xref: /freebsd/sys/kern/vfs_subr.c (revision 509d843a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 #include "opt_ddb.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/capsicum.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/limits.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
102 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
103 #endif
104 
105 #ifdef DDB
106 #include <ddb/ddb.h>
107 #endif
108 
109 static void	delmntque(struct vnode *vp);
110 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
111 		    int slpflag, int slptimeo);
112 static void	syncer_shutdown(void *arg, int howto);
113 static int	vtryrecycle(struct vnode *vp);
114 static void	v_init_counters(struct vnode *);
115 static void	vn_seqc_init(struct vnode *);
116 static void	vn_seqc_write_end_free(struct vnode *vp);
117 static void	vgonel(struct vnode *);
118 static bool	vhold_recycle_free(struct vnode *);
119 static void	vdropl_recycle(struct vnode *vp);
120 static void	vdrop_recycle(struct vnode *vp);
121 static void	vfs_knllock(void *arg);
122 static void	vfs_knlunlock(void *arg);
123 static void	vfs_knl_assert_lock(void *arg, int what);
124 static void	destroy_vpollinfo(struct vpollinfo *vi);
125 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
126 		    daddr_t startlbn, daddr_t endlbn);
127 static void	vnlru_recalc(void);
128 
129 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
130     "vnode configuration and statistics");
131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "vnode configuration");
133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
134     "vnode statistics");
135 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
136     "vnode recycling");
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
141  */
142 static u_long __exclusive_cache_line numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence (legacy)");
146 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
147     "Number of vnodes in existence");
148 
149 static counter_u64_t vnodes_created;
150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode (legacy)");
152 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
153     "Number of vnodes created by getnewvnode");
154 
155 /*
156  * Conversion tables for conversion from vnode types to inode formats
157  * and back.
158  */
159 __enum_uint8(vtype) iftovt_tab[16] = {
160 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
161 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
162 };
163 int vttoif_tab[10] = {
164 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
165 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
166 };
167 
168 /*
169  * List of allocates vnodes in the system.
170  */
171 static TAILQ_HEAD(freelst, vnode) vnode_list;
172 static struct vnode *vnode_list_free_marker;
173 static struct vnode *vnode_list_reclaim_marker;
174 
175 /*
176  * "Free" vnode target.  Free vnodes are rarely completely free, but are
177  * just ones that are cheap to recycle.  Usually they are for files which
178  * have been stat'd but not read; these usually have inode and namecache
179  * data attached to them.  This target is the preferred minimum size of a
180  * sub-cache consisting mostly of such files. The system balances the size
181  * of this sub-cache with its complement to try to prevent either from
182  * thrashing while the other is relatively inactive.  The targets express
183  * a preference for the best balance.
184  *
185  * "Above" this target there are 2 further targets (watermarks) related
186  * to recyling of free vnodes.  In the best-operating case, the cache is
187  * exactly full, the free list has size between vlowat and vhiwat above the
188  * free target, and recycling from it and normal use maintains this state.
189  * Sometimes the free list is below vlowat or even empty, but this state
190  * is even better for immediate use provided the cache is not full.
191  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
192  * ones) to reach one of these states.  The watermarks are currently hard-
193  * coded as 4% and 9% of the available space higher.  These and the default
194  * of 25% for wantfreevnodes are too large if the memory size is large.
195  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
196  * whenever vnlru_proc() becomes active.
197  */
198 static long wantfreevnodes;
199 static long __exclusive_cache_line freevnodes;
200 static long freevnodes_old;
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets (legacy)");
205 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static counter_u64_t recycles_free_count;
209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
210     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
211 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
212     "Number of free vnodes recycled to meet vnode cache targets");
213 
214 static counter_u64_t vnode_skipped_requeues;
215 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
216     "Number of times LRU requeue was skipped due to lock contention");
217 
218 static u_long deferred_inact;
219 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
220     &deferred_inact, 0, "Number of times inactive processing was deferred");
221 
222 /* To keep more than one thread at a time from running vfs_getnewfsid */
223 static struct mtx mntid_mtx;
224 
225 /*
226  * Lock for any access to the following:
227  *	vnode_list
228  *	numvnodes
229  *	freevnodes
230  */
231 static struct mtx __exclusive_cache_line vnode_list_mtx;
232 
233 /* Publicly exported FS */
234 struct nfs_public nfs_pub;
235 
236 static uma_zone_t buf_trie_zone;
237 static smr_t buf_trie_smr;
238 
239 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
240 static uma_zone_t vnode_zone;
241 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
242 
243 __read_frequently smr_t vfs_smr;
244 
245 /*
246  * The workitem queue.
247  *
248  * It is useful to delay writes of file data and filesystem metadata
249  * for tens of seconds so that quickly created and deleted files need
250  * not waste disk bandwidth being created and removed. To realize this,
251  * we append vnodes to a "workitem" queue. When running with a soft
252  * updates implementation, most pending metadata dependencies should
253  * not wait for more than a few seconds. Thus, mounted on block devices
254  * are delayed only about a half the time that file data is delayed.
255  * Similarly, directory updates are more critical, so are only delayed
256  * about a third the time that file data is delayed. Thus, there are
257  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
258  * one each second (driven off the filesystem syncer process). The
259  * syncer_delayno variable indicates the next queue that is to be processed.
260  * Items that need to be processed soon are placed in this queue:
261  *
262  *	syncer_workitem_pending[syncer_delayno]
263  *
264  * A delay of fifteen seconds is done by placing the request fifteen
265  * entries later in the queue:
266  *
267  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
268  *
269  */
270 static int syncer_delayno;
271 static long syncer_mask;
272 LIST_HEAD(synclist, bufobj);
273 static struct synclist *syncer_workitem_pending;
274 /*
275  * The sync_mtx protects:
276  *	bo->bo_synclist
277  *	sync_vnode_count
278  *	syncer_delayno
279  *	syncer_state
280  *	syncer_workitem_pending
281  *	syncer_worklist_len
282  *	rushjob
283  */
284 static struct mtx sync_mtx;
285 static struct cv sync_wakeup;
286 
287 #define SYNCER_MAXDELAY		32
288 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
289 static int syncdelay = 30;		/* max time to delay syncing data */
290 static int filedelay = 30;		/* time to delay syncing files */
291 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
292     "Time to delay syncing files (in seconds)");
293 static int dirdelay = 29;		/* time to delay syncing directories */
294 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
295     "Time to delay syncing directories (in seconds)");
296 static int metadelay = 28;		/* time to delay syncing metadata */
297 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
298     "Time to delay syncing metadata (in seconds)");
299 static int rushjob;		/* number of slots to run ASAP */
300 static int stat_rush_requests;	/* number of times I/O speeded up */
301 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
302     "Number of times I/O speeded up (rush requests)");
303 
304 #define	VDBATCH_SIZE 8
305 struct vdbatch {
306 	u_int index;
307 	struct mtx lock;
308 	struct vnode *tab[VDBATCH_SIZE];
309 };
310 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
311 
312 static void	vdbatch_dequeue(struct vnode *vp);
313 
314 /*
315  * When shutting down the syncer, run it at four times normal speed.
316  */
317 #define SYNCER_SHUTDOWN_SPEEDUP		4
318 static int sync_vnode_count;
319 static int syncer_worklist_len;
320 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
321     syncer_state;
322 
323 /* Target for maximum number of vnodes. */
324 u_long desiredvnodes;
325 static u_long gapvnodes;		/* gap between wanted and desired */
326 static u_long vhiwat;		/* enough extras after expansion */
327 static u_long vlowat;		/* minimal extras before expansion */
328 static bool vstir;		/* nonzero to stir non-free vnodes */
329 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
330 
331 static u_long vnlru_read_freevnodes(void);
332 
333 /*
334  * Note that no attempt is made to sanitize these parameters.
335  */
336 static int
337 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
338 {
339 	u_long val;
340 	int error;
341 
342 	val = desiredvnodes;
343 	error = sysctl_handle_long(oidp, &val, 0, req);
344 	if (error != 0 || req->newptr == NULL)
345 		return (error);
346 
347 	if (val == desiredvnodes)
348 		return (0);
349 	mtx_lock(&vnode_list_mtx);
350 	desiredvnodes = val;
351 	wantfreevnodes = desiredvnodes / 4;
352 	vnlru_recalc();
353 	mtx_unlock(&vnode_list_mtx);
354 	/*
355 	 * XXX There is no protection against multiple threads changing
356 	 * desiredvnodes at the same time. Locking above only helps vnlru and
357 	 * getnewvnode.
358 	 */
359 	vfs_hash_changesize(desiredvnodes);
360 	cache_changesize(desiredvnodes);
361 	return (0);
362 }
363 
364 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
365     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
366     "LU", "Target for maximum number of vnodes (legacy)");
367 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
369     "LU", "Target for maximum number of vnodes");
370 
371 static int
372 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
373 {
374 	u_long rfreevnodes;
375 
376 	rfreevnodes = vnlru_read_freevnodes();
377 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
378 }
379 
380 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
381     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
382     "LU", "Number of \"free\" vnodes (legacy)");
383 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
384     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
385     "LU", "Number of \"free\" vnodes");
386 
387 static int
388 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
389 {
390 	u_long val;
391 	int error;
392 
393 	val = wantfreevnodes;
394 	error = sysctl_handle_long(oidp, &val, 0, req);
395 	if (error != 0 || req->newptr == NULL)
396 		return (error);
397 
398 	if (val == wantfreevnodes)
399 		return (0);
400 	mtx_lock(&vnode_list_mtx);
401 	wantfreevnodes = val;
402 	vnlru_recalc();
403 	mtx_unlock(&vnode_list_mtx);
404 	return (0);
405 }
406 
407 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
408     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
409     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
410 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
411     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
412     "LU", "Target for minimum number of \"free\" vnodes");
413 
414 static int vnlru_nowhere;
415 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
416     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
417 
418 static int
419 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
420 {
421 	struct vnode *vp;
422 	struct nameidata nd;
423 	char *buf;
424 	unsigned long ndflags;
425 	int error;
426 
427 	if (req->newptr == NULL)
428 		return (EINVAL);
429 	if (req->newlen >= PATH_MAX)
430 		return (E2BIG);
431 
432 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
433 	error = SYSCTL_IN(req, buf, req->newlen);
434 	if (error != 0)
435 		goto out;
436 
437 	buf[req->newlen] = '\0';
438 
439 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
440 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
441 	if ((error = namei(&nd)) != 0)
442 		goto out;
443 	vp = nd.ni_vp;
444 
445 	if (VN_IS_DOOMED(vp)) {
446 		/*
447 		 * This vnode is being recycled.  Return != 0 to let the caller
448 		 * know that the sysctl had no effect.  Return EAGAIN because a
449 		 * subsequent call will likely succeed (since namei will create
450 		 * a new vnode if necessary)
451 		 */
452 		error = EAGAIN;
453 		goto putvnode;
454 	}
455 
456 	counter_u64_add(recycles_count, 1);
457 	vgone(vp);
458 putvnode:
459 	vput(vp);
460 	NDFREE_PNBUF(&nd);
461 out:
462 	free(buf, M_TEMP);
463 	return (error);
464 }
465 
466 static int
467 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
468 {
469 	struct thread *td = curthread;
470 	struct vnode *vp;
471 	struct file *fp;
472 	int error;
473 	int fd;
474 
475 	if (req->newptr == NULL)
476 		return (EBADF);
477 
478         error = sysctl_handle_int(oidp, &fd, 0, req);
479         if (error != 0)
480                 return (error);
481 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
482 	if (error != 0)
483 		return (error);
484 	vp = fp->f_vnode;
485 
486 	error = vn_lock(vp, LK_EXCLUSIVE);
487 	if (error != 0)
488 		goto drop;
489 
490 	counter_u64_add(recycles_count, 1);
491 	vgone(vp);
492 	VOP_UNLOCK(vp);
493 drop:
494 	fdrop(fp, td);
495 	return (error);
496 }
497 
498 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
499     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
500     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
501 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
502     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
503     sysctl_ftry_reclaim_vnode, "I",
504     "Try to reclaim a vnode by its file descriptor");
505 
506 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
507 #define vnsz2log 8
508 #ifndef DEBUG_LOCKS
509 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
510     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
511     "vnsz2log needs to be updated");
512 #endif
513 
514 /*
515  * Support for the bufobj clean & dirty pctrie.
516  */
517 static void *
518 buf_trie_alloc(struct pctrie *ptree)
519 {
520 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
521 }
522 
523 static void
524 buf_trie_free(struct pctrie *ptree, void *node)
525 {
526 	uma_zfree_smr(buf_trie_zone, node);
527 }
528 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
529     buf_trie_smr);
530 
531 /*
532  * Initialize the vnode management data structures.
533  *
534  * Reevaluate the following cap on the number of vnodes after the physical
535  * memory size exceeds 512GB.  In the limit, as the physical memory size
536  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
537  */
538 #ifndef	MAXVNODES_MAX
539 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
540 #endif
541 
542 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
543 
544 static struct vnode *
545 vn_alloc_marker(struct mount *mp)
546 {
547 	struct vnode *vp;
548 
549 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
550 	vp->v_type = VMARKER;
551 	vp->v_mount = mp;
552 
553 	return (vp);
554 }
555 
556 static void
557 vn_free_marker(struct vnode *vp)
558 {
559 
560 	MPASS(vp->v_type == VMARKER);
561 	free(vp, M_VNODE_MARKER);
562 }
563 
564 #ifdef KASAN
565 static int
566 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
567 {
568 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
569 	return (0);
570 }
571 
572 static void
573 vnode_dtor(void *mem, int size, void *arg __unused)
574 {
575 	size_t end1, end2, off1, off2;
576 
577 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
578 	    offsetof(struct vnode, v_dbatchcpu),
579 	    "KASAN marks require updating");
580 
581 	off1 = offsetof(struct vnode, v_vnodelist);
582 	off2 = offsetof(struct vnode, v_dbatchcpu);
583 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
584 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
585 
586 	/*
587 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
588 	 * after the vnode has been freed.  Try to get some KASAN coverage by
589 	 * marking everything except those two fields as invalid.  Because
590 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
591 	 * the same 8-byte aligned word must also be marked valid.
592 	 */
593 
594 	/* Handle the area from the start until v_vnodelist... */
595 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
596 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
597 
598 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
599 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
600 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
601 	if (off2 > off1)
602 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
603 		    off2 - off1, KASAN_UMA_FREED);
604 
605 	/* ... and finally the area from v_dbatchcpu to the end. */
606 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
607 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
608 	    KASAN_UMA_FREED);
609 }
610 #endif /* KASAN */
611 
612 /*
613  * Initialize a vnode as it first enters the zone.
614  */
615 static int
616 vnode_init(void *mem, int size, int flags)
617 {
618 	struct vnode *vp;
619 
620 	vp = mem;
621 	bzero(vp, size);
622 	/*
623 	 * Setup locks.
624 	 */
625 	vp->v_vnlock = &vp->v_lock;
626 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
627 	/*
628 	 * By default, don't allow shared locks unless filesystems opt-in.
629 	 */
630 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
631 	    LK_NOSHARE | LK_IS_VNODE);
632 	/*
633 	 * Initialize bufobj.
634 	 */
635 	bufobj_init(&vp->v_bufobj, vp);
636 	/*
637 	 * Initialize namecache.
638 	 */
639 	cache_vnode_init(vp);
640 	/*
641 	 * Initialize rangelocks.
642 	 */
643 	rangelock_init(&vp->v_rl);
644 
645 	vp->v_dbatchcpu = NOCPU;
646 
647 	vp->v_state = VSTATE_DEAD;
648 
649 	/*
650 	 * Check vhold_recycle_free for an explanation.
651 	 */
652 	vp->v_holdcnt = VHOLD_NO_SMR;
653 	vp->v_type = VNON;
654 	mtx_lock(&vnode_list_mtx);
655 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
656 	mtx_unlock(&vnode_list_mtx);
657 	return (0);
658 }
659 
660 /*
661  * Free a vnode when it is cleared from the zone.
662  */
663 static void
664 vnode_fini(void *mem, int size)
665 {
666 	struct vnode *vp;
667 	struct bufobj *bo;
668 
669 	vp = mem;
670 	vdbatch_dequeue(vp);
671 	mtx_lock(&vnode_list_mtx);
672 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
673 	mtx_unlock(&vnode_list_mtx);
674 	rangelock_destroy(&vp->v_rl);
675 	lockdestroy(vp->v_vnlock);
676 	mtx_destroy(&vp->v_interlock);
677 	bo = &vp->v_bufobj;
678 	rw_destroy(BO_LOCKPTR(bo));
679 
680 	kasan_mark(mem, size, size, 0);
681 }
682 
683 /*
684  * Provide the size of NFS nclnode and NFS fh for calculation of the
685  * vnode memory consumption.  The size is specified directly to
686  * eliminate dependency on NFS-private header.
687  *
688  * Other filesystems may use bigger or smaller (like UFS and ZFS)
689  * private inode data, but the NFS-based estimation is ample enough.
690  * Still, we care about differences in the size between 64- and 32-bit
691  * platforms.
692  *
693  * Namecache structure size is heuristically
694  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
695  */
696 #ifdef _LP64
697 #define	NFS_NCLNODE_SZ	(528 + 64)
698 #define	NC_SZ		148
699 #else
700 #define	NFS_NCLNODE_SZ	(360 + 32)
701 #define	NC_SZ		92
702 #endif
703 
704 static void
705 vntblinit(void *dummy __unused)
706 {
707 	struct vdbatch *vd;
708 	uma_ctor ctor;
709 	uma_dtor dtor;
710 	int cpu, physvnodes, virtvnodes;
711 
712 	/*
713 	 * Desiredvnodes is a function of the physical memory size and the
714 	 * kernel's heap size.  Generally speaking, it scales with the
715 	 * physical memory size.  The ratio of desiredvnodes to the physical
716 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
717 	 * Thereafter, the
718 	 * marginal ratio of desiredvnodes to the physical memory size is
719 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
720 	 * size.  The memory required by desiredvnodes vnodes and vm objects
721 	 * must not exceed 1/10th of the kernel's heap size.
722 	 */
723 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
724 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
725 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
726 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
727 	desiredvnodes = min(physvnodes, virtvnodes);
728 	if (desiredvnodes > MAXVNODES_MAX) {
729 		if (bootverbose)
730 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
731 			    desiredvnodes, MAXVNODES_MAX);
732 		desiredvnodes = MAXVNODES_MAX;
733 	}
734 	wantfreevnodes = desiredvnodes / 4;
735 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
736 	TAILQ_INIT(&vnode_list);
737 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
738 	/*
739 	 * The lock is taken to appease WITNESS.
740 	 */
741 	mtx_lock(&vnode_list_mtx);
742 	vnlru_recalc();
743 	mtx_unlock(&vnode_list_mtx);
744 	vnode_list_free_marker = vn_alloc_marker(NULL);
745 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
746 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
747 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
748 
749 #ifdef KASAN
750 	ctor = vnode_ctor;
751 	dtor = vnode_dtor;
752 #else
753 	ctor = NULL;
754 	dtor = NULL;
755 #endif
756 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
757 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
758 	uma_zone_set_smr(vnode_zone, vfs_smr);
759 
760 	/*
761 	 * Preallocate enough nodes to support one-per buf so that
762 	 * we can not fail an insert.  reassignbuf() callers can not
763 	 * tolerate the insertion failure.
764 	 */
765 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
766 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
767 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
768 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
769 	uma_prealloc(buf_trie_zone, nbuf);
770 
771 	vnodes_created = counter_u64_alloc(M_WAITOK);
772 	recycles_count = counter_u64_alloc(M_WAITOK);
773 	recycles_free_count = counter_u64_alloc(M_WAITOK);
774 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
775 
776 	/*
777 	 * Initialize the filesystem syncer.
778 	 */
779 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
780 	    &syncer_mask);
781 	syncer_maxdelay = syncer_mask + 1;
782 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
783 	cv_init(&sync_wakeup, "syncer");
784 
785 	CPU_FOREACH(cpu) {
786 		vd = DPCPU_ID_PTR((cpu), vd);
787 		bzero(vd, sizeof(*vd));
788 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
789 	}
790 }
791 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
792 
793 /*
794  * Mark a mount point as busy. Used to synchronize access and to delay
795  * unmounting. Eventually, mountlist_mtx is not released on failure.
796  *
797  * vfs_busy() is a custom lock, it can block the caller.
798  * vfs_busy() only sleeps if the unmount is active on the mount point.
799  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
800  * vnode belonging to mp.
801  *
802  * Lookup uses vfs_busy() to traverse mount points.
803  * root fs			var fs
804  * / vnode lock		A	/ vnode lock (/var)		D
805  * /var vnode lock	B	/log vnode lock(/var/log)	E
806  * vfs_busy lock	C	vfs_busy lock			F
807  *
808  * Within each file system, the lock order is C->A->B and F->D->E.
809  *
810  * When traversing across mounts, the system follows that lock order:
811  *
812  *        C->A->B
813  *              |
814  *              +->F->D->E
815  *
816  * The lookup() process for namei("/var") illustrates the process:
817  *  1. VOP_LOOKUP() obtains B while A is held
818  *  2. vfs_busy() obtains a shared lock on F while A and B are held
819  *  3. vput() releases lock on B
820  *  4. vput() releases lock on A
821  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
822  *  6. vfs_unbusy() releases shared lock on F
823  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
824  *     Attempt to lock A (instead of vp_crossmp) while D is held would
825  *     violate the global order, causing deadlocks.
826  *
827  * dounmount() locks B while F is drained.  Note that for stacked
828  * filesystems, D and B in the example above may be the same lock,
829  * which introdues potential lock order reversal deadlock between
830  * dounmount() and step 5 above.  These filesystems may avoid the LOR
831  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
832  * remain held until after step 5.
833  */
834 int
835 vfs_busy(struct mount *mp, int flags)
836 {
837 	struct mount_pcpu *mpcpu;
838 
839 	MPASS((flags & ~MBF_MASK) == 0);
840 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
841 
842 	if (vfs_op_thread_enter(mp, mpcpu)) {
843 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
844 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
845 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
846 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
847 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
848 		vfs_op_thread_exit(mp, mpcpu);
849 		if (flags & MBF_MNTLSTLOCK)
850 			mtx_unlock(&mountlist_mtx);
851 		return (0);
852 	}
853 
854 	MNT_ILOCK(mp);
855 	vfs_assert_mount_counters(mp);
856 	MNT_REF(mp);
857 	/*
858 	 * If mount point is currently being unmounted, sleep until the
859 	 * mount point fate is decided.  If thread doing the unmounting fails,
860 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
861 	 * that this mount point has survived the unmount attempt and vfs_busy
862 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
863 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
864 	 * about to be really destroyed.  vfs_busy needs to release its
865 	 * reference on the mount point in this case and return with ENOENT,
866 	 * telling the caller the mount it tried to busy is no longer valid.
867 	 */
868 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
869 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
870 		    ("%s: non-empty upper mount list with pending unmount",
871 		    __func__));
872 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
873 			MNT_REL(mp);
874 			MNT_IUNLOCK(mp);
875 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
876 			    __func__);
877 			return (ENOENT);
878 		}
879 		if (flags & MBF_MNTLSTLOCK)
880 			mtx_unlock(&mountlist_mtx);
881 		mp->mnt_kern_flag |= MNTK_MWAIT;
882 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
883 		if (flags & MBF_MNTLSTLOCK)
884 			mtx_lock(&mountlist_mtx);
885 		MNT_ILOCK(mp);
886 	}
887 	if (flags & MBF_MNTLSTLOCK)
888 		mtx_unlock(&mountlist_mtx);
889 	mp->mnt_lockref++;
890 	MNT_IUNLOCK(mp);
891 	return (0);
892 }
893 
894 /*
895  * Free a busy filesystem.
896  */
897 void
898 vfs_unbusy(struct mount *mp)
899 {
900 	struct mount_pcpu *mpcpu;
901 	int c;
902 
903 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
904 
905 	if (vfs_op_thread_enter(mp, mpcpu)) {
906 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
907 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
908 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
909 		vfs_op_thread_exit(mp, mpcpu);
910 		return;
911 	}
912 
913 	MNT_ILOCK(mp);
914 	vfs_assert_mount_counters(mp);
915 	MNT_REL(mp);
916 	c = --mp->mnt_lockref;
917 	if (mp->mnt_vfs_ops == 0) {
918 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
919 		MNT_IUNLOCK(mp);
920 		return;
921 	}
922 	if (c < 0)
923 		vfs_dump_mount_counters(mp);
924 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
925 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
926 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
927 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
928 		wakeup(&mp->mnt_lockref);
929 	}
930 	MNT_IUNLOCK(mp);
931 }
932 
933 /*
934  * Lookup a mount point by filesystem identifier.
935  */
936 struct mount *
937 vfs_getvfs(fsid_t *fsid)
938 {
939 	struct mount *mp;
940 
941 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
942 	mtx_lock(&mountlist_mtx);
943 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
944 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
945 			vfs_ref(mp);
946 			mtx_unlock(&mountlist_mtx);
947 			return (mp);
948 		}
949 	}
950 	mtx_unlock(&mountlist_mtx);
951 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
952 	return ((struct mount *) 0);
953 }
954 
955 /*
956  * Lookup a mount point by filesystem identifier, busying it before
957  * returning.
958  *
959  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
960  * cache for popular filesystem identifiers.  The cache is lockess, using
961  * the fact that struct mount's are never freed.  In worst case we may
962  * get pointer to unmounted or even different filesystem, so we have to
963  * check what we got, and go slow way if so.
964  */
965 struct mount *
966 vfs_busyfs(fsid_t *fsid)
967 {
968 #define	FSID_CACHE_SIZE	256
969 	typedef struct mount * volatile vmp_t;
970 	static vmp_t cache[FSID_CACHE_SIZE];
971 	struct mount *mp;
972 	int error;
973 	uint32_t hash;
974 
975 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
976 	hash = fsid->val[0] ^ fsid->val[1];
977 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
978 	mp = cache[hash];
979 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
980 		goto slow;
981 	if (vfs_busy(mp, 0) != 0) {
982 		cache[hash] = NULL;
983 		goto slow;
984 	}
985 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
986 		return (mp);
987 	else
988 	    vfs_unbusy(mp);
989 
990 slow:
991 	mtx_lock(&mountlist_mtx);
992 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
993 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
994 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
995 			if (error) {
996 				cache[hash] = NULL;
997 				mtx_unlock(&mountlist_mtx);
998 				return (NULL);
999 			}
1000 			cache[hash] = mp;
1001 			return (mp);
1002 		}
1003 	}
1004 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1005 	mtx_unlock(&mountlist_mtx);
1006 	return ((struct mount *) 0);
1007 }
1008 
1009 /*
1010  * Check if a user can access privileged mount options.
1011  */
1012 int
1013 vfs_suser(struct mount *mp, struct thread *td)
1014 {
1015 	int error;
1016 
1017 	if (jailed(td->td_ucred)) {
1018 		/*
1019 		 * If the jail of the calling thread lacks permission for
1020 		 * this type of file system, deny immediately.
1021 		 */
1022 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1023 			return (EPERM);
1024 
1025 		/*
1026 		 * If the file system was mounted outside the jail of the
1027 		 * calling thread, deny immediately.
1028 		 */
1029 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1030 			return (EPERM);
1031 	}
1032 
1033 	/*
1034 	 * If file system supports delegated administration, we don't check
1035 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1036 	 * by the file system itself.
1037 	 * If this is not the user that did original mount, we check for
1038 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1039 	 */
1040 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1041 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1042 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1043 			return (error);
1044 	}
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1050  * will be used to create fake device numbers for stat().  Also try (but
1051  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1052  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1053  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1054  *
1055  * Keep in mind that several mounts may be running in parallel.  Starting
1056  * the search one past where the previous search terminated is both a
1057  * micro-optimization and a defense against returning the same fsid to
1058  * different mounts.
1059  */
1060 void
1061 vfs_getnewfsid(struct mount *mp)
1062 {
1063 	static uint16_t mntid_base;
1064 	struct mount *nmp;
1065 	fsid_t tfsid;
1066 	int mtype;
1067 
1068 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1069 	mtx_lock(&mntid_mtx);
1070 	mtype = mp->mnt_vfc->vfc_typenum;
1071 	tfsid.val[1] = mtype;
1072 	mtype = (mtype & 0xFF) << 24;
1073 	for (;;) {
1074 		tfsid.val[0] = makedev(255,
1075 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1076 		mntid_base++;
1077 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1078 			break;
1079 		vfs_rel(nmp);
1080 	}
1081 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1082 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1083 	mtx_unlock(&mntid_mtx);
1084 }
1085 
1086 /*
1087  * Knob to control the precision of file timestamps:
1088  *
1089  *   0 = seconds only; nanoseconds zeroed.
1090  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1091  *   2 = seconds and nanoseconds, truncated to microseconds.
1092  * >=3 = seconds and nanoseconds, maximum precision.
1093  */
1094 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1095 
1096 static int timestamp_precision = TSP_USEC;
1097 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1098     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1099     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1100     "3+: sec + ns (max. precision))");
1101 
1102 /*
1103  * Get a current timestamp.
1104  */
1105 void
1106 vfs_timestamp(struct timespec *tsp)
1107 {
1108 	struct timeval tv;
1109 
1110 	switch (timestamp_precision) {
1111 	case TSP_SEC:
1112 		tsp->tv_sec = time_second;
1113 		tsp->tv_nsec = 0;
1114 		break;
1115 	case TSP_HZ:
1116 		getnanotime(tsp);
1117 		break;
1118 	case TSP_USEC:
1119 		microtime(&tv);
1120 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1121 		break;
1122 	case TSP_NSEC:
1123 	default:
1124 		nanotime(tsp);
1125 		break;
1126 	}
1127 }
1128 
1129 /*
1130  * Set vnode attributes to VNOVAL
1131  */
1132 void
1133 vattr_null(struct vattr *vap)
1134 {
1135 
1136 	vap->va_type = VNON;
1137 	vap->va_size = VNOVAL;
1138 	vap->va_bytes = VNOVAL;
1139 	vap->va_mode = VNOVAL;
1140 	vap->va_nlink = VNOVAL;
1141 	vap->va_uid = VNOVAL;
1142 	vap->va_gid = VNOVAL;
1143 	vap->va_fsid = VNOVAL;
1144 	vap->va_fileid = VNOVAL;
1145 	vap->va_blocksize = VNOVAL;
1146 	vap->va_rdev = VNOVAL;
1147 	vap->va_atime.tv_sec = VNOVAL;
1148 	vap->va_atime.tv_nsec = VNOVAL;
1149 	vap->va_mtime.tv_sec = VNOVAL;
1150 	vap->va_mtime.tv_nsec = VNOVAL;
1151 	vap->va_ctime.tv_sec = VNOVAL;
1152 	vap->va_ctime.tv_nsec = VNOVAL;
1153 	vap->va_birthtime.tv_sec = VNOVAL;
1154 	vap->va_birthtime.tv_nsec = VNOVAL;
1155 	vap->va_flags = VNOVAL;
1156 	vap->va_gen = VNOVAL;
1157 	vap->va_vaflags = 0;
1158 }
1159 
1160 /*
1161  * Try to reduce the total number of vnodes.
1162  *
1163  * This routine (and its user) are buggy in at least the following ways:
1164  * - all parameters were picked years ago when RAM sizes were significantly
1165  *   smaller
1166  * - it can pick vnodes based on pages used by the vm object, but filesystems
1167  *   like ZFS don't use it making the pick broken
1168  * - since ZFS has its own aging policy it gets partially combated by this one
1169  * - a dedicated method should be provided for filesystems to let them decide
1170  *   whether the vnode should be recycled
1171  *
1172  * This routine is called when we have too many vnodes.  It attempts
1173  * to free <count> vnodes and will potentially free vnodes that still
1174  * have VM backing store (VM backing store is typically the cause
1175  * of a vnode blowout so we want to do this).  Therefore, this operation
1176  * is not considered cheap.
1177  *
1178  * A number of conditions may prevent a vnode from being reclaimed.
1179  * the buffer cache may have references on the vnode, a directory
1180  * vnode may still have references due to the namei cache representing
1181  * underlying files, or the vnode may be in active use.   It is not
1182  * desirable to reuse such vnodes.  These conditions may cause the
1183  * number of vnodes to reach some minimum value regardless of what
1184  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1185  *
1186  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1187  * 			 entries if this argument is strue
1188  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1189  *			 pages.
1190  * @param target	 How many vnodes to reclaim.
1191  * @return		 The number of vnodes that were reclaimed.
1192  */
1193 static int
1194 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1195 {
1196 	struct vnode *vp, *mvp;
1197 	struct mount *mp;
1198 	struct vm_object *object;
1199 	u_long done;
1200 	bool retried;
1201 
1202 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1203 
1204 	retried = false;
1205 	done = 0;
1206 
1207 	mvp = vnode_list_reclaim_marker;
1208 restart:
1209 	vp = mvp;
1210 	while (done < target) {
1211 		vp = TAILQ_NEXT(vp, v_vnodelist);
1212 		if (__predict_false(vp == NULL))
1213 			break;
1214 
1215 		if (__predict_false(vp->v_type == VMARKER))
1216 			continue;
1217 
1218 		/*
1219 		 * If it's been deconstructed already, it's still
1220 		 * referenced, or it exceeds the trigger, skip it.
1221 		 * Also skip free vnodes.  We are trying to make space
1222 		 * to expand the free list, not reduce it.
1223 		 */
1224 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1225 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1226 			goto next_iter;
1227 
1228 		if (vp->v_type == VBAD || vp->v_type == VNON)
1229 			goto next_iter;
1230 
1231 		object = atomic_load_ptr(&vp->v_object);
1232 		if (object == NULL || object->resident_page_count > trigger) {
1233 			goto next_iter;
1234 		}
1235 
1236 		/*
1237 		 * Handle races against vnode allocation. Filesystems lock the
1238 		 * vnode some time after it gets returned from getnewvnode,
1239 		 * despite type and hold count being manipulated earlier.
1240 		 * Resorting to checking v_mount restores guarantees present
1241 		 * before the global list was reworked to contain all vnodes.
1242 		 */
1243 		if (!VI_TRYLOCK(vp))
1244 			goto next_iter;
1245 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1246 			VI_UNLOCK(vp);
1247 			goto next_iter;
1248 		}
1249 		if (vp->v_mount == NULL) {
1250 			VI_UNLOCK(vp);
1251 			goto next_iter;
1252 		}
1253 		vholdl(vp);
1254 		VI_UNLOCK(vp);
1255 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1256 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1257 		mtx_unlock(&vnode_list_mtx);
1258 
1259 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1260 			vdrop_recycle(vp);
1261 			goto next_iter_unlocked;
1262 		}
1263 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1264 			vdrop_recycle(vp);
1265 			vn_finished_write(mp);
1266 			goto next_iter_unlocked;
1267 		}
1268 
1269 		VI_LOCK(vp);
1270 		if (vp->v_usecount > 0 ||
1271 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1272 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1273 		    vp->v_object->resident_page_count > trigger)) {
1274 			VOP_UNLOCK(vp);
1275 			vdropl_recycle(vp);
1276 			vn_finished_write(mp);
1277 			goto next_iter_unlocked;
1278 		}
1279 		counter_u64_add(recycles_count, 1);
1280 		vgonel(vp);
1281 		VOP_UNLOCK(vp);
1282 		vdropl_recycle(vp);
1283 		vn_finished_write(mp);
1284 		done++;
1285 next_iter_unlocked:
1286 		maybe_yield();
1287 		mtx_lock(&vnode_list_mtx);
1288 		goto restart;
1289 next_iter:
1290 		MPASS(vp->v_type != VMARKER);
1291 		if (!should_yield())
1292 			continue;
1293 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1294 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1295 		mtx_unlock(&vnode_list_mtx);
1296 		kern_yield(PRI_USER);
1297 		mtx_lock(&vnode_list_mtx);
1298 		goto restart;
1299 	}
1300 	if (done == 0 && !retried) {
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1303 		retried = true;
1304 		goto restart;
1305 	}
1306 	return (done);
1307 }
1308 
1309 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1310 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1311     0,
1312     "limit on vnode free requests per call to the vnlru_free routine");
1313 
1314 /*
1315  * Attempt to reduce the free list by the requested amount.
1316  */
1317 static int
1318 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1319 {
1320 	struct vnode *vp;
1321 	struct mount *mp;
1322 	int ocount;
1323 	bool retried;
1324 
1325 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1326 	if (count > max_vnlru_free)
1327 		count = max_vnlru_free;
1328 	if (count == 0) {
1329 		mtx_unlock(&vnode_list_mtx);
1330 		return (0);
1331 	}
1332 	ocount = count;
1333 	retried = false;
1334 	vp = mvp;
1335 	for (;;) {
1336 		vp = TAILQ_NEXT(vp, v_vnodelist);
1337 		if (__predict_false(vp == NULL)) {
1338 			/*
1339 			 * The free vnode marker can be past eligible vnodes:
1340 			 * 1. if vdbatch_process trylock failed
1341 			 * 2. if vtryrecycle failed
1342 			 *
1343 			 * If so, start the scan from scratch.
1344 			 */
1345 			if (!retried && vnlru_read_freevnodes() > 0) {
1346 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1347 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1348 				vp = mvp;
1349 				retried = true;
1350 				continue;
1351 			}
1352 
1353 			/*
1354 			 * Give up
1355 			 */
1356 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1357 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1358 			mtx_unlock(&vnode_list_mtx);
1359 			break;
1360 		}
1361 		if (__predict_false(vp->v_type == VMARKER))
1362 			continue;
1363 		if (vp->v_holdcnt > 0)
1364 			continue;
1365 		/*
1366 		 * Don't recycle if our vnode is from different type
1367 		 * of mount point.  Note that mp is type-safe, the
1368 		 * check does not reach unmapped address even if
1369 		 * vnode is reclaimed.
1370 		 */
1371 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1372 		    mp->mnt_op != mnt_op) {
1373 			continue;
1374 		}
1375 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1376 			continue;
1377 		}
1378 		if (!vhold_recycle_free(vp))
1379 			continue;
1380 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1381 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1382 		mtx_unlock(&vnode_list_mtx);
1383 		/*
1384 		 * FIXME: ignores the return value, meaning it may be nothing
1385 		 * got recycled but it claims otherwise to the caller.
1386 		 *
1387 		 * Originally the value started being ignored in 2005 with
1388 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1389 		 *
1390 		 * Respecting the value can run into significant stalls if most
1391 		 * vnodes belong to one file system and it has writes
1392 		 * suspended.  In presence of many threads and millions of
1393 		 * vnodes they keep contending on the vnode_list_mtx lock only
1394 		 * to find vnodes they can't recycle.
1395 		 *
1396 		 * The solution would be to pre-check if the vnode is likely to
1397 		 * be recycle-able, but it needs to happen with the
1398 		 * vnode_list_mtx lock held. This runs into a problem where
1399 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1400 		 * writes are frozen) can take locks which LOR against it.
1401 		 *
1402 		 * Check nullfs for one example (null_getwritemount).
1403 		 */
1404 		vtryrecycle(vp);
1405 		count--;
1406 		if (count == 0) {
1407 			break;
1408 		}
1409 		mtx_lock(&vnode_list_mtx);
1410 		vp = mvp;
1411 	}
1412 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1413 	return (ocount - count);
1414 }
1415 
1416 /*
1417  * XXX: returns without vnode_list_mtx locked!
1418  */
1419 static int
1420 vnlru_free_locked(int count)
1421 {
1422 	int ret;
1423 
1424 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1425 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker);
1426 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1427 	return (ret);
1428 }
1429 
1430 void
1431 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1432 {
1433 
1434 	MPASS(mnt_op != NULL);
1435 	MPASS(mvp != NULL);
1436 	VNPASS(mvp->v_type == VMARKER, mvp);
1437 	mtx_lock(&vnode_list_mtx);
1438 	vnlru_free_impl(count, mnt_op, mvp);
1439 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1440 }
1441 
1442 struct vnode *
1443 vnlru_alloc_marker(void)
1444 {
1445 	struct vnode *mvp;
1446 
1447 	mvp = vn_alloc_marker(NULL);
1448 	mtx_lock(&vnode_list_mtx);
1449 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1450 	mtx_unlock(&vnode_list_mtx);
1451 	return (mvp);
1452 }
1453 
1454 void
1455 vnlru_free_marker(struct vnode *mvp)
1456 {
1457 	mtx_lock(&vnode_list_mtx);
1458 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1459 	mtx_unlock(&vnode_list_mtx);
1460 	vn_free_marker(mvp);
1461 }
1462 
1463 static void
1464 vnlru_recalc(void)
1465 {
1466 
1467 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1468 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1469 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1470 	vlowat = vhiwat / 2;
1471 }
1472 
1473 /*
1474  * Attempt to recycle vnodes in a context that is always safe to block.
1475  * Calling vlrurecycle() from the bowels of filesystem code has some
1476  * interesting deadlock problems.
1477  */
1478 static struct proc *vnlruproc;
1479 static int vnlruproc_sig;
1480 
1481 /*
1482  * The main freevnodes counter is only updated when a counter local to CPU
1483  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1484  * walked to compute a more accurate total.
1485  *
1486  * Note: the actual value at any given moment can still exceed slop, but it
1487  * should not be by significant margin in practice.
1488  */
1489 #define VNLRU_FREEVNODES_SLOP 126
1490 
1491 static void __noinline
1492 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1493 {
1494 
1495 	atomic_add_long(&freevnodes, *lfreevnodes);
1496 	*lfreevnodes = 0;
1497 	critical_exit();
1498 }
1499 
1500 static __inline void
1501 vfs_freevnodes_inc(void)
1502 {
1503 	int8_t *lfreevnodes;
1504 
1505 	critical_enter();
1506 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1507 	(*lfreevnodes)++;
1508 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1509 		vfs_freevnodes_rollup(lfreevnodes);
1510 	else
1511 		critical_exit();
1512 }
1513 
1514 static __inline void
1515 vfs_freevnodes_dec(void)
1516 {
1517 	int8_t *lfreevnodes;
1518 
1519 	critical_enter();
1520 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1521 	(*lfreevnodes)--;
1522 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1523 		vfs_freevnodes_rollup(lfreevnodes);
1524 	else
1525 		critical_exit();
1526 }
1527 
1528 static u_long
1529 vnlru_read_freevnodes(void)
1530 {
1531 	long slop, rfreevnodes;
1532 	int cpu;
1533 
1534 	rfreevnodes = atomic_load_long(&freevnodes);
1535 
1536 	if (rfreevnodes > freevnodes_old)
1537 		slop = rfreevnodes - freevnodes_old;
1538 	else
1539 		slop = freevnodes_old - rfreevnodes;
1540 	if (slop < VNLRU_FREEVNODES_SLOP)
1541 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1542 	freevnodes_old = rfreevnodes;
1543 	CPU_FOREACH(cpu) {
1544 		freevnodes_old += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1545 	}
1546 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1547 }
1548 
1549 static bool
1550 vnlru_under(u_long rnumvnodes, u_long limit)
1551 {
1552 	u_long rfreevnodes, space;
1553 
1554 	if (__predict_false(rnumvnodes > desiredvnodes))
1555 		return (true);
1556 
1557 	space = desiredvnodes - rnumvnodes;
1558 	if (space < limit) {
1559 		rfreevnodes = vnlru_read_freevnodes();
1560 		if (rfreevnodes > wantfreevnodes)
1561 			space += rfreevnodes - wantfreevnodes;
1562 	}
1563 	return (space < limit);
1564 }
1565 
1566 static void
1567 vnlru_kick_locked(void)
1568 {
1569 
1570 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1571 	if (vnlruproc_sig == 0) {
1572 		vnlruproc_sig = 1;
1573 		wakeup(vnlruproc);
1574 	}
1575 }
1576 
1577 static void
1578 vnlru_kick_cond(void)
1579 {
1580 
1581 	if (vnlruproc_sig)
1582 		return;
1583 	mtx_lock(&vnode_list_mtx);
1584 	vnlru_kick_locked();
1585 	mtx_unlock(&vnode_list_mtx);
1586 }
1587 
1588 static void
1589 vnlru_proc(void)
1590 {
1591 	u_long rnumvnodes, rfreevnodes, target;
1592 	unsigned long onumvnodes;
1593 	int done, force, trigger, usevnodes;
1594 	bool reclaim_nc_src, want_reread;
1595 
1596 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1597 	    SHUTDOWN_PRI_FIRST);
1598 
1599 	force = 0;
1600 	want_reread = false;
1601 	for (;;) {
1602 		kproc_suspend_check(vnlruproc);
1603 		mtx_lock(&vnode_list_mtx);
1604 		rnumvnodes = atomic_load_long(&numvnodes);
1605 
1606 		if (want_reread) {
1607 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1608 			want_reread = false;
1609 		}
1610 
1611 		/*
1612 		 * If numvnodes is too large (due to desiredvnodes being
1613 		 * adjusted using its sysctl, or emergency growth), first
1614 		 * try to reduce it by discarding from the free list.
1615 		 */
1616 		if (rnumvnodes > desiredvnodes) {
1617 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1618 			mtx_lock(&vnode_list_mtx);
1619 			rnumvnodes = atomic_load_long(&numvnodes);
1620 		}
1621 		/*
1622 		 * Sleep if the vnode cache is in a good state.  This is
1623 		 * when it is not over-full and has space for about a 4%
1624 		 * or 9% expansion (by growing its size or inexcessively
1625 		 * reducing its free list).  Otherwise, try to reclaim
1626 		 * space for a 10% expansion.
1627 		 */
1628 		if (vstir && force == 0) {
1629 			force = 1;
1630 			vstir = false;
1631 		}
1632 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1633 			vnlruproc_sig = 0;
1634 			wakeup(&vnlruproc_sig);
1635 			msleep(vnlruproc, &vnode_list_mtx,
1636 			    PVFS|PDROP, "vlruwt", hz);
1637 			continue;
1638 		}
1639 		rfreevnodes = vnlru_read_freevnodes();
1640 
1641 		onumvnodes = rnumvnodes;
1642 		/*
1643 		 * Calculate parameters for recycling.  These are the same
1644 		 * throughout the loop to give some semblance of fairness.
1645 		 * The trigger point is to avoid recycling vnodes with lots
1646 		 * of resident pages.  We aren't trying to free memory; we
1647 		 * are trying to recycle or at least free vnodes.
1648 		 */
1649 		if (rnumvnodes <= desiredvnodes)
1650 			usevnodes = rnumvnodes - rfreevnodes;
1651 		else
1652 			usevnodes = rnumvnodes;
1653 		if (usevnodes <= 0)
1654 			usevnodes = 1;
1655 		/*
1656 		 * The trigger value is chosen to give a conservatively
1657 		 * large value to ensure that it alone doesn't prevent
1658 		 * making progress.  The value can easily be so large that
1659 		 * it is effectively infinite in some congested and
1660 		 * misconfigured cases, and this is necessary.  Normally
1661 		 * it is about 8 to 100 (pages), which is quite large.
1662 		 */
1663 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1664 		if (force < 2)
1665 			trigger = vsmalltrigger;
1666 		reclaim_nc_src = force >= 3;
1667 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1668 		target = target / 10 + 1;
1669 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1670 		mtx_unlock(&vnode_list_mtx);
1671 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1672 			uma_reclaim(UMA_RECLAIM_DRAIN);
1673 		if (done == 0) {
1674 			if (force == 0 || force == 1) {
1675 				force = 2;
1676 				continue;
1677 			}
1678 			if (force == 2) {
1679 				force = 3;
1680 				continue;
1681 			}
1682 			want_reread = true;
1683 			force = 0;
1684 			vnlru_nowhere++;
1685 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1686 		} else {
1687 			want_reread = true;
1688 			kern_yield(PRI_USER);
1689 		}
1690 	}
1691 }
1692 
1693 static struct kproc_desc vnlru_kp = {
1694 	"vnlru",
1695 	vnlru_proc,
1696 	&vnlruproc
1697 };
1698 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1699     &vnlru_kp);
1700 
1701 /*
1702  * Routines having to do with the management of the vnode table.
1703  */
1704 
1705 /*
1706  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1707  * before we actually vgone().  This function must be called with the vnode
1708  * held to prevent the vnode from being returned to the free list midway
1709  * through vgone().
1710  */
1711 static int
1712 vtryrecycle(struct vnode *vp)
1713 {
1714 	struct mount *vnmp;
1715 
1716 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1717 	VNPASS(vp->v_holdcnt > 0, vp);
1718 	/*
1719 	 * This vnode may found and locked via some other list, if so we
1720 	 * can't recycle it yet.
1721 	 */
1722 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1723 		CTR2(KTR_VFS,
1724 		    "%s: impossible to recycle, vp %p lock is already held",
1725 		    __func__, vp);
1726 		vdrop_recycle(vp);
1727 		return (EWOULDBLOCK);
1728 	}
1729 	/*
1730 	 * Don't recycle if its filesystem is being suspended.
1731 	 */
1732 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1733 		VOP_UNLOCK(vp);
1734 		CTR2(KTR_VFS,
1735 		    "%s: impossible to recycle, cannot start the write for %p",
1736 		    __func__, vp);
1737 		vdrop_recycle(vp);
1738 		return (EBUSY);
1739 	}
1740 	/*
1741 	 * If we got this far, we need to acquire the interlock and see if
1742 	 * anyone picked up this vnode from another list.  If not, we will
1743 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1744 	 * will skip over it.
1745 	 */
1746 	VI_LOCK(vp);
1747 	if (vp->v_usecount) {
1748 		VOP_UNLOCK(vp);
1749 		vdropl_recycle(vp);
1750 		vn_finished_write(vnmp);
1751 		CTR2(KTR_VFS,
1752 		    "%s: impossible to recycle, %p is already referenced",
1753 		    __func__, vp);
1754 		return (EBUSY);
1755 	}
1756 	if (!VN_IS_DOOMED(vp)) {
1757 		counter_u64_add(recycles_free_count, 1);
1758 		vgonel(vp);
1759 	}
1760 	VOP_UNLOCK(vp);
1761 	vdropl_recycle(vp);
1762 	vn_finished_write(vnmp);
1763 	return (0);
1764 }
1765 
1766 /*
1767  * Allocate a new vnode.
1768  *
1769  * The operation never returns an error. Returning an error was disabled
1770  * in r145385 (dated 2005) with the following comment:
1771  *
1772  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1773  *
1774  * Given the age of this commit (almost 15 years at the time of writing this
1775  * comment) restoring the ability to fail requires a significant audit of
1776  * all codepaths.
1777  *
1778  * The routine can try to free a vnode or stall for up to 1 second waiting for
1779  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1780  */
1781 static u_long vn_alloc_cyclecount;
1782 static u_long vn_alloc_sleeps;
1783 
1784 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1785     "Number of times vnode allocation blocked waiting on vnlru");
1786 
1787 static struct vnode * __noinline
1788 vn_alloc_hard(struct mount *mp)
1789 {
1790 	u_long rnumvnodes, rfreevnodes;
1791 
1792 	mtx_lock(&vnode_list_mtx);
1793 	rnumvnodes = atomic_load_long(&numvnodes);
1794 	if (rnumvnodes + 1 < desiredvnodes) {
1795 		vn_alloc_cyclecount = 0;
1796 		mtx_unlock(&vnode_list_mtx);
1797 		goto alloc;
1798 	}
1799 	rfreevnodes = vnlru_read_freevnodes();
1800 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1801 		vn_alloc_cyclecount = 0;
1802 		vstir = true;
1803 	}
1804 	/*
1805 	 * Grow the vnode cache if it will not be above its target max
1806 	 * after growing.  Otherwise, if the free list is nonempty, try
1807 	 * to reclaim 1 item from it before growing the cache (possibly
1808 	 * above its target max if the reclamation failed or is delayed).
1809 	 * Otherwise, wait for some space.  In all cases, schedule
1810 	 * vnlru_proc() if we are getting short of space.  The watermarks
1811 	 * should be chosen so that we never wait or even reclaim from
1812 	 * the free list to below its target minimum.
1813 	 */
1814 	if (vnlru_free_locked(1) > 0)
1815 		goto alloc;
1816 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1817 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1818 		/*
1819 		 * Wait for space for a new vnode.
1820 		 */
1821 		mtx_lock(&vnode_list_mtx);
1822 		vnlru_kick_locked();
1823 		vn_alloc_sleeps++;
1824 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1825 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1826 		    vnlru_read_freevnodes() > 1)
1827 			vnlru_free_locked(1);
1828 		else
1829 			mtx_unlock(&vnode_list_mtx);
1830 	}
1831 alloc:
1832 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1833 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1834 	if (vnlru_under(rnumvnodes, vlowat))
1835 		vnlru_kick_cond();
1836 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1837 }
1838 
1839 static struct vnode *
1840 vn_alloc(struct mount *mp)
1841 {
1842 	u_long rnumvnodes;
1843 
1844 	if (__predict_false(vn_alloc_cyclecount != 0))
1845 		return (vn_alloc_hard(mp));
1846 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1847 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
1848 		atomic_subtract_long(&numvnodes, 1);
1849 		return (vn_alloc_hard(mp));
1850 	}
1851 
1852 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1853 }
1854 
1855 static void
1856 vn_free(struct vnode *vp)
1857 {
1858 
1859 	atomic_subtract_long(&numvnodes, 1);
1860 	uma_zfree_smr(vnode_zone, vp);
1861 }
1862 
1863 /*
1864  * Return the next vnode from the free list.
1865  */
1866 int
1867 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1868     struct vnode **vpp)
1869 {
1870 	struct vnode *vp;
1871 	struct thread *td;
1872 	struct lock_object *lo;
1873 
1874 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1875 
1876 	KASSERT(vops->registered,
1877 	    ("%s: not registered vector op %p\n", __func__, vops));
1878 	cache_validate_vop_vector(mp, vops);
1879 
1880 	td = curthread;
1881 	if (td->td_vp_reserved != NULL) {
1882 		vp = td->td_vp_reserved;
1883 		td->td_vp_reserved = NULL;
1884 	} else {
1885 		vp = vn_alloc(mp);
1886 	}
1887 	counter_u64_add(vnodes_created, 1);
1888 
1889 	vn_set_state(vp, VSTATE_UNINITIALIZED);
1890 
1891 	/*
1892 	 * Locks are given the generic name "vnode" when created.
1893 	 * Follow the historic practice of using the filesystem
1894 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1895 	 *
1896 	 * Locks live in a witness group keyed on their name. Thus,
1897 	 * when a lock is renamed, it must also move from the witness
1898 	 * group of its old name to the witness group of its new name.
1899 	 *
1900 	 * The change only needs to be made when the vnode moves
1901 	 * from one filesystem type to another. We ensure that each
1902 	 * filesystem use a single static name pointer for its tag so
1903 	 * that we can compare pointers rather than doing a strcmp().
1904 	 */
1905 	lo = &vp->v_vnlock->lock_object;
1906 #ifdef WITNESS
1907 	if (lo->lo_name != tag) {
1908 #endif
1909 		lo->lo_name = tag;
1910 #ifdef WITNESS
1911 		WITNESS_DESTROY(lo);
1912 		WITNESS_INIT(lo, tag);
1913 	}
1914 #endif
1915 	/*
1916 	 * By default, don't allow shared locks unless filesystems opt-in.
1917 	 */
1918 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1919 	/*
1920 	 * Finalize various vnode identity bits.
1921 	 */
1922 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1923 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1924 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1925 	vp->v_type = VNON;
1926 	vp->v_op = vops;
1927 	vp->v_irflag = 0;
1928 	v_init_counters(vp);
1929 	vn_seqc_init(vp);
1930 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1931 #ifdef DIAGNOSTIC
1932 	if (mp == NULL && vops != &dead_vnodeops)
1933 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1934 #endif
1935 #ifdef MAC
1936 	mac_vnode_init(vp);
1937 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1938 		mac_vnode_associate_singlelabel(mp, vp);
1939 #endif
1940 	if (mp != NULL) {
1941 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1942 	}
1943 
1944 	/*
1945 	 * For the filesystems which do not use vfs_hash_insert(),
1946 	 * still initialize v_hash to have vfs_hash_index() useful.
1947 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1948 	 * its own hashing.
1949 	 */
1950 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1951 
1952 	*vpp = vp;
1953 	return (0);
1954 }
1955 
1956 void
1957 getnewvnode_reserve(void)
1958 {
1959 	struct thread *td;
1960 
1961 	td = curthread;
1962 	MPASS(td->td_vp_reserved == NULL);
1963 	td->td_vp_reserved = vn_alloc(NULL);
1964 }
1965 
1966 void
1967 getnewvnode_drop_reserve(void)
1968 {
1969 	struct thread *td;
1970 
1971 	td = curthread;
1972 	if (td->td_vp_reserved != NULL) {
1973 		vn_free(td->td_vp_reserved);
1974 		td->td_vp_reserved = NULL;
1975 	}
1976 }
1977 
1978 static void __noinline
1979 freevnode(struct vnode *vp)
1980 {
1981 	struct bufobj *bo;
1982 
1983 	/*
1984 	 * The vnode has been marked for destruction, so free it.
1985 	 *
1986 	 * The vnode will be returned to the zone where it will
1987 	 * normally remain until it is needed for another vnode. We
1988 	 * need to cleanup (or verify that the cleanup has already
1989 	 * been done) any residual data left from its current use
1990 	 * so as not to contaminate the freshly allocated vnode.
1991 	 */
1992 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1993 	/*
1994 	 * Paired with vgone.
1995 	 */
1996 	vn_seqc_write_end_free(vp);
1997 
1998 	bo = &vp->v_bufobj;
1999 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2000 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2001 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2002 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2003 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2004 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2005 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2006 	    ("clean blk trie not empty"));
2007 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2008 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2009 	    ("dirty blk trie not empty"));
2010 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2011 	    ("Dangling rangelock waiters"));
2012 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2013 	    ("Leaked inactivation"));
2014 	VI_UNLOCK(vp);
2015 	cache_assert_no_entries(vp);
2016 
2017 #ifdef MAC
2018 	mac_vnode_destroy(vp);
2019 #endif
2020 	if (vp->v_pollinfo != NULL) {
2021 		/*
2022 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2023 		 * here while having another vnode locked when trying to
2024 		 * satisfy a lookup and needing to recycle.
2025 		 */
2026 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2027 		destroy_vpollinfo(vp->v_pollinfo);
2028 		VOP_UNLOCK(vp);
2029 		vp->v_pollinfo = NULL;
2030 	}
2031 	vp->v_mountedhere = NULL;
2032 	vp->v_unpcb = NULL;
2033 	vp->v_rdev = NULL;
2034 	vp->v_fifoinfo = NULL;
2035 	vp->v_iflag = 0;
2036 	vp->v_vflag = 0;
2037 	bo->bo_flag = 0;
2038 	vn_free(vp);
2039 }
2040 
2041 /*
2042  * Delete from old mount point vnode list, if on one.
2043  */
2044 static void
2045 delmntque(struct vnode *vp)
2046 {
2047 	struct mount *mp;
2048 
2049 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2050 
2051 	mp = vp->v_mount;
2052 	MNT_ILOCK(mp);
2053 	VI_LOCK(vp);
2054 	vp->v_mount = NULL;
2055 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2056 		("bad mount point vnode list size"));
2057 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2058 	mp->mnt_nvnodelistsize--;
2059 	MNT_REL(mp);
2060 	MNT_IUNLOCK(mp);
2061 	/*
2062 	 * The caller expects the interlock to be still held.
2063 	 */
2064 	ASSERT_VI_LOCKED(vp, __func__);
2065 }
2066 
2067 static int
2068 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2069 {
2070 
2071 	KASSERT(vp->v_mount == NULL,
2072 		("insmntque: vnode already on per mount vnode list"));
2073 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2074 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2075 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2076 	} else {
2077 		KASSERT(!dtr,
2078 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2079 		    __func__));
2080 	}
2081 
2082 	/*
2083 	 * We acquire the vnode interlock early to ensure that the
2084 	 * vnode cannot be recycled by another process releasing a
2085 	 * holdcnt on it before we get it on both the vnode list
2086 	 * and the active vnode list. The mount mutex protects only
2087 	 * manipulation of the vnode list and the vnode freelist
2088 	 * mutex protects only manipulation of the active vnode list.
2089 	 * Hence the need to hold the vnode interlock throughout.
2090 	 */
2091 	MNT_ILOCK(mp);
2092 	VI_LOCK(vp);
2093 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2094 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2095 	    mp->mnt_nvnodelistsize == 0)) &&
2096 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2097 		VI_UNLOCK(vp);
2098 		MNT_IUNLOCK(mp);
2099 		if (dtr) {
2100 			vp->v_data = NULL;
2101 			vp->v_op = &dead_vnodeops;
2102 			vgone(vp);
2103 			vput(vp);
2104 		}
2105 		return (EBUSY);
2106 	}
2107 	vp->v_mount = mp;
2108 	MNT_REF(mp);
2109 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2110 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2111 		("neg mount point vnode list size"));
2112 	mp->mnt_nvnodelistsize++;
2113 	VI_UNLOCK(vp);
2114 	MNT_IUNLOCK(mp);
2115 	return (0);
2116 }
2117 
2118 /*
2119  * Insert into list of vnodes for the new mount point, if available.
2120  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2121  * leaves handling of the vnode to the caller.
2122  */
2123 int
2124 insmntque(struct vnode *vp, struct mount *mp)
2125 {
2126 	return (insmntque1_int(vp, mp, true));
2127 }
2128 
2129 int
2130 insmntque1(struct vnode *vp, struct mount *mp)
2131 {
2132 	return (insmntque1_int(vp, mp, false));
2133 }
2134 
2135 /*
2136  * Flush out and invalidate all buffers associated with a bufobj
2137  * Called with the underlying object locked.
2138  */
2139 int
2140 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2141 {
2142 	int error;
2143 
2144 	BO_LOCK(bo);
2145 	if (flags & V_SAVE) {
2146 		error = bufobj_wwait(bo, slpflag, slptimeo);
2147 		if (error) {
2148 			BO_UNLOCK(bo);
2149 			return (error);
2150 		}
2151 		if (bo->bo_dirty.bv_cnt > 0) {
2152 			BO_UNLOCK(bo);
2153 			do {
2154 				error = BO_SYNC(bo, MNT_WAIT);
2155 			} while (error == ERELOOKUP);
2156 			if (error != 0)
2157 				return (error);
2158 			BO_LOCK(bo);
2159 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2160 				BO_UNLOCK(bo);
2161 				return (EBUSY);
2162 			}
2163 		}
2164 	}
2165 	/*
2166 	 * If you alter this loop please notice that interlock is dropped and
2167 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2168 	 * no race conditions occur from this.
2169 	 */
2170 	do {
2171 		error = flushbuflist(&bo->bo_clean,
2172 		    flags, bo, slpflag, slptimeo);
2173 		if (error == 0 && !(flags & V_CLEANONLY))
2174 			error = flushbuflist(&bo->bo_dirty,
2175 			    flags, bo, slpflag, slptimeo);
2176 		if (error != 0 && error != EAGAIN) {
2177 			BO_UNLOCK(bo);
2178 			return (error);
2179 		}
2180 	} while (error != 0);
2181 
2182 	/*
2183 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2184 	 * have write I/O in-progress but if there is a VM object then the
2185 	 * VM object can also have read-I/O in-progress.
2186 	 */
2187 	do {
2188 		bufobj_wwait(bo, 0, 0);
2189 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2190 			BO_UNLOCK(bo);
2191 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2192 			BO_LOCK(bo);
2193 		}
2194 	} while (bo->bo_numoutput > 0);
2195 	BO_UNLOCK(bo);
2196 
2197 	/*
2198 	 * Destroy the copy in the VM cache, too.
2199 	 */
2200 	if (bo->bo_object != NULL &&
2201 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2202 		VM_OBJECT_WLOCK(bo->bo_object);
2203 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2204 		    OBJPR_CLEANONLY : 0);
2205 		VM_OBJECT_WUNLOCK(bo->bo_object);
2206 	}
2207 
2208 #ifdef INVARIANTS
2209 	BO_LOCK(bo);
2210 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2211 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2212 	    bo->bo_clean.bv_cnt > 0))
2213 		panic("vinvalbuf: flush failed");
2214 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2215 	    bo->bo_dirty.bv_cnt > 0)
2216 		panic("vinvalbuf: flush dirty failed");
2217 	BO_UNLOCK(bo);
2218 #endif
2219 	return (0);
2220 }
2221 
2222 /*
2223  * Flush out and invalidate all buffers associated with a vnode.
2224  * Called with the underlying object locked.
2225  */
2226 int
2227 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2228 {
2229 
2230 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2231 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2232 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2233 		return (0);
2234 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2235 }
2236 
2237 /*
2238  * Flush out buffers on the specified list.
2239  *
2240  */
2241 static int
2242 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2243     int slptimeo)
2244 {
2245 	struct buf *bp, *nbp;
2246 	int retval, error;
2247 	daddr_t lblkno;
2248 	b_xflags_t xflags;
2249 
2250 	ASSERT_BO_WLOCKED(bo);
2251 
2252 	retval = 0;
2253 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2254 		/*
2255 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2256 		 * do not skip any buffers. If we are flushing only V_NORMAL
2257 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2258 		 * flushing only V_ALT buffers then skip buffers not marked
2259 		 * as BX_ALTDATA.
2260 		 */
2261 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2262 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2263 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2264 			continue;
2265 		}
2266 		if (nbp != NULL) {
2267 			lblkno = nbp->b_lblkno;
2268 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2269 		}
2270 		retval = EAGAIN;
2271 		error = BUF_TIMELOCK(bp,
2272 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2273 		    "flushbuf", slpflag, slptimeo);
2274 		if (error) {
2275 			BO_LOCK(bo);
2276 			return (error != ENOLCK ? error : EAGAIN);
2277 		}
2278 		KASSERT(bp->b_bufobj == bo,
2279 		    ("bp %p wrong b_bufobj %p should be %p",
2280 		    bp, bp->b_bufobj, bo));
2281 		/*
2282 		 * XXX Since there are no node locks for NFS, I
2283 		 * believe there is a slight chance that a delayed
2284 		 * write will occur while sleeping just above, so
2285 		 * check for it.
2286 		 */
2287 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2288 		    (flags & V_SAVE)) {
2289 			bremfree(bp);
2290 			bp->b_flags |= B_ASYNC;
2291 			bwrite(bp);
2292 			BO_LOCK(bo);
2293 			return (EAGAIN);	/* XXX: why not loop ? */
2294 		}
2295 		bremfree(bp);
2296 		bp->b_flags |= (B_INVAL | B_RELBUF);
2297 		bp->b_flags &= ~B_ASYNC;
2298 		brelse(bp);
2299 		BO_LOCK(bo);
2300 		if (nbp == NULL)
2301 			break;
2302 		nbp = gbincore(bo, lblkno);
2303 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2304 		    != xflags)
2305 			break;			/* nbp invalid */
2306 	}
2307 	return (retval);
2308 }
2309 
2310 int
2311 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2312 {
2313 	struct buf *bp;
2314 	int error;
2315 	daddr_t lblkno;
2316 
2317 	ASSERT_BO_LOCKED(bo);
2318 
2319 	for (lblkno = startn;;) {
2320 again:
2321 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2322 		if (bp == NULL || bp->b_lblkno >= endn ||
2323 		    bp->b_lblkno < startn)
2324 			break;
2325 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2326 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2327 		if (error != 0) {
2328 			BO_RLOCK(bo);
2329 			if (error == ENOLCK)
2330 				goto again;
2331 			return (error);
2332 		}
2333 		KASSERT(bp->b_bufobj == bo,
2334 		    ("bp %p wrong b_bufobj %p should be %p",
2335 		    bp, bp->b_bufobj, bo));
2336 		lblkno = bp->b_lblkno + 1;
2337 		if ((bp->b_flags & B_MANAGED) == 0)
2338 			bremfree(bp);
2339 		bp->b_flags |= B_RELBUF;
2340 		/*
2341 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2342 		 * pages backing each buffer in the range are unlikely to be
2343 		 * reused.  Dirty buffers will have the hint applied once
2344 		 * they've been written.
2345 		 */
2346 		if ((bp->b_flags & B_VMIO) != 0)
2347 			bp->b_flags |= B_NOREUSE;
2348 		brelse(bp);
2349 		BO_RLOCK(bo);
2350 	}
2351 	return (0);
2352 }
2353 
2354 /*
2355  * Truncate a file's buffer and pages to a specified length.  This
2356  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2357  * sync activity.
2358  */
2359 int
2360 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2361 {
2362 	struct buf *bp, *nbp;
2363 	struct bufobj *bo;
2364 	daddr_t startlbn;
2365 
2366 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2367 	    vp, blksize, (uintmax_t)length);
2368 
2369 	/*
2370 	 * Round up to the *next* lbn.
2371 	 */
2372 	startlbn = howmany(length, blksize);
2373 
2374 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2375 
2376 	bo = &vp->v_bufobj;
2377 restart_unlocked:
2378 	BO_LOCK(bo);
2379 
2380 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2381 		;
2382 
2383 	if (length > 0) {
2384 restartsync:
2385 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2386 			if (bp->b_lblkno > 0)
2387 				continue;
2388 			/*
2389 			 * Since we hold the vnode lock this should only
2390 			 * fail if we're racing with the buf daemon.
2391 			 */
2392 			if (BUF_LOCK(bp,
2393 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2394 			    BO_LOCKPTR(bo)) == ENOLCK)
2395 				goto restart_unlocked;
2396 
2397 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2398 			    ("buf(%p) on dirty queue without DELWRI", bp));
2399 
2400 			bremfree(bp);
2401 			bawrite(bp);
2402 			BO_LOCK(bo);
2403 			goto restartsync;
2404 		}
2405 	}
2406 
2407 	bufobj_wwait(bo, 0, 0);
2408 	BO_UNLOCK(bo);
2409 	vnode_pager_setsize(vp, length);
2410 
2411 	return (0);
2412 }
2413 
2414 /*
2415  * Invalidate the cached pages of a file's buffer within the range of block
2416  * numbers [startlbn, endlbn).
2417  */
2418 void
2419 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2420     int blksize)
2421 {
2422 	struct bufobj *bo;
2423 	off_t start, end;
2424 
2425 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2426 
2427 	start = blksize * startlbn;
2428 	end = blksize * endlbn;
2429 
2430 	bo = &vp->v_bufobj;
2431 	BO_LOCK(bo);
2432 	MPASS(blksize == bo->bo_bsize);
2433 
2434 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2435 		;
2436 
2437 	BO_UNLOCK(bo);
2438 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2439 }
2440 
2441 static int
2442 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2443     daddr_t startlbn, daddr_t endlbn)
2444 {
2445 	struct buf *bp, *nbp;
2446 	bool anyfreed;
2447 
2448 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2449 	ASSERT_BO_LOCKED(bo);
2450 
2451 	do {
2452 		anyfreed = false;
2453 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2454 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2455 				continue;
2456 			if (BUF_LOCK(bp,
2457 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2458 			    BO_LOCKPTR(bo)) == ENOLCK) {
2459 				BO_LOCK(bo);
2460 				return (EAGAIN);
2461 			}
2462 
2463 			bremfree(bp);
2464 			bp->b_flags |= B_INVAL | B_RELBUF;
2465 			bp->b_flags &= ~B_ASYNC;
2466 			brelse(bp);
2467 			anyfreed = true;
2468 
2469 			BO_LOCK(bo);
2470 			if (nbp != NULL &&
2471 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2472 			    nbp->b_vp != vp ||
2473 			    (nbp->b_flags & B_DELWRI) != 0))
2474 				return (EAGAIN);
2475 		}
2476 
2477 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2478 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2479 				continue;
2480 			if (BUF_LOCK(bp,
2481 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2482 			    BO_LOCKPTR(bo)) == ENOLCK) {
2483 				BO_LOCK(bo);
2484 				return (EAGAIN);
2485 			}
2486 			bremfree(bp);
2487 			bp->b_flags |= B_INVAL | B_RELBUF;
2488 			bp->b_flags &= ~B_ASYNC;
2489 			brelse(bp);
2490 			anyfreed = true;
2491 
2492 			BO_LOCK(bo);
2493 			if (nbp != NULL &&
2494 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2495 			    (nbp->b_vp != vp) ||
2496 			    (nbp->b_flags & B_DELWRI) == 0))
2497 				return (EAGAIN);
2498 		}
2499 	} while (anyfreed);
2500 	return (0);
2501 }
2502 
2503 static void
2504 buf_vlist_remove(struct buf *bp)
2505 {
2506 	struct bufv *bv;
2507 	b_xflags_t flags;
2508 
2509 	flags = bp->b_xflags;
2510 
2511 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2512 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2513 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2514 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2515 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2516 
2517 	if ((flags & BX_VNDIRTY) != 0)
2518 		bv = &bp->b_bufobj->bo_dirty;
2519 	else
2520 		bv = &bp->b_bufobj->bo_clean;
2521 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2522 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2523 	bv->bv_cnt--;
2524 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2525 }
2526 
2527 /*
2528  * Add the buffer to the sorted clean or dirty block list.
2529  *
2530  * NOTE: xflags is passed as a constant, optimizing this inline function!
2531  */
2532 static void
2533 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2534 {
2535 	struct bufv *bv;
2536 	struct buf *n;
2537 	int error;
2538 
2539 	ASSERT_BO_WLOCKED(bo);
2540 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2541 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2542 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2543 	    ("dead bo %p", bo));
2544 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2545 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2546 	bp->b_xflags |= xflags;
2547 	if (xflags & BX_VNDIRTY)
2548 		bv = &bo->bo_dirty;
2549 	else
2550 		bv = &bo->bo_clean;
2551 
2552 	/*
2553 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2554 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2555 	 * than _ge.
2556 	 */
2557 	if (bv->bv_cnt == 0 ||
2558 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2559 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2560 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2561 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2562 	else
2563 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2564 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2565 	if (error)
2566 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2567 	bv->bv_cnt++;
2568 }
2569 
2570 /*
2571  * Look up a buffer using the buffer tries.
2572  */
2573 struct buf *
2574 gbincore(struct bufobj *bo, daddr_t lblkno)
2575 {
2576 	struct buf *bp;
2577 
2578 	ASSERT_BO_LOCKED(bo);
2579 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2580 	if (bp != NULL)
2581 		return (bp);
2582 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2583 }
2584 
2585 /*
2586  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2587  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2588  * stability of the result.  Like other lockless lookups, the found buf may
2589  * already be invalid by the time this function returns.
2590  */
2591 struct buf *
2592 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2593 {
2594 	struct buf *bp;
2595 
2596 	ASSERT_BO_UNLOCKED(bo);
2597 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2598 	if (bp != NULL)
2599 		return (bp);
2600 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2601 }
2602 
2603 /*
2604  * Associate a buffer with a vnode.
2605  */
2606 void
2607 bgetvp(struct vnode *vp, struct buf *bp)
2608 {
2609 	struct bufobj *bo;
2610 
2611 	bo = &vp->v_bufobj;
2612 	ASSERT_BO_WLOCKED(bo);
2613 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2614 
2615 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2616 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2617 	    ("bgetvp: bp already attached! %p", bp));
2618 
2619 	vhold(vp);
2620 	bp->b_vp = vp;
2621 	bp->b_bufobj = bo;
2622 	/*
2623 	 * Insert onto list for new vnode.
2624 	 */
2625 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2626 }
2627 
2628 /*
2629  * Disassociate a buffer from a vnode.
2630  */
2631 void
2632 brelvp(struct buf *bp)
2633 {
2634 	struct bufobj *bo;
2635 	struct vnode *vp;
2636 
2637 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2638 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2639 
2640 	/*
2641 	 * Delete from old vnode list, if on one.
2642 	 */
2643 	vp = bp->b_vp;		/* XXX */
2644 	bo = bp->b_bufobj;
2645 	BO_LOCK(bo);
2646 	buf_vlist_remove(bp);
2647 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2648 		bo->bo_flag &= ~BO_ONWORKLST;
2649 		mtx_lock(&sync_mtx);
2650 		LIST_REMOVE(bo, bo_synclist);
2651 		syncer_worklist_len--;
2652 		mtx_unlock(&sync_mtx);
2653 	}
2654 	bp->b_vp = NULL;
2655 	bp->b_bufobj = NULL;
2656 	BO_UNLOCK(bo);
2657 	vdrop(vp);
2658 }
2659 
2660 /*
2661  * Add an item to the syncer work queue.
2662  */
2663 static void
2664 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2665 {
2666 	int slot;
2667 
2668 	ASSERT_BO_WLOCKED(bo);
2669 
2670 	mtx_lock(&sync_mtx);
2671 	if (bo->bo_flag & BO_ONWORKLST)
2672 		LIST_REMOVE(bo, bo_synclist);
2673 	else {
2674 		bo->bo_flag |= BO_ONWORKLST;
2675 		syncer_worklist_len++;
2676 	}
2677 
2678 	if (delay > syncer_maxdelay - 2)
2679 		delay = syncer_maxdelay - 2;
2680 	slot = (syncer_delayno + delay) & syncer_mask;
2681 
2682 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2683 	mtx_unlock(&sync_mtx);
2684 }
2685 
2686 static int
2687 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2688 {
2689 	int error, len;
2690 
2691 	mtx_lock(&sync_mtx);
2692 	len = syncer_worklist_len - sync_vnode_count;
2693 	mtx_unlock(&sync_mtx);
2694 	error = SYSCTL_OUT(req, &len, sizeof(len));
2695 	return (error);
2696 }
2697 
2698 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2699     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2700     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2701 
2702 static struct proc *updateproc;
2703 static void sched_sync(void);
2704 static struct kproc_desc up_kp = {
2705 	"syncer",
2706 	sched_sync,
2707 	&updateproc
2708 };
2709 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2710 
2711 static int
2712 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2713 {
2714 	struct vnode *vp;
2715 	struct mount *mp;
2716 
2717 	*bo = LIST_FIRST(slp);
2718 	if (*bo == NULL)
2719 		return (0);
2720 	vp = bo2vnode(*bo);
2721 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2722 		return (1);
2723 	/*
2724 	 * We use vhold in case the vnode does not
2725 	 * successfully sync.  vhold prevents the vnode from
2726 	 * going away when we unlock the sync_mtx so that
2727 	 * we can acquire the vnode interlock.
2728 	 */
2729 	vholdl(vp);
2730 	mtx_unlock(&sync_mtx);
2731 	VI_UNLOCK(vp);
2732 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2733 		vdrop(vp);
2734 		mtx_lock(&sync_mtx);
2735 		return (*bo == LIST_FIRST(slp));
2736 	}
2737 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2738 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2739 	    ("suspended mp syncing vp %p", vp));
2740 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2741 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2742 	VOP_UNLOCK(vp);
2743 	vn_finished_write(mp);
2744 	BO_LOCK(*bo);
2745 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2746 		/*
2747 		 * Put us back on the worklist.  The worklist
2748 		 * routine will remove us from our current
2749 		 * position and then add us back in at a later
2750 		 * position.
2751 		 */
2752 		vn_syncer_add_to_worklist(*bo, syncdelay);
2753 	}
2754 	BO_UNLOCK(*bo);
2755 	vdrop(vp);
2756 	mtx_lock(&sync_mtx);
2757 	return (0);
2758 }
2759 
2760 static int first_printf = 1;
2761 
2762 /*
2763  * System filesystem synchronizer daemon.
2764  */
2765 static void
2766 sched_sync(void)
2767 {
2768 	struct synclist *next, *slp;
2769 	struct bufobj *bo;
2770 	long starttime;
2771 	struct thread *td = curthread;
2772 	int last_work_seen;
2773 	int net_worklist_len;
2774 	int syncer_final_iter;
2775 	int error;
2776 
2777 	last_work_seen = 0;
2778 	syncer_final_iter = 0;
2779 	syncer_state = SYNCER_RUNNING;
2780 	starttime = time_uptime;
2781 	td->td_pflags |= TDP_NORUNNINGBUF;
2782 
2783 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2784 	    SHUTDOWN_PRI_LAST);
2785 
2786 	mtx_lock(&sync_mtx);
2787 	for (;;) {
2788 		if (syncer_state == SYNCER_FINAL_DELAY &&
2789 		    syncer_final_iter == 0) {
2790 			mtx_unlock(&sync_mtx);
2791 			kproc_suspend_check(td->td_proc);
2792 			mtx_lock(&sync_mtx);
2793 		}
2794 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2795 		if (syncer_state != SYNCER_RUNNING &&
2796 		    starttime != time_uptime) {
2797 			if (first_printf) {
2798 				printf("\nSyncing disks, vnodes remaining... ");
2799 				first_printf = 0;
2800 			}
2801 			printf("%d ", net_worklist_len);
2802 		}
2803 		starttime = time_uptime;
2804 
2805 		/*
2806 		 * Push files whose dirty time has expired.  Be careful
2807 		 * of interrupt race on slp queue.
2808 		 *
2809 		 * Skip over empty worklist slots when shutting down.
2810 		 */
2811 		do {
2812 			slp = &syncer_workitem_pending[syncer_delayno];
2813 			syncer_delayno += 1;
2814 			if (syncer_delayno == syncer_maxdelay)
2815 				syncer_delayno = 0;
2816 			next = &syncer_workitem_pending[syncer_delayno];
2817 			/*
2818 			 * If the worklist has wrapped since the
2819 			 * it was emptied of all but syncer vnodes,
2820 			 * switch to the FINAL_DELAY state and run
2821 			 * for one more second.
2822 			 */
2823 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2824 			    net_worklist_len == 0 &&
2825 			    last_work_seen == syncer_delayno) {
2826 				syncer_state = SYNCER_FINAL_DELAY;
2827 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2828 			}
2829 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2830 		    syncer_worklist_len > 0);
2831 
2832 		/*
2833 		 * Keep track of the last time there was anything
2834 		 * on the worklist other than syncer vnodes.
2835 		 * Return to the SHUTTING_DOWN state if any
2836 		 * new work appears.
2837 		 */
2838 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2839 			last_work_seen = syncer_delayno;
2840 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2841 			syncer_state = SYNCER_SHUTTING_DOWN;
2842 		while (!LIST_EMPTY(slp)) {
2843 			error = sync_vnode(slp, &bo, td);
2844 			if (error == 1) {
2845 				LIST_REMOVE(bo, bo_synclist);
2846 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2847 				continue;
2848 			}
2849 
2850 			if (first_printf == 0) {
2851 				/*
2852 				 * Drop the sync mutex, because some watchdog
2853 				 * drivers need to sleep while patting
2854 				 */
2855 				mtx_unlock(&sync_mtx);
2856 				wdog_kern_pat(WD_LASTVAL);
2857 				mtx_lock(&sync_mtx);
2858 			}
2859 		}
2860 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2861 			syncer_final_iter--;
2862 		/*
2863 		 * The variable rushjob allows the kernel to speed up the
2864 		 * processing of the filesystem syncer process. A rushjob
2865 		 * value of N tells the filesystem syncer to process the next
2866 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2867 		 * is used by the soft update code to speed up the filesystem
2868 		 * syncer process when the incore state is getting so far
2869 		 * ahead of the disk that the kernel memory pool is being
2870 		 * threatened with exhaustion.
2871 		 */
2872 		if (rushjob > 0) {
2873 			rushjob -= 1;
2874 			continue;
2875 		}
2876 		/*
2877 		 * Just sleep for a short period of time between
2878 		 * iterations when shutting down to allow some I/O
2879 		 * to happen.
2880 		 *
2881 		 * If it has taken us less than a second to process the
2882 		 * current work, then wait. Otherwise start right over
2883 		 * again. We can still lose time if any single round
2884 		 * takes more than two seconds, but it does not really
2885 		 * matter as we are just trying to generally pace the
2886 		 * filesystem activity.
2887 		 */
2888 		if (syncer_state != SYNCER_RUNNING ||
2889 		    time_uptime == starttime) {
2890 			thread_lock(td);
2891 			sched_prio(td, PPAUSE);
2892 			thread_unlock(td);
2893 		}
2894 		if (syncer_state != SYNCER_RUNNING)
2895 			cv_timedwait(&sync_wakeup, &sync_mtx,
2896 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2897 		else if (time_uptime == starttime)
2898 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2899 	}
2900 }
2901 
2902 /*
2903  * Request the syncer daemon to speed up its work.
2904  * We never push it to speed up more than half of its
2905  * normal turn time, otherwise it could take over the cpu.
2906  */
2907 int
2908 speedup_syncer(void)
2909 {
2910 	int ret = 0;
2911 
2912 	mtx_lock(&sync_mtx);
2913 	if (rushjob < syncdelay / 2) {
2914 		rushjob += 1;
2915 		stat_rush_requests += 1;
2916 		ret = 1;
2917 	}
2918 	mtx_unlock(&sync_mtx);
2919 	cv_broadcast(&sync_wakeup);
2920 	return (ret);
2921 }
2922 
2923 /*
2924  * Tell the syncer to speed up its work and run though its work
2925  * list several times, then tell it to shut down.
2926  */
2927 static void
2928 syncer_shutdown(void *arg, int howto)
2929 {
2930 
2931 	if (howto & RB_NOSYNC)
2932 		return;
2933 	mtx_lock(&sync_mtx);
2934 	syncer_state = SYNCER_SHUTTING_DOWN;
2935 	rushjob = 0;
2936 	mtx_unlock(&sync_mtx);
2937 	cv_broadcast(&sync_wakeup);
2938 	kproc_shutdown(arg, howto);
2939 }
2940 
2941 void
2942 syncer_suspend(void)
2943 {
2944 
2945 	syncer_shutdown(updateproc, 0);
2946 }
2947 
2948 void
2949 syncer_resume(void)
2950 {
2951 
2952 	mtx_lock(&sync_mtx);
2953 	first_printf = 1;
2954 	syncer_state = SYNCER_RUNNING;
2955 	mtx_unlock(&sync_mtx);
2956 	cv_broadcast(&sync_wakeup);
2957 	kproc_resume(updateproc);
2958 }
2959 
2960 /*
2961  * Move the buffer between the clean and dirty lists of its vnode.
2962  */
2963 void
2964 reassignbuf(struct buf *bp)
2965 {
2966 	struct vnode *vp;
2967 	struct bufobj *bo;
2968 	int delay;
2969 #ifdef INVARIANTS
2970 	struct bufv *bv;
2971 #endif
2972 
2973 	vp = bp->b_vp;
2974 	bo = bp->b_bufobj;
2975 
2976 	KASSERT((bp->b_flags & B_PAGING) == 0,
2977 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2978 
2979 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2980 	    bp, bp->b_vp, bp->b_flags);
2981 
2982 	BO_LOCK(bo);
2983 	buf_vlist_remove(bp);
2984 
2985 	/*
2986 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2987 	 * of clean buffers.
2988 	 */
2989 	if (bp->b_flags & B_DELWRI) {
2990 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2991 			switch (vp->v_type) {
2992 			case VDIR:
2993 				delay = dirdelay;
2994 				break;
2995 			case VCHR:
2996 				delay = metadelay;
2997 				break;
2998 			default:
2999 				delay = filedelay;
3000 			}
3001 			vn_syncer_add_to_worklist(bo, delay);
3002 		}
3003 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3004 	} else {
3005 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3006 
3007 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3008 			mtx_lock(&sync_mtx);
3009 			LIST_REMOVE(bo, bo_synclist);
3010 			syncer_worklist_len--;
3011 			mtx_unlock(&sync_mtx);
3012 			bo->bo_flag &= ~BO_ONWORKLST;
3013 		}
3014 	}
3015 #ifdef INVARIANTS
3016 	bv = &bo->bo_clean;
3017 	bp = TAILQ_FIRST(&bv->bv_hd);
3018 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3019 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3020 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3021 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3022 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3023 	bv = &bo->bo_dirty;
3024 	bp = TAILQ_FIRST(&bv->bv_hd);
3025 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3026 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3027 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3028 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3029 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3030 #endif
3031 	BO_UNLOCK(bo);
3032 }
3033 
3034 static void
3035 v_init_counters(struct vnode *vp)
3036 {
3037 
3038 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3039 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3040 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3041 
3042 	refcount_init(&vp->v_holdcnt, 1);
3043 	refcount_init(&vp->v_usecount, 1);
3044 }
3045 
3046 /*
3047  * Grab a particular vnode from the free list, increment its
3048  * reference count and lock it.  VIRF_DOOMED is set if the vnode
3049  * is being destroyed.  Only callers who specify LK_RETRY will
3050  * see doomed vnodes.  If inactive processing was delayed in
3051  * vput try to do it here.
3052  *
3053  * usecount is manipulated using atomics without holding any locks.
3054  *
3055  * holdcnt can be manipulated using atomics without holding any locks,
3056  * except when transitioning 1<->0, in which case the interlock is held.
3057  *
3058  * Consumers which don't guarantee liveness of the vnode can use SMR to
3059  * try to get a reference. Note this operation can fail since the vnode
3060  * may be awaiting getting freed by the time they get to it.
3061  */
3062 enum vgetstate
3063 vget_prep_smr(struct vnode *vp)
3064 {
3065 	enum vgetstate vs;
3066 
3067 	VFS_SMR_ASSERT_ENTERED();
3068 
3069 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3070 		vs = VGET_USECOUNT;
3071 	} else {
3072 		if (vhold_smr(vp))
3073 			vs = VGET_HOLDCNT;
3074 		else
3075 			vs = VGET_NONE;
3076 	}
3077 	return (vs);
3078 }
3079 
3080 enum vgetstate
3081 vget_prep(struct vnode *vp)
3082 {
3083 	enum vgetstate vs;
3084 
3085 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3086 		vs = VGET_USECOUNT;
3087 	} else {
3088 		vhold(vp);
3089 		vs = VGET_HOLDCNT;
3090 	}
3091 	return (vs);
3092 }
3093 
3094 void
3095 vget_abort(struct vnode *vp, enum vgetstate vs)
3096 {
3097 
3098 	switch (vs) {
3099 	case VGET_USECOUNT:
3100 		vrele(vp);
3101 		break;
3102 	case VGET_HOLDCNT:
3103 		vdrop(vp);
3104 		break;
3105 	default:
3106 		__assert_unreachable();
3107 	}
3108 }
3109 
3110 int
3111 vget(struct vnode *vp, int flags)
3112 {
3113 	enum vgetstate vs;
3114 
3115 	vs = vget_prep(vp);
3116 	return (vget_finish(vp, flags, vs));
3117 }
3118 
3119 int
3120 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3121 {
3122 	int error;
3123 
3124 	if ((flags & LK_INTERLOCK) != 0)
3125 		ASSERT_VI_LOCKED(vp, __func__);
3126 	else
3127 		ASSERT_VI_UNLOCKED(vp, __func__);
3128 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3129 	VNPASS(vp->v_holdcnt > 0, vp);
3130 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3131 
3132 	error = vn_lock(vp, flags);
3133 	if (__predict_false(error != 0)) {
3134 		vget_abort(vp, vs);
3135 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3136 		    vp);
3137 		return (error);
3138 	}
3139 
3140 	vget_finish_ref(vp, vs);
3141 	return (0);
3142 }
3143 
3144 void
3145 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3146 {
3147 	int old;
3148 
3149 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3150 	VNPASS(vp->v_holdcnt > 0, vp);
3151 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3152 
3153 	if (vs == VGET_USECOUNT)
3154 		return;
3155 
3156 	/*
3157 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3158 	 * the vnode around. Otherwise someone else lended their hold count and
3159 	 * we have to drop ours.
3160 	 */
3161 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3162 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3163 	if (old != 0) {
3164 #ifdef INVARIANTS
3165 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3166 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3167 #else
3168 		refcount_release(&vp->v_holdcnt);
3169 #endif
3170 	}
3171 }
3172 
3173 void
3174 vref(struct vnode *vp)
3175 {
3176 	enum vgetstate vs;
3177 
3178 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3179 	vs = vget_prep(vp);
3180 	vget_finish_ref(vp, vs);
3181 }
3182 
3183 void
3184 vrefact(struct vnode *vp)
3185 {
3186 
3187 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3188 #ifdef INVARIANTS
3189 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3190 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3191 #else
3192 	refcount_acquire(&vp->v_usecount);
3193 #endif
3194 }
3195 
3196 void
3197 vlazy(struct vnode *vp)
3198 {
3199 	struct mount *mp;
3200 
3201 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3202 
3203 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3204 		return;
3205 	/*
3206 	 * We may get here for inactive routines after the vnode got doomed.
3207 	 */
3208 	if (VN_IS_DOOMED(vp))
3209 		return;
3210 	mp = vp->v_mount;
3211 	mtx_lock(&mp->mnt_listmtx);
3212 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3213 		vp->v_mflag |= VMP_LAZYLIST;
3214 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3215 		mp->mnt_lazyvnodelistsize++;
3216 	}
3217 	mtx_unlock(&mp->mnt_listmtx);
3218 }
3219 
3220 static void
3221 vunlazy(struct vnode *vp)
3222 {
3223 	struct mount *mp;
3224 
3225 	ASSERT_VI_LOCKED(vp, __func__);
3226 	VNPASS(!VN_IS_DOOMED(vp), vp);
3227 
3228 	mp = vp->v_mount;
3229 	mtx_lock(&mp->mnt_listmtx);
3230 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3231 	/*
3232 	 * Don't remove the vnode from the lazy list if another thread
3233 	 * has increased the hold count. It may have re-enqueued the
3234 	 * vnode to the lazy list and is now responsible for its
3235 	 * removal.
3236 	 */
3237 	if (vp->v_holdcnt == 0) {
3238 		vp->v_mflag &= ~VMP_LAZYLIST;
3239 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3240 		mp->mnt_lazyvnodelistsize--;
3241 	}
3242 	mtx_unlock(&mp->mnt_listmtx);
3243 }
3244 
3245 /*
3246  * This routine is only meant to be called from vgonel prior to dooming
3247  * the vnode.
3248  */
3249 static void
3250 vunlazy_gone(struct vnode *vp)
3251 {
3252 	struct mount *mp;
3253 
3254 	ASSERT_VOP_ELOCKED(vp, __func__);
3255 	ASSERT_VI_LOCKED(vp, __func__);
3256 	VNPASS(!VN_IS_DOOMED(vp), vp);
3257 
3258 	if (vp->v_mflag & VMP_LAZYLIST) {
3259 		mp = vp->v_mount;
3260 		mtx_lock(&mp->mnt_listmtx);
3261 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3262 		vp->v_mflag &= ~VMP_LAZYLIST;
3263 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3264 		mp->mnt_lazyvnodelistsize--;
3265 		mtx_unlock(&mp->mnt_listmtx);
3266 	}
3267 }
3268 
3269 static void
3270 vdefer_inactive(struct vnode *vp)
3271 {
3272 
3273 	ASSERT_VI_LOCKED(vp, __func__);
3274 	VNPASS(vp->v_holdcnt > 0, vp);
3275 	if (VN_IS_DOOMED(vp)) {
3276 		vdropl(vp);
3277 		return;
3278 	}
3279 	if (vp->v_iflag & VI_DEFINACT) {
3280 		VNPASS(vp->v_holdcnt > 1, vp);
3281 		vdropl(vp);
3282 		return;
3283 	}
3284 	if (vp->v_usecount > 0) {
3285 		vp->v_iflag &= ~VI_OWEINACT;
3286 		vdropl(vp);
3287 		return;
3288 	}
3289 	vlazy(vp);
3290 	vp->v_iflag |= VI_DEFINACT;
3291 	VI_UNLOCK(vp);
3292 	atomic_add_long(&deferred_inact, 1);
3293 }
3294 
3295 static void
3296 vdefer_inactive_unlocked(struct vnode *vp)
3297 {
3298 
3299 	VI_LOCK(vp);
3300 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3301 		vdropl(vp);
3302 		return;
3303 	}
3304 	vdefer_inactive(vp);
3305 }
3306 
3307 enum vput_op { VRELE, VPUT, VUNREF };
3308 
3309 /*
3310  * Handle ->v_usecount transitioning to 0.
3311  *
3312  * By releasing the last usecount we take ownership of the hold count which
3313  * provides liveness of the vnode, meaning we have to vdrop.
3314  *
3315  * For all vnodes we may need to perform inactive processing. It requires an
3316  * exclusive lock on the vnode, while it is legal to call here with only a
3317  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3318  * inactive processing gets deferred to the syncer.
3319  *
3320  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3321  * on the lock being held all the way until VOP_INACTIVE. This in particular
3322  * happens with UFS which adds half-constructed vnodes to the hash, where they
3323  * can be found by other code.
3324  */
3325 static void
3326 vput_final(struct vnode *vp, enum vput_op func)
3327 {
3328 	int error;
3329 	bool want_unlock;
3330 
3331 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3332 	VNPASS(vp->v_holdcnt > 0, vp);
3333 
3334 	VI_LOCK(vp);
3335 
3336 	/*
3337 	 * By the time we got here someone else might have transitioned
3338 	 * the count back to > 0.
3339 	 */
3340 	if (vp->v_usecount > 0)
3341 		goto out;
3342 
3343 	/*
3344 	 * If the vnode is doomed vgone already performed inactive processing
3345 	 * (if needed).
3346 	 */
3347 	if (VN_IS_DOOMED(vp))
3348 		goto out;
3349 
3350 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3351 		goto out;
3352 
3353 	if (vp->v_iflag & VI_DOINGINACT)
3354 		goto out;
3355 
3356 	/*
3357 	 * Locking operations here will drop the interlock and possibly the
3358 	 * vnode lock, opening a window where the vnode can get doomed all the
3359 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3360 	 * perform inactive.
3361 	 */
3362 	vp->v_iflag |= VI_OWEINACT;
3363 	want_unlock = false;
3364 	error = 0;
3365 	switch (func) {
3366 	case VRELE:
3367 		switch (VOP_ISLOCKED(vp)) {
3368 		case LK_EXCLUSIVE:
3369 			break;
3370 		case LK_EXCLOTHER:
3371 		case 0:
3372 			want_unlock = true;
3373 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3374 			VI_LOCK(vp);
3375 			break;
3376 		default:
3377 			/*
3378 			 * The lock has at least one sharer, but we have no way
3379 			 * to conclude whether this is us. Play it safe and
3380 			 * defer processing.
3381 			 */
3382 			error = EAGAIN;
3383 			break;
3384 		}
3385 		break;
3386 	case VPUT:
3387 		want_unlock = true;
3388 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3389 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3390 			    LK_NOWAIT);
3391 			VI_LOCK(vp);
3392 		}
3393 		break;
3394 	case VUNREF:
3395 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3396 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3397 			VI_LOCK(vp);
3398 		}
3399 		break;
3400 	}
3401 	if (error == 0) {
3402 		if (func == VUNREF) {
3403 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3404 			    ("recursive vunref"));
3405 			vp->v_vflag |= VV_UNREF;
3406 		}
3407 		for (;;) {
3408 			error = vinactive(vp);
3409 			if (want_unlock)
3410 				VOP_UNLOCK(vp);
3411 			if (error != ERELOOKUP || !want_unlock)
3412 				break;
3413 			VOP_LOCK(vp, LK_EXCLUSIVE);
3414 		}
3415 		if (func == VUNREF)
3416 			vp->v_vflag &= ~VV_UNREF;
3417 		vdropl(vp);
3418 	} else {
3419 		vdefer_inactive(vp);
3420 	}
3421 	return;
3422 out:
3423 	if (func == VPUT)
3424 		VOP_UNLOCK(vp);
3425 	vdropl(vp);
3426 }
3427 
3428 /*
3429  * Decrement ->v_usecount for a vnode.
3430  *
3431  * Releasing the last use count requires additional processing, see vput_final
3432  * above for details.
3433  *
3434  * Comment above each variant denotes lock state on entry and exit.
3435  */
3436 
3437 /*
3438  * in: any
3439  * out: same as passed in
3440  */
3441 void
3442 vrele(struct vnode *vp)
3443 {
3444 
3445 	ASSERT_VI_UNLOCKED(vp, __func__);
3446 	if (!refcount_release(&vp->v_usecount))
3447 		return;
3448 	vput_final(vp, VRELE);
3449 }
3450 
3451 /*
3452  * in: locked
3453  * out: unlocked
3454  */
3455 void
3456 vput(struct vnode *vp)
3457 {
3458 
3459 	ASSERT_VOP_LOCKED(vp, __func__);
3460 	ASSERT_VI_UNLOCKED(vp, __func__);
3461 	if (!refcount_release(&vp->v_usecount)) {
3462 		VOP_UNLOCK(vp);
3463 		return;
3464 	}
3465 	vput_final(vp, VPUT);
3466 }
3467 
3468 /*
3469  * in: locked
3470  * out: locked
3471  */
3472 void
3473 vunref(struct vnode *vp)
3474 {
3475 
3476 	ASSERT_VOP_LOCKED(vp, __func__);
3477 	ASSERT_VI_UNLOCKED(vp, __func__);
3478 	if (!refcount_release(&vp->v_usecount))
3479 		return;
3480 	vput_final(vp, VUNREF);
3481 }
3482 
3483 void
3484 vhold(struct vnode *vp)
3485 {
3486 	int old;
3487 
3488 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3489 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3490 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3491 	    ("%s: wrong hold count %d", __func__, old));
3492 	if (old == 0)
3493 		vfs_freevnodes_dec();
3494 }
3495 
3496 void
3497 vholdnz(struct vnode *vp)
3498 {
3499 
3500 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3501 #ifdef INVARIANTS
3502 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3503 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3504 	    ("%s: wrong hold count %d", __func__, old));
3505 #else
3506 	atomic_add_int(&vp->v_holdcnt, 1);
3507 #endif
3508 }
3509 
3510 /*
3511  * Grab a hold count unless the vnode is freed.
3512  *
3513  * Only use this routine if vfs smr is the only protection you have against
3514  * freeing the vnode.
3515  *
3516  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3517  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3518  * the thread which managed to set the flag.
3519  *
3520  * It may be tempting to replace the loop with:
3521  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3522  * if (count & VHOLD_NO_SMR) {
3523  *     backpedal and error out;
3524  * }
3525  *
3526  * However, while this is more performant, it hinders debugging by eliminating
3527  * the previously mentioned invariant.
3528  */
3529 bool
3530 vhold_smr(struct vnode *vp)
3531 {
3532 	int count;
3533 
3534 	VFS_SMR_ASSERT_ENTERED();
3535 
3536 	count = atomic_load_int(&vp->v_holdcnt);
3537 	for (;;) {
3538 		if (count & VHOLD_NO_SMR) {
3539 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3540 			    ("non-zero hold count with flags %d\n", count));
3541 			return (false);
3542 		}
3543 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3544 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3545 			if (count == 0)
3546 				vfs_freevnodes_dec();
3547 			return (true);
3548 		}
3549 	}
3550 }
3551 
3552 /*
3553  * Hold a free vnode for recycling.
3554  *
3555  * Note: vnode_init references this comment.
3556  *
3557  * Attempts to recycle only need the global vnode list lock and have no use for
3558  * SMR.
3559  *
3560  * However, vnodes get inserted into the global list before they get fully
3561  * initialized and stay there until UMA decides to free the memory. This in
3562  * particular means the target can be found before it becomes usable and after
3563  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3564  * VHOLD_NO_SMR.
3565  *
3566  * Note: the vnode may gain more references after we transition the count 0->1.
3567  */
3568 static bool
3569 vhold_recycle_free(struct vnode *vp)
3570 {
3571 	int count;
3572 
3573 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3574 
3575 	count = atomic_load_int(&vp->v_holdcnt);
3576 	for (;;) {
3577 		if (count & VHOLD_NO_SMR) {
3578 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3579 			    ("non-zero hold count with flags %d\n", count));
3580 			return (false);
3581 		}
3582 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3583 		if (count > 0) {
3584 			return (false);
3585 		}
3586 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3587 			vfs_freevnodes_dec();
3588 			return (true);
3589 		}
3590 	}
3591 }
3592 
3593 static void __noinline
3594 vdbatch_process(struct vdbatch *vd)
3595 {
3596 	struct vnode *vp;
3597 	int i;
3598 
3599 	mtx_assert(&vd->lock, MA_OWNED);
3600 	MPASS(curthread->td_pinned > 0);
3601 	MPASS(vd->index == VDBATCH_SIZE);
3602 
3603 	/*
3604 	 * Attempt to requeue the passed batch, but give up easily.
3605 	 *
3606 	 * Despite batching the mechanism is prone to transient *significant*
3607 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3608 	 * if multiple CPUs get here (one real-world example is highly parallel
3609 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3610 	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3611 	 * the problem. Parties which don't like it are welcome to implement
3612 	 * something better.
3613 	 */
3614 	critical_enter();
3615 	if (mtx_trylock(&vnode_list_mtx)) {
3616 		for (i = 0; i < VDBATCH_SIZE; i++) {
3617 			vp = vd->tab[i];
3618 			vd->tab[i] = NULL;
3619 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3620 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3621 			MPASS(vp->v_dbatchcpu != NOCPU);
3622 			vp->v_dbatchcpu = NOCPU;
3623 		}
3624 		mtx_unlock(&vnode_list_mtx);
3625 	} else {
3626 		counter_u64_add(vnode_skipped_requeues, 1);
3627 
3628 		for (i = 0; i < VDBATCH_SIZE; i++) {
3629 			vp = vd->tab[i];
3630 			vd->tab[i] = NULL;
3631 			MPASS(vp->v_dbatchcpu != NOCPU);
3632 			vp->v_dbatchcpu = NOCPU;
3633 		}
3634 	}
3635 	vd->index = 0;
3636 	critical_exit();
3637 }
3638 
3639 static void
3640 vdbatch_enqueue(struct vnode *vp)
3641 {
3642 	struct vdbatch *vd;
3643 
3644 	ASSERT_VI_LOCKED(vp, __func__);
3645 	VNPASS(!VN_IS_DOOMED(vp), vp);
3646 
3647 	if (vp->v_dbatchcpu != NOCPU) {
3648 		VI_UNLOCK(vp);
3649 		return;
3650 	}
3651 
3652 	sched_pin();
3653 	vd = DPCPU_PTR(vd);
3654 	mtx_lock(&vd->lock);
3655 	MPASS(vd->index < VDBATCH_SIZE);
3656 	MPASS(vd->tab[vd->index] == NULL);
3657 	/*
3658 	 * A hack: we depend on being pinned so that we know what to put in
3659 	 * ->v_dbatchcpu.
3660 	 */
3661 	vp->v_dbatchcpu = curcpu;
3662 	vd->tab[vd->index] = vp;
3663 	vd->index++;
3664 	VI_UNLOCK(vp);
3665 	if (vd->index == VDBATCH_SIZE)
3666 		vdbatch_process(vd);
3667 	mtx_unlock(&vd->lock);
3668 	sched_unpin();
3669 }
3670 
3671 /*
3672  * This routine must only be called for vnodes which are about to be
3673  * deallocated. Supporting dequeue for arbitrary vndoes would require
3674  * validating that the locked batch matches.
3675  */
3676 static void
3677 vdbatch_dequeue(struct vnode *vp)
3678 {
3679 	struct vdbatch *vd;
3680 	int i;
3681 	short cpu;
3682 
3683 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3684 
3685 	cpu = vp->v_dbatchcpu;
3686 	if (cpu == NOCPU)
3687 		return;
3688 
3689 	vd = DPCPU_ID_PTR(cpu, vd);
3690 	mtx_lock(&vd->lock);
3691 	for (i = 0; i < vd->index; i++) {
3692 		if (vd->tab[i] != vp)
3693 			continue;
3694 		vp->v_dbatchcpu = NOCPU;
3695 		vd->index--;
3696 		vd->tab[i] = vd->tab[vd->index];
3697 		vd->tab[vd->index] = NULL;
3698 		break;
3699 	}
3700 	mtx_unlock(&vd->lock);
3701 	/*
3702 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3703 	 */
3704 	MPASS(vp->v_dbatchcpu == NOCPU);
3705 }
3706 
3707 /*
3708  * Drop the hold count of the vnode.  If this is the last reference to
3709  * the vnode we place it on the free list unless it has been vgone'd
3710  * (marked VIRF_DOOMED) in which case we will free it.
3711  *
3712  * Because the vnode vm object keeps a hold reference on the vnode if
3713  * there is at least one resident non-cached page, the vnode cannot
3714  * leave the active list without the page cleanup done.
3715  */
3716 static void __noinline
3717 vdropl_final(struct vnode *vp)
3718 {
3719 
3720 	ASSERT_VI_LOCKED(vp, __func__);
3721 	VNPASS(VN_IS_DOOMED(vp), vp);
3722 	/*
3723 	 * Set the VHOLD_NO_SMR flag.
3724 	 *
3725 	 * We may be racing against vhold_smr. If they win we can just pretend
3726 	 * we never got this far, they will vdrop later.
3727 	 */
3728 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3729 		vfs_freevnodes_inc();
3730 		VI_UNLOCK(vp);
3731 		/*
3732 		 * We lost the aforementioned race. Any subsequent access is
3733 		 * invalid as they might have managed to vdropl on their own.
3734 		 */
3735 		return;
3736 	}
3737 	/*
3738 	 * Don't bump freevnodes as this one is going away.
3739 	 */
3740 	freevnode(vp);
3741 }
3742 
3743 void
3744 vdrop(struct vnode *vp)
3745 {
3746 
3747 	ASSERT_VI_UNLOCKED(vp, __func__);
3748 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3749 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3750 		return;
3751 	VI_LOCK(vp);
3752 	vdropl(vp);
3753 }
3754 
3755 static void __always_inline
3756 vdropl_impl(struct vnode *vp, bool enqueue)
3757 {
3758 
3759 	ASSERT_VI_LOCKED(vp, __func__);
3760 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3761 	if (!refcount_release(&vp->v_holdcnt)) {
3762 		VI_UNLOCK(vp);
3763 		return;
3764 	}
3765 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3766 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3767 	if (VN_IS_DOOMED(vp)) {
3768 		vdropl_final(vp);
3769 		return;
3770 	}
3771 
3772 	vfs_freevnodes_inc();
3773 	if (vp->v_mflag & VMP_LAZYLIST) {
3774 		vunlazy(vp);
3775 	}
3776 
3777 	if (!enqueue) {
3778 		VI_UNLOCK(vp);
3779 		return;
3780 	}
3781 
3782 	/*
3783 	 * Also unlocks the interlock. We can't assert on it as we
3784 	 * released our hold and by now the vnode might have been
3785 	 * freed.
3786 	 */
3787 	vdbatch_enqueue(vp);
3788 }
3789 
3790 void
3791 vdropl(struct vnode *vp)
3792 {
3793 
3794 	vdropl_impl(vp, true);
3795 }
3796 
3797 /*
3798  * vdrop a vnode when recycling
3799  *
3800  * This is a special case routine only to be used when recycling, differs from
3801  * regular vdrop by not requeieing the vnode on LRU.
3802  *
3803  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3804  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3805  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3806  * loop which can last for as long as writes are frozen.
3807  */
3808 static void
3809 vdropl_recycle(struct vnode *vp)
3810 {
3811 
3812 	vdropl_impl(vp, false);
3813 }
3814 
3815 static void
3816 vdrop_recycle(struct vnode *vp)
3817 {
3818 
3819 	VI_LOCK(vp);
3820 	vdropl_recycle(vp);
3821 }
3822 
3823 /*
3824  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3825  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3826  */
3827 static int
3828 vinactivef(struct vnode *vp)
3829 {
3830 	struct vm_object *obj;
3831 	int error;
3832 
3833 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3834 	ASSERT_VI_LOCKED(vp, "vinactive");
3835 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3836 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3837 	vp->v_iflag |= VI_DOINGINACT;
3838 	vp->v_iflag &= ~VI_OWEINACT;
3839 	VI_UNLOCK(vp);
3840 	/*
3841 	 * Before moving off the active list, we must be sure that any
3842 	 * modified pages are converted into the vnode's dirty
3843 	 * buffers, since these will no longer be checked once the
3844 	 * vnode is on the inactive list.
3845 	 *
3846 	 * The write-out of the dirty pages is asynchronous.  At the
3847 	 * point that VOP_INACTIVE() is called, there could still be
3848 	 * pending I/O and dirty pages in the object.
3849 	 */
3850 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3851 	    vm_object_mightbedirty(obj)) {
3852 		VM_OBJECT_WLOCK(obj);
3853 		vm_object_page_clean(obj, 0, 0, 0);
3854 		VM_OBJECT_WUNLOCK(obj);
3855 	}
3856 	error = VOP_INACTIVE(vp);
3857 	VI_LOCK(vp);
3858 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
3859 	vp->v_iflag &= ~VI_DOINGINACT;
3860 	return (error);
3861 }
3862 
3863 int
3864 vinactive(struct vnode *vp)
3865 {
3866 
3867 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3868 	ASSERT_VI_LOCKED(vp, "vinactive");
3869 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3870 
3871 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3872 		return (0);
3873 	if (vp->v_iflag & VI_DOINGINACT)
3874 		return (0);
3875 	if (vp->v_usecount > 0) {
3876 		vp->v_iflag &= ~VI_OWEINACT;
3877 		return (0);
3878 	}
3879 	return (vinactivef(vp));
3880 }
3881 
3882 /*
3883  * Remove any vnodes in the vnode table belonging to mount point mp.
3884  *
3885  * If FORCECLOSE is not specified, there should not be any active ones,
3886  * return error if any are found (nb: this is a user error, not a
3887  * system error). If FORCECLOSE is specified, detach any active vnodes
3888  * that are found.
3889  *
3890  * If WRITECLOSE is set, only flush out regular file vnodes open for
3891  * writing.
3892  *
3893  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3894  *
3895  * `rootrefs' specifies the base reference count for the root vnode
3896  * of this filesystem. The root vnode is considered busy if its
3897  * v_usecount exceeds this value. On a successful return, vflush(, td)
3898  * will call vrele() on the root vnode exactly rootrefs times.
3899  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3900  * be zero.
3901  */
3902 #ifdef DIAGNOSTIC
3903 static int busyprt = 0;		/* print out busy vnodes */
3904 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3905 #endif
3906 
3907 int
3908 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3909 {
3910 	struct vnode *vp, *mvp, *rootvp = NULL;
3911 	struct vattr vattr;
3912 	int busy = 0, error;
3913 
3914 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3915 	    rootrefs, flags);
3916 	if (rootrefs > 0) {
3917 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3918 		    ("vflush: bad args"));
3919 		/*
3920 		 * Get the filesystem root vnode. We can vput() it
3921 		 * immediately, since with rootrefs > 0, it won't go away.
3922 		 */
3923 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3924 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3925 			    __func__, error);
3926 			return (error);
3927 		}
3928 		vput(rootvp);
3929 	}
3930 loop:
3931 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3932 		vholdl(vp);
3933 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3934 		if (error) {
3935 			vdrop(vp);
3936 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3937 			goto loop;
3938 		}
3939 		/*
3940 		 * Skip over a vnodes marked VV_SYSTEM.
3941 		 */
3942 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3943 			VOP_UNLOCK(vp);
3944 			vdrop(vp);
3945 			continue;
3946 		}
3947 		/*
3948 		 * If WRITECLOSE is set, flush out unlinked but still open
3949 		 * files (even if open only for reading) and regular file
3950 		 * vnodes open for writing.
3951 		 */
3952 		if (flags & WRITECLOSE) {
3953 			if (vp->v_object != NULL) {
3954 				VM_OBJECT_WLOCK(vp->v_object);
3955 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3956 				VM_OBJECT_WUNLOCK(vp->v_object);
3957 			}
3958 			do {
3959 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3960 			} while (error == ERELOOKUP);
3961 			if (error != 0) {
3962 				VOP_UNLOCK(vp);
3963 				vdrop(vp);
3964 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3965 				return (error);
3966 			}
3967 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3968 			VI_LOCK(vp);
3969 
3970 			if ((vp->v_type == VNON ||
3971 			    (error == 0 && vattr.va_nlink > 0)) &&
3972 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3973 				VOP_UNLOCK(vp);
3974 				vdropl(vp);
3975 				continue;
3976 			}
3977 		} else
3978 			VI_LOCK(vp);
3979 		/*
3980 		 * With v_usecount == 0, all we need to do is clear out the
3981 		 * vnode data structures and we are done.
3982 		 *
3983 		 * If FORCECLOSE is set, forcibly close the vnode.
3984 		 */
3985 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3986 			vgonel(vp);
3987 		} else {
3988 			busy++;
3989 #ifdef DIAGNOSTIC
3990 			if (busyprt)
3991 				vn_printf(vp, "vflush: busy vnode ");
3992 #endif
3993 		}
3994 		VOP_UNLOCK(vp);
3995 		vdropl(vp);
3996 	}
3997 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3998 		/*
3999 		 * If just the root vnode is busy, and if its refcount
4000 		 * is equal to `rootrefs', then go ahead and kill it.
4001 		 */
4002 		VI_LOCK(rootvp);
4003 		KASSERT(busy > 0, ("vflush: not busy"));
4004 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4005 		    ("vflush: usecount %d < rootrefs %d",
4006 		     rootvp->v_usecount, rootrefs));
4007 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4008 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4009 			vgone(rootvp);
4010 			VOP_UNLOCK(rootvp);
4011 			busy = 0;
4012 		} else
4013 			VI_UNLOCK(rootvp);
4014 	}
4015 	if (busy) {
4016 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4017 		    busy);
4018 		return (EBUSY);
4019 	}
4020 	for (; rootrefs > 0; rootrefs--)
4021 		vrele(rootvp);
4022 	return (0);
4023 }
4024 
4025 /*
4026  * Recycle an unused vnode to the front of the free list.
4027  */
4028 int
4029 vrecycle(struct vnode *vp)
4030 {
4031 	int recycled;
4032 
4033 	VI_LOCK(vp);
4034 	recycled = vrecyclel(vp);
4035 	VI_UNLOCK(vp);
4036 	return (recycled);
4037 }
4038 
4039 /*
4040  * vrecycle, with the vp interlock held.
4041  */
4042 int
4043 vrecyclel(struct vnode *vp)
4044 {
4045 	int recycled;
4046 
4047 	ASSERT_VOP_ELOCKED(vp, __func__);
4048 	ASSERT_VI_LOCKED(vp, __func__);
4049 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4050 	recycled = 0;
4051 	if (vp->v_usecount == 0) {
4052 		recycled = 1;
4053 		vgonel(vp);
4054 	}
4055 	return (recycled);
4056 }
4057 
4058 /*
4059  * Eliminate all activity associated with a vnode
4060  * in preparation for reuse.
4061  */
4062 void
4063 vgone(struct vnode *vp)
4064 {
4065 	VI_LOCK(vp);
4066 	vgonel(vp);
4067 	VI_UNLOCK(vp);
4068 }
4069 
4070 /*
4071  * Notify upper mounts about reclaimed or unlinked vnode.
4072  */
4073 void
4074 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4075 {
4076 	struct mount *mp;
4077 	struct mount_upper_node *ump;
4078 
4079 	mp = atomic_load_ptr(&vp->v_mount);
4080 	if (mp == NULL)
4081 		return;
4082 	if (TAILQ_EMPTY(&mp->mnt_notify))
4083 		return;
4084 
4085 	MNT_ILOCK(mp);
4086 	mp->mnt_upper_pending++;
4087 	KASSERT(mp->mnt_upper_pending > 0,
4088 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4089 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4090 		MNT_IUNLOCK(mp);
4091 		switch (event) {
4092 		case VFS_NOTIFY_UPPER_RECLAIM:
4093 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4094 			break;
4095 		case VFS_NOTIFY_UPPER_UNLINK:
4096 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4097 			break;
4098 		}
4099 		MNT_ILOCK(mp);
4100 	}
4101 	mp->mnt_upper_pending--;
4102 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4103 	    mp->mnt_upper_pending == 0) {
4104 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4105 		wakeup(&mp->mnt_uppers);
4106 	}
4107 	MNT_IUNLOCK(mp);
4108 }
4109 
4110 /*
4111  * vgone, with the vp interlock held.
4112  */
4113 static void
4114 vgonel(struct vnode *vp)
4115 {
4116 	struct thread *td;
4117 	struct mount *mp;
4118 	vm_object_t object;
4119 	bool active, doinginact, oweinact;
4120 
4121 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4122 	ASSERT_VI_LOCKED(vp, "vgonel");
4123 	VNASSERT(vp->v_holdcnt, vp,
4124 	    ("vgonel: vp %p has no reference.", vp));
4125 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4126 	td = curthread;
4127 
4128 	/*
4129 	 * Don't vgonel if we're already doomed.
4130 	 */
4131 	if (VN_IS_DOOMED(vp)) {
4132 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4133 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4134 		return;
4135 	}
4136 	/*
4137 	 * Paired with freevnode.
4138 	 */
4139 	vn_seqc_write_begin_locked(vp);
4140 	vunlazy_gone(vp);
4141 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4142 	vn_set_state(vp, VSTATE_DESTROYING);
4143 
4144 	/*
4145 	 * Check to see if the vnode is in use.  If so, we have to
4146 	 * call VOP_CLOSE() and VOP_INACTIVE().
4147 	 *
4148 	 * It could be that VOP_INACTIVE() requested reclamation, in
4149 	 * which case we should avoid recursion, so check
4150 	 * VI_DOINGINACT.  This is not precise but good enough.
4151 	 */
4152 	active = vp->v_usecount > 0;
4153 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4154 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4155 
4156 	/*
4157 	 * If we need to do inactive VI_OWEINACT will be set.
4158 	 */
4159 	if (vp->v_iflag & VI_DEFINACT) {
4160 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4161 		vp->v_iflag &= ~VI_DEFINACT;
4162 		vdropl(vp);
4163 	} else {
4164 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4165 		VI_UNLOCK(vp);
4166 	}
4167 	cache_purge_vgone(vp);
4168 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4169 
4170 	/*
4171 	 * If purging an active vnode, it must be closed and
4172 	 * deactivated before being reclaimed.
4173 	 */
4174 	if (active)
4175 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4176 	if (!doinginact) {
4177 		do {
4178 			if (oweinact || active) {
4179 				VI_LOCK(vp);
4180 				vinactivef(vp);
4181 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4182 				VI_UNLOCK(vp);
4183 			}
4184 		} while (oweinact);
4185 	}
4186 	if (vp->v_type == VSOCK)
4187 		vfs_unp_reclaim(vp);
4188 
4189 	/*
4190 	 * Clean out any buffers associated with the vnode.
4191 	 * If the flush fails, just toss the buffers.
4192 	 */
4193 	mp = NULL;
4194 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4195 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4196 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4197 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4198 			;
4199 	}
4200 
4201 	BO_LOCK(&vp->v_bufobj);
4202 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4203 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4204 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4205 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4206 	    ("vp %p bufobj not invalidated", vp));
4207 
4208 	/*
4209 	 * For VMIO bufobj, BO_DEAD is set later, or in
4210 	 * vm_object_terminate() after the object's page queue is
4211 	 * flushed.
4212 	 */
4213 	object = vp->v_bufobj.bo_object;
4214 	if (object == NULL)
4215 		vp->v_bufobj.bo_flag |= BO_DEAD;
4216 	BO_UNLOCK(&vp->v_bufobj);
4217 
4218 	/*
4219 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4220 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4221 	 * should not touch the object borrowed from the lower vnode
4222 	 * (the handle check).
4223 	 */
4224 	if (object != NULL && object->type == OBJT_VNODE &&
4225 	    object->handle == vp)
4226 		vnode_destroy_vobject(vp);
4227 
4228 	/*
4229 	 * Reclaim the vnode.
4230 	 */
4231 	if (VOP_RECLAIM(vp))
4232 		panic("vgone: cannot reclaim");
4233 	if (mp != NULL)
4234 		vn_finished_secondary_write(mp);
4235 	VNASSERT(vp->v_object == NULL, vp,
4236 	    ("vop_reclaim left v_object vp=%p", vp));
4237 	/*
4238 	 * Clear the advisory locks and wake up waiting threads.
4239 	 */
4240 	if (vp->v_lockf != NULL) {
4241 		(void)VOP_ADVLOCKPURGE(vp);
4242 		vp->v_lockf = NULL;
4243 	}
4244 	/*
4245 	 * Delete from old mount point vnode list.
4246 	 */
4247 	if (vp->v_mount == NULL) {
4248 		VI_LOCK(vp);
4249 	} else {
4250 		delmntque(vp);
4251 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4252 	}
4253 	/*
4254 	 * Done with purge, reset to the standard lock and invalidate
4255 	 * the vnode.
4256 	 */
4257 	vp->v_vnlock = &vp->v_lock;
4258 	vp->v_op = &dead_vnodeops;
4259 	vp->v_type = VBAD;
4260 	vn_set_state(vp, VSTATE_DEAD);
4261 }
4262 
4263 /*
4264  * Print out a description of a vnode.
4265  */
4266 static const char *const vtypename[] = {
4267 	[VNON] = "VNON",
4268 	[VREG] = "VREG",
4269 	[VDIR] = "VDIR",
4270 	[VBLK] = "VBLK",
4271 	[VCHR] = "VCHR",
4272 	[VLNK] = "VLNK",
4273 	[VSOCK] = "VSOCK",
4274 	[VFIFO] = "VFIFO",
4275 	[VBAD] = "VBAD",
4276 	[VMARKER] = "VMARKER",
4277 };
4278 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4279     "vnode type name not added to vtypename");
4280 
4281 static const char *const vstatename[] = {
4282 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4283 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4284 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4285 	[VSTATE_DEAD] = "VSTATE_DEAD",
4286 };
4287 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4288     "vnode state name not added to vstatename");
4289 
4290 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4291     "new hold count flag not added to vn_printf");
4292 
4293 void
4294 vn_printf(struct vnode *vp, const char *fmt, ...)
4295 {
4296 	va_list ap;
4297 	char buf[256], buf2[16];
4298 	u_long flags;
4299 	u_int holdcnt;
4300 	short irflag;
4301 
4302 	va_start(ap, fmt);
4303 	vprintf(fmt, ap);
4304 	va_end(ap);
4305 	printf("%p: ", (void *)vp);
4306 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4307 	    vstatename[vp->v_state], vp->v_op);
4308 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4309 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4310 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4311 	    vp->v_seqc_users);
4312 	switch (vp->v_type) {
4313 	case VDIR:
4314 		printf(" mountedhere %p\n", vp->v_mountedhere);
4315 		break;
4316 	case VCHR:
4317 		printf(" rdev %p\n", vp->v_rdev);
4318 		break;
4319 	case VSOCK:
4320 		printf(" socket %p\n", vp->v_unpcb);
4321 		break;
4322 	case VFIFO:
4323 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4324 		break;
4325 	default:
4326 		printf("\n");
4327 		break;
4328 	}
4329 	buf[0] = '\0';
4330 	buf[1] = '\0';
4331 	if (holdcnt & VHOLD_NO_SMR)
4332 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4333 	printf("    hold count flags (%s)\n", buf + 1);
4334 
4335 	buf[0] = '\0';
4336 	buf[1] = '\0';
4337 	irflag = vn_irflag_read(vp);
4338 	if (irflag & VIRF_DOOMED)
4339 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4340 	if (irflag & VIRF_PGREAD)
4341 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4342 	if (irflag & VIRF_MOUNTPOINT)
4343 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4344 	if (irflag & VIRF_TEXT_REF)
4345 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4346 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4347 	if (flags != 0) {
4348 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4349 		strlcat(buf, buf2, sizeof(buf));
4350 	}
4351 	if (vp->v_vflag & VV_ROOT)
4352 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4353 	if (vp->v_vflag & VV_ISTTY)
4354 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4355 	if (vp->v_vflag & VV_NOSYNC)
4356 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4357 	if (vp->v_vflag & VV_ETERNALDEV)
4358 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4359 	if (vp->v_vflag & VV_CACHEDLABEL)
4360 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4361 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4362 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4363 	if (vp->v_vflag & VV_COPYONWRITE)
4364 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4365 	if (vp->v_vflag & VV_SYSTEM)
4366 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4367 	if (vp->v_vflag & VV_PROCDEP)
4368 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4369 	if (vp->v_vflag & VV_DELETED)
4370 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4371 	if (vp->v_vflag & VV_MD)
4372 		strlcat(buf, "|VV_MD", sizeof(buf));
4373 	if (vp->v_vflag & VV_FORCEINSMQ)
4374 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4375 	if (vp->v_vflag & VV_READLINK)
4376 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4377 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4378 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4379 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4380 	if (flags != 0) {
4381 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4382 		strlcat(buf, buf2, sizeof(buf));
4383 	}
4384 	if (vp->v_iflag & VI_MOUNT)
4385 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4386 	if (vp->v_iflag & VI_DOINGINACT)
4387 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4388 	if (vp->v_iflag & VI_OWEINACT)
4389 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4390 	if (vp->v_iflag & VI_DEFINACT)
4391 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4392 	if (vp->v_iflag & VI_FOPENING)
4393 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4394 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4395 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4396 	if (flags != 0) {
4397 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4398 		strlcat(buf, buf2, sizeof(buf));
4399 	}
4400 	if (vp->v_mflag & VMP_LAZYLIST)
4401 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4402 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4403 	if (flags != 0) {
4404 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4405 		strlcat(buf, buf2, sizeof(buf));
4406 	}
4407 	printf("    flags (%s)", buf + 1);
4408 	if (mtx_owned(VI_MTX(vp)))
4409 		printf(" VI_LOCKed");
4410 	printf("\n");
4411 	if (vp->v_object != NULL)
4412 		printf("    v_object %p ref %d pages %d "
4413 		    "cleanbuf %d dirtybuf %d\n",
4414 		    vp->v_object, vp->v_object->ref_count,
4415 		    vp->v_object->resident_page_count,
4416 		    vp->v_bufobj.bo_clean.bv_cnt,
4417 		    vp->v_bufobj.bo_dirty.bv_cnt);
4418 	printf("    ");
4419 	lockmgr_printinfo(vp->v_vnlock);
4420 	if (vp->v_data != NULL)
4421 		VOP_PRINT(vp);
4422 }
4423 
4424 #ifdef DDB
4425 /*
4426  * List all of the locked vnodes in the system.
4427  * Called when debugging the kernel.
4428  */
4429 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4430 {
4431 	struct mount *mp;
4432 	struct vnode *vp;
4433 
4434 	/*
4435 	 * Note: because this is DDB, we can't obey the locking semantics
4436 	 * for these structures, which means we could catch an inconsistent
4437 	 * state and dereference a nasty pointer.  Not much to be done
4438 	 * about that.
4439 	 */
4440 	db_printf("Locked vnodes\n");
4441 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4442 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4443 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4444 				vn_printf(vp, "vnode ");
4445 		}
4446 	}
4447 }
4448 
4449 /*
4450  * Show details about the given vnode.
4451  */
4452 DB_SHOW_COMMAND(vnode, db_show_vnode)
4453 {
4454 	struct vnode *vp;
4455 
4456 	if (!have_addr)
4457 		return;
4458 	vp = (struct vnode *)addr;
4459 	vn_printf(vp, "vnode ");
4460 }
4461 
4462 /*
4463  * Show details about the given mount point.
4464  */
4465 DB_SHOW_COMMAND(mount, db_show_mount)
4466 {
4467 	struct mount *mp;
4468 	struct vfsopt *opt;
4469 	struct statfs *sp;
4470 	struct vnode *vp;
4471 	char buf[512];
4472 	uint64_t mflags;
4473 	u_int flags;
4474 
4475 	if (!have_addr) {
4476 		/* No address given, print short info about all mount points. */
4477 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4478 			db_printf("%p %s on %s (%s)\n", mp,
4479 			    mp->mnt_stat.f_mntfromname,
4480 			    mp->mnt_stat.f_mntonname,
4481 			    mp->mnt_stat.f_fstypename);
4482 			if (db_pager_quit)
4483 				break;
4484 		}
4485 		db_printf("\nMore info: show mount <addr>\n");
4486 		return;
4487 	}
4488 
4489 	mp = (struct mount *)addr;
4490 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4491 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4492 
4493 	buf[0] = '\0';
4494 	mflags = mp->mnt_flag;
4495 #define	MNT_FLAG(flag)	do {						\
4496 	if (mflags & (flag)) {						\
4497 		if (buf[0] != '\0')					\
4498 			strlcat(buf, ", ", sizeof(buf));		\
4499 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4500 		mflags &= ~(flag);					\
4501 	}								\
4502 } while (0)
4503 	MNT_FLAG(MNT_RDONLY);
4504 	MNT_FLAG(MNT_SYNCHRONOUS);
4505 	MNT_FLAG(MNT_NOEXEC);
4506 	MNT_FLAG(MNT_NOSUID);
4507 	MNT_FLAG(MNT_NFS4ACLS);
4508 	MNT_FLAG(MNT_UNION);
4509 	MNT_FLAG(MNT_ASYNC);
4510 	MNT_FLAG(MNT_SUIDDIR);
4511 	MNT_FLAG(MNT_SOFTDEP);
4512 	MNT_FLAG(MNT_NOSYMFOLLOW);
4513 	MNT_FLAG(MNT_GJOURNAL);
4514 	MNT_FLAG(MNT_MULTILABEL);
4515 	MNT_FLAG(MNT_ACLS);
4516 	MNT_FLAG(MNT_NOATIME);
4517 	MNT_FLAG(MNT_NOCLUSTERR);
4518 	MNT_FLAG(MNT_NOCLUSTERW);
4519 	MNT_FLAG(MNT_SUJ);
4520 	MNT_FLAG(MNT_EXRDONLY);
4521 	MNT_FLAG(MNT_EXPORTED);
4522 	MNT_FLAG(MNT_DEFEXPORTED);
4523 	MNT_FLAG(MNT_EXPORTANON);
4524 	MNT_FLAG(MNT_EXKERB);
4525 	MNT_FLAG(MNT_EXPUBLIC);
4526 	MNT_FLAG(MNT_LOCAL);
4527 	MNT_FLAG(MNT_QUOTA);
4528 	MNT_FLAG(MNT_ROOTFS);
4529 	MNT_FLAG(MNT_USER);
4530 	MNT_FLAG(MNT_IGNORE);
4531 	MNT_FLAG(MNT_UPDATE);
4532 	MNT_FLAG(MNT_DELEXPORT);
4533 	MNT_FLAG(MNT_RELOAD);
4534 	MNT_FLAG(MNT_FORCE);
4535 	MNT_FLAG(MNT_SNAPSHOT);
4536 	MNT_FLAG(MNT_BYFSID);
4537 #undef MNT_FLAG
4538 	if (mflags != 0) {
4539 		if (buf[0] != '\0')
4540 			strlcat(buf, ", ", sizeof(buf));
4541 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4542 		    "0x%016jx", mflags);
4543 	}
4544 	db_printf("    mnt_flag = %s\n", buf);
4545 
4546 	buf[0] = '\0';
4547 	flags = mp->mnt_kern_flag;
4548 #define	MNT_KERN_FLAG(flag)	do {					\
4549 	if (flags & (flag)) {						\
4550 		if (buf[0] != '\0')					\
4551 			strlcat(buf, ", ", sizeof(buf));		\
4552 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4553 		flags &= ~(flag);					\
4554 	}								\
4555 } while (0)
4556 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4557 	MNT_KERN_FLAG(MNTK_ASYNC);
4558 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4559 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4560 	MNT_KERN_FLAG(MNTK_DRAINING);
4561 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4562 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4563 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4564 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4565 	MNT_KERN_FLAG(MNTK_RECURSE);
4566 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4567 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4568 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4569 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4570 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4571 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4572 	MNT_KERN_FLAG(MNTK_NOASYNC);
4573 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4574 	MNT_KERN_FLAG(MNTK_MWAIT);
4575 	MNT_KERN_FLAG(MNTK_SUSPEND);
4576 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4577 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4578 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4579 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4580 #undef MNT_KERN_FLAG
4581 	if (flags != 0) {
4582 		if (buf[0] != '\0')
4583 			strlcat(buf, ", ", sizeof(buf));
4584 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4585 		    "0x%08x", flags);
4586 	}
4587 	db_printf("    mnt_kern_flag = %s\n", buf);
4588 
4589 	db_printf("    mnt_opt = ");
4590 	opt = TAILQ_FIRST(mp->mnt_opt);
4591 	if (opt != NULL) {
4592 		db_printf("%s", opt->name);
4593 		opt = TAILQ_NEXT(opt, link);
4594 		while (opt != NULL) {
4595 			db_printf(", %s", opt->name);
4596 			opt = TAILQ_NEXT(opt, link);
4597 		}
4598 	}
4599 	db_printf("\n");
4600 
4601 	sp = &mp->mnt_stat;
4602 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4603 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4604 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4605 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4606 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4607 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4608 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4609 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4610 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4611 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4612 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4613 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4614 
4615 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4616 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4617 	if (jailed(mp->mnt_cred))
4618 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4619 	db_printf(" }\n");
4620 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4621 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4622 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4623 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4624 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4625 	    mp->mnt_lazyvnodelistsize);
4626 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4627 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4628 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4629 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4630 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4631 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4632 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4633 	db_printf("    mnt_secondary_accwrites = %d\n",
4634 	    mp->mnt_secondary_accwrites);
4635 	db_printf("    mnt_gjprovider = %s\n",
4636 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4637 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4638 
4639 	db_printf("\n\nList of active vnodes\n");
4640 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4641 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4642 			vn_printf(vp, "vnode ");
4643 			if (db_pager_quit)
4644 				break;
4645 		}
4646 	}
4647 	db_printf("\n\nList of inactive vnodes\n");
4648 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4649 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4650 			vn_printf(vp, "vnode ");
4651 			if (db_pager_quit)
4652 				break;
4653 		}
4654 	}
4655 }
4656 #endif	/* DDB */
4657 
4658 /*
4659  * Fill in a struct xvfsconf based on a struct vfsconf.
4660  */
4661 static int
4662 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4663 {
4664 	struct xvfsconf xvfsp;
4665 
4666 	bzero(&xvfsp, sizeof(xvfsp));
4667 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4668 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4669 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4670 	xvfsp.vfc_flags = vfsp->vfc_flags;
4671 	/*
4672 	 * These are unused in userland, we keep them
4673 	 * to not break binary compatibility.
4674 	 */
4675 	xvfsp.vfc_vfsops = NULL;
4676 	xvfsp.vfc_next = NULL;
4677 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4678 }
4679 
4680 #ifdef COMPAT_FREEBSD32
4681 struct xvfsconf32 {
4682 	uint32_t	vfc_vfsops;
4683 	char		vfc_name[MFSNAMELEN];
4684 	int32_t		vfc_typenum;
4685 	int32_t		vfc_refcount;
4686 	int32_t		vfc_flags;
4687 	uint32_t	vfc_next;
4688 };
4689 
4690 static int
4691 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4692 {
4693 	struct xvfsconf32 xvfsp;
4694 
4695 	bzero(&xvfsp, sizeof(xvfsp));
4696 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4697 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4698 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4699 	xvfsp.vfc_flags = vfsp->vfc_flags;
4700 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4701 }
4702 #endif
4703 
4704 /*
4705  * Top level filesystem related information gathering.
4706  */
4707 static int
4708 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4709 {
4710 	struct vfsconf *vfsp;
4711 	int error;
4712 
4713 	error = 0;
4714 	vfsconf_slock();
4715 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4716 #ifdef COMPAT_FREEBSD32
4717 		if (req->flags & SCTL_MASK32)
4718 			error = vfsconf2x32(req, vfsp);
4719 		else
4720 #endif
4721 			error = vfsconf2x(req, vfsp);
4722 		if (error)
4723 			break;
4724 	}
4725 	vfsconf_sunlock();
4726 	return (error);
4727 }
4728 
4729 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4730     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4731     "S,xvfsconf", "List of all configured filesystems");
4732 
4733 #ifndef BURN_BRIDGES
4734 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4735 
4736 static int
4737 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4738 {
4739 	int *name = (int *)arg1 - 1;	/* XXX */
4740 	u_int namelen = arg2 + 1;	/* XXX */
4741 	struct vfsconf *vfsp;
4742 
4743 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4744 	    "please rebuild world\n");
4745 
4746 #if 1 || defined(COMPAT_PRELITE2)
4747 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4748 	if (namelen == 1)
4749 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4750 #endif
4751 
4752 	switch (name[1]) {
4753 	case VFS_MAXTYPENUM:
4754 		if (namelen != 2)
4755 			return (ENOTDIR);
4756 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4757 	case VFS_CONF:
4758 		if (namelen != 3)
4759 			return (ENOTDIR);	/* overloaded */
4760 		vfsconf_slock();
4761 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4762 			if (vfsp->vfc_typenum == name[2])
4763 				break;
4764 		}
4765 		vfsconf_sunlock();
4766 		if (vfsp == NULL)
4767 			return (EOPNOTSUPP);
4768 #ifdef COMPAT_FREEBSD32
4769 		if (req->flags & SCTL_MASK32)
4770 			return (vfsconf2x32(req, vfsp));
4771 		else
4772 #endif
4773 			return (vfsconf2x(req, vfsp));
4774 	}
4775 	return (EOPNOTSUPP);
4776 }
4777 
4778 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4779     CTLFLAG_MPSAFE, vfs_sysctl,
4780     "Generic filesystem");
4781 
4782 #if 1 || defined(COMPAT_PRELITE2)
4783 
4784 static int
4785 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4786 {
4787 	int error;
4788 	struct vfsconf *vfsp;
4789 	struct ovfsconf ovfs;
4790 
4791 	vfsconf_slock();
4792 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4793 		bzero(&ovfs, sizeof(ovfs));
4794 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4795 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4796 		ovfs.vfc_index = vfsp->vfc_typenum;
4797 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4798 		ovfs.vfc_flags = vfsp->vfc_flags;
4799 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4800 		if (error != 0) {
4801 			vfsconf_sunlock();
4802 			return (error);
4803 		}
4804 	}
4805 	vfsconf_sunlock();
4806 	return (0);
4807 }
4808 
4809 #endif /* 1 || COMPAT_PRELITE2 */
4810 #endif /* !BURN_BRIDGES */
4811 
4812 static void
4813 unmount_or_warn(struct mount *mp)
4814 {
4815 	int error;
4816 
4817 	error = dounmount(mp, MNT_FORCE, curthread);
4818 	if (error != 0) {
4819 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4820 		if (error == EBUSY)
4821 			printf("BUSY)\n");
4822 		else
4823 			printf("%d)\n", error);
4824 	}
4825 }
4826 
4827 /*
4828  * Unmount all filesystems. The list is traversed in reverse order
4829  * of mounting to avoid dependencies.
4830  */
4831 void
4832 vfs_unmountall(void)
4833 {
4834 	struct mount *mp, *tmp;
4835 
4836 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4837 
4838 	/*
4839 	 * Since this only runs when rebooting, it is not interlocked.
4840 	 */
4841 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4842 		vfs_ref(mp);
4843 
4844 		/*
4845 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4846 		 * unmount of the latter.
4847 		 */
4848 		if (mp == rootdevmp)
4849 			continue;
4850 
4851 		unmount_or_warn(mp);
4852 	}
4853 
4854 	if (rootdevmp != NULL)
4855 		unmount_or_warn(rootdevmp);
4856 }
4857 
4858 static void
4859 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4860 {
4861 
4862 	ASSERT_VI_LOCKED(vp, __func__);
4863 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4864 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4865 		vdropl(vp);
4866 		return;
4867 	}
4868 	if (vn_lock(vp, lkflags) == 0) {
4869 		VI_LOCK(vp);
4870 		vinactive(vp);
4871 		VOP_UNLOCK(vp);
4872 		vdropl(vp);
4873 		return;
4874 	}
4875 	vdefer_inactive_unlocked(vp);
4876 }
4877 
4878 static int
4879 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4880 {
4881 
4882 	return (vp->v_iflag & VI_DEFINACT);
4883 }
4884 
4885 static void __noinline
4886 vfs_periodic_inactive(struct mount *mp, int flags)
4887 {
4888 	struct vnode *vp, *mvp;
4889 	int lkflags;
4890 
4891 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4892 	if (flags != MNT_WAIT)
4893 		lkflags |= LK_NOWAIT;
4894 
4895 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4896 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4897 			VI_UNLOCK(vp);
4898 			continue;
4899 		}
4900 		vp->v_iflag &= ~VI_DEFINACT;
4901 		vfs_deferred_inactive(vp, lkflags);
4902 	}
4903 }
4904 
4905 static inline bool
4906 vfs_want_msync(struct vnode *vp)
4907 {
4908 	struct vm_object *obj;
4909 
4910 	/*
4911 	 * This test may be performed without any locks held.
4912 	 * We rely on vm_object's type stability.
4913 	 */
4914 	if (vp->v_vflag & VV_NOSYNC)
4915 		return (false);
4916 	obj = vp->v_object;
4917 	return (obj != NULL && vm_object_mightbedirty(obj));
4918 }
4919 
4920 static int
4921 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4922 {
4923 
4924 	if (vp->v_vflag & VV_NOSYNC)
4925 		return (false);
4926 	if (vp->v_iflag & VI_DEFINACT)
4927 		return (true);
4928 	return (vfs_want_msync(vp));
4929 }
4930 
4931 static void __noinline
4932 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4933 {
4934 	struct vnode *vp, *mvp;
4935 	struct vm_object *obj;
4936 	int lkflags, objflags;
4937 	bool seen_defer;
4938 
4939 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4940 	if (flags != MNT_WAIT) {
4941 		lkflags |= LK_NOWAIT;
4942 		objflags = OBJPC_NOSYNC;
4943 	} else {
4944 		objflags = OBJPC_SYNC;
4945 	}
4946 
4947 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4948 		seen_defer = false;
4949 		if (vp->v_iflag & VI_DEFINACT) {
4950 			vp->v_iflag &= ~VI_DEFINACT;
4951 			seen_defer = true;
4952 		}
4953 		if (!vfs_want_msync(vp)) {
4954 			if (seen_defer)
4955 				vfs_deferred_inactive(vp, lkflags);
4956 			else
4957 				VI_UNLOCK(vp);
4958 			continue;
4959 		}
4960 		if (vget(vp, lkflags) == 0) {
4961 			obj = vp->v_object;
4962 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4963 				VM_OBJECT_WLOCK(obj);
4964 				vm_object_page_clean(obj, 0, 0, objflags);
4965 				VM_OBJECT_WUNLOCK(obj);
4966 			}
4967 			vput(vp);
4968 			if (seen_defer)
4969 				vdrop(vp);
4970 		} else {
4971 			if (seen_defer)
4972 				vdefer_inactive_unlocked(vp);
4973 		}
4974 	}
4975 }
4976 
4977 void
4978 vfs_periodic(struct mount *mp, int flags)
4979 {
4980 
4981 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4982 
4983 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4984 		vfs_periodic_inactive(mp, flags);
4985 	else
4986 		vfs_periodic_msync_inactive(mp, flags);
4987 }
4988 
4989 static void
4990 destroy_vpollinfo_free(struct vpollinfo *vi)
4991 {
4992 
4993 	knlist_destroy(&vi->vpi_selinfo.si_note);
4994 	mtx_destroy(&vi->vpi_lock);
4995 	free(vi, M_VNODEPOLL);
4996 }
4997 
4998 static void
4999 destroy_vpollinfo(struct vpollinfo *vi)
5000 {
5001 
5002 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5003 	seldrain(&vi->vpi_selinfo);
5004 	destroy_vpollinfo_free(vi);
5005 }
5006 
5007 /*
5008  * Initialize per-vnode helper structure to hold poll-related state.
5009  */
5010 void
5011 v_addpollinfo(struct vnode *vp)
5012 {
5013 	struct vpollinfo *vi;
5014 
5015 	if (vp->v_pollinfo != NULL)
5016 		return;
5017 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5018 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5019 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5020 	    vfs_knlunlock, vfs_knl_assert_lock);
5021 	VI_LOCK(vp);
5022 	if (vp->v_pollinfo != NULL) {
5023 		VI_UNLOCK(vp);
5024 		destroy_vpollinfo_free(vi);
5025 		return;
5026 	}
5027 	vp->v_pollinfo = vi;
5028 	VI_UNLOCK(vp);
5029 }
5030 
5031 /*
5032  * Record a process's interest in events which might happen to
5033  * a vnode.  Because poll uses the historic select-style interface
5034  * internally, this routine serves as both the ``check for any
5035  * pending events'' and the ``record my interest in future events''
5036  * functions.  (These are done together, while the lock is held,
5037  * to avoid race conditions.)
5038  */
5039 int
5040 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5041 {
5042 
5043 	v_addpollinfo(vp);
5044 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5045 	if (vp->v_pollinfo->vpi_revents & events) {
5046 		/*
5047 		 * This leaves events we are not interested
5048 		 * in available for the other process which
5049 		 * which presumably had requested them
5050 		 * (otherwise they would never have been
5051 		 * recorded).
5052 		 */
5053 		events &= vp->v_pollinfo->vpi_revents;
5054 		vp->v_pollinfo->vpi_revents &= ~events;
5055 
5056 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5057 		return (events);
5058 	}
5059 	vp->v_pollinfo->vpi_events |= events;
5060 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5061 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5062 	return (0);
5063 }
5064 
5065 /*
5066  * Routine to create and manage a filesystem syncer vnode.
5067  */
5068 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5069 static int	sync_fsync(struct  vop_fsync_args *);
5070 static int	sync_inactive(struct  vop_inactive_args *);
5071 static int	sync_reclaim(struct  vop_reclaim_args *);
5072 
5073 static struct vop_vector sync_vnodeops = {
5074 	.vop_bypass =	VOP_EOPNOTSUPP,
5075 	.vop_close =	sync_close,
5076 	.vop_fsync =	sync_fsync,
5077 	.vop_getwritemount = vop_stdgetwritemount,
5078 	.vop_inactive =	sync_inactive,
5079 	.vop_need_inactive = vop_stdneed_inactive,
5080 	.vop_reclaim =	sync_reclaim,
5081 	.vop_lock1 =	vop_stdlock,
5082 	.vop_unlock =	vop_stdunlock,
5083 	.vop_islocked =	vop_stdislocked,
5084 	.vop_fplookup_vexec = VOP_EAGAIN,
5085 	.vop_fplookup_symlink = VOP_EAGAIN,
5086 };
5087 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5088 
5089 /*
5090  * Create a new filesystem syncer vnode for the specified mount point.
5091  */
5092 void
5093 vfs_allocate_syncvnode(struct mount *mp)
5094 {
5095 	struct vnode *vp;
5096 	struct bufobj *bo;
5097 	static long start, incr, next;
5098 	int error;
5099 
5100 	/* Allocate a new vnode */
5101 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5102 	if (error != 0)
5103 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5104 	vp->v_type = VNON;
5105 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5106 	vp->v_vflag |= VV_FORCEINSMQ;
5107 	error = insmntque1(vp, mp);
5108 	if (error != 0)
5109 		panic("vfs_allocate_syncvnode: insmntque() failed");
5110 	vp->v_vflag &= ~VV_FORCEINSMQ;
5111 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5112 	VOP_UNLOCK(vp);
5113 	/*
5114 	 * Place the vnode onto the syncer worklist. We attempt to
5115 	 * scatter them about on the list so that they will go off
5116 	 * at evenly distributed times even if all the filesystems
5117 	 * are mounted at once.
5118 	 */
5119 	next += incr;
5120 	if (next == 0 || next > syncer_maxdelay) {
5121 		start /= 2;
5122 		incr /= 2;
5123 		if (start == 0) {
5124 			start = syncer_maxdelay / 2;
5125 			incr = syncer_maxdelay;
5126 		}
5127 		next = start;
5128 	}
5129 	bo = &vp->v_bufobj;
5130 	BO_LOCK(bo);
5131 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5132 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5133 	mtx_lock(&sync_mtx);
5134 	sync_vnode_count++;
5135 	if (mp->mnt_syncer == NULL) {
5136 		mp->mnt_syncer = vp;
5137 		vp = NULL;
5138 	}
5139 	mtx_unlock(&sync_mtx);
5140 	BO_UNLOCK(bo);
5141 	if (vp != NULL) {
5142 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5143 		vgone(vp);
5144 		vput(vp);
5145 	}
5146 }
5147 
5148 void
5149 vfs_deallocate_syncvnode(struct mount *mp)
5150 {
5151 	struct vnode *vp;
5152 
5153 	mtx_lock(&sync_mtx);
5154 	vp = mp->mnt_syncer;
5155 	if (vp != NULL)
5156 		mp->mnt_syncer = NULL;
5157 	mtx_unlock(&sync_mtx);
5158 	if (vp != NULL)
5159 		vrele(vp);
5160 }
5161 
5162 /*
5163  * Do a lazy sync of the filesystem.
5164  */
5165 static int
5166 sync_fsync(struct vop_fsync_args *ap)
5167 {
5168 	struct vnode *syncvp = ap->a_vp;
5169 	struct mount *mp = syncvp->v_mount;
5170 	int error, save;
5171 	struct bufobj *bo;
5172 
5173 	/*
5174 	 * We only need to do something if this is a lazy evaluation.
5175 	 */
5176 	if (ap->a_waitfor != MNT_LAZY)
5177 		return (0);
5178 
5179 	/*
5180 	 * Move ourselves to the back of the sync list.
5181 	 */
5182 	bo = &syncvp->v_bufobj;
5183 	BO_LOCK(bo);
5184 	vn_syncer_add_to_worklist(bo, syncdelay);
5185 	BO_UNLOCK(bo);
5186 
5187 	/*
5188 	 * Walk the list of vnodes pushing all that are dirty and
5189 	 * not already on the sync list.
5190 	 */
5191 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5192 		return (0);
5193 	VOP_UNLOCK(syncvp);
5194 	save = curthread_pflags_set(TDP_SYNCIO);
5195 	/*
5196 	 * The filesystem at hand may be idle with free vnodes stored in the
5197 	 * batch.  Return them instead of letting them stay there indefinitely.
5198 	 */
5199 	vfs_periodic(mp, MNT_NOWAIT);
5200 	error = VFS_SYNC(mp, MNT_LAZY);
5201 	curthread_pflags_restore(save);
5202 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5203 	vfs_unbusy(mp);
5204 	return (error);
5205 }
5206 
5207 /*
5208  * The syncer vnode is no referenced.
5209  */
5210 static int
5211 sync_inactive(struct vop_inactive_args *ap)
5212 {
5213 
5214 	vgone(ap->a_vp);
5215 	return (0);
5216 }
5217 
5218 /*
5219  * The syncer vnode is no longer needed and is being decommissioned.
5220  *
5221  * Modifications to the worklist must be protected by sync_mtx.
5222  */
5223 static int
5224 sync_reclaim(struct vop_reclaim_args *ap)
5225 {
5226 	struct vnode *vp = ap->a_vp;
5227 	struct bufobj *bo;
5228 
5229 	bo = &vp->v_bufobj;
5230 	BO_LOCK(bo);
5231 	mtx_lock(&sync_mtx);
5232 	if (vp->v_mount->mnt_syncer == vp)
5233 		vp->v_mount->mnt_syncer = NULL;
5234 	if (bo->bo_flag & BO_ONWORKLST) {
5235 		LIST_REMOVE(bo, bo_synclist);
5236 		syncer_worklist_len--;
5237 		sync_vnode_count--;
5238 		bo->bo_flag &= ~BO_ONWORKLST;
5239 	}
5240 	mtx_unlock(&sync_mtx);
5241 	BO_UNLOCK(bo);
5242 
5243 	return (0);
5244 }
5245 
5246 int
5247 vn_need_pageq_flush(struct vnode *vp)
5248 {
5249 	struct vm_object *obj;
5250 
5251 	obj = vp->v_object;
5252 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5253 	    vm_object_mightbedirty(obj));
5254 }
5255 
5256 /*
5257  * Check if vnode represents a disk device
5258  */
5259 bool
5260 vn_isdisk_error(struct vnode *vp, int *errp)
5261 {
5262 	int error;
5263 
5264 	if (vp->v_type != VCHR) {
5265 		error = ENOTBLK;
5266 		goto out;
5267 	}
5268 	error = 0;
5269 	dev_lock();
5270 	if (vp->v_rdev == NULL)
5271 		error = ENXIO;
5272 	else if (vp->v_rdev->si_devsw == NULL)
5273 		error = ENXIO;
5274 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5275 		error = ENOTBLK;
5276 	dev_unlock();
5277 out:
5278 	*errp = error;
5279 	return (error == 0);
5280 }
5281 
5282 bool
5283 vn_isdisk(struct vnode *vp)
5284 {
5285 	int error;
5286 
5287 	return (vn_isdisk_error(vp, &error));
5288 }
5289 
5290 /*
5291  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5292  * the comment above cache_fplookup for details.
5293  */
5294 int
5295 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5296 {
5297 	int error;
5298 
5299 	VFS_SMR_ASSERT_ENTERED();
5300 
5301 	/* Check the owner. */
5302 	if (cred->cr_uid == file_uid) {
5303 		if (file_mode & S_IXUSR)
5304 			return (0);
5305 		goto out_error;
5306 	}
5307 
5308 	/* Otherwise, check the groups (first match) */
5309 	if (groupmember(file_gid, cred)) {
5310 		if (file_mode & S_IXGRP)
5311 			return (0);
5312 		goto out_error;
5313 	}
5314 
5315 	/* Otherwise, check everyone else. */
5316 	if (file_mode & S_IXOTH)
5317 		return (0);
5318 out_error:
5319 	/*
5320 	 * Permission check failed, but it is possible denial will get overwritten
5321 	 * (e.g., when root is traversing through a 700 directory owned by someone
5322 	 * else).
5323 	 *
5324 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5325 	 * modules overriding this result. It's quite unclear what semantics
5326 	 * are allowed for them to operate, thus for safety we don't call them
5327 	 * from within the SMR section. This also means if any such modules
5328 	 * are present, we have to let the regular lookup decide.
5329 	 */
5330 	error = priv_check_cred_vfs_lookup_nomac(cred);
5331 	switch (error) {
5332 	case 0:
5333 		return (0);
5334 	case EAGAIN:
5335 		/*
5336 		 * MAC modules present.
5337 		 */
5338 		return (EAGAIN);
5339 	case EPERM:
5340 		return (EACCES);
5341 	default:
5342 		return (error);
5343 	}
5344 }
5345 
5346 /*
5347  * Common filesystem object access control check routine.  Accepts a
5348  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5349  * Returns 0 on success, or an errno on failure.
5350  */
5351 int
5352 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5353     accmode_t accmode, struct ucred *cred)
5354 {
5355 	accmode_t dac_granted;
5356 	accmode_t priv_granted;
5357 
5358 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5359 	    ("invalid bit in accmode"));
5360 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5361 	    ("VAPPEND without VWRITE"));
5362 
5363 	/*
5364 	 * Look for a normal, non-privileged way to access the file/directory
5365 	 * as requested.  If it exists, go with that.
5366 	 */
5367 
5368 	dac_granted = 0;
5369 
5370 	/* Check the owner. */
5371 	if (cred->cr_uid == file_uid) {
5372 		dac_granted |= VADMIN;
5373 		if (file_mode & S_IXUSR)
5374 			dac_granted |= VEXEC;
5375 		if (file_mode & S_IRUSR)
5376 			dac_granted |= VREAD;
5377 		if (file_mode & S_IWUSR)
5378 			dac_granted |= (VWRITE | VAPPEND);
5379 
5380 		if ((accmode & dac_granted) == accmode)
5381 			return (0);
5382 
5383 		goto privcheck;
5384 	}
5385 
5386 	/* Otherwise, check the groups (first match) */
5387 	if (groupmember(file_gid, cred)) {
5388 		if (file_mode & S_IXGRP)
5389 			dac_granted |= VEXEC;
5390 		if (file_mode & S_IRGRP)
5391 			dac_granted |= VREAD;
5392 		if (file_mode & S_IWGRP)
5393 			dac_granted |= (VWRITE | VAPPEND);
5394 
5395 		if ((accmode & dac_granted) == accmode)
5396 			return (0);
5397 
5398 		goto privcheck;
5399 	}
5400 
5401 	/* Otherwise, check everyone else. */
5402 	if (file_mode & S_IXOTH)
5403 		dac_granted |= VEXEC;
5404 	if (file_mode & S_IROTH)
5405 		dac_granted |= VREAD;
5406 	if (file_mode & S_IWOTH)
5407 		dac_granted |= (VWRITE | VAPPEND);
5408 	if ((accmode & dac_granted) == accmode)
5409 		return (0);
5410 
5411 privcheck:
5412 	/*
5413 	 * Build a privilege mask to determine if the set of privileges
5414 	 * satisfies the requirements when combined with the granted mask
5415 	 * from above.  For each privilege, if the privilege is required,
5416 	 * bitwise or the request type onto the priv_granted mask.
5417 	 */
5418 	priv_granted = 0;
5419 
5420 	if (type == VDIR) {
5421 		/*
5422 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5423 		 * requests, instead of PRIV_VFS_EXEC.
5424 		 */
5425 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5426 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5427 			priv_granted |= VEXEC;
5428 	} else {
5429 		/*
5430 		 * Ensure that at least one execute bit is on. Otherwise,
5431 		 * a privileged user will always succeed, and we don't want
5432 		 * this to happen unless the file really is executable.
5433 		 */
5434 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5435 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5436 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5437 			priv_granted |= VEXEC;
5438 	}
5439 
5440 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5441 	    !priv_check_cred(cred, PRIV_VFS_READ))
5442 		priv_granted |= VREAD;
5443 
5444 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5445 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5446 		priv_granted |= (VWRITE | VAPPEND);
5447 
5448 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5449 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5450 		priv_granted |= VADMIN;
5451 
5452 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5453 		return (0);
5454 	}
5455 
5456 	return ((accmode & VADMIN) ? EPERM : EACCES);
5457 }
5458 
5459 /*
5460  * Credential check based on process requesting service, and per-attribute
5461  * permissions.
5462  */
5463 int
5464 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5465     struct thread *td, accmode_t accmode)
5466 {
5467 
5468 	/*
5469 	 * Kernel-invoked always succeeds.
5470 	 */
5471 	if (cred == NOCRED)
5472 		return (0);
5473 
5474 	/*
5475 	 * Do not allow privileged processes in jail to directly manipulate
5476 	 * system attributes.
5477 	 */
5478 	switch (attrnamespace) {
5479 	case EXTATTR_NAMESPACE_SYSTEM:
5480 		/* Potentially should be: return (EPERM); */
5481 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5482 	case EXTATTR_NAMESPACE_USER:
5483 		return (VOP_ACCESS(vp, accmode, cred, td));
5484 	default:
5485 		return (EPERM);
5486 	}
5487 }
5488 
5489 #ifdef DEBUG_VFS_LOCKS
5490 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5491 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5492     "Drop into debugger on lock violation");
5493 
5494 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5495 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5496     0, "Check for interlock across VOPs");
5497 
5498 int vfs_badlock_print = 1;	/* Print lock violations. */
5499 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5500     0, "Print lock violations");
5501 
5502 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5503 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5504     0, "Print vnode details on lock violations");
5505 
5506 #ifdef KDB
5507 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5508 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5509     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5510 #endif
5511 
5512 static void
5513 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5514 {
5515 
5516 #ifdef KDB
5517 	if (vfs_badlock_backtrace)
5518 		kdb_backtrace();
5519 #endif
5520 	if (vfs_badlock_vnode)
5521 		vn_printf(vp, "vnode ");
5522 	if (vfs_badlock_print)
5523 		printf("%s: %p %s\n", str, (void *)vp, msg);
5524 	if (vfs_badlock_ddb)
5525 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5526 }
5527 
5528 void
5529 assert_vi_locked(struct vnode *vp, const char *str)
5530 {
5531 
5532 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5533 		vfs_badlock("interlock is not locked but should be", str, vp);
5534 }
5535 
5536 void
5537 assert_vi_unlocked(struct vnode *vp, const char *str)
5538 {
5539 
5540 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5541 		vfs_badlock("interlock is locked but should not be", str, vp);
5542 }
5543 
5544 void
5545 assert_vop_locked(struct vnode *vp, const char *str)
5546 {
5547 	if (KERNEL_PANICKED() || vp == NULL)
5548 		return;
5549 
5550 #ifdef WITNESS
5551 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5552 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5553 #else
5554 	int locked = VOP_ISLOCKED(vp);
5555 	if (locked == 0 || locked == LK_EXCLOTHER)
5556 #endif
5557 		vfs_badlock("is not locked but should be", str, vp);
5558 }
5559 
5560 void
5561 assert_vop_unlocked(struct vnode *vp, const char *str)
5562 {
5563 	if (KERNEL_PANICKED() || vp == NULL)
5564 		return;
5565 
5566 #ifdef WITNESS
5567 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5568 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5569 #else
5570 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5571 #endif
5572 		vfs_badlock("is locked but should not be", str, vp);
5573 }
5574 
5575 void
5576 assert_vop_elocked(struct vnode *vp, const char *str)
5577 {
5578 	if (KERNEL_PANICKED() || vp == NULL)
5579 		return;
5580 
5581 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5582 		vfs_badlock("is not exclusive locked but should be", str, vp);
5583 }
5584 #endif /* DEBUG_VFS_LOCKS */
5585 
5586 void
5587 vop_rename_fail(struct vop_rename_args *ap)
5588 {
5589 
5590 	if (ap->a_tvp != NULL)
5591 		vput(ap->a_tvp);
5592 	if (ap->a_tdvp == ap->a_tvp)
5593 		vrele(ap->a_tdvp);
5594 	else
5595 		vput(ap->a_tdvp);
5596 	vrele(ap->a_fdvp);
5597 	vrele(ap->a_fvp);
5598 }
5599 
5600 void
5601 vop_rename_pre(void *ap)
5602 {
5603 	struct vop_rename_args *a = ap;
5604 
5605 #ifdef DEBUG_VFS_LOCKS
5606 	if (a->a_tvp)
5607 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5608 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5609 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5610 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5611 
5612 	/* Check the source (from). */
5613 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5614 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5615 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5616 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5617 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5618 
5619 	/* Check the target. */
5620 	if (a->a_tvp)
5621 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5622 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5623 #endif
5624 	/*
5625 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5626 	 * in vop_rename_post but that's not going to work out since some
5627 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5628 	 *
5629 	 * For now filesystems are expected to do the relevant calls after they
5630 	 * decide what vnodes to operate on.
5631 	 */
5632 	if (a->a_tdvp != a->a_fdvp)
5633 		vhold(a->a_fdvp);
5634 	if (a->a_tvp != a->a_fvp)
5635 		vhold(a->a_fvp);
5636 	vhold(a->a_tdvp);
5637 	if (a->a_tvp)
5638 		vhold(a->a_tvp);
5639 }
5640 
5641 #ifdef DEBUG_VFS_LOCKS
5642 void
5643 vop_fplookup_vexec_debugpre(void *ap __unused)
5644 {
5645 
5646 	VFS_SMR_ASSERT_ENTERED();
5647 }
5648 
5649 void
5650 vop_fplookup_vexec_debugpost(void *ap, int rc)
5651 {
5652 	struct vop_fplookup_vexec_args *a;
5653 	struct vnode *vp;
5654 
5655 	a = ap;
5656 	vp = a->a_vp;
5657 
5658 	VFS_SMR_ASSERT_ENTERED();
5659 	if (rc == EOPNOTSUPP)
5660 		VNPASS(VN_IS_DOOMED(vp), vp);
5661 }
5662 
5663 void
5664 vop_fplookup_symlink_debugpre(void *ap __unused)
5665 {
5666 
5667 	VFS_SMR_ASSERT_ENTERED();
5668 }
5669 
5670 void
5671 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5672 {
5673 
5674 	VFS_SMR_ASSERT_ENTERED();
5675 }
5676 
5677 static void
5678 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5679 {
5680 	if (vp->v_type == VCHR)
5681 		;
5682 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5683 		ASSERT_VOP_LOCKED(vp, name);
5684 	else
5685 		ASSERT_VOP_ELOCKED(vp, name);
5686 }
5687 
5688 void
5689 vop_fsync_debugpre(void *a)
5690 {
5691 	struct vop_fsync_args *ap;
5692 
5693 	ap = a;
5694 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5695 }
5696 
5697 void
5698 vop_fsync_debugpost(void *a, int rc __unused)
5699 {
5700 	struct vop_fsync_args *ap;
5701 
5702 	ap = a;
5703 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5704 }
5705 
5706 void
5707 vop_fdatasync_debugpre(void *a)
5708 {
5709 	struct vop_fdatasync_args *ap;
5710 
5711 	ap = a;
5712 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5713 }
5714 
5715 void
5716 vop_fdatasync_debugpost(void *a, int rc __unused)
5717 {
5718 	struct vop_fdatasync_args *ap;
5719 
5720 	ap = a;
5721 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5722 }
5723 
5724 void
5725 vop_strategy_debugpre(void *ap)
5726 {
5727 	struct vop_strategy_args *a;
5728 	struct buf *bp;
5729 
5730 	a = ap;
5731 	bp = a->a_bp;
5732 
5733 	/*
5734 	 * Cluster ops lock their component buffers but not the IO container.
5735 	 */
5736 	if ((bp->b_flags & B_CLUSTER) != 0)
5737 		return;
5738 
5739 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5740 		if (vfs_badlock_print)
5741 			printf(
5742 			    "VOP_STRATEGY: bp is not locked but should be\n");
5743 		if (vfs_badlock_ddb)
5744 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5745 	}
5746 }
5747 
5748 void
5749 vop_lock_debugpre(void *ap)
5750 {
5751 	struct vop_lock1_args *a = ap;
5752 
5753 	if ((a->a_flags & LK_INTERLOCK) == 0)
5754 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5755 	else
5756 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5757 }
5758 
5759 void
5760 vop_lock_debugpost(void *ap, int rc)
5761 {
5762 	struct vop_lock1_args *a = ap;
5763 
5764 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5765 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5766 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5767 }
5768 
5769 void
5770 vop_unlock_debugpre(void *ap)
5771 {
5772 	struct vop_unlock_args *a = ap;
5773 	struct vnode *vp = a->a_vp;
5774 
5775 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5776 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5777 }
5778 
5779 void
5780 vop_need_inactive_debugpre(void *ap)
5781 {
5782 	struct vop_need_inactive_args *a = ap;
5783 
5784 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5785 }
5786 
5787 void
5788 vop_need_inactive_debugpost(void *ap, int rc)
5789 {
5790 	struct vop_need_inactive_args *a = ap;
5791 
5792 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5793 }
5794 #endif
5795 
5796 void
5797 vop_create_pre(void *ap)
5798 {
5799 	struct vop_create_args *a;
5800 	struct vnode *dvp;
5801 
5802 	a = ap;
5803 	dvp = a->a_dvp;
5804 	vn_seqc_write_begin(dvp);
5805 }
5806 
5807 void
5808 vop_create_post(void *ap, int rc)
5809 {
5810 	struct vop_create_args *a;
5811 	struct vnode *dvp;
5812 
5813 	a = ap;
5814 	dvp = a->a_dvp;
5815 	vn_seqc_write_end(dvp);
5816 	if (!rc)
5817 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5818 }
5819 
5820 void
5821 vop_whiteout_pre(void *ap)
5822 {
5823 	struct vop_whiteout_args *a;
5824 	struct vnode *dvp;
5825 
5826 	a = ap;
5827 	dvp = a->a_dvp;
5828 	vn_seqc_write_begin(dvp);
5829 }
5830 
5831 void
5832 vop_whiteout_post(void *ap, int rc)
5833 {
5834 	struct vop_whiteout_args *a;
5835 	struct vnode *dvp;
5836 
5837 	a = ap;
5838 	dvp = a->a_dvp;
5839 	vn_seqc_write_end(dvp);
5840 }
5841 
5842 void
5843 vop_deleteextattr_pre(void *ap)
5844 {
5845 	struct vop_deleteextattr_args *a;
5846 	struct vnode *vp;
5847 
5848 	a = ap;
5849 	vp = a->a_vp;
5850 	vn_seqc_write_begin(vp);
5851 }
5852 
5853 void
5854 vop_deleteextattr_post(void *ap, int rc)
5855 {
5856 	struct vop_deleteextattr_args *a;
5857 	struct vnode *vp;
5858 
5859 	a = ap;
5860 	vp = a->a_vp;
5861 	vn_seqc_write_end(vp);
5862 	if (!rc)
5863 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5864 }
5865 
5866 void
5867 vop_link_pre(void *ap)
5868 {
5869 	struct vop_link_args *a;
5870 	struct vnode *vp, *tdvp;
5871 
5872 	a = ap;
5873 	vp = a->a_vp;
5874 	tdvp = a->a_tdvp;
5875 	vn_seqc_write_begin(vp);
5876 	vn_seqc_write_begin(tdvp);
5877 }
5878 
5879 void
5880 vop_link_post(void *ap, int rc)
5881 {
5882 	struct vop_link_args *a;
5883 	struct vnode *vp, *tdvp;
5884 
5885 	a = ap;
5886 	vp = a->a_vp;
5887 	tdvp = a->a_tdvp;
5888 	vn_seqc_write_end(vp);
5889 	vn_seqc_write_end(tdvp);
5890 	if (!rc) {
5891 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5892 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5893 	}
5894 }
5895 
5896 void
5897 vop_mkdir_pre(void *ap)
5898 {
5899 	struct vop_mkdir_args *a;
5900 	struct vnode *dvp;
5901 
5902 	a = ap;
5903 	dvp = a->a_dvp;
5904 	vn_seqc_write_begin(dvp);
5905 }
5906 
5907 void
5908 vop_mkdir_post(void *ap, int rc)
5909 {
5910 	struct vop_mkdir_args *a;
5911 	struct vnode *dvp;
5912 
5913 	a = ap;
5914 	dvp = a->a_dvp;
5915 	vn_seqc_write_end(dvp);
5916 	if (!rc)
5917 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5918 }
5919 
5920 #ifdef DEBUG_VFS_LOCKS
5921 void
5922 vop_mkdir_debugpost(void *ap, int rc)
5923 {
5924 	struct vop_mkdir_args *a;
5925 
5926 	a = ap;
5927 	if (!rc)
5928 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5929 }
5930 #endif
5931 
5932 void
5933 vop_mknod_pre(void *ap)
5934 {
5935 	struct vop_mknod_args *a;
5936 	struct vnode *dvp;
5937 
5938 	a = ap;
5939 	dvp = a->a_dvp;
5940 	vn_seqc_write_begin(dvp);
5941 }
5942 
5943 void
5944 vop_mknod_post(void *ap, int rc)
5945 {
5946 	struct vop_mknod_args *a;
5947 	struct vnode *dvp;
5948 
5949 	a = ap;
5950 	dvp = a->a_dvp;
5951 	vn_seqc_write_end(dvp);
5952 	if (!rc)
5953 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5954 }
5955 
5956 void
5957 vop_reclaim_post(void *ap, int rc)
5958 {
5959 	struct vop_reclaim_args *a;
5960 	struct vnode *vp;
5961 
5962 	a = ap;
5963 	vp = a->a_vp;
5964 	ASSERT_VOP_IN_SEQC(vp);
5965 	if (!rc)
5966 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5967 }
5968 
5969 void
5970 vop_remove_pre(void *ap)
5971 {
5972 	struct vop_remove_args *a;
5973 	struct vnode *dvp, *vp;
5974 
5975 	a = ap;
5976 	dvp = a->a_dvp;
5977 	vp = a->a_vp;
5978 	vn_seqc_write_begin(dvp);
5979 	vn_seqc_write_begin(vp);
5980 }
5981 
5982 void
5983 vop_remove_post(void *ap, int rc)
5984 {
5985 	struct vop_remove_args *a;
5986 	struct vnode *dvp, *vp;
5987 
5988 	a = ap;
5989 	dvp = a->a_dvp;
5990 	vp = a->a_vp;
5991 	vn_seqc_write_end(dvp);
5992 	vn_seqc_write_end(vp);
5993 	if (!rc) {
5994 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5995 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5996 	}
5997 }
5998 
5999 void
6000 vop_rename_post(void *ap, int rc)
6001 {
6002 	struct vop_rename_args *a = ap;
6003 	long hint;
6004 
6005 	if (!rc) {
6006 		hint = NOTE_WRITE;
6007 		if (a->a_fdvp == a->a_tdvp) {
6008 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6009 				hint |= NOTE_LINK;
6010 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6011 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6012 		} else {
6013 			hint |= NOTE_EXTEND;
6014 			if (a->a_fvp->v_type == VDIR)
6015 				hint |= NOTE_LINK;
6016 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6017 
6018 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6019 			    a->a_tvp->v_type == VDIR)
6020 				hint &= ~NOTE_LINK;
6021 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6022 		}
6023 
6024 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6025 		if (a->a_tvp)
6026 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6027 	}
6028 	if (a->a_tdvp != a->a_fdvp)
6029 		vdrop(a->a_fdvp);
6030 	if (a->a_tvp != a->a_fvp)
6031 		vdrop(a->a_fvp);
6032 	vdrop(a->a_tdvp);
6033 	if (a->a_tvp)
6034 		vdrop(a->a_tvp);
6035 }
6036 
6037 void
6038 vop_rmdir_pre(void *ap)
6039 {
6040 	struct vop_rmdir_args *a;
6041 	struct vnode *dvp, *vp;
6042 
6043 	a = ap;
6044 	dvp = a->a_dvp;
6045 	vp = a->a_vp;
6046 	vn_seqc_write_begin(dvp);
6047 	vn_seqc_write_begin(vp);
6048 }
6049 
6050 void
6051 vop_rmdir_post(void *ap, int rc)
6052 {
6053 	struct vop_rmdir_args *a;
6054 	struct vnode *dvp, *vp;
6055 
6056 	a = ap;
6057 	dvp = a->a_dvp;
6058 	vp = a->a_vp;
6059 	vn_seqc_write_end(dvp);
6060 	vn_seqc_write_end(vp);
6061 	if (!rc) {
6062 		vp->v_vflag |= VV_UNLINKED;
6063 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6064 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6065 	}
6066 }
6067 
6068 void
6069 vop_setattr_pre(void *ap)
6070 {
6071 	struct vop_setattr_args *a;
6072 	struct vnode *vp;
6073 
6074 	a = ap;
6075 	vp = a->a_vp;
6076 	vn_seqc_write_begin(vp);
6077 }
6078 
6079 void
6080 vop_setattr_post(void *ap, int rc)
6081 {
6082 	struct vop_setattr_args *a;
6083 	struct vnode *vp;
6084 
6085 	a = ap;
6086 	vp = a->a_vp;
6087 	vn_seqc_write_end(vp);
6088 	if (!rc)
6089 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6090 }
6091 
6092 void
6093 vop_setacl_pre(void *ap)
6094 {
6095 	struct vop_setacl_args *a;
6096 	struct vnode *vp;
6097 
6098 	a = ap;
6099 	vp = a->a_vp;
6100 	vn_seqc_write_begin(vp);
6101 }
6102 
6103 void
6104 vop_setacl_post(void *ap, int rc __unused)
6105 {
6106 	struct vop_setacl_args *a;
6107 	struct vnode *vp;
6108 
6109 	a = ap;
6110 	vp = a->a_vp;
6111 	vn_seqc_write_end(vp);
6112 }
6113 
6114 void
6115 vop_setextattr_pre(void *ap)
6116 {
6117 	struct vop_setextattr_args *a;
6118 	struct vnode *vp;
6119 
6120 	a = ap;
6121 	vp = a->a_vp;
6122 	vn_seqc_write_begin(vp);
6123 }
6124 
6125 void
6126 vop_setextattr_post(void *ap, int rc)
6127 {
6128 	struct vop_setextattr_args *a;
6129 	struct vnode *vp;
6130 
6131 	a = ap;
6132 	vp = a->a_vp;
6133 	vn_seqc_write_end(vp);
6134 	if (!rc)
6135 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6136 }
6137 
6138 void
6139 vop_symlink_pre(void *ap)
6140 {
6141 	struct vop_symlink_args *a;
6142 	struct vnode *dvp;
6143 
6144 	a = ap;
6145 	dvp = a->a_dvp;
6146 	vn_seqc_write_begin(dvp);
6147 }
6148 
6149 void
6150 vop_symlink_post(void *ap, int rc)
6151 {
6152 	struct vop_symlink_args *a;
6153 	struct vnode *dvp;
6154 
6155 	a = ap;
6156 	dvp = a->a_dvp;
6157 	vn_seqc_write_end(dvp);
6158 	if (!rc)
6159 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6160 }
6161 
6162 void
6163 vop_open_post(void *ap, int rc)
6164 {
6165 	struct vop_open_args *a = ap;
6166 
6167 	if (!rc)
6168 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6169 }
6170 
6171 void
6172 vop_close_post(void *ap, int rc)
6173 {
6174 	struct vop_close_args *a = ap;
6175 
6176 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6177 	    !VN_IS_DOOMED(a->a_vp))) {
6178 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6179 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6180 	}
6181 }
6182 
6183 void
6184 vop_read_post(void *ap, int rc)
6185 {
6186 	struct vop_read_args *a = ap;
6187 
6188 	if (!rc)
6189 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6190 }
6191 
6192 void
6193 vop_read_pgcache_post(void *ap, int rc)
6194 {
6195 	struct vop_read_pgcache_args *a = ap;
6196 
6197 	if (!rc)
6198 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6199 }
6200 
6201 void
6202 vop_readdir_post(void *ap, int rc)
6203 {
6204 	struct vop_readdir_args *a = ap;
6205 
6206 	if (!rc)
6207 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6208 }
6209 
6210 static struct knlist fs_knlist;
6211 
6212 static void
6213 vfs_event_init(void *arg)
6214 {
6215 	knlist_init_mtx(&fs_knlist, NULL);
6216 }
6217 /* XXX - correct order? */
6218 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6219 
6220 void
6221 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6222 {
6223 
6224 	KNOTE_UNLOCKED(&fs_knlist, event);
6225 }
6226 
6227 static int	filt_fsattach(struct knote *kn);
6228 static void	filt_fsdetach(struct knote *kn);
6229 static int	filt_fsevent(struct knote *kn, long hint);
6230 
6231 struct filterops fs_filtops = {
6232 	.f_isfd = 0,
6233 	.f_attach = filt_fsattach,
6234 	.f_detach = filt_fsdetach,
6235 	.f_event = filt_fsevent
6236 };
6237 
6238 static int
6239 filt_fsattach(struct knote *kn)
6240 {
6241 
6242 	kn->kn_flags |= EV_CLEAR;
6243 	knlist_add(&fs_knlist, kn, 0);
6244 	return (0);
6245 }
6246 
6247 static void
6248 filt_fsdetach(struct knote *kn)
6249 {
6250 
6251 	knlist_remove(&fs_knlist, kn, 0);
6252 }
6253 
6254 static int
6255 filt_fsevent(struct knote *kn, long hint)
6256 {
6257 
6258 	kn->kn_fflags |= kn->kn_sfflags & hint;
6259 
6260 	return (kn->kn_fflags != 0);
6261 }
6262 
6263 static int
6264 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6265 {
6266 	struct vfsidctl vc;
6267 	int error;
6268 	struct mount *mp;
6269 
6270 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6271 	if (error)
6272 		return (error);
6273 	if (vc.vc_vers != VFS_CTL_VERS1)
6274 		return (EINVAL);
6275 	mp = vfs_getvfs(&vc.vc_fsid);
6276 	if (mp == NULL)
6277 		return (ENOENT);
6278 	/* ensure that a specific sysctl goes to the right filesystem. */
6279 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6280 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6281 		vfs_rel(mp);
6282 		return (EINVAL);
6283 	}
6284 	VCTLTOREQ(&vc, req);
6285 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6286 	vfs_rel(mp);
6287 	return (error);
6288 }
6289 
6290 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6291     NULL, 0, sysctl_vfs_ctl, "",
6292     "Sysctl by fsid");
6293 
6294 /*
6295  * Function to initialize a va_filerev field sensibly.
6296  * XXX: Wouldn't a random number make a lot more sense ??
6297  */
6298 u_quad_t
6299 init_va_filerev(void)
6300 {
6301 	struct bintime bt;
6302 
6303 	getbinuptime(&bt);
6304 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6305 }
6306 
6307 static int	filt_vfsread(struct knote *kn, long hint);
6308 static int	filt_vfswrite(struct knote *kn, long hint);
6309 static int	filt_vfsvnode(struct knote *kn, long hint);
6310 static void	filt_vfsdetach(struct knote *kn);
6311 static struct filterops vfsread_filtops = {
6312 	.f_isfd = 1,
6313 	.f_detach = filt_vfsdetach,
6314 	.f_event = filt_vfsread
6315 };
6316 static struct filterops vfswrite_filtops = {
6317 	.f_isfd = 1,
6318 	.f_detach = filt_vfsdetach,
6319 	.f_event = filt_vfswrite
6320 };
6321 static struct filterops vfsvnode_filtops = {
6322 	.f_isfd = 1,
6323 	.f_detach = filt_vfsdetach,
6324 	.f_event = filt_vfsvnode
6325 };
6326 
6327 static void
6328 vfs_knllock(void *arg)
6329 {
6330 	struct vnode *vp = arg;
6331 
6332 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6333 }
6334 
6335 static void
6336 vfs_knlunlock(void *arg)
6337 {
6338 	struct vnode *vp = arg;
6339 
6340 	VOP_UNLOCK(vp);
6341 }
6342 
6343 static void
6344 vfs_knl_assert_lock(void *arg, int what)
6345 {
6346 #ifdef DEBUG_VFS_LOCKS
6347 	struct vnode *vp = arg;
6348 
6349 	if (what == LA_LOCKED)
6350 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6351 	else
6352 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6353 #endif
6354 }
6355 
6356 int
6357 vfs_kqfilter(struct vop_kqfilter_args *ap)
6358 {
6359 	struct vnode *vp = ap->a_vp;
6360 	struct knote *kn = ap->a_kn;
6361 	struct knlist *knl;
6362 
6363 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6364 	    kn->kn_filter != EVFILT_WRITE),
6365 	    ("READ/WRITE filter on a FIFO leaked through"));
6366 	switch (kn->kn_filter) {
6367 	case EVFILT_READ:
6368 		kn->kn_fop = &vfsread_filtops;
6369 		break;
6370 	case EVFILT_WRITE:
6371 		kn->kn_fop = &vfswrite_filtops;
6372 		break;
6373 	case EVFILT_VNODE:
6374 		kn->kn_fop = &vfsvnode_filtops;
6375 		break;
6376 	default:
6377 		return (EINVAL);
6378 	}
6379 
6380 	kn->kn_hook = (caddr_t)vp;
6381 
6382 	v_addpollinfo(vp);
6383 	if (vp->v_pollinfo == NULL)
6384 		return (ENOMEM);
6385 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6386 	vhold(vp);
6387 	knlist_add(knl, kn, 0);
6388 
6389 	return (0);
6390 }
6391 
6392 /*
6393  * Detach knote from vnode
6394  */
6395 static void
6396 filt_vfsdetach(struct knote *kn)
6397 {
6398 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6399 
6400 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6401 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6402 	vdrop(vp);
6403 }
6404 
6405 /*ARGSUSED*/
6406 static int
6407 filt_vfsread(struct knote *kn, long hint)
6408 {
6409 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6410 	off_t size;
6411 	int res;
6412 
6413 	/*
6414 	 * filesystem is gone, so set the EOF flag and schedule
6415 	 * the knote for deletion.
6416 	 */
6417 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6418 		VI_LOCK(vp);
6419 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6420 		VI_UNLOCK(vp);
6421 		return (1);
6422 	}
6423 
6424 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6425 		return (0);
6426 
6427 	VI_LOCK(vp);
6428 	kn->kn_data = size - kn->kn_fp->f_offset;
6429 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6430 	VI_UNLOCK(vp);
6431 	return (res);
6432 }
6433 
6434 /*ARGSUSED*/
6435 static int
6436 filt_vfswrite(struct knote *kn, long hint)
6437 {
6438 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6439 
6440 	VI_LOCK(vp);
6441 
6442 	/*
6443 	 * filesystem is gone, so set the EOF flag and schedule
6444 	 * the knote for deletion.
6445 	 */
6446 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6447 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6448 
6449 	kn->kn_data = 0;
6450 	VI_UNLOCK(vp);
6451 	return (1);
6452 }
6453 
6454 static int
6455 filt_vfsvnode(struct knote *kn, long hint)
6456 {
6457 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6458 	int res;
6459 
6460 	VI_LOCK(vp);
6461 	if (kn->kn_sfflags & hint)
6462 		kn->kn_fflags |= hint;
6463 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6464 		kn->kn_flags |= EV_EOF;
6465 		VI_UNLOCK(vp);
6466 		return (1);
6467 	}
6468 	res = (kn->kn_fflags != 0);
6469 	VI_UNLOCK(vp);
6470 	return (res);
6471 }
6472 
6473 int
6474 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6475 {
6476 	int error;
6477 
6478 	if (dp->d_reclen > ap->a_uio->uio_resid)
6479 		return (ENAMETOOLONG);
6480 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6481 	if (error) {
6482 		if (ap->a_ncookies != NULL) {
6483 			if (ap->a_cookies != NULL)
6484 				free(ap->a_cookies, M_TEMP);
6485 			ap->a_cookies = NULL;
6486 			*ap->a_ncookies = 0;
6487 		}
6488 		return (error);
6489 	}
6490 	if (ap->a_ncookies == NULL)
6491 		return (0);
6492 
6493 	KASSERT(ap->a_cookies,
6494 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6495 
6496 	*ap->a_cookies = realloc(*ap->a_cookies,
6497 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6498 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6499 	*ap->a_ncookies += 1;
6500 	return (0);
6501 }
6502 
6503 /*
6504  * The purpose of this routine is to remove granularity from accmode_t,
6505  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6506  * VADMIN and VAPPEND.
6507  *
6508  * If it returns 0, the caller is supposed to continue with the usual
6509  * access checks using 'accmode' as modified by this routine.  If it
6510  * returns nonzero value, the caller is supposed to return that value
6511  * as errno.
6512  *
6513  * Note that after this routine runs, accmode may be zero.
6514  */
6515 int
6516 vfs_unixify_accmode(accmode_t *accmode)
6517 {
6518 	/*
6519 	 * There is no way to specify explicit "deny" rule using
6520 	 * file mode or POSIX.1e ACLs.
6521 	 */
6522 	if (*accmode & VEXPLICIT_DENY) {
6523 		*accmode = 0;
6524 		return (0);
6525 	}
6526 
6527 	/*
6528 	 * None of these can be translated into usual access bits.
6529 	 * Also, the common case for NFSv4 ACLs is to not contain
6530 	 * either of these bits. Caller should check for VWRITE
6531 	 * on the containing directory instead.
6532 	 */
6533 	if (*accmode & (VDELETE_CHILD | VDELETE))
6534 		return (EPERM);
6535 
6536 	if (*accmode & VADMIN_PERMS) {
6537 		*accmode &= ~VADMIN_PERMS;
6538 		*accmode |= VADMIN;
6539 	}
6540 
6541 	/*
6542 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6543 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6544 	 */
6545 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6546 
6547 	return (0);
6548 }
6549 
6550 /*
6551  * Clear out a doomed vnode (if any) and replace it with a new one as long
6552  * as the fs is not being unmounted. Return the root vnode to the caller.
6553  */
6554 static int __noinline
6555 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6556 {
6557 	struct vnode *vp;
6558 	int error;
6559 
6560 restart:
6561 	if (mp->mnt_rootvnode != NULL) {
6562 		MNT_ILOCK(mp);
6563 		vp = mp->mnt_rootvnode;
6564 		if (vp != NULL) {
6565 			if (!VN_IS_DOOMED(vp)) {
6566 				vrefact(vp);
6567 				MNT_IUNLOCK(mp);
6568 				error = vn_lock(vp, flags);
6569 				if (error == 0) {
6570 					*vpp = vp;
6571 					return (0);
6572 				}
6573 				vrele(vp);
6574 				goto restart;
6575 			}
6576 			/*
6577 			 * Clear the old one.
6578 			 */
6579 			mp->mnt_rootvnode = NULL;
6580 		}
6581 		MNT_IUNLOCK(mp);
6582 		if (vp != NULL) {
6583 			vfs_op_barrier_wait(mp);
6584 			vrele(vp);
6585 		}
6586 	}
6587 	error = VFS_CACHEDROOT(mp, flags, vpp);
6588 	if (error != 0)
6589 		return (error);
6590 	if (mp->mnt_vfs_ops == 0) {
6591 		MNT_ILOCK(mp);
6592 		if (mp->mnt_vfs_ops != 0) {
6593 			MNT_IUNLOCK(mp);
6594 			return (0);
6595 		}
6596 		if (mp->mnt_rootvnode == NULL) {
6597 			vrefact(*vpp);
6598 			mp->mnt_rootvnode = *vpp;
6599 		} else {
6600 			if (mp->mnt_rootvnode != *vpp) {
6601 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6602 					panic("%s: mismatch between vnode returned "
6603 					    " by VFS_CACHEDROOT and the one cached "
6604 					    " (%p != %p)",
6605 					    __func__, *vpp, mp->mnt_rootvnode);
6606 				}
6607 			}
6608 		}
6609 		MNT_IUNLOCK(mp);
6610 	}
6611 	return (0);
6612 }
6613 
6614 int
6615 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6616 {
6617 	struct mount_pcpu *mpcpu;
6618 	struct vnode *vp;
6619 	int error;
6620 
6621 	if (!vfs_op_thread_enter(mp, mpcpu))
6622 		return (vfs_cache_root_fallback(mp, flags, vpp));
6623 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6624 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6625 		vfs_op_thread_exit(mp, mpcpu);
6626 		return (vfs_cache_root_fallback(mp, flags, vpp));
6627 	}
6628 	vrefact(vp);
6629 	vfs_op_thread_exit(mp, mpcpu);
6630 	error = vn_lock(vp, flags);
6631 	if (error != 0) {
6632 		vrele(vp);
6633 		return (vfs_cache_root_fallback(mp, flags, vpp));
6634 	}
6635 	*vpp = vp;
6636 	return (0);
6637 }
6638 
6639 struct vnode *
6640 vfs_cache_root_clear(struct mount *mp)
6641 {
6642 	struct vnode *vp;
6643 
6644 	/*
6645 	 * ops > 0 guarantees there is nobody who can see this vnode
6646 	 */
6647 	MPASS(mp->mnt_vfs_ops > 0);
6648 	vp = mp->mnt_rootvnode;
6649 	if (vp != NULL)
6650 		vn_seqc_write_begin(vp);
6651 	mp->mnt_rootvnode = NULL;
6652 	return (vp);
6653 }
6654 
6655 void
6656 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6657 {
6658 
6659 	MPASS(mp->mnt_vfs_ops > 0);
6660 	vrefact(vp);
6661 	mp->mnt_rootvnode = vp;
6662 }
6663 
6664 /*
6665  * These are helper functions for filesystems to traverse all
6666  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6667  *
6668  * This interface replaces MNT_VNODE_FOREACH.
6669  */
6670 
6671 struct vnode *
6672 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6673 {
6674 	struct vnode *vp;
6675 
6676 	maybe_yield();
6677 	MNT_ILOCK(mp);
6678 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6679 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6680 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6681 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6682 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6683 			continue;
6684 		VI_LOCK(vp);
6685 		if (VN_IS_DOOMED(vp)) {
6686 			VI_UNLOCK(vp);
6687 			continue;
6688 		}
6689 		break;
6690 	}
6691 	if (vp == NULL) {
6692 		__mnt_vnode_markerfree_all(mvp, mp);
6693 		/* MNT_IUNLOCK(mp); -- done in above function */
6694 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6695 		return (NULL);
6696 	}
6697 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6698 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6699 	MNT_IUNLOCK(mp);
6700 	return (vp);
6701 }
6702 
6703 struct vnode *
6704 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6705 {
6706 	struct vnode *vp;
6707 
6708 	*mvp = vn_alloc_marker(mp);
6709 	MNT_ILOCK(mp);
6710 	MNT_REF(mp);
6711 
6712 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6713 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6714 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6715 			continue;
6716 		VI_LOCK(vp);
6717 		if (VN_IS_DOOMED(vp)) {
6718 			VI_UNLOCK(vp);
6719 			continue;
6720 		}
6721 		break;
6722 	}
6723 	if (vp == NULL) {
6724 		MNT_REL(mp);
6725 		MNT_IUNLOCK(mp);
6726 		vn_free_marker(*mvp);
6727 		*mvp = NULL;
6728 		return (NULL);
6729 	}
6730 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6731 	MNT_IUNLOCK(mp);
6732 	return (vp);
6733 }
6734 
6735 void
6736 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6737 {
6738 
6739 	if (*mvp == NULL) {
6740 		MNT_IUNLOCK(mp);
6741 		return;
6742 	}
6743 
6744 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6745 
6746 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6747 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6748 	MNT_REL(mp);
6749 	MNT_IUNLOCK(mp);
6750 	vn_free_marker(*mvp);
6751 	*mvp = NULL;
6752 }
6753 
6754 /*
6755  * These are helper functions for filesystems to traverse their
6756  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6757  */
6758 static void
6759 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6760 {
6761 
6762 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6763 
6764 	MNT_ILOCK(mp);
6765 	MNT_REL(mp);
6766 	MNT_IUNLOCK(mp);
6767 	vn_free_marker(*mvp);
6768 	*mvp = NULL;
6769 }
6770 
6771 /*
6772  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6773  * conventional lock order during mnt_vnode_next_lazy iteration.
6774  *
6775  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6776  * The list lock is dropped and reacquired.  On success, both locks are held.
6777  * On failure, the mount vnode list lock is held but the vnode interlock is
6778  * not, and the procedure may have yielded.
6779  */
6780 static bool
6781 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6782     struct vnode *vp)
6783 {
6784 
6785 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6786 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6787 	    ("%s: bad marker", __func__));
6788 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6789 	    ("%s: inappropriate vnode", __func__));
6790 	ASSERT_VI_UNLOCKED(vp, __func__);
6791 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6792 
6793 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6794 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6795 
6796 	/*
6797 	 * Note we may be racing against vdrop which transitioned the hold
6798 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6799 	 * if we are the only user after we get the interlock we will just
6800 	 * vdrop.
6801 	 */
6802 	vhold(vp);
6803 	mtx_unlock(&mp->mnt_listmtx);
6804 	VI_LOCK(vp);
6805 	if (VN_IS_DOOMED(vp)) {
6806 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6807 		goto out_lost;
6808 	}
6809 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6810 	/*
6811 	 * There is nothing to do if we are the last user.
6812 	 */
6813 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6814 		goto out_lost;
6815 	mtx_lock(&mp->mnt_listmtx);
6816 	return (true);
6817 out_lost:
6818 	vdropl(vp);
6819 	maybe_yield();
6820 	mtx_lock(&mp->mnt_listmtx);
6821 	return (false);
6822 }
6823 
6824 static struct vnode *
6825 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6826     void *cbarg)
6827 {
6828 	struct vnode *vp;
6829 
6830 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6831 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6832 restart:
6833 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6834 	while (vp != NULL) {
6835 		if (vp->v_type == VMARKER) {
6836 			vp = TAILQ_NEXT(vp, v_lazylist);
6837 			continue;
6838 		}
6839 		/*
6840 		 * See if we want to process the vnode. Note we may encounter a
6841 		 * long string of vnodes we don't care about and hog the list
6842 		 * as a result. Check for it and requeue the marker.
6843 		 */
6844 		VNPASS(!VN_IS_DOOMED(vp), vp);
6845 		if (!cb(vp, cbarg)) {
6846 			if (!should_yield()) {
6847 				vp = TAILQ_NEXT(vp, v_lazylist);
6848 				continue;
6849 			}
6850 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6851 			    v_lazylist);
6852 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6853 			    v_lazylist);
6854 			mtx_unlock(&mp->mnt_listmtx);
6855 			kern_yield(PRI_USER);
6856 			mtx_lock(&mp->mnt_listmtx);
6857 			goto restart;
6858 		}
6859 		/*
6860 		 * Try-lock because this is the wrong lock order.
6861 		 */
6862 		if (!VI_TRYLOCK(vp) &&
6863 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6864 			goto restart;
6865 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6866 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6867 		    ("alien vnode on the lazy list %p %p", vp, mp));
6868 		VNPASS(vp->v_mount == mp, vp);
6869 		VNPASS(!VN_IS_DOOMED(vp), vp);
6870 		break;
6871 	}
6872 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6873 
6874 	/* Check if we are done */
6875 	if (vp == NULL) {
6876 		mtx_unlock(&mp->mnt_listmtx);
6877 		mnt_vnode_markerfree_lazy(mvp, mp);
6878 		return (NULL);
6879 	}
6880 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6881 	mtx_unlock(&mp->mnt_listmtx);
6882 	ASSERT_VI_LOCKED(vp, "lazy iter");
6883 	return (vp);
6884 }
6885 
6886 struct vnode *
6887 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6888     void *cbarg)
6889 {
6890 
6891 	maybe_yield();
6892 	mtx_lock(&mp->mnt_listmtx);
6893 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6894 }
6895 
6896 struct vnode *
6897 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6898     void *cbarg)
6899 {
6900 	struct vnode *vp;
6901 
6902 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6903 		return (NULL);
6904 
6905 	*mvp = vn_alloc_marker(mp);
6906 	MNT_ILOCK(mp);
6907 	MNT_REF(mp);
6908 	MNT_IUNLOCK(mp);
6909 
6910 	mtx_lock(&mp->mnt_listmtx);
6911 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6912 	if (vp == NULL) {
6913 		mtx_unlock(&mp->mnt_listmtx);
6914 		mnt_vnode_markerfree_lazy(mvp, mp);
6915 		return (NULL);
6916 	}
6917 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6918 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6919 }
6920 
6921 void
6922 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6923 {
6924 
6925 	if (*mvp == NULL)
6926 		return;
6927 
6928 	mtx_lock(&mp->mnt_listmtx);
6929 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6930 	mtx_unlock(&mp->mnt_listmtx);
6931 	mnt_vnode_markerfree_lazy(mvp, mp);
6932 }
6933 
6934 int
6935 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6936 {
6937 
6938 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6939 		cnp->cn_flags &= ~NOEXECCHECK;
6940 		return (0);
6941 	}
6942 
6943 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6944 }
6945 
6946 /*
6947  * Do not use this variant unless you have means other than the hold count
6948  * to prevent the vnode from getting freed.
6949  */
6950 void
6951 vn_seqc_write_begin_locked(struct vnode *vp)
6952 {
6953 
6954 	ASSERT_VI_LOCKED(vp, __func__);
6955 	VNPASS(vp->v_holdcnt > 0, vp);
6956 	VNPASS(vp->v_seqc_users >= 0, vp);
6957 	vp->v_seqc_users++;
6958 	if (vp->v_seqc_users == 1)
6959 		seqc_sleepable_write_begin(&vp->v_seqc);
6960 }
6961 
6962 void
6963 vn_seqc_write_begin(struct vnode *vp)
6964 {
6965 
6966 	VI_LOCK(vp);
6967 	vn_seqc_write_begin_locked(vp);
6968 	VI_UNLOCK(vp);
6969 }
6970 
6971 void
6972 vn_seqc_write_end_locked(struct vnode *vp)
6973 {
6974 
6975 	ASSERT_VI_LOCKED(vp, __func__);
6976 	VNPASS(vp->v_seqc_users > 0, vp);
6977 	vp->v_seqc_users--;
6978 	if (vp->v_seqc_users == 0)
6979 		seqc_sleepable_write_end(&vp->v_seqc);
6980 }
6981 
6982 void
6983 vn_seqc_write_end(struct vnode *vp)
6984 {
6985 
6986 	VI_LOCK(vp);
6987 	vn_seqc_write_end_locked(vp);
6988 	VI_UNLOCK(vp);
6989 }
6990 
6991 /*
6992  * Special case handling for allocating and freeing vnodes.
6993  *
6994  * The counter remains unchanged on free so that a doomed vnode will
6995  * keep testing as in modify as long as it is accessible with SMR.
6996  */
6997 static void
6998 vn_seqc_init(struct vnode *vp)
6999 {
7000 
7001 	vp->v_seqc = 0;
7002 	vp->v_seqc_users = 0;
7003 }
7004 
7005 static void
7006 vn_seqc_write_end_free(struct vnode *vp)
7007 {
7008 
7009 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7010 	VNPASS(vp->v_seqc_users == 1, vp);
7011 }
7012 
7013 void
7014 vn_irflag_set_locked(struct vnode *vp, short toset)
7015 {
7016 	short flags;
7017 
7018 	ASSERT_VI_LOCKED(vp, __func__);
7019 	flags = vn_irflag_read(vp);
7020 	VNASSERT((flags & toset) == 0, vp,
7021 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7022 	    __func__, flags, toset));
7023 	atomic_store_short(&vp->v_irflag, flags | toset);
7024 }
7025 
7026 void
7027 vn_irflag_set(struct vnode *vp, short toset)
7028 {
7029 
7030 	VI_LOCK(vp);
7031 	vn_irflag_set_locked(vp, toset);
7032 	VI_UNLOCK(vp);
7033 }
7034 
7035 void
7036 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7037 {
7038 	short flags;
7039 
7040 	ASSERT_VI_LOCKED(vp, __func__);
7041 	flags = vn_irflag_read(vp);
7042 	atomic_store_short(&vp->v_irflag, flags | toset);
7043 }
7044 
7045 void
7046 vn_irflag_set_cond(struct vnode *vp, short toset)
7047 {
7048 
7049 	VI_LOCK(vp);
7050 	vn_irflag_set_cond_locked(vp, toset);
7051 	VI_UNLOCK(vp);
7052 }
7053 
7054 void
7055 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7056 {
7057 	short flags;
7058 
7059 	ASSERT_VI_LOCKED(vp, __func__);
7060 	flags = vn_irflag_read(vp);
7061 	VNASSERT((flags & tounset) == tounset, vp,
7062 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7063 	    __func__, flags, tounset));
7064 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7065 }
7066 
7067 void
7068 vn_irflag_unset(struct vnode *vp, short tounset)
7069 {
7070 
7071 	VI_LOCK(vp);
7072 	vn_irflag_unset_locked(vp, tounset);
7073 	VI_UNLOCK(vp);
7074 }
7075 
7076 int
7077 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7078 {
7079 	struct vattr vattr;
7080 	int error;
7081 
7082 	ASSERT_VOP_LOCKED(vp, __func__);
7083 	error = VOP_GETATTR(vp, &vattr, cred);
7084 	if (__predict_true(error == 0)) {
7085 		if (vattr.va_size <= OFF_MAX)
7086 			*size = vattr.va_size;
7087 		else
7088 			error = EFBIG;
7089 	}
7090 	return (error);
7091 }
7092 
7093 int
7094 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7095 {
7096 	int error;
7097 
7098 	VOP_LOCK(vp, LK_SHARED);
7099 	error = vn_getsize_locked(vp, size, cred);
7100 	VOP_UNLOCK(vp);
7101 	return (error);
7102 }
7103 
7104 #ifdef INVARIANTS
7105 void
7106 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7107 {
7108 
7109 	switch (vp->v_state) {
7110 	case VSTATE_UNINITIALIZED:
7111 		switch (state) {
7112 		case VSTATE_CONSTRUCTED:
7113 		case VSTATE_DESTROYING:
7114 			return;
7115 		default:
7116 			break;
7117 		}
7118 		break;
7119 	case VSTATE_CONSTRUCTED:
7120 		ASSERT_VOP_ELOCKED(vp, __func__);
7121 		switch (state) {
7122 		case VSTATE_DESTROYING:
7123 			return;
7124 		default:
7125 			break;
7126 		}
7127 		break;
7128 	case VSTATE_DESTROYING:
7129 		ASSERT_VOP_ELOCKED(vp, __func__);
7130 		switch (state) {
7131 		case VSTATE_DEAD:
7132 			return;
7133 		default:
7134 			break;
7135 		}
7136 		break;
7137 	case VSTATE_DEAD:
7138 		switch (state) {
7139 		case VSTATE_UNINITIALIZED:
7140 			return;
7141 		default:
7142 			break;
7143 		}
7144 		break;
7145 	}
7146 
7147 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7148 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7149 }
7150 #endif
7151