xref: /freebsd/sys/kern/vfs_subr.c (revision 838984de)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #ifdef DDB
102 #include <ddb/ddb.h>
103 #endif
104 
105 static void	delmntque(struct vnode *vp);
106 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
107 		    int slpflag, int slptimeo);
108 static void	syncer_shutdown(void *arg, int howto);
109 static int	vtryrecycle(struct vnode *vp);
110 static void	v_init_counters(struct vnode *);
111 static void	v_incr_devcount(struct vnode *);
112 static void	v_decr_devcount(struct vnode *);
113 static void	vgonel(struct vnode *);
114 static void	vfs_knllock(void *arg);
115 static void	vfs_knlunlock(void *arg);
116 static void	vfs_knl_assert_locked(void *arg);
117 static void	vfs_knl_assert_unlocked(void *arg);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
120 		    daddr_t startlbn, daddr_t endlbn);
121 static void	vnlru_recalc(void);
122 
123 /*
124  * These fences are intended for cases where some synchronization is
125  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
126  * and v_usecount) updates.  Access to v_iflags is generally synchronized
127  * by the interlock, but we have some internal assertions that check vnode
128  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
129  * for now.
130  */
131 #ifdef INVARIANTS
132 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
133 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
134 #else
135 #define	VNODE_REFCOUNT_FENCE_ACQ()
136 #define	VNODE_REFCOUNT_FENCE_REL()
137 #endif
138 
139 /*
140  * Number of vnodes in existence.  Increased whenever getnewvnode()
141  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
142  */
143 static u_long __exclusive_cache_line numvnodes;
144 
145 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode");
151 
152 /*
153  * Conversion tables for conversion from vnode types to inode formats
154  * and back.
155  */
156 enum vtype iftovt_tab[16] = {
157 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
158 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
159 };
160 int vttoif_tab[10] = {
161 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
162 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
163 };
164 
165 /*
166  * List of allocates vnodes in the system.
167  */
168 static TAILQ_HEAD(freelst, vnode) vnode_list;
169 static struct vnode *vnode_list_free_marker;
170 static struct vnode *vnode_list_reclaim_marker;
171 
172 /*
173  * "Free" vnode target.  Free vnodes are rarely completely free, but are
174  * just ones that are cheap to recycle.  Usually they are for files which
175  * have been stat'd but not read; these usually have inode and namecache
176  * data attached to them.  This target is the preferred minimum size of a
177  * sub-cache consisting mostly of such files. The system balances the size
178  * of this sub-cache with its complement to try to prevent either from
179  * thrashing while the other is relatively inactive.  The targets express
180  * a preference for the best balance.
181  *
182  * "Above" this target there are 2 further targets (watermarks) related
183  * to recyling of free vnodes.  In the best-operating case, the cache is
184  * exactly full, the free list has size between vlowat and vhiwat above the
185  * free target, and recycling from it and normal use maintains this state.
186  * Sometimes the free list is below vlowat or even empty, but this state
187  * is even better for immediate use provided the cache is not full.
188  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
189  * ones) to reach one of these states.  The watermarks are currently hard-
190  * coded as 4% and 9% of the available space higher.  These and the default
191  * of 25% for wantfreevnodes are too large if the memory size is large.
192  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
193  * whenever vnlru_proc() becomes active.
194  */
195 static long wantfreevnodes;
196 static long __exclusive_cache_line freevnodes;
197 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
198     &freevnodes, 0, "Number of \"free\" vnodes");
199 static long freevnodes_old;
200 
201 static counter_u64_t recycles_count;
202 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
203     "Number of vnodes recycled to meet vnode cache targets");
204 
205 static counter_u64_t recycles_free_count;
206 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
207     "Number of free vnodes recycled to meet vnode cache targets");
208 
209 /*
210  * Various variables used for debugging the new implementation of
211  * reassignbuf().
212  * XXX these are probably of (very) limited utility now.
213  */
214 static int reassignbufcalls;
215 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW | CTLFLAG_STATS,
216     &reassignbufcalls, 0, "Number of calls to reassignbuf");
217 
218 static counter_u64_t deferred_inact;
219 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
220     "Number of times inactive processing was deferred");
221 
222 /* To keep more than one thread at a time from running vfs_getnewfsid */
223 static struct mtx mntid_mtx;
224 
225 /*
226  * Lock for any access to the following:
227  *	vnode_list
228  *	numvnodes
229  *	freevnodes
230  */
231 static struct mtx __exclusive_cache_line vnode_list_mtx;
232 
233 /* Publicly exported FS */
234 struct nfs_public nfs_pub;
235 
236 static uma_zone_t buf_trie_zone;
237 static smr_t buf_trie_smr;
238 
239 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
240 static uma_zone_t vnode_zone;
241 static uma_zone_t vnodepoll_zone;
242 
243 __read_frequently smr_t vfs_smr;
244 
245 /*
246  * The workitem queue.
247  *
248  * It is useful to delay writes of file data and filesystem metadata
249  * for tens of seconds so that quickly created and deleted files need
250  * not waste disk bandwidth being created and removed. To realize this,
251  * we append vnodes to a "workitem" queue. When running with a soft
252  * updates implementation, most pending metadata dependencies should
253  * not wait for more than a few seconds. Thus, mounted on block devices
254  * are delayed only about a half the time that file data is delayed.
255  * Similarly, directory updates are more critical, so are only delayed
256  * about a third the time that file data is delayed. Thus, there are
257  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
258  * one each second (driven off the filesystem syncer process). The
259  * syncer_delayno variable indicates the next queue that is to be processed.
260  * Items that need to be processed soon are placed in this queue:
261  *
262  *	syncer_workitem_pending[syncer_delayno]
263  *
264  * A delay of fifteen seconds is done by placing the request fifteen
265  * entries later in the queue:
266  *
267  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
268  *
269  */
270 static int syncer_delayno;
271 static long syncer_mask;
272 LIST_HEAD(synclist, bufobj);
273 static struct synclist *syncer_workitem_pending;
274 /*
275  * The sync_mtx protects:
276  *	bo->bo_synclist
277  *	sync_vnode_count
278  *	syncer_delayno
279  *	syncer_state
280  *	syncer_workitem_pending
281  *	syncer_worklist_len
282  *	rushjob
283  */
284 static struct mtx sync_mtx;
285 static struct cv sync_wakeup;
286 
287 #define SYNCER_MAXDELAY		32
288 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
289 static int syncdelay = 30;		/* max time to delay syncing data */
290 static int filedelay = 30;		/* time to delay syncing files */
291 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
292     "Time to delay syncing files (in seconds)");
293 static int dirdelay = 29;		/* time to delay syncing directories */
294 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
295     "Time to delay syncing directories (in seconds)");
296 static int metadelay = 28;		/* time to delay syncing metadata */
297 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
298     "Time to delay syncing metadata (in seconds)");
299 static int rushjob;		/* number of slots to run ASAP */
300 static int stat_rush_requests;	/* number of times I/O speeded up */
301 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
302     "Number of times I/O speeded up (rush requests)");
303 
304 #define	VDBATCH_SIZE 8
305 struct vdbatch {
306 	u_int index;
307 	long freevnodes;
308 	struct mtx lock;
309 	struct vnode *tab[VDBATCH_SIZE];
310 };
311 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
312 
313 static void	vdbatch_dequeue(struct vnode *vp);
314 
315 /*
316  * When shutting down the syncer, run it at four times normal speed.
317  */
318 #define SYNCER_SHUTDOWN_SPEEDUP		4
319 static int sync_vnode_count;
320 static int syncer_worklist_len;
321 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
322     syncer_state;
323 
324 /* Target for maximum number of vnodes. */
325 u_long desiredvnodes;
326 static u_long gapvnodes;		/* gap between wanted and desired */
327 static u_long vhiwat;		/* enough extras after expansion */
328 static u_long vlowat;		/* minimal extras before expansion */
329 static u_long vstir;		/* nonzero to stir non-free vnodes */
330 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
331 
332 static u_long vnlru_read_freevnodes(void);
333 
334 /*
335  * Note that no attempt is made to sanitize these parameters.
336  */
337 static int
338 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
339 {
340 	u_long val;
341 	int error;
342 
343 	val = desiredvnodes;
344 	error = sysctl_handle_long(oidp, &val, 0, req);
345 	if (error != 0 || req->newptr == NULL)
346 		return (error);
347 
348 	if (val == desiredvnodes)
349 		return (0);
350 	mtx_lock(&vnode_list_mtx);
351 	desiredvnodes = val;
352 	wantfreevnodes = desiredvnodes / 4;
353 	vnlru_recalc();
354 	mtx_unlock(&vnode_list_mtx);
355 	/*
356 	 * XXX There is no protection against multiple threads changing
357 	 * desiredvnodes at the same time. Locking above only helps vnlru and
358 	 * getnewvnode.
359 	 */
360 	vfs_hash_changesize(desiredvnodes);
361 	cache_changesize(desiredvnodes);
362 	return (0);
363 }
364 
365 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
366     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
367     "LU", "Target for maximum number of vnodes");
368 
369 static int
370 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
371 {
372 	u_long val;
373 	int error;
374 
375 	val = wantfreevnodes;
376 	error = sysctl_handle_long(oidp, &val, 0, req);
377 	if (error != 0 || req->newptr == NULL)
378 		return (error);
379 
380 	if (val == wantfreevnodes)
381 		return (0);
382 	mtx_lock(&vnode_list_mtx);
383 	wantfreevnodes = val;
384 	vnlru_recalc();
385 	mtx_unlock(&vnode_list_mtx);
386 	return (0);
387 }
388 
389 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
390     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
391     "LU", "Target for minimum number of \"free\" vnodes");
392 
393 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
394     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
395 static int vnlru_nowhere;
396 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
397     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
398 
399 static int
400 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
401 {
402 	struct vnode *vp;
403 	struct nameidata nd;
404 	char *buf;
405 	unsigned long ndflags;
406 	int error;
407 
408 	if (req->newptr == NULL)
409 		return (EINVAL);
410 	if (req->newlen >= PATH_MAX)
411 		return (E2BIG);
412 
413 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
414 	error = SYSCTL_IN(req, buf, req->newlen);
415 	if (error != 0)
416 		goto out;
417 
418 	buf[req->newlen] = '\0';
419 
420 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | NOCACHE | SAVENAME;
421 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
422 	if ((error = namei(&nd)) != 0)
423 		goto out;
424 	vp = nd.ni_vp;
425 
426 	if (VN_IS_DOOMED(vp)) {
427 		/*
428 		 * This vnode is being recycled.  Return != 0 to let the caller
429 		 * know that the sysctl had no effect.  Return EAGAIN because a
430 		 * subsequent call will likely succeed (since namei will create
431 		 * a new vnode if necessary)
432 		 */
433 		error = EAGAIN;
434 		goto putvnode;
435 	}
436 
437 	counter_u64_add(recycles_count, 1);
438 	vgone(vp);
439 putvnode:
440 	NDFREE(&nd, 0);
441 out:
442 	free(buf, M_TEMP);
443 	return (error);
444 }
445 
446 static int
447 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
448 {
449 	struct thread *td = curthread;
450 	struct vnode *vp;
451 	struct file *fp;
452 	int error;
453 	int fd;
454 
455 	if (req->newptr == NULL)
456 		return (EBADF);
457 
458         error = sysctl_handle_int(oidp, &fd, 0, req);
459         if (error != 0)
460                 return (error);
461 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
462 	if (error != 0)
463 		return (error);
464 	vp = fp->f_vnode;
465 
466 	error = vn_lock(vp, LK_EXCLUSIVE);
467 	if (error != 0)
468 		goto drop;
469 
470 	counter_u64_add(recycles_count, 1);
471 	vgone(vp);
472 	VOP_UNLOCK(vp);
473 drop:
474 	fdrop(fp, td);
475 	return (error);
476 }
477 
478 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
479     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
480     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
481 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
482     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
483     sysctl_ftry_reclaim_vnode, "I",
484     "Try to reclaim a vnode by its file descriptor");
485 
486 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
487 static int vnsz2log;
488 
489 /*
490  * Support for the bufobj clean & dirty pctrie.
491  */
492 static void *
493 buf_trie_alloc(struct pctrie *ptree)
494 {
495 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
496 }
497 
498 static void
499 buf_trie_free(struct pctrie *ptree, void *node)
500 {
501 	uma_zfree_smr(buf_trie_zone, node);
502 }
503 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
504     buf_trie_smr);
505 
506 /*
507  * Initialize the vnode management data structures.
508  *
509  * Reevaluate the following cap on the number of vnodes after the physical
510  * memory size exceeds 512GB.  In the limit, as the physical memory size
511  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
512  */
513 #ifndef	MAXVNODES_MAX
514 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
515 #endif
516 
517 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
518 
519 static struct vnode *
520 vn_alloc_marker(struct mount *mp)
521 {
522 	struct vnode *vp;
523 
524 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
525 	vp->v_type = VMARKER;
526 	vp->v_mount = mp;
527 
528 	return (vp);
529 }
530 
531 static void
532 vn_free_marker(struct vnode *vp)
533 {
534 
535 	MPASS(vp->v_type == VMARKER);
536 	free(vp, M_VNODE_MARKER);
537 }
538 
539 /*
540  * Initialize a vnode as it first enters the zone.
541  */
542 static int
543 vnode_init(void *mem, int size, int flags)
544 {
545 	struct vnode *vp;
546 
547 	vp = mem;
548 	bzero(vp, size);
549 	/*
550 	 * Setup locks.
551 	 */
552 	vp->v_vnlock = &vp->v_lock;
553 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
554 	/*
555 	 * By default, don't allow shared locks unless filesystems opt-in.
556 	 */
557 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
558 	    LK_NOSHARE | LK_IS_VNODE);
559 	/*
560 	 * Initialize bufobj.
561 	 */
562 	bufobj_init(&vp->v_bufobj, vp);
563 	/*
564 	 * Initialize namecache.
565 	 */
566 	cache_vnode_init(vp);
567 	/*
568 	 * Initialize rangelocks.
569 	 */
570 	rangelock_init(&vp->v_rl);
571 
572 	vp->v_dbatchcpu = NOCPU;
573 
574 	mtx_lock(&vnode_list_mtx);
575 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
576 	mtx_unlock(&vnode_list_mtx);
577 	return (0);
578 }
579 
580 /*
581  * Free a vnode when it is cleared from the zone.
582  */
583 static void
584 vnode_fini(void *mem, int size)
585 {
586 	struct vnode *vp;
587 	struct bufobj *bo;
588 
589 	vp = mem;
590 	vdbatch_dequeue(vp);
591 	mtx_lock(&vnode_list_mtx);
592 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
593 	mtx_unlock(&vnode_list_mtx);
594 	rangelock_destroy(&vp->v_rl);
595 	lockdestroy(vp->v_vnlock);
596 	mtx_destroy(&vp->v_interlock);
597 	bo = &vp->v_bufobj;
598 	rw_destroy(BO_LOCKPTR(bo));
599 }
600 
601 /*
602  * Provide the size of NFS nclnode and NFS fh for calculation of the
603  * vnode memory consumption.  The size is specified directly to
604  * eliminate dependency on NFS-private header.
605  *
606  * Other filesystems may use bigger or smaller (like UFS and ZFS)
607  * private inode data, but the NFS-based estimation is ample enough.
608  * Still, we care about differences in the size between 64- and 32-bit
609  * platforms.
610  *
611  * Namecache structure size is heuristically
612  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
613  */
614 #ifdef _LP64
615 #define	NFS_NCLNODE_SZ	(528 + 64)
616 #define	NC_SZ		148
617 #else
618 #define	NFS_NCLNODE_SZ	(360 + 32)
619 #define	NC_SZ		92
620 #endif
621 
622 static void
623 vntblinit(void *dummy __unused)
624 {
625 	struct vdbatch *vd;
626 	int cpu, physvnodes, virtvnodes;
627 	u_int i;
628 
629 	/*
630 	 * Desiredvnodes is a function of the physical memory size and the
631 	 * kernel's heap size.  Generally speaking, it scales with the
632 	 * physical memory size.  The ratio of desiredvnodes to the physical
633 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
634 	 * Thereafter, the
635 	 * marginal ratio of desiredvnodes to the physical memory size is
636 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
637 	 * size.  The memory required by desiredvnodes vnodes and vm objects
638 	 * must not exceed 1/10th of the kernel's heap size.
639 	 */
640 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
641 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
642 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
643 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
644 	desiredvnodes = min(physvnodes, virtvnodes);
645 	if (desiredvnodes > MAXVNODES_MAX) {
646 		if (bootverbose)
647 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
648 			    desiredvnodes, MAXVNODES_MAX);
649 		desiredvnodes = MAXVNODES_MAX;
650 	}
651 	wantfreevnodes = desiredvnodes / 4;
652 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
653 	TAILQ_INIT(&vnode_list);
654 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
655 	/*
656 	 * The lock is taken to appease WITNESS.
657 	 */
658 	mtx_lock(&vnode_list_mtx);
659 	vnlru_recalc();
660 	mtx_unlock(&vnode_list_mtx);
661 	vnode_list_free_marker = vn_alloc_marker(NULL);
662 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
663 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
664 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
665 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
666 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
667 	uma_zone_set_smr(vnode_zone, vfs_smr);
668 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
669 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
670 	/*
671 	 * Preallocate enough nodes to support one-per buf so that
672 	 * we can not fail an insert.  reassignbuf() callers can not
673 	 * tolerate the insertion failure.
674 	 */
675 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
676 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
677 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
678 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
679 	uma_prealloc(buf_trie_zone, nbuf);
680 
681 	vnodes_created = counter_u64_alloc(M_WAITOK);
682 	recycles_count = counter_u64_alloc(M_WAITOK);
683 	recycles_free_count = counter_u64_alloc(M_WAITOK);
684 	deferred_inact = counter_u64_alloc(M_WAITOK);
685 
686 	/*
687 	 * Initialize the filesystem syncer.
688 	 */
689 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
690 	    &syncer_mask);
691 	syncer_maxdelay = syncer_mask + 1;
692 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
693 	cv_init(&sync_wakeup, "syncer");
694 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
695 		vnsz2log++;
696 	vnsz2log--;
697 
698 	CPU_FOREACH(cpu) {
699 		vd = DPCPU_ID_PTR((cpu), vd);
700 		bzero(vd, sizeof(*vd));
701 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
702 	}
703 }
704 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
705 
706 /*
707  * Mark a mount point as busy. Used to synchronize access and to delay
708  * unmounting. Eventually, mountlist_mtx is not released on failure.
709  *
710  * vfs_busy() is a custom lock, it can block the caller.
711  * vfs_busy() only sleeps if the unmount is active on the mount point.
712  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
713  * vnode belonging to mp.
714  *
715  * Lookup uses vfs_busy() to traverse mount points.
716  * root fs			var fs
717  * / vnode lock		A	/ vnode lock (/var)		D
718  * /var vnode lock	B	/log vnode lock(/var/log)	E
719  * vfs_busy lock	C	vfs_busy lock			F
720  *
721  * Within each file system, the lock order is C->A->B and F->D->E.
722  *
723  * When traversing across mounts, the system follows that lock order:
724  *
725  *        C->A->B
726  *              |
727  *              +->F->D->E
728  *
729  * The lookup() process for namei("/var") illustrates the process:
730  *  VOP_LOOKUP() obtains B while A is held
731  *  vfs_busy() obtains a shared lock on F while A and B are held
732  *  vput() releases lock on B
733  *  vput() releases lock on A
734  *  VFS_ROOT() obtains lock on D while shared lock on F is held
735  *  vfs_unbusy() releases shared lock on F
736  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
737  *    Attempt to lock A (instead of vp_crossmp) while D is held would
738  *    violate the global order, causing deadlocks.
739  *
740  * dounmount() locks B while F is drained.
741  */
742 int
743 vfs_busy(struct mount *mp, int flags)
744 {
745 
746 	MPASS((flags & ~MBF_MASK) == 0);
747 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
748 
749 	if (vfs_op_thread_enter(mp)) {
750 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
751 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
752 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
753 		vfs_mp_count_add_pcpu(mp, ref, 1);
754 		vfs_mp_count_add_pcpu(mp, lockref, 1);
755 		vfs_op_thread_exit(mp);
756 		if (flags & MBF_MNTLSTLOCK)
757 			mtx_unlock(&mountlist_mtx);
758 		return (0);
759 	}
760 
761 	MNT_ILOCK(mp);
762 	vfs_assert_mount_counters(mp);
763 	MNT_REF(mp);
764 	/*
765 	 * If mount point is currently being unmounted, sleep until the
766 	 * mount point fate is decided.  If thread doing the unmounting fails,
767 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
768 	 * that this mount point has survived the unmount attempt and vfs_busy
769 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
770 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
771 	 * about to be really destroyed.  vfs_busy needs to release its
772 	 * reference on the mount point in this case and return with ENOENT,
773 	 * telling the caller that mount mount it tried to busy is no longer
774 	 * valid.
775 	 */
776 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
777 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
778 			MNT_REL(mp);
779 			MNT_IUNLOCK(mp);
780 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
781 			    __func__);
782 			return (ENOENT);
783 		}
784 		if (flags & MBF_MNTLSTLOCK)
785 			mtx_unlock(&mountlist_mtx);
786 		mp->mnt_kern_flag |= MNTK_MWAIT;
787 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
788 		if (flags & MBF_MNTLSTLOCK)
789 			mtx_lock(&mountlist_mtx);
790 		MNT_ILOCK(mp);
791 	}
792 	if (flags & MBF_MNTLSTLOCK)
793 		mtx_unlock(&mountlist_mtx);
794 	mp->mnt_lockref++;
795 	MNT_IUNLOCK(mp);
796 	return (0);
797 }
798 
799 /*
800  * Free a busy filesystem.
801  */
802 void
803 vfs_unbusy(struct mount *mp)
804 {
805 	int c;
806 
807 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
808 
809 	if (vfs_op_thread_enter(mp)) {
810 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
811 		vfs_mp_count_sub_pcpu(mp, lockref, 1);
812 		vfs_mp_count_sub_pcpu(mp, ref, 1);
813 		vfs_op_thread_exit(mp);
814 		return;
815 	}
816 
817 	MNT_ILOCK(mp);
818 	vfs_assert_mount_counters(mp);
819 	MNT_REL(mp);
820 	c = --mp->mnt_lockref;
821 	if (mp->mnt_vfs_ops == 0) {
822 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
823 		MNT_IUNLOCK(mp);
824 		return;
825 	}
826 	if (c < 0)
827 		vfs_dump_mount_counters(mp);
828 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
829 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
830 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
831 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
832 		wakeup(&mp->mnt_lockref);
833 	}
834 	MNT_IUNLOCK(mp);
835 }
836 
837 /*
838  * Lookup a mount point by filesystem identifier.
839  */
840 struct mount *
841 vfs_getvfs(fsid_t *fsid)
842 {
843 	struct mount *mp;
844 
845 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
846 	mtx_lock(&mountlist_mtx);
847 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
848 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
849 			vfs_ref(mp);
850 			mtx_unlock(&mountlist_mtx);
851 			return (mp);
852 		}
853 	}
854 	mtx_unlock(&mountlist_mtx);
855 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
856 	return ((struct mount *) 0);
857 }
858 
859 /*
860  * Lookup a mount point by filesystem identifier, busying it before
861  * returning.
862  *
863  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
864  * cache for popular filesystem identifiers.  The cache is lockess, using
865  * the fact that struct mount's are never freed.  In worst case we may
866  * get pointer to unmounted or even different filesystem, so we have to
867  * check what we got, and go slow way if so.
868  */
869 struct mount *
870 vfs_busyfs(fsid_t *fsid)
871 {
872 #define	FSID_CACHE_SIZE	256
873 	typedef struct mount * volatile vmp_t;
874 	static vmp_t cache[FSID_CACHE_SIZE];
875 	struct mount *mp;
876 	int error;
877 	uint32_t hash;
878 
879 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
880 	hash = fsid->val[0] ^ fsid->val[1];
881 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
882 	mp = cache[hash];
883 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
884 		goto slow;
885 	if (vfs_busy(mp, 0) != 0) {
886 		cache[hash] = NULL;
887 		goto slow;
888 	}
889 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
890 		return (mp);
891 	else
892 	    vfs_unbusy(mp);
893 
894 slow:
895 	mtx_lock(&mountlist_mtx);
896 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
897 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
898 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
899 			if (error) {
900 				cache[hash] = NULL;
901 				mtx_unlock(&mountlist_mtx);
902 				return (NULL);
903 			}
904 			cache[hash] = mp;
905 			return (mp);
906 		}
907 	}
908 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
909 	mtx_unlock(&mountlist_mtx);
910 	return ((struct mount *) 0);
911 }
912 
913 /*
914  * Check if a user can access privileged mount options.
915  */
916 int
917 vfs_suser(struct mount *mp, struct thread *td)
918 {
919 	int error;
920 
921 	if (jailed(td->td_ucred)) {
922 		/*
923 		 * If the jail of the calling thread lacks permission for
924 		 * this type of file system, deny immediately.
925 		 */
926 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
927 			return (EPERM);
928 
929 		/*
930 		 * If the file system was mounted outside the jail of the
931 		 * calling thread, deny immediately.
932 		 */
933 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
934 			return (EPERM);
935 	}
936 
937 	/*
938 	 * If file system supports delegated administration, we don't check
939 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
940 	 * by the file system itself.
941 	 * If this is not the user that did original mount, we check for
942 	 * the PRIV_VFS_MOUNT_OWNER privilege.
943 	 */
944 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
945 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
946 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
947 			return (error);
948 	}
949 	return (0);
950 }
951 
952 /*
953  * Get a new unique fsid.  Try to make its val[0] unique, since this value
954  * will be used to create fake device numbers for stat().  Also try (but
955  * not so hard) make its val[0] unique mod 2^16, since some emulators only
956  * support 16-bit device numbers.  We end up with unique val[0]'s for the
957  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
958  *
959  * Keep in mind that several mounts may be running in parallel.  Starting
960  * the search one past where the previous search terminated is both a
961  * micro-optimization and a defense against returning the same fsid to
962  * different mounts.
963  */
964 void
965 vfs_getnewfsid(struct mount *mp)
966 {
967 	static uint16_t mntid_base;
968 	struct mount *nmp;
969 	fsid_t tfsid;
970 	int mtype;
971 
972 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
973 	mtx_lock(&mntid_mtx);
974 	mtype = mp->mnt_vfc->vfc_typenum;
975 	tfsid.val[1] = mtype;
976 	mtype = (mtype & 0xFF) << 24;
977 	for (;;) {
978 		tfsid.val[0] = makedev(255,
979 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
980 		mntid_base++;
981 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
982 			break;
983 		vfs_rel(nmp);
984 	}
985 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
986 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
987 	mtx_unlock(&mntid_mtx);
988 }
989 
990 /*
991  * Knob to control the precision of file timestamps:
992  *
993  *   0 = seconds only; nanoseconds zeroed.
994  *   1 = seconds and nanoseconds, accurate within 1/HZ.
995  *   2 = seconds and nanoseconds, truncated to microseconds.
996  * >=3 = seconds and nanoseconds, maximum precision.
997  */
998 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
999 
1000 static int timestamp_precision = TSP_USEC;
1001 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1002     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1003     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1004     "3+: sec + ns (max. precision))");
1005 
1006 /*
1007  * Get a current timestamp.
1008  */
1009 void
1010 vfs_timestamp(struct timespec *tsp)
1011 {
1012 	struct timeval tv;
1013 
1014 	switch (timestamp_precision) {
1015 	case TSP_SEC:
1016 		tsp->tv_sec = time_second;
1017 		tsp->tv_nsec = 0;
1018 		break;
1019 	case TSP_HZ:
1020 		getnanotime(tsp);
1021 		break;
1022 	case TSP_USEC:
1023 		microtime(&tv);
1024 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1025 		break;
1026 	case TSP_NSEC:
1027 	default:
1028 		nanotime(tsp);
1029 		break;
1030 	}
1031 }
1032 
1033 /*
1034  * Set vnode attributes to VNOVAL
1035  */
1036 void
1037 vattr_null(struct vattr *vap)
1038 {
1039 
1040 	vap->va_type = VNON;
1041 	vap->va_size = VNOVAL;
1042 	vap->va_bytes = VNOVAL;
1043 	vap->va_mode = VNOVAL;
1044 	vap->va_nlink = VNOVAL;
1045 	vap->va_uid = VNOVAL;
1046 	vap->va_gid = VNOVAL;
1047 	vap->va_fsid = VNOVAL;
1048 	vap->va_fileid = VNOVAL;
1049 	vap->va_blocksize = VNOVAL;
1050 	vap->va_rdev = VNOVAL;
1051 	vap->va_atime.tv_sec = VNOVAL;
1052 	vap->va_atime.tv_nsec = VNOVAL;
1053 	vap->va_mtime.tv_sec = VNOVAL;
1054 	vap->va_mtime.tv_nsec = VNOVAL;
1055 	vap->va_ctime.tv_sec = VNOVAL;
1056 	vap->va_ctime.tv_nsec = VNOVAL;
1057 	vap->va_birthtime.tv_sec = VNOVAL;
1058 	vap->va_birthtime.tv_nsec = VNOVAL;
1059 	vap->va_flags = VNOVAL;
1060 	vap->va_gen = VNOVAL;
1061 	vap->va_vaflags = 0;
1062 }
1063 
1064 /*
1065  * Try to reduce the total number of vnodes.
1066  *
1067  * This routine (and its user) are buggy in at least the following ways:
1068  * - all parameters were picked years ago when RAM sizes were significantly
1069  *   smaller
1070  * - it can pick vnodes based on pages used by the vm object, but filesystems
1071  *   like ZFS don't use it making the pick broken
1072  * - since ZFS has its own aging policy it gets partially combated by this one
1073  * - a dedicated method should be provided for filesystems to let them decide
1074  *   whether the vnode should be recycled
1075  *
1076  * This routine is called when we have too many vnodes.  It attempts
1077  * to free <count> vnodes and will potentially free vnodes that still
1078  * have VM backing store (VM backing store is typically the cause
1079  * of a vnode blowout so we want to do this).  Therefore, this operation
1080  * is not considered cheap.
1081  *
1082  * A number of conditions may prevent a vnode from being reclaimed.
1083  * the buffer cache may have references on the vnode, a directory
1084  * vnode may still have references due to the namei cache representing
1085  * underlying files, or the vnode may be in active use.   It is not
1086  * desirable to reuse such vnodes.  These conditions may cause the
1087  * number of vnodes to reach some minimum value regardless of what
1088  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1089  *
1090  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1091  * 			 entries if this argument is strue
1092  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1093  *			 pages.
1094  * @param target	 How many vnodes to reclaim.
1095  * @return		 The number of vnodes that were reclaimed.
1096  */
1097 static int
1098 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1099 {
1100 	struct vnode *vp, *mvp;
1101 	struct mount *mp;
1102 	struct vm_object *object;
1103 	u_long done;
1104 	bool retried;
1105 
1106 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1107 
1108 	retried = false;
1109 	done = 0;
1110 
1111 	mvp = vnode_list_reclaim_marker;
1112 restart:
1113 	vp = mvp;
1114 	while (done < target) {
1115 		vp = TAILQ_NEXT(vp, v_vnodelist);
1116 		if (__predict_false(vp == NULL))
1117 			break;
1118 
1119 		if (__predict_false(vp->v_type == VMARKER))
1120 			continue;
1121 
1122 		/*
1123 		 * If it's been deconstructed already, it's still
1124 		 * referenced, or it exceeds the trigger, skip it.
1125 		 * Also skip free vnodes.  We are trying to make space
1126 		 * to expand the free list, not reduce it.
1127 		 */
1128 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1129 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1130 			goto next_iter;
1131 
1132 		if (vp->v_type == VBAD || vp->v_type == VNON)
1133 			goto next_iter;
1134 
1135 		if (!VI_TRYLOCK(vp))
1136 			goto next_iter;
1137 
1138 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1139 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1140 		    VN_IS_DOOMED(vp) || vp->v_type == VNON) {
1141 			VI_UNLOCK(vp);
1142 			goto next_iter;
1143 		}
1144 
1145 		object = atomic_load_ptr(&vp->v_object);
1146 		if (object == NULL || object->resident_page_count > trigger) {
1147 			VI_UNLOCK(vp);
1148 			goto next_iter;
1149 		}
1150 
1151 		vholdl(vp);
1152 		VI_UNLOCK(vp);
1153 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1154 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1155 		mtx_unlock(&vnode_list_mtx);
1156 
1157 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1158 			vdrop(vp);
1159 			goto next_iter_unlocked;
1160 		}
1161 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1162 			vdrop(vp);
1163 			vn_finished_write(mp);
1164 			goto next_iter_unlocked;
1165 		}
1166 
1167 		VI_LOCK(vp);
1168 		if (vp->v_usecount > 0 ||
1169 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1170 		    (vp->v_object != NULL &&
1171 		    vp->v_object->resident_page_count > trigger)) {
1172 			VOP_UNLOCK(vp);
1173 			vdropl(vp);
1174 			vn_finished_write(mp);
1175 			goto next_iter_unlocked;
1176 		}
1177 		counter_u64_add(recycles_count, 1);
1178 		vgonel(vp);
1179 		VOP_UNLOCK(vp);
1180 		vdropl(vp);
1181 		vn_finished_write(mp);
1182 		done++;
1183 next_iter_unlocked:
1184 		if (should_yield())
1185 			kern_yield(PRI_USER);
1186 		mtx_lock(&vnode_list_mtx);
1187 		goto restart;
1188 next_iter:
1189 		MPASS(vp->v_type != VMARKER);
1190 		if (!should_yield())
1191 			continue;
1192 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1193 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1194 		mtx_unlock(&vnode_list_mtx);
1195 		kern_yield(PRI_USER);
1196 		mtx_lock(&vnode_list_mtx);
1197 		goto restart;
1198 	}
1199 	if (done == 0 && !retried) {
1200 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1201 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1202 		retried = true;
1203 		goto restart;
1204 	}
1205 	return (done);
1206 }
1207 
1208 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1209 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1210     0,
1211     "limit on vnode free requests per call to the vnlru_free routine");
1212 
1213 /*
1214  * Attempt to reduce the free list by the requested amount.
1215  */
1216 static int
1217 vnlru_free_locked(int count, struct vfsops *mnt_op)
1218 {
1219 	struct vnode *vp, *mvp;
1220 	struct mount *mp;
1221 	int ocount;
1222 
1223 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1224 	if (count > max_vnlru_free)
1225 		count = max_vnlru_free;
1226 	ocount = count;
1227 	mvp = vnode_list_free_marker;
1228 restart:
1229 	vp = mvp;
1230 	while (count > 0) {
1231 		vp = TAILQ_NEXT(vp, v_vnodelist);
1232 		if (__predict_false(vp == NULL)) {
1233 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1234 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1235 			break;
1236 		}
1237 		if (__predict_false(vp->v_type == VMARKER))
1238 			continue;
1239 
1240 		/*
1241 		 * Don't recycle if our vnode is from different type
1242 		 * of mount point.  Note that mp is type-safe, the
1243 		 * check does not reach unmapped address even if
1244 		 * vnode is reclaimed.
1245 		 * Don't recycle if we can't get the interlock without
1246 		 * blocking.
1247 		 */
1248 		if (vp->v_holdcnt > 0 || (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1249 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1250 			continue;
1251 		}
1252 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1253 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1254 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1255 			VI_UNLOCK(vp);
1256 			continue;
1257 		}
1258 		vholdl(vp);
1259 		count--;
1260 		mtx_unlock(&vnode_list_mtx);
1261 		VI_UNLOCK(vp);
1262 		vtryrecycle(vp);
1263 		vdrop(vp);
1264 		mtx_lock(&vnode_list_mtx);
1265 		goto restart;
1266 	}
1267 	return (ocount - count);
1268 }
1269 
1270 void
1271 vnlru_free(int count, struct vfsops *mnt_op)
1272 {
1273 
1274 	mtx_lock(&vnode_list_mtx);
1275 	vnlru_free_locked(count, mnt_op);
1276 	mtx_unlock(&vnode_list_mtx);
1277 }
1278 
1279 static void
1280 vnlru_recalc(void)
1281 {
1282 
1283 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1284 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1285 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1286 	vlowat = vhiwat / 2;
1287 }
1288 
1289 /*
1290  * Attempt to recycle vnodes in a context that is always safe to block.
1291  * Calling vlrurecycle() from the bowels of filesystem code has some
1292  * interesting deadlock problems.
1293  */
1294 static struct proc *vnlruproc;
1295 static int vnlruproc_sig;
1296 
1297 /*
1298  * The main freevnodes counter is only updated when threads requeue their vnode
1299  * batches. CPUs are conditionally walked to compute a more accurate total.
1300  *
1301  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1302  * at any given moment can still exceed slop, but it should not be by significant
1303  * margin in practice.
1304  */
1305 #define VNLRU_FREEVNODES_SLOP 128
1306 
1307 static u_long
1308 vnlru_read_freevnodes(void)
1309 {
1310 	struct vdbatch *vd;
1311 	long slop;
1312 	int cpu;
1313 
1314 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1315 	if (freevnodes > freevnodes_old)
1316 		slop = freevnodes - freevnodes_old;
1317 	else
1318 		slop = freevnodes_old - freevnodes;
1319 	if (slop < VNLRU_FREEVNODES_SLOP)
1320 		return (freevnodes >= 0 ? freevnodes : 0);
1321 	freevnodes_old = freevnodes;
1322 	CPU_FOREACH(cpu) {
1323 		vd = DPCPU_ID_PTR((cpu), vd);
1324 		freevnodes_old += vd->freevnodes;
1325 	}
1326 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1327 }
1328 
1329 static bool
1330 vnlru_under(u_long rnumvnodes, u_long limit)
1331 {
1332 	u_long rfreevnodes, space;
1333 
1334 	if (__predict_false(rnumvnodes > desiredvnodes))
1335 		return (true);
1336 
1337 	space = desiredvnodes - rnumvnodes;
1338 	if (space < limit) {
1339 		rfreevnodes = vnlru_read_freevnodes();
1340 		if (rfreevnodes > wantfreevnodes)
1341 			space += rfreevnodes - wantfreevnodes;
1342 	}
1343 	return (space < limit);
1344 }
1345 
1346 static bool
1347 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1348 {
1349 	long rfreevnodes, space;
1350 
1351 	if (__predict_false(rnumvnodes > desiredvnodes))
1352 		return (true);
1353 
1354 	space = desiredvnodes - rnumvnodes;
1355 	if (space < limit) {
1356 		rfreevnodes = atomic_load_long(&freevnodes);
1357 		if (rfreevnodes > wantfreevnodes)
1358 			space += rfreevnodes - wantfreevnodes;
1359 	}
1360 	return (space < limit);
1361 }
1362 
1363 static void
1364 vnlru_kick(void)
1365 {
1366 
1367 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1368 	if (vnlruproc_sig == 0) {
1369 		vnlruproc_sig = 1;
1370 		wakeup(vnlruproc);
1371 	}
1372 }
1373 
1374 static void
1375 vnlru_proc(void)
1376 {
1377 	u_long rnumvnodes, rfreevnodes, target;
1378 	unsigned long onumvnodes;
1379 	int done, force, trigger, usevnodes;
1380 	bool reclaim_nc_src, want_reread;
1381 
1382 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1383 	    SHUTDOWN_PRI_FIRST);
1384 
1385 	force = 0;
1386 	want_reread = false;
1387 	for (;;) {
1388 		kproc_suspend_check(vnlruproc);
1389 		mtx_lock(&vnode_list_mtx);
1390 		rnumvnodes = atomic_load_long(&numvnodes);
1391 
1392 		if (want_reread) {
1393 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1394 			want_reread = false;
1395 		}
1396 
1397 		/*
1398 		 * If numvnodes is too large (due to desiredvnodes being
1399 		 * adjusted using its sysctl, or emergency growth), first
1400 		 * try to reduce it by discarding from the free list.
1401 		 */
1402 		if (rnumvnodes > desiredvnodes) {
1403 			vnlru_free_locked(rnumvnodes - desiredvnodes, NULL);
1404 			rnumvnodes = atomic_load_long(&numvnodes);
1405 		}
1406 		/*
1407 		 * Sleep if the vnode cache is in a good state.  This is
1408 		 * when it is not over-full and has space for about a 4%
1409 		 * or 9% expansion (by growing its size or inexcessively
1410 		 * reducing its free list).  Otherwise, try to reclaim
1411 		 * space for a 10% expansion.
1412 		 */
1413 		if (vstir && force == 0) {
1414 			force = 1;
1415 			vstir = 0;
1416 		}
1417 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1418 			vnlruproc_sig = 0;
1419 			wakeup(&vnlruproc_sig);
1420 			msleep(vnlruproc, &vnode_list_mtx,
1421 			    PVFS|PDROP, "vlruwt", hz);
1422 			continue;
1423 		}
1424 		rfreevnodes = vnlru_read_freevnodes();
1425 
1426 		onumvnodes = rnumvnodes;
1427 		/*
1428 		 * Calculate parameters for recycling.  These are the same
1429 		 * throughout the loop to give some semblance of fairness.
1430 		 * The trigger point is to avoid recycling vnodes with lots
1431 		 * of resident pages.  We aren't trying to free memory; we
1432 		 * are trying to recycle or at least free vnodes.
1433 		 */
1434 		if (rnumvnodes <= desiredvnodes)
1435 			usevnodes = rnumvnodes - rfreevnodes;
1436 		else
1437 			usevnodes = rnumvnodes;
1438 		if (usevnodes <= 0)
1439 			usevnodes = 1;
1440 		/*
1441 		 * The trigger value is is chosen to give a conservatively
1442 		 * large value to ensure that it alone doesn't prevent
1443 		 * making progress.  The value can easily be so large that
1444 		 * it is effectively infinite in some congested and
1445 		 * misconfigured cases, and this is necessary.  Normally
1446 		 * it is about 8 to 100 (pages), which is quite large.
1447 		 */
1448 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1449 		if (force < 2)
1450 			trigger = vsmalltrigger;
1451 		reclaim_nc_src = force >= 3;
1452 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1453 		target = target / 10 + 1;
1454 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1455 		mtx_unlock(&vnode_list_mtx);
1456 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1457 			uma_reclaim(UMA_RECLAIM_DRAIN);
1458 		if (done == 0) {
1459 			if (force == 0 || force == 1) {
1460 				force = 2;
1461 				continue;
1462 			}
1463 			if (force == 2) {
1464 				force = 3;
1465 				continue;
1466 			}
1467 			want_reread = true;
1468 			force = 0;
1469 			vnlru_nowhere++;
1470 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1471 		} else {
1472 			want_reread = true;
1473 			kern_yield(PRI_USER);
1474 		}
1475 	}
1476 }
1477 
1478 static struct kproc_desc vnlru_kp = {
1479 	"vnlru",
1480 	vnlru_proc,
1481 	&vnlruproc
1482 };
1483 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1484     &vnlru_kp);
1485 
1486 /*
1487  * Routines having to do with the management of the vnode table.
1488  */
1489 
1490 /*
1491  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1492  * before we actually vgone().  This function must be called with the vnode
1493  * held to prevent the vnode from being returned to the free list midway
1494  * through vgone().
1495  */
1496 static int
1497 vtryrecycle(struct vnode *vp)
1498 {
1499 	struct mount *vnmp;
1500 
1501 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1502 	VNASSERT(vp->v_holdcnt, vp,
1503 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1504 	/*
1505 	 * This vnode may found and locked via some other list, if so we
1506 	 * can't recycle it yet.
1507 	 */
1508 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1509 		CTR2(KTR_VFS,
1510 		    "%s: impossible to recycle, vp %p lock is already held",
1511 		    __func__, vp);
1512 		return (EWOULDBLOCK);
1513 	}
1514 	/*
1515 	 * Don't recycle if its filesystem is being suspended.
1516 	 */
1517 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1518 		VOP_UNLOCK(vp);
1519 		CTR2(KTR_VFS,
1520 		    "%s: impossible to recycle, cannot start the write for %p",
1521 		    __func__, vp);
1522 		return (EBUSY);
1523 	}
1524 	/*
1525 	 * If we got this far, we need to acquire the interlock and see if
1526 	 * anyone picked up this vnode from another list.  If not, we will
1527 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1528 	 * will skip over it.
1529 	 */
1530 	VI_LOCK(vp);
1531 	if (vp->v_usecount) {
1532 		VOP_UNLOCK(vp);
1533 		VI_UNLOCK(vp);
1534 		vn_finished_write(vnmp);
1535 		CTR2(KTR_VFS,
1536 		    "%s: impossible to recycle, %p is already referenced",
1537 		    __func__, vp);
1538 		return (EBUSY);
1539 	}
1540 	if (!VN_IS_DOOMED(vp)) {
1541 		counter_u64_add(recycles_free_count, 1);
1542 		vgonel(vp);
1543 	}
1544 	VOP_UNLOCK(vp);
1545 	VI_UNLOCK(vp);
1546 	vn_finished_write(vnmp);
1547 	return (0);
1548 }
1549 
1550 /*
1551  * Allocate a new vnode.
1552  *
1553  * The operation never returns an error. Returning an error was disabled
1554  * in r145385 (dated 2005) with the following comment:
1555  *
1556  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1557  *
1558  * Given the age of this commit (almost 15 years at the time of writing this
1559  * comment) restoring the ability to fail requires a significant audit of
1560  * all codepaths.
1561  *
1562  * The routine can try to free a vnode or stall for up to 1 second waiting for
1563  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1564  */
1565 static u_long vn_alloc_cyclecount;
1566 
1567 static struct vnode * __noinline
1568 vn_alloc_hard(struct mount *mp)
1569 {
1570 	u_long rnumvnodes, rfreevnodes;
1571 
1572 	mtx_lock(&vnode_list_mtx);
1573 	rnumvnodes = atomic_load_long(&numvnodes);
1574 	if (rnumvnodes + 1 < desiredvnodes) {
1575 		vn_alloc_cyclecount = 0;
1576 		goto alloc;
1577 	}
1578 	rfreevnodes = vnlru_read_freevnodes();
1579 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1580 		vn_alloc_cyclecount = 0;
1581 		vstir = 1;
1582 	}
1583 	/*
1584 	 * Grow the vnode cache if it will not be above its target max
1585 	 * after growing.  Otherwise, if the free list is nonempty, try
1586 	 * to reclaim 1 item from it before growing the cache (possibly
1587 	 * above its target max if the reclamation failed or is delayed).
1588 	 * Otherwise, wait for some space.  In all cases, schedule
1589 	 * vnlru_proc() if we are getting short of space.  The watermarks
1590 	 * should be chosen so that we never wait or even reclaim from
1591 	 * the free list to below its target minimum.
1592 	 */
1593 	if (vnlru_free_locked(1, NULL) > 0)
1594 		goto alloc;
1595 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1596 		/*
1597 		 * Wait for space for a new vnode.
1598 		 */
1599 		vnlru_kick();
1600 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1601 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1602 		    vnlru_read_freevnodes() > 1)
1603 			vnlru_free_locked(1, NULL);
1604 	}
1605 alloc:
1606 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1607 	if (vnlru_under(rnumvnodes, vlowat))
1608 		vnlru_kick();
1609 	mtx_unlock(&vnode_list_mtx);
1610 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1611 }
1612 
1613 static struct vnode *
1614 vn_alloc(struct mount *mp)
1615 {
1616 	u_long rnumvnodes;
1617 
1618 	if (__predict_false(vn_alloc_cyclecount != 0))
1619 		return (vn_alloc_hard(mp));
1620 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1621 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1622 		atomic_subtract_long(&numvnodes, 1);
1623 		return (vn_alloc_hard(mp));
1624 	}
1625 
1626 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1627 }
1628 
1629 static void
1630 vn_free(struct vnode *vp)
1631 {
1632 
1633 	atomic_subtract_long(&numvnodes, 1);
1634 	uma_zfree_smr(vnode_zone, vp);
1635 }
1636 
1637 /*
1638  * Return the next vnode from the free list.
1639  */
1640 int
1641 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1642     struct vnode **vpp)
1643 {
1644 	struct vnode *vp;
1645 	struct thread *td;
1646 	struct lock_object *lo;
1647 
1648 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1649 
1650 	KASSERT(vops->registered,
1651 	    ("%s: not registered vector op %p\n", __func__, vops));
1652 
1653 	td = curthread;
1654 	if (td->td_vp_reserved != NULL) {
1655 		vp = td->td_vp_reserved;
1656 		td->td_vp_reserved = NULL;
1657 	} else {
1658 		vp = vn_alloc(mp);
1659 	}
1660 	counter_u64_add(vnodes_created, 1);
1661 	/*
1662 	 * Locks are given the generic name "vnode" when created.
1663 	 * Follow the historic practice of using the filesystem
1664 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1665 	 *
1666 	 * Locks live in a witness group keyed on their name. Thus,
1667 	 * when a lock is renamed, it must also move from the witness
1668 	 * group of its old name to the witness group of its new name.
1669 	 *
1670 	 * The change only needs to be made when the vnode moves
1671 	 * from one filesystem type to another. We ensure that each
1672 	 * filesystem use a single static name pointer for its tag so
1673 	 * that we can compare pointers rather than doing a strcmp().
1674 	 */
1675 	lo = &vp->v_vnlock->lock_object;
1676 #ifdef WITNESS
1677 	if (lo->lo_name != tag) {
1678 #endif
1679 		lo->lo_name = tag;
1680 #ifdef WITNESS
1681 		WITNESS_DESTROY(lo);
1682 		WITNESS_INIT(lo, tag);
1683 	}
1684 #endif
1685 	/*
1686 	 * By default, don't allow shared locks unless filesystems opt-in.
1687 	 */
1688 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1689 	/*
1690 	 * Finalize various vnode identity bits.
1691 	 */
1692 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1693 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1694 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1695 	vp->v_type = VNON;
1696 	vp->v_op = vops;
1697 	v_init_counters(vp);
1698 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1699 #ifdef DIAGNOSTIC
1700 	if (mp == NULL && vops != &dead_vnodeops)
1701 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1702 #endif
1703 #ifdef MAC
1704 	mac_vnode_init(vp);
1705 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1706 		mac_vnode_associate_singlelabel(mp, vp);
1707 #endif
1708 	if (mp != NULL) {
1709 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1710 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1711 			vp->v_vflag |= VV_NOKNOTE;
1712 	}
1713 
1714 	/*
1715 	 * For the filesystems which do not use vfs_hash_insert(),
1716 	 * still initialize v_hash to have vfs_hash_index() useful.
1717 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1718 	 * its own hashing.
1719 	 */
1720 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1721 
1722 	*vpp = vp;
1723 	return (0);
1724 }
1725 
1726 void
1727 getnewvnode_reserve(void)
1728 {
1729 	struct thread *td;
1730 
1731 	td = curthread;
1732 	MPASS(td->td_vp_reserved == NULL);
1733 	td->td_vp_reserved = vn_alloc(NULL);
1734 }
1735 
1736 void
1737 getnewvnode_drop_reserve(void)
1738 {
1739 	struct thread *td;
1740 
1741 	td = curthread;
1742 	if (td->td_vp_reserved != NULL) {
1743 		vn_free(td->td_vp_reserved);
1744 		td->td_vp_reserved = NULL;
1745 	}
1746 }
1747 
1748 static void
1749 freevnode(struct vnode *vp)
1750 {
1751 	struct bufobj *bo;
1752 
1753 	/*
1754 	 * The vnode has been marked for destruction, so free it.
1755 	 *
1756 	 * The vnode will be returned to the zone where it will
1757 	 * normally remain until it is needed for another vnode. We
1758 	 * need to cleanup (or verify that the cleanup has already
1759 	 * been done) any residual data left from its current use
1760 	 * so as not to contaminate the freshly allocated vnode.
1761 	 */
1762 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1763 	/*
1764 	 * Paired with vgone.
1765 	 */
1766 	vn_seqc_write_end_locked(vp);
1767 	VNPASS(vp->v_seqc_users == 0, vp);
1768 
1769 	bo = &vp->v_bufobj;
1770 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1771 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1772 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1773 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1774 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1775 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1776 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1777 	    ("clean blk trie not empty"));
1778 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1779 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1780 	    ("dirty blk trie not empty"));
1781 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1782 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1783 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1784 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1785 	    ("Dangling rangelock waiters"));
1786 	VI_UNLOCK(vp);
1787 #ifdef MAC
1788 	mac_vnode_destroy(vp);
1789 #endif
1790 	if (vp->v_pollinfo != NULL) {
1791 		destroy_vpollinfo(vp->v_pollinfo);
1792 		vp->v_pollinfo = NULL;
1793 	}
1794 #ifdef INVARIANTS
1795 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
1796 	vp->v_op = NULL;
1797 #endif
1798 	vp->v_mountedhere = NULL;
1799 	vp->v_unpcb = NULL;
1800 	vp->v_rdev = NULL;
1801 	vp->v_fifoinfo = NULL;
1802 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
1803 	vp->v_irflag = 0;
1804 	vp->v_iflag = 0;
1805 	vp->v_vflag = 0;
1806 	bo->bo_flag = 0;
1807 	vn_free(vp);
1808 }
1809 
1810 /*
1811  * Delete from old mount point vnode list, if on one.
1812  */
1813 static void
1814 delmntque(struct vnode *vp)
1815 {
1816 	struct mount *mp;
1817 
1818 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1819 
1820 	mp = vp->v_mount;
1821 	if (mp == NULL)
1822 		return;
1823 	MNT_ILOCK(mp);
1824 	VI_LOCK(vp);
1825 	vp->v_mount = NULL;
1826 	VI_UNLOCK(vp);
1827 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1828 		("bad mount point vnode list size"));
1829 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1830 	mp->mnt_nvnodelistsize--;
1831 	MNT_REL(mp);
1832 	MNT_IUNLOCK(mp);
1833 }
1834 
1835 static void
1836 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1837 {
1838 
1839 	vp->v_data = NULL;
1840 	vp->v_op = &dead_vnodeops;
1841 	vgone(vp);
1842 	vput(vp);
1843 }
1844 
1845 /*
1846  * Insert into list of vnodes for the new mount point, if available.
1847  */
1848 int
1849 insmntque1(struct vnode *vp, struct mount *mp,
1850 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1851 {
1852 
1853 	KASSERT(vp->v_mount == NULL,
1854 		("insmntque: vnode already on per mount vnode list"));
1855 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1856 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1857 
1858 	/*
1859 	 * We acquire the vnode interlock early to ensure that the
1860 	 * vnode cannot be recycled by another process releasing a
1861 	 * holdcnt on it before we get it on both the vnode list
1862 	 * and the active vnode list. The mount mutex protects only
1863 	 * manipulation of the vnode list and the vnode freelist
1864 	 * mutex protects only manipulation of the active vnode list.
1865 	 * Hence the need to hold the vnode interlock throughout.
1866 	 */
1867 	MNT_ILOCK(mp);
1868 	VI_LOCK(vp);
1869 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1870 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1871 	    mp->mnt_nvnodelistsize == 0)) &&
1872 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1873 		VI_UNLOCK(vp);
1874 		MNT_IUNLOCK(mp);
1875 		if (dtr != NULL)
1876 			dtr(vp, dtr_arg);
1877 		return (EBUSY);
1878 	}
1879 	vp->v_mount = mp;
1880 	MNT_REF(mp);
1881 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1882 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1883 		("neg mount point vnode list size"));
1884 	mp->mnt_nvnodelistsize++;
1885 	VI_UNLOCK(vp);
1886 	MNT_IUNLOCK(mp);
1887 	return (0);
1888 }
1889 
1890 int
1891 insmntque(struct vnode *vp, struct mount *mp)
1892 {
1893 
1894 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1895 }
1896 
1897 /*
1898  * Flush out and invalidate all buffers associated with a bufobj
1899  * Called with the underlying object locked.
1900  */
1901 int
1902 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1903 {
1904 	int error;
1905 
1906 	BO_LOCK(bo);
1907 	if (flags & V_SAVE) {
1908 		error = bufobj_wwait(bo, slpflag, slptimeo);
1909 		if (error) {
1910 			BO_UNLOCK(bo);
1911 			return (error);
1912 		}
1913 		if (bo->bo_dirty.bv_cnt > 0) {
1914 			BO_UNLOCK(bo);
1915 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1916 				return (error);
1917 			/*
1918 			 * XXX We could save a lock/unlock if this was only
1919 			 * enabled under INVARIANTS
1920 			 */
1921 			BO_LOCK(bo);
1922 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1923 				panic("vinvalbuf: dirty bufs");
1924 		}
1925 	}
1926 	/*
1927 	 * If you alter this loop please notice that interlock is dropped and
1928 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1929 	 * no race conditions occur from this.
1930 	 */
1931 	do {
1932 		error = flushbuflist(&bo->bo_clean,
1933 		    flags, bo, slpflag, slptimeo);
1934 		if (error == 0 && !(flags & V_CLEANONLY))
1935 			error = flushbuflist(&bo->bo_dirty,
1936 			    flags, bo, slpflag, slptimeo);
1937 		if (error != 0 && error != EAGAIN) {
1938 			BO_UNLOCK(bo);
1939 			return (error);
1940 		}
1941 	} while (error != 0);
1942 
1943 	/*
1944 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1945 	 * have write I/O in-progress but if there is a VM object then the
1946 	 * VM object can also have read-I/O in-progress.
1947 	 */
1948 	do {
1949 		bufobj_wwait(bo, 0, 0);
1950 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
1951 			BO_UNLOCK(bo);
1952 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
1953 			BO_LOCK(bo);
1954 		}
1955 	} while (bo->bo_numoutput > 0);
1956 	BO_UNLOCK(bo);
1957 
1958 	/*
1959 	 * Destroy the copy in the VM cache, too.
1960 	 */
1961 	if (bo->bo_object != NULL &&
1962 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1963 		VM_OBJECT_WLOCK(bo->bo_object);
1964 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1965 		    OBJPR_CLEANONLY : 0);
1966 		VM_OBJECT_WUNLOCK(bo->bo_object);
1967 	}
1968 
1969 #ifdef INVARIANTS
1970 	BO_LOCK(bo);
1971 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1972 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1973 	    bo->bo_clean.bv_cnt > 0))
1974 		panic("vinvalbuf: flush failed");
1975 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1976 	    bo->bo_dirty.bv_cnt > 0)
1977 		panic("vinvalbuf: flush dirty failed");
1978 	BO_UNLOCK(bo);
1979 #endif
1980 	return (0);
1981 }
1982 
1983 /*
1984  * Flush out and invalidate all buffers associated with a vnode.
1985  * Called with the underlying object locked.
1986  */
1987 int
1988 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1989 {
1990 
1991 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1992 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1993 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1994 		return (0);
1995 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1996 }
1997 
1998 /*
1999  * Flush out buffers on the specified list.
2000  *
2001  */
2002 static int
2003 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2004     int slptimeo)
2005 {
2006 	struct buf *bp, *nbp;
2007 	int retval, error;
2008 	daddr_t lblkno;
2009 	b_xflags_t xflags;
2010 
2011 	ASSERT_BO_WLOCKED(bo);
2012 
2013 	retval = 0;
2014 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2015 		/*
2016 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2017 		 * do not skip any buffers. If we are flushing only V_NORMAL
2018 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2019 		 * flushing only V_ALT buffers then skip buffers not marked
2020 		 * as BX_ALTDATA.
2021 		 */
2022 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2023 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2024 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2025 			continue;
2026 		}
2027 		if (nbp != NULL) {
2028 			lblkno = nbp->b_lblkno;
2029 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2030 		}
2031 		retval = EAGAIN;
2032 		error = BUF_TIMELOCK(bp,
2033 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2034 		    "flushbuf", slpflag, slptimeo);
2035 		if (error) {
2036 			BO_LOCK(bo);
2037 			return (error != ENOLCK ? error : EAGAIN);
2038 		}
2039 		KASSERT(bp->b_bufobj == bo,
2040 		    ("bp %p wrong b_bufobj %p should be %p",
2041 		    bp, bp->b_bufobj, bo));
2042 		/*
2043 		 * XXX Since there are no node locks for NFS, I
2044 		 * believe there is a slight chance that a delayed
2045 		 * write will occur while sleeping just above, so
2046 		 * check for it.
2047 		 */
2048 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2049 		    (flags & V_SAVE)) {
2050 			bremfree(bp);
2051 			bp->b_flags |= B_ASYNC;
2052 			bwrite(bp);
2053 			BO_LOCK(bo);
2054 			return (EAGAIN);	/* XXX: why not loop ? */
2055 		}
2056 		bremfree(bp);
2057 		bp->b_flags |= (B_INVAL | B_RELBUF);
2058 		bp->b_flags &= ~B_ASYNC;
2059 		brelse(bp);
2060 		BO_LOCK(bo);
2061 		if (nbp == NULL)
2062 			break;
2063 		nbp = gbincore(bo, lblkno);
2064 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2065 		    != xflags)
2066 			break;			/* nbp invalid */
2067 	}
2068 	return (retval);
2069 }
2070 
2071 int
2072 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2073 {
2074 	struct buf *bp;
2075 	int error;
2076 	daddr_t lblkno;
2077 
2078 	ASSERT_BO_LOCKED(bo);
2079 
2080 	for (lblkno = startn;;) {
2081 again:
2082 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2083 		if (bp == NULL || bp->b_lblkno >= endn ||
2084 		    bp->b_lblkno < startn)
2085 			break;
2086 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2087 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2088 		if (error != 0) {
2089 			BO_RLOCK(bo);
2090 			if (error == ENOLCK)
2091 				goto again;
2092 			return (error);
2093 		}
2094 		KASSERT(bp->b_bufobj == bo,
2095 		    ("bp %p wrong b_bufobj %p should be %p",
2096 		    bp, bp->b_bufobj, bo));
2097 		lblkno = bp->b_lblkno + 1;
2098 		if ((bp->b_flags & B_MANAGED) == 0)
2099 			bremfree(bp);
2100 		bp->b_flags |= B_RELBUF;
2101 		/*
2102 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2103 		 * pages backing each buffer in the range are unlikely to be
2104 		 * reused.  Dirty buffers will have the hint applied once
2105 		 * they've been written.
2106 		 */
2107 		if ((bp->b_flags & B_VMIO) != 0)
2108 			bp->b_flags |= B_NOREUSE;
2109 		brelse(bp);
2110 		BO_RLOCK(bo);
2111 	}
2112 	return (0);
2113 }
2114 
2115 /*
2116  * Truncate a file's buffer and pages to a specified length.  This
2117  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2118  * sync activity.
2119  */
2120 int
2121 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2122 {
2123 	struct buf *bp, *nbp;
2124 	struct bufobj *bo;
2125 	daddr_t startlbn;
2126 
2127 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2128 	    vp, blksize, (uintmax_t)length);
2129 
2130 	/*
2131 	 * Round up to the *next* lbn.
2132 	 */
2133 	startlbn = howmany(length, blksize);
2134 
2135 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2136 
2137 	bo = &vp->v_bufobj;
2138 restart_unlocked:
2139 	BO_LOCK(bo);
2140 
2141 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2142 		;
2143 
2144 	if (length > 0) {
2145 restartsync:
2146 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2147 			if (bp->b_lblkno > 0)
2148 				continue;
2149 			/*
2150 			 * Since we hold the vnode lock this should only
2151 			 * fail if we're racing with the buf daemon.
2152 			 */
2153 			if (BUF_LOCK(bp,
2154 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2155 			    BO_LOCKPTR(bo)) == ENOLCK)
2156 				goto restart_unlocked;
2157 
2158 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2159 			    ("buf(%p) on dirty queue without DELWRI", bp));
2160 
2161 			bremfree(bp);
2162 			bawrite(bp);
2163 			BO_LOCK(bo);
2164 			goto restartsync;
2165 		}
2166 	}
2167 
2168 	bufobj_wwait(bo, 0, 0);
2169 	BO_UNLOCK(bo);
2170 	vnode_pager_setsize(vp, length);
2171 
2172 	return (0);
2173 }
2174 
2175 /*
2176  * Invalidate the cached pages of a file's buffer within the range of block
2177  * numbers [startlbn, endlbn).
2178  */
2179 void
2180 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2181     int blksize)
2182 {
2183 	struct bufobj *bo;
2184 	off_t start, end;
2185 
2186 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2187 
2188 	start = blksize * startlbn;
2189 	end = blksize * endlbn;
2190 
2191 	bo = &vp->v_bufobj;
2192 	BO_LOCK(bo);
2193 	MPASS(blksize == bo->bo_bsize);
2194 
2195 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2196 		;
2197 
2198 	BO_UNLOCK(bo);
2199 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2200 }
2201 
2202 static int
2203 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2204     daddr_t startlbn, daddr_t endlbn)
2205 {
2206 	struct buf *bp, *nbp;
2207 	bool anyfreed;
2208 
2209 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2210 	ASSERT_BO_LOCKED(bo);
2211 
2212 	do {
2213 		anyfreed = false;
2214 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2215 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2216 				continue;
2217 			if (BUF_LOCK(bp,
2218 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2219 			    BO_LOCKPTR(bo)) == ENOLCK) {
2220 				BO_LOCK(bo);
2221 				return (EAGAIN);
2222 			}
2223 
2224 			bremfree(bp);
2225 			bp->b_flags |= B_INVAL | B_RELBUF;
2226 			bp->b_flags &= ~B_ASYNC;
2227 			brelse(bp);
2228 			anyfreed = true;
2229 
2230 			BO_LOCK(bo);
2231 			if (nbp != NULL &&
2232 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2233 			    nbp->b_vp != vp ||
2234 			    (nbp->b_flags & B_DELWRI) != 0))
2235 				return (EAGAIN);
2236 		}
2237 
2238 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2239 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2240 				continue;
2241 			if (BUF_LOCK(bp,
2242 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2243 			    BO_LOCKPTR(bo)) == ENOLCK) {
2244 				BO_LOCK(bo);
2245 				return (EAGAIN);
2246 			}
2247 			bremfree(bp);
2248 			bp->b_flags |= B_INVAL | B_RELBUF;
2249 			bp->b_flags &= ~B_ASYNC;
2250 			brelse(bp);
2251 			anyfreed = true;
2252 
2253 			BO_LOCK(bo);
2254 			if (nbp != NULL &&
2255 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2256 			    (nbp->b_vp != vp) ||
2257 			    (nbp->b_flags & B_DELWRI) == 0))
2258 				return (EAGAIN);
2259 		}
2260 	} while (anyfreed);
2261 	return (0);
2262 }
2263 
2264 static void
2265 buf_vlist_remove(struct buf *bp)
2266 {
2267 	struct bufv *bv;
2268 
2269 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2270 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2271 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
2272 	    (BX_VNDIRTY|BX_VNCLEAN),
2273 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
2274 	if (bp->b_xflags & BX_VNDIRTY)
2275 		bv = &bp->b_bufobj->bo_dirty;
2276 	else
2277 		bv = &bp->b_bufobj->bo_clean;
2278 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2279 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2280 	bv->bv_cnt--;
2281 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2282 }
2283 
2284 /*
2285  * Add the buffer to the sorted clean or dirty block list.
2286  *
2287  * NOTE: xflags is passed as a constant, optimizing this inline function!
2288  */
2289 static void
2290 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2291 {
2292 	struct bufv *bv;
2293 	struct buf *n;
2294 	int error;
2295 
2296 	ASSERT_BO_WLOCKED(bo);
2297 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2298 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2299 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2300 	    ("dead bo %p", bo));
2301 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2302 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2303 	bp->b_xflags |= xflags;
2304 	if (xflags & BX_VNDIRTY)
2305 		bv = &bo->bo_dirty;
2306 	else
2307 		bv = &bo->bo_clean;
2308 
2309 	/*
2310 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2311 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2312 	 * than _ge.
2313 	 */
2314 	if (bv->bv_cnt == 0 ||
2315 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2316 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2317 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2318 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2319 	else
2320 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2321 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2322 	if (error)
2323 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2324 	bv->bv_cnt++;
2325 }
2326 
2327 /*
2328  * Look up a buffer using the buffer tries.
2329  */
2330 struct buf *
2331 gbincore(struct bufobj *bo, daddr_t lblkno)
2332 {
2333 	struct buf *bp;
2334 
2335 	ASSERT_BO_LOCKED(bo);
2336 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2337 	if (bp != NULL)
2338 		return (bp);
2339 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2340 }
2341 
2342 /*
2343  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2344  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2345  * stability of the result.  Like other lockless lookups, the found buf may
2346  * already be invalid by the time this function returns.
2347  */
2348 struct buf *
2349 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2350 {
2351 	struct buf *bp;
2352 
2353 	ASSERT_BO_UNLOCKED(bo);
2354 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2355 	if (bp != NULL)
2356 		return (bp);
2357 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2358 }
2359 
2360 /*
2361  * Associate a buffer with a vnode.
2362  */
2363 void
2364 bgetvp(struct vnode *vp, struct buf *bp)
2365 {
2366 	struct bufobj *bo;
2367 
2368 	bo = &vp->v_bufobj;
2369 	ASSERT_BO_WLOCKED(bo);
2370 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2371 
2372 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2373 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2374 	    ("bgetvp: bp already attached! %p", bp));
2375 
2376 	vhold(vp);
2377 	bp->b_vp = vp;
2378 	bp->b_bufobj = bo;
2379 	/*
2380 	 * Insert onto list for new vnode.
2381 	 */
2382 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2383 }
2384 
2385 /*
2386  * Disassociate a buffer from a vnode.
2387  */
2388 void
2389 brelvp(struct buf *bp)
2390 {
2391 	struct bufobj *bo;
2392 	struct vnode *vp;
2393 
2394 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2395 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2396 
2397 	/*
2398 	 * Delete from old vnode list, if on one.
2399 	 */
2400 	vp = bp->b_vp;		/* XXX */
2401 	bo = bp->b_bufobj;
2402 	BO_LOCK(bo);
2403 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2404 		buf_vlist_remove(bp);
2405 	else
2406 		panic("brelvp: Buffer %p not on queue.", bp);
2407 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2408 		bo->bo_flag &= ~BO_ONWORKLST;
2409 		mtx_lock(&sync_mtx);
2410 		LIST_REMOVE(bo, bo_synclist);
2411 		syncer_worklist_len--;
2412 		mtx_unlock(&sync_mtx);
2413 	}
2414 	bp->b_vp = NULL;
2415 	bp->b_bufobj = NULL;
2416 	BO_UNLOCK(bo);
2417 	vdrop(vp);
2418 }
2419 
2420 /*
2421  * Add an item to the syncer work queue.
2422  */
2423 static void
2424 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2425 {
2426 	int slot;
2427 
2428 	ASSERT_BO_WLOCKED(bo);
2429 
2430 	mtx_lock(&sync_mtx);
2431 	if (bo->bo_flag & BO_ONWORKLST)
2432 		LIST_REMOVE(bo, bo_synclist);
2433 	else {
2434 		bo->bo_flag |= BO_ONWORKLST;
2435 		syncer_worklist_len++;
2436 	}
2437 
2438 	if (delay > syncer_maxdelay - 2)
2439 		delay = syncer_maxdelay - 2;
2440 	slot = (syncer_delayno + delay) & syncer_mask;
2441 
2442 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2443 	mtx_unlock(&sync_mtx);
2444 }
2445 
2446 static int
2447 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2448 {
2449 	int error, len;
2450 
2451 	mtx_lock(&sync_mtx);
2452 	len = syncer_worklist_len - sync_vnode_count;
2453 	mtx_unlock(&sync_mtx);
2454 	error = SYSCTL_OUT(req, &len, sizeof(len));
2455 	return (error);
2456 }
2457 
2458 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2459     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2460     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2461 
2462 static struct proc *updateproc;
2463 static void sched_sync(void);
2464 static struct kproc_desc up_kp = {
2465 	"syncer",
2466 	sched_sync,
2467 	&updateproc
2468 };
2469 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2470 
2471 static int
2472 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2473 {
2474 	struct vnode *vp;
2475 	struct mount *mp;
2476 
2477 	*bo = LIST_FIRST(slp);
2478 	if (*bo == NULL)
2479 		return (0);
2480 	vp = bo2vnode(*bo);
2481 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2482 		return (1);
2483 	/*
2484 	 * We use vhold in case the vnode does not
2485 	 * successfully sync.  vhold prevents the vnode from
2486 	 * going away when we unlock the sync_mtx so that
2487 	 * we can acquire the vnode interlock.
2488 	 */
2489 	vholdl(vp);
2490 	mtx_unlock(&sync_mtx);
2491 	VI_UNLOCK(vp);
2492 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2493 		vdrop(vp);
2494 		mtx_lock(&sync_mtx);
2495 		return (*bo == LIST_FIRST(slp));
2496 	}
2497 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2498 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2499 	VOP_UNLOCK(vp);
2500 	vn_finished_write(mp);
2501 	BO_LOCK(*bo);
2502 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2503 		/*
2504 		 * Put us back on the worklist.  The worklist
2505 		 * routine will remove us from our current
2506 		 * position and then add us back in at a later
2507 		 * position.
2508 		 */
2509 		vn_syncer_add_to_worklist(*bo, syncdelay);
2510 	}
2511 	BO_UNLOCK(*bo);
2512 	vdrop(vp);
2513 	mtx_lock(&sync_mtx);
2514 	return (0);
2515 }
2516 
2517 static int first_printf = 1;
2518 
2519 /*
2520  * System filesystem synchronizer daemon.
2521  */
2522 static void
2523 sched_sync(void)
2524 {
2525 	struct synclist *next, *slp;
2526 	struct bufobj *bo;
2527 	long starttime;
2528 	struct thread *td = curthread;
2529 	int last_work_seen;
2530 	int net_worklist_len;
2531 	int syncer_final_iter;
2532 	int error;
2533 
2534 	last_work_seen = 0;
2535 	syncer_final_iter = 0;
2536 	syncer_state = SYNCER_RUNNING;
2537 	starttime = time_uptime;
2538 	td->td_pflags |= TDP_NORUNNINGBUF;
2539 
2540 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2541 	    SHUTDOWN_PRI_LAST);
2542 
2543 	mtx_lock(&sync_mtx);
2544 	for (;;) {
2545 		if (syncer_state == SYNCER_FINAL_DELAY &&
2546 		    syncer_final_iter == 0) {
2547 			mtx_unlock(&sync_mtx);
2548 			kproc_suspend_check(td->td_proc);
2549 			mtx_lock(&sync_mtx);
2550 		}
2551 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2552 		if (syncer_state != SYNCER_RUNNING &&
2553 		    starttime != time_uptime) {
2554 			if (first_printf) {
2555 				printf("\nSyncing disks, vnodes remaining... ");
2556 				first_printf = 0;
2557 			}
2558 			printf("%d ", net_worklist_len);
2559 		}
2560 		starttime = time_uptime;
2561 
2562 		/*
2563 		 * Push files whose dirty time has expired.  Be careful
2564 		 * of interrupt race on slp queue.
2565 		 *
2566 		 * Skip over empty worklist slots when shutting down.
2567 		 */
2568 		do {
2569 			slp = &syncer_workitem_pending[syncer_delayno];
2570 			syncer_delayno += 1;
2571 			if (syncer_delayno == syncer_maxdelay)
2572 				syncer_delayno = 0;
2573 			next = &syncer_workitem_pending[syncer_delayno];
2574 			/*
2575 			 * If the worklist has wrapped since the
2576 			 * it was emptied of all but syncer vnodes,
2577 			 * switch to the FINAL_DELAY state and run
2578 			 * for one more second.
2579 			 */
2580 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2581 			    net_worklist_len == 0 &&
2582 			    last_work_seen == syncer_delayno) {
2583 				syncer_state = SYNCER_FINAL_DELAY;
2584 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2585 			}
2586 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2587 		    syncer_worklist_len > 0);
2588 
2589 		/*
2590 		 * Keep track of the last time there was anything
2591 		 * on the worklist other than syncer vnodes.
2592 		 * Return to the SHUTTING_DOWN state if any
2593 		 * new work appears.
2594 		 */
2595 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2596 			last_work_seen = syncer_delayno;
2597 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2598 			syncer_state = SYNCER_SHUTTING_DOWN;
2599 		while (!LIST_EMPTY(slp)) {
2600 			error = sync_vnode(slp, &bo, td);
2601 			if (error == 1) {
2602 				LIST_REMOVE(bo, bo_synclist);
2603 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2604 				continue;
2605 			}
2606 
2607 			if (first_printf == 0) {
2608 				/*
2609 				 * Drop the sync mutex, because some watchdog
2610 				 * drivers need to sleep while patting
2611 				 */
2612 				mtx_unlock(&sync_mtx);
2613 				wdog_kern_pat(WD_LASTVAL);
2614 				mtx_lock(&sync_mtx);
2615 			}
2616 
2617 		}
2618 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2619 			syncer_final_iter--;
2620 		/*
2621 		 * The variable rushjob allows the kernel to speed up the
2622 		 * processing of the filesystem syncer process. A rushjob
2623 		 * value of N tells the filesystem syncer to process the next
2624 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2625 		 * is used by the soft update code to speed up the filesystem
2626 		 * syncer process when the incore state is getting so far
2627 		 * ahead of the disk that the kernel memory pool is being
2628 		 * threatened with exhaustion.
2629 		 */
2630 		if (rushjob > 0) {
2631 			rushjob -= 1;
2632 			continue;
2633 		}
2634 		/*
2635 		 * Just sleep for a short period of time between
2636 		 * iterations when shutting down to allow some I/O
2637 		 * to happen.
2638 		 *
2639 		 * If it has taken us less than a second to process the
2640 		 * current work, then wait. Otherwise start right over
2641 		 * again. We can still lose time if any single round
2642 		 * takes more than two seconds, but it does not really
2643 		 * matter as we are just trying to generally pace the
2644 		 * filesystem activity.
2645 		 */
2646 		if (syncer_state != SYNCER_RUNNING ||
2647 		    time_uptime == starttime) {
2648 			thread_lock(td);
2649 			sched_prio(td, PPAUSE);
2650 			thread_unlock(td);
2651 		}
2652 		if (syncer_state != SYNCER_RUNNING)
2653 			cv_timedwait(&sync_wakeup, &sync_mtx,
2654 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2655 		else if (time_uptime == starttime)
2656 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2657 	}
2658 }
2659 
2660 /*
2661  * Request the syncer daemon to speed up its work.
2662  * We never push it to speed up more than half of its
2663  * normal turn time, otherwise it could take over the cpu.
2664  */
2665 int
2666 speedup_syncer(void)
2667 {
2668 	int ret = 0;
2669 
2670 	mtx_lock(&sync_mtx);
2671 	if (rushjob < syncdelay / 2) {
2672 		rushjob += 1;
2673 		stat_rush_requests += 1;
2674 		ret = 1;
2675 	}
2676 	mtx_unlock(&sync_mtx);
2677 	cv_broadcast(&sync_wakeup);
2678 	return (ret);
2679 }
2680 
2681 /*
2682  * Tell the syncer to speed up its work and run though its work
2683  * list several times, then tell it to shut down.
2684  */
2685 static void
2686 syncer_shutdown(void *arg, int howto)
2687 {
2688 
2689 	if (howto & RB_NOSYNC)
2690 		return;
2691 	mtx_lock(&sync_mtx);
2692 	syncer_state = SYNCER_SHUTTING_DOWN;
2693 	rushjob = 0;
2694 	mtx_unlock(&sync_mtx);
2695 	cv_broadcast(&sync_wakeup);
2696 	kproc_shutdown(arg, howto);
2697 }
2698 
2699 void
2700 syncer_suspend(void)
2701 {
2702 
2703 	syncer_shutdown(updateproc, 0);
2704 }
2705 
2706 void
2707 syncer_resume(void)
2708 {
2709 
2710 	mtx_lock(&sync_mtx);
2711 	first_printf = 1;
2712 	syncer_state = SYNCER_RUNNING;
2713 	mtx_unlock(&sync_mtx);
2714 	cv_broadcast(&sync_wakeup);
2715 	kproc_resume(updateproc);
2716 }
2717 
2718 /*
2719  * Reassign a buffer from one vnode to another.
2720  * Used to assign file specific control information
2721  * (indirect blocks) to the vnode to which they belong.
2722  */
2723 void
2724 reassignbuf(struct buf *bp)
2725 {
2726 	struct vnode *vp;
2727 	struct bufobj *bo;
2728 	int delay;
2729 #ifdef INVARIANTS
2730 	struct bufv *bv;
2731 #endif
2732 
2733 	vp = bp->b_vp;
2734 	bo = bp->b_bufobj;
2735 	++reassignbufcalls;
2736 
2737 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2738 	    bp, bp->b_vp, bp->b_flags);
2739 	/*
2740 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2741 	 * is not fully linked in.
2742 	 */
2743 	if (bp->b_flags & B_PAGING)
2744 		panic("cannot reassign paging buffer");
2745 
2746 	/*
2747 	 * Delete from old vnode list, if on one.
2748 	 */
2749 	BO_LOCK(bo);
2750 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2751 		buf_vlist_remove(bp);
2752 	else
2753 		panic("reassignbuf: Buffer %p not on queue.", bp);
2754 	/*
2755 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2756 	 * of clean buffers.
2757 	 */
2758 	if (bp->b_flags & B_DELWRI) {
2759 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2760 			switch (vp->v_type) {
2761 			case VDIR:
2762 				delay = dirdelay;
2763 				break;
2764 			case VCHR:
2765 				delay = metadelay;
2766 				break;
2767 			default:
2768 				delay = filedelay;
2769 			}
2770 			vn_syncer_add_to_worklist(bo, delay);
2771 		}
2772 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2773 	} else {
2774 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2775 
2776 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2777 			mtx_lock(&sync_mtx);
2778 			LIST_REMOVE(bo, bo_synclist);
2779 			syncer_worklist_len--;
2780 			mtx_unlock(&sync_mtx);
2781 			bo->bo_flag &= ~BO_ONWORKLST;
2782 		}
2783 	}
2784 #ifdef INVARIANTS
2785 	bv = &bo->bo_clean;
2786 	bp = TAILQ_FIRST(&bv->bv_hd);
2787 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2788 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2789 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2790 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2791 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2792 	bv = &bo->bo_dirty;
2793 	bp = TAILQ_FIRST(&bv->bv_hd);
2794 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2795 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2796 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2797 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2798 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2799 #endif
2800 	BO_UNLOCK(bo);
2801 }
2802 
2803 static void
2804 v_init_counters(struct vnode *vp)
2805 {
2806 
2807 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2808 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2809 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2810 
2811 	refcount_init(&vp->v_holdcnt, 1);
2812 	refcount_init(&vp->v_usecount, 1);
2813 }
2814 
2815 /*
2816  * Increment si_usecount of the associated device, if any.
2817  */
2818 static void
2819 v_incr_devcount(struct vnode *vp)
2820 {
2821 
2822 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2823 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2824 		dev_lock();
2825 		vp->v_rdev->si_usecount++;
2826 		dev_unlock();
2827 	}
2828 }
2829 
2830 /*
2831  * Decrement si_usecount of the associated device, if any.
2832  *
2833  * The caller is required to hold the interlock when transitioning a VCHR use
2834  * count to zero. This prevents a race with devfs_reclaim_vchr() that would
2835  * leak a si_usecount reference. The vnode lock will also prevent this race
2836  * if it is held while dropping the last ref.
2837  *
2838  * The race is:
2839  *
2840  * CPU1					CPU2
2841  *				  	devfs_reclaim_vchr
2842  * make v_usecount == 0
2843  * 				    	  VI_LOCK
2844  * 				    	  sees v_usecount == 0, no updates
2845  * 				    	  vp->v_rdev = NULL;
2846  * 				    	  ...
2847  * 				    	  VI_UNLOCK
2848  * VI_LOCK
2849  * v_decr_devcount
2850  *   sees v_rdev == NULL, no updates
2851  *
2852  * In this scenario si_devcount decrement is not performed.
2853  */
2854 static void
2855 v_decr_devcount(struct vnode *vp)
2856 {
2857 
2858 	ASSERT_VOP_LOCKED(vp, __func__);
2859 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2860 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2861 		dev_lock();
2862 		VNPASS(vp->v_rdev->si_usecount > 0, vp);
2863 		vp->v_rdev->si_usecount--;
2864 		dev_unlock();
2865 	}
2866 }
2867 
2868 /*
2869  * Grab a particular vnode from the free list, increment its
2870  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2871  * is being destroyed.  Only callers who specify LK_RETRY will
2872  * see doomed vnodes.  If inactive processing was delayed in
2873  * vput try to do it here.
2874  *
2875  * usecount is manipulated using atomics without holding any locks.
2876  *
2877  * holdcnt can be manipulated using atomics without holding any locks,
2878  * except when transitioning 1<->0, in which case the interlock is held.
2879  *
2880  * Consumers which don't guarantee liveness of the vnode can use SMR to
2881  * try to get a reference. Note this operation can fail since the vnode
2882  * may be awaiting getting freed by the time they get to it.
2883  */
2884 enum vgetstate
2885 vget_prep_smr(struct vnode *vp)
2886 {
2887 	enum vgetstate vs;
2888 
2889 	VFS_SMR_ASSERT_ENTERED();
2890 
2891 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2892 		vs = VGET_USECOUNT;
2893 	} else {
2894 		if (vhold_smr(vp))
2895 			vs = VGET_HOLDCNT;
2896 		else
2897 			vs = VGET_NONE;
2898 	}
2899 	return (vs);
2900 }
2901 
2902 enum vgetstate
2903 vget_prep(struct vnode *vp)
2904 {
2905 	enum vgetstate vs;
2906 
2907 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2908 		vs = VGET_USECOUNT;
2909 	} else {
2910 		vhold(vp);
2911 		vs = VGET_HOLDCNT;
2912 	}
2913 	return (vs);
2914 }
2915 
2916 void
2917 vget_abort(struct vnode *vp, enum vgetstate vs)
2918 {
2919 
2920 	switch (vs) {
2921 	case VGET_USECOUNT:
2922 		vrele(vp);
2923 		break;
2924 	case VGET_HOLDCNT:
2925 		vdrop(vp);
2926 		break;
2927 	default:
2928 		__assert_unreachable();
2929 	}
2930 }
2931 
2932 int
2933 vget(struct vnode *vp, int flags, struct thread *td)
2934 {
2935 	enum vgetstate vs;
2936 
2937 	MPASS(td == curthread);
2938 
2939 	vs = vget_prep(vp);
2940 	return (vget_finish(vp, flags, vs));
2941 }
2942 
2943 static void __noinline
2944 vget_finish_vchr(struct vnode *vp)
2945 {
2946 
2947 	VNASSERT(vp->v_type == VCHR, vp, ("type != VCHR)"));
2948 
2949 	/*
2950 	 * See the comment in vget_finish before usecount bump.
2951 	 */
2952 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2953 #ifdef INVARIANTS
2954 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2955 		VNASSERT(old > 0, vp, ("%s: wrong hold count %d", __func__, old));
2956 #else
2957 		refcount_release(&vp->v_holdcnt);
2958 #endif
2959 		return;
2960 	}
2961 
2962 	VI_LOCK(vp);
2963 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2964 #ifdef INVARIANTS
2965 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2966 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2967 #else
2968 		refcount_release(&vp->v_holdcnt);
2969 #endif
2970 		VI_UNLOCK(vp);
2971 		return;
2972 	}
2973 	v_incr_devcount(vp);
2974 	refcount_acquire(&vp->v_usecount);
2975 	VI_UNLOCK(vp);
2976 }
2977 
2978 int
2979 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2980 {
2981 	int error;
2982 
2983 	if ((flags & LK_INTERLOCK) != 0)
2984 		ASSERT_VI_LOCKED(vp, __func__);
2985 	else
2986 		ASSERT_VI_UNLOCKED(vp, __func__);
2987 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
2988 	VNPASS(vp->v_holdcnt > 0, vp);
2989 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
2990 
2991 	error = vn_lock(vp, flags);
2992 	if (__predict_false(error != 0)) {
2993 		vget_abort(vp, vs);
2994 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2995 		    vp);
2996 		return (error);
2997 	}
2998 
2999 	vget_finish_ref(vp, vs);
3000 	return (0);
3001 }
3002 
3003 void
3004 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3005 {
3006 	int old;
3007 
3008 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3009 	VNPASS(vp->v_holdcnt > 0, vp);
3010 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3011 
3012 	if (vs == VGET_USECOUNT)
3013 		return;
3014 
3015 	if (__predict_false(vp->v_type == VCHR)) {
3016 		vget_finish_vchr(vp);
3017 		return;
3018 	}
3019 
3020 	/*
3021 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3022 	 * the vnode around. Otherwise someone else lended their hold count and
3023 	 * we have to drop ours.
3024 	 */
3025 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3026 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3027 	if (old != 0) {
3028 #ifdef INVARIANTS
3029 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3030 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3031 #else
3032 		refcount_release(&vp->v_holdcnt);
3033 #endif
3034 	}
3035 }
3036 
3037 /*
3038  * Increase the reference (use) and hold count of a vnode.
3039  * This will also remove the vnode from the free list if it is presently free.
3040  */
3041 static void __noinline
3042 vref_vchr(struct vnode *vp, bool interlock)
3043 {
3044 
3045 	/*
3046 	 * See the comment in vget_finish before usecount bump.
3047 	 */
3048 	if (!interlock) {
3049 		if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3050 			VNODE_REFCOUNT_FENCE_ACQ();
3051 			VNASSERT(vp->v_holdcnt > 0, vp,
3052 			    ("%s: active vnode not held", __func__));
3053 			return;
3054 		}
3055 		VI_LOCK(vp);
3056 		/*
3057 		 * By the time we get here the vnode might have been doomed, at
3058 		 * which point the 0->1 use count transition is no longer
3059 		 * protected by the interlock. Since it can't bounce back to
3060 		 * VCHR and requires vref semantics, punt it back
3061 		 */
3062 		if (__predict_false(vp->v_type == VBAD)) {
3063 			VI_UNLOCK(vp);
3064 			vref(vp);
3065 			return;
3066 		}
3067 	}
3068 	VNASSERT(vp->v_type == VCHR, vp, ("type != VCHR)"));
3069 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3070 		VNODE_REFCOUNT_FENCE_ACQ();
3071 		VNASSERT(vp->v_holdcnt > 0, vp,
3072 		    ("%s: active vnode not held", __func__));
3073 		if (!interlock)
3074 			VI_UNLOCK(vp);
3075 		return;
3076 	}
3077 	vhold(vp);
3078 	v_incr_devcount(vp);
3079 	refcount_acquire(&vp->v_usecount);
3080 	if (!interlock)
3081 		VI_UNLOCK(vp);
3082 	return;
3083 }
3084 
3085 void
3086 vref(struct vnode *vp)
3087 {
3088 	int old;
3089 
3090 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3091 	if (__predict_false(vp->v_type == VCHR)) {
3092 		 vref_vchr(vp, false);
3093 		 return;
3094 	}
3095 
3096 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3097 		VNODE_REFCOUNT_FENCE_ACQ();
3098 		VNASSERT(vp->v_holdcnt > 0, vp,
3099 		    ("%s: active vnode not held", __func__));
3100 		return;
3101 	}
3102 	vhold(vp);
3103 	/*
3104 	 * See the comment in vget_finish.
3105 	 */
3106 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3107 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3108 	if (old != 0) {
3109 #ifdef INVARIANTS
3110 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3111 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3112 #else
3113 		refcount_release(&vp->v_holdcnt);
3114 #endif
3115 	}
3116 }
3117 
3118 void
3119 vrefl(struct vnode *vp)
3120 {
3121 
3122 	ASSERT_VI_LOCKED(vp, __func__);
3123 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3124 	if (__predict_false(vp->v_type == VCHR)) {
3125 		vref_vchr(vp, true);
3126 		return;
3127 	}
3128 	vref(vp);
3129 }
3130 
3131 void
3132 vrefact(struct vnode *vp)
3133 {
3134 
3135 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3136 #ifdef INVARIANTS
3137 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3138 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3139 #else
3140 	refcount_acquire(&vp->v_usecount);
3141 #endif
3142 }
3143 
3144 void
3145 vrefactn(struct vnode *vp, u_int n)
3146 {
3147 
3148 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3149 #ifdef INVARIANTS
3150 	int old = atomic_fetchadd_int(&vp->v_usecount, n);
3151 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3152 #else
3153 	atomic_add_int(&vp->v_usecount, n);
3154 #endif
3155 }
3156 
3157 /*
3158  * Return reference count of a vnode.
3159  *
3160  * The results of this call are only guaranteed when some mechanism is used to
3161  * stop other processes from gaining references to the vnode.  This may be the
3162  * case if the caller holds the only reference.  This is also useful when stale
3163  * data is acceptable as race conditions may be accounted for by some other
3164  * means.
3165  */
3166 int
3167 vrefcnt(struct vnode *vp)
3168 {
3169 
3170 	return (vp->v_usecount);
3171 }
3172 
3173 void
3174 vlazy(struct vnode *vp)
3175 {
3176 	struct mount *mp;
3177 
3178 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3179 
3180 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3181 		return;
3182 	/*
3183 	 * We may get here for inactive routines after the vnode got doomed.
3184 	 */
3185 	if (VN_IS_DOOMED(vp))
3186 		return;
3187 	mp = vp->v_mount;
3188 	mtx_lock(&mp->mnt_listmtx);
3189 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3190 		vp->v_mflag |= VMP_LAZYLIST;
3191 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3192 		mp->mnt_lazyvnodelistsize++;
3193 	}
3194 	mtx_unlock(&mp->mnt_listmtx);
3195 }
3196 
3197 /*
3198  * This routine is only meant to be called from vgonel prior to dooming
3199  * the vnode.
3200  */
3201 static void
3202 vunlazy_gone(struct vnode *vp)
3203 {
3204 	struct mount *mp;
3205 
3206 	ASSERT_VOP_ELOCKED(vp, __func__);
3207 	ASSERT_VI_LOCKED(vp, __func__);
3208 	VNPASS(!VN_IS_DOOMED(vp), vp);
3209 
3210 	if (vp->v_mflag & VMP_LAZYLIST) {
3211 		mp = vp->v_mount;
3212 		mtx_lock(&mp->mnt_listmtx);
3213 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3214 		vp->v_mflag &= ~VMP_LAZYLIST;
3215 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3216 		mp->mnt_lazyvnodelistsize--;
3217 		mtx_unlock(&mp->mnt_listmtx);
3218 	}
3219 }
3220 
3221 static void
3222 vdefer_inactive(struct vnode *vp)
3223 {
3224 
3225 	ASSERT_VI_LOCKED(vp, __func__);
3226 	VNASSERT(vp->v_holdcnt > 0, vp,
3227 	    ("%s: vnode without hold count", __func__));
3228 	if (VN_IS_DOOMED(vp)) {
3229 		vdropl(vp);
3230 		return;
3231 	}
3232 	if (vp->v_iflag & VI_DEFINACT) {
3233 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3234 		vdropl(vp);
3235 		return;
3236 	}
3237 	if (vp->v_usecount > 0) {
3238 		vp->v_iflag &= ~VI_OWEINACT;
3239 		vdropl(vp);
3240 		return;
3241 	}
3242 	vlazy(vp);
3243 	vp->v_iflag |= VI_DEFINACT;
3244 	VI_UNLOCK(vp);
3245 	counter_u64_add(deferred_inact, 1);
3246 }
3247 
3248 static void
3249 vdefer_inactive_unlocked(struct vnode *vp)
3250 {
3251 
3252 	VI_LOCK(vp);
3253 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3254 		vdropl(vp);
3255 		return;
3256 	}
3257 	vdefer_inactive(vp);
3258 }
3259 
3260 enum vput_op { VRELE, VPUT, VUNREF };
3261 
3262 /*
3263  * Handle ->v_usecount transitioning to 0.
3264  *
3265  * By releasing the last usecount we take ownership of the hold count which
3266  * provides liveness of the vnode, meaning we have to vdrop.
3267  *
3268  * If the vnode is of type VCHR we may need to decrement si_usecount, see
3269  * v_decr_devcount for details.
3270  *
3271  * For all vnodes we may need to perform inactive processing. It requires an
3272  * exclusive lock on the vnode, while it is legal to call here with only a
3273  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3274  * inactive processing gets deferred to the syncer.
3275  *
3276  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3277  * on the lock being held all the way until VOP_INACTIVE. This in particular
3278  * happens with UFS which adds half-constructed vnodes to the hash, where they
3279  * can be found by other code.
3280  */
3281 static void
3282 vput_final(struct vnode *vp, enum vput_op func)
3283 {
3284 	int error;
3285 	bool want_unlock;
3286 
3287 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3288 	VNPASS(vp->v_holdcnt > 0, vp);
3289 
3290 	VI_LOCK(vp);
3291 	if (__predict_false(vp->v_type == VCHR && func != VRELE))
3292 		v_decr_devcount(vp);
3293 
3294 	/*
3295 	 * By the time we got here someone else might have transitioned
3296 	 * the count back to > 0.
3297 	 */
3298 	if (vp->v_usecount > 0)
3299 		goto out;
3300 
3301 	/*
3302 	 * If the vnode is doomed vgone already performed inactive processing
3303 	 * (if needed).
3304 	 */
3305 	if (VN_IS_DOOMED(vp))
3306 		goto out;
3307 
3308 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3309 		goto out;
3310 
3311 	if (vp->v_iflag & VI_DOINGINACT)
3312 		goto out;
3313 
3314 	/*
3315 	 * Locking operations here will drop the interlock and possibly the
3316 	 * vnode lock, opening a window where the vnode can get doomed all the
3317 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3318 	 * perform inactive.
3319 	 */
3320 	vp->v_iflag |= VI_OWEINACT;
3321 	want_unlock = false;
3322 	error = 0;
3323 	switch (func) {
3324 	case VRELE:
3325 		switch (VOP_ISLOCKED(vp)) {
3326 		case LK_EXCLUSIVE:
3327 			break;
3328 		case LK_EXCLOTHER:
3329 		case 0:
3330 			want_unlock = true;
3331 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3332 			VI_LOCK(vp);
3333 			break;
3334 		default:
3335 			/*
3336 			 * The lock has at least one sharer, but we have no way
3337 			 * to conclude whether this is us. Play it safe and
3338 			 * defer processing.
3339 			 */
3340 			error = EAGAIN;
3341 			break;
3342 		}
3343 		break;
3344 	case VPUT:
3345 		want_unlock = true;
3346 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3347 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3348 			    LK_NOWAIT);
3349 			VI_LOCK(vp);
3350 		}
3351 		break;
3352 	case VUNREF:
3353 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3354 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3355 			VI_LOCK(vp);
3356 		}
3357 		break;
3358 	}
3359 	if (error == 0) {
3360 		vinactive(vp);
3361 		if (want_unlock)
3362 			VOP_UNLOCK(vp);
3363 		vdropl(vp);
3364 	} else {
3365 		vdefer_inactive(vp);
3366 	}
3367 	return;
3368 out:
3369 	if (func == VPUT)
3370 		VOP_UNLOCK(vp);
3371 	vdropl(vp);
3372 }
3373 
3374 /*
3375  * Decrement ->v_usecount for a vnode.
3376  *
3377  * Releasing the last use count requires additional processing, see vput_final
3378  * above for details.
3379  *
3380  * Note that releasing use count without the vnode lock requires special casing
3381  * for VCHR, see v_decr_devcount for details.
3382  *
3383  * Comment above each variant denotes lock state on entry and exit.
3384  */
3385 
3386 static void __noinline
3387 vrele_vchr(struct vnode *vp)
3388 {
3389 
3390 	if (refcount_release_if_not_last(&vp->v_usecount))
3391 		return;
3392 	VI_LOCK(vp);
3393 	if (!refcount_release(&vp->v_usecount)) {
3394 		VI_UNLOCK(vp);
3395 		return;
3396 	}
3397 	v_decr_devcount(vp);
3398 	VI_UNLOCK(vp);
3399 	vput_final(vp, VRELE);
3400 }
3401 
3402 /*
3403  * in: any
3404  * out: same as passed in
3405  */
3406 void
3407 vrele(struct vnode *vp)
3408 {
3409 
3410 	ASSERT_VI_UNLOCKED(vp, __func__);
3411 	if (__predict_false(vp->v_type == VCHR)) {
3412 		vrele_vchr(vp);
3413 		return;
3414 	}
3415 	if (!refcount_release(&vp->v_usecount))
3416 		return;
3417 	vput_final(vp, VRELE);
3418 }
3419 
3420 /*
3421  * in: locked
3422  * out: unlocked
3423  */
3424 void
3425 vput(struct vnode *vp)
3426 {
3427 
3428 	ASSERT_VOP_LOCKED(vp, __func__);
3429 	ASSERT_VI_UNLOCKED(vp, __func__);
3430 	if (!refcount_release(&vp->v_usecount)) {
3431 		VOP_UNLOCK(vp);
3432 		return;
3433 	}
3434 	vput_final(vp, VPUT);
3435 }
3436 
3437 /*
3438  * in: locked
3439  * out: locked
3440  */
3441 void
3442 vunref(struct vnode *vp)
3443 {
3444 
3445 	ASSERT_VOP_LOCKED(vp, __func__);
3446 	ASSERT_VI_UNLOCKED(vp, __func__);
3447 	if (!refcount_release(&vp->v_usecount))
3448 		return;
3449 	vput_final(vp, VUNREF);
3450 }
3451 
3452 void
3453 vhold(struct vnode *vp)
3454 {
3455 	struct vdbatch *vd;
3456 	int old;
3457 
3458 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3459 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3460 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3461 	    ("%s: wrong hold count %d", __func__, old));
3462 	if (old != 0)
3463 		return;
3464 	critical_enter();
3465 	vd = DPCPU_PTR(vd);
3466 	vd->freevnodes--;
3467 	critical_exit();
3468 }
3469 
3470 void
3471 vholdl(struct vnode *vp)
3472 {
3473 
3474 	ASSERT_VI_LOCKED(vp, __func__);
3475 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3476 	vhold(vp);
3477 }
3478 
3479 void
3480 vholdnz(struct vnode *vp)
3481 {
3482 
3483 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3484 #ifdef INVARIANTS
3485 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3486 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3487 	    ("%s: wrong hold count %d", __func__, old));
3488 #else
3489 	atomic_add_int(&vp->v_holdcnt, 1);
3490 #endif
3491 }
3492 
3493 /*
3494  * Grab a hold count unless the vnode is freed.
3495  *
3496  * Only use this routine if vfs smr is the only protection you have against
3497  * freeing the vnode.
3498  *
3499  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3500  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3501  * the thread which managed to set the flag.
3502  *
3503  * It may be tempting to replace the loop with:
3504  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3505  * if (count & VHOLD_NO_SMR) {
3506  *     backpedal and error out;
3507  * }
3508  *
3509  * However, while this is more performant, it hinders debugging by eliminating
3510  * the previously mentioned invariant.
3511  */
3512 bool
3513 vhold_smr(struct vnode *vp)
3514 {
3515 	int count;
3516 
3517 	VFS_SMR_ASSERT_ENTERED();
3518 
3519 	count = atomic_load_int(&vp->v_holdcnt);
3520 	for (;;) {
3521 		if (count & VHOLD_NO_SMR) {
3522 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3523 			    ("non-zero hold count with flags %d\n", count));
3524 			return (false);
3525 		}
3526 
3527 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3528 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1))
3529 			return (true);
3530 	}
3531 }
3532 
3533 static void __noinline
3534 vdbatch_process(struct vdbatch *vd)
3535 {
3536 	struct vnode *vp;
3537 	int i;
3538 
3539 	mtx_assert(&vd->lock, MA_OWNED);
3540 	MPASS(curthread->td_pinned > 0);
3541 	MPASS(vd->index == VDBATCH_SIZE);
3542 
3543 	mtx_lock(&vnode_list_mtx);
3544 	critical_enter();
3545 	freevnodes += vd->freevnodes;
3546 	for (i = 0; i < VDBATCH_SIZE; i++) {
3547 		vp = vd->tab[i];
3548 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3549 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3550 		MPASS(vp->v_dbatchcpu != NOCPU);
3551 		vp->v_dbatchcpu = NOCPU;
3552 	}
3553 	mtx_unlock(&vnode_list_mtx);
3554 	vd->freevnodes = 0;
3555 	bzero(vd->tab, sizeof(vd->tab));
3556 	vd->index = 0;
3557 	critical_exit();
3558 }
3559 
3560 static void
3561 vdbatch_enqueue(struct vnode *vp)
3562 {
3563 	struct vdbatch *vd;
3564 
3565 	ASSERT_VI_LOCKED(vp, __func__);
3566 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3567 	    ("%s: deferring requeue of a doomed vnode", __func__));
3568 
3569 	critical_enter();
3570 	vd = DPCPU_PTR(vd);
3571 	vd->freevnodes++;
3572 	if (vp->v_dbatchcpu != NOCPU) {
3573 		VI_UNLOCK(vp);
3574 		critical_exit();
3575 		return;
3576 	}
3577 
3578 	sched_pin();
3579 	critical_exit();
3580 	mtx_lock(&vd->lock);
3581 	MPASS(vd->index < VDBATCH_SIZE);
3582 	MPASS(vd->tab[vd->index] == NULL);
3583 	/*
3584 	 * A hack: we depend on being pinned so that we know what to put in
3585 	 * ->v_dbatchcpu.
3586 	 */
3587 	vp->v_dbatchcpu = curcpu;
3588 	vd->tab[vd->index] = vp;
3589 	vd->index++;
3590 	VI_UNLOCK(vp);
3591 	if (vd->index == VDBATCH_SIZE)
3592 		vdbatch_process(vd);
3593 	mtx_unlock(&vd->lock);
3594 	sched_unpin();
3595 }
3596 
3597 /*
3598  * This routine must only be called for vnodes which are about to be
3599  * deallocated. Supporting dequeue for arbitrary vndoes would require
3600  * validating that the locked batch matches.
3601  */
3602 static void
3603 vdbatch_dequeue(struct vnode *vp)
3604 {
3605 	struct vdbatch *vd;
3606 	int i;
3607 	short cpu;
3608 
3609 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3610 	    ("%s: called for a used vnode\n", __func__));
3611 
3612 	cpu = vp->v_dbatchcpu;
3613 	if (cpu == NOCPU)
3614 		return;
3615 
3616 	vd = DPCPU_ID_PTR(cpu, vd);
3617 	mtx_lock(&vd->lock);
3618 	for (i = 0; i < vd->index; i++) {
3619 		if (vd->tab[i] != vp)
3620 			continue;
3621 		vp->v_dbatchcpu = NOCPU;
3622 		vd->index--;
3623 		vd->tab[i] = vd->tab[vd->index];
3624 		vd->tab[vd->index] = NULL;
3625 		break;
3626 	}
3627 	mtx_unlock(&vd->lock);
3628 	/*
3629 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3630 	 */
3631 	MPASS(vp->v_dbatchcpu == NOCPU);
3632 }
3633 
3634 /*
3635  * Drop the hold count of the vnode.  If this is the last reference to
3636  * the vnode we place it on the free list unless it has been vgone'd
3637  * (marked VIRF_DOOMED) in which case we will free it.
3638  *
3639  * Because the vnode vm object keeps a hold reference on the vnode if
3640  * there is at least one resident non-cached page, the vnode cannot
3641  * leave the active list without the page cleanup done.
3642  */
3643 static void
3644 vdrop_deactivate(struct vnode *vp)
3645 {
3646 	struct mount *mp;
3647 
3648 	ASSERT_VI_LOCKED(vp, __func__);
3649 	/*
3650 	 * Mark a vnode as free: remove it from its active list
3651 	 * and put it up for recycling on the freelist.
3652 	 */
3653 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3654 	    ("vdrop: returning doomed vnode"));
3655 	VNASSERT(vp->v_op != NULL, vp,
3656 	    ("vdrop: vnode already reclaimed."));
3657 	VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
3658 	    ("vnode with VI_OWEINACT set"));
3659 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp,
3660 	    ("vnode with VI_DEFINACT set"));
3661 	if (vp->v_mflag & VMP_LAZYLIST) {
3662 		mp = vp->v_mount;
3663 		mtx_lock(&mp->mnt_listmtx);
3664 		VNASSERT(vp->v_mflag & VMP_LAZYLIST, vp, ("lost VMP_LAZYLIST"));
3665 		/*
3666 		 * Don't remove the vnode from the lazy list if another thread
3667 		 * has increased the hold count. It may have re-enqueued the
3668 		 * vnode to the lazy list and is now responsible for its
3669 		 * removal.
3670 		 */
3671 		if (vp->v_holdcnt == 0) {
3672 			vp->v_mflag &= ~VMP_LAZYLIST;
3673 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3674 			mp->mnt_lazyvnodelistsize--;
3675 		}
3676 		mtx_unlock(&mp->mnt_listmtx);
3677 	}
3678 	vdbatch_enqueue(vp);
3679 }
3680 
3681 void
3682 vdrop(struct vnode *vp)
3683 {
3684 
3685 	ASSERT_VI_UNLOCKED(vp, __func__);
3686 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3687 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3688 		return;
3689 	VI_LOCK(vp);
3690 	vdropl(vp);
3691 }
3692 
3693 void
3694 vdropl(struct vnode *vp)
3695 {
3696 
3697 	ASSERT_VI_LOCKED(vp, __func__);
3698 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3699 	if (!refcount_release(&vp->v_holdcnt)) {
3700 		VI_UNLOCK(vp);
3701 		return;
3702 	}
3703 	if (!VN_IS_DOOMED(vp)) {
3704 		vdrop_deactivate(vp);
3705 		return;
3706 	}
3707 	/*
3708 	 * We may be racing against vhold_smr.
3709 	 *
3710 	 * If they win we can just pretend we never got this far, they will
3711 	 * vdrop later.
3712 	 */
3713 	if (!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR)) {
3714 		/*
3715 		 * We lost the aforementioned race. Note that any subsequent
3716 		 * access is invalid as they might have managed to vdropl on
3717 		 * their own.
3718 		 */
3719 		return;
3720 	}
3721 	freevnode(vp);
3722 }
3723 
3724 /*
3725  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3726  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3727  */
3728 static void
3729 vinactivef(struct vnode *vp)
3730 {
3731 	struct vm_object *obj;
3732 
3733 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3734 	ASSERT_VI_LOCKED(vp, "vinactive");
3735 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3736 	    ("vinactive: recursed on VI_DOINGINACT"));
3737 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3738 	vp->v_iflag |= VI_DOINGINACT;
3739 	vp->v_iflag &= ~VI_OWEINACT;
3740 	VI_UNLOCK(vp);
3741 	/*
3742 	 * Before moving off the active list, we must be sure that any
3743 	 * modified pages are converted into the vnode's dirty
3744 	 * buffers, since these will no longer be checked once the
3745 	 * vnode is on the inactive list.
3746 	 *
3747 	 * The write-out of the dirty pages is asynchronous.  At the
3748 	 * point that VOP_INACTIVE() is called, there could still be
3749 	 * pending I/O and dirty pages in the object.
3750 	 */
3751 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3752 	    vm_object_mightbedirty(obj)) {
3753 		VM_OBJECT_WLOCK(obj);
3754 		vm_object_page_clean(obj, 0, 0, 0);
3755 		VM_OBJECT_WUNLOCK(obj);
3756 	}
3757 	VOP_INACTIVE(vp, curthread);
3758 	VI_LOCK(vp);
3759 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3760 	    ("vinactive: lost VI_DOINGINACT"));
3761 	vp->v_iflag &= ~VI_DOINGINACT;
3762 }
3763 
3764 void
3765 vinactive(struct vnode *vp)
3766 {
3767 
3768 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3769 	ASSERT_VI_LOCKED(vp, "vinactive");
3770 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3771 
3772 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3773 		return;
3774 	if (vp->v_iflag & VI_DOINGINACT)
3775 		return;
3776 	if (vp->v_usecount > 0) {
3777 		vp->v_iflag &= ~VI_OWEINACT;
3778 		return;
3779 	}
3780 	vinactivef(vp);
3781 }
3782 
3783 /*
3784  * Remove any vnodes in the vnode table belonging to mount point mp.
3785  *
3786  * If FORCECLOSE is not specified, there should not be any active ones,
3787  * return error if any are found (nb: this is a user error, not a
3788  * system error). If FORCECLOSE is specified, detach any active vnodes
3789  * that are found.
3790  *
3791  * If WRITECLOSE is set, only flush out regular file vnodes open for
3792  * writing.
3793  *
3794  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3795  *
3796  * `rootrefs' specifies the base reference count for the root vnode
3797  * of this filesystem. The root vnode is considered busy if its
3798  * v_usecount exceeds this value. On a successful return, vflush(, td)
3799  * will call vrele() on the root vnode exactly rootrefs times.
3800  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3801  * be zero.
3802  */
3803 #ifdef DIAGNOSTIC
3804 static int busyprt = 0;		/* print out busy vnodes */
3805 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3806 #endif
3807 
3808 int
3809 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3810 {
3811 	struct vnode *vp, *mvp, *rootvp = NULL;
3812 	struct vattr vattr;
3813 	int busy = 0, error;
3814 
3815 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3816 	    rootrefs, flags);
3817 	if (rootrefs > 0) {
3818 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3819 		    ("vflush: bad args"));
3820 		/*
3821 		 * Get the filesystem root vnode. We can vput() it
3822 		 * immediately, since with rootrefs > 0, it won't go away.
3823 		 */
3824 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3825 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3826 			    __func__, error);
3827 			return (error);
3828 		}
3829 		vput(rootvp);
3830 	}
3831 loop:
3832 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3833 		vholdl(vp);
3834 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3835 		if (error) {
3836 			vdrop(vp);
3837 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3838 			goto loop;
3839 		}
3840 		/*
3841 		 * Skip over a vnodes marked VV_SYSTEM.
3842 		 */
3843 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3844 			VOP_UNLOCK(vp);
3845 			vdrop(vp);
3846 			continue;
3847 		}
3848 		/*
3849 		 * If WRITECLOSE is set, flush out unlinked but still open
3850 		 * files (even if open only for reading) and regular file
3851 		 * vnodes open for writing.
3852 		 */
3853 		if (flags & WRITECLOSE) {
3854 			if (vp->v_object != NULL) {
3855 				VM_OBJECT_WLOCK(vp->v_object);
3856 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3857 				VM_OBJECT_WUNLOCK(vp->v_object);
3858 			}
3859 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3860 			if (error != 0) {
3861 				VOP_UNLOCK(vp);
3862 				vdrop(vp);
3863 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3864 				return (error);
3865 			}
3866 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3867 			VI_LOCK(vp);
3868 
3869 			if ((vp->v_type == VNON ||
3870 			    (error == 0 && vattr.va_nlink > 0)) &&
3871 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3872 				VOP_UNLOCK(vp);
3873 				vdropl(vp);
3874 				continue;
3875 			}
3876 		} else
3877 			VI_LOCK(vp);
3878 		/*
3879 		 * With v_usecount == 0, all we need to do is clear out the
3880 		 * vnode data structures and we are done.
3881 		 *
3882 		 * If FORCECLOSE is set, forcibly close the vnode.
3883 		 */
3884 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3885 			vgonel(vp);
3886 		} else {
3887 			busy++;
3888 #ifdef DIAGNOSTIC
3889 			if (busyprt)
3890 				vn_printf(vp, "vflush: busy vnode ");
3891 #endif
3892 		}
3893 		VOP_UNLOCK(vp);
3894 		vdropl(vp);
3895 	}
3896 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3897 		/*
3898 		 * If just the root vnode is busy, and if its refcount
3899 		 * is equal to `rootrefs', then go ahead and kill it.
3900 		 */
3901 		VI_LOCK(rootvp);
3902 		KASSERT(busy > 0, ("vflush: not busy"));
3903 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3904 		    ("vflush: usecount %d < rootrefs %d",
3905 		     rootvp->v_usecount, rootrefs));
3906 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3907 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3908 			vgone(rootvp);
3909 			VOP_UNLOCK(rootvp);
3910 			busy = 0;
3911 		} else
3912 			VI_UNLOCK(rootvp);
3913 	}
3914 	if (busy) {
3915 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3916 		    busy);
3917 		return (EBUSY);
3918 	}
3919 	for (; rootrefs > 0; rootrefs--)
3920 		vrele(rootvp);
3921 	return (0);
3922 }
3923 
3924 /*
3925  * Recycle an unused vnode to the front of the free list.
3926  */
3927 int
3928 vrecycle(struct vnode *vp)
3929 {
3930 	int recycled;
3931 
3932 	VI_LOCK(vp);
3933 	recycled = vrecyclel(vp);
3934 	VI_UNLOCK(vp);
3935 	return (recycled);
3936 }
3937 
3938 /*
3939  * vrecycle, with the vp interlock held.
3940  */
3941 int
3942 vrecyclel(struct vnode *vp)
3943 {
3944 	int recycled;
3945 
3946 	ASSERT_VOP_ELOCKED(vp, __func__);
3947 	ASSERT_VI_LOCKED(vp, __func__);
3948 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3949 	recycled = 0;
3950 	if (vp->v_usecount == 0) {
3951 		recycled = 1;
3952 		vgonel(vp);
3953 	}
3954 	return (recycled);
3955 }
3956 
3957 /*
3958  * Eliminate all activity associated with a vnode
3959  * in preparation for reuse.
3960  */
3961 void
3962 vgone(struct vnode *vp)
3963 {
3964 	VI_LOCK(vp);
3965 	vgonel(vp);
3966 	VI_UNLOCK(vp);
3967 }
3968 
3969 static void
3970 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3971     struct vnode *lowervp __unused)
3972 {
3973 }
3974 
3975 /*
3976  * Notify upper mounts about reclaimed or unlinked vnode.
3977  */
3978 void
3979 vfs_notify_upper(struct vnode *vp, int event)
3980 {
3981 	static struct vfsops vgonel_vfsops = {
3982 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3983 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3984 	};
3985 	struct mount *mp, *ump, *mmp;
3986 
3987 	mp = vp->v_mount;
3988 	if (mp == NULL)
3989 		return;
3990 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3991 		return;
3992 
3993 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3994 	mmp->mnt_op = &vgonel_vfsops;
3995 	mmp->mnt_kern_flag |= MNTK_MARKER;
3996 	MNT_ILOCK(mp);
3997 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3998 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3999 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
4000 			ump = TAILQ_NEXT(ump, mnt_upper_link);
4001 			continue;
4002 		}
4003 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
4004 		MNT_IUNLOCK(mp);
4005 		switch (event) {
4006 		case VFS_NOTIFY_UPPER_RECLAIM:
4007 			VFS_RECLAIM_LOWERVP(ump, vp);
4008 			break;
4009 		case VFS_NOTIFY_UPPER_UNLINK:
4010 			VFS_UNLINK_LOWERVP(ump, vp);
4011 			break;
4012 		default:
4013 			KASSERT(0, ("invalid event %d", event));
4014 			break;
4015 		}
4016 		MNT_ILOCK(mp);
4017 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
4018 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
4019 	}
4020 	free(mmp, M_TEMP);
4021 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
4022 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
4023 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
4024 		wakeup(&mp->mnt_uppers);
4025 	}
4026 	MNT_IUNLOCK(mp);
4027 }
4028 
4029 /*
4030  * vgone, with the vp interlock held.
4031  */
4032 static void
4033 vgonel(struct vnode *vp)
4034 {
4035 	struct thread *td;
4036 	struct mount *mp;
4037 	vm_object_t object;
4038 	bool active, oweinact;
4039 
4040 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4041 	ASSERT_VI_LOCKED(vp, "vgonel");
4042 	VNASSERT(vp->v_holdcnt, vp,
4043 	    ("vgonel: vp %p has no reference.", vp));
4044 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4045 	td = curthread;
4046 
4047 	/*
4048 	 * Don't vgonel if we're already doomed.
4049 	 */
4050 	if (vp->v_irflag & VIRF_DOOMED)
4051 		return;
4052 	/*
4053 	 * Paired with freevnode.
4054 	 */
4055 	vn_seqc_write_begin_locked(vp);
4056 	vunlazy_gone(vp);
4057 	vp->v_irflag |= VIRF_DOOMED;
4058 
4059 	/*
4060 	 * Check to see if the vnode is in use.  If so, we have to call
4061 	 * VOP_CLOSE() and VOP_INACTIVE().
4062 	 */
4063 	active = vp->v_usecount > 0;
4064 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4065 	/*
4066 	 * If we need to do inactive VI_OWEINACT will be set.
4067 	 */
4068 	if (vp->v_iflag & VI_DEFINACT) {
4069 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4070 		vp->v_iflag &= ~VI_DEFINACT;
4071 		vdropl(vp);
4072 	} else {
4073 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4074 		VI_UNLOCK(vp);
4075 	}
4076 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4077 
4078 	/*
4079 	 * If purging an active vnode, it must be closed and
4080 	 * deactivated before being reclaimed.
4081 	 */
4082 	if (active)
4083 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4084 	if (oweinact || active) {
4085 		VI_LOCK(vp);
4086 		vinactivef(vp);
4087 		VI_UNLOCK(vp);
4088 	}
4089 	if (vp->v_type == VSOCK)
4090 		vfs_unp_reclaim(vp);
4091 
4092 	/*
4093 	 * Clean out any buffers associated with the vnode.
4094 	 * If the flush fails, just toss the buffers.
4095 	 */
4096 	mp = NULL;
4097 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4098 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4099 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4100 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4101 			;
4102 	}
4103 
4104 	BO_LOCK(&vp->v_bufobj);
4105 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4106 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4107 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4108 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4109 	    ("vp %p bufobj not invalidated", vp));
4110 
4111 	/*
4112 	 * For VMIO bufobj, BO_DEAD is set later, or in
4113 	 * vm_object_terminate() after the object's page queue is
4114 	 * flushed.
4115 	 */
4116 	object = vp->v_bufobj.bo_object;
4117 	if (object == NULL)
4118 		vp->v_bufobj.bo_flag |= BO_DEAD;
4119 	BO_UNLOCK(&vp->v_bufobj);
4120 
4121 	/*
4122 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4123 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4124 	 * should not touch the object borrowed from the lower vnode
4125 	 * (the handle check).
4126 	 */
4127 	if (object != NULL && object->type == OBJT_VNODE &&
4128 	    object->handle == vp)
4129 		vnode_destroy_vobject(vp);
4130 
4131 	/*
4132 	 * Reclaim the vnode.
4133 	 */
4134 	if (VOP_RECLAIM(vp, td))
4135 		panic("vgone: cannot reclaim");
4136 	if (mp != NULL)
4137 		vn_finished_secondary_write(mp);
4138 	VNASSERT(vp->v_object == NULL, vp,
4139 	    ("vop_reclaim left v_object vp=%p", vp));
4140 	/*
4141 	 * Clear the advisory locks and wake up waiting threads.
4142 	 */
4143 	(void)VOP_ADVLOCKPURGE(vp);
4144 	vp->v_lockf = NULL;
4145 	/*
4146 	 * Delete from old mount point vnode list.
4147 	 */
4148 	delmntque(vp);
4149 	cache_purge(vp);
4150 	/*
4151 	 * Done with purge, reset to the standard lock and invalidate
4152 	 * the vnode.
4153 	 */
4154 	VI_LOCK(vp);
4155 	vp->v_vnlock = &vp->v_lock;
4156 	vp->v_op = &dead_vnodeops;
4157 	vp->v_type = VBAD;
4158 }
4159 
4160 /*
4161  * Calculate the total number of references to a special device.
4162  */
4163 int
4164 vcount(struct vnode *vp)
4165 {
4166 	int count;
4167 
4168 	dev_lock();
4169 	count = vp->v_rdev->si_usecount;
4170 	dev_unlock();
4171 	return (count);
4172 }
4173 
4174 /*
4175  * Print out a description of a vnode.
4176  */
4177 static const char * const typename[] =
4178 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4179  "VMARKER"};
4180 
4181 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4182     "new hold count flag not added to vn_printf");
4183 
4184 void
4185 vn_printf(struct vnode *vp, const char *fmt, ...)
4186 {
4187 	va_list ap;
4188 	char buf[256], buf2[16];
4189 	u_long flags;
4190 	u_int holdcnt;
4191 
4192 	va_start(ap, fmt);
4193 	vprintf(fmt, ap);
4194 	va_end(ap);
4195 	printf("%p: ", (void *)vp);
4196 	printf("type %s\n", typename[vp->v_type]);
4197 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4198 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4199 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4200 	    vp->v_seqc_users);
4201 	switch (vp->v_type) {
4202 	case VDIR:
4203 		printf(" mountedhere %p\n", vp->v_mountedhere);
4204 		break;
4205 	case VCHR:
4206 		printf(" rdev %p\n", vp->v_rdev);
4207 		break;
4208 	case VSOCK:
4209 		printf(" socket %p\n", vp->v_unpcb);
4210 		break;
4211 	case VFIFO:
4212 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4213 		break;
4214 	default:
4215 		printf("\n");
4216 		break;
4217 	}
4218 	buf[0] = '\0';
4219 	buf[1] = '\0';
4220 	if (holdcnt & VHOLD_NO_SMR)
4221 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4222 	printf("    hold count flags (%s)\n", buf + 1);
4223 
4224 	buf[0] = '\0';
4225 	buf[1] = '\0';
4226 	if (vp->v_irflag & VIRF_DOOMED)
4227 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4228 	flags = vp->v_irflag & ~(VIRF_DOOMED);
4229 	if (flags != 0) {
4230 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4231 		strlcat(buf, buf2, sizeof(buf));
4232 	}
4233 	if (vp->v_vflag & VV_ROOT)
4234 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4235 	if (vp->v_vflag & VV_ISTTY)
4236 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4237 	if (vp->v_vflag & VV_NOSYNC)
4238 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4239 	if (vp->v_vflag & VV_ETERNALDEV)
4240 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4241 	if (vp->v_vflag & VV_CACHEDLABEL)
4242 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4243 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4244 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4245 	if (vp->v_vflag & VV_COPYONWRITE)
4246 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4247 	if (vp->v_vflag & VV_SYSTEM)
4248 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4249 	if (vp->v_vflag & VV_PROCDEP)
4250 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4251 	if (vp->v_vflag & VV_NOKNOTE)
4252 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
4253 	if (vp->v_vflag & VV_DELETED)
4254 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4255 	if (vp->v_vflag & VV_MD)
4256 		strlcat(buf, "|VV_MD", sizeof(buf));
4257 	if (vp->v_vflag & VV_FORCEINSMQ)
4258 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4259 	if (vp->v_vflag & VV_READLINK)
4260 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4261 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4262 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
4263 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
4264 	if (flags != 0) {
4265 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4266 		strlcat(buf, buf2, sizeof(buf));
4267 	}
4268 	if (vp->v_iflag & VI_TEXT_REF)
4269 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
4270 	if (vp->v_iflag & VI_MOUNT)
4271 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4272 	if (vp->v_iflag & VI_DOINGINACT)
4273 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4274 	if (vp->v_iflag & VI_OWEINACT)
4275 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4276 	if (vp->v_iflag & VI_DEFINACT)
4277 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4278 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
4279 	    VI_OWEINACT | VI_DEFINACT);
4280 	if (flags != 0) {
4281 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4282 		strlcat(buf, buf2, sizeof(buf));
4283 	}
4284 	if (vp->v_mflag & VMP_LAZYLIST)
4285 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4286 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4287 	if (flags != 0) {
4288 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4289 		strlcat(buf, buf2, sizeof(buf));
4290 	}
4291 	printf("    flags (%s)\n", buf + 1);
4292 	if (mtx_owned(VI_MTX(vp)))
4293 		printf(" VI_LOCKed");
4294 	if (vp->v_object != NULL)
4295 		printf("    v_object %p ref %d pages %d "
4296 		    "cleanbuf %d dirtybuf %d\n",
4297 		    vp->v_object, vp->v_object->ref_count,
4298 		    vp->v_object->resident_page_count,
4299 		    vp->v_bufobj.bo_clean.bv_cnt,
4300 		    vp->v_bufobj.bo_dirty.bv_cnt);
4301 	printf("    ");
4302 	lockmgr_printinfo(vp->v_vnlock);
4303 	if (vp->v_data != NULL)
4304 		VOP_PRINT(vp);
4305 }
4306 
4307 #ifdef DDB
4308 /*
4309  * List all of the locked vnodes in the system.
4310  * Called when debugging the kernel.
4311  */
4312 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4313 {
4314 	struct mount *mp;
4315 	struct vnode *vp;
4316 
4317 	/*
4318 	 * Note: because this is DDB, we can't obey the locking semantics
4319 	 * for these structures, which means we could catch an inconsistent
4320 	 * state and dereference a nasty pointer.  Not much to be done
4321 	 * about that.
4322 	 */
4323 	db_printf("Locked vnodes\n");
4324 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4325 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4326 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4327 				vn_printf(vp, "vnode ");
4328 		}
4329 	}
4330 }
4331 
4332 /*
4333  * Show details about the given vnode.
4334  */
4335 DB_SHOW_COMMAND(vnode, db_show_vnode)
4336 {
4337 	struct vnode *vp;
4338 
4339 	if (!have_addr)
4340 		return;
4341 	vp = (struct vnode *)addr;
4342 	vn_printf(vp, "vnode ");
4343 }
4344 
4345 /*
4346  * Show details about the given mount point.
4347  */
4348 DB_SHOW_COMMAND(mount, db_show_mount)
4349 {
4350 	struct mount *mp;
4351 	struct vfsopt *opt;
4352 	struct statfs *sp;
4353 	struct vnode *vp;
4354 	char buf[512];
4355 	uint64_t mflags;
4356 	u_int flags;
4357 
4358 	if (!have_addr) {
4359 		/* No address given, print short info about all mount points. */
4360 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4361 			db_printf("%p %s on %s (%s)\n", mp,
4362 			    mp->mnt_stat.f_mntfromname,
4363 			    mp->mnt_stat.f_mntonname,
4364 			    mp->mnt_stat.f_fstypename);
4365 			if (db_pager_quit)
4366 				break;
4367 		}
4368 		db_printf("\nMore info: show mount <addr>\n");
4369 		return;
4370 	}
4371 
4372 	mp = (struct mount *)addr;
4373 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4374 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4375 
4376 	buf[0] = '\0';
4377 	mflags = mp->mnt_flag;
4378 #define	MNT_FLAG(flag)	do {						\
4379 	if (mflags & (flag)) {						\
4380 		if (buf[0] != '\0')					\
4381 			strlcat(buf, ", ", sizeof(buf));		\
4382 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4383 		mflags &= ~(flag);					\
4384 	}								\
4385 } while (0)
4386 	MNT_FLAG(MNT_RDONLY);
4387 	MNT_FLAG(MNT_SYNCHRONOUS);
4388 	MNT_FLAG(MNT_NOEXEC);
4389 	MNT_FLAG(MNT_NOSUID);
4390 	MNT_FLAG(MNT_NFS4ACLS);
4391 	MNT_FLAG(MNT_UNION);
4392 	MNT_FLAG(MNT_ASYNC);
4393 	MNT_FLAG(MNT_SUIDDIR);
4394 	MNT_FLAG(MNT_SOFTDEP);
4395 	MNT_FLAG(MNT_NOSYMFOLLOW);
4396 	MNT_FLAG(MNT_GJOURNAL);
4397 	MNT_FLAG(MNT_MULTILABEL);
4398 	MNT_FLAG(MNT_ACLS);
4399 	MNT_FLAG(MNT_NOATIME);
4400 	MNT_FLAG(MNT_NOCLUSTERR);
4401 	MNT_FLAG(MNT_NOCLUSTERW);
4402 	MNT_FLAG(MNT_SUJ);
4403 	MNT_FLAG(MNT_EXRDONLY);
4404 	MNT_FLAG(MNT_EXPORTED);
4405 	MNT_FLAG(MNT_DEFEXPORTED);
4406 	MNT_FLAG(MNT_EXPORTANON);
4407 	MNT_FLAG(MNT_EXKERB);
4408 	MNT_FLAG(MNT_EXPUBLIC);
4409 	MNT_FLAG(MNT_LOCAL);
4410 	MNT_FLAG(MNT_QUOTA);
4411 	MNT_FLAG(MNT_ROOTFS);
4412 	MNT_FLAG(MNT_USER);
4413 	MNT_FLAG(MNT_IGNORE);
4414 	MNT_FLAG(MNT_UPDATE);
4415 	MNT_FLAG(MNT_DELEXPORT);
4416 	MNT_FLAG(MNT_RELOAD);
4417 	MNT_FLAG(MNT_FORCE);
4418 	MNT_FLAG(MNT_SNAPSHOT);
4419 	MNT_FLAG(MNT_BYFSID);
4420 #undef MNT_FLAG
4421 	if (mflags != 0) {
4422 		if (buf[0] != '\0')
4423 			strlcat(buf, ", ", sizeof(buf));
4424 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4425 		    "0x%016jx", mflags);
4426 	}
4427 	db_printf("    mnt_flag = %s\n", buf);
4428 
4429 	buf[0] = '\0';
4430 	flags = mp->mnt_kern_flag;
4431 #define	MNT_KERN_FLAG(flag)	do {					\
4432 	if (flags & (flag)) {						\
4433 		if (buf[0] != '\0')					\
4434 			strlcat(buf, ", ", sizeof(buf));		\
4435 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4436 		flags &= ~(flag);					\
4437 	}								\
4438 } while (0)
4439 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4440 	MNT_KERN_FLAG(MNTK_ASYNC);
4441 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4442 	MNT_KERN_FLAG(MNTK_DRAINING);
4443 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4444 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4445 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4446 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4447 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
4448 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
4449 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4450 	MNT_KERN_FLAG(MNTK_MARKER);
4451 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4452 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4453 	MNT_KERN_FLAG(MNTK_NOASYNC);
4454 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4455 	MNT_KERN_FLAG(MNTK_MWAIT);
4456 	MNT_KERN_FLAG(MNTK_SUSPEND);
4457 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4458 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4459 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4460 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4461 #undef MNT_KERN_FLAG
4462 	if (flags != 0) {
4463 		if (buf[0] != '\0')
4464 			strlcat(buf, ", ", sizeof(buf));
4465 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4466 		    "0x%08x", flags);
4467 	}
4468 	db_printf("    mnt_kern_flag = %s\n", buf);
4469 
4470 	db_printf("    mnt_opt = ");
4471 	opt = TAILQ_FIRST(mp->mnt_opt);
4472 	if (opt != NULL) {
4473 		db_printf("%s", opt->name);
4474 		opt = TAILQ_NEXT(opt, link);
4475 		while (opt != NULL) {
4476 			db_printf(", %s", opt->name);
4477 			opt = TAILQ_NEXT(opt, link);
4478 		}
4479 	}
4480 	db_printf("\n");
4481 
4482 	sp = &mp->mnt_stat;
4483 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4484 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4485 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4486 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4487 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4488 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4489 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4490 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4491 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4492 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4493 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4494 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4495 
4496 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4497 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4498 	if (jailed(mp->mnt_cred))
4499 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4500 	db_printf(" }\n");
4501 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4502 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4503 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4504 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4505 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4506 	    mp->mnt_lazyvnodelistsize);
4507 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4508 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4509 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4510 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4511 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4512 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4513 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4514 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4515 	db_printf("    mnt_secondary_accwrites = %d\n",
4516 	    mp->mnt_secondary_accwrites);
4517 	db_printf("    mnt_gjprovider = %s\n",
4518 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4519 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4520 
4521 	db_printf("\n\nList of active vnodes\n");
4522 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4523 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4524 			vn_printf(vp, "vnode ");
4525 			if (db_pager_quit)
4526 				break;
4527 		}
4528 	}
4529 	db_printf("\n\nList of inactive vnodes\n");
4530 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4531 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4532 			vn_printf(vp, "vnode ");
4533 			if (db_pager_quit)
4534 				break;
4535 		}
4536 	}
4537 }
4538 #endif	/* DDB */
4539 
4540 /*
4541  * Fill in a struct xvfsconf based on a struct vfsconf.
4542  */
4543 static int
4544 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4545 {
4546 	struct xvfsconf xvfsp;
4547 
4548 	bzero(&xvfsp, sizeof(xvfsp));
4549 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4550 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4551 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4552 	xvfsp.vfc_flags = vfsp->vfc_flags;
4553 	/*
4554 	 * These are unused in userland, we keep them
4555 	 * to not break binary compatibility.
4556 	 */
4557 	xvfsp.vfc_vfsops = NULL;
4558 	xvfsp.vfc_next = NULL;
4559 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4560 }
4561 
4562 #ifdef COMPAT_FREEBSD32
4563 struct xvfsconf32 {
4564 	uint32_t	vfc_vfsops;
4565 	char		vfc_name[MFSNAMELEN];
4566 	int32_t		vfc_typenum;
4567 	int32_t		vfc_refcount;
4568 	int32_t		vfc_flags;
4569 	uint32_t	vfc_next;
4570 };
4571 
4572 static int
4573 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4574 {
4575 	struct xvfsconf32 xvfsp;
4576 
4577 	bzero(&xvfsp, sizeof(xvfsp));
4578 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4579 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4580 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4581 	xvfsp.vfc_flags = vfsp->vfc_flags;
4582 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4583 }
4584 #endif
4585 
4586 /*
4587  * Top level filesystem related information gathering.
4588  */
4589 static int
4590 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4591 {
4592 	struct vfsconf *vfsp;
4593 	int error;
4594 
4595 	error = 0;
4596 	vfsconf_slock();
4597 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4598 #ifdef COMPAT_FREEBSD32
4599 		if (req->flags & SCTL_MASK32)
4600 			error = vfsconf2x32(req, vfsp);
4601 		else
4602 #endif
4603 			error = vfsconf2x(req, vfsp);
4604 		if (error)
4605 			break;
4606 	}
4607 	vfsconf_sunlock();
4608 	return (error);
4609 }
4610 
4611 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4612     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4613     "S,xvfsconf", "List of all configured filesystems");
4614 
4615 #ifndef BURN_BRIDGES
4616 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4617 
4618 static int
4619 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4620 {
4621 	int *name = (int *)arg1 - 1;	/* XXX */
4622 	u_int namelen = arg2 + 1;	/* XXX */
4623 	struct vfsconf *vfsp;
4624 
4625 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4626 	    "please rebuild world\n");
4627 
4628 #if 1 || defined(COMPAT_PRELITE2)
4629 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4630 	if (namelen == 1)
4631 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4632 #endif
4633 
4634 	switch (name[1]) {
4635 	case VFS_MAXTYPENUM:
4636 		if (namelen != 2)
4637 			return (ENOTDIR);
4638 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4639 	case VFS_CONF:
4640 		if (namelen != 3)
4641 			return (ENOTDIR);	/* overloaded */
4642 		vfsconf_slock();
4643 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4644 			if (vfsp->vfc_typenum == name[2])
4645 				break;
4646 		}
4647 		vfsconf_sunlock();
4648 		if (vfsp == NULL)
4649 			return (EOPNOTSUPP);
4650 #ifdef COMPAT_FREEBSD32
4651 		if (req->flags & SCTL_MASK32)
4652 			return (vfsconf2x32(req, vfsp));
4653 		else
4654 #endif
4655 			return (vfsconf2x(req, vfsp));
4656 	}
4657 	return (EOPNOTSUPP);
4658 }
4659 
4660 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4661     CTLFLAG_MPSAFE, vfs_sysctl,
4662     "Generic filesystem");
4663 
4664 #if 1 || defined(COMPAT_PRELITE2)
4665 
4666 static int
4667 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4668 {
4669 	int error;
4670 	struct vfsconf *vfsp;
4671 	struct ovfsconf ovfs;
4672 
4673 	vfsconf_slock();
4674 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4675 		bzero(&ovfs, sizeof(ovfs));
4676 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4677 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4678 		ovfs.vfc_index = vfsp->vfc_typenum;
4679 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4680 		ovfs.vfc_flags = vfsp->vfc_flags;
4681 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4682 		if (error != 0) {
4683 			vfsconf_sunlock();
4684 			return (error);
4685 		}
4686 	}
4687 	vfsconf_sunlock();
4688 	return (0);
4689 }
4690 
4691 #endif /* 1 || COMPAT_PRELITE2 */
4692 #endif /* !BURN_BRIDGES */
4693 
4694 #define KINFO_VNODESLOP		10
4695 #ifdef notyet
4696 /*
4697  * Dump vnode list (via sysctl).
4698  */
4699 /* ARGSUSED */
4700 static int
4701 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4702 {
4703 	struct xvnode *xvn;
4704 	struct mount *mp;
4705 	struct vnode *vp;
4706 	int error, len, n;
4707 
4708 	/*
4709 	 * Stale numvnodes access is not fatal here.
4710 	 */
4711 	req->lock = 0;
4712 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4713 	if (!req->oldptr)
4714 		/* Make an estimate */
4715 		return (SYSCTL_OUT(req, 0, len));
4716 
4717 	error = sysctl_wire_old_buffer(req, 0);
4718 	if (error != 0)
4719 		return (error);
4720 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4721 	n = 0;
4722 	mtx_lock(&mountlist_mtx);
4723 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4724 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4725 			continue;
4726 		MNT_ILOCK(mp);
4727 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4728 			if (n == len)
4729 				break;
4730 			vref(vp);
4731 			xvn[n].xv_size = sizeof *xvn;
4732 			xvn[n].xv_vnode = vp;
4733 			xvn[n].xv_id = 0;	/* XXX compat */
4734 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4735 			XV_COPY(usecount);
4736 			XV_COPY(writecount);
4737 			XV_COPY(holdcnt);
4738 			XV_COPY(mount);
4739 			XV_COPY(numoutput);
4740 			XV_COPY(type);
4741 #undef XV_COPY
4742 			xvn[n].xv_flag = vp->v_vflag;
4743 
4744 			switch (vp->v_type) {
4745 			case VREG:
4746 			case VDIR:
4747 			case VLNK:
4748 				break;
4749 			case VBLK:
4750 			case VCHR:
4751 				if (vp->v_rdev == NULL) {
4752 					vrele(vp);
4753 					continue;
4754 				}
4755 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4756 				break;
4757 			case VSOCK:
4758 				xvn[n].xv_socket = vp->v_socket;
4759 				break;
4760 			case VFIFO:
4761 				xvn[n].xv_fifo = vp->v_fifoinfo;
4762 				break;
4763 			case VNON:
4764 			case VBAD:
4765 			default:
4766 				/* shouldn't happen? */
4767 				vrele(vp);
4768 				continue;
4769 			}
4770 			vrele(vp);
4771 			++n;
4772 		}
4773 		MNT_IUNLOCK(mp);
4774 		mtx_lock(&mountlist_mtx);
4775 		vfs_unbusy(mp);
4776 		if (n == len)
4777 			break;
4778 	}
4779 	mtx_unlock(&mountlist_mtx);
4780 
4781 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4782 	free(xvn, M_TEMP);
4783 	return (error);
4784 }
4785 
4786 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4787     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4788     "");
4789 #endif
4790 
4791 static void
4792 unmount_or_warn(struct mount *mp)
4793 {
4794 	int error;
4795 
4796 	error = dounmount(mp, MNT_FORCE, curthread);
4797 	if (error != 0) {
4798 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4799 		if (error == EBUSY)
4800 			printf("BUSY)\n");
4801 		else
4802 			printf("%d)\n", error);
4803 	}
4804 }
4805 
4806 /*
4807  * Unmount all filesystems. The list is traversed in reverse order
4808  * of mounting to avoid dependencies.
4809  */
4810 void
4811 vfs_unmountall(void)
4812 {
4813 	struct mount *mp, *tmp;
4814 
4815 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4816 
4817 	/*
4818 	 * Since this only runs when rebooting, it is not interlocked.
4819 	 */
4820 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4821 		vfs_ref(mp);
4822 
4823 		/*
4824 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4825 		 * unmount of the latter.
4826 		 */
4827 		if (mp == rootdevmp)
4828 			continue;
4829 
4830 		unmount_or_warn(mp);
4831 	}
4832 
4833 	if (rootdevmp != NULL)
4834 		unmount_or_warn(rootdevmp);
4835 }
4836 
4837 static void
4838 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4839 {
4840 
4841 	ASSERT_VI_LOCKED(vp, __func__);
4842 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4843 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4844 		vdropl(vp);
4845 		return;
4846 	}
4847 	if (vn_lock(vp, lkflags) == 0) {
4848 		VI_LOCK(vp);
4849 		vinactive(vp);
4850 		VOP_UNLOCK(vp);
4851 		vdropl(vp);
4852 		return;
4853 	}
4854 	vdefer_inactive_unlocked(vp);
4855 }
4856 
4857 static int
4858 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4859 {
4860 
4861 	return (vp->v_iflag & VI_DEFINACT);
4862 }
4863 
4864 static void __noinline
4865 vfs_periodic_inactive(struct mount *mp, int flags)
4866 {
4867 	struct vnode *vp, *mvp;
4868 	int lkflags;
4869 
4870 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4871 	if (flags != MNT_WAIT)
4872 		lkflags |= LK_NOWAIT;
4873 
4874 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4875 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4876 			VI_UNLOCK(vp);
4877 			continue;
4878 		}
4879 		vp->v_iflag &= ~VI_DEFINACT;
4880 		vfs_deferred_inactive(vp, lkflags);
4881 	}
4882 }
4883 
4884 static inline bool
4885 vfs_want_msync(struct vnode *vp)
4886 {
4887 	struct vm_object *obj;
4888 
4889 	/*
4890 	 * This test may be performed without any locks held.
4891 	 * We rely on vm_object's type stability.
4892 	 */
4893 	if (vp->v_vflag & VV_NOSYNC)
4894 		return (false);
4895 	obj = vp->v_object;
4896 	return (obj != NULL && vm_object_mightbedirty(obj));
4897 }
4898 
4899 static int
4900 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4901 {
4902 
4903 	if (vp->v_vflag & VV_NOSYNC)
4904 		return (false);
4905 	if (vp->v_iflag & VI_DEFINACT)
4906 		return (true);
4907 	return (vfs_want_msync(vp));
4908 }
4909 
4910 static void __noinline
4911 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4912 {
4913 	struct vnode *vp, *mvp;
4914 	struct vm_object *obj;
4915 	struct thread *td;
4916 	int lkflags, objflags;
4917 	bool seen_defer;
4918 
4919 	td = curthread;
4920 
4921 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4922 	if (flags != MNT_WAIT) {
4923 		lkflags |= LK_NOWAIT;
4924 		objflags = OBJPC_NOSYNC;
4925 	} else {
4926 		objflags = OBJPC_SYNC;
4927 	}
4928 
4929 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4930 		seen_defer = false;
4931 		if (vp->v_iflag & VI_DEFINACT) {
4932 			vp->v_iflag &= ~VI_DEFINACT;
4933 			seen_defer = true;
4934 		}
4935 		if (!vfs_want_msync(vp)) {
4936 			if (seen_defer)
4937 				vfs_deferred_inactive(vp, lkflags);
4938 			else
4939 				VI_UNLOCK(vp);
4940 			continue;
4941 		}
4942 		if (vget(vp, lkflags, td) == 0) {
4943 			obj = vp->v_object;
4944 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4945 				VM_OBJECT_WLOCK(obj);
4946 				vm_object_page_clean(obj, 0, 0, objflags);
4947 				VM_OBJECT_WUNLOCK(obj);
4948 			}
4949 			vput(vp);
4950 			if (seen_defer)
4951 				vdrop(vp);
4952 		} else {
4953 			if (seen_defer)
4954 				vdefer_inactive_unlocked(vp);
4955 		}
4956 	}
4957 }
4958 
4959 void
4960 vfs_periodic(struct mount *mp, int flags)
4961 {
4962 
4963 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4964 
4965 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4966 		vfs_periodic_inactive(mp, flags);
4967 	else
4968 		vfs_periodic_msync_inactive(mp, flags);
4969 }
4970 
4971 static void
4972 destroy_vpollinfo_free(struct vpollinfo *vi)
4973 {
4974 
4975 	knlist_destroy(&vi->vpi_selinfo.si_note);
4976 	mtx_destroy(&vi->vpi_lock);
4977 	uma_zfree(vnodepoll_zone, vi);
4978 }
4979 
4980 static void
4981 destroy_vpollinfo(struct vpollinfo *vi)
4982 {
4983 
4984 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4985 	seldrain(&vi->vpi_selinfo);
4986 	destroy_vpollinfo_free(vi);
4987 }
4988 
4989 /*
4990  * Initialize per-vnode helper structure to hold poll-related state.
4991  */
4992 void
4993 v_addpollinfo(struct vnode *vp)
4994 {
4995 	struct vpollinfo *vi;
4996 
4997 	if (vp->v_pollinfo != NULL)
4998 		return;
4999 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
5000 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5001 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5002 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
5003 	VI_LOCK(vp);
5004 	if (vp->v_pollinfo != NULL) {
5005 		VI_UNLOCK(vp);
5006 		destroy_vpollinfo_free(vi);
5007 		return;
5008 	}
5009 	vp->v_pollinfo = vi;
5010 	VI_UNLOCK(vp);
5011 }
5012 
5013 /*
5014  * Record a process's interest in events which might happen to
5015  * a vnode.  Because poll uses the historic select-style interface
5016  * internally, this routine serves as both the ``check for any
5017  * pending events'' and the ``record my interest in future events''
5018  * functions.  (These are done together, while the lock is held,
5019  * to avoid race conditions.)
5020  */
5021 int
5022 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5023 {
5024 
5025 	v_addpollinfo(vp);
5026 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5027 	if (vp->v_pollinfo->vpi_revents & events) {
5028 		/*
5029 		 * This leaves events we are not interested
5030 		 * in available for the other process which
5031 		 * which presumably had requested them
5032 		 * (otherwise they would never have been
5033 		 * recorded).
5034 		 */
5035 		events &= vp->v_pollinfo->vpi_revents;
5036 		vp->v_pollinfo->vpi_revents &= ~events;
5037 
5038 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5039 		return (events);
5040 	}
5041 	vp->v_pollinfo->vpi_events |= events;
5042 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5043 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5044 	return (0);
5045 }
5046 
5047 /*
5048  * Routine to create and manage a filesystem syncer vnode.
5049  */
5050 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5051 static int	sync_fsync(struct  vop_fsync_args *);
5052 static int	sync_inactive(struct  vop_inactive_args *);
5053 static int	sync_reclaim(struct  vop_reclaim_args *);
5054 
5055 static struct vop_vector sync_vnodeops = {
5056 	.vop_bypass =	VOP_EOPNOTSUPP,
5057 	.vop_close =	sync_close,		/* close */
5058 	.vop_fsync =	sync_fsync,		/* fsync */
5059 	.vop_inactive =	sync_inactive,	/* inactive */
5060 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5061 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5062 	.vop_lock1 =	vop_stdlock,	/* lock */
5063 	.vop_unlock =	vop_stdunlock,	/* unlock */
5064 	.vop_islocked =	vop_stdislocked,	/* islocked */
5065 };
5066 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5067 
5068 /*
5069  * Create a new filesystem syncer vnode for the specified mount point.
5070  */
5071 void
5072 vfs_allocate_syncvnode(struct mount *mp)
5073 {
5074 	struct vnode *vp;
5075 	struct bufobj *bo;
5076 	static long start, incr, next;
5077 	int error;
5078 
5079 	/* Allocate a new vnode */
5080 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5081 	if (error != 0)
5082 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5083 	vp->v_type = VNON;
5084 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5085 	vp->v_vflag |= VV_FORCEINSMQ;
5086 	error = insmntque(vp, mp);
5087 	if (error != 0)
5088 		panic("vfs_allocate_syncvnode: insmntque() failed");
5089 	vp->v_vflag &= ~VV_FORCEINSMQ;
5090 	VOP_UNLOCK(vp);
5091 	/*
5092 	 * Place the vnode onto the syncer worklist. We attempt to
5093 	 * scatter them about on the list so that they will go off
5094 	 * at evenly distributed times even if all the filesystems
5095 	 * are mounted at once.
5096 	 */
5097 	next += incr;
5098 	if (next == 0 || next > syncer_maxdelay) {
5099 		start /= 2;
5100 		incr /= 2;
5101 		if (start == 0) {
5102 			start = syncer_maxdelay / 2;
5103 			incr = syncer_maxdelay;
5104 		}
5105 		next = start;
5106 	}
5107 	bo = &vp->v_bufobj;
5108 	BO_LOCK(bo);
5109 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5110 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5111 	mtx_lock(&sync_mtx);
5112 	sync_vnode_count++;
5113 	if (mp->mnt_syncer == NULL) {
5114 		mp->mnt_syncer = vp;
5115 		vp = NULL;
5116 	}
5117 	mtx_unlock(&sync_mtx);
5118 	BO_UNLOCK(bo);
5119 	if (vp != NULL) {
5120 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5121 		vgone(vp);
5122 		vput(vp);
5123 	}
5124 }
5125 
5126 void
5127 vfs_deallocate_syncvnode(struct mount *mp)
5128 {
5129 	struct vnode *vp;
5130 
5131 	mtx_lock(&sync_mtx);
5132 	vp = mp->mnt_syncer;
5133 	if (vp != NULL)
5134 		mp->mnt_syncer = NULL;
5135 	mtx_unlock(&sync_mtx);
5136 	if (vp != NULL)
5137 		vrele(vp);
5138 }
5139 
5140 /*
5141  * Do a lazy sync of the filesystem.
5142  */
5143 static int
5144 sync_fsync(struct vop_fsync_args *ap)
5145 {
5146 	struct vnode *syncvp = ap->a_vp;
5147 	struct mount *mp = syncvp->v_mount;
5148 	int error, save;
5149 	struct bufobj *bo;
5150 
5151 	/*
5152 	 * We only need to do something if this is a lazy evaluation.
5153 	 */
5154 	if (ap->a_waitfor != MNT_LAZY)
5155 		return (0);
5156 
5157 	/*
5158 	 * Move ourselves to the back of the sync list.
5159 	 */
5160 	bo = &syncvp->v_bufobj;
5161 	BO_LOCK(bo);
5162 	vn_syncer_add_to_worklist(bo, syncdelay);
5163 	BO_UNLOCK(bo);
5164 
5165 	/*
5166 	 * Walk the list of vnodes pushing all that are dirty and
5167 	 * not already on the sync list.
5168 	 */
5169 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5170 		return (0);
5171 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
5172 		vfs_unbusy(mp);
5173 		return (0);
5174 	}
5175 	save = curthread_pflags_set(TDP_SYNCIO);
5176 	/*
5177 	 * The filesystem at hand may be idle with free vnodes stored in the
5178 	 * batch.  Return them instead of letting them stay there indefinitely.
5179 	 */
5180 	vfs_periodic(mp, MNT_NOWAIT);
5181 	error = VFS_SYNC(mp, MNT_LAZY);
5182 	curthread_pflags_restore(save);
5183 	vn_finished_write(mp);
5184 	vfs_unbusy(mp);
5185 	return (error);
5186 }
5187 
5188 /*
5189  * The syncer vnode is no referenced.
5190  */
5191 static int
5192 sync_inactive(struct vop_inactive_args *ap)
5193 {
5194 
5195 	vgone(ap->a_vp);
5196 	return (0);
5197 }
5198 
5199 /*
5200  * The syncer vnode is no longer needed and is being decommissioned.
5201  *
5202  * Modifications to the worklist must be protected by sync_mtx.
5203  */
5204 static int
5205 sync_reclaim(struct vop_reclaim_args *ap)
5206 {
5207 	struct vnode *vp = ap->a_vp;
5208 	struct bufobj *bo;
5209 
5210 	bo = &vp->v_bufobj;
5211 	BO_LOCK(bo);
5212 	mtx_lock(&sync_mtx);
5213 	if (vp->v_mount->mnt_syncer == vp)
5214 		vp->v_mount->mnt_syncer = NULL;
5215 	if (bo->bo_flag & BO_ONWORKLST) {
5216 		LIST_REMOVE(bo, bo_synclist);
5217 		syncer_worklist_len--;
5218 		sync_vnode_count--;
5219 		bo->bo_flag &= ~BO_ONWORKLST;
5220 	}
5221 	mtx_unlock(&sync_mtx);
5222 	BO_UNLOCK(bo);
5223 
5224 	return (0);
5225 }
5226 
5227 int
5228 vn_need_pageq_flush(struct vnode *vp)
5229 {
5230 	struct vm_object *obj;
5231 	int need;
5232 
5233 	MPASS(mtx_owned(VI_MTX(vp)));
5234 	need = 0;
5235 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5236 	    vm_object_mightbedirty(obj))
5237 		need = 1;
5238 	return (need);
5239 }
5240 
5241 /*
5242  * Check if vnode represents a disk device
5243  */
5244 int
5245 vn_isdisk(struct vnode *vp, int *errp)
5246 {
5247 	int error;
5248 
5249 	if (vp->v_type != VCHR) {
5250 		error = ENOTBLK;
5251 		goto out;
5252 	}
5253 	error = 0;
5254 	dev_lock();
5255 	if (vp->v_rdev == NULL)
5256 		error = ENXIO;
5257 	else if (vp->v_rdev->si_devsw == NULL)
5258 		error = ENXIO;
5259 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5260 		error = ENOTBLK;
5261 	dev_unlock();
5262 out:
5263 	if (errp != NULL)
5264 		*errp = error;
5265 	return (error == 0);
5266 }
5267 
5268 /*
5269  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5270  * the comment above cache_fplookup for details.
5271  *
5272  * We never deny as priv_check_cred calls are not yet supported, see vaccess.
5273  */
5274 int
5275 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5276 {
5277 
5278 	VFS_SMR_ASSERT_ENTERED();
5279 
5280 	/* Check the owner. */
5281 	if (cred->cr_uid == file_uid) {
5282 		if (file_mode & S_IXUSR)
5283 			return (0);
5284 		return (EAGAIN);
5285 	}
5286 
5287 	/* Otherwise, check the groups (first match) */
5288 	if (groupmember(file_gid, cred)) {
5289 		if (file_mode & S_IXGRP)
5290 			return (0);
5291 		return (EAGAIN);
5292 	}
5293 
5294 	/* Otherwise, check everyone else. */
5295 	if (file_mode & S_IXOTH)
5296 		return (0);
5297 	return (EAGAIN);
5298 }
5299 
5300 /*
5301  * Common filesystem object access control check routine.  Accepts a
5302  * vnode's type, "mode", uid and gid, requested access mode, credentials,
5303  * and optional call-by-reference privused argument allowing vaccess()
5304  * to indicate to the caller whether privilege was used to satisfy the
5305  * request (obsoleted).  Returns 0 on success, or an errno on failure.
5306  */
5307 int
5308 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5309     accmode_t accmode, struct ucred *cred, int *privused)
5310 {
5311 	accmode_t dac_granted;
5312 	accmode_t priv_granted;
5313 
5314 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5315 	    ("invalid bit in accmode"));
5316 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5317 	    ("VAPPEND without VWRITE"));
5318 
5319 	/*
5320 	 * Look for a normal, non-privileged way to access the file/directory
5321 	 * as requested.  If it exists, go with that.
5322 	 */
5323 
5324 	if (privused != NULL)
5325 		*privused = 0;
5326 
5327 	dac_granted = 0;
5328 
5329 	/* Check the owner. */
5330 	if (cred->cr_uid == file_uid) {
5331 		dac_granted |= VADMIN;
5332 		if (file_mode & S_IXUSR)
5333 			dac_granted |= VEXEC;
5334 		if (file_mode & S_IRUSR)
5335 			dac_granted |= VREAD;
5336 		if (file_mode & S_IWUSR)
5337 			dac_granted |= (VWRITE | VAPPEND);
5338 
5339 		if ((accmode & dac_granted) == accmode)
5340 			return (0);
5341 
5342 		goto privcheck;
5343 	}
5344 
5345 	/* Otherwise, check the groups (first match) */
5346 	if (groupmember(file_gid, cred)) {
5347 		if (file_mode & S_IXGRP)
5348 			dac_granted |= VEXEC;
5349 		if (file_mode & S_IRGRP)
5350 			dac_granted |= VREAD;
5351 		if (file_mode & S_IWGRP)
5352 			dac_granted |= (VWRITE | VAPPEND);
5353 
5354 		if ((accmode & dac_granted) == accmode)
5355 			return (0);
5356 
5357 		goto privcheck;
5358 	}
5359 
5360 	/* Otherwise, check everyone else. */
5361 	if (file_mode & S_IXOTH)
5362 		dac_granted |= VEXEC;
5363 	if (file_mode & S_IROTH)
5364 		dac_granted |= VREAD;
5365 	if (file_mode & S_IWOTH)
5366 		dac_granted |= (VWRITE | VAPPEND);
5367 	if ((accmode & dac_granted) == accmode)
5368 		return (0);
5369 
5370 privcheck:
5371 	/*
5372 	 * Build a privilege mask to determine if the set of privileges
5373 	 * satisfies the requirements when combined with the granted mask
5374 	 * from above.  For each privilege, if the privilege is required,
5375 	 * bitwise or the request type onto the priv_granted mask.
5376 	 */
5377 	priv_granted = 0;
5378 
5379 	if (type == VDIR) {
5380 		/*
5381 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5382 		 * requests, instead of PRIV_VFS_EXEC.
5383 		 */
5384 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5385 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5386 			priv_granted |= VEXEC;
5387 	} else {
5388 		/*
5389 		 * Ensure that at least one execute bit is on. Otherwise,
5390 		 * a privileged user will always succeed, and we don't want
5391 		 * this to happen unless the file really is executable.
5392 		 */
5393 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5394 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5395 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5396 			priv_granted |= VEXEC;
5397 	}
5398 
5399 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5400 	    !priv_check_cred(cred, PRIV_VFS_READ))
5401 		priv_granted |= VREAD;
5402 
5403 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5404 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5405 		priv_granted |= (VWRITE | VAPPEND);
5406 
5407 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5408 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5409 		priv_granted |= VADMIN;
5410 
5411 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5412 		/* XXX audit: privilege used */
5413 		if (privused != NULL)
5414 			*privused = 1;
5415 		return (0);
5416 	}
5417 
5418 	return ((accmode & VADMIN) ? EPERM : EACCES);
5419 }
5420 
5421 /*
5422  * Credential check based on process requesting service, and per-attribute
5423  * permissions.
5424  */
5425 int
5426 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5427     struct thread *td, accmode_t accmode)
5428 {
5429 
5430 	/*
5431 	 * Kernel-invoked always succeeds.
5432 	 */
5433 	if (cred == NOCRED)
5434 		return (0);
5435 
5436 	/*
5437 	 * Do not allow privileged processes in jail to directly manipulate
5438 	 * system attributes.
5439 	 */
5440 	switch (attrnamespace) {
5441 	case EXTATTR_NAMESPACE_SYSTEM:
5442 		/* Potentially should be: return (EPERM); */
5443 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5444 	case EXTATTR_NAMESPACE_USER:
5445 		return (VOP_ACCESS(vp, accmode, cred, td));
5446 	default:
5447 		return (EPERM);
5448 	}
5449 }
5450 
5451 #ifdef DEBUG_VFS_LOCKS
5452 /*
5453  * This only exists to suppress warnings from unlocked specfs accesses.  It is
5454  * no longer ok to have an unlocked VFS.
5455  */
5456 #define	IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL ||		\
5457 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
5458 
5459 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5460 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5461     "Drop into debugger on lock violation");
5462 
5463 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5464 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5465     0, "Check for interlock across VOPs");
5466 
5467 int vfs_badlock_print = 1;	/* Print lock violations. */
5468 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5469     0, "Print lock violations");
5470 
5471 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5472 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5473     0, "Print vnode details on lock violations");
5474 
5475 #ifdef KDB
5476 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5477 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5478     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5479 #endif
5480 
5481 static void
5482 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5483 {
5484 
5485 #ifdef KDB
5486 	if (vfs_badlock_backtrace)
5487 		kdb_backtrace();
5488 #endif
5489 	if (vfs_badlock_vnode)
5490 		vn_printf(vp, "vnode ");
5491 	if (vfs_badlock_print)
5492 		printf("%s: %p %s\n", str, (void *)vp, msg);
5493 	if (vfs_badlock_ddb)
5494 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5495 }
5496 
5497 void
5498 assert_vi_locked(struct vnode *vp, const char *str)
5499 {
5500 
5501 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5502 		vfs_badlock("interlock is not locked but should be", str, vp);
5503 }
5504 
5505 void
5506 assert_vi_unlocked(struct vnode *vp, const char *str)
5507 {
5508 
5509 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5510 		vfs_badlock("interlock is locked but should not be", str, vp);
5511 }
5512 
5513 void
5514 assert_vop_locked(struct vnode *vp, const char *str)
5515 {
5516 	int locked;
5517 
5518 	if (!IGNORE_LOCK(vp)) {
5519 		locked = VOP_ISLOCKED(vp);
5520 		if (locked == 0 || locked == LK_EXCLOTHER)
5521 			vfs_badlock("is not locked but should be", str, vp);
5522 	}
5523 }
5524 
5525 void
5526 assert_vop_unlocked(struct vnode *vp, const char *str)
5527 {
5528 
5529 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5530 		vfs_badlock("is locked but should not be", str, vp);
5531 }
5532 
5533 void
5534 assert_vop_elocked(struct vnode *vp, const char *str)
5535 {
5536 
5537 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5538 		vfs_badlock("is not exclusive locked but should be", str, vp);
5539 }
5540 #endif /* DEBUG_VFS_LOCKS */
5541 
5542 void
5543 vop_rename_fail(struct vop_rename_args *ap)
5544 {
5545 
5546 	if (ap->a_tvp != NULL)
5547 		vput(ap->a_tvp);
5548 	if (ap->a_tdvp == ap->a_tvp)
5549 		vrele(ap->a_tdvp);
5550 	else
5551 		vput(ap->a_tdvp);
5552 	vrele(ap->a_fdvp);
5553 	vrele(ap->a_fvp);
5554 }
5555 
5556 void
5557 vop_rename_pre(void *ap)
5558 {
5559 	struct vop_rename_args *a = ap;
5560 
5561 #ifdef DEBUG_VFS_LOCKS
5562 	if (a->a_tvp)
5563 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5564 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5565 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5566 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5567 
5568 	/* Check the source (from). */
5569 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5570 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5571 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5572 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5573 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5574 
5575 	/* Check the target. */
5576 	if (a->a_tvp)
5577 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5578 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5579 #endif
5580 	/*
5581 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5582 	 * in vop_rename_post but that's not going to work out since some
5583 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5584 	 *
5585 	 * For now filesystems are expected to do the relevant calls after they
5586 	 * decide what vnodes to operate on.
5587 	 */
5588 	if (a->a_tdvp != a->a_fdvp)
5589 		vhold(a->a_fdvp);
5590 	if (a->a_tvp != a->a_fvp)
5591 		vhold(a->a_fvp);
5592 	vhold(a->a_tdvp);
5593 	if (a->a_tvp)
5594 		vhold(a->a_tvp);
5595 }
5596 
5597 #ifdef DEBUG_VFS_LOCKS
5598 void
5599 vop_fplookup_vexec_debugpre(void *ap __unused)
5600 {
5601 
5602 	VFS_SMR_ASSERT_ENTERED();
5603 }
5604 
5605 void
5606 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5607 {
5608 
5609 	VFS_SMR_ASSERT_ENTERED();
5610 }
5611 
5612 void
5613 vop_strategy_debugpre(void *ap)
5614 {
5615 	struct vop_strategy_args *a;
5616 	struct buf *bp;
5617 
5618 	a = ap;
5619 	bp = a->a_bp;
5620 
5621 	/*
5622 	 * Cluster ops lock their component buffers but not the IO container.
5623 	 */
5624 	if ((bp->b_flags & B_CLUSTER) != 0)
5625 		return;
5626 
5627 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5628 		if (vfs_badlock_print)
5629 			printf(
5630 			    "VOP_STRATEGY: bp is not locked but should be\n");
5631 		if (vfs_badlock_ddb)
5632 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5633 	}
5634 }
5635 
5636 void
5637 vop_lock_debugpre(void *ap)
5638 {
5639 	struct vop_lock1_args *a = ap;
5640 
5641 	if ((a->a_flags & LK_INTERLOCK) == 0)
5642 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5643 	else
5644 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5645 }
5646 
5647 void
5648 vop_lock_debugpost(void *ap, int rc)
5649 {
5650 	struct vop_lock1_args *a = ap;
5651 
5652 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5653 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5654 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5655 }
5656 
5657 void
5658 vop_unlock_debugpre(void *ap)
5659 {
5660 	struct vop_unlock_args *a = ap;
5661 
5662 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5663 }
5664 
5665 void
5666 vop_need_inactive_debugpre(void *ap)
5667 {
5668 	struct vop_need_inactive_args *a = ap;
5669 
5670 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5671 }
5672 
5673 void
5674 vop_need_inactive_debugpost(void *ap, int rc)
5675 {
5676 	struct vop_need_inactive_args *a = ap;
5677 
5678 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5679 }
5680 #endif
5681 
5682 void
5683 vop_create_pre(void *ap)
5684 {
5685 	struct vop_create_args *a;
5686 	struct vnode *dvp;
5687 
5688 	a = ap;
5689 	dvp = a->a_dvp;
5690 	vn_seqc_write_begin(dvp);
5691 }
5692 
5693 void
5694 vop_create_post(void *ap, int rc)
5695 {
5696 	struct vop_create_args *a;
5697 	struct vnode *dvp;
5698 
5699 	a = ap;
5700 	dvp = a->a_dvp;
5701 	vn_seqc_write_end(dvp);
5702 	if (!rc)
5703 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5704 }
5705 
5706 void
5707 vop_whiteout_pre(void *ap)
5708 {
5709 	struct vop_whiteout_args *a;
5710 	struct vnode *dvp;
5711 
5712 	a = ap;
5713 	dvp = a->a_dvp;
5714 	vn_seqc_write_begin(dvp);
5715 }
5716 
5717 void
5718 vop_whiteout_post(void *ap, int rc)
5719 {
5720 	struct vop_whiteout_args *a;
5721 	struct vnode *dvp;
5722 
5723 	a = ap;
5724 	dvp = a->a_dvp;
5725 	vn_seqc_write_end(dvp);
5726 }
5727 
5728 void
5729 vop_deleteextattr_pre(void *ap)
5730 {
5731 	struct vop_deleteextattr_args *a;
5732 	struct vnode *vp;
5733 
5734 	a = ap;
5735 	vp = a->a_vp;
5736 	vn_seqc_write_begin(vp);
5737 }
5738 
5739 void
5740 vop_deleteextattr_post(void *ap, int rc)
5741 {
5742 	struct vop_deleteextattr_args *a;
5743 	struct vnode *vp;
5744 
5745 	a = ap;
5746 	vp = a->a_vp;
5747 	vn_seqc_write_end(vp);
5748 	if (!rc)
5749 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5750 }
5751 
5752 void
5753 vop_link_pre(void *ap)
5754 {
5755 	struct vop_link_args *a;
5756 	struct vnode *vp, *tdvp;
5757 
5758 	a = ap;
5759 	vp = a->a_vp;
5760 	tdvp = a->a_tdvp;
5761 	vn_seqc_write_begin(vp);
5762 	vn_seqc_write_begin(tdvp);
5763 }
5764 
5765 void
5766 vop_link_post(void *ap, int rc)
5767 {
5768 	struct vop_link_args *a;
5769 	struct vnode *vp, *tdvp;
5770 
5771 	a = ap;
5772 	vp = a->a_vp;
5773 	tdvp = a->a_tdvp;
5774 	vn_seqc_write_end(vp);
5775 	vn_seqc_write_end(tdvp);
5776 	if (!rc) {
5777 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5778 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5779 	}
5780 }
5781 
5782 void
5783 vop_mkdir_pre(void *ap)
5784 {
5785 	struct vop_mkdir_args *a;
5786 	struct vnode *dvp;
5787 
5788 	a = ap;
5789 	dvp = a->a_dvp;
5790 	vn_seqc_write_begin(dvp);
5791 }
5792 
5793 void
5794 vop_mkdir_post(void *ap, int rc)
5795 {
5796 	struct vop_mkdir_args *a;
5797 	struct vnode *dvp;
5798 
5799 	a = ap;
5800 	dvp = a->a_dvp;
5801 	vn_seqc_write_end(dvp);
5802 	if (!rc)
5803 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5804 }
5805 
5806 void
5807 vop_mknod_pre(void *ap)
5808 {
5809 	struct vop_mknod_args *a;
5810 	struct vnode *dvp;
5811 
5812 	a = ap;
5813 	dvp = a->a_dvp;
5814 	vn_seqc_write_begin(dvp);
5815 }
5816 
5817 void
5818 vop_mknod_post(void *ap, int rc)
5819 {
5820 	struct vop_mknod_args *a;
5821 	struct vnode *dvp;
5822 
5823 	a = ap;
5824 	dvp = a->a_dvp;
5825 	vn_seqc_write_end(dvp);
5826 	if (!rc)
5827 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5828 }
5829 
5830 void
5831 vop_reclaim_post(void *ap, int rc)
5832 {
5833 	struct vop_reclaim_args *a;
5834 	struct vnode *vp;
5835 
5836 	a = ap;
5837 	vp = a->a_vp;
5838 	ASSERT_VOP_IN_SEQC(vp);
5839 	if (!rc)
5840 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5841 }
5842 
5843 void
5844 vop_remove_pre(void *ap)
5845 {
5846 	struct vop_remove_args *a;
5847 	struct vnode *dvp, *vp;
5848 
5849 	a = ap;
5850 	dvp = a->a_dvp;
5851 	vp = a->a_vp;
5852 	vn_seqc_write_begin(dvp);
5853 	vn_seqc_write_begin(vp);
5854 }
5855 
5856 void
5857 vop_remove_post(void *ap, int rc)
5858 {
5859 	struct vop_remove_args *a;
5860 	struct vnode *dvp, *vp;
5861 
5862 	a = ap;
5863 	dvp = a->a_dvp;
5864 	vp = a->a_vp;
5865 	vn_seqc_write_end(dvp);
5866 	vn_seqc_write_end(vp);
5867 	if (!rc) {
5868 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5869 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5870 	}
5871 }
5872 
5873 void
5874 vop_rename_post(void *ap, int rc)
5875 {
5876 	struct vop_rename_args *a = ap;
5877 	long hint;
5878 
5879 	if (!rc) {
5880 		hint = NOTE_WRITE;
5881 		if (a->a_fdvp == a->a_tdvp) {
5882 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5883 				hint |= NOTE_LINK;
5884 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5885 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5886 		} else {
5887 			hint |= NOTE_EXTEND;
5888 			if (a->a_fvp->v_type == VDIR)
5889 				hint |= NOTE_LINK;
5890 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5891 
5892 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5893 			    a->a_tvp->v_type == VDIR)
5894 				hint &= ~NOTE_LINK;
5895 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5896 		}
5897 
5898 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5899 		if (a->a_tvp)
5900 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5901 	}
5902 	if (a->a_tdvp != a->a_fdvp)
5903 		vdrop(a->a_fdvp);
5904 	if (a->a_tvp != a->a_fvp)
5905 		vdrop(a->a_fvp);
5906 	vdrop(a->a_tdvp);
5907 	if (a->a_tvp)
5908 		vdrop(a->a_tvp);
5909 }
5910 
5911 void
5912 vop_rmdir_pre(void *ap)
5913 {
5914 	struct vop_rmdir_args *a;
5915 	struct vnode *dvp, *vp;
5916 
5917 	a = ap;
5918 	dvp = a->a_dvp;
5919 	vp = a->a_vp;
5920 	vn_seqc_write_begin(dvp);
5921 	vn_seqc_write_begin(vp);
5922 }
5923 
5924 void
5925 vop_rmdir_post(void *ap, int rc)
5926 {
5927 	struct vop_rmdir_args *a;
5928 	struct vnode *dvp, *vp;
5929 
5930 	a = ap;
5931 	dvp = a->a_dvp;
5932 	vp = a->a_vp;
5933 	vn_seqc_write_end(dvp);
5934 	vn_seqc_write_end(vp);
5935 	if (!rc) {
5936 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5937 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5938 	}
5939 }
5940 
5941 void
5942 vop_setattr_pre(void *ap)
5943 {
5944 	struct vop_setattr_args *a;
5945 	struct vnode *vp;
5946 
5947 	a = ap;
5948 	vp = a->a_vp;
5949 	vn_seqc_write_begin(vp);
5950 }
5951 
5952 void
5953 vop_setattr_post(void *ap, int rc)
5954 {
5955 	struct vop_setattr_args *a;
5956 	struct vnode *vp;
5957 
5958 	a = ap;
5959 	vp = a->a_vp;
5960 	vn_seqc_write_end(vp);
5961 	if (!rc)
5962 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5963 }
5964 
5965 void
5966 vop_setacl_pre(void *ap)
5967 {
5968 	struct vop_setacl_args *a;
5969 	struct vnode *vp;
5970 
5971 	a = ap;
5972 	vp = a->a_vp;
5973 	vn_seqc_write_begin(vp);
5974 }
5975 
5976 void
5977 vop_setacl_post(void *ap, int rc __unused)
5978 {
5979 	struct vop_setacl_args *a;
5980 	struct vnode *vp;
5981 
5982 	a = ap;
5983 	vp = a->a_vp;
5984 	vn_seqc_write_end(vp);
5985 }
5986 
5987 void
5988 vop_setextattr_pre(void *ap)
5989 {
5990 	struct vop_setextattr_args *a;
5991 	struct vnode *vp;
5992 
5993 	a = ap;
5994 	vp = a->a_vp;
5995 	vn_seqc_write_begin(vp);
5996 }
5997 
5998 void
5999 vop_setextattr_post(void *ap, int rc)
6000 {
6001 	struct vop_setextattr_args *a;
6002 	struct vnode *vp;
6003 
6004 	a = ap;
6005 	vp = a->a_vp;
6006 	vn_seqc_write_end(vp);
6007 	if (!rc)
6008 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6009 }
6010 
6011 void
6012 vop_symlink_pre(void *ap)
6013 {
6014 	struct vop_symlink_args *a;
6015 	struct vnode *dvp;
6016 
6017 	a = ap;
6018 	dvp = a->a_dvp;
6019 	vn_seqc_write_begin(dvp);
6020 }
6021 
6022 void
6023 vop_symlink_post(void *ap, int rc)
6024 {
6025 	struct vop_symlink_args *a;
6026 	struct vnode *dvp;
6027 
6028 	a = ap;
6029 	dvp = a->a_dvp;
6030 	vn_seqc_write_end(dvp);
6031 	if (!rc)
6032 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6033 }
6034 
6035 void
6036 vop_open_post(void *ap, int rc)
6037 {
6038 	struct vop_open_args *a = ap;
6039 
6040 	if (!rc)
6041 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6042 }
6043 
6044 void
6045 vop_close_post(void *ap, int rc)
6046 {
6047 	struct vop_close_args *a = ap;
6048 
6049 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6050 	    !VN_IS_DOOMED(a->a_vp))) {
6051 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6052 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6053 	}
6054 }
6055 
6056 void
6057 vop_read_post(void *ap, int rc)
6058 {
6059 	struct vop_read_args *a = ap;
6060 
6061 	if (!rc)
6062 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6063 }
6064 
6065 void
6066 vop_readdir_post(void *ap, int rc)
6067 {
6068 	struct vop_readdir_args *a = ap;
6069 
6070 	if (!rc)
6071 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6072 }
6073 
6074 static struct knlist fs_knlist;
6075 
6076 static void
6077 vfs_event_init(void *arg)
6078 {
6079 	knlist_init_mtx(&fs_knlist, NULL);
6080 }
6081 /* XXX - correct order? */
6082 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6083 
6084 void
6085 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6086 {
6087 
6088 	KNOTE_UNLOCKED(&fs_knlist, event);
6089 }
6090 
6091 static int	filt_fsattach(struct knote *kn);
6092 static void	filt_fsdetach(struct knote *kn);
6093 static int	filt_fsevent(struct knote *kn, long hint);
6094 
6095 struct filterops fs_filtops = {
6096 	.f_isfd = 0,
6097 	.f_attach = filt_fsattach,
6098 	.f_detach = filt_fsdetach,
6099 	.f_event = filt_fsevent
6100 };
6101 
6102 static int
6103 filt_fsattach(struct knote *kn)
6104 {
6105 
6106 	kn->kn_flags |= EV_CLEAR;
6107 	knlist_add(&fs_knlist, kn, 0);
6108 	return (0);
6109 }
6110 
6111 static void
6112 filt_fsdetach(struct knote *kn)
6113 {
6114 
6115 	knlist_remove(&fs_knlist, kn, 0);
6116 }
6117 
6118 static int
6119 filt_fsevent(struct knote *kn, long hint)
6120 {
6121 
6122 	kn->kn_fflags |= hint;
6123 	return (kn->kn_fflags != 0);
6124 }
6125 
6126 static int
6127 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6128 {
6129 	struct vfsidctl vc;
6130 	int error;
6131 	struct mount *mp;
6132 
6133 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6134 	if (error)
6135 		return (error);
6136 	if (vc.vc_vers != VFS_CTL_VERS1)
6137 		return (EINVAL);
6138 	mp = vfs_getvfs(&vc.vc_fsid);
6139 	if (mp == NULL)
6140 		return (ENOENT);
6141 	/* ensure that a specific sysctl goes to the right filesystem. */
6142 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6143 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6144 		vfs_rel(mp);
6145 		return (EINVAL);
6146 	}
6147 	VCTLTOREQ(&vc, req);
6148 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6149 	vfs_rel(mp);
6150 	return (error);
6151 }
6152 
6153 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6154     NULL, 0, sysctl_vfs_ctl, "",
6155     "Sysctl by fsid");
6156 
6157 /*
6158  * Function to initialize a va_filerev field sensibly.
6159  * XXX: Wouldn't a random number make a lot more sense ??
6160  */
6161 u_quad_t
6162 init_va_filerev(void)
6163 {
6164 	struct bintime bt;
6165 
6166 	getbinuptime(&bt);
6167 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6168 }
6169 
6170 static int	filt_vfsread(struct knote *kn, long hint);
6171 static int	filt_vfswrite(struct knote *kn, long hint);
6172 static int	filt_vfsvnode(struct knote *kn, long hint);
6173 static void	filt_vfsdetach(struct knote *kn);
6174 static struct filterops vfsread_filtops = {
6175 	.f_isfd = 1,
6176 	.f_detach = filt_vfsdetach,
6177 	.f_event = filt_vfsread
6178 };
6179 static struct filterops vfswrite_filtops = {
6180 	.f_isfd = 1,
6181 	.f_detach = filt_vfsdetach,
6182 	.f_event = filt_vfswrite
6183 };
6184 static struct filterops vfsvnode_filtops = {
6185 	.f_isfd = 1,
6186 	.f_detach = filt_vfsdetach,
6187 	.f_event = filt_vfsvnode
6188 };
6189 
6190 static void
6191 vfs_knllock(void *arg)
6192 {
6193 	struct vnode *vp = arg;
6194 
6195 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6196 }
6197 
6198 static void
6199 vfs_knlunlock(void *arg)
6200 {
6201 	struct vnode *vp = arg;
6202 
6203 	VOP_UNLOCK(vp);
6204 }
6205 
6206 static void
6207 vfs_knl_assert_locked(void *arg)
6208 {
6209 #ifdef DEBUG_VFS_LOCKS
6210 	struct vnode *vp = arg;
6211 
6212 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6213 #endif
6214 }
6215 
6216 static void
6217 vfs_knl_assert_unlocked(void *arg)
6218 {
6219 #ifdef DEBUG_VFS_LOCKS
6220 	struct vnode *vp = arg;
6221 
6222 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6223 #endif
6224 }
6225 
6226 int
6227 vfs_kqfilter(struct vop_kqfilter_args *ap)
6228 {
6229 	struct vnode *vp = ap->a_vp;
6230 	struct knote *kn = ap->a_kn;
6231 	struct knlist *knl;
6232 
6233 	switch (kn->kn_filter) {
6234 	case EVFILT_READ:
6235 		kn->kn_fop = &vfsread_filtops;
6236 		break;
6237 	case EVFILT_WRITE:
6238 		kn->kn_fop = &vfswrite_filtops;
6239 		break;
6240 	case EVFILT_VNODE:
6241 		kn->kn_fop = &vfsvnode_filtops;
6242 		break;
6243 	default:
6244 		return (EINVAL);
6245 	}
6246 
6247 	kn->kn_hook = (caddr_t)vp;
6248 
6249 	v_addpollinfo(vp);
6250 	if (vp->v_pollinfo == NULL)
6251 		return (ENOMEM);
6252 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6253 	vhold(vp);
6254 	knlist_add(knl, kn, 0);
6255 
6256 	return (0);
6257 }
6258 
6259 /*
6260  * Detach knote from vnode
6261  */
6262 static void
6263 filt_vfsdetach(struct knote *kn)
6264 {
6265 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6266 
6267 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6268 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6269 	vdrop(vp);
6270 }
6271 
6272 /*ARGSUSED*/
6273 static int
6274 filt_vfsread(struct knote *kn, long hint)
6275 {
6276 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6277 	struct vattr va;
6278 	int res;
6279 
6280 	/*
6281 	 * filesystem is gone, so set the EOF flag and schedule
6282 	 * the knote for deletion.
6283 	 */
6284 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6285 		VI_LOCK(vp);
6286 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6287 		VI_UNLOCK(vp);
6288 		return (1);
6289 	}
6290 
6291 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6292 		return (0);
6293 
6294 	VI_LOCK(vp);
6295 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6296 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6297 	VI_UNLOCK(vp);
6298 	return (res);
6299 }
6300 
6301 /*ARGSUSED*/
6302 static int
6303 filt_vfswrite(struct knote *kn, long hint)
6304 {
6305 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6306 
6307 	VI_LOCK(vp);
6308 
6309 	/*
6310 	 * filesystem is gone, so set the EOF flag and schedule
6311 	 * the knote for deletion.
6312 	 */
6313 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6314 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6315 
6316 	kn->kn_data = 0;
6317 	VI_UNLOCK(vp);
6318 	return (1);
6319 }
6320 
6321 static int
6322 filt_vfsvnode(struct knote *kn, long hint)
6323 {
6324 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6325 	int res;
6326 
6327 	VI_LOCK(vp);
6328 	if (kn->kn_sfflags & hint)
6329 		kn->kn_fflags |= hint;
6330 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6331 		kn->kn_flags |= EV_EOF;
6332 		VI_UNLOCK(vp);
6333 		return (1);
6334 	}
6335 	res = (kn->kn_fflags != 0);
6336 	VI_UNLOCK(vp);
6337 	return (res);
6338 }
6339 
6340 /*
6341  * Returns whether the directory is empty or not.
6342  * If it is empty, the return value is 0; otherwise
6343  * the return value is an error value (which may
6344  * be ENOTEMPTY).
6345  */
6346 int
6347 vfs_emptydir(struct vnode *vp)
6348 {
6349 	struct uio uio;
6350 	struct iovec iov;
6351 	struct dirent *dirent, *dp, *endp;
6352 	int error, eof;
6353 
6354 	error = 0;
6355 	eof = 0;
6356 
6357 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6358 
6359 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6360 	iov.iov_base = dirent;
6361 	iov.iov_len = sizeof(struct dirent);
6362 
6363 	uio.uio_iov = &iov;
6364 	uio.uio_iovcnt = 1;
6365 	uio.uio_offset = 0;
6366 	uio.uio_resid = sizeof(struct dirent);
6367 	uio.uio_segflg = UIO_SYSSPACE;
6368 	uio.uio_rw = UIO_READ;
6369 	uio.uio_td = curthread;
6370 
6371 	while (eof == 0 && error == 0) {
6372 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6373 		    NULL, NULL);
6374 		if (error != 0)
6375 			break;
6376 		endp = (void *)((uint8_t *)dirent +
6377 		    sizeof(struct dirent) - uio.uio_resid);
6378 		for (dp = dirent; dp < endp;
6379 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6380 			if (dp->d_type == DT_WHT)
6381 				continue;
6382 			if (dp->d_namlen == 0)
6383 				continue;
6384 			if (dp->d_type != DT_DIR &&
6385 			    dp->d_type != DT_UNKNOWN) {
6386 				error = ENOTEMPTY;
6387 				break;
6388 			}
6389 			if (dp->d_namlen > 2) {
6390 				error = ENOTEMPTY;
6391 				break;
6392 			}
6393 			if (dp->d_namlen == 1 &&
6394 			    dp->d_name[0] != '.') {
6395 				error = ENOTEMPTY;
6396 				break;
6397 			}
6398 			if (dp->d_namlen == 2 &&
6399 			    dp->d_name[1] != '.') {
6400 				error = ENOTEMPTY;
6401 				break;
6402 			}
6403 			uio.uio_resid = sizeof(struct dirent);
6404 		}
6405 	}
6406 	free(dirent, M_TEMP);
6407 	return (error);
6408 }
6409 
6410 int
6411 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6412 {
6413 	int error;
6414 
6415 	if (dp->d_reclen > ap->a_uio->uio_resid)
6416 		return (ENAMETOOLONG);
6417 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6418 	if (error) {
6419 		if (ap->a_ncookies != NULL) {
6420 			if (ap->a_cookies != NULL)
6421 				free(ap->a_cookies, M_TEMP);
6422 			ap->a_cookies = NULL;
6423 			*ap->a_ncookies = 0;
6424 		}
6425 		return (error);
6426 	}
6427 	if (ap->a_ncookies == NULL)
6428 		return (0);
6429 
6430 	KASSERT(ap->a_cookies,
6431 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6432 
6433 	*ap->a_cookies = realloc(*ap->a_cookies,
6434 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
6435 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6436 	*ap->a_ncookies += 1;
6437 	return (0);
6438 }
6439 
6440 /*
6441  * The purpose of this routine is to remove granularity from accmode_t,
6442  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6443  * VADMIN and VAPPEND.
6444  *
6445  * If it returns 0, the caller is supposed to continue with the usual
6446  * access checks using 'accmode' as modified by this routine.  If it
6447  * returns nonzero value, the caller is supposed to return that value
6448  * as errno.
6449  *
6450  * Note that after this routine runs, accmode may be zero.
6451  */
6452 int
6453 vfs_unixify_accmode(accmode_t *accmode)
6454 {
6455 	/*
6456 	 * There is no way to specify explicit "deny" rule using
6457 	 * file mode or POSIX.1e ACLs.
6458 	 */
6459 	if (*accmode & VEXPLICIT_DENY) {
6460 		*accmode = 0;
6461 		return (0);
6462 	}
6463 
6464 	/*
6465 	 * None of these can be translated into usual access bits.
6466 	 * Also, the common case for NFSv4 ACLs is to not contain
6467 	 * either of these bits. Caller should check for VWRITE
6468 	 * on the containing directory instead.
6469 	 */
6470 	if (*accmode & (VDELETE_CHILD | VDELETE))
6471 		return (EPERM);
6472 
6473 	if (*accmode & VADMIN_PERMS) {
6474 		*accmode &= ~VADMIN_PERMS;
6475 		*accmode |= VADMIN;
6476 	}
6477 
6478 	/*
6479 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6480 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6481 	 */
6482 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6483 
6484 	return (0);
6485 }
6486 
6487 /*
6488  * Clear out a doomed vnode (if any) and replace it with a new one as long
6489  * as the fs is not being unmounted. Return the root vnode to the caller.
6490  */
6491 static int __noinline
6492 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6493 {
6494 	struct vnode *vp;
6495 	int error;
6496 
6497 restart:
6498 	if (mp->mnt_rootvnode != NULL) {
6499 		MNT_ILOCK(mp);
6500 		vp = mp->mnt_rootvnode;
6501 		if (vp != NULL) {
6502 			if (!VN_IS_DOOMED(vp)) {
6503 				vrefact(vp);
6504 				MNT_IUNLOCK(mp);
6505 				error = vn_lock(vp, flags);
6506 				if (error == 0) {
6507 					*vpp = vp;
6508 					return (0);
6509 				}
6510 				vrele(vp);
6511 				goto restart;
6512 			}
6513 			/*
6514 			 * Clear the old one.
6515 			 */
6516 			mp->mnt_rootvnode = NULL;
6517 		}
6518 		MNT_IUNLOCK(mp);
6519 		if (vp != NULL) {
6520 			vfs_op_barrier_wait(mp);
6521 			vrele(vp);
6522 		}
6523 	}
6524 	error = VFS_CACHEDROOT(mp, flags, vpp);
6525 	if (error != 0)
6526 		return (error);
6527 	if (mp->mnt_vfs_ops == 0) {
6528 		MNT_ILOCK(mp);
6529 		if (mp->mnt_vfs_ops != 0) {
6530 			MNT_IUNLOCK(mp);
6531 			return (0);
6532 		}
6533 		if (mp->mnt_rootvnode == NULL) {
6534 			vrefact(*vpp);
6535 			mp->mnt_rootvnode = *vpp;
6536 		} else {
6537 			if (mp->mnt_rootvnode != *vpp) {
6538 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6539 					panic("%s: mismatch between vnode returned "
6540 					    " by VFS_CACHEDROOT and the one cached "
6541 					    " (%p != %p)",
6542 					    __func__, *vpp, mp->mnt_rootvnode);
6543 				}
6544 			}
6545 		}
6546 		MNT_IUNLOCK(mp);
6547 	}
6548 	return (0);
6549 }
6550 
6551 int
6552 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6553 {
6554 	struct vnode *vp;
6555 	int error;
6556 
6557 	if (!vfs_op_thread_enter(mp))
6558 		return (vfs_cache_root_fallback(mp, flags, vpp));
6559 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6560 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6561 		vfs_op_thread_exit(mp);
6562 		return (vfs_cache_root_fallback(mp, flags, vpp));
6563 	}
6564 	vrefact(vp);
6565 	vfs_op_thread_exit(mp);
6566 	error = vn_lock(vp, flags);
6567 	if (error != 0) {
6568 		vrele(vp);
6569 		return (vfs_cache_root_fallback(mp, flags, vpp));
6570 	}
6571 	*vpp = vp;
6572 	return (0);
6573 }
6574 
6575 struct vnode *
6576 vfs_cache_root_clear(struct mount *mp)
6577 {
6578 	struct vnode *vp;
6579 
6580 	/*
6581 	 * ops > 0 guarantees there is nobody who can see this vnode
6582 	 */
6583 	MPASS(mp->mnt_vfs_ops > 0);
6584 	vp = mp->mnt_rootvnode;
6585 	if (vp != NULL)
6586 		vn_seqc_write_begin(vp);
6587 	mp->mnt_rootvnode = NULL;
6588 	return (vp);
6589 }
6590 
6591 void
6592 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6593 {
6594 
6595 	MPASS(mp->mnt_vfs_ops > 0);
6596 	vrefact(vp);
6597 	mp->mnt_rootvnode = vp;
6598 }
6599 
6600 /*
6601  * These are helper functions for filesystems to traverse all
6602  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6603  *
6604  * This interface replaces MNT_VNODE_FOREACH.
6605  */
6606 
6607 struct vnode *
6608 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6609 {
6610 	struct vnode *vp;
6611 
6612 	if (should_yield())
6613 		kern_yield(PRI_USER);
6614 	MNT_ILOCK(mp);
6615 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6616 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6617 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6618 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6619 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6620 			continue;
6621 		VI_LOCK(vp);
6622 		if (VN_IS_DOOMED(vp)) {
6623 			VI_UNLOCK(vp);
6624 			continue;
6625 		}
6626 		break;
6627 	}
6628 	if (vp == NULL) {
6629 		__mnt_vnode_markerfree_all(mvp, mp);
6630 		/* MNT_IUNLOCK(mp); -- done in above function */
6631 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6632 		return (NULL);
6633 	}
6634 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6635 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6636 	MNT_IUNLOCK(mp);
6637 	return (vp);
6638 }
6639 
6640 struct vnode *
6641 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6642 {
6643 	struct vnode *vp;
6644 
6645 	*mvp = vn_alloc_marker(mp);
6646 	MNT_ILOCK(mp);
6647 	MNT_REF(mp);
6648 
6649 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6650 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6651 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6652 			continue;
6653 		VI_LOCK(vp);
6654 		if (VN_IS_DOOMED(vp)) {
6655 			VI_UNLOCK(vp);
6656 			continue;
6657 		}
6658 		break;
6659 	}
6660 	if (vp == NULL) {
6661 		MNT_REL(mp);
6662 		MNT_IUNLOCK(mp);
6663 		vn_free_marker(*mvp);
6664 		*mvp = NULL;
6665 		return (NULL);
6666 	}
6667 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6668 	MNT_IUNLOCK(mp);
6669 	return (vp);
6670 }
6671 
6672 void
6673 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6674 {
6675 
6676 	if (*mvp == NULL) {
6677 		MNT_IUNLOCK(mp);
6678 		return;
6679 	}
6680 
6681 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6682 
6683 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6684 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6685 	MNT_REL(mp);
6686 	MNT_IUNLOCK(mp);
6687 	vn_free_marker(*mvp);
6688 	*mvp = NULL;
6689 }
6690 
6691 /*
6692  * These are helper functions for filesystems to traverse their
6693  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6694  */
6695 static void
6696 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6697 {
6698 
6699 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6700 
6701 	MNT_ILOCK(mp);
6702 	MNT_REL(mp);
6703 	MNT_IUNLOCK(mp);
6704 	vn_free_marker(*mvp);
6705 	*mvp = NULL;
6706 }
6707 
6708 /*
6709  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6710  * conventional lock order during mnt_vnode_next_lazy iteration.
6711  *
6712  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6713  * The list lock is dropped and reacquired.  On success, both locks are held.
6714  * On failure, the mount vnode list lock is held but the vnode interlock is
6715  * not, and the procedure may have yielded.
6716  */
6717 static bool
6718 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6719     struct vnode *vp)
6720 {
6721 
6722 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6723 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6724 	    ("%s: bad marker", __func__));
6725 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6726 	    ("%s: inappropriate vnode", __func__));
6727 	ASSERT_VI_UNLOCKED(vp, __func__);
6728 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6729 
6730 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6731 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6732 
6733 	/*
6734 	 * Note we may be racing against vdrop which transitioned the hold
6735 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6736 	 * if we are the only user after we get the interlock we will just
6737 	 * vdrop.
6738 	 */
6739 	vhold(vp);
6740 	mtx_unlock(&mp->mnt_listmtx);
6741 	VI_LOCK(vp);
6742 	if (VN_IS_DOOMED(vp)) {
6743 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6744 		goto out_lost;
6745 	}
6746 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6747 	/*
6748 	 * There is nothing to do if we are the last user.
6749 	 */
6750 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6751 		goto out_lost;
6752 	mtx_lock(&mp->mnt_listmtx);
6753 	return (true);
6754 out_lost:
6755 	vdropl(vp);
6756 	maybe_yield();
6757 	mtx_lock(&mp->mnt_listmtx);
6758 	return (false);
6759 }
6760 
6761 static struct vnode *
6762 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6763     void *cbarg)
6764 {
6765 	struct vnode *vp;
6766 
6767 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6768 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6769 restart:
6770 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6771 	while (vp != NULL) {
6772 		if (vp->v_type == VMARKER) {
6773 			vp = TAILQ_NEXT(vp, v_lazylist);
6774 			continue;
6775 		}
6776 		/*
6777 		 * See if we want to process the vnode. Note we may encounter a
6778 		 * long string of vnodes we don't care about and hog the list
6779 		 * as a result. Check for it and requeue the marker.
6780 		 */
6781 		VNPASS(!VN_IS_DOOMED(vp), vp);
6782 		if (!cb(vp, cbarg)) {
6783 			if (!should_yield()) {
6784 				vp = TAILQ_NEXT(vp, v_lazylist);
6785 				continue;
6786 			}
6787 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6788 			    v_lazylist);
6789 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6790 			    v_lazylist);
6791 			mtx_unlock(&mp->mnt_listmtx);
6792 			kern_yield(PRI_USER);
6793 			mtx_lock(&mp->mnt_listmtx);
6794 			goto restart;
6795 		}
6796 		/*
6797 		 * Try-lock because this is the wrong lock order.
6798 		 */
6799 		if (!VI_TRYLOCK(vp) &&
6800 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6801 			goto restart;
6802 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6803 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6804 		    ("alien vnode on the lazy list %p %p", vp, mp));
6805 		VNPASS(vp->v_mount == mp, vp);
6806 		VNPASS(!VN_IS_DOOMED(vp), vp);
6807 		break;
6808 	}
6809 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6810 
6811 	/* Check if we are done */
6812 	if (vp == NULL) {
6813 		mtx_unlock(&mp->mnt_listmtx);
6814 		mnt_vnode_markerfree_lazy(mvp, mp);
6815 		return (NULL);
6816 	}
6817 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6818 	mtx_unlock(&mp->mnt_listmtx);
6819 	ASSERT_VI_LOCKED(vp, "lazy iter");
6820 	return (vp);
6821 }
6822 
6823 struct vnode *
6824 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6825     void *cbarg)
6826 {
6827 
6828 	if (should_yield())
6829 		kern_yield(PRI_USER);
6830 	mtx_lock(&mp->mnt_listmtx);
6831 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6832 }
6833 
6834 struct vnode *
6835 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6836     void *cbarg)
6837 {
6838 	struct vnode *vp;
6839 
6840 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6841 		return (NULL);
6842 
6843 	*mvp = vn_alloc_marker(mp);
6844 	MNT_ILOCK(mp);
6845 	MNT_REF(mp);
6846 	MNT_IUNLOCK(mp);
6847 
6848 	mtx_lock(&mp->mnt_listmtx);
6849 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6850 	if (vp == NULL) {
6851 		mtx_unlock(&mp->mnt_listmtx);
6852 		mnt_vnode_markerfree_lazy(mvp, mp);
6853 		return (NULL);
6854 	}
6855 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6856 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6857 }
6858 
6859 void
6860 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6861 {
6862 
6863 	if (*mvp == NULL)
6864 		return;
6865 
6866 	mtx_lock(&mp->mnt_listmtx);
6867 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6868 	mtx_unlock(&mp->mnt_listmtx);
6869 	mnt_vnode_markerfree_lazy(mvp, mp);
6870 }
6871 
6872 int
6873 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6874 {
6875 
6876 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6877 		cnp->cn_flags &= ~NOEXECCHECK;
6878 		return (0);
6879 	}
6880 
6881 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
6882 }
6883 
6884 void
6885 vn_seqc_write_begin_locked(struct vnode *vp)
6886 {
6887 
6888 	ASSERT_VI_LOCKED(vp, __func__);
6889 	VNPASS(vp->v_holdcnt > 0, vp);
6890 	VNPASS(vp->v_seqc_users >= 0, vp);
6891 	vp->v_seqc_users++;
6892 	if (vp->v_seqc_users == 1)
6893 		seqc_sleepable_write_begin(&vp->v_seqc);
6894 }
6895 
6896 void
6897 vn_seqc_write_begin(struct vnode *vp)
6898 {
6899 
6900 	VI_LOCK(vp);
6901 	vn_seqc_write_begin_locked(vp);
6902 	VI_UNLOCK(vp);
6903 }
6904 
6905 void
6906 vn_seqc_write_end_locked(struct vnode *vp)
6907 {
6908 
6909 	ASSERT_VI_LOCKED(vp, __func__);
6910 	VNPASS(vp->v_seqc_users > 0, vp);
6911 	vp->v_seqc_users--;
6912 	if (vp->v_seqc_users == 0)
6913 		seqc_sleepable_write_end(&vp->v_seqc);
6914 }
6915 
6916 void
6917 vn_seqc_write_end(struct vnode *vp)
6918 {
6919 
6920 	VI_LOCK(vp);
6921 	vn_seqc_write_end_locked(vp);
6922 	VI_UNLOCK(vp);
6923 }
6924