xref: /freebsd/sys/kern/vfs_subr.c (revision 90a008e9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 #include "opt_ddb.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/capsicum.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/limits.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
102 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
103 #endif
104 
105 #ifdef DDB
106 #include <ddb/ddb.h>
107 #endif
108 
109 static void	delmntque(struct vnode *vp);
110 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
111 		    int slpflag, int slptimeo);
112 static void	syncer_shutdown(void *arg, int howto);
113 static int	vtryrecycle(struct vnode *vp);
114 static void	v_init_counters(struct vnode *);
115 static void	vn_seqc_init(struct vnode *);
116 static void	vn_seqc_write_end_free(struct vnode *vp);
117 static void	vgonel(struct vnode *);
118 static bool	vhold_recycle_free(struct vnode *);
119 static void	vdropl_recycle(struct vnode *vp);
120 static void	vdrop_recycle(struct vnode *vp);
121 static void	vfs_knllock(void *arg);
122 static void	vfs_knlunlock(void *arg);
123 static void	vfs_knl_assert_lock(void *arg, int what);
124 static void	destroy_vpollinfo(struct vpollinfo *vi);
125 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
126 		    daddr_t startlbn, daddr_t endlbn);
127 static void	vnlru_recalc(void);
128 
129 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
130     "vnode configuration and statistics");
131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "vnode configuration");
133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
134     "vnode statistics");
135 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
136     "vnode recycling");
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
141  */
142 static u_long __exclusive_cache_line numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence (legacy)");
146 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
147     "Number of vnodes in existence");
148 
149 static counter_u64_t vnodes_created;
150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode (legacy)");
152 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
153     "Number of vnodes created by getnewvnode");
154 
155 /*
156  * Conversion tables for conversion from vnode types to inode formats
157  * and back.
158  */
159 __enum_uint8(vtype) iftovt_tab[16] = {
160 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
161 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
162 };
163 int vttoif_tab[10] = {
164 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
165 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
166 };
167 
168 /*
169  * List of allocates vnodes in the system.
170  */
171 static TAILQ_HEAD(freelst, vnode) vnode_list;
172 static struct vnode *vnode_list_free_marker;
173 static struct vnode *vnode_list_reclaim_marker;
174 
175 /*
176  * "Free" vnode target.  Free vnodes are rarely completely free, but are
177  * just ones that are cheap to recycle.  Usually they are for files which
178  * have been stat'd but not read; these usually have inode and namecache
179  * data attached to them.  This target is the preferred minimum size of a
180  * sub-cache consisting mostly of such files. The system balances the size
181  * of this sub-cache with its complement to try to prevent either from
182  * thrashing while the other is relatively inactive.  The targets express
183  * a preference for the best balance.
184  *
185  * "Above" this target there are 2 further targets (watermarks) related
186  * to recyling of free vnodes.  In the best-operating case, the cache is
187  * exactly full, the free list has size between vlowat and vhiwat above the
188  * free target, and recycling from it and normal use maintains this state.
189  * Sometimes the free list is below vlowat or even empty, but this state
190  * is even better for immediate use provided the cache is not full.
191  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
192  * ones) to reach one of these states.  The watermarks are currently hard-
193  * coded as 4% and 9% of the available space higher.  These and the default
194  * of 25% for wantfreevnodes are too large if the memory size is large.
195  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
196  * whenever vnlru_proc() becomes active.
197  */
198 static long wantfreevnodes;
199 static long __exclusive_cache_line freevnodes;
200 static long freevnodes_old;
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets (legacy)");
205 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static counter_u64_t recycles_free_count;
209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
210     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
211 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
212     "Number of free vnodes recycled to meet vnode cache targets");
213 
214 static counter_u64_t vnode_skipped_requeues;
215 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
216     "Number of times LRU requeue was skipped due to lock contention");
217 
218 static u_long deferred_inact;
219 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
220     &deferred_inact, 0, "Number of times inactive processing was deferred");
221 
222 /* To keep more than one thread at a time from running vfs_getnewfsid */
223 static struct mtx mntid_mtx;
224 
225 /*
226  * Lock for any access to the following:
227  *	vnode_list
228  *	numvnodes
229  *	freevnodes
230  */
231 static struct mtx __exclusive_cache_line vnode_list_mtx;
232 
233 /* Publicly exported FS */
234 struct nfs_public nfs_pub;
235 
236 static uma_zone_t buf_trie_zone;
237 static smr_t buf_trie_smr;
238 
239 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
240 static uma_zone_t vnode_zone;
241 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
242 
243 __read_frequently smr_t vfs_smr;
244 
245 /*
246  * The workitem queue.
247  *
248  * It is useful to delay writes of file data and filesystem metadata
249  * for tens of seconds so that quickly created and deleted files need
250  * not waste disk bandwidth being created and removed. To realize this,
251  * we append vnodes to a "workitem" queue. When running with a soft
252  * updates implementation, most pending metadata dependencies should
253  * not wait for more than a few seconds. Thus, mounted on block devices
254  * are delayed only about a half the time that file data is delayed.
255  * Similarly, directory updates are more critical, so are only delayed
256  * about a third the time that file data is delayed. Thus, there are
257  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
258  * one each second (driven off the filesystem syncer process). The
259  * syncer_delayno variable indicates the next queue that is to be processed.
260  * Items that need to be processed soon are placed in this queue:
261  *
262  *	syncer_workitem_pending[syncer_delayno]
263  *
264  * A delay of fifteen seconds is done by placing the request fifteen
265  * entries later in the queue:
266  *
267  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
268  *
269  */
270 static int syncer_delayno;
271 static long syncer_mask;
272 LIST_HEAD(synclist, bufobj);
273 static struct synclist *syncer_workitem_pending;
274 /*
275  * The sync_mtx protects:
276  *	bo->bo_synclist
277  *	sync_vnode_count
278  *	syncer_delayno
279  *	syncer_state
280  *	syncer_workitem_pending
281  *	syncer_worklist_len
282  *	rushjob
283  */
284 static struct mtx sync_mtx;
285 static struct cv sync_wakeup;
286 
287 #define SYNCER_MAXDELAY		32
288 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
289 static int syncdelay = 30;		/* max time to delay syncing data */
290 static int filedelay = 30;		/* time to delay syncing files */
291 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
292     "Time to delay syncing files (in seconds)");
293 static int dirdelay = 29;		/* time to delay syncing directories */
294 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
295     "Time to delay syncing directories (in seconds)");
296 static int metadelay = 28;		/* time to delay syncing metadata */
297 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
298     "Time to delay syncing metadata (in seconds)");
299 static int rushjob;		/* number of slots to run ASAP */
300 static int stat_rush_requests;	/* number of times I/O speeded up */
301 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
302     "Number of times I/O speeded up (rush requests)");
303 
304 #define	VDBATCH_SIZE 8
305 struct vdbatch {
306 	u_int index;
307 	struct mtx lock;
308 	struct vnode *tab[VDBATCH_SIZE];
309 };
310 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
311 
312 static void	vdbatch_dequeue(struct vnode *vp);
313 
314 /*
315  * When shutting down the syncer, run it at four times normal speed.
316  */
317 #define SYNCER_SHUTDOWN_SPEEDUP		4
318 static int sync_vnode_count;
319 static int syncer_worklist_len;
320 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
321     syncer_state;
322 
323 /* Target for maximum number of vnodes. */
324 u_long desiredvnodes;
325 static u_long gapvnodes;		/* gap between wanted and desired */
326 static u_long vhiwat;		/* enough extras after expansion */
327 static u_long vlowat;		/* minimal extras before expansion */
328 static bool vstir;		/* nonzero to stir non-free vnodes */
329 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
330 
331 static u_long vnlru_read_freevnodes(void);
332 
333 /*
334  * Note that no attempt is made to sanitize these parameters.
335  */
336 static int
337 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
338 {
339 	u_long val;
340 	int error;
341 
342 	val = desiredvnodes;
343 	error = sysctl_handle_long(oidp, &val, 0, req);
344 	if (error != 0 || req->newptr == NULL)
345 		return (error);
346 
347 	if (val == desiredvnodes)
348 		return (0);
349 	mtx_lock(&vnode_list_mtx);
350 	desiredvnodes = val;
351 	wantfreevnodes = desiredvnodes / 4;
352 	vnlru_recalc();
353 	mtx_unlock(&vnode_list_mtx);
354 	/*
355 	 * XXX There is no protection against multiple threads changing
356 	 * desiredvnodes at the same time. Locking above only helps vnlru and
357 	 * getnewvnode.
358 	 */
359 	vfs_hash_changesize(desiredvnodes);
360 	cache_changesize(desiredvnodes);
361 	return (0);
362 }
363 
364 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
365     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
366     "LU", "Target for maximum number of vnodes (legacy)");
367 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
369     "LU", "Target for maximum number of vnodes");
370 
371 static int
372 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
373 {
374 	u_long rfreevnodes;
375 
376 	rfreevnodes = vnlru_read_freevnodes();
377 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
378 }
379 
380 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
381     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
382     "LU", "Number of \"free\" vnodes (legacy)");
383 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
384     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
385     "LU", "Number of \"free\" vnodes");
386 
387 static int
388 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
389 {
390 	u_long val;
391 	int error;
392 
393 	val = wantfreevnodes;
394 	error = sysctl_handle_long(oidp, &val, 0, req);
395 	if (error != 0 || req->newptr == NULL)
396 		return (error);
397 
398 	if (val == wantfreevnodes)
399 		return (0);
400 	mtx_lock(&vnode_list_mtx);
401 	wantfreevnodes = val;
402 	vnlru_recalc();
403 	mtx_unlock(&vnode_list_mtx);
404 	return (0);
405 }
406 
407 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
408     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
409     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
410 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
411     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
412     "LU", "Target for minimum number of \"free\" vnodes");
413 
414 static int vnlru_nowhere;
415 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
416     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
417 
418 static int
419 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
420 {
421 	struct vnode *vp;
422 	struct nameidata nd;
423 	char *buf;
424 	unsigned long ndflags;
425 	int error;
426 
427 	if (req->newptr == NULL)
428 		return (EINVAL);
429 	if (req->newlen >= PATH_MAX)
430 		return (E2BIG);
431 
432 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
433 	error = SYSCTL_IN(req, buf, req->newlen);
434 	if (error != 0)
435 		goto out;
436 
437 	buf[req->newlen] = '\0';
438 
439 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
440 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
441 	if ((error = namei(&nd)) != 0)
442 		goto out;
443 	vp = nd.ni_vp;
444 
445 	if (VN_IS_DOOMED(vp)) {
446 		/*
447 		 * This vnode is being recycled.  Return != 0 to let the caller
448 		 * know that the sysctl had no effect.  Return EAGAIN because a
449 		 * subsequent call will likely succeed (since namei will create
450 		 * a new vnode if necessary)
451 		 */
452 		error = EAGAIN;
453 		goto putvnode;
454 	}
455 
456 	counter_u64_add(recycles_count, 1);
457 	vgone(vp);
458 putvnode:
459 	vput(vp);
460 	NDFREE_PNBUF(&nd);
461 out:
462 	free(buf, M_TEMP);
463 	return (error);
464 }
465 
466 static int
467 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
468 {
469 	struct thread *td = curthread;
470 	struct vnode *vp;
471 	struct file *fp;
472 	int error;
473 	int fd;
474 
475 	if (req->newptr == NULL)
476 		return (EBADF);
477 
478         error = sysctl_handle_int(oidp, &fd, 0, req);
479         if (error != 0)
480                 return (error);
481 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
482 	if (error != 0)
483 		return (error);
484 	vp = fp->f_vnode;
485 
486 	error = vn_lock(vp, LK_EXCLUSIVE);
487 	if (error != 0)
488 		goto drop;
489 
490 	counter_u64_add(recycles_count, 1);
491 	vgone(vp);
492 	VOP_UNLOCK(vp);
493 drop:
494 	fdrop(fp, td);
495 	return (error);
496 }
497 
498 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
499     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
500     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
501 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
502     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
503     sysctl_ftry_reclaim_vnode, "I",
504     "Try to reclaim a vnode by its file descriptor");
505 
506 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
507 #define vnsz2log 8
508 #ifndef DEBUG_LOCKS
509 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
510     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
511     "vnsz2log needs to be updated");
512 #endif
513 
514 /*
515  * Support for the bufobj clean & dirty pctrie.
516  */
517 static void *
518 buf_trie_alloc(struct pctrie *ptree)
519 {
520 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
521 }
522 
523 static void
524 buf_trie_free(struct pctrie *ptree, void *node)
525 {
526 	uma_zfree_smr(buf_trie_zone, node);
527 }
528 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
529     buf_trie_smr);
530 
531 /*
532  * Initialize the vnode management data structures.
533  *
534  * Reevaluate the following cap on the number of vnodes after the physical
535  * memory size exceeds 512GB.  In the limit, as the physical memory size
536  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
537  */
538 #ifndef	MAXVNODES_MAX
539 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
540 #endif
541 
542 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
543 
544 static struct vnode *
545 vn_alloc_marker(struct mount *mp)
546 {
547 	struct vnode *vp;
548 
549 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
550 	vp->v_type = VMARKER;
551 	vp->v_mount = mp;
552 
553 	return (vp);
554 }
555 
556 static void
557 vn_free_marker(struct vnode *vp)
558 {
559 
560 	MPASS(vp->v_type == VMARKER);
561 	free(vp, M_VNODE_MARKER);
562 }
563 
564 #ifdef KASAN
565 static int
566 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
567 {
568 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
569 	return (0);
570 }
571 
572 static void
573 vnode_dtor(void *mem, int size, void *arg __unused)
574 {
575 	size_t end1, end2, off1, off2;
576 
577 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
578 	    offsetof(struct vnode, v_dbatchcpu),
579 	    "KASAN marks require updating");
580 
581 	off1 = offsetof(struct vnode, v_vnodelist);
582 	off2 = offsetof(struct vnode, v_dbatchcpu);
583 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
584 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
585 
586 	/*
587 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
588 	 * after the vnode has been freed.  Try to get some KASAN coverage by
589 	 * marking everything except those two fields as invalid.  Because
590 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
591 	 * the same 8-byte aligned word must also be marked valid.
592 	 */
593 
594 	/* Handle the area from the start until v_vnodelist... */
595 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
596 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
597 
598 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
599 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
600 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
601 	if (off2 > off1)
602 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
603 		    off2 - off1, KASAN_UMA_FREED);
604 
605 	/* ... and finally the area from v_dbatchcpu to the end. */
606 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
607 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
608 	    KASAN_UMA_FREED);
609 }
610 #endif /* KASAN */
611 
612 /*
613  * Initialize a vnode as it first enters the zone.
614  */
615 static int
616 vnode_init(void *mem, int size, int flags)
617 {
618 	struct vnode *vp;
619 
620 	vp = mem;
621 	bzero(vp, size);
622 	/*
623 	 * Setup locks.
624 	 */
625 	vp->v_vnlock = &vp->v_lock;
626 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
627 	/*
628 	 * By default, don't allow shared locks unless filesystems opt-in.
629 	 */
630 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
631 	    LK_NOSHARE | LK_IS_VNODE);
632 	/*
633 	 * Initialize bufobj.
634 	 */
635 	bufobj_init(&vp->v_bufobj, vp);
636 	/*
637 	 * Initialize namecache.
638 	 */
639 	cache_vnode_init(vp);
640 	/*
641 	 * Initialize rangelocks.
642 	 */
643 	rangelock_init(&vp->v_rl);
644 
645 	vp->v_dbatchcpu = NOCPU;
646 
647 	vp->v_state = VSTATE_DEAD;
648 
649 	/*
650 	 * Check vhold_recycle_free for an explanation.
651 	 */
652 	vp->v_holdcnt = VHOLD_NO_SMR;
653 	vp->v_type = VNON;
654 	mtx_lock(&vnode_list_mtx);
655 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
656 	mtx_unlock(&vnode_list_mtx);
657 	return (0);
658 }
659 
660 /*
661  * Free a vnode when it is cleared from the zone.
662  */
663 static void
664 vnode_fini(void *mem, int size)
665 {
666 	struct vnode *vp;
667 	struct bufobj *bo;
668 
669 	vp = mem;
670 	vdbatch_dequeue(vp);
671 	mtx_lock(&vnode_list_mtx);
672 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
673 	mtx_unlock(&vnode_list_mtx);
674 	rangelock_destroy(&vp->v_rl);
675 	lockdestroy(vp->v_vnlock);
676 	mtx_destroy(&vp->v_interlock);
677 	bo = &vp->v_bufobj;
678 	rw_destroy(BO_LOCKPTR(bo));
679 
680 	kasan_mark(mem, size, size, 0);
681 }
682 
683 /*
684  * Provide the size of NFS nclnode and NFS fh for calculation of the
685  * vnode memory consumption.  The size is specified directly to
686  * eliminate dependency on NFS-private header.
687  *
688  * Other filesystems may use bigger or smaller (like UFS and ZFS)
689  * private inode data, but the NFS-based estimation is ample enough.
690  * Still, we care about differences in the size between 64- and 32-bit
691  * platforms.
692  *
693  * Namecache structure size is heuristically
694  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
695  */
696 #ifdef _LP64
697 #define	NFS_NCLNODE_SZ	(528 + 64)
698 #define	NC_SZ		148
699 #else
700 #define	NFS_NCLNODE_SZ	(360 + 32)
701 #define	NC_SZ		92
702 #endif
703 
704 static void
705 vntblinit(void *dummy __unused)
706 {
707 	struct vdbatch *vd;
708 	uma_ctor ctor;
709 	uma_dtor dtor;
710 	int cpu, physvnodes, virtvnodes;
711 
712 	/*
713 	 * Desiredvnodes is a function of the physical memory size and the
714 	 * kernel's heap size.  Generally speaking, it scales with the
715 	 * physical memory size.  The ratio of desiredvnodes to the physical
716 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
717 	 * Thereafter, the
718 	 * marginal ratio of desiredvnodes to the physical memory size is
719 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
720 	 * size.  The memory required by desiredvnodes vnodes and vm objects
721 	 * must not exceed 1/10th of the kernel's heap size.
722 	 */
723 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
724 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
725 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
726 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
727 	desiredvnodes = min(physvnodes, virtvnodes);
728 	if (desiredvnodes > MAXVNODES_MAX) {
729 		if (bootverbose)
730 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
731 			    desiredvnodes, MAXVNODES_MAX);
732 		desiredvnodes = MAXVNODES_MAX;
733 	}
734 	wantfreevnodes = desiredvnodes / 4;
735 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
736 	TAILQ_INIT(&vnode_list);
737 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
738 	/*
739 	 * The lock is taken to appease WITNESS.
740 	 */
741 	mtx_lock(&vnode_list_mtx);
742 	vnlru_recalc();
743 	mtx_unlock(&vnode_list_mtx);
744 	vnode_list_free_marker = vn_alloc_marker(NULL);
745 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
746 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
747 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
748 
749 #ifdef KASAN
750 	ctor = vnode_ctor;
751 	dtor = vnode_dtor;
752 #else
753 	ctor = NULL;
754 	dtor = NULL;
755 #endif
756 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
757 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
758 	uma_zone_set_smr(vnode_zone, vfs_smr);
759 
760 	/*
761 	 * Preallocate enough nodes to support one-per buf so that
762 	 * we can not fail an insert.  reassignbuf() callers can not
763 	 * tolerate the insertion failure.
764 	 */
765 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
766 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
767 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
768 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
769 	uma_prealloc(buf_trie_zone, nbuf);
770 
771 	vnodes_created = counter_u64_alloc(M_WAITOK);
772 	recycles_count = counter_u64_alloc(M_WAITOK);
773 	recycles_free_count = counter_u64_alloc(M_WAITOK);
774 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
775 
776 	/*
777 	 * Initialize the filesystem syncer.
778 	 */
779 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
780 	    &syncer_mask);
781 	syncer_maxdelay = syncer_mask + 1;
782 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
783 	cv_init(&sync_wakeup, "syncer");
784 
785 	CPU_FOREACH(cpu) {
786 		vd = DPCPU_ID_PTR((cpu), vd);
787 		bzero(vd, sizeof(*vd));
788 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
789 	}
790 }
791 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
792 
793 /*
794  * Mark a mount point as busy. Used to synchronize access and to delay
795  * unmounting. Eventually, mountlist_mtx is not released on failure.
796  *
797  * vfs_busy() is a custom lock, it can block the caller.
798  * vfs_busy() only sleeps if the unmount is active on the mount point.
799  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
800  * vnode belonging to mp.
801  *
802  * Lookup uses vfs_busy() to traverse mount points.
803  * root fs			var fs
804  * / vnode lock		A	/ vnode lock (/var)		D
805  * /var vnode lock	B	/log vnode lock(/var/log)	E
806  * vfs_busy lock	C	vfs_busy lock			F
807  *
808  * Within each file system, the lock order is C->A->B and F->D->E.
809  *
810  * When traversing across mounts, the system follows that lock order:
811  *
812  *        C->A->B
813  *              |
814  *              +->F->D->E
815  *
816  * The lookup() process for namei("/var") illustrates the process:
817  *  1. VOP_LOOKUP() obtains B while A is held
818  *  2. vfs_busy() obtains a shared lock on F while A and B are held
819  *  3. vput() releases lock on B
820  *  4. vput() releases lock on A
821  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
822  *  6. vfs_unbusy() releases shared lock on F
823  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
824  *     Attempt to lock A (instead of vp_crossmp) while D is held would
825  *     violate the global order, causing deadlocks.
826  *
827  * dounmount() locks B while F is drained.  Note that for stacked
828  * filesystems, D and B in the example above may be the same lock,
829  * which introdues potential lock order reversal deadlock between
830  * dounmount() and step 5 above.  These filesystems may avoid the LOR
831  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
832  * remain held until after step 5.
833  */
834 int
835 vfs_busy(struct mount *mp, int flags)
836 {
837 	struct mount_pcpu *mpcpu;
838 
839 	MPASS((flags & ~MBF_MASK) == 0);
840 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
841 
842 	if (vfs_op_thread_enter(mp, mpcpu)) {
843 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
844 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
845 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
846 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
847 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
848 		vfs_op_thread_exit(mp, mpcpu);
849 		if (flags & MBF_MNTLSTLOCK)
850 			mtx_unlock(&mountlist_mtx);
851 		return (0);
852 	}
853 
854 	MNT_ILOCK(mp);
855 	vfs_assert_mount_counters(mp);
856 	MNT_REF(mp);
857 	/*
858 	 * If mount point is currently being unmounted, sleep until the
859 	 * mount point fate is decided.  If thread doing the unmounting fails,
860 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
861 	 * that this mount point has survived the unmount attempt and vfs_busy
862 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
863 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
864 	 * about to be really destroyed.  vfs_busy needs to release its
865 	 * reference on the mount point in this case and return with ENOENT,
866 	 * telling the caller the mount it tried to busy is no longer valid.
867 	 */
868 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
869 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
870 		    ("%s: non-empty upper mount list with pending unmount",
871 		    __func__));
872 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
873 			MNT_REL(mp);
874 			MNT_IUNLOCK(mp);
875 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
876 			    __func__);
877 			return (ENOENT);
878 		}
879 		if (flags & MBF_MNTLSTLOCK)
880 			mtx_unlock(&mountlist_mtx);
881 		mp->mnt_kern_flag |= MNTK_MWAIT;
882 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
883 		if (flags & MBF_MNTLSTLOCK)
884 			mtx_lock(&mountlist_mtx);
885 		MNT_ILOCK(mp);
886 	}
887 	if (flags & MBF_MNTLSTLOCK)
888 		mtx_unlock(&mountlist_mtx);
889 	mp->mnt_lockref++;
890 	MNT_IUNLOCK(mp);
891 	return (0);
892 }
893 
894 /*
895  * Free a busy filesystem.
896  */
897 void
898 vfs_unbusy(struct mount *mp)
899 {
900 	struct mount_pcpu *mpcpu;
901 	int c;
902 
903 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
904 
905 	if (vfs_op_thread_enter(mp, mpcpu)) {
906 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
907 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
908 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
909 		vfs_op_thread_exit(mp, mpcpu);
910 		return;
911 	}
912 
913 	MNT_ILOCK(mp);
914 	vfs_assert_mount_counters(mp);
915 	MNT_REL(mp);
916 	c = --mp->mnt_lockref;
917 	if (mp->mnt_vfs_ops == 0) {
918 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
919 		MNT_IUNLOCK(mp);
920 		return;
921 	}
922 	if (c < 0)
923 		vfs_dump_mount_counters(mp);
924 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
925 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
926 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
927 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
928 		wakeup(&mp->mnt_lockref);
929 	}
930 	MNT_IUNLOCK(mp);
931 }
932 
933 /*
934  * Lookup a mount point by filesystem identifier.
935  */
936 struct mount *
937 vfs_getvfs(fsid_t *fsid)
938 {
939 	struct mount *mp;
940 
941 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
942 	mtx_lock(&mountlist_mtx);
943 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
944 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
945 			vfs_ref(mp);
946 			mtx_unlock(&mountlist_mtx);
947 			return (mp);
948 		}
949 	}
950 	mtx_unlock(&mountlist_mtx);
951 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
952 	return ((struct mount *) 0);
953 }
954 
955 /*
956  * Lookup a mount point by filesystem identifier, busying it before
957  * returning.
958  *
959  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
960  * cache for popular filesystem identifiers.  The cache is lockess, using
961  * the fact that struct mount's are never freed.  In worst case we may
962  * get pointer to unmounted or even different filesystem, so we have to
963  * check what we got, and go slow way if so.
964  */
965 struct mount *
966 vfs_busyfs(fsid_t *fsid)
967 {
968 #define	FSID_CACHE_SIZE	256
969 	typedef struct mount * volatile vmp_t;
970 	static vmp_t cache[FSID_CACHE_SIZE];
971 	struct mount *mp;
972 	int error;
973 	uint32_t hash;
974 
975 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
976 	hash = fsid->val[0] ^ fsid->val[1];
977 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
978 	mp = cache[hash];
979 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
980 		goto slow;
981 	if (vfs_busy(mp, 0) != 0) {
982 		cache[hash] = NULL;
983 		goto slow;
984 	}
985 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
986 		return (mp);
987 	else
988 	    vfs_unbusy(mp);
989 
990 slow:
991 	mtx_lock(&mountlist_mtx);
992 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
993 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
994 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
995 			if (error) {
996 				cache[hash] = NULL;
997 				mtx_unlock(&mountlist_mtx);
998 				return (NULL);
999 			}
1000 			cache[hash] = mp;
1001 			return (mp);
1002 		}
1003 	}
1004 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1005 	mtx_unlock(&mountlist_mtx);
1006 	return ((struct mount *) 0);
1007 }
1008 
1009 /*
1010  * Check if a user can access privileged mount options.
1011  */
1012 int
1013 vfs_suser(struct mount *mp, struct thread *td)
1014 {
1015 	int error;
1016 
1017 	if (jailed(td->td_ucred)) {
1018 		/*
1019 		 * If the jail of the calling thread lacks permission for
1020 		 * this type of file system, deny immediately.
1021 		 */
1022 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1023 			return (EPERM);
1024 
1025 		/*
1026 		 * If the file system was mounted outside the jail of the
1027 		 * calling thread, deny immediately.
1028 		 */
1029 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1030 			return (EPERM);
1031 	}
1032 
1033 	/*
1034 	 * If file system supports delegated administration, we don't check
1035 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1036 	 * by the file system itself.
1037 	 * If this is not the user that did original mount, we check for
1038 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1039 	 */
1040 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1041 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1042 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1043 			return (error);
1044 	}
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1050  * will be used to create fake device numbers for stat().  Also try (but
1051  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1052  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1053  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1054  *
1055  * Keep in mind that several mounts may be running in parallel.  Starting
1056  * the search one past where the previous search terminated is both a
1057  * micro-optimization and a defense against returning the same fsid to
1058  * different mounts.
1059  */
1060 void
1061 vfs_getnewfsid(struct mount *mp)
1062 {
1063 	static uint16_t mntid_base;
1064 	struct mount *nmp;
1065 	fsid_t tfsid;
1066 	int mtype;
1067 
1068 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1069 	mtx_lock(&mntid_mtx);
1070 	mtype = mp->mnt_vfc->vfc_typenum;
1071 	tfsid.val[1] = mtype;
1072 	mtype = (mtype & 0xFF) << 24;
1073 	for (;;) {
1074 		tfsid.val[0] = makedev(255,
1075 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1076 		mntid_base++;
1077 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1078 			break;
1079 		vfs_rel(nmp);
1080 	}
1081 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1082 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1083 	mtx_unlock(&mntid_mtx);
1084 }
1085 
1086 /*
1087  * Knob to control the precision of file timestamps:
1088  *
1089  *   0 = seconds only; nanoseconds zeroed.
1090  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1091  *   2 = seconds and nanoseconds, truncated to microseconds.
1092  * >=3 = seconds and nanoseconds, maximum precision.
1093  */
1094 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1095 
1096 static int timestamp_precision = TSP_USEC;
1097 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1098     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1099     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1100     "3+: sec + ns (max. precision))");
1101 
1102 /*
1103  * Get a current timestamp.
1104  */
1105 void
1106 vfs_timestamp(struct timespec *tsp)
1107 {
1108 	struct timeval tv;
1109 
1110 	switch (timestamp_precision) {
1111 	case TSP_SEC:
1112 		tsp->tv_sec = time_second;
1113 		tsp->tv_nsec = 0;
1114 		break;
1115 	case TSP_HZ:
1116 		getnanotime(tsp);
1117 		break;
1118 	case TSP_USEC:
1119 		microtime(&tv);
1120 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1121 		break;
1122 	case TSP_NSEC:
1123 	default:
1124 		nanotime(tsp);
1125 		break;
1126 	}
1127 }
1128 
1129 /*
1130  * Set vnode attributes to VNOVAL
1131  */
1132 void
1133 vattr_null(struct vattr *vap)
1134 {
1135 
1136 	vap->va_type = VNON;
1137 	vap->va_size = VNOVAL;
1138 	vap->va_bytes = VNOVAL;
1139 	vap->va_mode = VNOVAL;
1140 	vap->va_nlink = VNOVAL;
1141 	vap->va_uid = VNOVAL;
1142 	vap->va_gid = VNOVAL;
1143 	vap->va_fsid = VNOVAL;
1144 	vap->va_fileid = VNOVAL;
1145 	vap->va_blocksize = VNOVAL;
1146 	vap->va_rdev = VNOVAL;
1147 	vap->va_atime.tv_sec = VNOVAL;
1148 	vap->va_atime.tv_nsec = VNOVAL;
1149 	vap->va_mtime.tv_sec = VNOVAL;
1150 	vap->va_mtime.tv_nsec = VNOVAL;
1151 	vap->va_ctime.tv_sec = VNOVAL;
1152 	vap->va_ctime.tv_nsec = VNOVAL;
1153 	vap->va_birthtime.tv_sec = VNOVAL;
1154 	vap->va_birthtime.tv_nsec = VNOVAL;
1155 	vap->va_flags = VNOVAL;
1156 	vap->va_gen = VNOVAL;
1157 	vap->va_vaflags = 0;
1158 }
1159 
1160 /*
1161  * Try to reduce the total number of vnodes.
1162  *
1163  * This routine (and its user) are buggy in at least the following ways:
1164  * - all parameters were picked years ago when RAM sizes were significantly
1165  *   smaller
1166  * - it can pick vnodes based on pages used by the vm object, but filesystems
1167  *   like ZFS don't use it making the pick broken
1168  * - since ZFS has its own aging policy it gets partially combated by this one
1169  * - a dedicated method should be provided for filesystems to let them decide
1170  *   whether the vnode should be recycled
1171  *
1172  * This routine is called when we have too many vnodes.  It attempts
1173  * to free <count> vnodes and will potentially free vnodes that still
1174  * have VM backing store (VM backing store is typically the cause
1175  * of a vnode blowout so we want to do this).  Therefore, this operation
1176  * is not considered cheap.
1177  *
1178  * A number of conditions may prevent a vnode from being reclaimed.
1179  * the buffer cache may have references on the vnode, a directory
1180  * vnode may still have references due to the namei cache representing
1181  * underlying files, or the vnode may be in active use.   It is not
1182  * desirable to reuse such vnodes.  These conditions may cause the
1183  * number of vnodes to reach some minimum value regardless of what
1184  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1185  *
1186  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1187  * 			 entries if this argument is strue
1188  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1189  *			 pages.
1190  * @param target	 How many vnodes to reclaim.
1191  * @return		 The number of vnodes that were reclaimed.
1192  */
1193 static int
1194 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1195 {
1196 	struct vnode *vp, *mvp;
1197 	struct mount *mp;
1198 	struct vm_object *object;
1199 	u_long done;
1200 	bool retried;
1201 
1202 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1203 
1204 	retried = false;
1205 	done = 0;
1206 
1207 	mvp = vnode_list_reclaim_marker;
1208 restart:
1209 	vp = mvp;
1210 	while (done < target) {
1211 		vp = TAILQ_NEXT(vp, v_vnodelist);
1212 		if (__predict_false(vp == NULL))
1213 			break;
1214 
1215 		if (__predict_false(vp->v_type == VMARKER))
1216 			continue;
1217 
1218 		/*
1219 		 * If it's been deconstructed already, it's still
1220 		 * referenced, or it exceeds the trigger, skip it.
1221 		 * Also skip free vnodes.  We are trying to make space
1222 		 * to expand the free list, not reduce it.
1223 		 */
1224 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1225 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1226 			goto next_iter;
1227 
1228 		if (vp->v_type == VBAD || vp->v_type == VNON)
1229 			goto next_iter;
1230 
1231 		object = atomic_load_ptr(&vp->v_object);
1232 		if (object == NULL || object->resident_page_count > trigger) {
1233 			goto next_iter;
1234 		}
1235 
1236 		/*
1237 		 * Handle races against vnode allocation. Filesystems lock the
1238 		 * vnode some time after it gets returned from getnewvnode,
1239 		 * despite type and hold count being manipulated earlier.
1240 		 * Resorting to checking v_mount restores guarantees present
1241 		 * before the global list was reworked to contain all vnodes.
1242 		 */
1243 		if (!VI_TRYLOCK(vp))
1244 			goto next_iter;
1245 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1246 			VI_UNLOCK(vp);
1247 			goto next_iter;
1248 		}
1249 		if (vp->v_mount == NULL) {
1250 			VI_UNLOCK(vp);
1251 			goto next_iter;
1252 		}
1253 		vholdl(vp);
1254 		VI_UNLOCK(vp);
1255 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1256 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1257 		mtx_unlock(&vnode_list_mtx);
1258 
1259 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1260 			vdrop_recycle(vp);
1261 			goto next_iter_unlocked;
1262 		}
1263 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1264 			vdrop_recycle(vp);
1265 			vn_finished_write(mp);
1266 			goto next_iter_unlocked;
1267 		}
1268 
1269 		VI_LOCK(vp);
1270 		if (vp->v_usecount > 0 ||
1271 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1272 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1273 		    vp->v_object->resident_page_count > trigger)) {
1274 			VOP_UNLOCK(vp);
1275 			vdropl_recycle(vp);
1276 			vn_finished_write(mp);
1277 			goto next_iter_unlocked;
1278 		}
1279 		counter_u64_add(recycles_count, 1);
1280 		vgonel(vp);
1281 		VOP_UNLOCK(vp);
1282 		vdropl_recycle(vp);
1283 		vn_finished_write(mp);
1284 		done++;
1285 next_iter_unlocked:
1286 		maybe_yield();
1287 		mtx_lock(&vnode_list_mtx);
1288 		goto restart;
1289 next_iter:
1290 		MPASS(vp->v_type != VMARKER);
1291 		if (!should_yield())
1292 			continue;
1293 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1294 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1295 		mtx_unlock(&vnode_list_mtx);
1296 		kern_yield(PRI_USER);
1297 		mtx_lock(&vnode_list_mtx);
1298 		goto restart;
1299 	}
1300 	if (done == 0 && !retried) {
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1303 		retried = true;
1304 		goto restart;
1305 	}
1306 	return (done);
1307 }
1308 
1309 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1310 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1311     0,
1312     "limit on vnode free requests per call to the vnlru_free routine");
1313 
1314 /*
1315  * Attempt to reduce the free list by the requested amount.
1316  */
1317 static int
1318 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1319 {
1320 	struct vnode *vp;
1321 	struct mount *mp;
1322 	int ocount;
1323 	bool retried;
1324 
1325 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1326 	if (count > max_vnlru_free)
1327 		count = max_vnlru_free;
1328 	if (count == 0) {
1329 		mtx_unlock(&vnode_list_mtx);
1330 		return (0);
1331 	}
1332 	ocount = count;
1333 	retried = false;
1334 	vp = mvp;
1335 	for (;;) {
1336 		vp = TAILQ_NEXT(vp, v_vnodelist);
1337 		if (__predict_false(vp == NULL)) {
1338 			/*
1339 			 * The free vnode marker can be past eligible vnodes:
1340 			 * 1. if vdbatch_process trylock failed
1341 			 * 2. if vtryrecycle failed
1342 			 *
1343 			 * If so, start the scan from scratch.
1344 			 */
1345 			if (!retried && vnlru_read_freevnodes() > 0) {
1346 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1347 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1348 				vp = mvp;
1349 				retried = true;
1350 				continue;
1351 			}
1352 
1353 			/*
1354 			 * Give up
1355 			 */
1356 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1357 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1358 			mtx_unlock(&vnode_list_mtx);
1359 			break;
1360 		}
1361 		if (__predict_false(vp->v_type == VMARKER))
1362 			continue;
1363 		if (vp->v_holdcnt > 0)
1364 			continue;
1365 		/*
1366 		 * Don't recycle if our vnode is from different type
1367 		 * of mount point.  Note that mp is type-safe, the
1368 		 * check does not reach unmapped address even if
1369 		 * vnode is reclaimed.
1370 		 */
1371 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1372 		    mp->mnt_op != mnt_op) {
1373 			continue;
1374 		}
1375 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1376 			continue;
1377 		}
1378 		if (!vhold_recycle_free(vp))
1379 			continue;
1380 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1381 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1382 		mtx_unlock(&vnode_list_mtx);
1383 		/*
1384 		 * FIXME: ignores the return value, meaning it may be nothing
1385 		 * got recycled but it claims otherwise to the caller.
1386 		 *
1387 		 * Originally the value started being ignored in 2005 with
1388 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1389 		 *
1390 		 * Respecting the value can run into significant stalls if most
1391 		 * vnodes belong to one file system and it has writes
1392 		 * suspended.  In presence of many threads and millions of
1393 		 * vnodes they keep contending on the vnode_list_mtx lock only
1394 		 * to find vnodes they can't recycle.
1395 		 *
1396 		 * The solution would be to pre-check if the vnode is likely to
1397 		 * be recycle-able, but it needs to happen with the
1398 		 * vnode_list_mtx lock held. This runs into a problem where
1399 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1400 		 * writes are frozen) can take locks which LOR against it.
1401 		 *
1402 		 * Check nullfs for one example (null_getwritemount).
1403 		 */
1404 		vtryrecycle(vp);
1405 		count--;
1406 		if (count == 0) {
1407 			break;
1408 		}
1409 		mtx_lock(&vnode_list_mtx);
1410 		vp = mvp;
1411 	}
1412 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1413 	return (ocount - count);
1414 }
1415 
1416 /*
1417  * XXX: returns without vnode_list_mtx locked!
1418  */
1419 static int
1420 vnlru_free_locked(int count)
1421 {
1422 	int ret;
1423 
1424 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1425 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker);
1426 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1427 	return (ret);
1428 }
1429 
1430 static int
1431 vnlru_free(int count)
1432 {
1433 
1434 	mtx_lock(&vnode_list_mtx);
1435 	return (vnlru_free_locked(count));
1436 }
1437 
1438 void
1439 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1440 {
1441 
1442 	MPASS(mnt_op != NULL);
1443 	MPASS(mvp != NULL);
1444 	VNPASS(mvp->v_type == VMARKER, mvp);
1445 	mtx_lock(&vnode_list_mtx);
1446 	vnlru_free_impl(count, mnt_op, mvp);
1447 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1448 }
1449 
1450 struct vnode *
1451 vnlru_alloc_marker(void)
1452 {
1453 	struct vnode *mvp;
1454 
1455 	mvp = vn_alloc_marker(NULL);
1456 	mtx_lock(&vnode_list_mtx);
1457 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1458 	mtx_unlock(&vnode_list_mtx);
1459 	return (mvp);
1460 }
1461 
1462 void
1463 vnlru_free_marker(struct vnode *mvp)
1464 {
1465 	mtx_lock(&vnode_list_mtx);
1466 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1467 	mtx_unlock(&vnode_list_mtx);
1468 	vn_free_marker(mvp);
1469 }
1470 
1471 static void
1472 vnlru_recalc(void)
1473 {
1474 
1475 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1476 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1477 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1478 	vlowat = vhiwat / 2;
1479 }
1480 
1481 /*
1482  * Attempt to recycle vnodes in a context that is always safe to block.
1483  * Calling vlrurecycle() from the bowels of filesystem code has some
1484  * interesting deadlock problems.
1485  */
1486 static struct proc *vnlruproc;
1487 static int vnlruproc_sig;
1488 static u_long vnlruproc_kicks;
1489 
1490 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1491     "Number of times vnlru got woken up due to vnode shortage");
1492 
1493 /*
1494  * The main freevnodes counter is only updated when a counter local to CPU
1495  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1496  * walked to compute a more accurate total.
1497  *
1498  * Note: the actual value at any given moment can still exceed slop, but it
1499  * should not be by significant margin in practice.
1500  */
1501 #define VNLRU_FREEVNODES_SLOP 126
1502 
1503 static void __noinline
1504 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1505 {
1506 
1507 	atomic_add_long(&freevnodes, *lfreevnodes);
1508 	*lfreevnodes = 0;
1509 	critical_exit();
1510 }
1511 
1512 static __inline void
1513 vfs_freevnodes_inc(void)
1514 {
1515 	int8_t *lfreevnodes;
1516 
1517 	critical_enter();
1518 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1519 	(*lfreevnodes)++;
1520 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1521 		vfs_freevnodes_rollup(lfreevnodes);
1522 	else
1523 		critical_exit();
1524 }
1525 
1526 static __inline void
1527 vfs_freevnodes_dec(void)
1528 {
1529 	int8_t *lfreevnodes;
1530 
1531 	critical_enter();
1532 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1533 	(*lfreevnodes)--;
1534 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1535 		vfs_freevnodes_rollup(lfreevnodes);
1536 	else
1537 		critical_exit();
1538 }
1539 
1540 static u_long
1541 vnlru_read_freevnodes(void)
1542 {
1543 	long slop, rfreevnodes, rfreevnodes_old;
1544 	int cpu;
1545 
1546 	rfreevnodes = atomic_load_long(&freevnodes);
1547 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1548 
1549 	if (rfreevnodes > rfreevnodes_old)
1550 		slop = rfreevnodes - rfreevnodes_old;
1551 	else
1552 		slop = rfreevnodes_old - rfreevnodes;
1553 	if (slop < VNLRU_FREEVNODES_SLOP)
1554 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1555 	CPU_FOREACH(cpu) {
1556 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1557 	}
1558 	atomic_store_long(&freevnodes_old, rfreevnodes);
1559 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1560 }
1561 
1562 static bool
1563 vnlru_under(u_long rnumvnodes, u_long limit)
1564 {
1565 	u_long rfreevnodes, space;
1566 
1567 	if (__predict_false(rnumvnodes > desiredvnodes))
1568 		return (true);
1569 
1570 	space = desiredvnodes - rnumvnodes;
1571 	if (space < limit) {
1572 		rfreevnodes = vnlru_read_freevnodes();
1573 		if (rfreevnodes > wantfreevnodes)
1574 			space += rfreevnodes - wantfreevnodes;
1575 	}
1576 	return (space < limit);
1577 }
1578 
1579 static void
1580 vnlru_kick_locked(void)
1581 {
1582 
1583 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1584 	if (vnlruproc_sig == 0) {
1585 		vnlruproc_sig = 1;
1586 		vnlruproc_kicks++;
1587 		wakeup(vnlruproc);
1588 	}
1589 }
1590 
1591 static void
1592 vnlru_kick_cond(void)
1593 {
1594 
1595 	if (vnlru_read_freevnodes() > wantfreevnodes)
1596 		return;
1597 
1598 	if (vnlruproc_sig)
1599 		return;
1600 	mtx_lock(&vnode_list_mtx);
1601 	vnlru_kick_locked();
1602 	mtx_unlock(&vnode_list_mtx);
1603 }
1604 
1605 static void
1606 vnlru_proc_sleep(void)
1607 {
1608 
1609 	if (vnlruproc_sig) {
1610 		vnlruproc_sig = 0;
1611 		wakeup(&vnlruproc_sig);
1612 	}
1613 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1614 }
1615 
1616 /*
1617  * A lighter version of the machinery below.
1618  *
1619  * Tries to reach goals only by recycling free vnodes and does not invoke
1620  * uma_reclaim(UMA_RECLAIM_DRAIN).
1621  *
1622  * This works around pathological behavior in vnlru in presence of tons of free
1623  * vnodes, but without having to rewrite the machinery at this time. Said
1624  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1625  * (cycling through all levels of "force") when the count is transiently above
1626  * limit. This happens a lot when all vnodes are used up and vn_alloc
1627  * speculatively increments the counter.
1628  *
1629  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1630  * 1 million files in total and 20 find(1) processes stating them in parallel
1631  * (one per each tree).
1632  *
1633  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1634  * seconds to execute (time varies *wildly* between runs). With the workaround
1635  * it consistently stays around 20 seconds.
1636  *
1637  * That is to say the entire thing needs a fundamental redesign (most notably
1638  * to accommodate faster recycling), the above only tries to get it ouf the way.
1639  *
1640  * Return values are:
1641  * -1 -- fallback to regular vnlru loop
1642  *  0 -- do nothing, go to sleep
1643  * >0 -- recycle this many vnodes
1644  */
1645 static long
1646 vnlru_proc_light_pick(void)
1647 {
1648 	u_long rnumvnodes, rfreevnodes;
1649 
1650 	if (vstir || vnlruproc_sig == 1)
1651 		return (-1);
1652 
1653 	rnumvnodes = atomic_load_long(&numvnodes);
1654 	rfreevnodes = vnlru_read_freevnodes();
1655 
1656 	/*
1657 	 * vnode limit might have changed and now we may be at a significant
1658 	 * excess. Bail if we can't sort it out with free vnodes.
1659 	 */
1660 	if (rnumvnodes > desiredvnodes) {
1661 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1662 		    rfreevnodes <= wantfreevnodes) {
1663 			return (-1);
1664 		}
1665 
1666 		return (rnumvnodes - desiredvnodes);
1667 	}
1668 
1669 	/*
1670 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1671 	 * to begin with.
1672 	 */
1673 	if (rnumvnodes < wantfreevnodes) {
1674 		return (0);
1675 	}
1676 
1677 	if (rfreevnodes < wantfreevnodes) {
1678 		return (-1);
1679 	}
1680 
1681 	return (0);
1682 }
1683 
1684 static bool
1685 vnlru_proc_light(void)
1686 {
1687 	long freecount;
1688 
1689 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1690 
1691 	freecount = vnlru_proc_light_pick();
1692 	if (freecount == -1)
1693 		return (false);
1694 
1695 	if (freecount != 0) {
1696 		vnlru_free(freecount);
1697 	}
1698 
1699 	mtx_lock(&vnode_list_mtx);
1700 	vnlru_proc_sleep();
1701 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1702 	return (true);
1703 }
1704 
1705 static void
1706 vnlru_proc(void)
1707 {
1708 	u_long rnumvnodes, rfreevnodes, target;
1709 	unsigned long onumvnodes;
1710 	int done, force, trigger, usevnodes;
1711 	bool reclaim_nc_src, want_reread;
1712 
1713 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1714 	    SHUTDOWN_PRI_FIRST);
1715 
1716 	force = 0;
1717 	want_reread = false;
1718 	for (;;) {
1719 		kproc_suspend_check(vnlruproc);
1720 
1721 		if (force == 0 && vnlru_proc_light())
1722 			continue;
1723 
1724 		mtx_lock(&vnode_list_mtx);
1725 		rnumvnodes = atomic_load_long(&numvnodes);
1726 
1727 		if (want_reread) {
1728 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1729 			want_reread = false;
1730 		}
1731 
1732 		/*
1733 		 * If numvnodes is too large (due to desiredvnodes being
1734 		 * adjusted using its sysctl, or emergency growth), first
1735 		 * try to reduce it by discarding from the free list.
1736 		 */
1737 		if (rnumvnodes > desiredvnodes) {
1738 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1739 			mtx_lock(&vnode_list_mtx);
1740 			rnumvnodes = atomic_load_long(&numvnodes);
1741 		}
1742 		/*
1743 		 * Sleep if the vnode cache is in a good state.  This is
1744 		 * when it is not over-full and has space for about a 4%
1745 		 * or 9% expansion (by growing its size or inexcessively
1746 		 * reducing its free list).  Otherwise, try to reclaim
1747 		 * space for a 10% expansion.
1748 		 */
1749 		if (vstir && force == 0) {
1750 			force = 1;
1751 			vstir = false;
1752 		}
1753 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1754 			vnlru_proc_sleep();
1755 			continue;
1756 		}
1757 		rfreevnodes = vnlru_read_freevnodes();
1758 
1759 		onumvnodes = rnumvnodes;
1760 		/*
1761 		 * Calculate parameters for recycling.  These are the same
1762 		 * throughout the loop to give some semblance of fairness.
1763 		 * The trigger point is to avoid recycling vnodes with lots
1764 		 * of resident pages.  We aren't trying to free memory; we
1765 		 * are trying to recycle or at least free vnodes.
1766 		 */
1767 		if (rnumvnodes <= desiredvnodes)
1768 			usevnodes = rnumvnodes - rfreevnodes;
1769 		else
1770 			usevnodes = rnumvnodes;
1771 		if (usevnodes <= 0)
1772 			usevnodes = 1;
1773 		/*
1774 		 * The trigger value is chosen to give a conservatively
1775 		 * large value to ensure that it alone doesn't prevent
1776 		 * making progress.  The value can easily be so large that
1777 		 * it is effectively infinite in some congested and
1778 		 * misconfigured cases, and this is necessary.  Normally
1779 		 * it is about 8 to 100 (pages), which is quite large.
1780 		 */
1781 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1782 		if (force < 2)
1783 			trigger = vsmalltrigger;
1784 		reclaim_nc_src = force >= 3;
1785 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1786 		target = target / 10 + 1;
1787 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1788 		mtx_unlock(&vnode_list_mtx);
1789 		/*
1790 		 * Total number of vnodes can transiently go slightly above the
1791 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1792 		 * this happens.
1793 		 */
1794 		if (onumvnodes + 1000 > desiredvnodes && numvnodes <= desiredvnodes)
1795 			uma_reclaim(UMA_RECLAIM_DRAIN);
1796 		if (done == 0) {
1797 			if (force == 0 || force == 1) {
1798 				force = 2;
1799 				continue;
1800 			}
1801 			if (force == 2) {
1802 				force = 3;
1803 				continue;
1804 			}
1805 			want_reread = true;
1806 			force = 0;
1807 			vnlru_nowhere++;
1808 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1809 		} else {
1810 			want_reread = true;
1811 			kern_yield(PRI_USER);
1812 		}
1813 	}
1814 }
1815 
1816 static struct kproc_desc vnlru_kp = {
1817 	"vnlru",
1818 	vnlru_proc,
1819 	&vnlruproc
1820 };
1821 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1822     &vnlru_kp);
1823 
1824 /*
1825  * Routines having to do with the management of the vnode table.
1826  */
1827 
1828 /*
1829  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1830  * before we actually vgone().  This function must be called with the vnode
1831  * held to prevent the vnode from being returned to the free list midway
1832  * through vgone().
1833  */
1834 static int
1835 vtryrecycle(struct vnode *vp)
1836 {
1837 	struct mount *vnmp;
1838 
1839 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1840 	VNPASS(vp->v_holdcnt > 0, vp);
1841 	/*
1842 	 * This vnode may found and locked via some other list, if so we
1843 	 * can't recycle it yet.
1844 	 */
1845 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1846 		CTR2(KTR_VFS,
1847 		    "%s: impossible to recycle, vp %p lock is already held",
1848 		    __func__, vp);
1849 		vdrop_recycle(vp);
1850 		return (EWOULDBLOCK);
1851 	}
1852 	/*
1853 	 * Don't recycle if its filesystem is being suspended.
1854 	 */
1855 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1856 		VOP_UNLOCK(vp);
1857 		CTR2(KTR_VFS,
1858 		    "%s: impossible to recycle, cannot start the write for %p",
1859 		    __func__, vp);
1860 		vdrop_recycle(vp);
1861 		return (EBUSY);
1862 	}
1863 	/*
1864 	 * If we got this far, we need to acquire the interlock and see if
1865 	 * anyone picked up this vnode from another list.  If not, we will
1866 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1867 	 * will skip over it.
1868 	 */
1869 	VI_LOCK(vp);
1870 	if (vp->v_usecount) {
1871 		VOP_UNLOCK(vp);
1872 		vdropl_recycle(vp);
1873 		vn_finished_write(vnmp);
1874 		CTR2(KTR_VFS,
1875 		    "%s: impossible to recycle, %p is already referenced",
1876 		    __func__, vp);
1877 		return (EBUSY);
1878 	}
1879 	if (!VN_IS_DOOMED(vp)) {
1880 		counter_u64_add(recycles_free_count, 1);
1881 		vgonel(vp);
1882 	}
1883 	VOP_UNLOCK(vp);
1884 	vdropl_recycle(vp);
1885 	vn_finished_write(vnmp);
1886 	return (0);
1887 }
1888 
1889 /*
1890  * Allocate a new vnode.
1891  *
1892  * The operation never returns an error. Returning an error was disabled
1893  * in r145385 (dated 2005) with the following comment:
1894  *
1895  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1896  *
1897  * Given the age of this commit (almost 15 years at the time of writing this
1898  * comment) restoring the ability to fail requires a significant audit of
1899  * all codepaths.
1900  *
1901  * The routine can try to free a vnode or stall for up to 1 second waiting for
1902  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1903  */
1904 static u_long vn_alloc_cyclecount;
1905 static u_long vn_alloc_sleeps;
1906 
1907 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1908     "Number of times vnode allocation blocked waiting on vnlru");
1909 
1910 static struct vnode * __noinline
1911 vn_alloc_hard(struct mount *mp)
1912 {
1913 	u_long rnumvnodes, rfreevnodes;
1914 
1915 	mtx_lock(&vnode_list_mtx);
1916 	rnumvnodes = atomic_load_long(&numvnodes);
1917 	if (rnumvnodes + 1 < desiredvnodes) {
1918 		vn_alloc_cyclecount = 0;
1919 		mtx_unlock(&vnode_list_mtx);
1920 		goto alloc;
1921 	}
1922 
1923 	if (vn_alloc_cyclecount != 0) {
1924 		rfreevnodes = vnlru_read_freevnodes();
1925 		if (rfreevnodes < wantfreevnodes) {
1926 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1927 				vn_alloc_cyclecount = 0;
1928 				vstir = true;
1929 			}
1930 		} else {
1931 			vn_alloc_cyclecount = 0;
1932 		}
1933 	}
1934 
1935 	/*
1936 	 * Grow the vnode cache if it will not be above its target max
1937 	 * after growing.  Otherwise, if the free list is nonempty, try
1938 	 * to reclaim 1 item from it before growing the cache (possibly
1939 	 * above its target max if the reclamation failed or is delayed).
1940 	 * Otherwise, wait for some space.  In all cases, schedule
1941 	 * vnlru_proc() if we are getting short of space.  The watermarks
1942 	 * should be chosen so that we never wait or even reclaim from
1943 	 * the free list to below its target minimum.
1944 	 */
1945 	if (vnlru_free_locked(1) > 0)
1946 		goto alloc;
1947 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1948 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1949 		/*
1950 		 * Wait for space for a new vnode.
1951 		 */
1952 		mtx_lock(&vnode_list_mtx);
1953 		vnlru_kick_locked();
1954 		vn_alloc_sleeps++;
1955 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1956 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1957 		    vnlru_read_freevnodes() > 1)
1958 			vnlru_free_locked(1);
1959 		else
1960 			mtx_unlock(&vnode_list_mtx);
1961 	}
1962 alloc:
1963 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1964 	atomic_add_long(&numvnodes, 1);
1965 	vnlru_kick_cond();
1966 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1967 }
1968 
1969 static struct vnode *
1970 vn_alloc(struct mount *mp)
1971 {
1972 	u_long rnumvnodes;
1973 
1974 	if (__predict_false(vn_alloc_cyclecount != 0))
1975 		return (vn_alloc_hard(mp));
1976 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1977 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
1978 		atomic_subtract_long(&numvnodes, 1);
1979 		return (vn_alloc_hard(mp));
1980 	}
1981 
1982 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1983 }
1984 
1985 static void
1986 vn_free(struct vnode *vp)
1987 {
1988 
1989 	atomic_subtract_long(&numvnodes, 1);
1990 	uma_zfree_smr(vnode_zone, vp);
1991 }
1992 
1993 /*
1994  * Return the next vnode from the free list.
1995  */
1996 int
1997 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1998     struct vnode **vpp)
1999 {
2000 	struct vnode *vp;
2001 	struct thread *td;
2002 	struct lock_object *lo;
2003 
2004 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2005 
2006 	KASSERT(vops->registered,
2007 	    ("%s: not registered vector op %p\n", __func__, vops));
2008 	cache_validate_vop_vector(mp, vops);
2009 
2010 	td = curthread;
2011 	if (td->td_vp_reserved != NULL) {
2012 		vp = td->td_vp_reserved;
2013 		td->td_vp_reserved = NULL;
2014 	} else {
2015 		vp = vn_alloc(mp);
2016 	}
2017 	counter_u64_add(vnodes_created, 1);
2018 
2019 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2020 
2021 	/*
2022 	 * Locks are given the generic name "vnode" when created.
2023 	 * Follow the historic practice of using the filesystem
2024 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2025 	 *
2026 	 * Locks live in a witness group keyed on their name. Thus,
2027 	 * when a lock is renamed, it must also move from the witness
2028 	 * group of its old name to the witness group of its new name.
2029 	 *
2030 	 * The change only needs to be made when the vnode moves
2031 	 * from one filesystem type to another. We ensure that each
2032 	 * filesystem use a single static name pointer for its tag so
2033 	 * that we can compare pointers rather than doing a strcmp().
2034 	 */
2035 	lo = &vp->v_vnlock->lock_object;
2036 #ifdef WITNESS
2037 	if (lo->lo_name != tag) {
2038 #endif
2039 		lo->lo_name = tag;
2040 #ifdef WITNESS
2041 		WITNESS_DESTROY(lo);
2042 		WITNESS_INIT(lo, tag);
2043 	}
2044 #endif
2045 	/*
2046 	 * By default, don't allow shared locks unless filesystems opt-in.
2047 	 */
2048 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2049 	/*
2050 	 * Finalize various vnode identity bits.
2051 	 */
2052 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2053 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2054 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2055 	vp->v_type = VNON;
2056 	vp->v_op = vops;
2057 	vp->v_irflag = 0;
2058 	v_init_counters(vp);
2059 	vn_seqc_init(vp);
2060 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2061 #ifdef DIAGNOSTIC
2062 	if (mp == NULL && vops != &dead_vnodeops)
2063 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2064 #endif
2065 #ifdef MAC
2066 	mac_vnode_init(vp);
2067 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2068 		mac_vnode_associate_singlelabel(mp, vp);
2069 #endif
2070 	if (mp != NULL) {
2071 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2072 	}
2073 
2074 	/*
2075 	 * For the filesystems which do not use vfs_hash_insert(),
2076 	 * still initialize v_hash to have vfs_hash_index() useful.
2077 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2078 	 * its own hashing.
2079 	 */
2080 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2081 
2082 	*vpp = vp;
2083 	return (0);
2084 }
2085 
2086 void
2087 getnewvnode_reserve(void)
2088 {
2089 	struct thread *td;
2090 
2091 	td = curthread;
2092 	MPASS(td->td_vp_reserved == NULL);
2093 	td->td_vp_reserved = vn_alloc(NULL);
2094 }
2095 
2096 void
2097 getnewvnode_drop_reserve(void)
2098 {
2099 	struct thread *td;
2100 
2101 	td = curthread;
2102 	if (td->td_vp_reserved != NULL) {
2103 		vn_free(td->td_vp_reserved);
2104 		td->td_vp_reserved = NULL;
2105 	}
2106 }
2107 
2108 static void __noinline
2109 freevnode(struct vnode *vp)
2110 {
2111 	struct bufobj *bo;
2112 
2113 	/*
2114 	 * The vnode has been marked for destruction, so free it.
2115 	 *
2116 	 * The vnode will be returned to the zone where it will
2117 	 * normally remain until it is needed for another vnode. We
2118 	 * need to cleanup (or verify that the cleanup has already
2119 	 * been done) any residual data left from its current use
2120 	 * so as not to contaminate the freshly allocated vnode.
2121 	 */
2122 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2123 	/*
2124 	 * Paired with vgone.
2125 	 */
2126 	vn_seqc_write_end_free(vp);
2127 
2128 	bo = &vp->v_bufobj;
2129 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2130 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2131 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2132 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2133 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2134 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2135 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2136 	    ("clean blk trie not empty"));
2137 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2138 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2139 	    ("dirty blk trie not empty"));
2140 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2141 	    ("Dangling rangelock waiters"));
2142 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2143 	    ("Leaked inactivation"));
2144 	VI_UNLOCK(vp);
2145 	cache_assert_no_entries(vp);
2146 
2147 #ifdef MAC
2148 	mac_vnode_destroy(vp);
2149 #endif
2150 	if (vp->v_pollinfo != NULL) {
2151 		/*
2152 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2153 		 * here while having another vnode locked when trying to
2154 		 * satisfy a lookup and needing to recycle.
2155 		 */
2156 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2157 		destroy_vpollinfo(vp->v_pollinfo);
2158 		VOP_UNLOCK(vp);
2159 		vp->v_pollinfo = NULL;
2160 	}
2161 	vp->v_mountedhere = NULL;
2162 	vp->v_unpcb = NULL;
2163 	vp->v_rdev = NULL;
2164 	vp->v_fifoinfo = NULL;
2165 	vp->v_iflag = 0;
2166 	vp->v_vflag = 0;
2167 	bo->bo_flag = 0;
2168 	vn_free(vp);
2169 }
2170 
2171 /*
2172  * Delete from old mount point vnode list, if on one.
2173  */
2174 static void
2175 delmntque(struct vnode *vp)
2176 {
2177 	struct mount *mp;
2178 
2179 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2180 
2181 	mp = vp->v_mount;
2182 	MNT_ILOCK(mp);
2183 	VI_LOCK(vp);
2184 	vp->v_mount = NULL;
2185 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2186 		("bad mount point vnode list size"));
2187 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2188 	mp->mnt_nvnodelistsize--;
2189 	MNT_REL(mp);
2190 	MNT_IUNLOCK(mp);
2191 	/*
2192 	 * The caller expects the interlock to be still held.
2193 	 */
2194 	ASSERT_VI_LOCKED(vp, __func__);
2195 }
2196 
2197 static int
2198 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2199 {
2200 
2201 	KASSERT(vp->v_mount == NULL,
2202 		("insmntque: vnode already on per mount vnode list"));
2203 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2204 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2205 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2206 	} else {
2207 		KASSERT(!dtr,
2208 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2209 		    __func__));
2210 	}
2211 
2212 	/*
2213 	 * We acquire the vnode interlock early to ensure that the
2214 	 * vnode cannot be recycled by another process releasing a
2215 	 * holdcnt on it before we get it on both the vnode list
2216 	 * and the active vnode list. The mount mutex protects only
2217 	 * manipulation of the vnode list and the vnode freelist
2218 	 * mutex protects only manipulation of the active vnode list.
2219 	 * Hence the need to hold the vnode interlock throughout.
2220 	 */
2221 	MNT_ILOCK(mp);
2222 	VI_LOCK(vp);
2223 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2224 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2225 	    mp->mnt_nvnodelistsize == 0)) &&
2226 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2227 		VI_UNLOCK(vp);
2228 		MNT_IUNLOCK(mp);
2229 		if (dtr) {
2230 			vp->v_data = NULL;
2231 			vp->v_op = &dead_vnodeops;
2232 			vgone(vp);
2233 			vput(vp);
2234 		}
2235 		return (EBUSY);
2236 	}
2237 	vp->v_mount = mp;
2238 	MNT_REF(mp);
2239 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2240 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2241 		("neg mount point vnode list size"));
2242 	mp->mnt_nvnodelistsize++;
2243 	VI_UNLOCK(vp);
2244 	MNT_IUNLOCK(mp);
2245 	return (0);
2246 }
2247 
2248 /*
2249  * Insert into list of vnodes for the new mount point, if available.
2250  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2251  * leaves handling of the vnode to the caller.
2252  */
2253 int
2254 insmntque(struct vnode *vp, struct mount *mp)
2255 {
2256 	return (insmntque1_int(vp, mp, true));
2257 }
2258 
2259 int
2260 insmntque1(struct vnode *vp, struct mount *mp)
2261 {
2262 	return (insmntque1_int(vp, mp, false));
2263 }
2264 
2265 /*
2266  * Flush out and invalidate all buffers associated with a bufobj
2267  * Called with the underlying object locked.
2268  */
2269 int
2270 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2271 {
2272 	int error;
2273 
2274 	BO_LOCK(bo);
2275 	if (flags & V_SAVE) {
2276 		error = bufobj_wwait(bo, slpflag, slptimeo);
2277 		if (error) {
2278 			BO_UNLOCK(bo);
2279 			return (error);
2280 		}
2281 		if (bo->bo_dirty.bv_cnt > 0) {
2282 			BO_UNLOCK(bo);
2283 			do {
2284 				error = BO_SYNC(bo, MNT_WAIT);
2285 			} while (error == ERELOOKUP);
2286 			if (error != 0)
2287 				return (error);
2288 			BO_LOCK(bo);
2289 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2290 				BO_UNLOCK(bo);
2291 				return (EBUSY);
2292 			}
2293 		}
2294 	}
2295 	/*
2296 	 * If you alter this loop please notice that interlock is dropped and
2297 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2298 	 * no race conditions occur from this.
2299 	 */
2300 	do {
2301 		error = flushbuflist(&bo->bo_clean,
2302 		    flags, bo, slpflag, slptimeo);
2303 		if (error == 0 && !(flags & V_CLEANONLY))
2304 			error = flushbuflist(&bo->bo_dirty,
2305 			    flags, bo, slpflag, slptimeo);
2306 		if (error != 0 && error != EAGAIN) {
2307 			BO_UNLOCK(bo);
2308 			return (error);
2309 		}
2310 	} while (error != 0);
2311 
2312 	/*
2313 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2314 	 * have write I/O in-progress but if there is a VM object then the
2315 	 * VM object can also have read-I/O in-progress.
2316 	 */
2317 	do {
2318 		bufobj_wwait(bo, 0, 0);
2319 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2320 			BO_UNLOCK(bo);
2321 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2322 			BO_LOCK(bo);
2323 		}
2324 	} while (bo->bo_numoutput > 0);
2325 	BO_UNLOCK(bo);
2326 
2327 	/*
2328 	 * Destroy the copy in the VM cache, too.
2329 	 */
2330 	if (bo->bo_object != NULL &&
2331 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2332 		VM_OBJECT_WLOCK(bo->bo_object);
2333 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2334 		    OBJPR_CLEANONLY : 0);
2335 		VM_OBJECT_WUNLOCK(bo->bo_object);
2336 	}
2337 
2338 #ifdef INVARIANTS
2339 	BO_LOCK(bo);
2340 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2341 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2342 	    bo->bo_clean.bv_cnt > 0))
2343 		panic("vinvalbuf: flush failed");
2344 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2345 	    bo->bo_dirty.bv_cnt > 0)
2346 		panic("vinvalbuf: flush dirty failed");
2347 	BO_UNLOCK(bo);
2348 #endif
2349 	return (0);
2350 }
2351 
2352 /*
2353  * Flush out and invalidate all buffers associated with a vnode.
2354  * Called with the underlying object locked.
2355  */
2356 int
2357 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2358 {
2359 
2360 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2361 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2362 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2363 		return (0);
2364 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2365 }
2366 
2367 /*
2368  * Flush out buffers on the specified list.
2369  *
2370  */
2371 static int
2372 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2373     int slptimeo)
2374 {
2375 	struct buf *bp, *nbp;
2376 	int retval, error;
2377 	daddr_t lblkno;
2378 	b_xflags_t xflags;
2379 
2380 	ASSERT_BO_WLOCKED(bo);
2381 
2382 	retval = 0;
2383 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2384 		/*
2385 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2386 		 * do not skip any buffers. If we are flushing only V_NORMAL
2387 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2388 		 * flushing only V_ALT buffers then skip buffers not marked
2389 		 * as BX_ALTDATA.
2390 		 */
2391 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2392 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2393 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2394 			continue;
2395 		}
2396 		if (nbp != NULL) {
2397 			lblkno = nbp->b_lblkno;
2398 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2399 		}
2400 		retval = EAGAIN;
2401 		error = BUF_TIMELOCK(bp,
2402 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2403 		    "flushbuf", slpflag, slptimeo);
2404 		if (error) {
2405 			BO_LOCK(bo);
2406 			return (error != ENOLCK ? error : EAGAIN);
2407 		}
2408 		KASSERT(bp->b_bufobj == bo,
2409 		    ("bp %p wrong b_bufobj %p should be %p",
2410 		    bp, bp->b_bufobj, bo));
2411 		/*
2412 		 * XXX Since there are no node locks for NFS, I
2413 		 * believe there is a slight chance that a delayed
2414 		 * write will occur while sleeping just above, so
2415 		 * check for it.
2416 		 */
2417 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2418 		    (flags & V_SAVE)) {
2419 			bremfree(bp);
2420 			bp->b_flags |= B_ASYNC;
2421 			bwrite(bp);
2422 			BO_LOCK(bo);
2423 			return (EAGAIN);	/* XXX: why not loop ? */
2424 		}
2425 		bremfree(bp);
2426 		bp->b_flags |= (B_INVAL | B_RELBUF);
2427 		bp->b_flags &= ~B_ASYNC;
2428 		brelse(bp);
2429 		BO_LOCK(bo);
2430 		if (nbp == NULL)
2431 			break;
2432 		nbp = gbincore(bo, lblkno);
2433 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2434 		    != xflags)
2435 			break;			/* nbp invalid */
2436 	}
2437 	return (retval);
2438 }
2439 
2440 int
2441 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2442 {
2443 	struct buf *bp;
2444 	int error;
2445 	daddr_t lblkno;
2446 
2447 	ASSERT_BO_LOCKED(bo);
2448 
2449 	for (lblkno = startn;;) {
2450 again:
2451 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2452 		if (bp == NULL || bp->b_lblkno >= endn ||
2453 		    bp->b_lblkno < startn)
2454 			break;
2455 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2456 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2457 		if (error != 0) {
2458 			BO_RLOCK(bo);
2459 			if (error == ENOLCK)
2460 				goto again;
2461 			return (error);
2462 		}
2463 		KASSERT(bp->b_bufobj == bo,
2464 		    ("bp %p wrong b_bufobj %p should be %p",
2465 		    bp, bp->b_bufobj, bo));
2466 		lblkno = bp->b_lblkno + 1;
2467 		if ((bp->b_flags & B_MANAGED) == 0)
2468 			bremfree(bp);
2469 		bp->b_flags |= B_RELBUF;
2470 		/*
2471 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2472 		 * pages backing each buffer in the range are unlikely to be
2473 		 * reused.  Dirty buffers will have the hint applied once
2474 		 * they've been written.
2475 		 */
2476 		if ((bp->b_flags & B_VMIO) != 0)
2477 			bp->b_flags |= B_NOREUSE;
2478 		brelse(bp);
2479 		BO_RLOCK(bo);
2480 	}
2481 	return (0);
2482 }
2483 
2484 /*
2485  * Truncate a file's buffer and pages to a specified length.  This
2486  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2487  * sync activity.
2488  */
2489 int
2490 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2491 {
2492 	struct buf *bp, *nbp;
2493 	struct bufobj *bo;
2494 	daddr_t startlbn;
2495 
2496 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2497 	    vp, blksize, (uintmax_t)length);
2498 
2499 	/*
2500 	 * Round up to the *next* lbn.
2501 	 */
2502 	startlbn = howmany(length, blksize);
2503 
2504 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2505 
2506 	bo = &vp->v_bufobj;
2507 restart_unlocked:
2508 	BO_LOCK(bo);
2509 
2510 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2511 		;
2512 
2513 	if (length > 0) {
2514 restartsync:
2515 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2516 			if (bp->b_lblkno > 0)
2517 				continue;
2518 			/*
2519 			 * Since we hold the vnode lock this should only
2520 			 * fail if we're racing with the buf daemon.
2521 			 */
2522 			if (BUF_LOCK(bp,
2523 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2524 			    BO_LOCKPTR(bo)) == ENOLCK)
2525 				goto restart_unlocked;
2526 
2527 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2528 			    ("buf(%p) on dirty queue without DELWRI", bp));
2529 
2530 			bremfree(bp);
2531 			bawrite(bp);
2532 			BO_LOCK(bo);
2533 			goto restartsync;
2534 		}
2535 	}
2536 
2537 	bufobj_wwait(bo, 0, 0);
2538 	BO_UNLOCK(bo);
2539 	vnode_pager_setsize(vp, length);
2540 
2541 	return (0);
2542 }
2543 
2544 /*
2545  * Invalidate the cached pages of a file's buffer within the range of block
2546  * numbers [startlbn, endlbn).
2547  */
2548 void
2549 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2550     int blksize)
2551 {
2552 	struct bufobj *bo;
2553 	off_t start, end;
2554 
2555 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2556 
2557 	start = blksize * startlbn;
2558 	end = blksize * endlbn;
2559 
2560 	bo = &vp->v_bufobj;
2561 	BO_LOCK(bo);
2562 	MPASS(blksize == bo->bo_bsize);
2563 
2564 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2565 		;
2566 
2567 	BO_UNLOCK(bo);
2568 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2569 }
2570 
2571 static int
2572 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2573     daddr_t startlbn, daddr_t endlbn)
2574 {
2575 	struct buf *bp, *nbp;
2576 	bool anyfreed;
2577 
2578 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2579 	ASSERT_BO_LOCKED(bo);
2580 
2581 	do {
2582 		anyfreed = false;
2583 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2584 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2585 				continue;
2586 			if (BUF_LOCK(bp,
2587 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2588 			    BO_LOCKPTR(bo)) == ENOLCK) {
2589 				BO_LOCK(bo);
2590 				return (EAGAIN);
2591 			}
2592 
2593 			bremfree(bp);
2594 			bp->b_flags |= B_INVAL | B_RELBUF;
2595 			bp->b_flags &= ~B_ASYNC;
2596 			brelse(bp);
2597 			anyfreed = true;
2598 
2599 			BO_LOCK(bo);
2600 			if (nbp != NULL &&
2601 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2602 			    nbp->b_vp != vp ||
2603 			    (nbp->b_flags & B_DELWRI) != 0))
2604 				return (EAGAIN);
2605 		}
2606 
2607 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2608 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2609 				continue;
2610 			if (BUF_LOCK(bp,
2611 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2612 			    BO_LOCKPTR(bo)) == ENOLCK) {
2613 				BO_LOCK(bo);
2614 				return (EAGAIN);
2615 			}
2616 			bremfree(bp);
2617 			bp->b_flags |= B_INVAL | B_RELBUF;
2618 			bp->b_flags &= ~B_ASYNC;
2619 			brelse(bp);
2620 			anyfreed = true;
2621 
2622 			BO_LOCK(bo);
2623 			if (nbp != NULL &&
2624 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2625 			    (nbp->b_vp != vp) ||
2626 			    (nbp->b_flags & B_DELWRI) == 0))
2627 				return (EAGAIN);
2628 		}
2629 	} while (anyfreed);
2630 	return (0);
2631 }
2632 
2633 static void
2634 buf_vlist_remove(struct buf *bp)
2635 {
2636 	struct bufv *bv;
2637 	b_xflags_t flags;
2638 
2639 	flags = bp->b_xflags;
2640 
2641 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2642 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2643 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2644 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2645 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2646 
2647 	if ((flags & BX_VNDIRTY) != 0)
2648 		bv = &bp->b_bufobj->bo_dirty;
2649 	else
2650 		bv = &bp->b_bufobj->bo_clean;
2651 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2652 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2653 	bv->bv_cnt--;
2654 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2655 }
2656 
2657 /*
2658  * Add the buffer to the sorted clean or dirty block list.
2659  *
2660  * NOTE: xflags is passed as a constant, optimizing this inline function!
2661  */
2662 static void
2663 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2664 {
2665 	struct bufv *bv;
2666 	struct buf *n;
2667 	int error;
2668 
2669 	ASSERT_BO_WLOCKED(bo);
2670 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2671 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2672 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2673 	    ("dead bo %p", bo));
2674 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2675 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2676 	bp->b_xflags |= xflags;
2677 	if (xflags & BX_VNDIRTY)
2678 		bv = &bo->bo_dirty;
2679 	else
2680 		bv = &bo->bo_clean;
2681 
2682 	/*
2683 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2684 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2685 	 * than _ge.
2686 	 */
2687 	if (bv->bv_cnt == 0 ||
2688 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2689 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2690 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2691 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2692 	else
2693 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2694 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2695 	if (error)
2696 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2697 	bv->bv_cnt++;
2698 }
2699 
2700 /*
2701  * Look up a buffer using the buffer tries.
2702  */
2703 struct buf *
2704 gbincore(struct bufobj *bo, daddr_t lblkno)
2705 {
2706 	struct buf *bp;
2707 
2708 	ASSERT_BO_LOCKED(bo);
2709 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2710 	if (bp != NULL)
2711 		return (bp);
2712 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2713 }
2714 
2715 /*
2716  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2717  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2718  * stability of the result.  Like other lockless lookups, the found buf may
2719  * already be invalid by the time this function returns.
2720  */
2721 struct buf *
2722 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2723 {
2724 	struct buf *bp;
2725 
2726 	ASSERT_BO_UNLOCKED(bo);
2727 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2728 	if (bp != NULL)
2729 		return (bp);
2730 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2731 }
2732 
2733 /*
2734  * Associate a buffer with a vnode.
2735  */
2736 void
2737 bgetvp(struct vnode *vp, struct buf *bp)
2738 {
2739 	struct bufobj *bo;
2740 
2741 	bo = &vp->v_bufobj;
2742 	ASSERT_BO_WLOCKED(bo);
2743 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2744 
2745 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2746 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2747 	    ("bgetvp: bp already attached! %p", bp));
2748 
2749 	vhold(vp);
2750 	bp->b_vp = vp;
2751 	bp->b_bufobj = bo;
2752 	/*
2753 	 * Insert onto list for new vnode.
2754 	 */
2755 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2756 }
2757 
2758 /*
2759  * Disassociate a buffer from a vnode.
2760  */
2761 void
2762 brelvp(struct buf *bp)
2763 {
2764 	struct bufobj *bo;
2765 	struct vnode *vp;
2766 
2767 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2768 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2769 
2770 	/*
2771 	 * Delete from old vnode list, if on one.
2772 	 */
2773 	vp = bp->b_vp;		/* XXX */
2774 	bo = bp->b_bufobj;
2775 	BO_LOCK(bo);
2776 	buf_vlist_remove(bp);
2777 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2778 		bo->bo_flag &= ~BO_ONWORKLST;
2779 		mtx_lock(&sync_mtx);
2780 		LIST_REMOVE(bo, bo_synclist);
2781 		syncer_worklist_len--;
2782 		mtx_unlock(&sync_mtx);
2783 	}
2784 	bp->b_vp = NULL;
2785 	bp->b_bufobj = NULL;
2786 	BO_UNLOCK(bo);
2787 	vdrop(vp);
2788 }
2789 
2790 /*
2791  * Add an item to the syncer work queue.
2792  */
2793 static void
2794 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2795 {
2796 	int slot;
2797 
2798 	ASSERT_BO_WLOCKED(bo);
2799 
2800 	mtx_lock(&sync_mtx);
2801 	if (bo->bo_flag & BO_ONWORKLST)
2802 		LIST_REMOVE(bo, bo_synclist);
2803 	else {
2804 		bo->bo_flag |= BO_ONWORKLST;
2805 		syncer_worklist_len++;
2806 	}
2807 
2808 	if (delay > syncer_maxdelay - 2)
2809 		delay = syncer_maxdelay - 2;
2810 	slot = (syncer_delayno + delay) & syncer_mask;
2811 
2812 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2813 	mtx_unlock(&sync_mtx);
2814 }
2815 
2816 static int
2817 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2818 {
2819 	int error, len;
2820 
2821 	mtx_lock(&sync_mtx);
2822 	len = syncer_worklist_len - sync_vnode_count;
2823 	mtx_unlock(&sync_mtx);
2824 	error = SYSCTL_OUT(req, &len, sizeof(len));
2825 	return (error);
2826 }
2827 
2828 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2829     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2830     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2831 
2832 static struct proc *updateproc;
2833 static void sched_sync(void);
2834 static struct kproc_desc up_kp = {
2835 	"syncer",
2836 	sched_sync,
2837 	&updateproc
2838 };
2839 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2840 
2841 static int
2842 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2843 {
2844 	struct vnode *vp;
2845 	struct mount *mp;
2846 
2847 	*bo = LIST_FIRST(slp);
2848 	if (*bo == NULL)
2849 		return (0);
2850 	vp = bo2vnode(*bo);
2851 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2852 		return (1);
2853 	/*
2854 	 * We use vhold in case the vnode does not
2855 	 * successfully sync.  vhold prevents the vnode from
2856 	 * going away when we unlock the sync_mtx so that
2857 	 * we can acquire the vnode interlock.
2858 	 */
2859 	vholdl(vp);
2860 	mtx_unlock(&sync_mtx);
2861 	VI_UNLOCK(vp);
2862 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2863 		vdrop(vp);
2864 		mtx_lock(&sync_mtx);
2865 		return (*bo == LIST_FIRST(slp));
2866 	}
2867 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2868 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2869 	    ("suspended mp syncing vp %p", vp));
2870 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2871 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2872 	VOP_UNLOCK(vp);
2873 	vn_finished_write(mp);
2874 	BO_LOCK(*bo);
2875 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2876 		/*
2877 		 * Put us back on the worklist.  The worklist
2878 		 * routine will remove us from our current
2879 		 * position and then add us back in at a later
2880 		 * position.
2881 		 */
2882 		vn_syncer_add_to_worklist(*bo, syncdelay);
2883 	}
2884 	BO_UNLOCK(*bo);
2885 	vdrop(vp);
2886 	mtx_lock(&sync_mtx);
2887 	return (0);
2888 }
2889 
2890 static int first_printf = 1;
2891 
2892 /*
2893  * System filesystem synchronizer daemon.
2894  */
2895 static void
2896 sched_sync(void)
2897 {
2898 	struct synclist *next, *slp;
2899 	struct bufobj *bo;
2900 	long starttime;
2901 	struct thread *td = curthread;
2902 	int last_work_seen;
2903 	int net_worklist_len;
2904 	int syncer_final_iter;
2905 	int error;
2906 
2907 	last_work_seen = 0;
2908 	syncer_final_iter = 0;
2909 	syncer_state = SYNCER_RUNNING;
2910 	starttime = time_uptime;
2911 	td->td_pflags |= TDP_NORUNNINGBUF;
2912 
2913 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2914 	    SHUTDOWN_PRI_LAST);
2915 
2916 	mtx_lock(&sync_mtx);
2917 	for (;;) {
2918 		if (syncer_state == SYNCER_FINAL_DELAY &&
2919 		    syncer_final_iter == 0) {
2920 			mtx_unlock(&sync_mtx);
2921 			kproc_suspend_check(td->td_proc);
2922 			mtx_lock(&sync_mtx);
2923 		}
2924 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2925 		if (syncer_state != SYNCER_RUNNING &&
2926 		    starttime != time_uptime) {
2927 			if (first_printf) {
2928 				printf("\nSyncing disks, vnodes remaining... ");
2929 				first_printf = 0;
2930 			}
2931 			printf("%d ", net_worklist_len);
2932 		}
2933 		starttime = time_uptime;
2934 
2935 		/*
2936 		 * Push files whose dirty time has expired.  Be careful
2937 		 * of interrupt race on slp queue.
2938 		 *
2939 		 * Skip over empty worklist slots when shutting down.
2940 		 */
2941 		do {
2942 			slp = &syncer_workitem_pending[syncer_delayno];
2943 			syncer_delayno += 1;
2944 			if (syncer_delayno == syncer_maxdelay)
2945 				syncer_delayno = 0;
2946 			next = &syncer_workitem_pending[syncer_delayno];
2947 			/*
2948 			 * If the worklist has wrapped since the
2949 			 * it was emptied of all but syncer vnodes,
2950 			 * switch to the FINAL_DELAY state and run
2951 			 * for one more second.
2952 			 */
2953 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2954 			    net_worklist_len == 0 &&
2955 			    last_work_seen == syncer_delayno) {
2956 				syncer_state = SYNCER_FINAL_DELAY;
2957 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2958 			}
2959 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2960 		    syncer_worklist_len > 0);
2961 
2962 		/*
2963 		 * Keep track of the last time there was anything
2964 		 * on the worklist other than syncer vnodes.
2965 		 * Return to the SHUTTING_DOWN state if any
2966 		 * new work appears.
2967 		 */
2968 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2969 			last_work_seen = syncer_delayno;
2970 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2971 			syncer_state = SYNCER_SHUTTING_DOWN;
2972 		while (!LIST_EMPTY(slp)) {
2973 			error = sync_vnode(slp, &bo, td);
2974 			if (error == 1) {
2975 				LIST_REMOVE(bo, bo_synclist);
2976 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2977 				continue;
2978 			}
2979 
2980 			if (first_printf == 0) {
2981 				/*
2982 				 * Drop the sync mutex, because some watchdog
2983 				 * drivers need to sleep while patting
2984 				 */
2985 				mtx_unlock(&sync_mtx);
2986 				wdog_kern_pat(WD_LASTVAL);
2987 				mtx_lock(&sync_mtx);
2988 			}
2989 		}
2990 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2991 			syncer_final_iter--;
2992 		/*
2993 		 * The variable rushjob allows the kernel to speed up the
2994 		 * processing of the filesystem syncer process. A rushjob
2995 		 * value of N tells the filesystem syncer to process the next
2996 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2997 		 * is used by the soft update code to speed up the filesystem
2998 		 * syncer process when the incore state is getting so far
2999 		 * ahead of the disk that the kernel memory pool is being
3000 		 * threatened with exhaustion.
3001 		 */
3002 		if (rushjob > 0) {
3003 			rushjob -= 1;
3004 			continue;
3005 		}
3006 		/*
3007 		 * Just sleep for a short period of time between
3008 		 * iterations when shutting down to allow some I/O
3009 		 * to happen.
3010 		 *
3011 		 * If it has taken us less than a second to process the
3012 		 * current work, then wait. Otherwise start right over
3013 		 * again. We can still lose time if any single round
3014 		 * takes more than two seconds, but it does not really
3015 		 * matter as we are just trying to generally pace the
3016 		 * filesystem activity.
3017 		 */
3018 		if (syncer_state != SYNCER_RUNNING ||
3019 		    time_uptime == starttime) {
3020 			thread_lock(td);
3021 			sched_prio(td, PPAUSE);
3022 			thread_unlock(td);
3023 		}
3024 		if (syncer_state != SYNCER_RUNNING)
3025 			cv_timedwait(&sync_wakeup, &sync_mtx,
3026 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3027 		else if (time_uptime == starttime)
3028 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3029 	}
3030 }
3031 
3032 /*
3033  * Request the syncer daemon to speed up its work.
3034  * We never push it to speed up more than half of its
3035  * normal turn time, otherwise it could take over the cpu.
3036  */
3037 int
3038 speedup_syncer(void)
3039 {
3040 	int ret = 0;
3041 
3042 	mtx_lock(&sync_mtx);
3043 	if (rushjob < syncdelay / 2) {
3044 		rushjob += 1;
3045 		stat_rush_requests += 1;
3046 		ret = 1;
3047 	}
3048 	mtx_unlock(&sync_mtx);
3049 	cv_broadcast(&sync_wakeup);
3050 	return (ret);
3051 }
3052 
3053 /*
3054  * Tell the syncer to speed up its work and run though its work
3055  * list several times, then tell it to shut down.
3056  */
3057 static void
3058 syncer_shutdown(void *arg, int howto)
3059 {
3060 
3061 	if (howto & RB_NOSYNC)
3062 		return;
3063 	mtx_lock(&sync_mtx);
3064 	syncer_state = SYNCER_SHUTTING_DOWN;
3065 	rushjob = 0;
3066 	mtx_unlock(&sync_mtx);
3067 	cv_broadcast(&sync_wakeup);
3068 	kproc_shutdown(arg, howto);
3069 }
3070 
3071 void
3072 syncer_suspend(void)
3073 {
3074 
3075 	syncer_shutdown(updateproc, 0);
3076 }
3077 
3078 void
3079 syncer_resume(void)
3080 {
3081 
3082 	mtx_lock(&sync_mtx);
3083 	first_printf = 1;
3084 	syncer_state = SYNCER_RUNNING;
3085 	mtx_unlock(&sync_mtx);
3086 	cv_broadcast(&sync_wakeup);
3087 	kproc_resume(updateproc);
3088 }
3089 
3090 /*
3091  * Move the buffer between the clean and dirty lists of its vnode.
3092  */
3093 void
3094 reassignbuf(struct buf *bp)
3095 {
3096 	struct vnode *vp;
3097 	struct bufobj *bo;
3098 	int delay;
3099 #ifdef INVARIANTS
3100 	struct bufv *bv;
3101 #endif
3102 
3103 	vp = bp->b_vp;
3104 	bo = bp->b_bufobj;
3105 
3106 	KASSERT((bp->b_flags & B_PAGING) == 0,
3107 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3108 
3109 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3110 	    bp, bp->b_vp, bp->b_flags);
3111 
3112 	BO_LOCK(bo);
3113 	buf_vlist_remove(bp);
3114 
3115 	/*
3116 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3117 	 * of clean buffers.
3118 	 */
3119 	if (bp->b_flags & B_DELWRI) {
3120 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3121 			switch (vp->v_type) {
3122 			case VDIR:
3123 				delay = dirdelay;
3124 				break;
3125 			case VCHR:
3126 				delay = metadelay;
3127 				break;
3128 			default:
3129 				delay = filedelay;
3130 			}
3131 			vn_syncer_add_to_worklist(bo, delay);
3132 		}
3133 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3134 	} else {
3135 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3136 
3137 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3138 			mtx_lock(&sync_mtx);
3139 			LIST_REMOVE(bo, bo_synclist);
3140 			syncer_worklist_len--;
3141 			mtx_unlock(&sync_mtx);
3142 			bo->bo_flag &= ~BO_ONWORKLST;
3143 		}
3144 	}
3145 #ifdef INVARIANTS
3146 	bv = &bo->bo_clean;
3147 	bp = TAILQ_FIRST(&bv->bv_hd);
3148 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3149 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3150 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3151 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3152 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3153 	bv = &bo->bo_dirty;
3154 	bp = TAILQ_FIRST(&bv->bv_hd);
3155 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3156 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3157 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3158 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3159 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3160 #endif
3161 	BO_UNLOCK(bo);
3162 }
3163 
3164 static void
3165 v_init_counters(struct vnode *vp)
3166 {
3167 
3168 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3169 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3170 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3171 
3172 	refcount_init(&vp->v_holdcnt, 1);
3173 	refcount_init(&vp->v_usecount, 1);
3174 }
3175 
3176 /*
3177  * Grab a particular vnode from the free list, increment its
3178  * reference count and lock it.  VIRF_DOOMED is set if the vnode
3179  * is being destroyed.  Only callers who specify LK_RETRY will
3180  * see doomed vnodes.  If inactive processing was delayed in
3181  * vput try to do it here.
3182  *
3183  * usecount is manipulated using atomics without holding any locks.
3184  *
3185  * holdcnt can be manipulated using atomics without holding any locks,
3186  * except when transitioning 1<->0, in which case the interlock is held.
3187  *
3188  * Consumers which don't guarantee liveness of the vnode can use SMR to
3189  * try to get a reference. Note this operation can fail since the vnode
3190  * may be awaiting getting freed by the time they get to it.
3191  */
3192 enum vgetstate
3193 vget_prep_smr(struct vnode *vp)
3194 {
3195 	enum vgetstate vs;
3196 
3197 	VFS_SMR_ASSERT_ENTERED();
3198 
3199 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3200 		vs = VGET_USECOUNT;
3201 	} else {
3202 		if (vhold_smr(vp))
3203 			vs = VGET_HOLDCNT;
3204 		else
3205 			vs = VGET_NONE;
3206 	}
3207 	return (vs);
3208 }
3209 
3210 enum vgetstate
3211 vget_prep(struct vnode *vp)
3212 {
3213 	enum vgetstate vs;
3214 
3215 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3216 		vs = VGET_USECOUNT;
3217 	} else {
3218 		vhold(vp);
3219 		vs = VGET_HOLDCNT;
3220 	}
3221 	return (vs);
3222 }
3223 
3224 void
3225 vget_abort(struct vnode *vp, enum vgetstate vs)
3226 {
3227 
3228 	switch (vs) {
3229 	case VGET_USECOUNT:
3230 		vrele(vp);
3231 		break;
3232 	case VGET_HOLDCNT:
3233 		vdrop(vp);
3234 		break;
3235 	default:
3236 		__assert_unreachable();
3237 	}
3238 }
3239 
3240 int
3241 vget(struct vnode *vp, int flags)
3242 {
3243 	enum vgetstate vs;
3244 
3245 	vs = vget_prep(vp);
3246 	return (vget_finish(vp, flags, vs));
3247 }
3248 
3249 int
3250 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3251 {
3252 	int error;
3253 
3254 	if ((flags & LK_INTERLOCK) != 0)
3255 		ASSERT_VI_LOCKED(vp, __func__);
3256 	else
3257 		ASSERT_VI_UNLOCKED(vp, __func__);
3258 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3259 	VNPASS(vp->v_holdcnt > 0, vp);
3260 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3261 
3262 	error = vn_lock(vp, flags);
3263 	if (__predict_false(error != 0)) {
3264 		vget_abort(vp, vs);
3265 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3266 		    vp);
3267 		return (error);
3268 	}
3269 
3270 	vget_finish_ref(vp, vs);
3271 	return (0);
3272 }
3273 
3274 void
3275 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3276 {
3277 	int old;
3278 
3279 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3280 	VNPASS(vp->v_holdcnt > 0, vp);
3281 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3282 
3283 	if (vs == VGET_USECOUNT)
3284 		return;
3285 
3286 	/*
3287 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3288 	 * the vnode around. Otherwise someone else lended their hold count and
3289 	 * we have to drop ours.
3290 	 */
3291 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3292 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3293 	if (old != 0) {
3294 #ifdef INVARIANTS
3295 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3296 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3297 #else
3298 		refcount_release(&vp->v_holdcnt);
3299 #endif
3300 	}
3301 }
3302 
3303 void
3304 vref(struct vnode *vp)
3305 {
3306 	enum vgetstate vs;
3307 
3308 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3309 	vs = vget_prep(vp);
3310 	vget_finish_ref(vp, vs);
3311 }
3312 
3313 void
3314 vrefact(struct vnode *vp)
3315 {
3316 
3317 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3318 #ifdef INVARIANTS
3319 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3320 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3321 #else
3322 	refcount_acquire(&vp->v_usecount);
3323 #endif
3324 }
3325 
3326 void
3327 vlazy(struct vnode *vp)
3328 {
3329 	struct mount *mp;
3330 
3331 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3332 
3333 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3334 		return;
3335 	/*
3336 	 * We may get here for inactive routines after the vnode got doomed.
3337 	 */
3338 	if (VN_IS_DOOMED(vp))
3339 		return;
3340 	mp = vp->v_mount;
3341 	mtx_lock(&mp->mnt_listmtx);
3342 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3343 		vp->v_mflag |= VMP_LAZYLIST;
3344 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3345 		mp->mnt_lazyvnodelistsize++;
3346 	}
3347 	mtx_unlock(&mp->mnt_listmtx);
3348 }
3349 
3350 static void
3351 vunlazy(struct vnode *vp)
3352 {
3353 	struct mount *mp;
3354 
3355 	ASSERT_VI_LOCKED(vp, __func__);
3356 	VNPASS(!VN_IS_DOOMED(vp), vp);
3357 
3358 	mp = vp->v_mount;
3359 	mtx_lock(&mp->mnt_listmtx);
3360 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3361 	/*
3362 	 * Don't remove the vnode from the lazy list if another thread
3363 	 * has increased the hold count. It may have re-enqueued the
3364 	 * vnode to the lazy list and is now responsible for its
3365 	 * removal.
3366 	 */
3367 	if (vp->v_holdcnt == 0) {
3368 		vp->v_mflag &= ~VMP_LAZYLIST;
3369 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3370 		mp->mnt_lazyvnodelistsize--;
3371 	}
3372 	mtx_unlock(&mp->mnt_listmtx);
3373 }
3374 
3375 /*
3376  * This routine is only meant to be called from vgonel prior to dooming
3377  * the vnode.
3378  */
3379 static void
3380 vunlazy_gone(struct vnode *vp)
3381 {
3382 	struct mount *mp;
3383 
3384 	ASSERT_VOP_ELOCKED(vp, __func__);
3385 	ASSERT_VI_LOCKED(vp, __func__);
3386 	VNPASS(!VN_IS_DOOMED(vp), vp);
3387 
3388 	if (vp->v_mflag & VMP_LAZYLIST) {
3389 		mp = vp->v_mount;
3390 		mtx_lock(&mp->mnt_listmtx);
3391 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3392 		vp->v_mflag &= ~VMP_LAZYLIST;
3393 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3394 		mp->mnt_lazyvnodelistsize--;
3395 		mtx_unlock(&mp->mnt_listmtx);
3396 	}
3397 }
3398 
3399 static void
3400 vdefer_inactive(struct vnode *vp)
3401 {
3402 
3403 	ASSERT_VI_LOCKED(vp, __func__);
3404 	VNPASS(vp->v_holdcnt > 0, vp);
3405 	if (VN_IS_DOOMED(vp)) {
3406 		vdropl(vp);
3407 		return;
3408 	}
3409 	if (vp->v_iflag & VI_DEFINACT) {
3410 		VNPASS(vp->v_holdcnt > 1, vp);
3411 		vdropl(vp);
3412 		return;
3413 	}
3414 	if (vp->v_usecount > 0) {
3415 		vp->v_iflag &= ~VI_OWEINACT;
3416 		vdropl(vp);
3417 		return;
3418 	}
3419 	vlazy(vp);
3420 	vp->v_iflag |= VI_DEFINACT;
3421 	VI_UNLOCK(vp);
3422 	atomic_add_long(&deferred_inact, 1);
3423 }
3424 
3425 static void
3426 vdefer_inactive_unlocked(struct vnode *vp)
3427 {
3428 
3429 	VI_LOCK(vp);
3430 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3431 		vdropl(vp);
3432 		return;
3433 	}
3434 	vdefer_inactive(vp);
3435 }
3436 
3437 enum vput_op { VRELE, VPUT, VUNREF };
3438 
3439 /*
3440  * Handle ->v_usecount transitioning to 0.
3441  *
3442  * By releasing the last usecount we take ownership of the hold count which
3443  * provides liveness of the vnode, meaning we have to vdrop.
3444  *
3445  * For all vnodes we may need to perform inactive processing. It requires an
3446  * exclusive lock on the vnode, while it is legal to call here with only a
3447  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3448  * inactive processing gets deferred to the syncer.
3449  *
3450  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3451  * on the lock being held all the way until VOP_INACTIVE. This in particular
3452  * happens with UFS which adds half-constructed vnodes to the hash, where they
3453  * can be found by other code.
3454  */
3455 static void
3456 vput_final(struct vnode *vp, enum vput_op func)
3457 {
3458 	int error;
3459 	bool want_unlock;
3460 
3461 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3462 	VNPASS(vp->v_holdcnt > 0, vp);
3463 
3464 	VI_LOCK(vp);
3465 
3466 	/*
3467 	 * By the time we got here someone else might have transitioned
3468 	 * the count back to > 0.
3469 	 */
3470 	if (vp->v_usecount > 0)
3471 		goto out;
3472 
3473 	/*
3474 	 * If the vnode is doomed vgone already performed inactive processing
3475 	 * (if needed).
3476 	 */
3477 	if (VN_IS_DOOMED(vp))
3478 		goto out;
3479 
3480 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3481 		goto out;
3482 
3483 	if (vp->v_iflag & VI_DOINGINACT)
3484 		goto out;
3485 
3486 	/*
3487 	 * Locking operations here will drop the interlock and possibly the
3488 	 * vnode lock, opening a window where the vnode can get doomed all the
3489 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3490 	 * perform inactive.
3491 	 */
3492 	vp->v_iflag |= VI_OWEINACT;
3493 	want_unlock = false;
3494 	error = 0;
3495 	switch (func) {
3496 	case VRELE:
3497 		switch (VOP_ISLOCKED(vp)) {
3498 		case LK_EXCLUSIVE:
3499 			break;
3500 		case LK_EXCLOTHER:
3501 		case 0:
3502 			want_unlock = true;
3503 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3504 			VI_LOCK(vp);
3505 			break;
3506 		default:
3507 			/*
3508 			 * The lock has at least one sharer, but we have no way
3509 			 * to conclude whether this is us. Play it safe and
3510 			 * defer processing.
3511 			 */
3512 			error = EAGAIN;
3513 			break;
3514 		}
3515 		break;
3516 	case VPUT:
3517 		want_unlock = true;
3518 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3519 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3520 			    LK_NOWAIT);
3521 			VI_LOCK(vp);
3522 		}
3523 		break;
3524 	case VUNREF:
3525 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3526 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3527 			VI_LOCK(vp);
3528 		}
3529 		break;
3530 	}
3531 	if (error == 0) {
3532 		if (func == VUNREF) {
3533 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3534 			    ("recursive vunref"));
3535 			vp->v_vflag |= VV_UNREF;
3536 		}
3537 		for (;;) {
3538 			error = vinactive(vp);
3539 			if (want_unlock)
3540 				VOP_UNLOCK(vp);
3541 			if (error != ERELOOKUP || !want_unlock)
3542 				break;
3543 			VOP_LOCK(vp, LK_EXCLUSIVE);
3544 		}
3545 		if (func == VUNREF)
3546 			vp->v_vflag &= ~VV_UNREF;
3547 		vdropl(vp);
3548 	} else {
3549 		vdefer_inactive(vp);
3550 	}
3551 	return;
3552 out:
3553 	if (func == VPUT)
3554 		VOP_UNLOCK(vp);
3555 	vdropl(vp);
3556 }
3557 
3558 /*
3559  * Decrement ->v_usecount for a vnode.
3560  *
3561  * Releasing the last use count requires additional processing, see vput_final
3562  * above for details.
3563  *
3564  * Comment above each variant denotes lock state on entry and exit.
3565  */
3566 
3567 /*
3568  * in: any
3569  * out: same as passed in
3570  */
3571 void
3572 vrele(struct vnode *vp)
3573 {
3574 
3575 	ASSERT_VI_UNLOCKED(vp, __func__);
3576 	if (!refcount_release(&vp->v_usecount))
3577 		return;
3578 	vput_final(vp, VRELE);
3579 }
3580 
3581 /*
3582  * in: locked
3583  * out: unlocked
3584  */
3585 void
3586 vput(struct vnode *vp)
3587 {
3588 
3589 	ASSERT_VOP_LOCKED(vp, __func__);
3590 	ASSERT_VI_UNLOCKED(vp, __func__);
3591 	if (!refcount_release(&vp->v_usecount)) {
3592 		VOP_UNLOCK(vp);
3593 		return;
3594 	}
3595 	vput_final(vp, VPUT);
3596 }
3597 
3598 /*
3599  * in: locked
3600  * out: locked
3601  */
3602 void
3603 vunref(struct vnode *vp)
3604 {
3605 
3606 	ASSERT_VOP_LOCKED(vp, __func__);
3607 	ASSERT_VI_UNLOCKED(vp, __func__);
3608 	if (!refcount_release(&vp->v_usecount))
3609 		return;
3610 	vput_final(vp, VUNREF);
3611 }
3612 
3613 void
3614 vhold(struct vnode *vp)
3615 {
3616 	int old;
3617 
3618 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3619 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3620 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3621 	    ("%s: wrong hold count %d", __func__, old));
3622 	if (old == 0)
3623 		vfs_freevnodes_dec();
3624 }
3625 
3626 void
3627 vholdnz(struct vnode *vp)
3628 {
3629 
3630 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3631 #ifdef INVARIANTS
3632 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3633 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3634 	    ("%s: wrong hold count %d", __func__, old));
3635 #else
3636 	atomic_add_int(&vp->v_holdcnt, 1);
3637 #endif
3638 }
3639 
3640 /*
3641  * Grab a hold count unless the vnode is freed.
3642  *
3643  * Only use this routine if vfs smr is the only protection you have against
3644  * freeing the vnode.
3645  *
3646  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3647  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3648  * the thread which managed to set the flag.
3649  *
3650  * It may be tempting to replace the loop with:
3651  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3652  * if (count & VHOLD_NO_SMR) {
3653  *     backpedal and error out;
3654  * }
3655  *
3656  * However, while this is more performant, it hinders debugging by eliminating
3657  * the previously mentioned invariant.
3658  */
3659 bool
3660 vhold_smr(struct vnode *vp)
3661 {
3662 	int count;
3663 
3664 	VFS_SMR_ASSERT_ENTERED();
3665 
3666 	count = atomic_load_int(&vp->v_holdcnt);
3667 	for (;;) {
3668 		if (count & VHOLD_NO_SMR) {
3669 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3670 			    ("non-zero hold count with flags %d\n", count));
3671 			return (false);
3672 		}
3673 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3674 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3675 			if (count == 0)
3676 				vfs_freevnodes_dec();
3677 			return (true);
3678 		}
3679 	}
3680 }
3681 
3682 /*
3683  * Hold a free vnode for recycling.
3684  *
3685  * Note: vnode_init references this comment.
3686  *
3687  * Attempts to recycle only need the global vnode list lock and have no use for
3688  * SMR.
3689  *
3690  * However, vnodes get inserted into the global list before they get fully
3691  * initialized and stay there until UMA decides to free the memory. This in
3692  * particular means the target can be found before it becomes usable and after
3693  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3694  * VHOLD_NO_SMR.
3695  *
3696  * Note: the vnode may gain more references after we transition the count 0->1.
3697  */
3698 static bool
3699 vhold_recycle_free(struct vnode *vp)
3700 {
3701 	int count;
3702 
3703 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3704 
3705 	count = atomic_load_int(&vp->v_holdcnt);
3706 	for (;;) {
3707 		if (count & VHOLD_NO_SMR) {
3708 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3709 			    ("non-zero hold count with flags %d\n", count));
3710 			return (false);
3711 		}
3712 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3713 		if (count > 0) {
3714 			return (false);
3715 		}
3716 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3717 			vfs_freevnodes_dec();
3718 			return (true);
3719 		}
3720 	}
3721 }
3722 
3723 static void __noinline
3724 vdbatch_process(struct vdbatch *vd)
3725 {
3726 	struct vnode *vp;
3727 	int i;
3728 
3729 	mtx_assert(&vd->lock, MA_OWNED);
3730 	MPASS(curthread->td_pinned > 0);
3731 	MPASS(vd->index == VDBATCH_SIZE);
3732 
3733 	/*
3734 	 * Attempt to requeue the passed batch, but give up easily.
3735 	 *
3736 	 * Despite batching the mechanism is prone to transient *significant*
3737 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3738 	 * if multiple CPUs get here (one real-world example is highly parallel
3739 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3740 	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3741 	 * the problem. Parties which don't like it are welcome to implement
3742 	 * something better.
3743 	 */
3744 	critical_enter();
3745 	if (mtx_trylock(&vnode_list_mtx)) {
3746 		for (i = 0; i < VDBATCH_SIZE; i++) {
3747 			vp = vd->tab[i];
3748 			vd->tab[i] = NULL;
3749 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3750 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3751 			MPASS(vp->v_dbatchcpu != NOCPU);
3752 			vp->v_dbatchcpu = NOCPU;
3753 		}
3754 		mtx_unlock(&vnode_list_mtx);
3755 	} else {
3756 		counter_u64_add(vnode_skipped_requeues, 1);
3757 
3758 		for (i = 0; i < VDBATCH_SIZE; i++) {
3759 			vp = vd->tab[i];
3760 			vd->tab[i] = NULL;
3761 			MPASS(vp->v_dbatchcpu != NOCPU);
3762 			vp->v_dbatchcpu = NOCPU;
3763 		}
3764 	}
3765 	vd->index = 0;
3766 	critical_exit();
3767 }
3768 
3769 static void
3770 vdbatch_enqueue(struct vnode *vp)
3771 {
3772 	struct vdbatch *vd;
3773 
3774 	ASSERT_VI_LOCKED(vp, __func__);
3775 	VNPASS(!VN_IS_DOOMED(vp), vp);
3776 
3777 	if (vp->v_dbatchcpu != NOCPU) {
3778 		VI_UNLOCK(vp);
3779 		return;
3780 	}
3781 
3782 	sched_pin();
3783 	vd = DPCPU_PTR(vd);
3784 	mtx_lock(&vd->lock);
3785 	MPASS(vd->index < VDBATCH_SIZE);
3786 	MPASS(vd->tab[vd->index] == NULL);
3787 	/*
3788 	 * A hack: we depend on being pinned so that we know what to put in
3789 	 * ->v_dbatchcpu.
3790 	 */
3791 	vp->v_dbatchcpu = curcpu;
3792 	vd->tab[vd->index] = vp;
3793 	vd->index++;
3794 	VI_UNLOCK(vp);
3795 	if (vd->index == VDBATCH_SIZE)
3796 		vdbatch_process(vd);
3797 	mtx_unlock(&vd->lock);
3798 	sched_unpin();
3799 }
3800 
3801 /*
3802  * This routine must only be called for vnodes which are about to be
3803  * deallocated. Supporting dequeue for arbitrary vndoes would require
3804  * validating that the locked batch matches.
3805  */
3806 static void
3807 vdbatch_dequeue(struct vnode *vp)
3808 {
3809 	struct vdbatch *vd;
3810 	int i;
3811 	short cpu;
3812 
3813 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3814 
3815 	cpu = vp->v_dbatchcpu;
3816 	if (cpu == NOCPU)
3817 		return;
3818 
3819 	vd = DPCPU_ID_PTR(cpu, vd);
3820 	mtx_lock(&vd->lock);
3821 	for (i = 0; i < vd->index; i++) {
3822 		if (vd->tab[i] != vp)
3823 			continue;
3824 		vp->v_dbatchcpu = NOCPU;
3825 		vd->index--;
3826 		vd->tab[i] = vd->tab[vd->index];
3827 		vd->tab[vd->index] = NULL;
3828 		break;
3829 	}
3830 	mtx_unlock(&vd->lock);
3831 	/*
3832 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3833 	 */
3834 	MPASS(vp->v_dbatchcpu == NOCPU);
3835 }
3836 
3837 /*
3838  * Drop the hold count of the vnode.  If this is the last reference to
3839  * the vnode we place it on the free list unless it has been vgone'd
3840  * (marked VIRF_DOOMED) in which case we will free it.
3841  *
3842  * Because the vnode vm object keeps a hold reference on the vnode if
3843  * there is at least one resident non-cached page, the vnode cannot
3844  * leave the active list without the page cleanup done.
3845  */
3846 static void __noinline
3847 vdropl_final(struct vnode *vp)
3848 {
3849 
3850 	ASSERT_VI_LOCKED(vp, __func__);
3851 	VNPASS(VN_IS_DOOMED(vp), vp);
3852 	/*
3853 	 * Set the VHOLD_NO_SMR flag.
3854 	 *
3855 	 * We may be racing against vhold_smr. If they win we can just pretend
3856 	 * we never got this far, they will vdrop later.
3857 	 */
3858 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3859 		vfs_freevnodes_inc();
3860 		VI_UNLOCK(vp);
3861 		/*
3862 		 * We lost the aforementioned race. Any subsequent access is
3863 		 * invalid as they might have managed to vdropl on their own.
3864 		 */
3865 		return;
3866 	}
3867 	/*
3868 	 * Don't bump freevnodes as this one is going away.
3869 	 */
3870 	freevnode(vp);
3871 }
3872 
3873 void
3874 vdrop(struct vnode *vp)
3875 {
3876 
3877 	ASSERT_VI_UNLOCKED(vp, __func__);
3878 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3879 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3880 		return;
3881 	VI_LOCK(vp);
3882 	vdropl(vp);
3883 }
3884 
3885 static void __always_inline
3886 vdropl_impl(struct vnode *vp, bool enqueue)
3887 {
3888 
3889 	ASSERT_VI_LOCKED(vp, __func__);
3890 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3891 	if (!refcount_release(&vp->v_holdcnt)) {
3892 		VI_UNLOCK(vp);
3893 		return;
3894 	}
3895 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3896 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3897 	if (VN_IS_DOOMED(vp)) {
3898 		vdropl_final(vp);
3899 		return;
3900 	}
3901 
3902 	vfs_freevnodes_inc();
3903 	if (vp->v_mflag & VMP_LAZYLIST) {
3904 		vunlazy(vp);
3905 	}
3906 
3907 	if (!enqueue) {
3908 		VI_UNLOCK(vp);
3909 		return;
3910 	}
3911 
3912 	/*
3913 	 * Also unlocks the interlock. We can't assert on it as we
3914 	 * released our hold and by now the vnode might have been
3915 	 * freed.
3916 	 */
3917 	vdbatch_enqueue(vp);
3918 }
3919 
3920 void
3921 vdropl(struct vnode *vp)
3922 {
3923 
3924 	vdropl_impl(vp, true);
3925 }
3926 
3927 /*
3928  * vdrop a vnode when recycling
3929  *
3930  * This is a special case routine only to be used when recycling, differs from
3931  * regular vdrop by not requeieing the vnode on LRU.
3932  *
3933  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3934  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3935  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3936  * loop which can last for as long as writes are frozen.
3937  */
3938 static void
3939 vdropl_recycle(struct vnode *vp)
3940 {
3941 
3942 	vdropl_impl(vp, false);
3943 }
3944 
3945 static void
3946 vdrop_recycle(struct vnode *vp)
3947 {
3948 
3949 	VI_LOCK(vp);
3950 	vdropl_recycle(vp);
3951 }
3952 
3953 /*
3954  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3955  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3956  */
3957 static int
3958 vinactivef(struct vnode *vp)
3959 {
3960 	struct vm_object *obj;
3961 	int error;
3962 
3963 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3964 	ASSERT_VI_LOCKED(vp, "vinactive");
3965 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3966 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3967 	vp->v_iflag |= VI_DOINGINACT;
3968 	vp->v_iflag &= ~VI_OWEINACT;
3969 	VI_UNLOCK(vp);
3970 	/*
3971 	 * Before moving off the active list, we must be sure that any
3972 	 * modified pages are converted into the vnode's dirty
3973 	 * buffers, since these will no longer be checked once the
3974 	 * vnode is on the inactive list.
3975 	 *
3976 	 * The write-out of the dirty pages is asynchronous.  At the
3977 	 * point that VOP_INACTIVE() is called, there could still be
3978 	 * pending I/O and dirty pages in the object.
3979 	 */
3980 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3981 	    vm_object_mightbedirty(obj)) {
3982 		VM_OBJECT_WLOCK(obj);
3983 		vm_object_page_clean(obj, 0, 0, 0);
3984 		VM_OBJECT_WUNLOCK(obj);
3985 	}
3986 	error = VOP_INACTIVE(vp);
3987 	VI_LOCK(vp);
3988 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
3989 	vp->v_iflag &= ~VI_DOINGINACT;
3990 	return (error);
3991 }
3992 
3993 int
3994 vinactive(struct vnode *vp)
3995 {
3996 
3997 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3998 	ASSERT_VI_LOCKED(vp, "vinactive");
3999 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4000 
4001 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4002 		return (0);
4003 	if (vp->v_iflag & VI_DOINGINACT)
4004 		return (0);
4005 	if (vp->v_usecount > 0) {
4006 		vp->v_iflag &= ~VI_OWEINACT;
4007 		return (0);
4008 	}
4009 	return (vinactivef(vp));
4010 }
4011 
4012 /*
4013  * Remove any vnodes in the vnode table belonging to mount point mp.
4014  *
4015  * If FORCECLOSE is not specified, there should not be any active ones,
4016  * return error if any are found (nb: this is a user error, not a
4017  * system error). If FORCECLOSE is specified, detach any active vnodes
4018  * that are found.
4019  *
4020  * If WRITECLOSE is set, only flush out regular file vnodes open for
4021  * writing.
4022  *
4023  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4024  *
4025  * `rootrefs' specifies the base reference count for the root vnode
4026  * of this filesystem. The root vnode is considered busy if its
4027  * v_usecount exceeds this value. On a successful return, vflush(, td)
4028  * will call vrele() on the root vnode exactly rootrefs times.
4029  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4030  * be zero.
4031  */
4032 #ifdef DIAGNOSTIC
4033 static int busyprt = 0;		/* print out busy vnodes */
4034 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4035 #endif
4036 
4037 int
4038 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4039 {
4040 	struct vnode *vp, *mvp, *rootvp = NULL;
4041 	struct vattr vattr;
4042 	int busy = 0, error;
4043 
4044 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4045 	    rootrefs, flags);
4046 	if (rootrefs > 0) {
4047 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4048 		    ("vflush: bad args"));
4049 		/*
4050 		 * Get the filesystem root vnode. We can vput() it
4051 		 * immediately, since with rootrefs > 0, it won't go away.
4052 		 */
4053 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4054 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4055 			    __func__, error);
4056 			return (error);
4057 		}
4058 		vput(rootvp);
4059 	}
4060 loop:
4061 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4062 		vholdl(vp);
4063 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4064 		if (error) {
4065 			vdrop(vp);
4066 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4067 			goto loop;
4068 		}
4069 		/*
4070 		 * Skip over a vnodes marked VV_SYSTEM.
4071 		 */
4072 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4073 			VOP_UNLOCK(vp);
4074 			vdrop(vp);
4075 			continue;
4076 		}
4077 		/*
4078 		 * If WRITECLOSE is set, flush out unlinked but still open
4079 		 * files (even if open only for reading) and regular file
4080 		 * vnodes open for writing.
4081 		 */
4082 		if (flags & WRITECLOSE) {
4083 			if (vp->v_object != NULL) {
4084 				VM_OBJECT_WLOCK(vp->v_object);
4085 				vm_object_page_clean(vp->v_object, 0, 0, 0);
4086 				VM_OBJECT_WUNLOCK(vp->v_object);
4087 			}
4088 			do {
4089 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4090 			} while (error == ERELOOKUP);
4091 			if (error != 0) {
4092 				VOP_UNLOCK(vp);
4093 				vdrop(vp);
4094 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4095 				return (error);
4096 			}
4097 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4098 			VI_LOCK(vp);
4099 
4100 			if ((vp->v_type == VNON ||
4101 			    (error == 0 && vattr.va_nlink > 0)) &&
4102 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4103 				VOP_UNLOCK(vp);
4104 				vdropl(vp);
4105 				continue;
4106 			}
4107 		} else
4108 			VI_LOCK(vp);
4109 		/*
4110 		 * With v_usecount == 0, all we need to do is clear out the
4111 		 * vnode data structures and we are done.
4112 		 *
4113 		 * If FORCECLOSE is set, forcibly close the vnode.
4114 		 */
4115 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4116 			vgonel(vp);
4117 		} else {
4118 			busy++;
4119 #ifdef DIAGNOSTIC
4120 			if (busyprt)
4121 				vn_printf(vp, "vflush: busy vnode ");
4122 #endif
4123 		}
4124 		VOP_UNLOCK(vp);
4125 		vdropl(vp);
4126 	}
4127 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4128 		/*
4129 		 * If just the root vnode is busy, and if its refcount
4130 		 * is equal to `rootrefs', then go ahead and kill it.
4131 		 */
4132 		VI_LOCK(rootvp);
4133 		KASSERT(busy > 0, ("vflush: not busy"));
4134 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4135 		    ("vflush: usecount %d < rootrefs %d",
4136 		     rootvp->v_usecount, rootrefs));
4137 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4138 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4139 			vgone(rootvp);
4140 			VOP_UNLOCK(rootvp);
4141 			busy = 0;
4142 		} else
4143 			VI_UNLOCK(rootvp);
4144 	}
4145 	if (busy) {
4146 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4147 		    busy);
4148 		return (EBUSY);
4149 	}
4150 	for (; rootrefs > 0; rootrefs--)
4151 		vrele(rootvp);
4152 	return (0);
4153 }
4154 
4155 /*
4156  * Recycle an unused vnode to the front of the free list.
4157  */
4158 int
4159 vrecycle(struct vnode *vp)
4160 {
4161 	int recycled;
4162 
4163 	VI_LOCK(vp);
4164 	recycled = vrecyclel(vp);
4165 	VI_UNLOCK(vp);
4166 	return (recycled);
4167 }
4168 
4169 /*
4170  * vrecycle, with the vp interlock held.
4171  */
4172 int
4173 vrecyclel(struct vnode *vp)
4174 {
4175 	int recycled;
4176 
4177 	ASSERT_VOP_ELOCKED(vp, __func__);
4178 	ASSERT_VI_LOCKED(vp, __func__);
4179 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4180 	recycled = 0;
4181 	if (vp->v_usecount == 0) {
4182 		recycled = 1;
4183 		vgonel(vp);
4184 	}
4185 	return (recycled);
4186 }
4187 
4188 /*
4189  * Eliminate all activity associated with a vnode
4190  * in preparation for reuse.
4191  */
4192 void
4193 vgone(struct vnode *vp)
4194 {
4195 	VI_LOCK(vp);
4196 	vgonel(vp);
4197 	VI_UNLOCK(vp);
4198 }
4199 
4200 /*
4201  * Notify upper mounts about reclaimed or unlinked vnode.
4202  */
4203 void
4204 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4205 {
4206 	struct mount *mp;
4207 	struct mount_upper_node *ump;
4208 
4209 	mp = atomic_load_ptr(&vp->v_mount);
4210 	if (mp == NULL)
4211 		return;
4212 	if (TAILQ_EMPTY(&mp->mnt_notify))
4213 		return;
4214 
4215 	MNT_ILOCK(mp);
4216 	mp->mnt_upper_pending++;
4217 	KASSERT(mp->mnt_upper_pending > 0,
4218 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4219 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4220 		MNT_IUNLOCK(mp);
4221 		switch (event) {
4222 		case VFS_NOTIFY_UPPER_RECLAIM:
4223 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4224 			break;
4225 		case VFS_NOTIFY_UPPER_UNLINK:
4226 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4227 			break;
4228 		}
4229 		MNT_ILOCK(mp);
4230 	}
4231 	mp->mnt_upper_pending--;
4232 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4233 	    mp->mnt_upper_pending == 0) {
4234 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4235 		wakeup(&mp->mnt_uppers);
4236 	}
4237 	MNT_IUNLOCK(mp);
4238 }
4239 
4240 /*
4241  * vgone, with the vp interlock held.
4242  */
4243 static void
4244 vgonel(struct vnode *vp)
4245 {
4246 	struct thread *td;
4247 	struct mount *mp;
4248 	vm_object_t object;
4249 	bool active, doinginact, oweinact;
4250 
4251 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4252 	ASSERT_VI_LOCKED(vp, "vgonel");
4253 	VNASSERT(vp->v_holdcnt, vp,
4254 	    ("vgonel: vp %p has no reference.", vp));
4255 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4256 	td = curthread;
4257 
4258 	/*
4259 	 * Don't vgonel if we're already doomed.
4260 	 */
4261 	if (VN_IS_DOOMED(vp)) {
4262 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4263 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4264 		return;
4265 	}
4266 	/*
4267 	 * Paired with freevnode.
4268 	 */
4269 	vn_seqc_write_begin_locked(vp);
4270 	vunlazy_gone(vp);
4271 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4272 	vn_set_state(vp, VSTATE_DESTROYING);
4273 
4274 	/*
4275 	 * Check to see if the vnode is in use.  If so, we have to
4276 	 * call VOP_CLOSE() and VOP_INACTIVE().
4277 	 *
4278 	 * It could be that VOP_INACTIVE() requested reclamation, in
4279 	 * which case we should avoid recursion, so check
4280 	 * VI_DOINGINACT.  This is not precise but good enough.
4281 	 */
4282 	active = vp->v_usecount > 0;
4283 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4284 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4285 
4286 	/*
4287 	 * If we need to do inactive VI_OWEINACT will be set.
4288 	 */
4289 	if (vp->v_iflag & VI_DEFINACT) {
4290 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4291 		vp->v_iflag &= ~VI_DEFINACT;
4292 		vdropl(vp);
4293 	} else {
4294 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4295 		VI_UNLOCK(vp);
4296 	}
4297 	cache_purge_vgone(vp);
4298 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4299 
4300 	/*
4301 	 * If purging an active vnode, it must be closed and
4302 	 * deactivated before being reclaimed.
4303 	 */
4304 	if (active)
4305 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4306 	if (!doinginact) {
4307 		do {
4308 			if (oweinact || active) {
4309 				VI_LOCK(vp);
4310 				vinactivef(vp);
4311 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4312 				VI_UNLOCK(vp);
4313 			}
4314 		} while (oweinact);
4315 	}
4316 	if (vp->v_type == VSOCK)
4317 		vfs_unp_reclaim(vp);
4318 
4319 	/*
4320 	 * Clean out any buffers associated with the vnode.
4321 	 * If the flush fails, just toss the buffers.
4322 	 */
4323 	mp = NULL;
4324 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4325 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4326 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4327 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4328 			;
4329 	}
4330 
4331 	BO_LOCK(&vp->v_bufobj);
4332 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4333 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4334 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4335 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4336 	    ("vp %p bufobj not invalidated", vp));
4337 
4338 	/*
4339 	 * For VMIO bufobj, BO_DEAD is set later, or in
4340 	 * vm_object_terminate() after the object's page queue is
4341 	 * flushed.
4342 	 */
4343 	object = vp->v_bufobj.bo_object;
4344 	if (object == NULL)
4345 		vp->v_bufobj.bo_flag |= BO_DEAD;
4346 	BO_UNLOCK(&vp->v_bufobj);
4347 
4348 	/*
4349 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4350 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4351 	 * should not touch the object borrowed from the lower vnode
4352 	 * (the handle check).
4353 	 */
4354 	if (object != NULL && object->type == OBJT_VNODE &&
4355 	    object->handle == vp)
4356 		vnode_destroy_vobject(vp);
4357 
4358 	/*
4359 	 * Reclaim the vnode.
4360 	 */
4361 	if (VOP_RECLAIM(vp))
4362 		panic("vgone: cannot reclaim");
4363 	if (mp != NULL)
4364 		vn_finished_secondary_write(mp);
4365 	VNASSERT(vp->v_object == NULL, vp,
4366 	    ("vop_reclaim left v_object vp=%p", vp));
4367 	/*
4368 	 * Clear the advisory locks and wake up waiting threads.
4369 	 */
4370 	if (vp->v_lockf != NULL) {
4371 		(void)VOP_ADVLOCKPURGE(vp);
4372 		vp->v_lockf = NULL;
4373 	}
4374 	/*
4375 	 * Delete from old mount point vnode list.
4376 	 */
4377 	if (vp->v_mount == NULL) {
4378 		VI_LOCK(vp);
4379 	} else {
4380 		delmntque(vp);
4381 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4382 	}
4383 	/*
4384 	 * Done with purge, reset to the standard lock and invalidate
4385 	 * the vnode.
4386 	 */
4387 	vp->v_vnlock = &vp->v_lock;
4388 	vp->v_op = &dead_vnodeops;
4389 	vp->v_type = VBAD;
4390 	vn_set_state(vp, VSTATE_DEAD);
4391 }
4392 
4393 /*
4394  * Print out a description of a vnode.
4395  */
4396 static const char *const vtypename[] = {
4397 	[VNON] = "VNON",
4398 	[VREG] = "VREG",
4399 	[VDIR] = "VDIR",
4400 	[VBLK] = "VBLK",
4401 	[VCHR] = "VCHR",
4402 	[VLNK] = "VLNK",
4403 	[VSOCK] = "VSOCK",
4404 	[VFIFO] = "VFIFO",
4405 	[VBAD] = "VBAD",
4406 	[VMARKER] = "VMARKER",
4407 };
4408 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4409     "vnode type name not added to vtypename");
4410 
4411 static const char *const vstatename[] = {
4412 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4413 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4414 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4415 	[VSTATE_DEAD] = "VSTATE_DEAD",
4416 };
4417 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4418     "vnode state name not added to vstatename");
4419 
4420 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4421     "new hold count flag not added to vn_printf");
4422 
4423 void
4424 vn_printf(struct vnode *vp, const char *fmt, ...)
4425 {
4426 	va_list ap;
4427 	char buf[256], buf2[16];
4428 	u_long flags;
4429 	u_int holdcnt;
4430 	short irflag;
4431 
4432 	va_start(ap, fmt);
4433 	vprintf(fmt, ap);
4434 	va_end(ap);
4435 	printf("%p: ", (void *)vp);
4436 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4437 	    vstatename[vp->v_state], vp->v_op);
4438 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4439 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4440 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4441 	    vp->v_seqc_users);
4442 	switch (vp->v_type) {
4443 	case VDIR:
4444 		printf(" mountedhere %p\n", vp->v_mountedhere);
4445 		break;
4446 	case VCHR:
4447 		printf(" rdev %p\n", vp->v_rdev);
4448 		break;
4449 	case VSOCK:
4450 		printf(" socket %p\n", vp->v_unpcb);
4451 		break;
4452 	case VFIFO:
4453 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4454 		break;
4455 	default:
4456 		printf("\n");
4457 		break;
4458 	}
4459 	buf[0] = '\0';
4460 	buf[1] = '\0';
4461 	if (holdcnt & VHOLD_NO_SMR)
4462 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4463 	printf("    hold count flags (%s)\n", buf + 1);
4464 
4465 	buf[0] = '\0';
4466 	buf[1] = '\0';
4467 	irflag = vn_irflag_read(vp);
4468 	if (irflag & VIRF_DOOMED)
4469 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4470 	if (irflag & VIRF_PGREAD)
4471 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4472 	if (irflag & VIRF_MOUNTPOINT)
4473 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4474 	if (irflag & VIRF_TEXT_REF)
4475 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4476 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4477 	if (flags != 0) {
4478 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4479 		strlcat(buf, buf2, sizeof(buf));
4480 	}
4481 	if (vp->v_vflag & VV_ROOT)
4482 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4483 	if (vp->v_vflag & VV_ISTTY)
4484 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4485 	if (vp->v_vflag & VV_NOSYNC)
4486 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4487 	if (vp->v_vflag & VV_ETERNALDEV)
4488 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4489 	if (vp->v_vflag & VV_CACHEDLABEL)
4490 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4491 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4492 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4493 	if (vp->v_vflag & VV_COPYONWRITE)
4494 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4495 	if (vp->v_vflag & VV_SYSTEM)
4496 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4497 	if (vp->v_vflag & VV_PROCDEP)
4498 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4499 	if (vp->v_vflag & VV_DELETED)
4500 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4501 	if (vp->v_vflag & VV_MD)
4502 		strlcat(buf, "|VV_MD", sizeof(buf));
4503 	if (vp->v_vflag & VV_FORCEINSMQ)
4504 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4505 	if (vp->v_vflag & VV_READLINK)
4506 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4507 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4508 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4509 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4510 	if (flags != 0) {
4511 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4512 		strlcat(buf, buf2, sizeof(buf));
4513 	}
4514 	if (vp->v_iflag & VI_MOUNT)
4515 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4516 	if (vp->v_iflag & VI_DOINGINACT)
4517 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4518 	if (vp->v_iflag & VI_OWEINACT)
4519 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4520 	if (vp->v_iflag & VI_DEFINACT)
4521 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4522 	if (vp->v_iflag & VI_FOPENING)
4523 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4524 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4525 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4526 	if (flags != 0) {
4527 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4528 		strlcat(buf, buf2, sizeof(buf));
4529 	}
4530 	if (vp->v_mflag & VMP_LAZYLIST)
4531 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4532 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4533 	if (flags != 0) {
4534 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4535 		strlcat(buf, buf2, sizeof(buf));
4536 	}
4537 	printf("    flags (%s)", buf + 1);
4538 	if (mtx_owned(VI_MTX(vp)))
4539 		printf(" VI_LOCKed");
4540 	printf("\n");
4541 	if (vp->v_object != NULL)
4542 		printf("    v_object %p ref %d pages %d "
4543 		    "cleanbuf %d dirtybuf %d\n",
4544 		    vp->v_object, vp->v_object->ref_count,
4545 		    vp->v_object->resident_page_count,
4546 		    vp->v_bufobj.bo_clean.bv_cnt,
4547 		    vp->v_bufobj.bo_dirty.bv_cnt);
4548 	printf("    ");
4549 	lockmgr_printinfo(vp->v_vnlock);
4550 	if (vp->v_data != NULL)
4551 		VOP_PRINT(vp);
4552 }
4553 
4554 #ifdef DDB
4555 /*
4556  * List all of the locked vnodes in the system.
4557  * Called when debugging the kernel.
4558  */
4559 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4560 {
4561 	struct mount *mp;
4562 	struct vnode *vp;
4563 
4564 	/*
4565 	 * Note: because this is DDB, we can't obey the locking semantics
4566 	 * for these structures, which means we could catch an inconsistent
4567 	 * state and dereference a nasty pointer.  Not much to be done
4568 	 * about that.
4569 	 */
4570 	db_printf("Locked vnodes\n");
4571 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4572 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4573 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4574 				vn_printf(vp, "vnode ");
4575 		}
4576 	}
4577 }
4578 
4579 /*
4580  * Show details about the given vnode.
4581  */
4582 DB_SHOW_COMMAND(vnode, db_show_vnode)
4583 {
4584 	struct vnode *vp;
4585 
4586 	if (!have_addr)
4587 		return;
4588 	vp = (struct vnode *)addr;
4589 	vn_printf(vp, "vnode ");
4590 }
4591 
4592 /*
4593  * Show details about the given mount point.
4594  */
4595 DB_SHOW_COMMAND(mount, db_show_mount)
4596 {
4597 	struct mount *mp;
4598 	struct vfsopt *opt;
4599 	struct statfs *sp;
4600 	struct vnode *vp;
4601 	char buf[512];
4602 	uint64_t mflags;
4603 	u_int flags;
4604 
4605 	if (!have_addr) {
4606 		/* No address given, print short info about all mount points. */
4607 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4608 			db_printf("%p %s on %s (%s)\n", mp,
4609 			    mp->mnt_stat.f_mntfromname,
4610 			    mp->mnt_stat.f_mntonname,
4611 			    mp->mnt_stat.f_fstypename);
4612 			if (db_pager_quit)
4613 				break;
4614 		}
4615 		db_printf("\nMore info: show mount <addr>\n");
4616 		return;
4617 	}
4618 
4619 	mp = (struct mount *)addr;
4620 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4621 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4622 
4623 	buf[0] = '\0';
4624 	mflags = mp->mnt_flag;
4625 #define	MNT_FLAG(flag)	do {						\
4626 	if (mflags & (flag)) {						\
4627 		if (buf[0] != '\0')					\
4628 			strlcat(buf, ", ", sizeof(buf));		\
4629 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4630 		mflags &= ~(flag);					\
4631 	}								\
4632 } while (0)
4633 	MNT_FLAG(MNT_RDONLY);
4634 	MNT_FLAG(MNT_SYNCHRONOUS);
4635 	MNT_FLAG(MNT_NOEXEC);
4636 	MNT_FLAG(MNT_NOSUID);
4637 	MNT_FLAG(MNT_NFS4ACLS);
4638 	MNT_FLAG(MNT_UNION);
4639 	MNT_FLAG(MNT_ASYNC);
4640 	MNT_FLAG(MNT_SUIDDIR);
4641 	MNT_FLAG(MNT_SOFTDEP);
4642 	MNT_FLAG(MNT_NOSYMFOLLOW);
4643 	MNT_FLAG(MNT_GJOURNAL);
4644 	MNT_FLAG(MNT_MULTILABEL);
4645 	MNT_FLAG(MNT_ACLS);
4646 	MNT_FLAG(MNT_NOATIME);
4647 	MNT_FLAG(MNT_NOCLUSTERR);
4648 	MNT_FLAG(MNT_NOCLUSTERW);
4649 	MNT_FLAG(MNT_SUJ);
4650 	MNT_FLAG(MNT_EXRDONLY);
4651 	MNT_FLAG(MNT_EXPORTED);
4652 	MNT_FLAG(MNT_DEFEXPORTED);
4653 	MNT_FLAG(MNT_EXPORTANON);
4654 	MNT_FLAG(MNT_EXKERB);
4655 	MNT_FLAG(MNT_EXPUBLIC);
4656 	MNT_FLAG(MNT_LOCAL);
4657 	MNT_FLAG(MNT_QUOTA);
4658 	MNT_FLAG(MNT_ROOTFS);
4659 	MNT_FLAG(MNT_USER);
4660 	MNT_FLAG(MNT_IGNORE);
4661 	MNT_FLAG(MNT_UPDATE);
4662 	MNT_FLAG(MNT_DELEXPORT);
4663 	MNT_FLAG(MNT_RELOAD);
4664 	MNT_FLAG(MNT_FORCE);
4665 	MNT_FLAG(MNT_SNAPSHOT);
4666 	MNT_FLAG(MNT_BYFSID);
4667 #undef MNT_FLAG
4668 	if (mflags != 0) {
4669 		if (buf[0] != '\0')
4670 			strlcat(buf, ", ", sizeof(buf));
4671 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4672 		    "0x%016jx", mflags);
4673 	}
4674 	db_printf("    mnt_flag = %s\n", buf);
4675 
4676 	buf[0] = '\0';
4677 	flags = mp->mnt_kern_flag;
4678 #define	MNT_KERN_FLAG(flag)	do {					\
4679 	if (flags & (flag)) {						\
4680 		if (buf[0] != '\0')					\
4681 			strlcat(buf, ", ", sizeof(buf));		\
4682 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4683 		flags &= ~(flag);					\
4684 	}								\
4685 } while (0)
4686 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4687 	MNT_KERN_FLAG(MNTK_ASYNC);
4688 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4689 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4690 	MNT_KERN_FLAG(MNTK_DRAINING);
4691 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4692 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4693 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4694 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4695 	MNT_KERN_FLAG(MNTK_RECURSE);
4696 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4697 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4698 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4699 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4700 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4701 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4702 	MNT_KERN_FLAG(MNTK_NOASYNC);
4703 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4704 	MNT_KERN_FLAG(MNTK_MWAIT);
4705 	MNT_KERN_FLAG(MNTK_SUSPEND);
4706 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4707 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4708 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4709 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4710 #undef MNT_KERN_FLAG
4711 	if (flags != 0) {
4712 		if (buf[0] != '\0')
4713 			strlcat(buf, ", ", sizeof(buf));
4714 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4715 		    "0x%08x", flags);
4716 	}
4717 	db_printf("    mnt_kern_flag = %s\n", buf);
4718 
4719 	db_printf("    mnt_opt = ");
4720 	opt = TAILQ_FIRST(mp->mnt_opt);
4721 	if (opt != NULL) {
4722 		db_printf("%s", opt->name);
4723 		opt = TAILQ_NEXT(opt, link);
4724 		while (opt != NULL) {
4725 			db_printf(", %s", opt->name);
4726 			opt = TAILQ_NEXT(opt, link);
4727 		}
4728 	}
4729 	db_printf("\n");
4730 
4731 	sp = &mp->mnt_stat;
4732 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4733 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4734 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4735 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4736 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4737 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4738 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4739 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4740 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4741 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4742 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4743 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4744 
4745 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4746 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4747 	if (jailed(mp->mnt_cred))
4748 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4749 	db_printf(" }\n");
4750 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4751 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4752 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4753 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4754 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4755 	    mp->mnt_lazyvnodelistsize);
4756 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4757 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4758 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4759 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4760 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4761 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4762 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4763 	db_printf("    mnt_secondary_accwrites = %d\n",
4764 	    mp->mnt_secondary_accwrites);
4765 	db_printf("    mnt_gjprovider = %s\n",
4766 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4767 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4768 
4769 	db_printf("\n\nList of active vnodes\n");
4770 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4771 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4772 			vn_printf(vp, "vnode ");
4773 			if (db_pager_quit)
4774 				break;
4775 		}
4776 	}
4777 	db_printf("\n\nList of inactive vnodes\n");
4778 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4779 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4780 			vn_printf(vp, "vnode ");
4781 			if (db_pager_quit)
4782 				break;
4783 		}
4784 	}
4785 }
4786 #endif	/* DDB */
4787 
4788 /*
4789  * Fill in a struct xvfsconf based on a struct vfsconf.
4790  */
4791 static int
4792 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4793 {
4794 	struct xvfsconf xvfsp;
4795 
4796 	bzero(&xvfsp, sizeof(xvfsp));
4797 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4798 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4799 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4800 	xvfsp.vfc_flags = vfsp->vfc_flags;
4801 	/*
4802 	 * These are unused in userland, we keep them
4803 	 * to not break binary compatibility.
4804 	 */
4805 	xvfsp.vfc_vfsops = NULL;
4806 	xvfsp.vfc_next = NULL;
4807 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4808 }
4809 
4810 #ifdef COMPAT_FREEBSD32
4811 struct xvfsconf32 {
4812 	uint32_t	vfc_vfsops;
4813 	char		vfc_name[MFSNAMELEN];
4814 	int32_t		vfc_typenum;
4815 	int32_t		vfc_refcount;
4816 	int32_t		vfc_flags;
4817 	uint32_t	vfc_next;
4818 };
4819 
4820 static int
4821 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4822 {
4823 	struct xvfsconf32 xvfsp;
4824 
4825 	bzero(&xvfsp, sizeof(xvfsp));
4826 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4827 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4828 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4829 	xvfsp.vfc_flags = vfsp->vfc_flags;
4830 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4831 }
4832 #endif
4833 
4834 /*
4835  * Top level filesystem related information gathering.
4836  */
4837 static int
4838 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4839 {
4840 	struct vfsconf *vfsp;
4841 	int error;
4842 
4843 	error = 0;
4844 	vfsconf_slock();
4845 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4846 #ifdef COMPAT_FREEBSD32
4847 		if (req->flags & SCTL_MASK32)
4848 			error = vfsconf2x32(req, vfsp);
4849 		else
4850 #endif
4851 			error = vfsconf2x(req, vfsp);
4852 		if (error)
4853 			break;
4854 	}
4855 	vfsconf_sunlock();
4856 	return (error);
4857 }
4858 
4859 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4860     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4861     "S,xvfsconf", "List of all configured filesystems");
4862 
4863 #ifndef BURN_BRIDGES
4864 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4865 
4866 static int
4867 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4868 {
4869 	int *name = (int *)arg1 - 1;	/* XXX */
4870 	u_int namelen = arg2 + 1;	/* XXX */
4871 	struct vfsconf *vfsp;
4872 
4873 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4874 	    "please rebuild world\n");
4875 
4876 #if 1 || defined(COMPAT_PRELITE2)
4877 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4878 	if (namelen == 1)
4879 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4880 #endif
4881 
4882 	switch (name[1]) {
4883 	case VFS_MAXTYPENUM:
4884 		if (namelen != 2)
4885 			return (ENOTDIR);
4886 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4887 	case VFS_CONF:
4888 		if (namelen != 3)
4889 			return (ENOTDIR);	/* overloaded */
4890 		vfsconf_slock();
4891 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4892 			if (vfsp->vfc_typenum == name[2])
4893 				break;
4894 		}
4895 		vfsconf_sunlock();
4896 		if (vfsp == NULL)
4897 			return (EOPNOTSUPP);
4898 #ifdef COMPAT_FREEBSD32
4899 		if (req->flags & SCTL_MASK32)
4900 			return (vfsconf2x32(req, vfsp));
4901 		else
4902 #endif
4903 			return (vfsconf2x(req, vfsp));
4904 	}
4905 	return (EOPNOTSUPP);
4906 }
4907 
4908 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4909     CTLFLAG_MPSAFE, vfs_sysctl,
4910     "Generic filesystem");
4911 
4912 #if 1 || defined(COMPAT_PRELITE2)
4913 
4914 static int
4915 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4916 {
4917 	int error;
4918 	struct vfsconf *vfsp;
4919 	struct ovfsconf ovfs;
4920 
4921 	vfsconf_slock();
4922 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4923 		bzero(&ovfs, sizeof(ovfs));
4924 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4925 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4926 		ovfs.vfc_index = vfsp->vfc_typenum;
4927 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4928 		ovfs.vfc_flags = vfsp->vfc_flags;
4929 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4930 		if (error != 0) {
4931 			vfsconf_sunlock();
4932 			return (error);
4933 		}
4934 	}
4935 	vfsconf_sunlock();
4936 	return (0);
4937 }
4938 
4939 #endif /* 1 || COMPAT_PRELITE2 */
4940 #endif /* !BURN_BRIDGES */
4941 
4942 static void
4943 unmount_or_warn(struct mount *mp)
4944 {
4945 	int error;
4946 
4947 	error = dounmount(mp, MNT_FORCE, curthread);
4948 	if (error != 0) {
4949 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4950 		if (error == EBUSY)
4951 			printf("BUSY)\n");
4952 		else
4953 			printf("%d)\n", error);
4954 	}
4955 }
4956 
4957 /*
4958  * Unmount all filesystems. The list is traversed in reverse order
4959  * of mounting to avoid dependencies.
4960  */
4961 void
4962 vfs_unmountall(void)
4963 {
4964 	struct mount *mp, *tmp;
4965 
4966 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4967 
4968 	/*
4969 	 * Since this only runs when rebooting, it is not interlocked.
4970 	 */
4971 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4972 		vfs_ref(mp);
4973 
4974 		/*
4975 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4976 		 * unmount of the latter.
4977 		 */
4978 		if (mp == rootdevmp)
4979 			continue;
4980 
4981 		unmount_or_warn(mp);
4982 	}
4983 
4984 	if (rootdevmp != NULL)
4985 		unmount_or_warn(rootdevmp);
4986 }
4987 
4988 static void
4989 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4990 {
4991 
4992 	ASSERT_VI_LOCKED(vp, __func__);
4993 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4994 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4995 		vdropl(vp);
4996 		return;
4997 	}
4998 	if (vn_lock(vp, lkflags) == 0) {
4999 		VI_LOCK(vp);
5000 		vinactive(vp);
5001 		VOP_UNLOCK(vp);
5002 		vdropl(vp);
5003 		return;
5004 	}
5005 	vdefer_inactive_unlocked(vp);
5006 }
5007 
5008 static int
5009 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5010 {
5011 
5012 	return (vp->v_iflag & VI_DEFINACT);
5013 }
5014 
5015 static void __noinline
5016 vfs_periodic_inactive(struct mount *mp, int flags)
5017 {
5018 	struct vnode *vp, *mvp;
5019 	int lkflags;
5020 
5021 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5022 	if (flags != MNT_WAIT)
5023 		lkflags |= LK_NOWAIT;
5024 
5025 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5026 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5027 			VI_UNLOCK(vp);
5028 			continue;
5029 		}
5030 		vp->v_iflag &= ~VI_DEFINACT;
5031 		vfs_deferred_inactive(vp, lkflags);
5032 	}
5033 }
5034 
5035 static inline bool
5036 vfs_want_msync(struct vnode *vp)
5037 {
5038 	struct vm_object *obj;
5039 
5040 	/*
5041 	 * This test may be performed without any locks held.
5042 	 * We rely on vm_object's type stability.
5043 	 */
5044 	if (vp->v_vflag & VV_NOSYNC)
5045 		return (false);
5046 	obj = vp->v_object;
5047 	return (obj != NULL && vm_object_mightbedirty(obj));
5048 }
5049 
5050 static int
5051 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5052 {
5053 
5054 	if (vp->v_vflag & VV_NOSYNC)
5055 		return (false);
5056 	if (vp->v_iflag & VI_DEFINACT)
5057 		return (true);
5058 	return (vfs_want_msync(vp));
5059 }
5060 
5061 static void __noinline
5062 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5063 {
5064 	struct vnode *vp, *mvp;
5065 	struct vm_object *obj;
5066 	int lkflags, objflags;
5067 	bool seen_defer;
5068 
5069 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5070 	if (flags != MNT_WAIT) {
5071 		lkflags |= LK_NOWAIT;
5072 		objflags = OBJPC_NOSYNC;
5073 	} else {
5074 		objflags = OBJPC_SYNC;
5075 	}
5076 
5077 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5078 		seen_defer = false;
5079 		if (vp->v_iflag & VI_DEFINACT) {
5080 			vp->v_iflag &= ~VI_DEFINACT;
5081 			seen_defer = true;
5082 		}
5083 		if (!vfs_want_msync(vp)) {
5084 			if (seen_defer)
5085 				vfs_deferred_inactive(vp, lkflags);
5086 			else
5087 				VI_UNLOCK(vp);
5088 			continue;
5089 		}
5090 		if (vget(vp, lkflags) == 0) {
5091 			obj = vp->v_object;
5092 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
5093 				VM_OBJECT_WLOCK(obj);
5094 				vm_object_page_clean(obj, 0, 0, objflags);
5095 				VM_OBJECT_WUNLOCK(obj);
5096 			}
5097 			vput(vp);
5098 			if (seen_defer)
5099 				vdrop(vp);
5100 		} else {
5101 			if (seen_defer)
5102 				vdefer_inactive_unlocked(vp);
5103 		}
5104 	}
5105 }
5106 
5107 void
5108 vfs_periodic(struct mount *mp, int flags)
5109 {
5110 
5111 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5112 
5113 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5114 		vfs_periodic_inactive(mp, flags);
5115 	else
5116 		vfs_periodic_msync_inactive(mp, flags);
5117 }
5118 
5119 static void
5120 destroy_vpollinfo_free(struct vpollinfo *vi)
5121 {
5122 
5123 	knlist_destroy(&vi->vpi_selinfo.si_note);
5124 	mtx_destroy(&vi->vpi_lock);
5125 	free(vi, M_VNODEPOLL);
5126 }
5127 
5128 static void
5129 destroy_vpollinfo(struct vpollinfo *vi)
5130 {
5131 
5132 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5133 	seldrain(&vi->vpi_selinfo);
5134 	destroy_vpollinfo_free(vi);
5135 }
5136 
5137 /*
5138  * Initialize per-vnode helper structure to hold poll-related state.
5139  */
5140 void
5141 v_addpollinfo(struct vnode *vp)
5142 {
5143 	struct vpollinfo *vi;
5144 
5145 	if (vp->v_pollinfo != NULL)
5146 		return;
5147 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5148 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5149 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5150 	    vfs_knlunlock, vfs_knl_assert_lock);
5151 	VI_LOCK(vp);
5152 	if (vp->v_pollinfo != NULL) {
5153 		VI_UNLOCK(vp);
5154 		destroy_vpollinfo_free(vi);
5155 		return;
5156 	}
5157 	vp->v_pollinfo = vi;
5158 	VI_UNLOCK(vp);
5159 }
5160 
5161 /*
5162  * Record a process's interest in events which might happen to
5163  * a vnode.  Because poll uses the historic select-style interface
5164  * internally, this routine serves as both the ``check for any
5165  * pending events'' and the ``record my interest in future events''
5166  * functions.  (These are done together, while the lock is held,
5167  * to avoid race conditions.)
5168  */
5169 int
5170 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5171 {
5172 
5173 	v_addpollinfo(vp);
5174 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5175 	if (vp->v_pollinfo->vpi_revents & events) {
5176 		/*
5177 		 * This leaves events we are not interested
5178 		 * in available for the other process which
5179 		 * which presumably had requested them
5180 		 * (otherwise they would never have been
5181 		 * recorded).
5182 		 */
5183 		events &= vp->v_pollinfo->vpi_revents;
5184 		vp->v_pollinfo->vpi_revents &= ~events;
5185 
5186 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5187 		return (events);
5188 	}
5189 	vp->v_pollinfo->vpi_events |= events;
5190 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5191 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5192 	return (0);
5193 }
5194 
5195 /*
5196  * Routine to create and manage a filesystem syncer vnode.
5197  */
5198 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5199 static int	sync_fsync(struct  vop_fsync_args *);
5200 static int	sync_inactive(struct  vop_inactive_args *);
5201 static int	sync_reclaim(struct  vop_reclaim_args *);
5202 
5203 static struct vop_vector sync_vnodeops = {
5204 	.vop_bypass =	VOP_EOPNOTSUPP,
5205 	.vop_close =	sync_close,
5206 	.vop_fsync =	sync_fsync,
5207 	.vop_getwritemount = vop_stdgetwritemount,
5208 	.vop_inactive =	sync_inactive,
5209 	.vop_need_inactive = vop_stdneed_inactive,
5210 	.vop_reclaim =	sync_reclaim,
5211 	.vop_lock1 =	vop_stdlock,
5212 	.vop_unlock =	vop_stdunlock,
5213 	.vop_islocked =	vop_stdislocked,
5214 	.vop_fplookup_vexec = VOP_EAGAIN,
5215 	.vop_fplookup_symlink = VOP_EAGAIN,
5216 };
5217 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5218 
5219 /*
5220  * Create a new filesystem syncer vnode for the specified mount point.
5221  */
5222 void
5223 vfs_allocate_syncvnode(struct mount *mp)
5224 {
5225 	struct vnode *vp;
5226 	struct bufobj *bo;
5227 	static long start, incr, next;
5228 	int error;
5229 
5230 	/* Allocate a new vnode */
5231 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5232 	if (error != 0)
5233 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5234 	vp->v_type = VNON;
5235 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5236 	vp->v_vflag |= VV_FORCEINSMQ;
5237 	error = insmntque1(vp, mp);
5238 	if (error != 0)
5239 		panic("vfs_allocate_syncvnode: insmntque() failed");
5240 	vp->v_vflag &= ~VV_FORCEINSMQ;
5241 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5242 	VOP_UNLOCK(vp);
5243 	/*
5244 	 * Place the vnode onto the syncer worklist. We attempt to
5245 	 * scatter them about on the list so that they will go off
5246 	 * at evenly distributed times even if all the filesystems
5247 	 * are mounted at once.
5248 	 */
5249 	next += incr;
5250 	if (next == 0 || next > syncer_maxdelay) {
5251 		start /= 2;
5252 		incr /= 2;
5253 		if (start == 0) {
5254 			start = syncer_maxdelay / 2;
5255 			incr = syncer_maxdelay;
5256 		}
5257 		next = start;
5258 	}
5259 	bo = &vp->v_bufobj;
5260 	BO_LOCK(bo);
5261 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5262 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5263 	mtx_lock(&sync_mtx);
5264 	sync_vnode_count++;
5265 	if (mp->mnt_syncer == NULL) {
5266 		mp->mnt_syncer = vp;
5267 		vp = NULL;
5268 	}
5269 	mtx_unlock(&sync_mtx);
5270 	BO_UNLOCK(bo);
5271 	if (vp != NULL) {
5272 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5273 		vgone(vp);
5274 		vput(vp);
5275 	}
5276 }
5277 
5278 void
5279 vfs_deallocate_syncvnode(struct mount *mp)
5280 {
5281 	struct vnode *vp;
5282 
5283 	mtx_lock(&sync_mtx);
5284 	vp = mp->mnt_syncer;
5285 	if (vp != NULL)
5286 		mp->mnt_syncer = NULL;
5287 	mtx_unlock(&sync_mtx);
5288 	if (vp != NULL)
5289 		vrele(vp);
5290 }
5291 
5292 /*
5293  * Do a lazy sync of the filesystem.
5294  */
5295 static int
5296 sync_fsync(struct vop_fsync_args *ap)
5297 {
5298 	struct vnode *syncvp = ap->a_vp;
5299 	struct mount *mp = syncvp->v_mount;
5300 	int error, save;
5301 	struct bufobj *bo;
5302 
5303 	/*
5304 	 * We only need to do something if this is a lazy evaluation.
5305 	 */
5306 	if (ap->a_waitfor != MNT_LAZY)
5307 		return (0);
5308 
5309 	/*
5310 	 * Move ourselves to the back of the sync list.
5311 	 */
5312 	bo = &syncvp->v_bufobj;
5313 	BO_LOCK(bo);
5314 	vn_syncer_add_to_worklist(bo, syncdelay);
5315 	BO_UNLOCK(bo);
5316 
5317 	/*
5318 	 * Walk the list of vnodes pushing all that are dirty and
5319 	 * not already on the sync list.
5320 	 */
5321 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5322 		return (0);
5323 	VOP_UNLOCK(syncvp);
5324 	save = curthread_pflags_set(TDP_SYNCIO);
5325 	/*
5326 	 * The filesystem at hand may be idle with free vnodes stored in the
5327 	 * batch.  Return them instead of letting them stay there indefinitely.
5328 	 */
5329 	vfs_periodic(mp, MNT_NOWAIT);
5330 	error = VFS_SYNC(mp, MNT_LAZY);
5331 	curthread_pflags_restore(save);
5332 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5333 	vfs_unbusy(mp);
5334 	return (error);
5335 }
5336 
5337 /*
5338  * The syncer vnode is no referenced.
5339  */
5340 static int
5341 sync_inactive(struct vop_inactive_args *ap)
5342 {
5343 
5344 	vgone(ap->a_vp);
5345 	return (0);
5346 }
5347 
5348 /*
5349  * The syncer vnode is no longer needed and is being decommissioned.
5350  *
5351  * Modifications to the worklist must be protected by sync_mtx.
5352  */
5353 static int
5354 sync_reclaim(struct vop_reclaim_args *ap)
5355 {
5356 	struct vnode *vp = ap->a_vp;
5357 	struct bufobj *bo;
5358 
5359 	bo = &vp->v_bufobj;
5360 	BO_LOCK(bo);
5361 	mtx_lock(&sync_mtx);
5362 	if (vp->v_mount->mnt_syncer == vp)
5363 		vp->v_mount->mnt_syncer = NULL;
5364 	if (bo->bo_flag & BO_ONWORKLST) {
5365 		LIST_REMOVE(bo, bo_synclist);
5366 		syncer_worklist_len--;
5367 		sync_vnode_count--;
5368 		bo->bo_flag &= ~BO_ONWORKLST;
5369 	}
5370 	mtx_unlock(&sync_mtx);
5371 	BO_UNLOCK(bo);
5372 
5373 	return (0);
5374 }
5375 
5376 int
5377 vn_need_pageq_flush(struct vnode *vp)
5378 {
5379 	struct vm_object *obj;
5380 
5381 	obj = vp->v_object;
5382 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5383 	    vm_object_mightbedirty(obj));
5384 }
5385 
5386 /*
5387  * Check if vnode represents a disk device
5388  */
5389 bool
5390 vn_isdisk_error(struct vnode *vp, int *errp)
5391 {
5392 	int error;
5393 
5394 	if (vp->v_type != VCHR) {
5395 		error = ENOTBLK;
5396 		goto out;
5397 	}
5398 	error = 0;
5399 	dev_lock();
5400 	if (vp->v_rdev == NULL)
5401 		error = ENXIO;
5402 	else if (vp->v_rdev->si_devsw == NULL)
5403 		error = ENXIO;
5404 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5405 		error = ENOTBLK;
5406 	dev_unlock();
5407 out:
5408 	*errp = error;
5409 	return (error == 0);
5410 }
5411 
5412 bool
5413 vn_isdisk(struct vnode *vp)
5414 {
5415 	int error;
5416 
5417 	return (vn_isdisk_error(vp, &error));
5418 }
5419 
5420 /*
5421  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5422  * the comment above cache_fplookup for details.
5423  */
5424 int
5425 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5426 {
5427 	int error;
5428 
5429 	VFS_SMR_ASSERT_ENTERED();
5430 
5431 	/* Check the owner. */
5432 	if (cred->cr_uid == file_uid) {
5433 		if (file_mode & S_IXUSR)
5434 			return (0);
5435 		goto out_error;
5436 	}
5437 
5438 	/* Otherwise, check the groups (first match) */
5439 	if (groupmember(file_gid, cred)) {
5440 		if (file_mode & S_IXGRP)
5441 			return (0);
5442 		goto out_error;
5443 	}
5444 
5445 	/* Otherwise, check everyone else. */
5446 	if (file_mode & S_IXOTH)
5447 		return (0);
5448 out_error:
5449 	/*
5450 	 * Permission check failed, but it is possible denial will get overwritten
5451 	 * (e.g., when root is traversing through a 700 directory owned by someone
5452 	 * else).
5453 	 *
5454 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5455 	 * modules overriding this result. It's quite unclear what semantics
5456 	 * are allowed for them to operate, thus for safety we don't call them
5457 	 * from within the SMR section. This also means if any such modules
5458 	 * are present, we have to let the regular lookup decide.
5459 	 */
5460 	error = priv_check_cred_vfs_lookup_nomac(cred);
5461 	switch (error) {
5462 	case 0:
5463 		return (0);
5464 	case EAGAIN:
5465 		/*
5466 		 * MAC modules present.
5467 		 */
5468 		return (EAGAIN);
5469 	case EPERM:
5470 		return (EACCES);
5471 	default:
5472 		return (error);
5473 	}
5474 }
5475 
5476 /*
5477  * Common filesystem object access control check routine.  Accepts a
5478  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5479  * Returns 0 on success, or an errno on failure.
5480  */
5481 int
5482 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5483     accmode_t accmode, struct ucred *cred)
5484 {
5485 	accmode_t dac_granted;
5486 	accmode_t priv_granted;
5487 
5488 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5489 	    ("invalid bit in accmode"));
5490 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5491 	    ("VAPPEND without VWRITE"));
5492 
5493 	/*
5494 	 * Look for a normal, non-privileged way to access the file/directory
5495 	 * as requested.  If it exists, go with that.
5496 	 */
5497 
5498 	dac_granted = 0;
5499 
5500 	/* Check the owner. */
5501 	if (cred->cr_uid == file_uid) {
5502 		dac_granted |= VADMIN;
5503 		if (file_mode & S_IXUSR)
5504 			dac_granted |= VEXEC;
5505 		if (file_mode & S_IRUSR)
5506 			dac_granted |= VREAD;
5507 		if (file_mode & S_IWUSR)
5508 			dac_granted |= (VWRITE | VAPPEND);
5509 
5510 		if ((accmode & dac_granted) == accmode)
5511 			return (0);
5512 
5513 		goto privcheck;
5514 	}
5515 
5516 	/* Otherwise, check the groups (first match) */
5517 	if (groupmember(file_gid, cred)) {
5518 		if (file_mode & S_IXGRP)
5519 			dac_granted |= VEXEC;
5520 		if (file_mode & S_IRGRP)
5521 			dac_granted |= VREAD;
5522 		if (file_mode & S_IWGRP)
5523 			dac_granted |= (VWRITE | VAPPEND);
5524 
5525 		if ((accmode & dac_granted) == accmode)
5526 			return (0);
5527 
5528 		goto privcheck;
5529 	}
5530 
5531 	/* Otherwise, check everyone else. */
5532 	if (file_mode & S_IXOTH)
5533 		dac_granted |= VEXEC;
5534 	if (file_mode & S_IROTH)
5535 		dac_granted |= VREAD;
5536 	if (file_mode & S_IWOTH)
5537 		dac_granted |= (VWRITE | VAPPEND);
5538 	if ((accmode & dac_granted) == accmode)
5539 		return (0);
5540 
5541 privcheck:
5542 	/*
5543 	 * Build a privilege mask to determine if the set of privileges
5544 	 * satisfies the requirements when combined with the granted mask
5545 	 * from above.  For each privilege, if the privilege is required,
5546 	 * bitwise or the request type onto the priv_granted mask.
5547 	 */
5548 	priv_granted = 0;
5549 
5550 	if (type == VDIR) {
5551 		/*
5552 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5553 		 * requests, instead of PRIV_VFS_EXEC.
5554 		 */
5555 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5556 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5557 			priv_granted |= VEXEC;
5558 	} else {
5559 		/*
5560 		 * Ensure that at least one execute bit is on. Otherwise,
5561 		 * a privileged user will always succeed, and we don't want
5562 		 * this to happen unless the file really is executable.
5563 		 */
5564 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5565 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5566 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5567 			priv_granted |= VEXEC;
5568 	}
5569 
5570 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5571 	    !priv_check_cred(cred, PRIV_VFS_READ))
5572 		priv_granted |= VREAD;
5573 
5574 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5575 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5576 		priv_granted |= (VWRITE | VAPPEND);
5577 
5578 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5579 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5580 		priv_granted |= VADMIN;
5581 
5582 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5583 		return (0);
5584 	}
5585 
5586 	return ((accmode & VADMIN) ? EPERM : EACCES);
5587 }
5588 
5589 /*
5590  * Credential check based on process requesting service, and per-attribute
5591  * permissions.
5592  */
5593 int
5594 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5595     struct thread *td, accmode_t accmode)
5596 {
5597 
5598 	/*
5599 	 * Kernel-invoked always succeeds.
5600 	 */
5601 	if (cred == NOCRED)
5602 		return (0);
5603 
5604 	/*
5605 	 * Do not allow privileged processes in jail to directly manipulate
5606 	 * system attributes.
5607 	 */
5608 	switch (attrnamespace) {
5609 	case EXTATTR_NAMESPACE_SYSTEM:
5610 		/* Potentially should be: return (EPERM); */
5611 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5612 	case EXTATTR_NAMESPACE_USER:
5613 		return (VOP_ACCESS(vp, accmode, cred, td));
5614 	default:
5615 		return (EPERM);
5616 	}
5617 }
5618 
5619 #ifdef DEBUG_VFS_LOCKS
5620 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5621 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5622     "Drop into debugger on lock violation");
5623 
5624 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5625 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5626     0, "Check for interlock across VOPs");
5627 
5628 int vfs_badlock_print = 1;	/* Print lock violations. */
5629 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5630     0, "Print lock violations");
5631 
5632 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5633 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5634     0, "Print vnode details on lock violations");
5635 
5636 #ifdef KDB
5637 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5638 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5639     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5640 #endif
5641 
5642 static void
5643 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5644 {
5645 
5646 #ifdef KDB
5647 	if (vfs_badlock_backtrace)
5648 		kdb_backtrace();
5649 #endif
5650 	if (vfs_badlock_vnode)
5651 		vn_printf(vp, "vnode ");
5652 	if (vfs_badlock_print)
5653 		printf("%s: %p %s\n", str, (void *)vp, msg);
5654 	if (vfs_badlock_ddb)
5655 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5656 }
5657 
5658 void
5659 assert_vi_locked(struct vnode *vp, const char *str)
5660 {
5661 
5662 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5663 		vfs_badlock("interlock is not locked but should be", str, vp);
5664 }
5665 
5666 void
5667 assert_vi_unlocked(struct vnode *vp, const char *str)
5668 {
5669 
5670 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5671 		vfs_badlock("interlock is locked but should not be", str, vp);
5672 }
5673 
5674 void
5675 assert_vop_locked(struct vnode *vp, const char *str)
5676 {
5677 	if (KERNEL_PANICKED() || vp == NULL)
5678 		return;
5679 
5680 #ifdef WITNESS
5681 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5682 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5683 #else
5684 	int locked = VOP_ISLOCKED(vp);
5685 	if (locked == 0 || locked == LK_EXCLOTHER)
5686 #endif
5687 		vfs_badlock("is not locked but should be", str, vp);
5688 }
5689 
5690 void
5691 assert_vop_unlocked(struct vnode *vp, const char *str)
5692 {
5693 	if (KERNEL_PANICKED() || vp == NULL)
5694 		return;
5695 
5696 #ifdef WITNESS
5697 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5698 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5699 #else
5700 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5701 #endif
5702 		vfs_badlock("is locked but should not be", str, vp);
5703 }
5704 
5705 void
5706 assert_vop_elocked(struct vnode *vp, const char *str)
5707 {
5708 	if (KERNEL_PANICKED() || vp == NULL)
5709 		return;
5710 
5711 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5712 		vfs_badlock("is not exclusive locked but should be", str, vp);
5713 }
5714 #endif /* DEBUG_VFS_LOCKS */
5715 
5716 void
5717 vop_rename_fail(struct vop_rename_args *ap)
5718 {
5719 
5720 	if (ap->a_tvp != NULL)
5721 		vput(ap->a_tvp);
5722 	if (ap->a_tdvp == ap->a_tvp)
5723 		vrele(ap->a_tdvp);
5724 	else
5725 		vput(ap->a_tdvp);
5726 	vrele(ap->a_fdvp);
5727 	vrele(ap->a_fvp);
5728 }
5729 
5730 void
5731 vop_rename_pre(void *ap)
5732 {
5733 	struct vop_rename_args *a = ap;
5734 
5735 #ifdef DEBUG_VFS_LOCKS
5736 	if (a->a_tvp)
5737 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5738 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5739 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5740 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5741 
5742 	/* Check the source (from). */
5743 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5744 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5745 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5746 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5747 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5748 
5749 	/* Check the target. */
5750 	if (a->a_tvp)
5751 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5752 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5753 #endif
5754 	/*
5755 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5756 	 * in vop_rename_post but that's not going to work out since some
5757 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5758 	 *
5759 	 * For now filesystems are expected to do the relevant calls after they
5760 	 * decide what vnodes to operate on.
5761 	 */
5762 	if (a->a_tdvp != a->a_fdvp)
5763 		vhold(a->a_fdvp);
5764 	if (a->a_tvp != a->a_fvp)
5765 		vhold(a->a_fvp);
5766 	vhold(a->a_tdvp);
5767 	if (a->a_tvp)
5768 		vhold(a->a_tvp);
5769 }
5770 
5771 #ifdef DEBUG_VFS_LOCKS
5772 void
5773 vop_fplookup_vexec_debugpre(void *ap __unused)
5774 {
5775 
5776 	VFS_SMR_ASSERT_ENTERED();
5777 }
5778 
5779 void
5780 vop_fplookup_vexec_debugpost(void *ap, int rc)
5781 {
5782 	struct vop_fplookup_vexec_args *a;
5783 	struct vnode *vp;
5784 
5785 	a = ap;
5786 	vp = a->a_vp;
5787 
5788 	VFS_SMR_ASSERT_ENTERED();
5789 	if (rc == EOPNOTSUPP)
5790 		VNPASS(VN_IS_DOOMED(vp), vp);
5791 }
5792 
5793 void
5794 vop_fplookup_symlink_debugpre(void *ap __unused)
5795 {
5796 
5797 	VFS_SMR_ASSERT_ENTERED();
5798 }
5799 
5800 void
5801 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5802 {
5803 
5804 	VFS_SMR_ASSERT_ENTERED();
5805 }
5806 
5807 static void
5808 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5809 {
5810 	if (vp->v_type == VCHR)
5811 		;
5812 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5813 		ASSERT_VOP_LOCKED(vp, name);
5814 	else
5815 		ASSERT_VOP_ELOCKED(vp, name);
5816 }
5817 
5818 void
5819 vop_fsync_debugpre(void *a)
5820 {
5821 	struct vop_fsync_args *ap;
5822 
5823 	ap = a;
5824 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5825 }
5826 
5827 void
5828 vop_fsync_debugpost(void *a, int rc __unused)
5829 {
5830 	struct vop_fsync_args *ap;
5831 
5832 	ap = a;
5833 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5834 }
5835 
5836 void
5837 vop_fdatasync_debugpre(void *a)
5838 {
5839 	struct vop_fdatasync_args *ap;
5840 
5841 	ap = a;
5842 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5843 }
5844 
5845 void
5846 vop_fdatasync_debugpost(void *a, int rc __unused)
5847 {
5848 	struct vop_fdatasync_args *ap;
5849 
5850 	ap = a;
5851 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5852 }
5853 
5854 void
5855 vop_strategy_debugpre(void *ap)
5856 {
5857 	struct vop_strategy_args *a;
5858 	struct buf *bp;
5859 
5860 	a = ap;
5861 	bp = a->a_bp;
5862 
5863 	/*
5864 	 * Cluster ops lock their component buffers but not the IO container.
5865 	 */
5866 	if ((bp->b_flags & B_CLUSTER) != 0)
5867 		return;
5868 
5869 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5870 		if (vfs_badlock_print)
5871 			printf(
5872 			    "VOP_STRATEGY: bp is not locked but should be\n");
5873 		if (vfs_badlock_ddb)
5874 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5875 	}
5876 }
5877 
5878 void
5879 vop_lock_debugpre(void *ap)
5880 {
5881 	struct vop_lock1_args *a = ap;
5882 
5883 	if ((a->a_flags & LK_INTERLOCK) == 0)
5884 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5885 	else
5886 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5887 }
5888 
5889 void
5890 vop_lock_debugpost(void *ap, int rc)
5891 {
5892 	struct vop_lock1_args *a = ap;
5893 
5894 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5895 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5896 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5897 }
5898 
5899 void
5900 vop_unlock_debugpre(void *ap)
5901 {
5902 	struct vop_unlock_args *a = ap;
5903 	struct vnode *vp = a->a_vp;
5904 
5905 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5906 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5907 }
5908 
5909 void
5910 vop_need_inactive_debugpre(void *ap)
5911 {
5912 	struct vop_need_inactive_args *a = ap;
5913 
5914 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5915 }
5916 
5917 void
5918 vop_need_inactive_debugpost(void *ap, int rc)
5919 {
5920 	struct vop_need_inactive_args *a = ap;
5921 
5922 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5923 }
5924 #endif
5925 
5926 void
5927 vop_create_pre(void *ap)
5928 {
5929 	struct vop_create_args *a;
5930 	struct vnode *dvp;
5931 
5932 	a = ap;
5933 	dvp = a->a_dvp;
5934 	vn_seqc_write_begin(dvp);
5935 }
5936 
5937 void
5938 vop_create_post(void *ap, int rc)
5939 {
5940 	struct vop_create_args *a;
5941 	struct vnode *dvp;
5942 
5943 	a = ap;
5944 	dvp = a->a_dvp;
5945 	vn_seqc_write_end(dvp);
5946 	if (!rc)
5947 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5948 }
5949 
5950 void
5951 vop_whiteout_pre(void *ap)
5952 {
5953 	struct vop_whiteout_args *a;
5954 	struct vnode *dvp;
5955 
5956 	a = ap;
5957 	dvp = a->a_dvp;
5958 	vn_seqc_write_begin(dvp);
5959 }
5960 
5961 void
5962 vop_whiteout_post(void *ap, int rc)
5963 {
5964 	struct vop_whiteout_args *a;
5965 	struct vnode *dvp;
5966 
5967 	a = ap;
5968 	dvp = a->a_dvp;
5969 	vn_seqc_write_end(dvp);
5970 }
5971 
5972 void
5973 vop_deleteextattr_pre(void *ap)
5974 {
5975 	struct vop_deleteextattr_args *a;
5976 	struct vnode *vp;
5977 
5978 	a = ap;
5979 	vp = a->a_vp;
5980 	vn_seqc_write_begin(vp);
5981 }
5982 
5983 void
5984 vop_deleteextattr_post(void *ap, int rc)
5985 {
5986 	struct vop_deleteextattr_args *a;
5987 	struct vnode *vp;
5988 
5989 	a = ap;
5990 	vp = a->a_vp;
5991 	vn_seqc_write_end(vp);
5992 	if (!rc)
5993 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5994 }
5995 
5996 void
5997 vop_link_pre(void *ap)
5998 {
5999 	struct vop_link_args *a;
6000 	struct vnode *vp, *tdvp;
6001 
6002 	a = ap;
6003 	vp = a->a_vp;
6004 	tdvp = a->a_tdvp;
6005 	vn_seqc_write_begin(vp);
6006 	vn_seqc_write_begin(tdvp);
6007 }
6008 
6009 void
6010 vop_link_post(void *ap, int rc)
6011 {
6012 	struct vop_link_args *a;
6013 	struct vnode *vp, *tdvp;
6014 
6015 	a = ap;
6016 	vp = a->a_vp;
6017 	tdvp = a->a_tdvp;
6018 	vn_seqc_write_end(vp);
6019 	vn_seqc_write_end(tdvp);
6020 	if (!rc) {
6021 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6022 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6023 	}
6024 }
6025 
6026 void
6027 vop_mkdir_pre(void *ap)
6028 {
6029 	struct vop_mkdir_args *a;
6030 	struct vnode *dvp;
6031 
6032 	a = ap;
6033 	dvp = a->a_dvp;
6034 	vn_seqc_write_begin(dvp);
6035 }
6036 
6037 void
6038 vop_mkdir_post(void *ap, int rc)
6039 {
6040 	struct vop_mkdir_args *a;
6041 	struct vnode *dvp;
6042 
6043 	a = ap;
6044 	dvp = a->a_dvp;
6045 	vn_seqc_write_end(dvp);
6046 	if (!rc)
6047 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6048 }
6049 
6050 #ifdef DEBUG_VFS_LOCKS
6051 void
6052 vop_mkdir_debugpost(void *ap, int rc)
6053 {
6054 	struct vop_mkdir_args *a;
6055 
6056 	a = ap;
6057 	if (!rc)
6058 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6059 }
6060 #endif
6061 
6062 void
6063 vop_mknod_pre(void *ap)
6064 {
6065 	struct vop_mknod_args *a;
6066 	struct vnode *dvp;
6067 
6068 	a = ap;
6069 	dvp = a->a_dvp;
6070 	vn_seqc_write_begin(dvp);
6071 }
6072 
6073 void
6074 vop_mknod_post(void *ap, int rc)
6075 {
6076 	struct vop_mknod_args *a;
6077 	struct vnode *dvp;
6078 
6079 	a = ap;
6080 	dvp = a->a_dvp;
6081 	vn_seqc_write_end(dvp);
6082 	if (!rc)
6083 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6084 }
6085 
6086 void
6087 vop_reclaim_post(void *ap, int rc)
6088 {
6089 	struct vop_reclaim_args *a;
6090 	struct vnode *vp;
6091 
6092 	a = ap;
6093 	vp = a->a_vp;
6094 	ASSERT_VOP_IN_SEQC(vp);
6095 	if (!rc)
6096 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6097 }
6098 
6099 void
6100 vop_remove_pre(void *ap)
6101 {
6102 	struct vop_remove_args *a;
6103 	struct vnode *dvp, *vp;
6104 
6105 	a = ap;
6106 	dvp = a->a_dvp;
6107 	vp = a->a_vp;
6108 	vn_seqc_write_begin(dvp);
6109 	vn_seqc_write_begin(vp);
6110 }
6111 
6112 void
6113 vop_remove_post(void *ap, int rc)
6114 {
6115 	struct vop_remove_args *a;
6116 	struct vnode *dvp, *vp;
6117 
6118 	a = ap;
6119 	dvp = a->a_dvp;
6120 	vp = a->a_vp;
6121 	vn_seqc_write_end(dvp);
6122 	vn_seqc_write_end(vp);
6123 	if (!rc) {
6124 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6125 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6126 	}
6127 }
6128 
6129 void
6130 vop_rename_post(void *ap, int rc)
6131 {
6132 	struct vop_rename_args *a = ap;
6133 	long hint;
6134 
6135 	if (!rc) {
6136 		hint = NOTE_WRITE;
6137 		if (a->a_fdvp == a->a_tdvp) {
6138 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6139 				hint |= NOTE_LINK;
6140 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6141 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6142 		} else {
6143 			hint |= NOTE_EXTEND;
6144 			if (a->a_fvp->v_type == VDIR)
6145 				hint |= NOTE_LINK;
6146 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6147 
6148 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6149 			    a->a_tvp->v_type == VDIR)
6150 				hint &= ~NOTE_LINK;
6151 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6152 		}
6153 
6154 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6155 		if (a->a_tvp)
6156 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6157 	}
6158 	if (a->a_tdvp != a->a_fdvp)
6159 		vdrop(a->a_fdvp);
6160 	if (a->a_tvp != a->a_fvp)
6161 		vdrop(a->a_fvp);
6162 	vdrop(a->a_tdvp);
6163 	if (a->a_tvp)
6164 		vdrop(a->a_tvp);
6165 }
6166 
6167 void
6168 vop_rmdir_pre(void *ap)
6169 {
6170 	struct vop_rmdir_args *a;
6171 	struct vnode *dvp, *vp;
6172 
6173 	a = ap;
6174 	dvp = a->a_dvp;
6175 	vp = a->a_vp;
6176 	vn_seqc_write_begin(dvp);
6177 	vn_seqc_write_begin(vp);
6178 }
6179 
6180 void
6181 vop_rmdir_post(void *ap, int rc)
6182 {
6183 	struct vop_rmdir_args *a;
6184 	struct vnode *dvp, *vp;
6185 
6186 	a = ap;
6187 	dvp = a->a_dvp;
6188 	vp = a->a_vp;
6189 	vn_seqc_write_end(dvp);
6190 	vn_seqc_write_end(vp);
6191 	if (!rc) {
6192 		vp->v_vflag |= VV_UNLINKED;
6193 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6194 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6195 	}
6196 }
6197 
6198 void
6199 vop_setattr_pre(void *ap)
6200 {
6201 	struct vop_setattr_args *a;
6202 	struct vnode *vp;
6203 
6204 	a = ap;
6205 	vp = a->a_vp;
6206 	vn_seqc_write_begin(vp);
6207 }
6208 
6209 void
6210 vop_setattr_post(void *ap, int rc)
6211 {
6212 	struct vop_setattr_args *a;
6213 	struct vnode *vp;
6214 
6215 	a = ap;
6216 	vp = a->a_vp;
6217 	vn_seqc_write_end(vp);
6218 	if (!rc)
6219 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6220 }
6221 
6222 void
6223 vop_setacl_pre(void *ap)
6224 {
6225 	struct vop_setacl_args *a;
6226 	struct vnode *vp;
6227 
6228 	a = ap;
6229 	vp = a->a_vp;
6230 	vn_seqc_write_begin(vp);
6231 }
6232 
6233 void
6234 vop_setacl_post(void *ap, int rc __unused)
6235 {
6236 	struct vop_setacl_args *a;
6237 	struct vnode *vp;
6238 
6239 	a = ap;
6240 	vp = a->a_vp;
6241 	vn_seqc_write_end(vp);
6242 }
6243 
6244 void
6245 vop_setextattr_pre(void *ap)
6246 {
6247 	struct vop_setextattr_args *a;
6248 	struct vnode *vp;
6249 
6250 	a = ap;
6251 	vp = a->a_vp;
6252 	vn_seqc_write_begin(vp);
6253 }
6254 
6255 void
6256 vop_setextattr_post(void *ap, int rc)
6257 {
6258 	struct vop_setextattr_args *a;
6259 	struct vnode *vp;
6260 
6261 	a = ap;
6262 	vp = a->a_vp;
6263 	vn_seqc_write_end(vp);
6264 	if (!rc)
6265 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6266 }
6267 
6268 void
6269 vop_symlink_pre(void *ap)
6270 {
6271 	struct vop_symlink_args *a;
6272 	struct vnode *dvp;
6273 
6274 	a = ap;
6275 	dvp = a->a_dvp;
6276 	vn_seqc_write_begin(dvp);
6277 }
6278 
6279 void
6280 vop_symlink_post(void *ap, int rc)
6281 {
6282 	struct vop_symlink_args *a;
6283 	struct vnode *dvp;
6284 
6285 	a = ap;
6286 	dvp = a->a_dvp;
6287 	vn_seqc_write_end(dvp);
6288 	if (!rc)
6289 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6290 }
6291 
6292 void
6293 vop_open_post(void *ap, int rc)
6294 {
6295 	struct vop_open_args *a = ap;
6296 
6297 	if (!rc)
6298 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6299 }
6300 
6301 void
6302 vop_close_post(void *ap, int rc)
6303 {
6304 	struct vop_close_args *a = ap;
6305 
6306 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6307 	    !VN_IS_DOOMED(a->a_vp))) {
6308 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6309 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6310 	}
6311 }
6312 
6313 void
6314 vop_read_post(void *ap, int rc)
6315 {
6316 	struct vop_read_args *a = ap;
6317 
6318 	if (!rc)
6319 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6320 }
6321 
6322 void
6323 vop_read_pgcache_post(void *ap, int rc)
6324 {
6325 	struct vop_read_pgcache_args *a = ap;
6326 
6327 	if (!rc)
6328 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6329 }
6330 
6331 void
6332 vop_readdir_post(void *ap, int rc)
6333 {
6334 	struct vop_readdir_args *a = ap;
6335 
6336 	if (!rc)
6337 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6338 }
6339 
6340 static struct knlist fs_knlist;
6341 
6342 static void
6343 vfs_event_init(void *arg)
6344 {
6345 	knlist_init_mtx(&fs_knlist, NULL);
6346 }
6347 /* XXX - correct order? */
6348 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6349 
6350 void
6351 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6352 {
6353 
6354 	KNOTE_UNLOCKED(&fs_knlist, event);
6355 }
6356 
6357 static int	filt_fsattach(struct knote *kn);
6358 static void	filt_fsdetach(struct knote *kn);
6359 static int	filt_fsevent(struct knote *kn, long hint);
6360 
6361 struct filterops fs_filtops = {
6362 	.f_isfd = 0,
6363 	.f_attach = filt_fsattach,
6364 	.f_detach = filt_fsdetach,
6365 	.f_event = filt_fsevent
6366 };
6367 
6368 static int
6369 filt_fsattach(struct knote *kn)
6370 {
6371 
6372 	kn->kn_flags |= EV_CLEAR;
6373 	knlist_add(&fs_knlist, kn, 0);
6374 	return (0);
6375 }
6376 
6377 static void
6378 filt_fsdetach(struct knote *kn)
6379 {
6380 
6381 	knlist_remove(&fs_knlist, kn, 0);
6382 }
6383 
6384 static int
6385 filt_fsevent(struct knote *kn, long hint)
6386 {
6387 
6388 	kn->kn_fflags |= kn->kn_sfflags & hint;
6389 
6390 	return (kn->kn_fflags != 0);
6391 }
6392 
6393 static int
6394 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6395 {
6396 	struct vfsidctl vc;
6397 	int error;
6398 	struct mount *mp;
6399 
6400 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6401 	if (error)
6402 		return (error);
6403 	if (vc.vc_vers != VFS_CTL_VERS1)
6404 		return (EINVAL);
6405 	mp = vfs_getvfs(&vc.vc_fsid);
6406 	if (mp == NULL)
6407 		return (ENOENT);
6408 	/* ensure that a specific sysctl goes to the right filesystem. */
6409 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6410 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6411 		vfs_rel(mp);
6412 		return (EINVAL);
6413 	}
6414 	VCTLTOREQ(&vc, req);
6415 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6416 	vfs_rel(mp);
6417 	return (error);
6418 }
6419 
6420 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6421     NULL, 0, sysctl_vfs_ctl, "",
6422     "Sysctl by fsid");
6423 
6424 /*
6425  * Function to initialize a va_filerev field sensibly.
6426  * XXX: Wouldn't a random number make a lot more sense ??
6427  */
6428 u_quad_t
6429 init_va_filerev(void)
6430 {
6431 	struct bintime bt;
6432 
6433 	getbinuptime(&bt);
6434 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6435 }
6436 
6437 static int	filt_vfsread(struct knote *kn, long hint);
6438 static int	filt_vfswrite(struct knote *kn, long hint);
6439 static int	filt_vfsvnode(struct knote *kn, long hint);
6440 static void	filt_vfsdetach(struct knote *kn);
6441 static struct filterops vfsread_filtops = {
6442 	.f_isfd = 1,
6443 	.f_detach = filt_vfsdetach,
6444 	.f_event = filt_vfsread
6445 };
6446 static struct filterops vfswrite_filtops = {
6447 	.f_isfd = 1,
6448 	.f_detach = filt_vfsdetach,
6449 	.f_event = filt_vfswrite
6450 };
6451 static struct filterops vfsvnode_filtops = {
6452 	.f_isfd = 1,
6453 	.f_detach = filt_vfsdetach,
6454 	.f_event = filt_vfsvnode
6455 };
6456 
6457 static void
6458 vfs_knllock(void *arg)
6459 {
6460 	struct vnode *vp = arg;
6461 
6462 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6463 }
6464 
6465 static void
6466 vfs_knlunlock(void *arg)
6467 {
6468 	struct vnode *vp = arg;
6469 
6470 	VOP_UNLOCK(vp);
6471 }
6472 
6473 static void
6474 vfs_knl_assert_lock(void *arg, int what)
6475 {
6476 #ifdef DEBUG_VFS_LOCKS
6477 	struct vnode *vp = arg;
6478 
6479 	if (what == LA_LOCKED)
6480 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6481 	else
6482 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6483 #endif
6484 }
6485 
6486 int
6487 vfs_kqfilter(struct vop_kqfilter_args *ap)
6488 {
6489 	struct vnode *vp = ap->a_vp;
6490 	struct knote *kn = ap->a_kn;
6491 	struct knlist *knl;
6492 
6493 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6494 	    kn->kn_filter != EVFILT_WRITE),
6495 	    ("READ/WRITE filter on a FIFO leaked through"));
6496 	switch (kn->kn_filter) {
6497 	case EVFILT_READ:
6498 		kn->kn_fop = &vfsread_filtops;
6499 		break;
6500 	case EVFILT_WRITE:
6501 		kn->kn_fop = &vfswrite_filtops;
6502 		break;
6503 	case EVFILT_VNODE:
6504 		kn->kn_fop = &vfsvnode_filtops;
6505 		break;
6506 	default:
6507 		return (EINVAL);
6508 	}
6509 
6510 	kn->kn_hook = (caddr_t)vp;
6511 
6512 	v_addpollinfo(vp);
6513 	if (vp->v_pollinfo == NULL)
6514 		return (ENOMEM);
6515 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6516 	vhold(vp);
6517 	knlist_add(knl, kn, 0);
6518 
6519 	return (0);
6520 }
6521 
6522 /*
6523  * Detach knote from vnode
6524  */
6525 static void
6526 filt_vfsdetach(struct knote *kn)
6527 {
6528 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6529 
6530 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6531 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6532 	vdrop(vp);
6533 }
6534 
6535 /*ARGSUSED*/
6536 static int
6537 filt_vfsread(struct knote *kn, long hint)
6538 {
6539 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6540 	off_t size;
6541 	int res;
6542 
6543 	/*
6544 	 * filesystem is gone, so set the EOF flag and schedule
6545 	 * the knote for deletion.
6546 	 */
6547 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6548 		VI_LOCK(vp);
6549 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6550 		VI_UNLOCK(vp);
6551 		return (1);
6552 	}
6553 
6554 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6555 		return (0);
6556 
6557 	VI_LOCK(vp);
6558 	kn->kn_data = size - kn->kn_fp->f_offset;
6559 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6560 	VI_UNLOCK(vp);
6561 	return (res);
6562 }
6563 
6564 /*ARGSUSED*/
6565 static int
6566 filt_vfswrite(struct knote *kn, long hint)
6567 {
6568 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6569 
6570 	VI_LOCK(vp);
6571 
6572 	/*
6573 	 * filesystem is gone, so set the EOF flag and schedule
6574 	 * the knote for deletion.
6575 	 */
6576 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6577 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6578 
6579 	kn->kn_data = 0;
6580 	VI_UNLOCK(vp);
6581 	return (1);
6582 }
6583 
6584 static int
6585 filt_vfsvnode(struct knote *kn, long hint)
6586 {
6587 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6588 	int res;
6589 
6590 	VI_LOCK(vp);
6591 	if (kn->kn_sfflags & hint)
6592 		kn->kn_fflags |= hint;
6593 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6594 		kn->kn_flags |= EV_EOF;
6595 		VI_UNLOCK(vp);
6596 		return (1);
6597 	}
6598 	res = (kn->kn_fflags != 0);
6599 	VI_UNLOCK(vp);
6600 	return (res);
6601 }
6602 
6603 int
6604 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6605 {
6606 	int error;
6607 
6608 	if (dp->d_reclen > ap->a_uio->uio_resid)
6609 		return (ENAMETOOLONG);
6610 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6611 	if (error) {
6612 		if (ap->a_ncookies != NULL) {
6613 			if (ap->a_cookies != NULL)
6614 				free(ap->a_cookies, M_TEMP);
6615 			ap->a_cookies = NULL;
6616 			*ap->a_ncookies = 0;
6617 		}
6618 		return (error);
6619 	}
6620 	if (ap->a_ncookies == NULL)
6621 		return (0);
6622 
6623 	KASSERT(ap->a_cookies,
6624 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6625 
6626 	*ap->a_cookies = realloc(*ap->a_cookies,
6627 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6628 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6629 	*ap->a_ncookies += 1;
6630 	return (0);
6631 }
6632 
6633 /*
6634  * The purpose of this routine is to remove granularity from accmode_t,
6635  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6636  * VADMIN and VAPPEND.
6637  *
6638  * If it returns 0, the caller is supposed to continue with the usual
6639  * access checks using 'accmode' as modified by this routine.  If it
6640  * returns nonzero value, the caller is supposed to return that value
6641  * as errno.
6642  *
6643  * Note that after this routine runs, accmode may be zero.
6644  */
6645 int
6646 vfs_unixify_accmode(accmode_t *accmode)
6647 {
6648 	/*
6649 	 * There is no way to specify explicit "deny" rule using
6650 	 * file mode or POSIX.1e ACLs.
6651 	 */
6652 	if (*accmode & VEXPLICIT_DENY) {
6653 		*accmode = 0;
6654 		return (0);
6655 	}
6656 
6657 	/*
6658 	 * None of these can be translated into usual access bits.
6659 	 * Also, the common case for NFSv4 ACLs is to not contain
6660 	 * either of these bits. Caller should check for VWRITE
6661 	 * on the containing directory instead.
6662 	 */
6663 	if (*accmode & (VDELETE_CHILD | VDELETE))
6664 		return (EPERM);
6665 
6666 	if (*accmode & VADMIN_PERMS) {
6667 		*accmode &= ~VADMIN_PERMS;
6668 		*accmode |= VADMIN;
6669 	}
6670 
6671 	/*
6672 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6673 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6674 	 */
6675 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6676 
6677 	return (0);
6678 }
6679 
6680 /*
6681  * Clear out a doomed vnode (if any) and replace it with a new one as long
6682  * as the fs is not being unmounted. Return the root vnode to the caller.
6683  */
6684 static int __noinline
6685 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6686 {
6687 	struct vnode *vp;
6688 	int error;
6689 
6690 restart:
6691 	if (mp->mnt_rootvnode != NULL) {
6692 		MNT_ILOCK(mp);
6693 		vp = mp->mnt_rootvnode;
6694 		if (vp != NULL) {
6695 			if (!VN_IS_DOOMED(vp)) {
6696 				vrefact(vp);
6697 				MNT_IUNLOCK(mp);
6698 				error = vn_lock(vp, flags);
6699 				if (error == 0) {
6700 					*vpp = vp;
6701 					return (0);
6702 				}
6703 				vrele(vp);
6704 				goto restart;
6705 			}
6706 			/*
6707 			 * Clear the old one.
6708 			 */
6709 			mp->mnt_rootvnode = NULL;
6710 		}
6711 		MNT_IUNLOCK(mp);
6712 		if (vp != NULL) {
6713 			vfs_op_barrier_wait(mp);
6714 			vrele(vp);
6715 		}
6716 	}
6717 	error = VFS_CACHEDROOT(mp, flags, vpp);
6718 	if (error != 0)
6719 		return (error);
6720 	if (mp->mnt_vfs_ops == 0) {
6721 		MNT_ILOCK(mp);
6722 		if (mp->mnt_vfs_ops != 0) {
6723 			MNT_IUNLOCK(mp);
6724 			return (0);
6725 		}
6726 		if (mp->mnt_rootvnode == NULL) {
6727 			vrefact(*vpp);
6728 			mp->mnt_rootvnode = *vpp;
6729 		} else {
6730 			if (mp->mnt_rootvnode != *vpp) {
6731 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6732 					panic("%s: mismatch between vnode returned "
6733 					    " by VFS_CACHEDROOT and the one cached "
6734 					    " (%p != %p)",
6735 					    __func__, *vpp, mp->mnt_rootvnode);
6736 				}
6737 			}
6738 		}
6739 		MNT_IUNLOCK(mp);
6740 	}
6741 	return (0);
6742 }
6743 
6744 int
6745 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6746 {
6747 	struct mount_pcpu *mpcpu;
6748 	struct vnode *vp;
6749 	int error;
6750 
6751 	if (!vfs_op_thread_enter(mp, mpcpu))
6752 		return (vfs_cache_root_fallback(mp, flags, vpp));
6753 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6754 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6755 		vfs_op_thread_exit(mp, mpcpu);
6756 		return (vfs_cache_root_fallback(mp, flags, vpp));
6757 	}
6758 	vrefact(vp);
6759 	vfs_op_thread_exit(mp, mpcpu);
6760 	error = vn_lock(vp, flags);
6761 	if (error != 0) {
6762 		vrele(vp);
6763 		return (vfs_cache_root_fallback(mp, flags, vpp));
6764 	}
6765 	*vpp = vp;
6766 	return (0);
6767 }
6768 
6769 struct vnode *
6770 vfs_cache_root_clear(struct mount *mp)
6771 {
6772 	struct vnode *vp;
6773 
6774 	/*
6775 	 * ops > 0 guarantees there is nobody who can see this vnode
6776 	 */
6777 	MPASS(mp->mnt_vfs_ops > 0);
6778 	vp = mp->mnt_rootvnode;
6779 	if (vp != NULL)
6780 		vn_seqc_write_begin(vp);
6781 	mp->mnt_rootvnode = NULL;
6782 	return (vp);
6783 }
6784 
6785 void
6786 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6787 {
6788 
6789 	MPASS(mp->mnt_vfs_ops > 0);
6790 	vrefact(vp);
6791 	mp->mnt_rootvnode = vp;
6792 }
6793 
6794 /*
6795  * These are helper functions for filesystems to traverse all
6796  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6797  *
6798  * This interface replaces MNT_VNODE_FOREACH.
6799  */
6800 
6801 struct vnode *
6802 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6803 {
6804 	struct vnode *vp;
6805 
6806 	maybe_yield();
6807 	MNT_ILOCK(mp);
6808 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6809 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6810 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6811 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6812 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6813 			continue;
6814 		VI_LOCK(vp);
6815 		if (VN_IS_DOOMED(vp)) {
6816 			VI_UNLOCK(vp);
6817 			continue;
6818 		}
6819 		break;
6820 	}
6821 	if (vp == NULL) {
6822 		__mnt_vnode_markerfree_all(mvp, mp);
6823 		/* MNT_IUNLOCK(mp); -- done in above function */
6824 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6825 		return (NULL);
6826 	}
6827 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6828 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6829 	MNT_IUNLOCK(mp);
6830 	return (vp);
6831 }
6832 
6833 struct vnode *
6834 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6835 {
6836 	struct vnode *vp;
6837 
6838 	*mvp = vn_alloc_marker(mp);
6839 	MNT_ILOCK(mp);
6840 	MNT_REF(mp);
6841 
6842 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6843 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6844 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6845 			continue;
6846 		VI_LOCK(vp);
6847 		if (VN_IS_DOOMED(vp)) {
6848 			VI_UNLOCK(vp);
6849 			continue;
6850 		}
6851 		break;
6852 	}
6853 	if (vp == NULL) {
6854 		MNT_REL(mp);
6855 		MNT_IUNLOCK(mp);
6856 		vn_free_marker(*mvp);
6857 		*mvp = NULL;
6858 		return (NULL);
6859 	}
6860 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6861 	MNT_IUNLOCK(mp);
6862 	return (vp);
6863 }
6864 
6865 void
6866 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6867 {
6868 
6869 	if (*mvp == NULL) {
6870 		MNT_IUNLOCK(mp);
6871 		return;
6872 	}
6873 
6874 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6875 
6876 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6877 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6878 	MNT_REL(mp);
6879 	MNT_IUNLOCK(mp);
6880 	vn_free_marker(*mvp);
6881 	*mvp = NULL;
6882 }
6883 
6884 /*
6885  * These are helper functions for filesystems to traverse their
6886  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6887  */
6888 static void
6889 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6890 {
6891 
6892 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6893 
6894 	MNT_ILOCK(mp);
6895 	MNT_REL(mp);
6896 	MNT_IUNLOCK(mp);
6897 	vn_free_marker(*mvp);
6898 	*mvp = NULL;
6899 }
6900 
6901 /*
6902  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6903  * conventional lock order during mnt_vnode_next_lazy iteration.
6904  *
6905  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6906  * The list lock is dropped and reacquired.  On success, both locks are held.
6907  * On failure, the mount vnode list lock is held but the vnode interlock is
6908  * not, and the procedure may have yielded.
6909  */
6910 static bool
6911 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6912     struct vnode *vp)
6913 {
6914 
6915 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6916 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6917 	    ("%s: bad marker", __func__));
6918 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6919 	    ("%s: inappropriate vnode", __func__));
6920 	ASSERT_VI_UNLOCKED(vp, __func__);
6921 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6922 
6923 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6924 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6925 
6926 	/*
6927 	 * Note we may be racing against vdrop which transitioned the hold
6928 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6929 	 * if we are the only user after we get the interlock we will just
6930 	 * vdrop.
6931 	 */
6932 	vhold(vp);
6933 	mtx_unlock(&mp->mnt_listmtx);
6934 	VI_LOCK(vp);
6935 	if (VN_IS_DOOMED(vp)) {
6936 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6937 		goto out_lost;
6938 	}
6939 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6940 	/*
6941 	 * There is nothing to do if we are the last user.
6942 	 */
6943 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6944 		goto out_lost;
6945 	mtx_lock(&mp->mnt_listmtx);
6946 	return (true);
6947 out_lost:
6948 	vdropl(vp);
6949 	maybe_yield();
6950 	mtx_lock(&mp->mnt_listmtx);
6951 	return (false);
6952 }
6953 
6954 static struct vnode *
6955 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6956     void *cbarg)
6957 {
6958 	struct vnode *vp;
6959 
6960 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6961 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6962 restart:
6963 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6964 	while (vp != NULL) {
6965 		if (vp->v_type == VMARKER) {
6966 			vp = TAILQ_NEXT(vp, v_lazylist);
6967 			continue;
6968 		}
6969 		/*
6970 		 * See if we want to process the vnode. Note we may encounter a
6971 		 * long string of vnodes we don't care about and hog the list
6972 		 * as a result. Check for it and requeue the marker.
6973 		 */
6974 		VNPASS(!VN_IS_DOOMED(vp), vp);
6975 		if (!cb(vp, cbarg)) {
6976 			if (!should_yield()) {
6977 				vp = TAILQ_NEXT(vp, v_lazylist);
6978 				continue;
6979 			}
6980 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6981 			    v_lazylist);
6982 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6983 			    v_lazylist);
6984 			mtx_unlock(&mp->mnt_listmtx);
6985 			kern_yield(PRI_USER);
6986 			mtx_lock(&mp->mnt_listmtx);
6987 			goto restart;
6988 		}
6989 		/*
6990 		 * Try-lock because this is the wrong lock order.
6991 		 */
6992 		if (!VI_TRYLOCK(vp) &&
6993 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6994 			goto restart;
6995 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6996 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6997 		    ("alien vnode on the lazy list %p %p", vp, mp));
6998 		VNPASS(vp->v_mount == mp, vp);
6999 		VNPASS(!VN_IS_DOOMED(vp), vp);
7000 		break;
7001 	}
7002 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7003 
7004 	/* Check if we are done */
7005 	if (vp == NULL) {
7006 		mtx_unlock(&mp->mnt_listmtx);
7007 		mnt_vnode_markerfree_lazy(mvp, mp);
7008 		return (NULL);
7009 	}
7010 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7011 	mtx_unlock(&mp->mnt_listmtx);
7012 	ASSERT_VI_LOCKED(vp, "lazy iter");
7013 	return (vp);
7014 }
7015 
7016 struct vnode *
7017 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7018     void *cbarg)
7019 {
7020 
7021 	maybe_yield();
7022 	mtx_lock(&mp->mnt_listmtx);
7023 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7024 }
7025 
7026 struct vnode *
7027 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7028     void *cbarg)
7029 {
7030 	struct vnode *vp;
7031 
7032 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7033 		return (NULL);
7034 
7035 	*mvp = vn_alloc_marker(mp);
7036 	MNT_ILOCK(mp);
7037 	MNT_REF(mp);
7038 	MNT_IUNLOCK(mp);
7039 
7040 	mtx_lock(&mp->mnt_listmtx);
7041 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7042 	if (vp == NULL) {
7043 		mtx_unlock(&mp->mnt_listmtx);
7044 		mnt_vnode_markerfree_lazy(mvp, mp);
7045 		return (NULL);
7046 	}
7047 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7048 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7049 }
7050 
7051 void
7052 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7053 {
7054 
7055 	if (*mvp == NULL)
7056 		return;
7057 
7058 	mtx_lock(&mp->mnt_listmtx);
7059 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7060 	mtx_unlock(&mp->mnt_listmtx);
7061 	mnt_vnode_markerfree_lazy(mvp, mp);
7062 }
7063 
7064 int
7065 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7066 {
7067 
7068 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7069 		cnp->cn_flags &= ~NOEXECCHECK;
7070 		return (0);
7071 	}
7072 
7073 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7074 }
7075 
7076 /*
7077  * Do not use this variant unless you have means other than the hold count
7078  * to prevent the vnode from getting freed.
7079  */
7080 void
7081 vn_seqc_write_begin_locked(struct vnode *vp)
7082 {
7083 
7084 	ASSERT_VI_LOCKED(vp, __func__);
7085 	VNPASS(vp->v_holdcnt > 0, vp);
7086 	VNPASS(vp->v_seqc_users >= 0, vp);
7087 	vp->v_seqc_users++;
7088 	if (vp->v_seqc_users == 1)
7089 		seqc_sleepable_write_begin(&vp->v_seqc);
7090 }
7091 
7092 void
7093 vn_seqc_write_begin(struct vnode *vp)
7094 {
7095 
7096 	VI_LOCK(vp);
7097 	vn_seqc_write_begin_locked(vp);
7098 	VI_UNLOCK(vp);
7099 }
7100 
7101 void
7102 vn_seqc_write_end_locked(struct vnode *vp)
7103 {
7104 
7105 	ASSERT_VI_LOCKED(vp, __func__);
7106 	VNPASS(vp->v_seqc_users > 0, vp);
7107 	vp->v_seqc_users--;
7108 	if (vp->v_seqc_users == 0)
7109 		seqc_sleepable_write_end(&vp->v_seqc);
7110 }
7111 
7112 void
7113 vn_seqc_write_end(struct vnode *vp)
7114 {
7115 
7116 	VI_LOCK(vp);
7117 	vn_seqc_write_end_locked(vp);
7118 	VI_UNLOCK(vp);
7119 }
7120 
7121 /*
7122  * Special case handling for allocating and freeing vnodes.
7123  *
7124  * The counter remains unchanged on free so that a doomed vnode will
7125  * keep testing as in modify as long as it is accessible with SMR.
7126  */
7127 static void
7128 vn_seqc_init(struct vnode *vp)
7129 {
7130 
7131 	vp->v_seqc = 0;
7132 	vp->v_seqc_users = 0;
7133 }
7134 
7135 static void
7136 vn_seqc_write_end_free(struct vnode *vp)
7137 {
7138 
7139 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7140 	VNPASS(vp->v_seqc_users == 1, vp);
7141 }
7142 
7143 void
7144 vn_irflag_set_locked(struct vnode *vp, short toset)
7145 {
7146 	short flags;
7147 
7148 	ASSERT_VI_LOCKED(vp, __func__);
7149 	flags = vn_irflag_read(vp);
7150 	VNASSERT((flags & toset) == 0, vp,
7151 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7152 	    __func__, flags, toset));
7153 	atomic_store_short(&vp->v_irflag, flags | toset);
7154 }
7155 
7156 void
7157 vn_irflag_set(struct vnode *vp, short toset)
7158 {
7159 
7160 	VI_LOCK(vp);
7161 	vn_irflag_set_locked(vp, toset);
7162 	VI_UNLOCK(vp);
7163 }
7164 
7165 void
7166 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7167 {
7168 	short flags;
7169 
7170 	ASSERT_VI_LOCKED(vp, __func__);
7171 	flags = vn_irflag_read(vp);
7172 	atomic_store_short(&vp->v_irflag, flags | toset);
7173 }
7174 
7175 void
7176 vn_irflag_set_cond(struct vnode *vp, short toset)
7177 {
7178 
7179 	VI_LOCK(vp);
7180 	vn_irflag_set_cond_locked(vp, toset);
7181 	VI_UNLOCK(vp);
7182 }
7183 
7184 void
7185 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7186 {
7187 	short flags;
7188 
7189 	ASSERT_VI_LOCKED(vp, __func__);
7190 	flags = vn_irflag_read(vp);
7191 	VNASSERT((flags & tounset) == tounset, vp,
7192 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7193 	    __func__, flags, tounset));
7194 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7195 }
7196 
7197 void
7198 vn_irflag_unset(struct vnode *vp, short tounset)
7199 {
7200 
7201 	VI_LOCK(vp);
7202 	vn_irflag_unset_locked(vp, tounset);
7203 	VI_UNLOCK(vp);
7204 }
7205 
7206 int
7207 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7208 {
7209 	struct vattr vattr;
7210 	int error;
7211 
7212 	ASSERT_VOP_LOCKED(vp, __func__);
7213 	error = VOP_GETATTR(vp, &vattr, cred);
7214 	if (__predict_true(error == 0)) {
7215 		if (vattr.va_size <= OFF_MAX)
7216 			*size = vattr.va_size;
7217 		else
7218 			error = EFBIG;
7219 	}
7220 	return (error);
7221 }
7222 
7223 int
7224 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7225 {
7226 	int error;
7227 
7228 	VOP_LOCK(vp, LK_SHARED);
7229 	error = vn_getsize_locked(vp, size, cred);
7230 	VOP_UNLOCK(vp);
7231 	return (error);
7232 }
7233 
7234 #ifdef INVARIANTS
7235 void
7236 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7237 {
7238 
7239 	switch (vp->v_state) {
7240 	case VSTATE_UNINITIALIZED:
7241 		switch (state) {
7242 		case VSTATE_CONSTRUCTED:
7243 		case VSTATE_DESTROYING:
7244 			return;
7245 		default:
7246 			break;
7247 		}
7248 		break;
7249 	case VSTATE_CONSTRUCTED:
7250 		ASSERT_VOP_ELOCKED(vp, __func__);
7251 		switch (state) {
7252 		case VSTATE_DESTROYING:
7253 			return;
7254 		default:
7255 			break;
7256 		}
7257 		break;
7258 	case VSTATE_DESTROYING:
7259 		ASSERT_VOP_ELOCKED(vp, __func__);
7260 		switch (state) {
7261 		case VSTATE_DEAD:
7262 			return;
7263 		default:
7264 			break;
7265 		}
7266 		break;
7267 	case VSTATE_DEAD:
7268 		switch (state) {
7269 		case VSTATE_UNINITIALIZED:
7270 			return;
7271 		default:
7272 			break;
7273 		}
7274 		break;
7275 	}
7276 
7277 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7278 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7279 }
7280 #endif
7281