *arg __unused)
578 {
579 	size_t end1, end2, off1, off2;
580 
581 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
582 	    offsetof(struct vnode, v_dbatchcpu),
583 	    "KASAN marks require updating");
584 
585 	off1 = offsetof(struct vnode, v_vnodelist);
586 	off2 = offsetof(struct vnode, v_dbatchcpu);
587 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
588 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
589 
590 	/*
591 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
592 	 * after the vnode has been freed.  Try to get some KASAN coverage by
593 	 * marking everything except those two fields as invalid.  Because
594 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
595 	 * the same 8-byte aligned word must also be marked valid.
596 	 */
597 
598 	/* Handle the area from the start until v_vnodelist... */
599 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
600 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
601 
602 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
603 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
604 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
605 	if (off2 > off1)
606 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
607 		    off2 - off1, KASAN_UMA_FREED);
608 
609 	/* ... and finally the area from v_dbatchcpu to the end. */
610 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
611 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
612 	    KASAN_UMA_FREED);
613 }
614 #endif /* KASAN */
615 
616 /*
617  * Initialize a vnode as it first enters the zone.
618  */
619 static int
620 vnode_init(void *mem, int size, int flags)
621 {
622 	struct vnode *vp;
623 
624 	vp = mem;
625 	bzero(vp, size);
626 	/*
627 	 * Setup locks.
628 	 */
629 	vp->v_vnlock = &vp->v_lock;
630 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
631 	/*
632 	 * By default, don't allow shared locks unless filesystems opt-in.
633 	 */
634 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
635 	    LK_NOSHARE | LK_IS_VNODE);
636 	/*
637 	 * Initialize bufobj.
638 	 */
639 	bufobj_init(&vp->v_bufobj, vp);
640 	/*
641 	 * Initialize namecache.
642 	 */
643 	cache_vnode_init(vp);
644 	/*
645 	 * Initialize rangelocks.
646 	 */
647 	rangelock_init(&vp->v_rl);
648 
649 	vp->v_dbatchcpu = NOCPU;
650 
651 	vp->v_state = VSTATE_DEAD;
652 
653 	/*
654 	 * Check vhold_recycle_free for an explanation.
655 	 */
656 	vp->v_holdcnt = VHOLD_NO_SMR;
657 	vp->v_type = VNON;
658 	mtx_lock(&vnode_list_mtx);
659 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
660 	mtx_unlock(&vnode_list_mtx);
661 	return (0);
662 }
663 
664 /*
665  * Free a vnode when it is cleared from the zone.
666  */
667 static void
668 vnode_fini(void *mem, int size)
669 {
670 	struct vnode *vp;
671 	struct bufobj *bo;
672 
673 	vp = mem;
674 	vdbatch_dequeue(vp);
675 	mtx_lock(&vnode_list_mtx);
676 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
677 	mtx_unlock(&vnode_list_mtx);
678 	rangelock_destroy(&vp->v_rl);
679 	lockdestroy(vp->v_vnlock);
680 	mtx_destroy(&vp->v_interlock);
681 	bo = &vp->v_bufobj;
682 	rw_destroy(BO_LOCKPTR(bo));
683 
684 	kasan_mark(mem, size, size, 0);
685 }
686 
687 /*
688  * Provide the size of NFS nclnode and NFS fh for calculation of the
689  * vnode memory consumption.  The size is specified directly to
690  * eliminate dependency on NFS-private header.
691  *
692  * Other filesystems may use bigger or smaller (like UFS and ZFS)
693  * private inode data, but the NFS-based estimation is ample enough.
694  * Still, we care about differences in the size between 64- and 32-bit
695  * platforms.
696  *
697  * Namecache structure size is heuristically
698  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
699  */
700 #ifdef _LP64
701 #define	NFS_NCLNODE_SZ	(528 + 64)
702 #define	NC_SZ		148
703 #else
704 #define	NFS_NCLNODE_SZ	(360 + 32)
705 #define	NC_SZ		92
706 #endif
707 
708 static void
709 vntblinit(void *dummy __unused)
710 {
711 	struct vdbatch *vd;
712 	uma_ctor ctor;
713 	uma_dtor dtor;
714 	int cpu, physvnodes, virtvnodes;
715 
716 	/*
717 	 * Desiredvnodes is a function of the physical memory size and the
718 	 * kernel's heap size.  Generally speaking, it scales with the
719 	 * physical memory size.  The ratio of desiredvnodes to the physical
720 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
721 	 * Thereafter, the
722 	 * marginal ratio of desiredvnodes to the physical memory size is
723 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
724 	 * size.  The memory required by desiredvnodes vnodes and vm objects
725 	 * must not exceed 1/10th of the kernel's heap size.
726 	 */
727 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
728 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
729 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
730 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
731 	desiredvnodes = min(physvnodes, virtvnodes);
732 	if (desiredvnodes > MAXVNODES_MAX) {
733 		if (bootverbose)
734 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
735 			    desiredvnodes, MAXVNODES_MAX);
736 		desiredvnodes = MAXVNODES_MAX;
737 	}
738 	wantfreevnodes = desiredvnodes / 4;
739 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
740 	TAILQ_INIT(&vnode_list);
741 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
742 	/*
743 	 * The lock is taken to appease WITNESS.
744 	 */
745 	mtx_lock(&vnode_list_mtx);
746 	vnlru_recalc();
747 	mtx_unlock(&vnode_list_mtx);
748 	vnode_list_free_marker = vn_alloc_marker(NULL);
749 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
750 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
751 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
752 
753 #ifdef KASAN
754 	ctor = vnode_ctor;
755 	dtor = vnode_dtor;
756 #else
757 	ctor = NULL;
758 	dtor = NULL;
759 #endif
760 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
761 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
762 	uma_zone_set_smr(vnode_zone, vfs_smr);
763 
764 	/*
765 	 * Preallocate enough nodes to support one-per buf so that
766 	 * we can not fail an insert.  reassignbuf() callers can not
767 	 * tolerate the insertion failure.
768 	 */
769 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
770 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
771 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
772 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
773 	uma_prealloc(buf_trie_zone, nbuf);
774 
775 	vnodes_created = counter_u64_alloc(M_WAITOK);
776 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
777 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
778 
779 	/*
780 	 * Initialize the filesystem syncer.
781 	 */
782 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
783 	    &syncer_mask);
784 	syncer_maxdelay = syncer_mask + 1;
785 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
786 	cv_init(&sync_wakeup, "syncer");
787 
788 	CPU_FOREACH(cpu) {
789 		vd = DPCPU_ID_PTR((cpu), vd);
790 		bzero(vd, sizeof(*vd));
791 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
792 	}
793 }
794 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
795 
796 /*
797  * Mark a mount point as busy. Used to synchronize access and to delay
798  * unmounting. Eventually, mountlist_mtx is not released on failure.
799  *
800  * vfs_busy() is a custom lock, it can block the caller.
801  * vfs_busy() only sleeps if the unmount is active on the mount point.
802  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
803  * vnode belonging to mp.
804  *
805  * Lookup uses vfs_busy() to traverse mount points.
806  * root fs			var fs
807  * / vnode lock		A	/ vnode lock (/var)		D
808  * /var vnode lock	B	/log vnode lock(/var/log)	E
809  * vfs_busy lock	C	vfs_busy lock			F
810  *
811  * Within each file system, the lock order is C->A->B and F->D->E.
812  *
813  * When traversing across mounts, the system follows that lock order:
814  *
815  *        C->A->B
816  *              |
817  *              +->F->D->E
818  *
819  * The lookup() process for namei("/var") illustrates the process:
820  *  1. VOP_LOOKUP() obtains B while A is held
821  *  2. vfs_busy() obtains a shared lock on F while A and B are held
822  *  3. vput() releases lock on B
823  *  4. vput() releases lock on A
824  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
825  *  6. vfs_unbusy() releases shared lock on F
826  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
827  *     Attempt to lock A (instead of vp_crossmp) while D is held would
828  *     violate the global order, causing deadlocks.
829  *
830  * dounmount() locks B while F is drained.  Note that for stacked
831  * filesystems, D and B in the example above may be the same lock,
832  * which introdues potential lock order reversal deadlock between
833  * dounmount() and step 5 above.  These filesystems may avoid the LOR
834  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
835  * remain held until after step 5.
836  */
837 int
838 vfs_busy(struct mount *mp, int flags)
839 {
840 	struct mount_pcpu *mpcpu;
841 
842 	MPASS((flags & ~MBF_MASK) == 0);
843 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
844 
845 	if (vfs_op_thread_enter(mp, mpcpu)) {
846 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
847 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
848 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
849 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
850 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
851 		vfs_op_thread_exit(mp, mpcpu);
852 		if (flags & MBF_MNTLSTLOCK)
853 			mtx_unlock(&mountlist_mtx);
854 		return (0);
855 	}
856 
857 	MNT_ILOCK(mp);
858 	vfs_assert_mount_counters(mp);
859 	MNT_REF(mp);
860 	/*
861 	 * If mount point is currently being unmounted, sleep until the
862 	 * mount point fate is decided.  If thread doing the unmounting fails,
863 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
864 	 * that this mount point has survived the unmount attempt and vfs_busy
865 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
866 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
867 	 * about to be really destroyed.  vfs_busy needs to release its
868 	 * reference on the mount point in this case and return with ENOENT,
869 	 * telling the caller the mount it tried to busy is no longer valid.
870 	 */
871 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
872 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
873 		    ("%s: non-empty upper mount list with pending unmount",
874 		    __func__));
875 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
876 			MNT_REL(mp);
877 			MNT_IUNLOCK(mp);
878 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
879 			    __func__);
880 			return (ENOENT);
881 		}
882 		if (flags & MBF_MNTLSTLOCK)
883 			mtx_unlock(&mountlist_mtx);
884 		mp->mnt_kern_flag |= MNTK_MWAIT;
885 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
886 		if (flags & MBF_MNTLSTLOCK)
887 			mtx_lock(&mountlist_mtx);
888 		MNT_ILOCK(mp);
889 	}
890 	if (flags & MBF_MNTLSTLOCK)
891 		mtx_unlock(&mountlist_mtx);
892 	mp->mnt_lockref++;
893 	MNT_IUNLOCK(mp);
894 	return (0);
895 }
896 
897 /*
898  * Free a busy filesystem.
899  */
900 void
901 vfs_unbusy(struct mount *mp)
902 {
903 	struct mount_pcpu *mpcpu;
904 	int c;
905 
906 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
907 
908 	if (vfs_op_thread_enter(mp, mpcpu)) {
909 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
910 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
911 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
912 		vfs_op_thread_exit(mp, mpcpu);
913 		return;
914 	}
915 
916 	MNT_ILOCK(mp);
917 	vfs_assert_mount_counters(mp);
918 	MNT_REL(mp);
919 	c = --mp->mnt_lockref;
920 	if (mp->mnt_vfs_ops == 0) {
921 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
922 		MNT_IUNLOCK(mp);
923 		return;
924 	}
925 	if (c < 0)
926 		vfs_dump_mount_counters(mp);
927 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
928 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
929 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
930 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
931 		wakeup(&mp->mnt_lockref);
932 	}
933 	MNT_IUNLOCK(mp);
934 }
935 
936 /*
937  * Lookup a mount point by filesystem identifier.
938  */
939 struct mount *
940 vfs_getvfs(fsid_t *fsid)
941 {
942 	struct mount *mp;
943 
944 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
945 	mtx_lock(&mountlist_mtx);
946 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
947 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
948 			vfs_ref(mp);
949 			mtx_unlock(&mountlist_mtx);
950 			return (mp);
951 		}
952 	}
953 	mtx_unlock(&mountlist_mtx);
954 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
955 	return ((struct mount *) 0);
956 }
957 
958 /*
959  * Lookup a mount point by filesystem identifier, busying it before
960  * returning.
961  *
962  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
963  * cache for popular filesystem identifiers.  The cache is lockess, using
964  * the fact that struct mount's are never freed.  In worst case we may
965  * get pointer to unmounted or even different filesystem, so we have to
966  * check what we got, and go slow way if so.
967  */
968 struct mount *
969 vfs_busyfs(fsid_t *fsid)
970 {
971 #define	FSID_CACHE_SIZE	256
972 	typedef struct mount * volatile vmp_t;
973 	static vmp_t cache[FSID_CACHE_SIZE];
974 	struct mount *mp;
975 	int error;
976 	uint32_t hash;
977 
978 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
979 	hash = fsid->val[0] ^ fsid->val[1];
980 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
981 	mp = cache[hash];
982 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
983 		goto slow;
984 	if (vfs_busy(mp, 0) != 0) {
985 		cache[hash] = NULL;
986 		goto slow;
987 	}
988 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
989 		return (mp);
990 	else
991 	    vfs_unbusy(mp);
992 
993 slow:
994 	mtx_lock(&mountlist_mtx);
995 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
996 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
997 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
998 			if (error) {
999 				cache[hash] = NULL;
1000 				mtx_unlock(&mountlist_mtx);
1001 				return (NULL);
1002 			}
1003 			cache[hash] = mp;
1004 			return (mp);
1005 		}
1006 	}
1007 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1008 	mtx_unlock(&mountlist_mtx);
1009 	return ((struct mount *) 0);
1010 }
1011 
1012 /*
1013  * Check if a user can access privileged mount options.
1014  */
1015 int
1016 vfs_suser(struct mount *mp, struct thread *td)
1017 {
1018 	int error;
1019 
1020 	if (jailed(td->td_ucred)) {
1021 		/*
1022 		 * If the jail of the calling thread lacks permission for
1023 		 * this type of file system, deny immediately.
1024 		 */
1025 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1026 			return (EPERM);
1027 
1028 		/*
1029 		 * If the file system was mounted outside the jail of the
1030 		 * calling thread, deny immediately.
1031 		 */
1032 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1033 			return (EPERM);
1034 	}
1035 
1036 	/*
1037 	 * If file system supports delegated administration, we don't check
1038 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1039 	 * by the file system itself.
1040 	 * If this is not the user that did original mount, we check for
1041 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1042 	 */
1043 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1044 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1045 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1046 			return (error);
1047 	}
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1053  * will be used to create fake device numbers for stat().  Also try (but
1054  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1055  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1056  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1057  *
1058  * Keep in mind that several mounts may be running in parallel.  Starting
1059  * the search one past where the previous search terminated is both a
1060  * micro-optimization and a defense against returning the same fsid to
1061  * different mounts.
1062  */
1063 void
1064 vfs_getnewfsid(struct mount *mp)
1065 {
1066 	static uint16_t mntid_base;
1067 	struct mount *nmp;
1068 	fsid_t tfsid;
1069 	int mtype;
1070 
1071 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1072 	mtx_lock(&mntid_mtx);
1073 	mtype = mp->mnt_vfc->vfc_typenum;
1074 	tfsid.val[1] = mtype;
1075 	mtype = (mtype & 0xFF) << 24;
1076 	for (;;) {
1077 		tfsid.val[0] = makedev(255,
1078 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1079 		mntid_base++;
1080 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1081 			break;
1082 		vfs_rel(nmp);
1083 	}
1084 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1085 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1086 	mtx_unlock(&mntid_mtx);
1087 }
1088 
1089 /*
1090  * Knob to control the precision of file timestamps:
1091  *
1092  *   0 = seconds only; nanoseconds zeroed.
1093  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1094  *   2 = seconds and nanoseconds, truncated to microseconds.
1095  * >=3 = seconds and nanoseconds, maximum precision.
1096  */
1097 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1098 
1099 static int timestamp_precision = TSP_USEC;
1100 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1101     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1102     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1103     "3+: sec + ns (max. precision))");
1104 
1105 /*
1106  * Get a current timestamp.
1107  */
1108 void
1109 vfs_timestamp(struct timespec *tsp)
1110 {
1111 	struct timeval tv;
1112 
1113 	switch (timestamp_precision) {
1114 	case TSP_SEC:
1115 		tsp->tv_sec = time_second;
1116 		tsp->tv_nsec = 0;
1117 		break;
1118 	case TSP_HZ:
1119 		getnanotime(tsp);
1120 		break;
1121 	case TSP_USEC:
1122 		microtime(&tv);
1123 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1124 		break;
1125 	case TSP_NSEC:
1126 	default:
1127 		nanotime(tsp);
1128 		break;
1129 	}
1130 }
1131 
1132 /*
1133  * Set vnode attributes to VNOVAL
1134  */
1135 void
1136 vattr_null(struct vattr *vap)
1137 {
1138 
1139 	vap->va_type = VNON;
1140 	vap->va_size = VNOVAL;
1141 	vap->va_bytes = VNOVAL;
1142 	vap->va_mode = VNOVAL;
1143 	vap->va_nlink = VNOVAL;
1144 	vap->va_uid = VNOVAL;
1145 	vap->va_gid = VNOVAL;
1146 	vap->va_fsid = VNOVAL;
1147 	vap->va_fileid = VNOVAL;
1148 	vap->va_blocksize = VNOVAL;
1149 	vap->va_rdev = VNOVAL;
1150 	vap->va_atime.tv_sec = VNOVAL;
1151 	vap->va_atime.tv_nsec = VNOVAL;
1152 	vap->va_mtime.tv_sec = VNOVAL;
1153 	vap->va_mtime.tv_nsec = VNOVAL;
1154 	vap->va_ctime.tv_sec = VNOVAL;
1155 	vap->va_ctime.tv_nsec = VNOVAL;
1156 	vap->va_birthtime.tv_sec = VNOVAL;
1157 	vap->va_birthtime.tv_nsec = VNOVAL;
1158 	vap->va_flags = VNOVAL;
1159 	vap->va_gen = VNOVAL;
1160 	vap->va_vaflags = 0;
1161 }
1162 
1163 /*
1164  * Try to reduce the total number of vnodes.
1165  *
1166  * This routine (and its user) are buggy in at least the following ways:
1167  * - all parameters were picked years ago when RAM sizes were significantly
1168  *   smaller
1169  * - it can pick vnodes based on pages used by the vm object, but filesystems
1170  *   like ZFS don't use it making the pick broken
1171  * - since ZFS has its own aging policy it gets partially combated by this one
1172  * - a dedicated method should be provided for filesystems to let them decide
1173  *   whether the vnode should be recycled
1174  *
1175  * This routine is called when we have too many vnodes.  It attempts
1176  * to free <count> vnodes and will potentially free vnodes that still
1177  * have VM backing store (VM backing store is typically the cause
1178  * of a vnode blowout so we want to do this).  Therefore, this operation
1179  * is not considered cheap.
1180  *
1181  * A number of conditions may prevent a vnode from being reclaimed.
1182  * the buffer cache may have references on the vnode, a directory
1183  * vnode may still have references due to the namei cache representing
1184  * underlying files, or the vnode may be in active use.   It is not
1185  * desirable to reuse such vnodes.  These conditions may cause the
1186  * number of vnodes to reach some minimum value regardless of what
1187  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1188  *
1189  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1190  * 			 entries if this argument is strue
1191  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1192  *			 pages.
1193  * @param target	 How many vnodes to reclaim.
1194  * @return		 The number of vnodes that were reclaimed.
1195  */
1196 static int
1197 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1198 {
1199 	struct vnode *vp, *mvp;
1200 	struct mount *mp;
1201 	struct vm_object *object;
1202 	u_long done;
1203 	bool retried;
1204 
1205 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1206 
1207 	retried = false;
1208 	done = 0;
1209 
1210 	mvp = vnode_list_reclaim_marker;
1211 restart:
1212 	vp = mvp;
1213 	while (done < target) {
1214 		vp = TAILQ_NEXT(vp, v_vnodelist);
1215 		if (__predict_false(vp == NULL))
1216 			break;
1217 
1218 		if (__predict_false(vp->v_type == VMARKER))
1219 			continue;
1220 
1221 		/*
1222 		 * If it's been deconstructed already, it's still
1223 		 * referenced, or it exceeds the trigger, skip it.
1224 		 * Also skip free vnodes.  We are trying to make space
1225 		 * for more free vnodes, not reduce their count.
1226 		 */
1227 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1228 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1229 			goto next_iter;
1230 
1231 		if (vp->v_type == VBAD || vp->v_type == VNON)
1232 			goto next_iter;
1233 
1234 		object = atomic_load_ptr(&vp->v_object);
1235 		if (object == NULL || object->resident_page_count > trigger) {
1236 			goto next_iter;
1237 		}
1238 
1239 		/*
1240 		 * Handle races against vnode allocation. Filesystems lock the
1241 		 * vnode some time after it gets returned from getnewvnode,
1242 		 * despite type and hold count being manipulated earlier.
1243 		 * Resorting to checking v_mount restores guarantees present
1244 		 * before the global list was reworked to contain all vnodes.
1245 		 */
1246 		if (!VI_TRYLOCK(vp))
1247 			goto next_iter;
1248 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1249 			VI_UNLOCK(vp);
1250 			goto next_iter;
1251 		}
1252 		if (vp->v_mount == NULL) {
1253 			VI_UNLOCK(vp);
1254 			goto next_iter;
1255 		}
1256 		vholdl(vp);
1257 		VI_UNLOCK(vp);
1258 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1259 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1260 		mtx_unlock(&vnode_list_mtx);
1261 
1262 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1263 			vdrop_recycle(vp);
1264 			goto next_iter_unlocked;
1265 		}
1266 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1267 			vdrop_recycle(vp);
1268 			vn_finished_write(mp);
1269 			goto next_iter_unlocked;
1270 		}
1271 
1272 		VI_LOCK(vp);
1273 		if (vp->v_usecount > 0 ||
1274 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1275 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1276 		    vp->v_object->resident_page_count > trigger)) {
1277 			VOP_UNLOCK(vp);
1278 			vdropl_recycle(vp);
1279 			vn_finished_write(mp);
1280 			goto next_iter_unlocked;
1281 		}
1282 		recycles_count++;
1283 		vgonel(vp);
1284 		VOP_UNLOCK(vp);
1285 		vdropl_recycle(vp);
1286 		vn_finished_write(mp);
1287 		done++;
1288 next_iter_unlocked:
1289 		maybe_yield();
1290 		mtx_lock(&vnode_list_mtx);
1291 		goto restart;
1292 next_iter:
1293 		MPASS(vp->v_type != VMARKER);
1294 		if (!should_yield())
1295 			continue;
1296 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1297 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1298 		mtx_unlock(&vnode_list_mtx);
1299 		kern_yield(PRI_USER);
1300 		mtx_lock(&vnode_list_mtx);
1301 		goto restart;
1302 	}
1303 	if (done == 0 && !retried) {
1304 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1305 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1306 		retried = true;
1307 		goto restart;
1308 	}
1309 	return (done);
1310 }
1311 
1312 static int max_free_per_call = 10000;
1313 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1314     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1315 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1316     &max_free_per_call, 0,
1317     "limit on vnode free requests per call to the vnlru_free routine");
1318 
1319 /*
1320  * Attempt to recycle requested amount of free vnodes.
1321  */
1322 static int
1323 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1324 {
1325 	struct vnode *vp;
1326 	struct mount *mp;
1327 	int ocount;
1328 	bool retried;
1329 
1330 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1331 	if (count > max_free_per_call)
1332 		count = max_free_per_call;
1333 	if (count == 0) {
1334 		mtx_unlock(&vnode_list_mtx);
1335 		return (0);
1336 	}
1337 	ocount = count;
1338 	retried = false;
1339 	vp = mvp;
1340 	for (;;) {
1341 		vp = TAILQ_NEXT(vp, v_vnodelist);
1342 		if (__predict_false(vp == NULL)) {
1343 			/*
1344 			 * The free vnode marker can be past eligible vnodes:
1345 			 * 1. if vdbatch_process trylock failed
1346 			 * 2. if vtryrecycle failed
1347 			 *
1348 			 * If so, start the scan from scratch.
1349 			 */
1350 			if (!retried && vnlru_read_freevnodes() > 0) {
1351 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1352 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1353 				vp = mvp;
1354 				retried = true;
1355 				continue;
1356 			}
1357 
1358 			/*
1359 			 * Give up
1360 			 */
1361 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1362 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1363 			mtx_unlock(&vnode_list_mtx);
1364 			break;
1365 		}
1366 		if (__predict_false(vp->v_type == VMARKER))
1367 			continue;
1368 		if (vp->v_holdcnt > 0)
1369 			continue;
1370 		/*
1371 		 * Don't recycle if our vnode is from different type
1372 		 * of mount point.  Note that mp is type-safe, the
1373 		 * check does not reach unmapped address even if
1374 		 * vnode is reclaimed.
1375 		 */
1376 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1377 		    mp->mnt_op != mnt_op) {
1378 			continue;
1379 		}
1380 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1381 			continue;
1382 		}
1383 		if (!vhold_recycle_free(vp))
1384 			continue;
1385 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1386 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1387 		mtx_unlock(&vnode_list_mtx);
1388 		/*
1389 		 * FIXME: ignores the return value, meaning it may be nothing
1390 		 * got recycled but it claims otherwise to the caller.
1391 		 *
1392 		 * Originally the value started being ignored in 2005 with
1393 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1394 		 *
1395 		 * Respecting the value can run into significant stalls if most
1396 		 * vnodes belong to one file system and it has writes
1397 		 * suspended.  In presence of many threads and millions of
1398 		 * vnodes they keep contending on the vnode_list_mtx lock only
1399 		 * to find vnodes they can't recycle.
1400 		 *
1401 		 * The solution would be to pre-check if the vnode is likely to
1402 		 * be recycle-able, but it needs to happen with the
1403 		 * vnode_list_mtx lock held. This runs into a problem where
1404 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1405 		 * writes are frozen) can take locks which LOR against it.
1406 		 *
1407 		 * Check nullfs for one example (null_getwritemount).
1408 		 */
1409 		vtryrecycle(vp, isvnlru);
1410 		count--;
1411 		if (count == 0) {
1412 			break;
1413 		}
1414 		mtx_lock(&vnode_list_mtx);
1415 		vp = mvp;
1416 	}
1417 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1418 	return (ocount - count);
1419 }
1420 
1421 /*
1422  * XXX: returns without vnode_list_mtx locked!
1423  */
1424 static int
1425 vnlru_free_locked_direct(int count)
1426 {
1427 	int ret;
1428 
1429 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1430 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1431 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1432 	return (ret);
1433 }
1434 
1435 static int
1436 vnlru_free_locked_vnlru(int count)
1437 {
1438 	int ret;
1439 
1440 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1441 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1442 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1443 	return (ret);
1444 }
1445 
1446 static int
1447 vnlru_free_vnlru(int count)
1448 {
1449 
1450 	mtx_lock(&vnode_list_mtx);
1451 	return (vnlru_free_locked_vnlru(count));
1452 }
1453 
1454 void
1455 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1456 {
1457 
1458 	MPASS(mnt_op != NULL);
1459 	MPASS(mvp != NULL);
1460 	VNPASS(mvp->v_type == VMARKER, mvp);
1461 	mtx_lock(&vnode_list_mtx);
1462 	vnlru_free_impl(count, mnt_op, mvp, true);
1463 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1464 }
1465 
1466 struct vnode *
1467 vnlru_alloc_marker(void)
1468 {
1469 	struct vnode *mvp;
1470 
1471 	mvp = vn_alloc_marker(NULL);
1472 	mtx_lock(&vnode_list_mtx);
1473 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1474 	mtx_unlock(&vnode_list_mtx);
1475 	return (mvp);
1476 }
1477 
1478 void
1479 vnlru_free_marker(struct vnode *mvp)
1480 {
1481 	mtx_lock(&vnode_list_mtx);
1482 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1483 	mtx_unlock(&vnode_list_mtx);
1484 	vn_free_marker(mvp);
1485 }
1486 
1487 static void
1488 vnlru_recalc(void)
1489 {
1490 
1491 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1492 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1493 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1494 	vlowat = vhiwat / 2;
1495 }
1496 
1497 /*
1498  * Attempt to recycle vnodes in a context that is always safe to block.
1499  * Calling vlrurecycle() from the bowels of filesystem code has some
1500  * interesting deadlock problems.
1501  */
1502 static struct proc *vnlruproc;
1503 static int vnlruproc_sig;
1504 static u_long vnlruproc_kicks;
1505 
1506 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1507     "Number of times vnlru awakened due to vnode shortage");
1508 
1509 #define VNLRU_COUNT_SLOP 100
1510 
1511 /*
1512  * The main freevnodes counter is only updated when a counter local to CPU
1513  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1514  * walked to compute a more accurate total.
1515  *
1516  * Note: the actual value at any given moment can still exceed slop, but it
1517  * should not be by significant margin in practice.
1518  */
1519 #define VNLRU_FREEVNODES_SLOP 126
1520 
1521 static void __noinline
1522 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1523 {
1524 
1525 	atomic_add_long(&freevnodes, *lfreevnodes);
1526 	*lfreevnodes = 0;
1527 	critical_exit();
1528 }
1529 
1530 static __inline void
1531 vfs_freevnodes_inc(void)
1532 {
1533 	int8_t *lfreevnodes;
1534 
1535 	critical_enter();
1536 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1537 	(*lfreevnodes)++;
1538 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1539 		vfs_freevnodes_rollup(lfreevnodes);
1540 	else
1541 		critical_exit();
1542 }
1543 
1544 static __inline void
1545 vfs_freevnodes_dec(void)
1546 {
1547 	int8_t *lfreevnodes;
1548 
1549 	critical_enter();
1550 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1551 	(*lfreevnodes)--;
1552 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1553 		vfs_freevnodes_rollup(lfreevnodes);
1554 	else
1555 		critical_exit();
1556 }
1557 
1558 static u_long
1559 vnlru_read_freevnodes(void)
1560 {
1561 	long slop, rfreevnodes, rfreevnodes_old;
1562 	int cpu;
1563 
1564 	rfreevnodes = atomic_load_long(&freevnodes);
1565 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1566 
1567 	if (rfreevnodes > rfreevnodes_old)
1568 		slop = rfreevnodes - rfreevnodes_old;
1569 	else
1570 		slop = rfreevnodes_old - rfreevnodes;
1571 	if (slop < VNLRU_FREEVNODES_SLOP)
1572 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1573 	CPU_FOREACH(cpu) {
1574 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1575 	}
1576 	atomic_store_long(&freevnodes_old, rfreevnodes);
1577 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1578 }
1579 
1580 static bool
1581 vnlru_under(u_long rnumvnodes, u_long limit)
1582 {
1583 	u_long rfreevnodes, space;
1584 
1585 	if (__predict_false(rnumvnodes > desiredvnodes))
1586 		return (true);
1587 
1588 	space = desiredvnodes - rnumvnodes;
1589 	if (space < limit) {
1590 		rfreevnodes = vnlru_read_freevnodes();
1591 		if (rfreevnodes > wantfreevnodes)
1592 			space += rfreevnodes - wantfreevnodes;
1593 	}
1594 	return (space < limit);
1595 }
1596 
1597 static void
1598 vnlru_kick_locked(void)
1599 {
1600 
1601 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1602 	if (vnlruproc_sig == 0) {
1603 		vnlruproc_sig = 1;
1604 		vnlruproc_kicks++;
1605 		wakeup(vnlruproc);
1606 	}
1607 }
1608 
1609 static void
1610 vnlru_kick_cond(void)
1611 {
1612 
1613 	if (vnlru_read_freevnodes() > wantfreevnodes)
1614 		return;
1615 
1616 	if (vnlruproc_sig)
1617 		return;
1618 	mtx_lock(&vnode_list_mtx);
1619 	vnlru_kick_locked();
1620 	mtx_unlock(&vnode_list_mtx);
1621 }
1622 
1623 static void
1624 vnlru_proc_sleep(void)
1625 {
1626 
1627 	if (vnlruproc_sig) {
1628 		vnlruproc_sig = 0;
1629 		wakeup(&vnlruproc_sig);
1630 	}
1631 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1632 }
1633 
1634 /*
1635  * A lighter version of the machinery below.
1636  *
1637  * Tries to reach goals only by recycling free vnodes and does not invoke
1638  * uma_reclaim(UMA_RECLAIM_DRAIN).
1639  *
1640  * This works around pathological behavior in vnlru in presence of tons of free
1641  * vnodes, but without having to rewrite the machinery at this time. Said
1642  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1643  * (cycling through all levels of "force") when the count is transiently above
1644  * limit. This happens a lot when all vnodes are used up and vn_alloc
1645  * speculatively increments the counter.
1646  *
1647  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1648  * 1 million files in total and 20 find(1) processes stating them in parallel
1649  * (one per each tree).
1650  *
1651  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1652  * seconds to execute (time varies *wildly* between runs). With the workaround
1653  * it consistently stays around 20 seconds [it got further down with later
1654  * changes].
1655  *
1656  * That is to say the entire thing needs a fundamental redesign (most notably
1657  * to accommodate faster recycling), the above only tries to get it ouf the way.
1658  *
1659  * Return values are:
1660  * -1 -- fallback to regular vnlru loop
1661  *  0 -- do nothing, go to sleep
1662  * >0 -- recycle this many vnodes
1663  */
1664 static long
1665 vnlru_proc_light_pick(void)
1666 {
1667 	u_long rnumvnodes, rfreevnodes;
1668 
1669 	if (vstir || vnlruproc_sig == 1)
1670 		return (-1);
1671 
1672 	rnumvnodes = atomic_load_long(&numvnodes);
1673 	rfreevnodes = vnlru_read_freevnodes();
1674 
1675 	/*
1676 	 * vnode limit might have changed and now we may be at a significant
1677 	 * excess. Bail if we can't sort it out with free vnodes.
1678 	 *
1679 	 * Due to atomic updates the count can legitimately go above
1680 	 * the limit for a short period, don't bother doing anything in
1681 	 * that case.
1682 	 */
1683 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1684 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1685 		    rfreevnodes <= wantfreevnodes) {
1686 			return (-1);
1687 		}
1688 
1689 		return (rnumvnodes - desiredvnodes);
1690 	}
1691 
1692 	/*
1693 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1694 	 * to begin with.
1695 	 */
1696 	if (rnumvnodes < wantfreevnodes) {
1697 		return (0);
1698 	}
1699 
1700 	if (rfreevnodes < wantfreevnodes) {
1701 		return (-1);
1702 	}
1703 
1704 	return (0);
1705 }
1706 
1707 static bool
1708 vnlru_proc_light(void)
1709 {
1710 	long freecount;
1711 
1712 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1713 
1714 	freecount = vnlru_proc_light_pick();
1715 	if (freecount == -1)
1716 		return (false);
1717 
1718 	if (freecount != 0) {
1719 		vnlru_free_vnlru(freecount);
1720 	}
1721 
1722 	mtx_lock(&vnode_list_mtx);
1723 	vnlru_proc_sleep();
1724 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1725 	return (true);
1726 }
1727 
1728 static u_long uma_reclaim_calls;
1729 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1730     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1731 
1732 static void
1733 vnlru_proc(void)
1734 {
1735 	u_long rnumvnodes, rfreevnodes, target;
1736 	unsigned long onumvnodes;
1737 	int done, force, trigger, usevnodes;
1738 	bool reclaim_nc_src, want_reread;
1739 
1740 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1741 	    SHUTDOWN_PRI_FIRST);
1742 
1743 	force = 0;
1744 	want_reread = false;
1745 	for (;;) {
1746 		kproc_suspend_check(vnlruproc);
1747 
1748 		if (force == 0 && vnlru_proc_light())
1749 			continue;
1750 
1751 		mtx_lock(&vnode_list_mtx);
1752 		rnumvnodes = atomic_load_long(&numvnodes);
1753 
1754 		if (want_reread) {
1755 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1756 			want_reread = false;
1757 		}
1758 
1759 		/*
1760 		 * If numvnodes is too large (due to desiredvnodes being
1761 		 * adjusted using its sysctl, or emergency growth), first
1762 		 * try to reduce it by discarding free vnodes.
1763 		 */
1764 		if (rnumvnodes > desiredvnodes + 10) {
1765 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1766 			mtx_lock(&vnode_list_mtx);
1767 			rnumvnodes = atomic_load_long(&numvnodes);
1768 		}
1769 		/*
1770 		 * Sleep if the vnode cache is in a good state.  This is
1771 		 * when it is not over-full and has space for about a 4%
1772 		 * or 9% expansion (by growing its size or inexcessively
1773 		 * reducing free vnode count).  Otherwise, try to reclaim
1774 		 * space for a 10% expansion.
1775 		 */
1776 		if (vstir && force == 0) {
1777 			force = 1;
1778 			vstir = false;
1779 		}
1780 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1781 			vnlru_proc_sleep();
1782 			continue;
1783 		}
1784 		rfreevnodes = vnlru_read_freevnodes();
1785 
1786 		onumvnodes = rnumvnodes;
1787 		/*
1788 		 * Calculate parameters for recycling.  These are the same
1789 		 * throughout the loop to give some semblance of fairness.
1790 		 * The trigger point is to avoid recycling vnodes with lots
1791 		 * of resident pages.  We aren't trying to free memory; we
1792 		 * are trying to recycle or at least free vnodes.
1793 		 */
1794 		if (rnumvnodes <= desiredvnodes)
1795 			usevnodes = rnumvnodes - rfreevnodes;
1796 		else
1797 			usevnodes = rnumvnodes;
1798 		if (usevnodes <= 0)
1799 			usevnodes = 1;
1800 		/*
1801 		 * The trigger value is chosen to give a conservatively
1802 		 * large value to ensure that it alone doesn't prevent
1803 		 * making progress.  The value can easily be so large that
1804 		 * it is effectively infinite in some congested and
1805 		 * misconfigured cases, and this is necessary.  Normally
1806 		 * it is about 8 to 100 (pages), which is quite large.
1807 		 */
1808 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1809 		if (force < 2)
1810 			trigger = vsmalltrigger;
1811 		reclaim_nc_src = force >= 3;
1812 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1813 		target = target / 10 + 1;
1814 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1815 		mtx_unlock(&vnode_list_mtx);
1816 		/*
1817 		 * Total number of vnodes can transiently go slightly above the
1818 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1819 		 * this happens.
1820 		 */
1821 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1822 		    numvnodes <= desiredvnodes) {
1823 			uma_reclaim_calls++;
1824 			uma_reclaim(UMA_RECLAIM_DRAIN);
1825 		}
1826 		if (done == 0) {
1827 			if (force == 0 || force == 1) {
1828 				force = 2;
1829 				continue;
1830 			}
1831 			if (force == 2) {
1832 				force = 3;
1833 				continue;
1834 			}
1835 			want_reread = true;
1836 			force = 0;
1837 			vnlru_nowhere++;
1838 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1839 		} else {
1840 			want_reread = true;
1841 			kern_yield(PRI_USER);
1842 		}
1843 	}
1844 }
1845 
1846 static struct kproc_desc vnlru_kp = {
1847 	"vnlru",
1848 	vnlru_proc,
1849 	&vnlruproc
1850 };
1851 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1852     &vnlru_kp);
1853 
1854 /*
1855  * Routines having to do with the management of the vnode table.
1856  */
1857 
1858 /*
1859  * Try to recycle a freed vnode.
1860  */
1861 static int
1862 vtryrecycle(struct vnode *vp, bool isvnlru)
1863 {
1864 	struct mount *vnmp;
1865 
1866 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1867 	VNPASS(vp->v_holdcnt > 0, vp);
1868 	/*
1869 	 * This vnode may found and locked via some other list, if so we
1870 	 * can't recycle it yet.
1871 	 */
1872 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1873 		CTR2(KTR_VFS,
1874 		    "%s: impossible to recycle, vp %p lock is already held",
1875 		    __func__, vp);
1876 		vdrop_recycle(vp);
1877 		return (EWOULDBLOCK);
1878 	}
1879 	/*
1880 	 * Don't recycle if its filesystem is being suspended.
1881 	 */
1882 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1883 		VOP_UNLOCK(vp);
1884 		CTR2(KTR_VFS,
1885 		    "%s: impossible to recycle, cannot start the write for %p",
1886 		    __func__, vp);
1887 		vdrop_recycle(vp);
1888 		return (EBUSY);
1889 	}
1890 	/*
1891 	 * If we got this far, we need to acquire the interlock and see if
1892 	 * anyone picked up this vnode from another list.  If not, we will
1893 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1894 	 * will skip over it.
1895 	 */
1896 	VI_LOCK(vp);
1897 	if (vp->v_usecount) {
1898 		VOP_UNLOCK(vp);
1899 		vdropl_recycle(vp);
1900 		vn_finished_write(vnmp);
1901 		CTR2(KTR_VFS,
1902 		    "%s: impossible to recycle, %p is already referenced",
1903 		    __func__, vp);
1904 		return (EBUSY);
1905 	}
1906 	if (!VN_IS_DOOMED(vp)) {
1907 		if (isvnlru)
1908 			recycles_free_count++;
1909 		else
1910 			counter_u64_add(direct_recycles_free_count, 1);
1911 		vgonel(vp);
1912 	}
1913 	VOP_UNLOCK(vp);
1914 	vdropl_recycle(vp);
1915 	vn_finished_write(vnmp);
1916 	return (0);
1917 }
1918 
1919 /*
1920  * Allocate a new vnode.
1921  *
1922  * The operation never returns an error. Returning an error was disabled
1923  * in r145385 (dated 2005) with the following comment:
1924  *
1925  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1926  *
1927  * Given the age of this commit (almost 15 years at the time of writing this
1928  * comment) restoring the ability to fail requires a significant audit of
1929  * all codepaths.
1930  *
1931  * The routine can try to free a vnode or stall for up to 1 second waiting for
1932  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1933  */
1934 static u_long vn_alloc_cyclecount;
1935 static u_long vn_alloc_sleeps;
1936 
1937 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1938     "Number of times vnode allocation blocked waiting on vnlru");
1939 
1940 static struct vnode * __noinline
1941 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1942 {
1943 	u_long rfreevnodes;
1944 
1945 	if (bumped) {
1946 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1947 			atomic_subtract_long(&numvnodes, 1);
1948 			bumped = false;
1949 		}
1950 	}
1951 
1952 	mtx_lock(&vnode_list_mtx);
1953 
1954 	if (vn_alloc_cyclecount != 0) {
1955 		rnumvnodes = atomic_load_long(&numvnodes);
1956 		if (rnumvnodes + 1 < desiredvnodes) {
1957 			vn_alloc_cyclecount = 0;
1958 			mtx_unlock(&vnode_list_mtx);
1959 			goto alloc;
1960 		}
1961 
1962 		rfreevnodes = vnlru_read_freevnodes();
1963 		if (rfreevnodes < wantfreevnodes) {
1964 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1965 				vn_alloc_cyclecount = 0;
1966 				vstir = true;
1967 			}
1968 		} else {
1969 			vn_alloc_cyclecount = 0;
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * Grow the vnode cache if it will not be above its target max after
1975 	 * growing.  Otherwise, if there is at least one free vnode, try to
1976 	 * reclaim 1 item from it before growing the cache (possibly above its
1977 	 * target max if the reclamation failed or is delayed).
1978 	 */
1979 	if (vnlru_free_locked_direct(1) > 0)
1980 		goto alloc;
1981 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1982 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1983 		/*
1984 		 * Wait for space for a new vnode.
1985 		 */
1986 		if (bumped) {
1987 			atomic_subtract_long(&numvnodes, 1);
1988 			bumped = false;
1989 		}
1990 		mtx_lock(&vnode_list_mtx);
1991 		vnlru_kick_locked();
1992 		vn_alloc_sleeps++;
1993 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1994 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1995 		    vnlru_read_freevnodes() > 1)
1996 			vnlru_free_locked_direct(1);
1997 		else
1998 			mtx_unlock(&vnode_list_mtx);
1999 	}
2000 alloc:
2001 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2002 	if (!bumped)
2003 		atomic_add_long(&numvnodes, 1);
2004 	vnlru_kick_cond();
2005 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2006 }
2007 
2008 static struct vnode *
2009 vn_alloc(struct mount *mp)
2010 {
2011 	u_long rnumvnodes;
2012 
2013 	if (__predict_false(vn_alloc_cyclecount != 0))
2014 		return (vn_alloc_hard(mp, 0, false));
2015 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2016 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2017 		return (vn_alloc_hard(mp, rnumvnodes, true));
2018 	}
2019 
2020 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2021 }
2022 
2023 static void
2024 vn_free(struct vnode *vp)
2025 {
2026 
2027 	atomic_subtract_long(&numvnodes, 1);
2028 	uma_zfree_smr(vnode_zone, vp);
2029 }
2030 
2031 /*
2032  * Allocate a new vnode.
2033  */
2034 int
2035 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2036     struct vnode **vpp)
2037 {
2038 	struct vnode *vp;
2039 	struct thread *td;
2040 	struct lock_object *lo;
2041 
2042 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2043 
2044 	KASSERT(vops->registered,
2045 	    ("%s: not registered vector op %p\n", __func__, vops));
2046 	cache_validate_vop_vector(mp, vops);
2047 
2048 	td = curthread;
2049 	if (td->td_vp_reserved != NULL) {
2050 		vp = td->td_vp_reserved;
2051 		td->td_vp_reserved = NULL;
2052 	} else {
2053 		vp = vn_alloc(mp);
2054 	}
2055 	counter_u64_add(vnodes_created, 1);
2056 
2057 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2058 
2059 	/*
2060 	 * Locks are given the generic name "vnode" when created.
2061 	 * Follow the historic practice of using the filesystem
2062 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2063 	 *
2064 	 * Locks live in a witness group keyed on their name. Thus,
2065 	 * when a lock is renamed, it must also move from the witness
2066 	 * group of its old name to the witness group of its new name.
2067 	 *
2068 	 * The change only needs to be made when the vnode moves
2069 	 * from one filesystem type to another. We ensure that each
2070 	 * filesystem use a single static name pointer for its tag so
2071 	 * that we can compare pointers rather than doing a strcmp().
2072 	 */
2073 	lo = &vp->v_vnlock->lock_object;
2074 #ifdef WITNESS
2075 	if (lo->lo_name != tag) {
2076 #endif
2077 		lo->lo_name = tag;
2078 #ifdef WITNESS
2079 		WITNESS_DESTROY(lo);
2080 		WITNESS_INIT(lo, tag);
2081 	}
2082 #endif
2083 	/*
2084 	 * By default, don't allow shared locks unless filesystems opt-in.
2085 	 */
2086 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2087 	/*
2088 	 * Finalize various vnode identity bits.
2089 	 */
2090 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2091 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2092 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2093 	vp->v_type = VNON;
2094 	vp->v_op = vops;
2095 	vp->v_irflag = 0;
2096 	v_init_counters(vp);
2097 	vn_seqc_init(vp);
2098 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2099 #ifdef DIAGNOSTIC
2100 	if (mp == NULL && vops != &dead_vnodeops)
2101 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2102 #endif
2103 #ifdef MAC
2104 	mac_vnode_init(vp);
2105 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2106 		mac_vnode_associate_singlelabel(mp, vp);
2107 #endif
2108 	if (mp != NULL) {
2109 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2110 	}
2111 
2112 	/*
2113 	 * For the filesystems which do not use vfs_hash_insert(),
2114 	 * still initialize v_hash to have vfs_hash_index() useful.
2115 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2116 	 * its own hashing.
2117 	 */
2118 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2119 
2120 	*vpp = vp;
2121 	return (0);
2122 }
2123 
2124 void
2125 getnewvnode_reserve(void)
2126 {
2127 	struct thread *td;
2128 
2129 	td = curthread;
2130 	MPASS(td->td_vp_reserved == NULL);
2131 	td->td_vp_reserved = vn_alloc(NULL);
2132 }
2133 
2134 void
2135 getnewvnode_drop_reserve(void)
2136 {
2137 	struct thread *td;
2138 
2139 	td = curthread;
2140 	if (td->td_vp_reserved != NULL) {
2141 		vn_free(td->td_vp_reserved);
2142 		td->td_vp_reserved = NULL;
2143 	}
2144 }
2145 
2146 static void __noinline
2147 freevnode(struct vnode *vp)
2148 {
2149 	struct bufobj *bo;
2150 
2151 	/*
2152 	 * The vnode has been marked for destruction, so free it.
2153 	 *
2154 	 * The vnode will be returned to the zone where it will
2155 	 * normally remain until it is needed for another vnode. We
2156 	 * need to cleanup (or verify that the cleanup has already
2157 	 * been done) any residual data left from its current use
2158 	 * so as not to contaminate the freshly allocated vnode.
2159 	 */
2160 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2161 	/*
2162 	 * Paired with vgone.
2163 	 */
2164 	vn_seqc_write_end_free(vp);
2165 
2166 	bo = &vp->v_bufobj;
2167 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2168 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2169 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2170 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2171 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2172 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2173 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2174 	    ("clean blk trie not empty"));
2175 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2176 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2177 	    ("dirty blk trie not empty"));
2178 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2179 	    ("Dangling rangelock waiters"));
2180 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2181 	    ("Leaked inactivation"));
2182 	VI_UNLOCK(vp);
2183 	cache_assert_no_entries(vp);
2184 
2185 #ifdef MAC
2186 	mac_vnode_destroy(vp);
2187 #endif
2188 	if (vp->v_pollinfo != NULL) {
2189 		/*
2190 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2191 		 * here while having another vnode locked when trying to
2192 		 * satisfy a lookup and needing to recycle.
2193 		 */
2194 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2195 		destroy_vpollinfo(vp->v_pollinfo);
2196 		VOP_UNLOCK(vp);
2197 		vp->v_pollinfo = NULL;
2198 	}
2199 	vp->v_mountedhere = NULL;
2200 	vp->v_unpcb = NULL;
2201 	vp->v_rdev = NULL;
2202 	vp->v_fifoinfo = NULL;
2203 	vp->v_iflag = 0;
2204 	vp->v_vflag = 0;
2205 	bo->bo_flag = 0;
2206 	vn_free(vp);
2207 }
2208 
2209 /*
2210  * Delete from old mount point vnode list, if on one.
2211  */
2212 static void
2213 delmntque(struct vnode *vp)
2214 {
2215 	struct mount *mp;
2216 
2217 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2218 
2219 	mp = vp->v_mount;
2220 	MNT_ILOCK(mp);
2221 	VI_LOCK(vp);
2222 	vp->v_mount = NULL;
2223 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2224 		("bad mount point vnode list size"));
2225 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2226 	mp->mnt_nvnodelistsize--;
2227 	MNT_REL(mp);
2228 	MNT_IUNLOCK(mp);
2229 	/*
2230 	 * The caller expects the interlock to be still held.
2231 	 */
2232 	ASSERT_VI_LOCKED(vp, __func__);
2233 }
2234 
2235 static int
2236 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2237 {
2238 
2239 	KASSERT(vp->v_mount == NULL,
2240 		("insmntque: vnode already on per mount vnode list"));
2241 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2242 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2243 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2244 	} else {
2245 		KASSERT(!dtr,
2246 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2247 		    __func__));
2248 	}
2249 
2250 	/*
2251 	 * We acquire the vnode interlock early to ensure that the
2252 	 * vnode cannot be recycled by another process releasing a
2253 	 * holdcnt on it before we get it on both the vnode list
2254 	 * and the active vnode list. The mount mutex protects only
2255 	 * manipulation of the vnode list and the vnode freelist
2256 	 * mutex protects only manipulation of the active vnode list.
2257 	 * Hence the need to hold the vnode interlock throughout.
2258 	 */
2259 	MNT_ILOCK(mp);
2260 	VI_LOCK(vp);
2261 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2262 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2263 	    mp->mnt_nvnodelistsize == 0)) &&
2264 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2265 		VI_UNLOCK(vp);
2266 		MNT_IUNLOCK(mp);
2267 		if (dtr) {
2268 			vp->v_data = NULL;
2269 			vp->v_op = &dead_vnodeops;
2270 			vgone(vp);
2271 			vput(vp);
2272 		}
2273 		return (EBUSY);
2274 	}
2275 	vp->v_mount = mp;
2276 	MNT_REF(mp);
2277 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2278 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2279 		("neg mount point vnode list size"));
2280 	mp->mnt_nvnodelistsize++;
2281 	VI_UNLOCK(vp);
2282 	MNT_IUNLOCK(mp);
2283 	return (0);
2284 }
2285 
2286 /*
2287  * Insert into list of vnodes for the new mount point, if available.
2288  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2289  * leaves handling of the vnode to the caller.
2290  */
2291 int
2292 insmntque(struct vnode *vp, struct mount *mp)
2293 {
2294 	return (insmntque1_int(vp, mp, true));
2295 }
2296 
2297 int
2298 insmntque1(struct vnode *vp, struct mount *mp)
2299 {
2300 	return (insmntque1_int(vp, mp, false));
2301 }
2302 
2303 /*
2304  * Flush out and invalidate all buffers associated with a bufobj
2305  * Called with the underlying object locked.
2306  */
2307 int
2308 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2309 {
2310 	int error;
2311 
2312 	BO_LOCK(bo);
2313 	if (flags & V_SAVE) {
2314 		error = bufobj_wwait(bo, slpflag, slptimeo);
2315 		if (error) {
2316 			BO_UNLOCK(bo);
2317 			return (error);
2318 		}
2319 		if (bo->bo_dirty.bv_cnt > 0) {
2320 			BO_UNLOCK(bo);
2321 			do {
2322 				error = BO_SYNC(bo, MNT_WAIT);
2323 			} while (error == ERELOOKUP);
2324 			if (error != 0)
2325 				return (error);
2326 			BO_LOCK(bo);
2327 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2328 				BO_UNLOCK(bo);
2329 				return (EBUSY);
2330 			}
2331 		}
2332 	}
2333 	/*
2334 	 * If you alter this loop please notice that interlock is dropped and
2335 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2336 	 * no race conditions occur from this.
2337 	 */
2338 	do {
2339 		error = flushbuflist(&bo->bo_clean,
2340 		    flags, bo, slpflag, slptimeo);
2341 		if (error == 0 && !(flags & V_CLEANONLY))
2342 			error = flushbuflist(&bo->bo_dirty,
2343 			    flags, bo, slpflag, slptimeo);
2344 		if (error != 0 && error != EAGAIN) {
2345 			BO_UNLOCK(bo);
2346 			return (error);
2347 		}
2348 	} while (error != 0);
2349 
2350 	/*
2351 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2352 	 * have write I/O in-progress but if there is a VM object then the
2353 	 * VM object can also have read-I/O in-progress.
2354 	 */
2355 	do {
2356 		bufobj_wwait(bo, 0, 0);
2357 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2358 			BO_UNLOCK(bo);
2359 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2360 			BO_LOCK(bo);
2361 		}
2362 	} while (bo->bo_numoutput > 0);
2363 	BO_UNLOCK(bo);
2364 
2365 	/*
2366 	 * Destroy the copy in the VM cache, too.
2367 	 */
2368 	if (bo->bo_object != NULL &&
2369 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2370 		VM_OBJECT_WLOCK(bo->bo_object);
2371 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2372 		    OBJPR_CLEANONLY : 0);
2373 		VM_OBJECT_WUNLOCK(bo->bo_object);
2374 	}
2375 
2376 #ifdef INVARIANTS
2377 	BO_LOCK(bo);
2378 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2379 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2380 	    bo->bo_clean.bv_cnt > 0))
2381 		panic("vinvalbuf: flush failed");
2382 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2383 	    bo->bo_dirty.bv_cnt > 0)
2384 		panic("vinvalbuf: flush dirty failed");
2385 	BO_UNLOCK(bo);
2386 #endif
2387 	return (0);
2388 }
2389 
2390 /*
2391  * Flush out and invalidate all buffers associated with a vnode.
2392  * Called with the underlying object locked.
2393  */
2394 int
2395 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2396 {
2397 
2398 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2399 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2400 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2401 		return (0);
2402 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2403 }
2404 
2405 /*
2406  * Flush out buffers on the specified list.
2407  *
2408  */
2409 static int
2410 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2411     int slptimeo)
2412 {
2413 	struct buf *bp, *nbp;
2414 	int retval, error;
2415 	daddr_t lblkno;
2416 	b_xflags_t xflags;
2417 
2418 	ASSERT_BO_WLOCKED(bo);
2419 
2420 	retval = 0;
2421 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2422 		/*
2423 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2424 		 * do not skip any buffers. If we are flushing only V_NORMAL
2425 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2426 		 * flushing only V_ALT buffers then skip buffers not marked
2427 		 * as BX_ALTDATA.
2428 		 */
2429 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2430 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2431 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2432 			continue;
2433 		}
2434 		if (nbp != NULL) {
2435 			lblkno = nbp->b_lblkno;
2436 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2437 		}
2438 		retval = EAGAIN;
2439 		error = BUF_TIMELOCK(bp,
2440 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2441 		    "flushbuf", slpflag, slptimeo);
2442 		if (error) {
2443 			BO_LOCK(bo);
2444 			return (error != ENOLCK ? error : EAGAIN);
2445 		}
2446 		KASSERT(bp->b_bufobj == bo,
2447 		    ("bp %p wrong b_bufobj %p should be %p",
2448 		    bp, bp->b_bufobj, bo));
2449 		/*
2450 		 * XXX Since there are no node locks for NFS, I
2451 		 * believe there is a slight chance that a delayed
2452 		 * write will occur while sleeping just above, so
2453 		 * check for it.
2454 		 */
2455 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2456 		    (flags & V_SAVE)) {
2457 			bremfree(bp);
2458 			bp->b_flags |= B_ASYNC;
2459 			bwrite(bp);
2460 			BO_LOCK(bo);
2461 			return (EAGAIN);	/* XXX: why not loop ? */
2462 		}
2463 		bremfree(bp);
2464 		bp->b_flags |= (B_INVAL | B_RELBUF);
2465 		bp->b_flags &= ~B_ASYNC;
2466 		brelse(bp);
2467 		BO_LOCK(bo);
2468 		if (nbp == NULL)
2469 			break;
2470 		nbp = gbincore(bo, lblkno);
2471 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2472 		    != xflags)
2473 			break;			/* nbp invalid */
2474 	}
2475 	return (retval);
2476 }
2477 
2478 int
2479 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2480 {
2481 	struct buf *bp;
2482 	int error;
2483 	daddr_t lblkno;
2484 
2485 	ASSERT_BO_LOCKED(bo);
2486 
2487 	for (lblkno = startn;;) {
2488 again:
2489 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2490 		if (bp == NULL || bp->b_lblkno >= endn ||
2491 		    bp->b_lblkno < startn)
2492 			break;
2493 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2494 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2495 		if (error != 0) {
2496 			BO_RLOCK(bo);
2497 			if (error == ENOLCK)
2498 				goto again;
2499 			return (error);
2500 		}
2501 		KASSERT(bp->b_bufobj == bo,
2502 		    ("bp %p wrong b_bufobj %p should be %p",
2503 		    bp, bp->b_bufobj, bo));
2504 		lblkno = bp->b_lblkno + 1;
2505 		if ((bp->b_flags & B_MANAGED) == 0)
2506 			bremfree(bp);
2507 		bp->b_flags |= B_RELBUF;
2508 		/*
2509 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2510 		 * pages backing each buffer in the range are unlikely to be
2511 		 * reused.  Dirty buffers will have the hint applied once
2512 		 * they've been written.
2513 		 */
2514 		if ((bp->b_flags & B_VMIO) != 0)
2515 			bp->b_flags |= B_NOREUSE;
2516 		brelse(bp);
2517 		BO_RLOCK(bo);
2518 	}
2519 	return (0);
2520 }
2521 
2522 /*
2523  * Truncate a file's buffer and pages to a specified length.  This
2524  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2525  * sync activity.
2526  */
2527 int
2528 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2529 {
2530 	struct buf *bp, *nbp;
2531 	struct bufobj *bo;
2532 	daddr_t startlbn;
2533 
2534 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2535 	    vp, blksize, (uintmax_t)length);
2536 
2537 	/*
2538 	 * Round up to the *next* lbn.
2539 	 */
2540 	startlbn = howmany(length, blksize);
2541 
2542 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2543 
2544 	bo = &vp->v_bufobj;
2545 restart_unlocked:
2546 	BO_LOCK(bo);
2547 
2548 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2549 		;
2550 
2551 	if (length > 0) {
2552 		/*
2553 		 * Write out vnode metadata, e.g. indirect blocks.
2554 		 */
2555 restartsync:
2556 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2557 			if (bp->b_lblkno >= 0)
2558 				continue;
2559 			/*
2560 			 * Since we hold the vnode lock this should only
2561 			 * fail if we're racing with the buf daemon.
2562 			 */
2563 			if (BUF_LOCK(bp,
2564 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2565 			    BO_LOCKPTR(bo)) == ENOLCK)
2566 				goto restart_unlocked;
2567 
2568 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2569 			    ("buf(%p) on dirty queue without DELWRI", bp));
2570 
2571 			bremfree(bp);
2572 			bawrite(bp);
2573 			BO_LOCK(bo);
2574 			goto restartsync;
2575 		}
2576 	}
2577 
2578 	bufobj_wwait(bo, 0, 0);
2579 	BO_UNLOCK(bo);
2580 	vnode_pager_setsize(vp, length);
2581 
2582 	return (0);
2583 }
2584 
2585 /*
2586  * Invalidate the cached pages of a file's buffer within the range of block
2587  * numbers [startlbn, endlbn).
2588  */
2589 void
2590 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2591     int blksize)
2592 {
2593 	struct bufobj *bo;
2594 	off_t start, end;
2595 
2596 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2597 
2598 	start = blksize * startlbn;
2599 	end = blksize * endlbn;
2600 
2601 	bo = &vp->v_bufobj;
2602 	BO_LOCK(bo);
2603 	MPASS(blksize == bo->bo_bsize);
2604 
2605 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2606 		;
2607 
2608 	BO_UNLOCK(bo);
2609 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2610 }
2611 
2612 static int
2613 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2614     daddr_t startlbn, daddr_t endlbn)
2615 {
2616 	struct buf *bp, *nbp;
2617 	bool anyfreed;
2618 
2619 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2620 	ASSERT_BO_LOCKED(bo);
2621 
2622 	do {
2623 		anyfreed = false;
2624 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2625 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2626 				continue;
2627 			if (BUF_LOCK(bp,
2628 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2629 			    BO_LOCKPTR(bo)) == ENOLCK) {
2630 				BO_LOCK(bo);
2631 				return (EAGAIN);
2632 			}
2633 
2634 			bremfree(bp);
2635 			bp->b_flags |= B_INVAL | B_RELBUF;
2636 			bp->b_flags &= ~B_ASYNC;
2637 			brelse(bp);
2638 			anyfreed = true;
2639 
2640 			BO_LOCK(bo);
2641 			if (nbp != NULL &&
2642 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2643 			    nbp->b_vp != vp ||
2644 			    (nbp->b_flags & B_DELWRI) != 0))
2645 				return (EAGAIN);
2646 		}
2647 
2648 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2649 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2650 				continue;
2651 			if (BUF_LOCK(bp,
2652 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2653 			    BO_LOCKPTR(bo)) == ENOLCK) {
2654 				BO_LOCK(bo);
2655 				return (EAGAIN);
2656 			}
2657 			bremfree(bp);
2658 			bp->b_flags |= B_INVAL | B_RELBUF;
2659 			bp->b_flags &= ~B_ASYNC;
2660 			brelse(bp);
2661 			anyfreed = true;
2662 
2663 			BO_LOCK(bo);
2664 			if (nbp != NULL &&
2665 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2666 			    (nbp->b_vp != vp) ||
2667 			    (nbp->b_flags & B_DELWRI) == 0))
2668 				return (EAGAIN);
2669 		}
2670 	} while (anyfreed);
2671 	return (0);
2672 }
2673 
2674 static void
2675 buf_vlist_remove(struct buf *bp)
2676 {
2677 	struct bufv *bv;
2678 	b_xflags_t flags;
2679 
2680 	flags = bp->b_xflags;
2681 
2682 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2683 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2684 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2685 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2686 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2687 
2688 	if ((flags & BX_VNDIRTY) != 0)
2689 		bv = &bp->b_bufobj->bo_dirty;
2690 	else
2691 		bv = &bp->b_bufobj->bo_clean;
2692 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2693 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2694 	bv->bv_cnt--;
2695 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2696 }
2697 
2698 /*
2699  * Add the buffer to the sorted clean or dirty block list.
2700  *
2701  * NOTE: xflags is passed as a constant, optimizing this inline function!
2702  */
2703 static void
2704 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2705 {
2706 	struct bufv *bv;
2707 	struct buf *n;
2708 	int error;
2709 
2710 	ASSERT_BO_WLOCKED(bo);
2711 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2712 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2713 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2714 	    ("dead bo %p", bo));
2715 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2716 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2717 	bp->b_xflags |= xflags;
2718 	if (xflags & BX_VNDIRTY)
2719 		bv = &bo->bo_dirty;
2720 	else
2721 		bv = &bo->bo_clean;
2722 
2723 	/*
2724 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2725 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2726 	 * than _ge.
2727 	 */
2728 	if (bv->bv_cnt == 0 ||
2729 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2730 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2731 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2732 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2733 	else
2734 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2735 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2736 	if (error)
2737 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2738 	bv->bv_cnt++;
2739 }
2740 
2741 /*
2742  * Look up a buffer using the buffer tries.
2743  */
2744 struct buf *
2745 gbincore(struct bufobj *bo, daddr_t lblkno)
2746 {
2747 	struct buf *bp;
2748 
2749 	ASSERT_BO_LOCKED(bo);
2750 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2751 	if (bp != NULL)
2752 		return (bp);
2753 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2754 }
2755 
2756 /*
2757  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2758  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2759  * stability of the result.  Like other lockless lookups, the found buf may
2760  * already be invalid by the time this function returns.
2761  */
2762 struct buf *
2763 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2764 {
2765 	struct buf *bp;
2766 
2767 	ASSERT_BO_UNLOCKED(bo);
2768 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2769 	if (bp != NULL)
2770 		return (bp);
2771 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2772 }
2773 
2774 /*
2775  * Associate a buffer with a vnode.
2776  */
2777 void
2778 bgetvp(struct vnode *vp, struct buf *bp)
2779 {
2780 	struct bufobj *bo;
2781 
2782 	bo = &vp->v_bufobj;
2783 	ASSERT_BO_WLOCKED(bo);
2784 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2785 
2786 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2787 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2788 	    ("bgetvp: bp already attached! %p", bp));
2789 
2790 	vhold(vp);
2791 	bp->b_vp = vp;
2792 	bp->b_bufobj = bo;
2793 	/*
2794 	 * Insert onto list for new vnode.
2795 	 */
2796 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2797 }
2798 
2799 /*
2800  * Disassociate a buffer from a vnode.
2801  */
2802 void
2803 brelvp(struct buf *bp)
2804 {
2805 	struct bufobj *bo;
2806 	struct vnode *vp;
2807 
2808 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2809 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2810 
2811 	/*
2812 	 * Delete from old vnode list, if on one.
2813 	 */
2814 	vp = bp->b_vp;		/* XXX */
2815 	bo = bp->b_bufobj;
2816 	BO_LOCK(bo);
2817 	buf_vlist_remove(bp);
2818 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2819 		bo->bo_flag &= ~BO_ONWORKLST;
2820 		mtx_lock(&sync_mtx);
2821 		LIST_REMOVE(bo, bo_synclist);
2822 		syncer_worklist_len--;
2823 		mtx_unlock(&sync_mtx);
2824 	}
2825 	bp->b_vp = NULL;
2826 	bp->b_bufobj = NULL;
2827 	BO_UNLOCK(bo);
2828 	vdrop(vp);
2829 }
2830 
2831 /*
2832  * Add an item to the syncer work queue.
2833  */
2834 static void
2835 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2836 {
2837 	int slot;
2838 
2839 	ASSERT_BO_WLOCKED(bo);
2840 
2841 	mtx_lock(&sync_mtx);
2842 	if (bo->bo_flag & BO_ONWORKLST)
2843 		LIST_REMOVE(bo, bo_synclist);
2844 	else {
2845 		bo->bo_flag |= BO_ONWORKLST;
2846 		syncer_worklist_len++;
2847 	}
2848 
2849 	if (delay > syncer_maxdelay - 2)
2850 		delay = syncer_maxdelay - 2;
2851 	slot = (syncer_delayno + delay) & syncer_mask;
2852 
2853 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2854 	mtx_unlock(&sync_mtx);
2855 }
2856 
2857 static int
2858 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2859 {
2860 	int error, len;
2861 
2862 	mtx_lock(&sync_mtx);
2863 	len = syncer_worklist_len - sync_vnode_count;
2864 	mtx_unlock(&sync_mtx);
2865 	error = SYSCTL_OUT(req, &len, sizeof(len));
2866 	return (error);
2867 }
2868 
2869 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2870     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2871     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2872 
2873 static struct proc *updateproc;
2874 static void sched_sync(void);
2875 static struct kproc_desc up_kp = {
2876 	"syncer",
2877 	sched_sync,
2878 	&updateproc
2879 };
2880 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2881 
2882 static int
2883 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2884 {
2885 	struct vnode *vp;
2886 	struct mount *mp;
2887 
2888 	*bo = LIST_FIRST(slp);
2889 	if (*bo == NULL)
2890 		return (0);
2891 	vp = bo2vnode(*bo);
2892 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2893 		return (1);
2894 	/*
2895 	 * We use vhold in case the vnode does not
2896 	 * successfully sync.  vhold prevents the vnode from
2897 	 * going away when we unlock the sync_mtx so that
2898 	 * we can acquire the vnode interlock.
2899 	 */
2900 	vholdl(vp);
2901 	mtx_unlock(&sync_mtx);
2902 	VI_UNLOCK(vp);
2903 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2904 		vdrop(vp);
2905 		mtx_lock(&sync_mtx);
2906 		return (*bo == LIST_FIRST(slp));
2907 	}
2908 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2909 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2910 	    ("suspended mp syncing vp %p", vp));
2911 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2912 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2913 	VOP_UNLOCK(vp);
2914 	vn_finished_write(mp);
2915 	BO_LOCK(*bo);
2916 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2917 		/*
2918 		 * Put us back on the worklist.  The worklist
2919 		 * routine will remove us from our current
2920 		 * position and then add us back in at a later
2921 		 * position.
2922 		 */
2923 		vn_syncer_add_to_worklist(*bo, syncdelay);
2924 	}
2925 	BO_UNLOCK(*bo);
2926 	vdrop(vp);
2927 	mtx_lock(&sync_mtx);
2928 	return (0);
2929 }
2930 
2931 static int first_printf = 1;
2932 
2933 /*
2934  * System filesystem synchronizer daemon.
2935  */
2936 static void
2937 sched_sync(void)
2938 {
2939 	struct synclist *next, *slp;
2940 	struct bufobj *bo;
2941 	long starttime;
2942 	struct thread *td = curthread;
2943 	int last_work_seen;
2944 	int net_worklist_len;
2945 	int syncer_final_iter;
2946 	int error;
2947 
2948 	last_work_seen = 0;
2949 	syncer_final_iter = 0;
2950 	syncer_state = SYNCER_RUNNING;
2951 	starttime = time_uptime;
2952 	td->td_pflags |= TDP_NORUNNINGBUF;
2953 
2954 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2955 	    SHUTDOWN_PRI_LAST);
2956 
2957 	mtx_lock(&sync_mtx);
2958 	for (;;) {
2959 		if (syncer_state == SYNCER_FINAL_DELAY &&
2960 		    syncer_final_iter == 0) {
2961 			mtx_unlock(&sync_mtx);
2962 			kproc_suspend_check(td->td_proc);
2963 			mtx_lock(&sync_mtx);
2964 		}
2965 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2966 		if (syncer_state != SYNCER_RUNNING &&
2967 		    starttime != time_uptime) {
2968 			if (first_printf) {
2969 				printf("\nSyncing disks, vnodes remaining... ");
2970 				first_printf = 0;
2971 			}
2972 			printf("%d ", net_worklist_len);
2973 		}
2974 		starttime = time_uptime;
2975 
2976 		/*
2977 		 * Push files whose dirty time has expired.  Be careful
2978 		 * of interrupt race on slp queue.
2979 		 *
2980 		 * Skip over empty worklist slots when shutting down.
2981 		 */
2982 		do {
2983 			slp = &syncer_workitem_pending[syncer_delayno];
2984 			syncer_delayno += 1;
2985 			if (syncer_delayno == syncer_maxdelay)
2986 				syncer_delayno = 0;
2987 			next = &syncer_workitem_pending[syncer_delayno];
2988 			/*
2989 			 * If the worklist has wrapped since the
2990 			 * it was emptied of all but syncer vnodes,
2991 			 * switch to the FINAL_DELAY state and run
2992 			 * for one more second.
2993 			 */
2994 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2995 			    net_worklist_len == 0 &&
2996 			    last_work_seen == syncer_delayno) {
2997 				syncer_state = SYNCER_FINAL_DELAY;
2998 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2999 			}
3000 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3001 		    syncer_worklist_len > 0);
3002 
3003 		/*
3004 		 * Keep track of the last time there was anything
3005 		 * on the worklist other than syncer vnodes.
3006 		 * Return to the SHUTTING_DOWN state if any
3007 		 * new work appears.
3008 		 */
3009 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3010 			last_work_seen = syncer_delayno;
3011 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3012 			syncer_state = SYNCER_SHUTTING_DOWN;
3013 		while (!LIST_EMPTY(slp)) {
3014 			error = sync_vnode(slp, &bo, td);
3015 			if (error == 1) {
3016 				LIST_REMOVE(bo, bo_synclist);
3017 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3018 				continue;
3019 			}
3020 
3021 			if (first_printf == 0) {
3022 				/*
3023 				 * Drop the sync mutex, because some watchdog
3024 				 * drivers need to sleep while patting
3025 				 */
3026 				mtx_unlock(&sync_mtx);
3027 				wdog_kern_pat(WD_LASTVAL);
3028 				mtx_lock(&sync_mtx);
3029 			}
3030 		}
3031 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3032 			syncer_final_iter--;
3033 		/*
3034 		 * The variable rushjob allows the kernel to speed up the
3035 		 * processing of the filesystem syncer process. A rushjob
3036 		 * value of N tells the filesystem syncer to process the next
3037 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3038 		 * is used by the soft update code to speed up the filesystem
3039 		 * syncer process when the incore state is getting so far
3040 		 * ahead of the disk that the kernel memory pool is being
3041 		 * threatened with exhaustion.
3042 		 */
3043 		if (rushjob > 0) {
3044 			rushjob -= 1;
3045 			continue;
3046 		}
3047 		/*
3048 		 * Just sleep for a short period of time between
3049 		 * iterations when shutting down to allow some I/O
3050 		 * to happen.
3051 		 *
3052 		 * If it has taken us less than a second to process the
3053 		 * current work, then wait. Otherwise start right over
3054 		 * again. We can still lose time if any single round
3055 		 * takes more than two seconds, but it does not really
3056 		 * matter as we are just trying to generally pace the
3057 		 * filesystem activity.
3058 		 */
3059 		if (syncer_state != SYNCER_RUNNING ||
3060 		    time_uptime == starttime) {
3061 			thread_lock(td);
3062 			sched_prio(td, PPAUSE);
3063 			thread_unlock(td);
3064 		}
3065 		if (syncer_state != SYNCER_RUNNING)
3066 			cv_timedwait(&sync_wakeup, &sync_mtx,
3067 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3068 		else if (time_uptime == starttime)
3069 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3070 	}
3071 }
3072 
3073 /*
3074  * Request the syncer daemon to speed up its work.
3075  * We never push it to speed up more than half of its
3076  * normal turn time, otherwise it could take over the cpu.
3077  */
3078 int
3079 speedup_syncer(void)
3080 {
3081 	int ret = 0;
3082 
3083 	mtx_lock(&sync_mtx);
3084 	if (rushjob < syncdelay / 2) {
3085 		rushjob += 1;
3086 		stat_rush_requests += 1;
3087 		ret = 1;
3088 	}
3089 	mtx_unlock(&sync_mtx);
3090 	cv_broadcast(&sync_wakeup);
3091 	return (ret);
3092 }
3093 
3094 /*
3095  * Tell the syncer to speed up its work and run though its work
3096  * list several times, then tell it to shut down.
3097  */
3098 static void
3099 syncer_shutdown(void *arg, int howto)
3100 {
3101 
3102 	if (howto & RB_NOSYNC)
3103 		return;
3104 	mtx_lock(&sync_mtx);
3105 	syncer_state = SYNCER_SHUTTING_DOWN;
3106 	rushjob = 0;
3107 	mtx_unlock(&sync_mtx);
3108 	cv_broadcast(&sync_wakeup);
3109 	kproc_shutdown(arg, howto);
3110 }
3111 
3112 void
3113 syncer_suspend(void)
3114 {
3115 
3116 	syncer_shutdown(updateproc, 0);
3117 }
3118 
3119 void
3120 syncer_resume(void)
3121 {
3122 
3123 	mtx_lock(&sync_mtx);
3124 	first_printf = 1;
3125 	syncer_state = SYNCER_RUNNING;
3126 	mtx_unlock(&sync_mtx);
3127 	cv_broadcast(&sync_wakeup);
3128 	kproc_resume(updateproc);
3129 }
3130 
3131 /*
3132  * Move the buffer between the clean and dirty lists of its vnode.
3133  */
3134 void
3135 reassignbuf(struct buf *bp)
3136 {
3137 	struct vnode *vp;
3138 	struct bufobj *bo;
3139 	int delay;
3140 #ifdef INVARIANTS
3141 	struct bufv *bv;
3142 #endif
3143 
3144 	vp = bp->b_vp;
3145 	bo = bp->b_bufobj;
3146 
3147 	KASSERT((bp->b_flags & B_PAGING) == 0,
3148 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3149 
3150 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3151 	    bp, bp->b_vp, bp->b_flags);
3152 
3153 	BO_LOCK(bo);
3154 	buf_vlist_remove(bp);
3155 
3156 	/*
3157 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3158 	 * of clean buffers.
3159 	 */
3160 	if (bp->b_flags & B_DELWRI) {
3161 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3162 			switch (vp->v_type) {
3163 			case VDIR:
3164 				delay = dirdelay;
3165 				break;
3166 			case VCHR:
3167 				delay = metadelay;
3168 				break;
3169 			default:
3170 				delay = filedelay;
3171 			}
3172 			vn_syncer_add_to_worklist(bo, delay);
3173 		}
3174 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3175 	} else {
3176 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3177 
3178 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3179 			mtx_lock(&sync_mtx);
3180 			LIST_REMOVE(bo, bo_synclist);
3181 			syncer_worklist_len--;
3182 			mtx_unlock(&sync_mtx);
3183 			bo->bo_flag &= ~BO_ONWORKLST;
3184 		}
3185 	}
3186 #ifdef INVARIANTS
3187 	bv = &bo->bo_clean;
3188 	bp = TAILQ_FIRST(&bv->bv_hd);
3189 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3190 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3191 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3192 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3193 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3194 	bv = &bo->bo_dirty;
3195 	bp = TAILQ_FIRST(&bv->bv_hd);
3196 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3197 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3198 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3199 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3200 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3201 #endif
3202 	BO_UNLOCK(bo);
3203 }
3204 
3205 static void
3206 v_init_counters(struct vnode *vp)
3207 {
3208 
3209 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3210 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3211 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3212 
3213 	refcount_init(&vp->v_holdcnt, 1);
3214 	refcount_init(&vp->v_usecount, 1);
3215 }
3216 
3217 /*
3218  * Get a usecount on a vnode.
3219  *
3220  * vget and vget_finish may fail to lock the vnode if they lose a race against
3221  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3222  *
3223  * Consumers which don't guarantee liveness of the vnode can use SMR to
3224  * try to get a reference. Note this operation can fail since the vnode
3225  * may be awaiting getting freed by the time they get to it.
3226  */
3227 enum vgetstate
3228 vget_prep_smr(struct vnode *vp)
3229 {
3230 	enum vgetstate vs;
3231 
3232 	VFS_SMR_ASSERT_ENTERED();
3233 
3234 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3235 		vs = VGET_USECOUNT;
3236 	} else {
3237 		if (vhold_smr(vp))
3238 			vs = VGET_HOLDCNT;
3239 		else
3240 			vs = VGET_NONE;
3241 	}
3242 	return (vs);
3243 }
3244 
3245 enum vgetstate
3246 vget_prep(struct vnode *vp)
3247 {
3248 	enum vgetstate vs;
3249 
3250 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3251 		vs = VGET_USECOUNT;
3252 	} else {
3253 		vhold(vp);
3254 		vs = VGET_HOLDCNT;
3255 	}
3256 	return (vs);
3257 }
3258 
3259 void
3260 vget_abort(struct vnode *vp, enum vgetstate vs)
3261 {
3262 
3263 	switch (vs) {
3264 	case VGET_USECOUNT:
3265 		vrele(vp);
3266 		break;
3267 	case VGET_HOLDCNT:
3268 		vdrop(vp);
3269 		break;
3270 	default:
3271 		__assert_unreachable();
3272 	}
3273 }
3274 
3275 int
3276 vget(struct vnode *vp, int flags)
3277 {
3278 	enum vgetstate vs;
3279 
3280 	vs = vget_prep(vp);
3281 	return (vget_finish(vp, flags, vs));
3282 }
3283 
3284 int
3285 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3286 {
3287 	int error;
3288 
3289 	if ((flags & LK_INTERLOCK) != 0)
3290 		ASSERT_VI_LOCKED(vp, __func__);
3291 	else
3292 		ASSERT_VI_UNLOCKED(vp, __func__);
3293 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3294 	VNPASS(vp->v_holdcnt > 0, vp);
3295 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3296 
3297 	error = vn_lock(vp, flags);
3298 	if (__predict_false(error != 0)) {
3299 		vget_abort(vp, vs);
3300 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3301 		    vp);
3302 		return (error);
3303 	}
3304 
3305 	vget_finish_ref(vp, vs);
3306 	return (0);
3307 }
3308 
3309 void
3310 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3311 {
3312 	int old;
3313 
3314 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3315 	VNPASS(vp->v_holdcnt > 0, vp);
3316 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3317 
3318 	if (vs == VGET_USECOUNT)
3319 		return;
3320 
3321 	/*
3322 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3323 	 * the vnode around. Otherwise someone else lended their hold count and
3324 	 * we have to drop ours.
3325 	 */
3326 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3327 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3328 	if (old != 0) {
3329 #ifdef INVARIANTS
3330 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3331 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3332 #else
3333 		refcount_release(&vp->v_holdcnt);
3334 #endif
3335 	}
3336 }
3337 
3338 void
3339 vref(struct vnode *vp)
3340 {
3341 	enum vgetstate vs;
3342 
3343 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3344 	vs = vget_prep(vp);
3345 	vget_finish_ref(vp, vs);
3346 }
3347 
3348 void
3349 vrefact(struct vnode *vp)
3350 {
3351 	int old __diagused;
3352 
3353 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3354 	old = refcount_acquire(&vp->v_usecount);
3355 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3356 }
3357 
3358 void
3359 vlazy(struct vnode *vp)
3360 {
3361 	struct mount *mp;
3362 
3363 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3364 
3365 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3366 		return;
3367 	/*
3368 	 * We may get here for inactive routines after the vnode got doomed.
3369 	 */
3370 	if (VN_IS_DOOMED(vp))
3371 		return;
3372 	mp = vp->v_mount;
3373 	mtx_lock(&mp->mnt_listmtx);
3374 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3375 		vp->v_mflag |= VMP_LAZYLIST;
3376 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3377 		mp->mnt_lazyvnodelistsize++;
3378 	}
3379 	mtx_unlock(&mp->mnt_listmtx);
3380 }
3381 
3382 static void
3383 vunlazy(struct vnode *vp)
3384 {
3385 	struct mount *mp;
3386 
3387 	ASSERT_VI_LOCKED(vp, __func__);
3388 	VNPASS(!VN_IS_DOOMED(vp), vp);
3389 
3390 	mp = vp->v_mount;
3391 	mtx_lock(&mp->mnt_listmtx);
3392 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3393 	/*
3394 	 * Don't remove the vnode from the lazy list if another thread
3395 	 * has increased the hold count. It may have re-enqueued the
3396 	 * vnode to the lazy list and is now responsible for its
3397 	 * removal.
3398 	 */
3399 	if (vp->v_holdcnt == 0) {
3400 		vp->v_mflag &= ~VMP_LAZYLIST;
3401 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3402 		mp->mnt_lazyvnodelistsize--;
3403 	}
3404 	mtx_unlock(&mp->mnt_listmtx);
3405 }
3406 
3407 /*
3408  * This routine is only meant to be called from vgonel prior to dooming
3409  * the vnode.
3410  */
3411 static void
3412 vunlazy_gone(struct vnode *vp)
3413 {
3414 	struct mount *mp;
3415 
3416 	ASSERT_VOP_ELOCKED(vp, __func__);
3417 	ASSERT_VI_LOCKED(vp, __func__);
3418 	VNPASS(!VN_IS_DOOMED(vp), vp);
3419 
3420 	if (vp->v_mflag & VMP_LAZYLIST) {
3421 		mp = vp->v_mount;
3422 		mtx_lock(&mp->mnt_listmtx);
3423 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3424 		vp->v_mflag &= ~VMP_LAZYLIST;
3425 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3426 		mp->mnt_lazyvnodelistsize--;
3427 		mtx_unlock(&mp->mnt_listmtx);
3428 	}
3429 }
3430 
3431 static void
3432 vdefer_inactive(struct vnode *vp)
3433 {
3434 
3435 	ASSERT_VI_LOCKED(vp, __func__);
3436 	VNPASS(vp->v_holdcnt > 0, vp);
3437 	if (VN_IS_DOOMED(vp)) {
3438 		vdropl(vp);
3439 		return;
3440 	}
3441 	if (vp->v_iflag & VI_DEFINACT) {
3442 		VNPASS(vp->v_holdcnt > 1, vp);
3443 		vdropl(vp);
3444 		return;
3445 	}
3446 	if (vp->v_usecount > 0) {
3447 		vp->v_iflag &= ~VI_OWEINACT;
3448 		vdropl(vp);
3449 		return;
3450 	}
3451 	vlazy(vp);
3452 	vp->v_iflag |= VI_DEFINACT;
3453 	VI_UNLOCK(vp);
3454 	atomic_add_long(&deferred_inact, 1);
3455 }
3456 
3457 static void
3458 vdefer_inactive_unlocked(struct vnode *vp)
3459 {
3460 
3461 	VI_LOCK(vp);
3462 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3463 		vdropl(vp);
3464 		return;
3465 	}
3466 	vdefer_inactive(vp);
3467 }
3468 
3469 enum vput_op { VRELE, VPUT, VUNREF };
3470 
3471 /*
3472  * Handle ->v_usecount transitioning to 0.
3473  *
3474  * By releasing the last usecount we take ownership of the hold count which
3475  * provides liveness of the vnode, meaning we have to vdrop.
3476  *
3477  * For all vnodes we may need to perform inactive processing. It requires an
3478  * exclusive lock on the vnode, while it is legal to call here with only a
3479  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3480  * inactive processing gets deferred to the syncer.
3481  *
3482  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3483  * on the lock being held all the way until VOP_INACTIVE. This in particular
3484  * happens with UFS which adds half-constructed vnodes to the hash, where they
3485  * can be found by other code.
3486  */
3487 static void
3488 vput_final(struct vnode *vp, enum vput_op func)
3489 {
3490 	int error;
3491 	bool want_unlock;
3492 
3493 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3494 	VNPASS(vp->v_holdcnt > 0, vp);
3495 
3496 	VI_LOCK(vp);
3497 
3498 	/*
3499 	 * By the time we got here someone else might have transitioned
3500 	 * the count back to > 0.
3501 	 */
3502 	if (vp->v_usecount > 0)
3503 		goto out;
3504 
3505 	/*
3506 	 * If the vnode is doomed vgone already performed inactive processing
3507 	 * (if needed).
3508 	 */
3509 	if (VN_IS_DOOMED(vp))
3510 		goto out;
3511 
3512 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3513 		goto out;
3514 
3515 	if (vp->v_iflag & VI_DOINGINACT)
3516 		goto out;
3517 
3518 	/*
3519 	 * Locking operations here will drop the interlock and possibly the
3520 	 * vnode lock, opening a window where the vnode can get doomed all the
3521 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3522 	 * perform inactive.
3523 	 */
3524 	vp->v_iflag |= VI_OWEINACT;
3525 	want_unlock = false;
3526 	error = 0;
3527 	switch (func) {
3528 	case VRELE:
3529 		switch (VOP_ISLOCKED(vp)) {
3530 		case LK_EXCLUSIVE:
3531 			break;
3532 		case LK_EXCLOTHER:
3533 		case 0:
3534 			want_unlock = true;
3535 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3536 			VI_LOCK(vp);
3537 			break;
3538 		default:
3539 			/*
3540 			 * The lock has at least one sharer, but we have no way
3541 			 * to conclude whether this is us. Play it safe and
3542 			 * defer processing.
3543 			 */
3544 			error = EAGAIN;
3545 			break;
3546 		}
3547 		break;
3548 	case VPUT:
3549 		want_unlock = true;
3550 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3551 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3552 			    LK_NOWAIT);
3553 			VI_LOCK(vp);
3554 		}
3555 		break;
3556 	case VUNREF:
3557 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3558 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3559 			VI_LOCK(vp);
3560 		}
3561 		break;
3562 	}
3563 	if (error == 0) {
3564 		if (func == VUNREF) {
3565 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3566 			    ("recursive vunref"));
3567 			vp->v_vflag |= VV_UNREF;
3568 		}
3569 		for (;;) {
3570 			error = vinactive(vp);
3571 			if (want_unlock)
3572 				VOP_UNLOCK(vp);
3573 			if (error != ERELOOKUP || !want_unlock)
3574 				break;
3575 			VOP_LOCK(vp, LK_EXCLUSIVE);
3576 		}
3577 		if (func == VUNREF)
3578 			vp->v_vflag &= ~VV_UNREF;
3579 		vdropl(vp);
3580 	} else {
3581 		vdefer_inactive(vp);
3582 	}
3583 	return;
3584 out:
3585 	if (func == VPUT)
3586 		VOP_UNLOCK(vp);
3587 	vdropl(vp);
3588 }
3589 
3590 /*
3591  * Decrement ->v_usecount for a vnode.
3592  *
3593  * Releasing the last use count requires additional processing, see vput_final
3594  * above for details.
3595  *
3596  * Comment above each variant denotes lock state on entry and exit.
3597  */
3598 
3599 /*
3600  * in: any
3601  * out: same as passed in
3602  */
3603 void
3604 vrele(struct vnode *vp)
3605 {
3606 
3607 	ASSERT_VI_UNLOCKED(vp, __func__);
3608 	if (!refcount_release(&vp->v_usecount))
3609 		return;
3610 	vput_final(vp, VRELE);
3611 }
3612 
3613 /*
3614  * in: locked
3615  * out: unlocked
3616  */
3617 void
3618 vput(struct vnode *vp)
3619 {
3620 
3621 	ASSERT_VOP_LOCKED(vp, __func__);
3622 	ASSERT_VI_UNLOCKED(vp, __func__);
3623 	if (!refcount_release(&vp->v_usecount)) {
3624 		VOP_UNLOCK(vp);
3625 		return;
3626 	}
3627 	vput_final(vp, VPUT);
3628 }
3629 
3630 /*
3631  * in: locked
3632  * out: locked
3633  */
3634 void
3635 vunref(struct vnode *vp)
3636 {
3637 
3638 	ASSERT_VOP_LOCKED(vp, __func__);
3639 	ASSERT_VI_UNLOCKED(vp, __func__);
3640 	if (!refcount_release(&vp->v_usecount))
3641 		return;
3642 	vput_final(vp, VUNREF);
3643 }
3644 
3645 void
3646 vhold(struct vnode *vp)
3647 {
3648 	int old;
3649 
3650 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3651 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3652 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3653 	    ("%s: wrong hold count %d", __func__, old));
3654 	if (old == 0)
3655 		vfs_freevnodes_dec();
3656 }
3657 
3658 void
3659 vholdnz(struct vnode *vp)
3660 {
3661 
3662 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3663 #ifdef INVARIANTS
3664 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3665 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3666 	    ("%s: wrong hold count %d", __func__, old));
3667 #else
3668 	atomic_add_int(&vp->v_holdcnt, 1);
3669 #endif
3670 }
3671 
3672 /*
3673  * Grab a hold count unless the vnode is freed.
3674  *
3675  * Only use this routine if vfs smr is the only protection you have against
3676  * freeing the vnode.
3677  *
3678  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3679  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3680  * the thread which managed to set the flag.
3681  *
3682  * It may be tempting to replace the loop with:
3683  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3684  * if (count & VHOLD_NO_SMR) {
3685  *     backpedal and error out;
3686  * }
3687  *
3688  * However, while this is more performant, it hinders debugging by eliminating
3689  * the previously mentioned invariant.
3690  */
3691 bool
3692 vhold_smr(struct vnode *vp)
3693 {
3694 	int count;
3695 
3696 	VFS_SMR_ASSERT_ENTERED();
3697 
3698 	count = atomic_load_int(&vp->v_holdcnt);
3699 	for (;;) {
3700 		if (count & VHOLD_NO_SMR) {
3701 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3702 			    ("non-zero hold count with flags %d\n", count));
3703 			return (false);
3704 		}
3705 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3706 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3707 			if (count == 0)
3708 				vfs_freevnodes_dec();
3709 			return (true);
3710 		}
3711 	}
3712 }
3713 
3714 /*
3715  * Hold a free vnode for recycling.
3716  *
3717  * Note: vnode_init references this comment.
3718  *
3719  * Attempts to recycle only need the global vnode list lock and have no use for
3720  * SMR.
3721  *
3722  * However, vnodes get inserted into the global list before they get fully
3723  * initialized and stay there until UMA decides to free the memory. This in
3724  * particular means the target can be found before it becomes usable and after
3725  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3726  * VHOLD_NO_SMR.
3727  *
3728  * Note: the vnode may gain more references after we transition the count 0->1.
3729  */
3730 static bool
3731 vhold_recycle_free(struct vnode *vp)
3732 {
3733 	int count;
3734 
3735 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3736 
3737 	count = atomic_load_int(&vp->v_holdcnt);
3738 	for (;;) {
3739 		if (count & VHOLD_NO_SMR) {
3740 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3741 			    ("non-zero hold count with flags %d\n", count));
3742 			return (false);
3743 		}
3744 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3745 		if (count > 0) {
3746 			return (false);
3747 		}
3748 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3749 			vfs_freevnodes_dec();
3750 			return (true);
3751 		}
3752 	}
3753 }
3754 
3755 static void __noinline
3756 vdbatch_process(struct vdbatch *vd)
3757 {
3758 	struct vnode *vp;
3759 	int i;
3760 
3761 	mtx_assert(&vd->lock, MA_OWNED);
3762 	MPASS(curthread->td_pinned > 0);
3763 	MPASS(vd->index == VDBATCH_SIZE);
3764 
3765 	/*
3766 	 * Attempt to requeue the passed batch, but give up easily.
3767 	 *
3768 	 * Despite batching the mechanism is prone to transient *significant*
3769 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3770 	 * if multiple CPUs get here (one real-world example is highly parallel
3771 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3772 	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3773 	 * the problem. Parties which don't like it are welcome to implement
3774 	 * something better.
3775 	 */
3776 	critical_enter();
3777 	if (mtx_trylock(&vnode_list_mtx)) {
3778 		for (i = 0; i < VDBATCH_SIZE; i++) {
3779 			vp = vd->tab[i];
3780 			vd->tab[i] = NULL;
3781 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3782 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3783 			MPASS(vp->v_dbatchcpu != NOCPU);
3784 			vp->v_dbatchcpu = NOCPU;
3785 		}
3786 		mtx_unlock(&vnode_list_mtx);
3787 	} else {
3788 		counter_u64_add(vnode_skipped_requeues, 1);
3789 
3790 		for (i = 0; i < VDBATCH_SIZE; i++) {
3791 			vp = vd->tab[i];
3792 			vd->tab[i] = NULL;
3793 			MPASS(vp->v_dbatchcpu != NOCPU);
3794 			vp->v_dbatchcpu = NOCPU;
3795 		}
3796 	}
3797 	vd->index = 0;
3798 	critical_exit();
3799 }
3800 
3801 static void
3802 vdbatch_enqueue(struct vnode *vp)
3803 {
3804 	struct vdbatch *vd;
3805 
3806 	ASSERT_VI_LOCKED(vp, __func__);
3807 	VNPASS(!VN_IS_DOOMED(vp), vp);
3808 
3809 	if (vp->v_dbatchcpu != NOCPU) {
3810 		VI_UNLOCK(vp);
3811 		return;
3812 	}
3813 
3814 	sched_pin();
3815 	vd = DPCPU_PTR(vd);
3816 	mtx_lock(&vd->lock);
3817 	MPASS(vd->index < VDBATCH_SIZE);
3818 	MPASS(vd->tab[vd->index] == NULL);
3819 	/*
3820 	 * A hack: we depend on being pinned so that we know what to put in
3821 	 * ->v_dbatchcpu.
3822 	 */
3823 	vp->v_dbatchcpu = curcpu;
3824 	vd->tab[vd->index] = vp;
3825 	vd->index++;
3826 	VI_UNLOCK(vp);
3827 	if (vd->index == VDBATCH_SIZE)
3828 		vdbatch_process(vd);
3829 	mtx_unlock(&vd->lock);
3830 	sched_unpin();
3831 }
3832 
3833 /*
3834  * This routine must only be called for vnodes which are about to be
3835  * deallocated. Supporting dequeue for arbitrary vndoes would require
3836  * validating that the locked batch matches.
3837  */
3838 static void
3839 vdbatch_dequeue(struct vnode *vp)
3840 {
3841 	struct vdbatch *vd;
3842 	int i;
3843 	short cpu;
3844 
3845 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3846 
3847 	cpu = vp->v_dbatchcpu;
3848 	if (cpu == NOCPU)
3849 		return;
3850 
3851 	vd = DPCPU_ID_PTR(cpu, vd);
3852 	mtx_lock(&vd->lock);
3853 	for (i = 0; i < vd->index; i++) {
3854 		if (vd->tab[i] != vp)
3855 			continue;
3856 		vp->v_dbatchcpu = NOCPU;
3857 		vd->index--;
3858 		vd->tab[i] = vd->tab[vd->index];
3859 		vd->tab[vd->index] = NULL;
3860 		break;
3861 	}
3862 	mtx_unlock(&vd->lock);
3863 	/*
3864 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3865 	 */
3866 	MPASS(vp->v_dbatchcpu == NOCPU);
3867 }
3868 
3869 /*
3870  * Drop the hold count of the vnode.
3871  *
3872  * It will only get freed if this is the last hold *and* it has been vgone'd.
3873  *
3874  * Because the vnode vm object keeps a hold reference on the vnode if
3875  * there is at least one resident non-cached page, the vnode cannot
3876  * leave the active list without the page cleanup done.
3877  */
3878 static void __noinline
3879 vdropl_final(struct vnode *vp)
3880 {
3881 
3882 	ASSERT_VI_LOCKED(vp, __func__);
3883 	VNPASS(VN_IS_DOOMED(vp), vp);
3884 	/*
3885 	 * Set the VHOLD_NO_SMR flag.
3886 	 *
3887 	 * We may be racing against vhold_smr. If they win we can just pretend
3888 	 * we never got this far, they will vdrop later.
3889 	 */
3890 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3891 		vfs_freevnodes_inc();
3892 		VI_UNLOCK(vp);
3893 		/*
3894 		 * We lost the aforementioned race. Any subsequent access is
3895 		 * invalid as they might have managed to vdropl on their own.
3896 		 */
3897 		return;
3898 	}
3899 	/*
3900 	 * Don't bump freevnodes as this one is going away.
3901 	 */
3902 	freevnode(vp);
3903 }
3904 
3905 void
3906 vdrop(struct vnode *vp)
3907 {
3908 
3909 	ASSERT_VI_UNLOCKED(vp, __func__);
3910 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3911 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3912 		return;
3913 	VI_LOCK(vp);
3914 	vdropl(vp);
3915 }
3916 
3917 static void __always_inline
3918 vdropl_impl(struct vnode *vp, bool enqueue)
3919 {
3920 
3921 	ASSERT_VI_LOCKED(vp, __func__);
3922 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3923 	if (!refcount_release(&vp->v_holdcnt)) {
3924 		VI_UNLOCK(vp);
3925 		return;
3926 	}
3927 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3928 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3929 	if (VN_IS_DOOMED(vp)) {
3930 		vdropl_final(vp);
3931 		return;
3932 	}
3933 
3934 	vfs_freevnodes_inc();
3935 	if (vp->v_mflag & VMP_LAZYLIST) {
3936 		vunlazy(vp);
3937 	}
3938 
3939 	if (!enqueue) {
3940 		VI_UNLOCK(vp);
3941 		return;
3942 	}
3943 
3944 	/*
3945 	 * Also unlocks the interlock. We can't assert on it as we
3946 	 * released our hold and by now the vnode might have been
3947 	 * freed.
3948 	 */
3949 	vdbatch_enqueue(vp);
3950 }
3951 
3952 void
3953 vdropl(struct vnode *vp)
3954 {
3955 
3956 	vdropl_impl(vp, true);
3957 }
3958 
3959 /*
3960  * vdrop a vnode when recycling
3961  *
3962  * This is a special case routine only to be used when recycling, differs from
3963  * regular vdrop by not requeieing the vnode on LRU.
3964  *
3965  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3966  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3967  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3968  * loop which can last for as long as writes are frozen.
3969  */
3970 static void
3971 vdropl_recycle(struct vnode *vp)
3972 {
3973 
3974 	vdropl_impl(vp, false);
3975 }
3976 
3977 static void
3978 vdrop_recycle(struct vnode *vp)
3979 {
3980 
3981 	VI_LOCK(vp);
3982 	vdropl_recycle(vp);
3983 }
3984 
3985 /*
3986  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3987  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3988  */
3989 static int
3990 vinactivef(struct vnode *vp)
3991 {
3992 	struct vm_object *obj;
3993 	int error;
3994 
3995 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3996 	ASSERT_VI_LOCKED(vp, "vinactive");
3997 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3998 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3999 	vp->v_iflag |= VI_DOINGINACT;
4000 	vp->v_iflag &= ~VI_OWEINACT;
4001 	VI_UNLOCK(vp);
4002 	/*
4003 	 * Before moving off the active list, we must be sure that any
4004 	 * modified pages are converted into the vnode's dirty
4005 	 * buffers, since these will no longer be checked once the
4006 	 * vnode is on the inactive list.
4007 	 *
4008 	 * The write-out of the dirty pages is asynchronous.  At the
4009 	 * point that VOP_INACTIVE() is called, there could still be
4010 	 * pending I/O and dirty pages in the object.
4011 	 */
4012 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
4013 	    vm_object_mightbedirty(obj)) {
4014 		VM_OBJECT_WLOCK(obj);
4015 		vm_object_page_clean(obj, 0, 0, 0);
4016 		VM_OBJECT_WUNLOCK(obj);
4017 	}
4018 	error = VOP_INACTIVE(vp);
4019 	VI_LOCK(vp);
4020 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4021 	vp->v_iflag &= ~VI_DOINGINACT;
4022 	return (error);
4023 }
4024 
4025 int
4026 vinactive(struct vnode *vp)
4027 {
4028 
4029 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4030 	ASSERT_VI_LOCKED(vp, "vinactive");
4031 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4032 
4033 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4034 		return (0);
4035 	if (vp->v_iflag & VI_DOINGINACT)
4036 		return (0);
4037 	if (vp->v_usecount > 0) {
4038 		vp->v_iflag &= ~VI_OWEINACT;
4039 		return (0);
4040 	}
4041 	return (vinactivef(vp));
4042 }
4043 
4044 /*
4045  * Remove any vnodes in the vnode table belonging to mount point mp.
4046  *
4047  * If FORCECLOSE is not specified, there should not be any active ones,
4048  * return error if any are found (nb: this is a user error, not a
4049  * system error). If FORCECLOSE is specified, detach any active vnodes
4050  * that are found.
4051  *
4052  * If WRITECLOSE is set, only flush out regular file vnodes open for
4053  * writing.
4054  *
4055  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4056  *
4057  * `rootrefs' specifies the base reference count for the root vnode
4058  * of this filesystem. The root vnode is considered busy if its
4059  * v_usecount exceeds this value. On a successful return, vflush(, td)
4060  * will call vrele() on the root vnode exactly rootrefs times.
4061  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4062  * be zero.
4063  */
4064 #ifdef DIAGNOSTIC
4065 static int busyprt = 0;		/* print out busy vnodes */
4066 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4067 #endif
4068 
4069 int
4070 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4071 {
4072 	struct vnode *vp, *mvp, *rootvp = NULL;
4073 	struct vattr vattr;
4074 	int busy = 0, error;
4075 
4076 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4077 	    rootrefs, flags);
4078 	if (rootrefs > 0) {
4079 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4080 		    ("vflush: bad args"));
4081 		/*
4082 		 * Get the filesystem root vnode. We can vput() it
4083 		 * immediately, since with rootrefs > 0, it won't go away.
4084 		 */
4085 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4086 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4087 			    __func__, error);
4088 			return (error);
4089 		}
4090 		vput(rootvp);
4091 	}
4092 loop:
4093 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4094 		vholdl(vp);
4095 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4096 		if (error) {
4097 			vdrop(vp);
4098 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4099 			goto loop;
4100 		}
4101 		/*
4102 		 * Skip over a vnodes marked VV_SYSTEM.
4103 		 */
4104 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4105 			VOP_UNLOCK(vp);
4106 			vdrop(vp);
4107 			continue;
4108 		}
4109 		/*
4110 		 * If WRITECLOSE is set, flush out unlinked but still open
4111 		 * files (even if open only for reading) and regular file
4112 		 * vnodes open for writing.
4113 		 */
4114 		if (flags & WRITECLOSE) {
4115 			if (vp->v_object != NULL) {
4116 				VM_OBJECT_WLOCK(vp->v_object);
4117 				vm_object_page_clean(vp->v_object, 0, 0, 0);
4118 				VM_OBJECT_WUNLOCK(vp->v_object);
4119 			}
4120 			do {
4121 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4122 			} while (error == ERELOOKUP);
4123 			if (error != 0) {
4124 				VOP_UNLOCK(vp);
4125 				vdrop(vp);
4126 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4127 				return (error);
4128 			}
4129 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4130 			VI_LOCK(vp);
4131 
4132 			if ((vp->v_type == VNON ||
4133 			    (error == 0 && vattr.va_nlink > 0)) &&
4134 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4135 				VOP_UNLOCK(vp);
4136 				vdropl(vp);
4137 				continue;
4138 			}
4139 		} else
4140 			VI_LOCK(vp);
4141 		/*
4142 		 * With v_usecount == 0, all we need to do is clear out the
4143 		 * vnode data structures and we are done.
4144 		 *
4145 		 * If FORCECLOSE is set, forcibly close the vnode.
4146 		 */
4147 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4148 			vgonel(vp);
4149 		} else {
4150 			busy++;
4151 #ifdef DIAGNOSTIC
4152 			if (busyprt)
4153 				vn_printf(vp, "vflush: busy vnode ");
4154 #endif
4155 		}
4156 		VOP_UNLOCK(vp);
4157 		vdropl(vp);
4158 	}
4159 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4160 		/*
4161 		 * If just the root vnode is busy, and if its refcount
4162 		 * is equal to `rootrefs', then go ahead and kill it.
4163 		 */
4164 		VI_LOCK(rootvp);
4165 		KASSERT(busy > 0, ("vflush: not busy"));
4166 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4167 		    ("vflush: usecount %d < rootrefs %d",
4168 		     rootvp->v_usecount, rootrefs));
4169 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4170 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4171 			vgone(rootvp);
4172 			VOP_UNLOCK(rootvp);
4173 			busy = 0;
4174 		} else
4175 			VI_UNLOCK(rootvp);
4176 	}
4177 	if (busy) {
4178 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4179 		    busy);
4180 		return (EBUSY);
4181 	}
4182 	for (; rootrefs > 0; rootrefs--)
4183 		vrele(rootvp);
4184 	return (0);
4185 }
4186 
4187 /*
4188  * Recycle an unused vnode.
4189  */
4190 int
4191 vrecycle(struct vnode *vp)
4192 {
4193 	int recycled;
4194 
4195 	VI_LOCK(vp);
4196 	recycled = vrecyclel(vp);
4197 	VI_UNLOCK(vp);
4198 	return (recycled);
4199 }
4200 
4201 /*
4202  * vrecycle, with the vp interlock held.
4203  */
4204 int
4205 vrecyclel(struct vnode *vp)
4206 {
4207 	int recycled;
4208 
4209 	ASSERT_VOP_ELOCKED(vp, __func__);
4210 	ASSERT_VI_LOCKED(vp, __func__);
4211 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4212 	recycled = 0;
4213 	if (vp->v_usecount == 0) {
4214 		recycled = 1;
4215 		vgonel(vp);
4216 	}
4217 	return (recycled);
4218 }
4219 
4220 /*
4221  * Eliminate all activity associated with a vnode
4222  * in preparation for reuse.
4223  */
4224 void
4225 vgone(struct vnode *vp)
4226 {
4227 	VI_LOCK(vp);
4228 	vgonel(vp);
4229 	VI_UNLOCK(vp);
4230 }
4231 
4232 /*
4233  * Notify upper mounts about reclaimed or unlinked vnode.
4234  */
4235 void
4236 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4237 {
4238 	struct mount *mp;
4239 	struct mount_upper_node *ump;
4240 
4241 	mp = atomic_load_ptr(&vp->v_mount);
4242 	if (mp == NULL)
4243 		return;
4244 	if (TAILQ_EMPTY(&mp->mnt_notify))
4245 		return;
4246 
4247 	MNT_ILOCK(mp);
4248 	mp->mnt_upper_pending++;
4249 	KASSERT(mp->mnt_upper_pending > 0,
4250 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4251 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4252 		MNT_IUNLOCK(mp);
4253 		switch (event) {
4254 		case VFS_NOTIFY_UPPER_RECLAIM:
4255 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4256 			break;
4257 		case VFS_NOTIFY_UPPER_UNLINK:
4258 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4259 			break;
4260 		}
4261 		MNT_ILOCK(mp);
4262 	}
4263 	mp->mnt_upper_pending--;
4264 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4265 	    mp->mnt_upper_pending == 0) {
4266 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4267 		wakeup(&mp->mnt_uppers);
4268 	}
4269 	MNT_IUNLOCK(mp);
4270 }
4271 
4272 /*
4273  * vgone, with the vp interlock held.
4274  */
4275 static void
4276 vgonel(struct vnode *vp)
4277 {
4278 	struct thread *td;
4279 	struct mount *mp;
4280 	vm_object_t object;
4281 	bool active, doinginact, oweinact;
4282 
4283 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4284 	ASSERT_VI_LOCKED(vp, "vgonel");
4285 	VNASSERT(vp->v_holdcnt, vp,
4286 	    ("vgonel: vp %p has no reference.", vp));
4287 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4288 	td = curthread;
4289 
4290 	/*
4291 	 * Don't vgonel if we're already doomed.
4292 	 */
4293 	if (VN_IS_DOOMED(vp)) {
4294 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4295 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4296 		return;
4297 	}
4298 	/*
4299 	 * Paired with freevnode.
4300 	 */
4301 	vn_seqc_write_begin_locked(vp);
4302 	vunlazy_gone(vp);
4303 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4304 	vn_set_state(vp, VSTATE_DESTROYING);
4305 
4306 	/*
4307 	 * Check to see if the vnode is in use.  If so, we have to
4308 	 * call VOP_CLOSE() and VOP_INACTIVE().
4309 	 *
4310 	 * It could be that VOP_INACTIVE() requested reclamation, in
4311 	 * which case we should avoid recursion, so check
4312 	 * VI_DOINGINACT.  This is not precise but good enough.
4313 	 */
4314 	active = vp->v_usecount > 0;
4315 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4316 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4317 
4318 	/*
4319 	 * If we need to do inactive VI_OWEINACT will be set.
4320 	 */
4321 	if (vp->v_iflag & VI_DEFINACT) {
4322 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4323 		vp->v_iflag &= ~VI_DEFINACT;
4324 		vdropl(vp);
4325 	} else {
4326 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4327 		VI_UNLOCK(vp);
4328 	}
4329 	cache_purge_vgone(vp);
4330 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4331 
4332 	/*
4333 	 * If purging an active vnode, it must be closed and
4334 	 * deactivated before being reclaimed.
4335 	 */
4336 	if (active)
4337 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4338 	if (!doinginact) {
4339 		do {
4340 			if (oweinact || active) {
4341 				VI_LOCK(vp);
4342 				vinactivef(vp);
4343 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4344 				VI_UNLOCK(vp);
4345 			}
4346 		} while (oweinact);
4347 	}
4348 	if (vp->v_type == VSOCK)
4349 		vfs_unp_reclaim(vp);
4350 
4351 	/*
4352 	 * Clean out any buffers associated with the vnode.
4353 	 * If the flush fails, just toss the buffers.
4354 	 */
4355 	mp = NULL;
4356 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4357 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4358 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4359 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4360 			;
4361 	}
4362 
4363 	BO_LOCK(&vp->v_bufobj);
4364 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4365 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4366 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4367 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4368 	    ("vp %p bufobj not invalidated", vp));
4369 
4370 	/*
4371 	 * For VMIO bufobj, BO_DEAD is set later, or in
4372 	 * vm_object_terminate() after the object's page queue is
4373 	 * flushed.
4374 	 */
4375 	object = vp->v_bufobj.bo_object;
4376 	if (object == NULL)
4377 		vp->v_bufobj.bo_flag |= BO_DEAD;
4378 	BO_UNLOCK(&vp->v_bufobj);
4379 
4380 	/*
4381 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4382 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4383 	 * should not touch the object borrowed from the lower vnode
4384 	 * (the handle check).
4385 	 */
4386 	if (object != NULL && object->type == OBJT_VNODE &&
4387 	    object->handle == vp)
4388 		vnode_destroy_vobject(vp);
4389 
4390 	/*
4391 	 * Reclaim the vnode.
4392 	 */
4393 	if (VOP_RECLAIM(vp))
4394 		panic("vgone: cannot reclaim");
4395 	if (mp != NULL)
4396 		vn_finished_secondary_write(mp);
4397 	VNASSERT(vp->v_object == NULL, vp,
4398 	    ("vop_reclaim left v_object vp=%p", vp));
4399 	/*
4400 	 * Clear the advisory locks and wake up waiting threads.
4401 	 */
4402 	if (vp->v_lockf != NULL) {
4403 		(void)VOP_ADVLOCKPURGE(vp);
4404 		vp->v_lockf = NULL;
4405 	}
4406 	/*
4407 	 * Delete from old mount point vnode list.
4408 	 */
4409 	if (vp->v_mount == NULL) {
4410 		VI_LOCK(vp);
4411 	} else {
4412 		delmntque(vp);
4413 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4414 	}
4415 	/*
4416 	 * Done with purge, reset to the standard lock and invalidate
4417 	 * the vnode.
4418 	 */
4419 	vp->v_vnlock = &vp->v_lock;
4420 	vp->v_op = &dead_vnodeops;
4421 	vp->v_type = VBAD;
4422 	vn_set_state(vp, VSTATE_DEAD);
4423 }
4424 
4425 /*
4426  * Print out a description of a vnode.
4427  */
4428 static const char *const vtypename[] = {
4429 	[VNON] = "VNON",
4430 	[VREG] = "VREG",
4431 	[VDIR] = "VDIR",
4432 	[VBLK] = "VBLK",
4433 	[VCHR] = "VCHR",
4434 	[VLNK] = "VLNK",
4435 	[VSOCK] = "VSOCK",
4436 	[VFIFO] = "VFIFO",
4437 	[VBAD] = "VBAD",
4438 	[VMARKER] = "VMARKER",
4439 };
4440 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4441     "vnode type name not added to vtypename");
4442 
4443 static const char *const vstatename[] = {
4444 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4445 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4446 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4447 	[VSTATE_DEAD] = "VSTATE_DEAD",
4448 };
4449 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4450     "vnode state name not added to vstatename");
4451 
4452 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4453     "new hold count flag not added to vn_printf");
4454 
4455 void
4456 vn_printf(struct vnode *vp, const char *fmt, ...)
4457 {
4458 	va_list ap;
4459 	char buf[256], buf2[16];
4460 	u_long flags;
4461 	u_int holdcnt;
4462 	short irflag;
4463 
4464 	va_start(ap, fmt);
4465 	vprintf(fmt, ap);
4466 	va_end(ap);
4467 	printf("%p: ", (void *)vp);
4468 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4469 	    vstatename[vp->v_state], vp->v_op);
4470 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4471 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4472 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4473 	    vp->v_seqc_users);
4474 	switch (vp->v_type) {
4475 	case VDIR:
4476 		printf(" mountedhere %p\n", vp->v_mountedhere);
4477 		break;
4478 	case VCHR:
4479 		printf(" rdev %p\n", vp->v_rdev);
4480 		break;
4481 	case VSOCK:
4482 		printf(" socket %p\n", vp->v_unpcb);
4483 		break;
4484 	case VFIFO:
4485 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4486 		break;
4487 	default:
4488 		printf("\n");
4489 		break;
4490 	}
4491 	buf[0] = '\0';
4492 	buf[1] = '\0';
4493 	if (holdcnt & VHOLD_NO_SMR)
4494 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4495 	printf("    hold count flags (%s)\n", buf + 1);
4496 
4497 	buf[0] = '\0';
4498 	buf[1] = '\0';
4499 	irflag = vn_irflag_read(vp);
4500 	if (irflag & VIRF_DOOMED)
4501 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4502 	if (irflag & VIRF_PGREAD)
4503 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4504 	if (irflag & VIRF_MOUNTPOINT)
4505 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4506 	if (irflag & VIRF_TEXT_REF)
4507 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4508 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4509 	if (flags != 0) {
4510 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4511 		strlcat(buf, buf2, sizeof(buf));
4512 	}
4513 	if (vp->v_vflag & VV_ROOT)
4514 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4515 	if (vp->v_vflag & VV_ISTTY)
4516 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4517 	if (vp->v_vflag & VV_NOSYNC)
4518 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4519 	if (vp->v_vflag & VV_ETERNALDEV)
4520 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4521 	if (vp->v_vflag & VV_CACHEDLABEL)
4522 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4523 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4524 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4525 	if (vp->v_vflag & VV_COPYONWRITE)
4526 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4527 	if (vp->v_vflag & VV_SYSTEM)
4528 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4529 	if (vp->v_vflag & VV_PROCDEP)
4530 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4531 	if (vp->v_vflag & VV_DELETED)
4532 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4533 	if (vp->v_vflag & VV_MD)
4534 		strlcat(buf, "|VV_MD", sizeof(buf));
4535 	if (vp->v_vflag & VV_FORCEINSMQ)
4536 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4537 	if (vp->v_vflag & VV_READLINK)
4538 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4539 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4540 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4541 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4542 	if (flags != 0) {
4543 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4544 		strlcat(buf, buf2, sizeof(buf));
4545 	}
4546 	if (vp->v_iflag & VI_MOUNT)
4547 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4548 	if (vp->v_iflag & VI_DOINGINACT)
4549 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4550 	if (vp->v_iflag & VI_OWEINACT)
4551 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4552 	if (vp->v_iflag & VI_DEFINACT)
4553 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4554 	if (vp->v_iflag & VI_FOPENING)
4555 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4556 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4557 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4558 	if (flags != 0) {
4559 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4560 		strlcat(buf, buf2, sizeof(buf));
4561 	}
4562 	if (vp->v_mflag & VMP_LAZYLIST)
4563 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4564 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4565 	if (flags != 0) {
4566 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4567 		strlcat(buf, buf2, sizeof(buf));
4568 	}
4569 	printf("    flags (%s)", buf + 1);
4570 	if (mtx_owned(VI_MTX(vp)))
4571 		printf(" VI_LOCKed");
4572 	printf("\n");
4573 	if (vp->v_object != NULL)
4574 		printf("    v_object %p ref %d pages %d "
4575 		    "cleanbuf %d dirtybuf %d\n",
4576 		    vp->v_object, vp->v_object->ref_count,
4577 		    vp->v_object->resident_page_count,
4578 		    vp->v_bufobj.bo_clean.bv_cnt,
4579 		    vp->v_bufobj.bo_dirty.bv_cnt);
4580 	printf("    ");
4581 	lockmgr_printinfo(vp->v_vnlock);
4582 	if (vp->v_data != NULL)
4583 		VOP_PRINT(vp);
4584 }
4585 
4586 #ifdef DDB
4587 /*
4588  * List all of the locked vnodes in the system.
4589  * Called when debugging the kernel.
4590  */
4591 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4592 {
4593 	struct mount *mp;
4594 	struct vnode *vp;
4595 
4596 	/*
4597 	 * Note: because this is DDB, we can't obey the locking semantics
4598 	 * for these structures, which means we could catch an inconsistent
4599 	 * state and dereference a nasty pointer.  Not much to be done
4600 	 * about that.
4601 	 */
4602 	db_printf("Locked vnodes\n");
4603 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4604 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4605 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4606 				vn_printf(vp, "vnode ");
4607 		}
4608 	}
4609 }
4610 
4611 /*
4612  * Show details about the given vnode.
4613  */
4614 DB_SHOW_COMMAND(vnode, db_show_vnode)
4615 {
4616 	struct vnode *vp;
4617 
4618 	if (!have_addr)
4619 		return;
4620 	vp = (struct vnode *)addr;
4621 	vn_printf(vp, "vnode ");
4622 }
4623 
4624 /*
4625  * Show details about the given mount point.
4626  */
4627 DB_SHOW_COMMAND(mount, db_show_mount)
4628 {
4629 	struct mount *mp;
4630 	struct vfsopt *opt;
4631 	struct statfs *sp;
4632 	struct vnode *vp;
4633 	char buf[512];
4634 	uint64_t mflags;
4635 	u_int flags;
4636 
4637 	if (!have_addr) {
4638 		/* No address given, print short info about all mount points. */
4639 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4640 			db_printf("%p %s on %s (%s)\n", mp,
4641 			    mp->mnt_stat.f_mntfromname,
4642 			    mp->mnt_stat.f_mntonname,
4643 			    mp->mnt_stat.f_fstypename);
4644 			if (db_pager_quit)
4645 				break;
4646 		}
4647 		db_printf("\nMore info: show mount <addr>\n");
4648 		return;
4649 	}
4650 
4651 	mp = (struct mount *)addr;
4652 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4653 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4654 
4655 	buf[0] = '\0';
4656 	mflags = mp->mnt_flag;
4657 #define	MNT_FLAG(flag)	do {						\
4658 	if (mflags & (flag)) {						\
4659 		if (buf[0] != '\0')					\
4660 			strlcat(buf, ", ", sizeof(buf));		\
4661 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4662 		mflags &= ~(flag);					\
4663 	}								\
4664 } while (0)
4665 	MNT_FLAG(MNT_RDONLY);
4666 	MNT_FLAG(MNT_SYNCHRONOUS);
4667 	MNT_FLAG(MNT_NOEXEC);
4668 	MNT_FLAG(MNT_NOSUID);
4669 	MNT_FLAG(MNT_NFS4ACLS);
4670 	MNT_FLAG(MNT_UNION);
4671 	MNT_FLAG(MNT_ASYNC);
4672 	MNT_FLAG(MNT_SUIDDIR);
4673 	MNT_FLAG(MNT_SOFTDEP);
4674 	MNT_FLAG(MNT_NOSYMFOLLOW);
4675 	MNT_FLAG(MNT_GJOURNAL);
4676 	MNT_FLAG(MNT_MULTILABEL);
4677 	MNT_FLAG(MNT_ACLS);
4678 	MNT_FLAG(MNT_NOATIME);
4679 	MNT_FLAG(MNT_NOCLUSTERR);
4680 	MNT_FLAG(MNT_NOCLUSTERW);
4681 	MNT_FLAG(MNT_SUJ);
4682 	MNT_FLAG(MNT_EXRDONLY);
4683 	MNT_FLAG(MNT_EXPORTED);
4684 	MNT_FLAG(MNT_DEFEXPORTED);
4685 	MNT_FLAG(MNT_EXPORTANON);
4686 	MNT_FLAG(MNT_EXKERB);
4687 	MNT_FLAG(MNT_EXPUBLIC);
4688 	MNT_FLAG(MNT_LOCAL);
4689 	MNT_FLAG(MNT_QUOTA);
4690 	MNT_FLAG(MNT_ROOTFS);
4691 	MNT_FLAG(MNT_USER);
4692 	MNT_FLAG(MNT_IGNORE);
4693 	MNT_FLAG(MNT_UPDATE);
4694 	MNT_FLAG(MNT_DELEXPORT);
4695 	MNT_FLAG(MNT_RELOAD);
4696 	MNT_FLAG(MNT_FORCE);
4697 	MNT_FLAG(MNT_SNAPSHOT);
4698 	MNT_FLAG(MNT_BYFSID);
4699 #undef MNT_FLAG
4700 	if (mflags != 0) {
4701 		if (buf[0] != '\0')
4702 			strlcat(buf, ", ", sizeof(buf));
4703 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4704 		    "0x%016jx", mflags);
4705 	}
4706 	db_printf("    mnt_flag = %s\n", buf);
4707 
4708 	buf[0] = '\0';
4709 	flags = mp->mnt_kern_flag;
4710 #define	MNT_KERN_FLAG(flag)	do {					\
4711 	if (flags & (flag)) {						\
4712 		if (buf[0] != '\0')					\
4713 			strlcat(buf, ", ", sizeof(buf));		\
4714 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4715 		flags &= ~(flag);					\
4716 	}								\
4717 } while (0)
4718 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4719 	MNT_KERN_FLAG(MNTK_ASYNC);
4720 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4721 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4722 	MNT_KERN_FLAG(MNTK_DRAINING);
4723 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4724 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4725 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4726 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4727 	MNT_KERN_FLAG(MNTK_RECURSE);
4728 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4729 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4730 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4731 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4732 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4733 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4734 	MNT_KERN_FLAG(MNTK_NOASYNC);
4735 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4736 	MNT_KERN_FLAG(MNTK_MWAIT);
4737 	MNT_KERN_FLAG(MNTK_SUSPEND);
4738 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4739 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4740 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4741 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4742 #undef MNT_KERN_FLAG
4743 	if (flags != 0) {
4744 		if (buf[0] != '\0')
4745 			strlcat(buf, ", ", sizeof(buf));
4746 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4747 		    "0x%08x", flags);
4748 	}
4749 	db_printf("    mnt_kern_flag = %s\n", buf);
4750 
4751 	db_printf("    mnt_opt = ");
4752 	opt = TAILQ_FIRST(mp->mnt_opt);
4753 	if (opt != NULL) {
4754 		db_printf("%s", opt->name);
4755 		opt = TAILQ_NEXT(opt, link);
4756 		while (opt != NULL) {
4757 			db_printf(", %s", opt->name);
4758 			opt = TAILQ_NEXT(opt, link);
4759 		}
4760 	}
4761 	db_printf("\n");
4762 
4763 	sp = &mp->mnt_stat;
4764 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4765 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4766 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4767 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4768 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4769 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4770 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4771 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4772 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4773 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4774 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4775 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4776 
4777 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4778 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4779 	if (jailed(mp->mnt_cred))
4780 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4781 	db_printf(" }\n");
4782 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4783 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4784 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4785 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4786 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4787 	    mp->mnt_lazyvnodelistsize);
4788 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4789 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4790 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4791 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4792 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4793 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4794 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4795 	db_printf("    mnt_secondary_accwrites = %d\n",
4796 	    mp->mnt_secondary_accwrites);
4797 	db_printf("    mnt_gjprovider = %s\n",
4798 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4799 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4800 
4801 	db_printf("\n\nList of active vnodes\n");
4802 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4803 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4804 			vn_printf(vp, "vnode ");
4805 			if (db_pager_quit)
4806 				break;
4807 		}
4808 	}
4809 	db_printf("\n\nList of inactive vnodes\n");
4810 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4811 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4812 			vn_printf(vp, "vnode ");
4813 			if (db_pager_quit)
4814 				break;
4815 		}
4816 	}
4817 }
4818 #endif	/* DDB */
4819 
4820 /*
4821  * Fill in a struct xvfsconf based on a struct vfsconf.
4822  */
4823 static int
4824 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4825 {
4826 	struct xvfsconf xvfsp;
4827 
4828 	bzero(&xvfsp, sizeof(xvfsp));
4829 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4830 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4831 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4832 	xvfsp.vfc_flags = vfsp->vfc_flags;
4833 	/*
4834 	 * These are unused in userland, we keep them
4835 	 * to not break binary compatibility.
4836 	 */
4837 	xvfsp.vfc_vfsops = NULL;
4838 	xvfsp.vfc_next = NULL;
4839 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4840 }
4841 
4842 #ifdef COMPAT_FREEBSD32
4843 struct xvfsconf32 {
4844 	uint32_t	vfc_vfsops;
4845 	char		vfc_name[MFSNAMELEN];
4846 	int32_t		vfc_typenum;
4847 	int32_t		vfc_refcount;
4848 	int32_t		vfc_flags;
4849 	uint32_t	vfc_next;
4850 };
4851 
4852 static int
4853 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4854 {
4855 	struct xvfsconf32 xvfsp;
4856 
4857 	bzero(&xvfsp, sizeof(xvfsp));
4858 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4859 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4860 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4861 	xvfsp.vfc_flags = vfsp->vfc_flags;
4862 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4863 }
4864 #endif
4865 
4866 /*
4867  * Top level filesystem related information gathering.
4868  */
4869 static int
4870 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4871 {
4872 	struct vfsconf *vfsp;
4873 	int error;
4874 
4875 	error = 0;
4876 	vfsconf_slock();
4877 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4878 #ifdef COMPAT_FREEBSD32
4879 		if (req->flags & SCTL_MASK32)
4880 			error = vfsconf2x32(req, vfsp);
4881 		else
4882 #endif
4883 			error = vfsconf2x(req, vfsp);
4884 		if (error)
4885 			break;
4886 	}
4887 	vfsconf_sunlock();
4888 	return (error);
4889 }
4890 
4891 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4892     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4893     "S,xvfsconf", "List of all configured filesystems");
4894 
4895 #ifndef BURN_BRIDGES
4896 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4897 
4898 static int
4899 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4900 {
4901 	int *name = (int *)arg1 - 1;	/* XXX */
4902 	u_int namelen = arg2 + 1;	/* XXX */
4903 	struct vfsconf *vfsp;
4904 
4905 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4906 	    "please rebuild world\n");
4907 
4908 #if 1 || defined(COMPAT_PRELITE2)
4909 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4910 	if (namelen == 1)
4911 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4912 #endif
4913 
4914 	switch (name[1]) {
4915 	case VFS_MAXTYPENUM:
4916 		if (namelen != 2)
4917 			return (ENOTDIR);
4918 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4919 	case VFS_CONF:
4920 		if (namelen != 3)
4921 			return (ENOTDIR);	/* overloaded */
4922 		vfsconf_slock();
4923 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4924 			if (vfsp->vfc_typenum == name[2])
4925 				break;
4926 		}
4927 		vfsconf_sunlock();
4928 		if (vfsp == NULL)
4929 			return (EOPNOTSUPP);
4930 #ifdef COMPAT_FREEBSD32
4931 		if (req->flags & SCTL_MASK32)
4932 			return (vfsconf2x32(req, vfsp));
4933 		else
4934 #endif
4935 			return (vfsconf2x(req, vfsp));
4936 	}
4937 	return (EOPNOTSUPP);
4938 }
4939 
4940 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4941     CTLFLAG_MPSAFE, vfs_sysctl,
4942     "Generic filesystem");
4943 
4944 #if 1 || defined(COMPAT_PRELITE2)
4945 
4946 static int
4947 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4948 {
4949 	int error;
4950 	struct vfsconf *vfsp;
4951 	struct ovfsconf ovfs;
4952 
4953 	vfsconf_slock();
4954 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4955 		bzero(&ovfs, sizeof(ovfs));
4956 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4957 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4958 		ovfs.vfc_index = vfsp->vfc_typenum;
4959 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4960 		ovfs.vfc_flags = vfsp->vfc_flags;
4961 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4962 		if (error != 0) {
4963 			vfsconf_sunlock();
4964 			return (error);
4965 		}
4966 	}
4967 	vfsconf_sunlock();
4968 	return (0);
4969 }
4970 
4971 #endif /* 1 || COMPAT_PRELITE2 */
4972 #endif /* !BURN_BRIDGES */
4973 
4974 static void
4975 unmount_or_warn(struct mount *mp)
4976 {
4977 	int error;
4978 
4979 	error = dounmount(mp, MNT_FORCE, curthread);
4980 	if (error != 0) {
4981 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4982 		if (error == EBUSY)
4983 			printf("BUSY)\n");
4984 		else
4985 			printf("%d)\n", error);
4986 	}
4987 }
4988 
4989 /*
4990  * Unmount all filesystems. The list is traversed in reverse order
4991  * of mounting to avoid dependencies.
4992  */
4993 void
4994 vfs_unmountall(void)
4995 {
4996 	struct mount *mp, *tmp;
4997 
4998 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4999 
5000 	/*
5001 	 * Since this only runs when rebooting, it is not interlocked.
5002 	 */
5003 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5004 		vfs_ref(mp);
5005 
5006 		/*
5007 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5008 		 * unmount of the latter.
5009 		 */
5010 		if (mp == rootdevmp)
5011 			continue;
5012 
5013 		unmount_or_warn(mp);
5014 	}
5015 
5016 	if (rootdevmp != NULL)
5017 		unmount_or_warn(rootdevmp);
5018 }
5019 
5020 static void
5021 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5022 {
5023 
5024 	ASSERT_VI_LOCKED(vp, __func__);
5025 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5026 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5027 		vdropl(vp);
5028 		return;
5029 	}
5030 	if (vn_lock(vp, lkflags) == 0) {
5031 		VI_LOCK(vp);
5032 		vinactive(vp);
5033 		VOP_UNLOCK(vp);
5034 		vdropl(vp);
5035 		return;
5036 	}
5037 	vdefer_inactive_unlocked(vp);
5038 }
5039 
5040 static int
5041 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5042 {
5043 
5044 	return (vp->v_iflag & VI_DEFINACT);
5045 }
5046 
5047 static void __noinline
5048 vfs_periodic_inactive(struct mount *mp, int flags)
5049 {
5050 	struct vnode *vp, *mvp;
5051 	int lkflags;
5052 
5053 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5054 	if (flags != MNT_WAIT)
5055 		lkflags |= LK_NOWAIT;
5056 
5057 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5058 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5059 			VI_UNLOCK(vp);
5060 			continue;
5061 		}
5062 		vp->v_iflag &= ~VI_DEFINACT;
5063 		vfs_deferred_inactive(vp, lkflags);
5064 	}
5065 }
5066 
5067 static inline bool
5068 vfs_want_msync(struct vnode *vp)
5069 {
5070 	struct vm_object *obj;
5071 
5072 	/*
5073 	 * This test may be performed without any locks held.
5074 	 * We rely on vm_object's type stability.
5075 	 */
5076 	if (vp->v_vflag & VV_NOSYNC)
5077 		return (false);
5078 	obj = vp->v_object;
5079 	return (obj != NULL && vm_object_mightbedirty(obj));
5080 }
5081 
5082 static int
5083 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5084 {
5085 
5086 	if (vp->v_vflag & VV_NOSYNC)
5087 		return (false);
5088 	if (vp->v_iflag & VI_DEFINACT)
5089 		return (true);
5090 	return (vfs_want_msync(vp));
5091 }
5092 
5093 static void __noinline
5094 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5095 {
5096 	struct vnode *vp, *mvp;
5097 	struct vm_object *obj;
5098 	int lkflags, objflags;
5099 	bool seen_defer;
5100 
5101 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5102 	if (flags != MNT_WAIT) {
5103 		lkflags |= LK_NOWAIT;
5104 		objflags = OBJPC_NOSYNC;
5105 	} else {
5106 		objflags = OBJPC_SYNC;
5107 	}
5108 
5109 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5110 		seen_defer = false;
5111 		if (vp->v_iflag & VI_DEFINACT) {
5112 			vp->v_iflag &= ~VI_DEFINACT;
5113 			seen_defer = true;
5114 		}
5115 		if (!vfs_want_msync(vp)) {
5116 			if (seen_defer)
5117 				vfs_deferred_inactive(vp, lkflags);
5118 			else
5119 				VI_UNLOCK(vp);
5120 			continue;
5121 		}
5122 		if (vget(vp, lkflags) == 0) {
5123 			obj = vp->v_object;
5124 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
5125 				VM_OBJECT_WLOCK(obj);
5126 				vm_object_page_clean(obj, 0, 0, objflags);
5127 				VM_OBJECT_WUNLOCK(obj);
5128 			}
5129 			vput(vp);
5130 			if (seen_defer)
5131 				vdrop(vp);
5132 		} else {
5133 			if (seen_defer)
5134 				vdefer_inactive_unlocked(vp);
5135 		}
5136 	}
5137 }
5138 
5139 void
5140 vfs_periodic(struct mount *mp, int flags)
5141 {
5142 
5143 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5144 
5145 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5146 		vfs_periodic_inactive(mp, flags);
5147 	else
5148 		vfs_periodic_msync_inactive(mp, flags);
5149 }
5150 
5151 static void
5152 destroy_vpollinfo_free(struct vpollinfo *vi)
5153 {
5154 
5155 	knlist_destroy(&vi->vpi_selinfo.si_note);
5156 	mtx_destroy(&vi->vpi_lock);
5157 	free(vi, M_VNODEPOLL);
5158 }
5159 
5160 static void
5161 destroy_vpollinfo(struct vpollinfo *vi)
5162 {
5163 
5164 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5165 	seldrain(&vi->vpi_selinfo);
5166 	destroy_vpollinfo_free(vi);
5167 }
5168 
5169 /*
5170  * Initialize per-vnode helper structure to hold poll-related state.
5171  */
5172 void
5173 v_addpollinfo(struct vnode *vp)
5174 {
5175 	struct vpollinfo *vi;
5176 
5177 	if (vp->v_pollinfo != NULL)
5178 		return;
5179 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5180 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5181 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5182 	    vfs_knlunlock, vfs_knl_assert_lock);
5183 	VI_LOCK(vp);
5184 	if (vp->v_pollinfo != NULL) {
5185 		VI_UNLOCK(vp);
5186 		destroy_vpollinfo_free(vi);
5187 		return;
5188 	}
5189 	vp->v_pollinfo = vi;
5190 	VI_UNLOCK(vp);
5191 }
5192 
5193 /*
5194  * Record a process's interest in events which might happen to
5195  * a vnode.  Because poll uses the historic select-style interface
5196  * internally, this routine serves as both the ``check for any
5197  * pending events'' and the ``record my interest in future events''
5198  * functions.  (These are done together, while the lock is held,
5199  * to avoid race conditions.)
5200  */
5201 int
5202 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5203 {
5204 
5205 	v_addpollinfo(vp);
5206 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5207 	if (vp->v_pollinfo->vpi_revents & events) {
5208 		/*
5209 		 * This leaves events we are not interested
5210 		 * in available for the other process which
5211 		 * which presumably had requested them
5212 		 * (otherwise they would never have been
5213 		 * recorded).
5214 		 */
5215 		events &= vp->v_pollinfo->vpi_revents;
5216 		vp->v_pollinfo->vpi_revents &= ~events;
5217 
5218 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5219 		return (events);
5220 	}
5221 	vp->v_pollinfo->vpi_events |= events;
5222 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5223 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5224 	return (0);
5225 }
5226 
5227 /*
5228  * Routine to create and manage a filesystem syncer vnode.
5229  */
5230 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5231 static int	sync_fsync(struct  vop_fsync_args *);
5232 static int	sync_inactive(struct  vop_inactive_args *);
5233 static int	sync_reclaim(struct  vop_reclaim_args *);
5234 
5235 static struct vop_vector sync_vnodeops = {
5236 	.vop_bypass =	VOP_EOPNOTSUPP,
5237 	.vop_close =	sync_close,
5238 	.vop_fsync =	sync_fsync,
5239 	.vop_getwritemount = vop_stdgetwritemount,
5240 	.vop_inactive =	sync_inactive,
5241 	.vop_need_inactive = vop_stdneed_inactive,
5242 	.vop_reclaim =	sync_reclaim,
5243 	.vop_lock1 =	vop_stdlock,
5244 	.vop_unlock =	vop_stdunlock,
5245 	.vop_islocked =	vop_stdislocked,
5246 	.vop_fplookup_vexec = VOP_EAGAIN,
5247 	.vop_fplookup_symlink = VOP_EAGAIN,
5248 };
5249 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5250 
5251 /*
5252  * Create a new filesystem syncer vnode for the specified mount point.
5253  */
5254 void
5255 vfs_allocate_syncvnode(struct mount *mp)
5256 {
5257 	struct vnode *vp;
5258 	struct bufobj *bo;
5259 	static long start, incr, next;
5260 	int error;
5261 
5262 	/* Allocate a new vnode */
5263 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5264 	if (error != 0)
5265 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5266 	vp->v_type = VNON;
5267 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5268 	vp->v_vflag |= VV_FORCEINSMQ;
5269 	error = insmntque1(vp, mp);
5270 	if (error != 0)
5271 		panic("vfs_allocate_syncvnode: insmntque() failed");
5272 	vp->v_vflag &= ~VV_FORCEINSMQ;
5273 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5274 	VOP_UNLOCK(vp);
5275 	/*
5276 	 * Place the vnode onto the syncer worklist. We attempt to
5277 	 * scatter them about on the list so that they will go off
5278 	 * at evenly distributed times even if all the filesystems
5279 	 * are mounted at once.
5280 	 */
5281 	next += incr;
5282 	if (next == 0 || next > syncer_maxdelay) {
5283 		start /= 2;
5284 		incr /= 2;
5285 		if (start == 0) {
5286 			start = syncer_maxdelay / 2;
5287 			incr = syncer_maxdelay;
5288 		}
5289 		next = start;
5290 	}
5291 	bo = &vp->v_bufobj;
5292 	BO_LOCK(bo);
5293 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5294 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5295 	mtx_lock(&sync_mtx);
5296 	sync_vnode_count++;
5297 	if (mp->mnt_syncer == NULL) {
5298 		mp->mnt_syncer = vp;
5299 		vp = NULL;
5300 	}
5301 	mtx_unlock(&sync_mtx);
5302 	BO_UNLOCK(bo);
5303 	if (vp != NULL) {
5304 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5305 		vgone(vp);
5306 		vput(vp);
5307 	}
5308 }
5309 
5310 void
5311 vfs_deallocate_syncvnode(struct mount *mp)
5312 {
5313 	struct vnode *vp;
5314 
5315 	mtx_lock(&sync_mtx);
5316 	vp = mp->mnt_syncer;
5317 	if (vp != NULL)
5318 		mp->mnt_syncer = NULL;
5319 	mtx_unlock(&sync_mtx);
5320 	if (vp != NULL)
5321 		vrele(vp);
5322 }
5323 
5324 /*
5325  * Do a lazy sync of the filesystem.
5326  */
5327 static int
5328 sync_fsync(struct vop_fsync_args *ap)
5329 {
5330 	struct vnode *syncvp = ap->a_vp;
5331 	struct mount *mp = syncvp->v_mount;
5332 	int error, save;
5333 	struct bufobj *bo;
5334 
5335 	/*
5336 	 * We only need to do something if this is a lazy evaluation.
5337 	 */
5338 	if (ap->a_waitfor != MNT_LAZY)
5339 		return (0);
5340 
5341 	/*
5342 	 * Move ourselves to the back of the sync list.
5343 	 */
5344 	bo = &syncvp->v_bufobj;
5345 	BO_LOCK(bo);
5346 	vn_syncer_add_to_worklist(bo, syncdelay);
5347 	BO_UNLOCK(bo);
5348 
5349 	/*
5350 	 * Walk the list of vnodes pushing all that are dirty and
5351 	 * not already on the sync list.
5352 	 */
5353 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5354 		return (0);
5355 	VOP_UNLOCK(syncvp);
5356 	save = curthread_pflags_set(TDP_SYNCIO);
5357 	/*
5358 	 * The filesystem at hand may be idle with free vnodes stored in the
5359 	 * batch.  Return them instead of letting them stay there indefinitely.
5360 	 */
5361 	vfs_periodic(mp, MNT_NOWAIT);
5362 	error = VFS_SYNC(mp, MNT_LAZY);
5363 	curthread_pflags_restore(save);
5364 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5365 	vfs_unbusy(mp);
5366 	return (error);
5367 }
5368 
5369 /*
5370  * The syncer vnode is no referenced.
5371  */
5372 static int
5373 sync_inactive(struct vop_inactive_args *ap)
5374 {
5375 
5376 	vgone(ap->a_vp);
5377 	return (0);
5378 }
5379 
5380 /*
5381  * The syncer vnode is no longer needed and is being decommissioned.
5382  *
5383  * Modifications to the worklist must be protected by sync_mtx.
5384  */
5385 static int
5386 sync_reclaim(struct vop_reclaim_args *ap)
5387 {
5388 	struct vnode *vp = ap->a_vp;
5389 	struct bufobj *bo;
5390 
5391 	bo = &vp->v_bufobj;
5392 	BO_LOCK(bo);
5393 	mtx_lock(&sync_mtx);
5394 	if (vp->v_mount->mnt_syncer == vp)
5395 		vp->v_mount->mnt_syncer = NULL;
5396 	if (bo->bo_flag & BO_ONWORKLST) {
5397 		LIST_REMOVE(bo, bo_synclist);
5398 		syncer_worklist_len--;
5399 		sync_vnode_count--;
5400 		bo->bo_flag &= ~BO_ONWORKLST;
5401 	}
5402 	mtx_unlock(&sync_mtx);
5403 	BO_UNLOCK(bo);
5404 
5405 	return (0);
5406 }
5407 
5408 int
5409 vn_need_pageq_flush(struct vnode *vp)
5410 {
5411 	struct vm_object *obj;
5412 
5413 	obj = vp->v_object;
5414 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5415 	    vm_object_mightbedirty(obj));
5416 }
5417 
5418 /*
5419  * Check if vnode represents a disk device
5420  */
5421 bool
5422 vn_isdisk_error(struct vnode *vp, int *errp)
5423 {
5424 	int error;
5425 
5426 	if (vp->v_type != VCHR) {
5427 		error = ENOTBLK;
5428 		goto out;
5429 	}
5430 	error = 0;
5431 	dev_lock();
5432 	if (vp->v_rdev == NULL)
5433 		error = ENXIO;
5434 	else if (vp->v_rdev->si_devsw == NULL)
5435 		error = ENXIO;
5436 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5437 		error = ENOTBLK;
5438 	dev_unlock();
5439 out:
5440 	*errp = error;
5441 	return (error == 0);
5442 }
5443 
5444 bool
5445 vn_isdisk(struct vnode *vp)
5446 {
5447 	int error;
5448 
5449 	return (vn_isdisk_error(vp, &error));
5450 }
5451 
5452 /*
5453  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5454  * the comment above cache_fplookup for details.
5455  */
5456 int
5457 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5458 {
5459 	int error;
5460 
5461 	VFS_SMR_ASSERT_ENTERED();
5462 
5463 	/* Check the owner. */
5464 	if (cred->cr_uid == file_uid) {
5465 		if (file_mode & S_IXUSR)
5466 			return (0);
5467 		goto out_error;
5468 	}
5469 
5470 	/* Otherwise, check the groups (first match) */
5471 	if (groupmember(file_gid, cred)) {
5472 		if (file_mode & S_IXGRP)
5473 			return (0);
5474 		goto out_error;
5475 	}
5476 
5477 	/* Otherwise, check everyone else. */
5478 	if (file_mode & S_IXOTH)
5479 		return (0);
5480 out_error:
5481 	/*
5482 	 * Permission check failed, but it is possible denial will get overwritten
5483 	 * (e.g., when root is traversing through a 700 directory owned by someone
5484 	 * else).
5485 	 *
5486 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5487 	 * modules overriding this result. It's quite unclear what semantics
5488 	 * are allowed for them to operate, thus for safety we don't call them
5489 	 * from within the SMR section. This also means if any such modules
5490 	 * are present, we have to let the regular lookup decide.
5491 	 */
5492 	error = priv_check_cred_vfs_lookup_nomac(cred);
5493 	switch (error) {
5494 	case 0:
5495 		return (0);
5496 	case EAGAIN:
5497 		/*
5498 		 * MAC modules present.
5499 		 */
5500 		return (EAGAIN);
5501 	case EPERM:
5502 		return (EACCES);
5503 	default:
5504 		return (error);
5505 	}
5506 }
5507 
5508 /*
5509  * Common filesystem object access control check routine.  Accepts a
5510  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5511  * Returns 0 on success, or an errno on failure.
5512  */
5513 int
5514 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5515     accmode_t accmode, struct ucred *cred)
5516 {
5517 	accmode_t dac_granted;
5518 	accmode_t priv_granted;
5519 
5520 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5521 	    ("invalid bit in accmode"));
5522 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5523 	    ("VAPPEND without VWRITE"));
5524 
5525 	/*
5526 	 * Look for a normal, non-privileged way to access the file/directory
5527 	 * as requested.  If it exists, go with that.
5528 	 */
5529 
5530 	dac_granted = 0;
5531 
5532 	/* Check the owner. */
5533 	if (cred->cr_uid == file_uid) {
5534 		dac_granted |= VADMIN;
5535 		if (file_mode & S_IXUSR)
5536 			dac_granted |= VEXEC;
5537 		if (file_mode & S_IRUSR)
5538 			dac_granted |= VREAD;
5539 		if (file_mode & S_IWUSR)
5540 			dac_granted |= (VWRITE | VAPPEND);
5541 
5542 		if ((accmode & dac_granted) == accmode)
5543 			return (0);
5544 
5545 		goto privcheck;
5546 	}
5547 
5548 	/* Otherwise, check the groups (first match) */
5549 	if (groupmember(file_gid, cred)) {
5550 		if (file_mode & S_IXGRP)
5551 			dac_granted |= VEXEC;
5552 		if (file_mode & S_IRGRP)
5553 			dac_granted |= VREAD;
5554 		if (file_mode & S_IWGRP)
5555 			dac_granted |= (VWRITE | VAPPEND);
5556 
5557 		if ((accmode & dac_granted) == accmode)
5558 			return (0);
5559 
5560 		goto privcheck;
5561 	}
5562 
5563 	/* Otherwise, check everyone else. */
5564 	if (file_mode & S_IXOTH)
5565 		dac_granted |= VEXEC;
5566 	if (file_mode & S_IROTH)
5567 		dac_granted |= VREAD;
5568 	if (file_mode & S_IWOTH)
5569 		dac_granted |= (VWRITE | VAPPEND);
5570 	if ((accmode & dac_granted) == accmode)
5571 		return (0);
5572 
5573 privcheck:
5574 	/*
5575 	 * Build a privilege mask to determine if the set of privileges
5576 	 * satisfies the requirements when combined with the granted mask
5577 	 * from above.  For each privilege, if the privilege is required,
5578 	 * bitwise or the request type onto the priv_granted mask.
5579 	 */
5580 	priv_granted = 0;
5581 
5582 	if (type == VDIR) {
5583 		/*
5584 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5585 		 * requests, instead of PRIV_VFS_EXEC.
5586 		 */
5587 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5588 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5589 			priv_granted |= VEXEC;
5590 	} else {
5591 		/*
5592 		 * Ensure that at least one execute bit is on. Otherwise,
5593 		 * a privileged user will always succeed, and we don't want
5594 		 * this to happen unless the file really is executable.
5595 		 */
5596 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5597 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5598 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5599 			priv_granted |= VEXEC;
5600 	}
5601 
5602 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5603 	    !priv_check_cred(cred, PRIV_VFS_READ))
5604 		priv_granted |= VREAD;
5605 
5606 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5607 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5608 		priv_granted |= (VWRITE | VAPPEND);
5609 
5610 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5611 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5612 		priv_granted |= VADMIN;
5613 
5614 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5615 		return (0);
5616 	}
5617 
5618 	return ((accmode & VADMIN) ? EPERM : EACCES);
5619 }
5620 
5621 /*
5622  * Credential check based on process requesting service, and per-attribute
5623  * permissions.
5624  */
5625 int
5626 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5627     struct thread *td, accmode_t accmode)
5628 {
5629 
5630 	/*
5631 	 * Kernel-invoked always succeeds.
5632 	 */
5633 	if (cred == NOCRED)
5634 		return (0);
5635 
5636 	/*
5637 	 * Do not allow privileged processes in jail to directly manipulate
5638 	 * system attributes.
5639 	 */
5640 	switch (attrnamespace) {
5641 	case EXTATTR_NAMESPACE_SYSTEM:
5642 		/* Potentially should be: return (EPERM); */
5643 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5644 	case EXTATTR_NAMESPACE_USER:
5645 		return (VOP_ACCESS(vp, accmode, cred, td));
5646 	default:
5647 		return (EPERM);
5648 	}
5649 }
5650 
5651 #ifdef DEBUG_VFS_LOCKS
5652 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5653 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5654     "Drop into debugger on lock violation");
5655 
5656 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5657 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5658     0, "Check for interlock across VOPs");
5659 
5660 int vfs_badlock_print = 1;	/* Print lock violations. */
5661 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5662     0, "Print lock violations");
5663 
5664 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5665 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5666     0, "Print vnode details on lock violations");
5667 
5668 #ifdef KDB
5669 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5670 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5671     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5672 #endif
5673 
5674 static void
5675 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5676 {
5677 
5678 #ifdef KDB
5679 	if (vfs_badlock_backtrace)
5680 		kdb_backtrace();
5681 #endif
5682 	if (vfs_badlock_vnode)
5683 		vn_printf(vp, "vnode ");
5684 	if (vfs_badlock_print)
5685 		printf("%s: %p %s\n", str, (void *)vp, msg);
5686 	if (vfs_badlock_ddb)
5687 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5688 }
5689 
5690 void
5691 assert_vi_locked(struct vnode *vp, const char *str)
5692 {
5693 
5694 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5695 		vfs_badlock("interlock is not locked but should be", str, vp);
5696 }
5697 
5698 void
5699 assert_vi_unlocked(struct vnode *vp, const char *str)
5700 {
5701 
5702 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5703 		vfs_badlock("interlock is locked but should not be", str, vp);
5704 }
5705 
5706 void
5707 assert_vop_locked(struct vnode *vp, const char *str)
5708 {
5709 	if (KERNEL_PANICKED() || vp == NULL)
5710 		return;
5711 
5712 #ifdef WITNESS
5713 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5714 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5715 #else
5716 	int locked = VOP_ISLOCKED(vp);
5717 	if (locked == 0 || locked == LK_EXCLOTHER)
5718 #endif
5719 		vfs_badlock("is not locked but should be", str, vp);
5720 }
5721 
5722 void
5723 assert_vop_unlocked(struct vnode *vp, const char *str)
5724 {
5725 	if (KERNEL_PANICKED() || vp == NULL)
5726 		return;
5727 
5728 #ifdef WITNESS
5729 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5730 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5731 #else
5732 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5733 #endif
5734 		vfs_badlock("is locked but should not be", str, vp);
5735 }
5736 
5737 void
5738 assert_vop_elocked(struct vnode *vp, const char *str)
5739 {
5740 	if (KERNEL_PANICKED() || vp == NULL)
5741 		return;
5742 
5743 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5744 		vfs_badlock("is not exclusive locked but should be", str, vp);
5745 }
5746 #endif /* DEBUG_VFS_LOCKS */
5747 
5748 void
5749 vop_rename_fail(struct vop_rename_args *ap)
5750 {
5751 
5752 	if (ap->a_tvp != NULL)
5753 		vput(ap->a_tvp);
5754 	if (ap->a_tdvp == ap->a_tvp)
5755 		vrele(ap->a_tdvp);
5756 	else
5757 		vput(ap->a_tdvp);
5758 	vrele(ap->a_fdvp);
5759 	vrele(ap->a_fvp);
5760 }
5761 
5762 void
5763 vop_rename_pre(void *ap)
5764 {
5765 	struct vop_rename_args *a = ap;
5766 
5767 #ifdef DEBUG_VFS_LOCKS
5768 	if (a->a_tvp)
5769 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5770 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5771 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5772 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5773 
5774 	/* Check the source (from). */
5775 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5776 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5777 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5778 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5779 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5780 
5781 	/* Check the target. */
5782 	if (a->a_tvp)
5783 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5784 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5785 #endif
5786 	/*
5787 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5788 	 * in vop_rename_post but that's not going to work out since some
5789 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5790 	 *
5791 	 * For now filesystems are expected to do the relevant calls after they
5792 	 * decide what vnodes to operate on.
5793 	 */
5794 	if (a->a_tdvp != a->a_fdvp)
5795 		vhold(a->a_fdvp);
5796 	if (a->a_tvp != a->a_fvp)
5797 		vhold(a->a_fvp);
5798 	vhold(a->a_tdvp);
5799 	if (a->a_tvp)
5800 		vhold(a->a_tvp);
5801 }
5802 
5803 #ifdef DEBUG_VFS_LOCKS
5804 void
5805 vop_fplookup_vexec_debugpre(void *ap __unused)
5806 {
5807 
5808 	VFS_SMR_ASSERT_ENTERED();
5809 }
5810 
5811 void
5812 vop_fplookup_vexec_debugpost(void *ap, int rc)
5813 {
5814 	struct vop_fplookup_vexec_args *a;
5815 	struct vnode *vp;
5816 
5817 	a = ap;
5818 	vp = a->a_vp;
5819 
5820 	VFS_SMR_ASSERT_ENTERED();
5821 	if (rc == EOPNOTSUPP)
5822 		VNPASS(VN_IS_DOOMED(vp), vp);
5823 }
5824 
5825 void
5826 vop_fplookup_symlink_debugpre(void *ap __unused)
5827 {
5828 
5829 	VFS_SMR_ASSERT_ENTERED();
5830 }
5831 
5832 void
5833 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5834 {
5835 
5836 	VFS_SMR_ASSERT_ENTERED();
5837 }
5838 
5839 static void
5840 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5841 {
5842 	if (vp->v_type == VCHR)
5843 		;
5844 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5845 		ASSERT_VOP_LOCKED(vp, name);
5846 	else
5847 		ASSERT_VOP_ELOCKED(vp, name);
5848 }
5849 
5850 void
5851 vop_fsync_debugpre(void *a)
5852 {
5853 	struct vop_fsync_args *ap;
5854 
5855 	ap = a;
5856 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5857 }
5858 
5859 void
5860 vop_fsync_debugpost(void *a, int rc __unused)
5861 {
5862 	struct vop_fsync_args *ap;
5863 
5864 	ap = a;
5865 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5866 }
5867 
5868 void
5869 vop_fdatasync_debugpre(void *a)
5870 {
5871 	struct vop_fdatasync_args *ap;
5872 
5873 	ap = a;
5874 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5875 }
5876 
5877 void
5878 vop_fdatasync_debugpost(void *a, int rc __unused)
5879 {
5880 	struct vop_fdatasync_args *ap;
5881 
5882 	ap = a;
5883 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5884 }
5885 
5886 void
5887 vop_strategy_debugpre(void *ap)
5888 {
5889 	struct vop_strategy_args *a;
5890 	struct buf *bp;
5891 
5892 	a = ap;
5893 	bp = a->a_bp;
5894 
5895 	/*
5896 	 * Cluster ops lock their component buffers but not the IO container.
5897 	 */
5898 	if ((bp->b_flags & B_CLUSTER) != 0)
5899 		return;
5900 
5901 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5902 		if (vfs_badlock_print)
5903 			printf(
5904 			    "VOP_STRATEGY: bp is not locked but should be\n");
5905 		if (vfs_badlock_ddb)
5906 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5907 	}
5908 }
5909 
5910 void
5911 vop_lock_debugpre(void *ap)
5912 {
5913 	struct vop_lock1_args *a = ap;
5914 
5915 	if ((a->a_flags & LK_INTERLOCK) == 0)
5916 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5917 	else
5918 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5919 }
5920 
5921 void
5922 vop_lock_debugpost(void *ap, int rc)
5923 {
5924 	struct vop_lock1_args *a = ap;
5925 
5926 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5927 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5928 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5929 }
5930 
5931 void
5932 vop_unlock_debugpre(void *ap)
5933 {
5934 	struct vop_unlock_args *a = ap;
5935 	struct vnode *vp = a->a_vp;
5936 
5937 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5938 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5939 }
5940 
5941 void
5942 vop_need_inactive_debugpre(void *ap)
5943 {
5944 	struct vop_need_inactive_args *a = ap;
5945 
5946 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5947 }
5948 
5949 void
5950 vop_need_inactive_debugpost(void *ap, int rc)
5951 {
5952 	struct vop_need_inactive_args *a = ap;
5953 
5954 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5955 }
5956 #endif
5957 
5958 void
5959 vop_create_pre(void *ap)
5960 {
5961 	struct vop_create_args *a;
5962 	struct vnode *dvp;
5963 
5964 	a = ap;
5965 	dvp = a->a_dvp;
5966 	vn_seqc_write_begin(dvp);
5967 }
5968 
5969 void
5970 vop_create_post(void *ap, int rc)
5971 {
5972 	struct vop_create_args *a;
5973 	struct vnode *dvp;
5974 
5975 	a = ap;
5976 	dvp = a->a_dvp;
5977 	vn_seqc_write_end(dvp);
5978 	if (!rc)
5979 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5980 }
5981 
5982 void
5983 vop_whiteout_pre(void *ap)
5984 {
5985 	struct vop_whiteout_args *a;
5986 	struct vnode *dvp;
5987 
5988 	a = ap;
5989 	dvp = a->a_dvp;
5990 	vn_seqc_write_begin(dvp);
5991 }
5992 
5993 void
5994 vop_whiteout_post(void *ap, int rc)
5995 {
5996 	struct vop_whiteout_args *a;
5997 	struct vnode *dvp;
5998 
5999 	a = ap;
6000 	dvp = a->a_dvp;
6001 	vn_seqc_write_end(dvp);
6002 }
6003 
6004 void
6005 vop_deleteextattr_pre(void *ap)
6006 {
6007 	struct vop_deleteextattr_args *a;
6008 	struct vnode *vp;
6009 
6010 	a = ap;
6011 	vp = a->a_vp;
6012 	vn_seqc_write_begin(vp);
6013 }
6014 
6015 void
6016 vop_deleteextattr_post(void *ap, int rc)
6017 {
6018 	struct vop_deleteextattr_args *a;
6019 	struct vnode *vp;
6020 
6021 	a = ap;
6022 	vp = a->a_vp;
6023 	vn_seqc_write_end(vp);
6024 	if (!rc)
6025 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6026 }
6027 
6028 void
6029 vop_link_pre(void *ap)
6030 {
6031 	struct vop_link_args *a;
6032 	struct vnode *vp, *tdvp;
6033 
6034 	a = ap;
6035 	vp = a->a_vp;
6036 	tdvp = a->a_tdvp;
6037 	vn_seqc_write_begin(vp);
6038 	vn_seqc_write_begin(tdvp);
6039 }
6040 
6041 void
6042 vop_link_post(void *ap, int rc)
6043 {
6044 	struct vop_link_args *a;
6045 	struct vnode *vp, *tdvp;
6046 
6047 	a = ap;
6048 	vp = a->a_vp;
6049 	tdvp = a->a_tdvp;
6050 	vn_seqc_write_end(vp);
6051 	vn_seqc_write_end(tdvp);
6052 	if (!rc) {
6053 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6054 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6055 	}
6056 }
6057 
6058 void
6059 vop_mkdir_pre(void *ap)
6060 {
6061 	struct vop_mkdir_args *a;
6062 	struct vnode *dvp;
6063 
6064 	a = ap;
6065 	dvp = a->a_dvp;
6066 	vn_seqc_write_begin(dvp);
6067 }
6068 
6069 void
6070 vop_mkdir_post(void *ap, int rc)
6071 {
6072 	struct vop_mkdir_args *a;
6073 	struct vnode *dvp;
6074 
6075 	a = ap;
6076 	dvp = a->a_dvp;
6077 	vn_seqc_write_end(dvp);
6078 	if (!rc)
6079 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6080 }
6081 
6082 #ifdef DEBUG_VFS_LOCKS
6083 void
6084 vop_mkdir_debugpost(void *ap, int rc)
6085 {
6086 	struct vop_mkdir_args *a;
6087 
6088 	a = ap;
6089 	if (!rc)
6090 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6091 }
6092 #endif
6093 
6094 void
6095 vop_mknod_pre(void *ap)
6096 {
6097 	struct vop_mknod_args *a;
6098 	struct vnode *dvp;
6099 
6100 	a = ap;
6101 	dvp = a->a_dvp;
6102 	vn_seqc_write_begin(dvp);
6103 }
6104 
6105 void
6106 vop_mknod_post(void *ap, int rc)
6107 {
6108 	struct vop_mknod_args *a;
6109 	struct vnode *dvp;
6110 
6111 	a = ap;
6112 	dvp = a->a_dvp;
6113 	vn_seqc_write_end(dvp);
6114 	if (!rc)
6115 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6116 }
6117 
6118 void
6119 vop_reclaim_post(void *ap, int rc)
6120 {
6121 	struct vop_reclaim_args *a;
6122 	struct vnode *vp;
6123 
6124 	a = ap;
6125 	vp = a->a_vp;
6126 	ASSERT_VOP_IN_SEQC(vp);
6127 	if (!rc)
6128 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6129 }
6130 
6131 void
6132 vop_remove_pre(void *ap)
6133 {
6134 	struct vop_remove_args *a;
6135 	struct vnode *dvp, *vp;
6136 
6137 	a = ap;
6138 	dvp = a->a_dvp;
6139 	vp = a->a_vp;
6140 	vn_seqc_write_begin(dvp);
6141 	vn_seqc_write_begin(vp);
6142 }
6143 
6144 void
6145 vop_remove_post(void *ap, int rc)
6146 {
6147 	struct vop_remove_args *a;
6148 	struct vnode *dvp, *vp;
6149 
6150 	a = ap;
6151 	dvp = a->a_dvp;
6152 	vp = a->a_vp;
6153 	vn_seqc_write_end(dvp);
6154 	vn_seqc_write_end(vp);
6155 	if (!rc) {
6156 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6157 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6158 	}
6159 }
6160 
6161 void
6162 vop_rename_post(void *ap, int rc)
6163 {
6164 	struct vop_rename_args *a = ap;
6165 	long hint;
6166 
6167 	if (!rc) {
6168 		hint = NOTE_WRITE;
6169 		if (a->a_fdvp == a->a_tdvp) {
6170 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6171 				hint |= NOTE_LINK;
6172 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6173 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6174 		} else {
6175 			hint |= NOTE_EXTEND;
6176 			if (a->a_fvp->v_type == VDIR)
6177 				hint |= NOTE_LINK;
6178 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6179 
6180 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6181 			    a->a_tvp->v_type == VDIR)
6182 				hint &= ~NOTE_LINK;
6183 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6184 		}
6185 
6186 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6187 		if (a->a_tvp)
6188 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6189 	}
6190 	if (a->a_tdvp != a->a_fdvp)
6191 		vdrop(a->a_fdvp);
6192 	if (a->a_tvp != a->a_fvp)
6193 		vdrop(a->a_fvp);
6194 	vdrop(a->a_tdvp);
6195 	if (a->a_tvp)
6196 		vdrop(a->a_tvp);
6197 }
6198 
6199 void
6200 vop_rmdir_pre(void *ap)
6201 {
6202 	struct vop_rmdir_args *a;
6203 	struct vnode *dvp, *vp;
6204 
6205 	a = ap;
6206 	dvp = a->a_dvp;
6207 	vp = a->a_vp;
6208 	vn_seqc_write_begin(dvp);
6209 	vn_seqc_write_begin(vp);
6210 }
6211 
6212 void
6213 vop_rmdir_post(void *ap, int rc)
6214 {
6215 	struct vop_rmdir_args *a;
6216 	struct vnode *dvp, *vp;
6217 
6218 	a = ap;
6219 	dvp = a->a_dvp;
6220 	vp = a->a_vp;
6221 	vn_seqc_write_end(dvp);
6222 	vn_seqc_write_end(vp);
6223 	if (!rc) {
6224 		vp->v_vflag |= VV_UNLINKED;
6225 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6226 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6227 	}
6228 }
6229 
6230 void
6231 vop_setattr_pre(void *ap)
6232 {
6233 	struct vop_setattr_args *a;
6234 	struct vnode *vp;
6235 
6236 	a = ap;
6237 	vp = a->a_vp;
6238 	vn_seqc_write_begin(vp);
6239 }
6240 
6241 void
6242 vop_setattr_post(void *ap, int rc)
6243 {
6244 	struct vop_setattr_args *a;
6245 	struct vnode *vp;
6246 
6247 	a = ap;
6248 	vp = a->a_vp;
6249 	vn_seqc_write_end(vp);
6250 	if (!rc)
6251 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6252 }
6253 
6254 void
6255 vop_setacl_pre(void *ap)
6256 {
6257 	struct vop_setacl_args *a;
6258 	struct vnode *vp;
6259 
6260 	a = ap;
6261 	vp = a->a_vp;
6262 	vn_seqc_write_begin(vp);
6263 }
6264 
6265 void
6266 vop_setacl_post(void *ap, int rc __unused)
6267 {
6268 	struct vop_setacl_args *a;
6269 	struct vnode *vp;
6270 
6271 	a = ap;
6272 	vp = a->a_vp;
6273 	vn_seqc_write_end(vp);
6274 }
6275 
6276 void
6277 vop_setextattr_pre(void *ap)
6278 {
6279 	struct vop_setextattr_args *a;
6280 	struct vnode *vp;
6281 
6282 	a = ap;
6283 	vp = a->a_vp;
6284 	vn_seqc_write_begin(vp);
6285 }
6286 
6287 void
6288 vop_setextattr_post(void *ap, int rc)
6289 {
6290 	struct vop_setextattr_args *a;
6291 	struct vnode *vp;
6292 
6293 	a = ap;
6294 	vp = a->a_vp;
6295 	vn_seqc_write_end(vp);
6296 	if (!rc)
6297 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6298 }
6299 
6300 void
6301 vop_symlink_pre(void *ap)
6302 {
6303 	struct vop_symlink_args *a;
6304 	struct vnode *dvp;
6305 
6306 	a = ap;
6307 	dvp = a->a_dvp;
6308 	vn_seqc_write_begin(dvp);
6309 }
6310 
6311 void
6312 vop_symlink_post(void *ap, int rc)
6313 {
6314 	struct vop_symlink_args *a;
6315 	struct vnode *dvp;
6316 
6317 	a = ap;
6318 	dvp = a->a_dvp;
6319 	vn_seqc_write_end(dvp);
6320 	if (!rc)
6321 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6322 }
6323 
6324 void
6325 vop_open_post(void *ap, int rc)
6326 {
6327 	struct vop_open_args *a = ap;
6328 
6329 	if (!rc)
6330 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6331 }
6332 
6333 void
6334 vop_close_post(void *ap, int rc)
6335 {
6336 	struct vop_close_args *a = ap;
6337 
6338 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6339 	    !VN_IS_DOOMED(a->a_vp))) {
6340 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6341 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6342 	}
6343 }
6344 
6345 void
6346 vop_read_post(void *ap, int rc)
6347 {
6348 	struct vop_read_args *a = ap;
6349 
6350 	if (!rc)
6351 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6352 }
6353 
6354 void
6355 vop_read_pgcache_post(void *ap, int rc)
6356 {
6357 	struct vop_read_pgcache_args *a = ap;
6358 
6359 	if (!rc)
6360 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6361 }
6362 
6363 void
6364 vop_readdir_post(void *ap, int rc)
6365 {
6366 	struct vop_readdir_args *a = ap;
6367 
6368 	if (!rc)
6369 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6370 }
6371 
6372 static struct knlist fs_knlist;
6373 
6374 static void
6375 vfs_event_init(void *arg)
6376 {
6377 	knlist_init_mtx(&fs_knlist, NULL);
6378 }
6379 /* XXX - correct order? */
6380 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6381 
6382 void
6383 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6384 {
6385 
6386 	KNOTE_UNLOCKED(&fs_knlist, event);
6387 }
6388 
6389 static int	filt_fsattach(struct knote *kn);
6390 static void	filt_fsdetach(struct knote *kn);
6391 static int	filt_fsevent(struct knote *kn, long hint);
6392 
6393 struct filterops fs_filtops = {
6394 	.f_isfd = 0,
6395 	.f_attach = filt_fsattach,
6396 	.f_detach = filt_fsdetach,
6397 	.f_event = filt_fsevent
6398 };
6399 
6400 static int
6401 filt_fsattach(struct knote *kn)
6402 {
6403 
6404 	kn->kn_flags |= EV_CLEAR;
6405 	knlist_add(&fs_knlist, kn, 0);
6406 	return (0);
6407 }
6408 
6409 static void
6410 filt_fsdetach(struct knote *kn)
6411 {
6412 
6413 	knlist_remove(&fs_knlist, kn, 0);
6414 }
6415 
6416 static int
6417 filt_fsevent(struct knote *kn, long hint)
6418 {
6419 
6420 	kn->kn_fflags |= kn->kn_sfflags & hint;
6421 
6422 	return (kn->kn_fflags != 0);
6423 }
6424 
6425 static int
6426 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6427 {
6428 	struct vfsidctl vc;
6429 	int error;
6430 	struct mount *mp;
6431 
6432 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6433 	if (error)
6434 		return (error);
6435 	if (vc.vc_vers != VFS_CTL_VERS1)
6436 		return (EINVAL);
6437 	mp = vfs_getvfs(&vc.vc_fsid);
6438 	if (mp == NULL)
6439 		return (ENOENT);
6440 	/* ensure that a specific sysctl goes to the right filesystem. */
6441 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6442 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6443 		vfs_rel(mp);
6444 		return (EINVAL);
6445 	}
6446 	VCTLTOREQ(&vc, req);
6447 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6448 	vfs_rel(mp);
6449 	return (error);
6450 }
6451 
6452 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6453     NULL, 0, sysctl_vfs_ctl, "",
6454     "Sysctl by fsid");
6455 
6456 /*
6457  * Function to initialize a va_filerev field sensibly.
6458  * XXX: Wouldn't a random number make a lot more sense ??
6459  */
6460 u_quad_t
6461 init_va_filerev(void)
6462 {
6463 	struct bintime bt;
6464 
6465 	getbinuptime(&bt);
6466 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6467 }
6468 
6469 static int	filt_vfsread(struct knote *kn, long hint);
6470 static int	filt_vfswrite(struct knote *kn, long hint);
6471 static int	filt_vfsvnode(struct knote *kn, long hint);
6472 static void	filt_vfsdetach(struct knote *kn);
6473 static struct filterops vfsread_filtops = {
6474 	.f_isfd = 1,
6475 	.f_detach = filt_vfsdetach,
6476 	.f_event = filt_vfsread
6477 };
6478 static struct filterops vfswrite_filtops = {
6479 	.f_isfd = 1,
6480 	.f_detach = filt_vfsdetach,
6481 	.f_event = filt_vfswrite
6482 };
6483 static struct filterops vfsvnode_filtops = {
6484 	.f_isfd = 1,
6485 	.f_detach = filt_vfsdetach,
6486 	.f_event = filt_vfsvnode
6487 };
6488 
6489 static void
6490 vfs_knllock(void *arg)
6491 {
6492 	struct vnode *vp = arg;
6493 
6494 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6495 }
6496 
6497 static void
6498 vfs_knlunlock(void *arg)
6499 {
6500 	struct vnode *vp = arg;
6501 
6502 	VOP_UNLOCK(vp);
6503 }
6504 
6505 static void
6506 vfs_knl_assert_lock(void *arg, int what)
6507 {
6508 #ifdef DEBUG_VFS_LOCKS
6509 	struct vnode *vp = arg;
6510 
6511 	if (what == LA_LOCKED)
6512 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6513 	else
6514 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6515 #endif
6516 }
6517 
6518 int
6519 vfs_kqfilter(struct vop_kqfilter_args *ap)
6520 {
6521 	struct vnode *vp = ap->a_vp;
6522 	struct knote *kn = ap->a_kn;
6523 	struct knlist *knl;
6524 
6525 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6526 	    kn->kn_filter != EVFILT_WRITE),
6527 	    ("READ/WRITE filter on a FIFO leaked through"));
6528 	switch (kn->kn_filter) {
6529 	case EVFILT_READ:
6530 		kn->kn_fop = &vfsread_filtops;
6531 		break;
6532 	case EVFILT_WRITE:
6533 		kn->kn_fop = &vfswrite_filtops;
6534 		break;
6535 	case EVFILT_VNODE:
6536 		kn->kn_fop = &vfsvnode_filtops;
6537 		break;
6538 	default:
6539 		return (EINVAL);
6540 	}
6541 
6542 	kn->kn_hook = (caddr_t)vp;
6543 
6544 	v_addpollinfo(vp);
6545 	if (vp->v_pollinfo == NULL)
6546 		return (ENOMEM);
6547 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6548 	vhold(vp);
6549 	knlist_add(knl, kn, 0);
6550 
6551 	return (0);
6552 }
6553 
6554 /*
6555  * Detach knote from vnode
6556  */
6557 static void
6558 filt_vfsdetach(struct knote *kn)
6559 {
6560 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6561 
6562 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6563 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6564 	vdrop(vp);
6565 }
6566 
6567 /*ARGSUSED*/
6568 static int
6569 filt_vfsread(struct knote *kn, long hint)
6570 {
6571 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6572 	off_t size;
6573 	int res;
6574 
6575 	/*
6576 	 * filesystem is gone, so set the EOF flag and schedule
6577 	 * the knote for deletion.
6578 	 */
6579 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6580 		VI_LOCK(vp);
6581 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6582 		VI_UNLOCK(vp);
6583 		return (1);
6584 	}
6585 
6586 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6587 		return (0);
6588 
6589 	VI_LOCK(vp);
6590 	kn->kn_data = size - kn->kn_fp->f_offset;
6591 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6592 	VI_UNLOCK(vp);
6593 	return (res);
6594 }
6595 
6596 /*ARGSUSED*/
6597 static int
6598 filt_vfswrite(struct knote *kn, long hint)
6599 {
6600 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6601 
6602 	VI_LOCK(vp);
6603 
6604 	/*
6605 	 * filesystem is gone, so set the EOF flag and schedule
6606 	 * the knote for deletion.
6607 	 */
6608 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6609 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6610 
6611 	kn->kn_data = 0;
6612 	VI_UNLOCK(vp);
6613 	return (1);
6614 }
6615 
6616 static int
6617 filt_vfsvnode(struct knote *kn, long hint)
6618 {
6619 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6620 	int res;
6621 
6622 	VI_LOCK(vp);
6623 	if (kn->kn_sfflags & hint)
6624 		kn->kn_fflags |= hint;
6625 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6626 		kn->kn_flags |= EV_EOF;
6627 		VI_UNLOCK(vp);
6628 		return (1);
6629 	}
6630 	res = (kn->kn_fflags != 0);
6631 	VI_UNLOCK(vp);
6632 	return (res);
6633 }
6634 
6635 int
6636 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6637 {
6638 	int error;
6639 
6640 	if (dp->d_reclen > ap->a_uio->uio_resid)
6641 		return (ENAMETOOLONG);
6642 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6643 	if (error) {
6644 		if (ap->a_ncookies != NULL) {
6645 			if (ap->a_cookies != NULL)
6646 				free(ap->a_cookies, M_TEMP);
6647 			ap->a_cookies = NULL;
6648 			*ap->a_ncookies = 0;
6649 		}
6650 		return (error);
6651 	}
6652 	if (ap->a_ncookies == NULL)
6653 		return (0);
6654 
6655 	KASSERT(ap->a_cookies,
6656 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6657 
6658 	*ap->a_cookies = realloc(*ap->a_cookies,
6659 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6660 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6661 	*ap->a_ncookies += 1;
6662 	return (0);
6663 }
6664 
6665 /*
6666  * The purpose of this routine is to remove granularity from accmode_t,
6667  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6668  * VADMIN and VAPPEND.
6669  *
6670  * If it returns 0, the caller is supposed to continue with the usual
6671  * access checks using 'accmode' as modified by this routine.  If it
6672  * returns nonzero value, the caller is supposed to return that value
6673  * as errno.
6674  *
6675  * Note that after this routine runs, accmode may be zero.
6676  */
6677 int
6678 vfs_unixify_accmode(accmode_t *accmode)
6679 {
6680 	/*
6681 	 * There is no way to specify explicit "deny" rule using
6682 	 * file mode or POSIX.1e ACLs.
6683 	 */
6684 	if (*accmode & VEXPLICIT_DENY) {
6685 		*accmode = 0;
6686 		return (0);
6687 	}
6688 
6689 	/*
6690 	 * None of these can be translated into usual access bits.
6691 	 * Also, the common case for NFSv4 ACLs is to not contain
6692 	 * either of these bits. Caller should check for VWRITE
6693 	 * on the containing directory instead.
6694 	 */
6695 	if (*accmode & (VDELETE_CHILD | VDELETE))
6696 		return (EPERM);
6697 
6698 	if (*accmode & VADMIN_PERMS) {
6699 		*accmode &= ~VADMIN_PERMS;
6700 		*accmode |= VADMIN;
6701 	}
6702 
6703 	/*
6704 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6705 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6706 	 */
6707 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6708 
6709 	return (0);
6710 }
6711 
6712 /*
6713  * Clear out a doomed vnode (if any) and replace it with a new one as long
6714  * as the fs is not being unmounted. Return the root vnode to the caller.
6715  */
6716 static int __noinline
6717 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6718 {
6719 	struct vnode *vp;
6720 	int error;
6721 
6722 restart:
6723 	if (mp->mnt_rootvnode != NULL) {
6724 		MNT_ILOCK(mp);
6725 		vp = mp->mnt_rootvnode;
6726 		if (vp != NULL) {
6727 			if (!VN_IS_DOOMED(vp)) {
6728 				vrefact(vp);
6729 				MNT_IUNLOCK(mp);
6730 				error = vn_lock(vp, flags);
6731 				if (error == 0) {
6732 					*vpp = vp;
6733 					return (0);
6734 				}
6735 				vrele(vp);
6736 				goto restart;
6737 			}
6738 			/*
6739 			 * Clear the old one.
6740 			 */
6741 			mp->mnt_rootvnode = NULL;
6742 		}
6743 		MNT_IUNLOCK(mp);
6744 		if (vp != NULL) {
6745 			vfs_op_barrier_wait(mp);
6746 			vrele(vp);
6747 		}
6748 	}
6749 	error = VFS_CACHEDROOT(mp, flags, vpp);
6750 	if (error != 0)
6751 		return (error);
6752 	if (mp->mnt_vfs_ops == 0) {
6753 		MNT_ILOCK(mp);
6754 		if (mp->mnt_vfs_ops != 0) {
6755 			MNT_IUNLOCK(mp);
6756 			return (0);
6757 		}
6758 		if (mp->mnt_rootvnode == NULL) {
6759 			vrefact(*vpp);
6760 			mp->mnt_rootvnode = *vpp;
6761 		} else {
6762 			if (mp->mnt_rootvnode != *vpp) {
6763 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6764 					panic("%s: mismatch between vnode returned "
6765 					    " by VFS_CACHEDROOT and the one cached "
6766 					    " (%p != %p)",
6767 					    __func__, *vpp, mp->mnt_rootvnode);
6768 				}
6769 			}
6770 		}
6771 		MNT_IUNLOCK(mp);
6772 	}
6773 	return (0);
6774 }
6775 
6776 int
6777 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6778 {
6779 	struct mount_pcpu *mpcpu;
6780 	struct vnode *vp;
6781 	int error;
6782 
6783 	if (!vfs_op_thread_enter(mp, mpcpu))
6784 		return (vfs_cache_root_fallback(mp, flags, vpp));
6785 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6786 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6787 		vfs_op_thread_exit(mp, mpcpu);
6788 		return (vfs_cache_root_fallback(mp, flags, vpp));
6789 	}
6790 	vrefact(vp);
6791 	vfs_op_thread_exit(mp, mpcpu);
6792 	error = vn_lock(vp, flags);
6793 	if (error != 0) {
6794 		vrele(vp);
6795 		return (vfs_cache_root_fallback(mp, flags, vpp));
6796 	}
6797 	*vpp = vp;
6798 	return (0);
6799 }
6800 
6801 struct vnode *
6802 vfs_cache_root_clear(struct mount *mp)
6803 {
6804 	struct vnode *vp;
6805 
6806 	/*
6807 	 * ops > 0 guarantees there is nobody who can see this vnode
6808 	 */
6809 	MPASS(mp->mnt_vfs_ops > 0);
6810 	vp = mp->mnt_rootvnode;
6811 	if (vp != NULL)
6812 		vn_seqc_write_begin(vp);
6813 	mp->mnt_rootvnode = NULL;
6814 	return (vp);
6815 }
6816 
6817 void
6818 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6819 {
6820 
6821 	MPASS(mp->mnt_vfs_ops > 0);
6822 	vrefact(vp);
6823 	mp->mnt_rootvnode = vp;
6824 }
6825 
6826 /*
6827  * These are helper functions for filesystems to traverse all
6828  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6829  *
6830  * This interface replaces MNT_VNODE_FOREACH.
6831  */
6832 
6833 struct vnode *
6834 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6835 {
6836 	struct vnode *vp;
6837 
6838 	maybe_yield();
6839 	MNT_ILOCK(mp);
6840 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6841 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6842 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6843 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6844 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6845 			continue;
6846 		VI_LOCK(vp);
6847 		if (VN_IS_DOOMED(vp)) {
6848 			VI_UNLOCK(vp);
6849 			continue;
6850 		}
6851 		break;
6852 	}
6853 	if (vp == NULL) {
6854 		__mnt_vnode_markerfree_all(mvp, mp);
6855 		/* MNT_IUNLOCK(mp); -- done in above function */
6856 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6857 		return (NULL);
6858 	}
6859 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6860 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6861 	MNT_IUNLOCK(mp);
6862 	return (vp);
6863 }
6864 
6865 struct vnode *
6866 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6867 {
6868 	struct vnode *vp;
6869 
6870 	*mvp = vn_alloc_marker(mp);
6871 	MNT_ILOCK(mp);
6872 	MNT_REF(mp);
6873 
6874 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6875 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6876 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6877 			continue;
6878 		VI_LOCK(vp);
6879 		if (VN_IS_DOOMED(vp)) {
6880 			VI_UNLOCK(vp);
6881 			continue;
6882 		}
6883 		break;
6884 	}
6885 	if (vp == NULL) {
6886 		MNT_REL(mp);
6887 		MNT_IUNLOCK(mp);
6888 		vn_free_marker(*mvp);
6889 		*mvp = NULL;
6890 		return (NULL);
6891 	}
6892 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6893 	MNT_IUNLOCK(mp);
6894 	return (vp);
6895 }
6896 
6897 void
6898 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6899 {
6900 
6901 	if (*mvp == NULL) {
6902 		MNT_IUNLOCK(mp);
6903 		return;
6904 	}
6905 
6906 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6907 
6908 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6909 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6910 	MNT_REL(mp);
6911 	MNT_IUNLOCK(mp);
6912 	vn_free_marker(*mvp);
6913 	*mvp = NULL;
6914 }
6915 
6916 /*
6917  * These are helper functions for filesystems to traverse their
6918  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6919  */
6920 static void
6921 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6922 {
6923 
6924 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6925 
6926 	MNT_ILOCK(mp);
6927 	MNT_REL(mp);
6928 	MNT_IUNLOCK(mp);
6929 	vn_free_marker(*mvp);
6930 	*mvp = NULL;
6931 }
6932 
6933 /*
6934  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6935  * conventional lock order during mnt_vnode_next_lazy iteration.
6936  *
6937  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6938  * The list lock is dropped and reacquired.  On success, both locks are held.
6939  * On failure, the mount vnode list lock is held but the vnode interlock is
6940  * not, and the procedure may have yielded.
6941  */
6942 static bool
6943 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6944     struct vnode *vp)
6945 {
6946 
6947 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6948 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6949 	    ("%s: bad marker", __func__));
6950 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6951 	    ("%s: inappropriate vnode", __func__));
6952 	ASSERT_VI_UNLOCKED(vp, __func__);
6953 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6954 
6955 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6956 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6957 
6958 	/*
6959 	 * Note we may be racing against vdrop which transitioned the hold
6960 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6961 	 * if we are the only user after we get the interlock we will just
6962 	 * vdrop.
6963 	 */
6964 	vhold(vp);
6965 	mtx_unlock(&mp->mnt_listmtx);
6966 	VI_LOCK(vp);
6967 	if (VN_IS_DOOMED(vp)) {
6968 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6969 		goto out_lost;
6970 	}
6971 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6972 	/*
6973 	 * There is nothing to do if we are the last user.
6974 	 */
6975 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6976 		goto out_lost;
6977 	mtx_lock(&mp->mnt_listmtx);
6978 	return (true);
6979 out_lost:
6980 	vdropl(vp);
6981 	maybe_yield();
6982 	mtx_lock(&mp->mnt_listmtx);
6983 	return (false);
6984 }
6985 
6986 static struct vnode *
6987 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6988     void *cbarg)
6989 {
6990 	struct vnode *vp;
6991 
6992 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6993 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6994 restart:
6995 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6996 	while (vp != NULL) {
6997 		if (vp->v_type == VMARKER) {
6998 			vp = TAILQ_NEXT(vp, v_lazylist);
6999 			continue;
7000 		}
7001 		/*
7002 		 * See if we want to process the vnode. Note we may encounter a
7003 		 * long string of vnodes we don't care about and hog the list
7004 		 * as a result. Check for it and requeue the marker.
7005 		 */
7006 		VNPASS(!VN_IS_DOOMED(vp), vp);
7007 		if (!cb(vp, cbarg)) {
7008 			if (!should_yield()) {
7009 				vp = TAILQ_NEXT(vp, v_lazylist);
7010 				continue;
7011 			}
7012 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7013 			    v_lazylist);
7014 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7015 			    v_lazylist);
7016 			mtx_unlock(&mp->mnt_listmtx);
7017 			kern_yield(PRI_USER);
7018 			mtx_lock(&mp->mnt_listmtx);
7019 			goto restart;
7020 		}
7021 		/*
7022 		 * Try-lock because this is the wrong lock order.
7023 		 */
7024 		if (!VI_TRYLOCK(vp) &&
7025 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7026 			goto restart;
7027 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7028 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7029 		    ("alien vnode on the lazy list %p %p", vp, mp));
7030 		VNPASS(vp->v_mount == mp, vp);
7031 		VNPASS(!VN_IS_DOOMED(vp), vp);
7032 		break;
7033 	}
7034 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7035 
7036 	/* Check if we are done */
7037 	if (vp == NULL) {
7038 		mtx_unlock(&mp->mnt_listmtx);
7039 		mnt_vnode_markerfree_lazy(mvp, mp);
7040 		return (NULL);
7041 	}
7042 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7043 	mtx_unlock(&mp->mnt_listmtx);
7044 	ASSERT_VI_LOCKED(vp, "lazy iter");
7045 	return (vp);
7046 }
7047 
7048 struct vnode *
7049 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7050     void *cbarg)
7051 {
7052 
7053 	maybe_yield();
7054 	mtx_lock(&mp->mnt_listmtx);
7055 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7056 }
7057 
7058 struct vnode *
7059 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7060     void *cbarg)
7061 {
7062 	struct vnode *vp;
7063 
7064 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7065 		return (NULL);
7066 
7067 	*mvp = vn_alloc_marker(mp);
7068 	MNT_ILOCK(mp);
7069 	MNT_REF(mp);
7070 	MNT_IUNLOCK(mp);
7071 
7072 	mtx_lock(&mp->mnt_listmtx);
7073 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7074 	if (vp == NULL) {
7075 		mtx_unlock(&mp->mnt_listmtx);
7076 		mnt_vnode_markerfree_lazy(mvp, mp);
7077 		return (NULL);
7078 	}
7079 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7080 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7081 }
7082 
7083 void
7084 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7085 {
7086 
7087 	if (*mvp == NULL)
7088 		return;
7089 
7090 	mtx_lock(&mp->mnt_listmtx);
7091 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7092 	mtx_unlock(&mp->mnt_listmtx);
7093 	mnt_vnode_markerfree_lazy(mvp, mp);
7094 }
7095 
7096 int
7097 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7098 {
7099 
7100 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7101 		cnp->cn_flags &= ~NOEXECCHECK;
7102 		return (0);
7103 	}
7104 
7105 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7106 }
7107 
7108 /*
7109  * Do not use this variant unless you have means other than the hold count
7110  * to prevent the vnode from getting freed.
7111  */
7112 void
7113 vn_seqc_write_begin_locked(struct vnode *vp)
7114 {
7115 
7116 	ASSERT_VI_LOCKED(vp, __func__);
7117 	VNPASS(vp->v_holdcnt > 0, vp);
7118 	VNPASS(vp->v_seqc_users >= 0, vp);
7119 	vp->v_seqc_users++;
7120 	if (vp->v_seqc_users == 1)
7121 		seqc_sleepable_write_begin(&vp->v_seqc);
7122 }
7123 
7124 void
7125 vn_seqc_write_begin(struct vnode *vp)
7126 {
7127 
7128 	VI_LOCK(vp);
7129 	vn_seqc_write_begin_locked(vp);
7130 	VI_UNLOCK(vp);
7131 }
7132 
7133 void
7134 vn_seqc_write_end_locked(struct vnode *vp)
7135 {
7136 
7137 	ASSERT_VI_LOCKED(vp, __func__);
7138 	VNPASS(vp->v_seqc_users > 0, vp);
7139 	vp->v_seqc_users--;
7140 	if (vp->v_seqc_users == 0)
7141 		seqc_sleepable_write_end(&vp->v_seqc);
7142 }
7143 
7144 void
7145 vn_seqc_write_end(struct vnode *vp)
7146 {
7147 
7148 	VI_LOCK(vp);
7149 	vn_seqc_write_end_locked(vp);
7150 	VI_UNLOCK(vp);
7151 }
7152 
7153 /*
7154  * Special case handling for allocating and freeing vnodes.
7155  *
7156  * The counter remains unchanged on free so that a doomed vnode will
7157  * keep testing as in modify as long as it is accessible with SMR.
7158  */
7159 static void
7160 vn_seqc_init(struct vnode *vp)
7161 {
7162 
7163 	vp->v_seqc = 0;
7164 	vp->v_seqc_users = 0;
7165 }
7166 
7167 static void
7168 vn_seqc_write_end_free(struct vnode *vp)
7169 {
7170 
7171 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7172 	VNPASS(vp->v_seqc_users == 1, vp);
7173 }
7174 
7175 void
7176 vn_irflag_set_locked(struct vnode *vp, short toset)
7177 {
7178 	short flags;
7179 
7180 	ASSERT_VI_LOCKED(vp, __func__);
7181 	flags = vn_irflag_read(vp);
7182 	VNASSERT((flags & toset) == 0, vp,
7183 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7184 	    __func__, flags, toset));
7185 	atomic_store_short(&vp->v_irflag, flags | toset);
7186 }
7187 
7188 void
7189 vn_irflag_set(struct vnode *vp, short toset)
7190 {
7191 
7192 	VI_LOCK(vp);
7193 	vn_irflag_set_locked(vp, toset);
7194 	VI_UNLOCK(vp);
7195 }
7196 
7197 void
7198 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7199 {
7200 	short flags;
7201 
7202 	ASSERT_VI_LOCKED(vp, __func__);
7203 	flags = vn_irflag_read(vp);
7204 	atomic_store_short(&vp->v_irflag, flags | toset);
7205 }
7206 
7207 void
7208 vn_irflag_set_cond(struct vnode *vp, short toset)
7209 {
7210 
7211 	VI_LOCK(vp);
7212 	vn_irflag_set_cond_locked(vp, toset);
7213 	VI_UNLOCK(vp);
7214 }
7215 
7216 void
7217 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7218 {
7219 	short flags;
7220 
7221 	ASSERT_VI_LOCKED(vp, __func__);
7222 	flags = vn_irflag_read(vp);
7223 	VNASSERT((flags & tounset) == tounset, vp,
7224 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7225 	    __func__, flags, tounset));
7226 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7227 }
7228 
7229 void
7230 vn_irflag_unset(struct vnode *vp, short tounset)
7231 {
7232 
7233 	VI_LOCK(vp);
7234 	vn_irflag_unset_locked(vp, tounset);
7235 	VI_UNLOCK(vp);
7236 }
7237 
7238 int
7239 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7240 {
7241 	struct vattr vattr;
7242 	int error;
7243 
7244 	ASSERT_VOP_LOCKED(vp, __func__);
7245 	error = VOP_GETATTR(vp, &vattr, cred);
7246 	if (__predict_true(error == 0)) {
7247 		if (vattr.va_size <= OFF_MAX)
7248 			*size = vattr.va_size;
7249 		else
7250 			error = EFBIG;
7251 	}
7252 	return (error);
7253 }
7254 
7255 int
7256 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7257 {
7258 	int error;
7259 
7260 	VOP_LOCK(vp, LK_SHARED);
7261 	error = vn_getsize_locked(vp, size, cred);
7262 	VOP_UNLOCK(vp);
7263 	return (error);
7264 }
7265 
7266 #ifdef INVARIANTS
7267 void
7268 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7269 {
7270 
7271 	switch (vp->v_state) {
7272 	case VSTATE_UNINITIALIZED:
7273 		switch (state) {
7274 		case VSTATE_CONSTRUCTED:
7275 		case VSTATE_DESTROYING:
7276 			return;
7277 		default:
7278 			break;
7279 		}
7280 		break;
7281 	case VSTATE_CONSTRUCTED:
7282 		ASSERT_VOP_ELOCKED(vp, __func__);
7283 		switch (state) {
7284 		case VSTATE_DESTROYING:
7285 			return;
7286 		default:
7287 			break;
7288 		}
7289 		break;
7290 	case VSTATE_DESTROYING:
7291 		ASSERT_VOP_ELOCKED(vp, __func__);
7292 		switch (state) {
7293 		case VSTATE_DEAD:
7294 			return;
7295 		default:
7296 			break;
7297 		}
7298 		break;
7299 	case VSTATE_DEAD:
7300 		switch (state) {
7301 		case VSTATE_UNINITIALIZED:
7302 			return;
7303 		default:
7304 			break;
7305 		}
7306 		break;
7307 	}
7308 
7309 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7310 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7311 }
7312 #endif
7313