xref: /freebsd/sys/kern/vfs_subr.c (revision 91de98e6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/stat.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85 #include <sys/watchdog.h>
86 
87 #include <machine/stdarg.h>
88 
89 #include <security/mac/mac_framework.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_extern.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/uma.h>
99 
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103 
104 static void	delmntque(struct vnode *vp);
105 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 		    int slpflag, int slptimeo);
107 static void	syncer_shutdown(void *arg, int howto);
108 static int	vtryrecycle(struct vnode *vp);
109 static void	v_init_counters(struct vnode *);
110 static void	v_incr_devcount(struct vnode *);
111 static void	v_decr_devcount(struct vnode *);
112 static void	vgonel(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_locked(void *arg);
116 static void	vfs_knl_assert_unlocked(void *arg);
117 static void	vnlru_return_batches(struct vfsops *mnt_op);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
120 		    daddr_t startlbn, daddr_t endlbn);
121 static void	vnlru_recalc(void);
122 
123 /*
124  * These fences are intended for cases where some synchronization is
125  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
126  * and v_usecount) updates.  Access to v_iflags is generally synchronized
127  * by the interlock, but we have some internal assertions that check vnode
128  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
129  * for now.
130  */
131 #ifdef INVARIANTS
132 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
133 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
134 #else
135 #define	VNODE_REFCOUNT_FENCE_ACQ()
136 #define	VNODE_REFCOUNT_FENCE_REL()
137 #endif
138 
139 /*
140  * Number of vnodes in existence.  Increased whenever getnewvnode()
141  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
142  */
143 static u_long __exclusive_cache_line numvnodes;
144 
145 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode");
151 
152 static u_long mnt_free_list_batch = 128;
153 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW,
154     &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list");
155 
156 /*
157  * Conversion tables for conversion from vnode types to inode formats
158  * and back.
159  */
160 enum vtype iftovt_tab[16] = {
161 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
162 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
163 };
164 int vttoif_tab[10] = {
165 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
166 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
167 };
168 
169 /*
170  * List of vnodes that are ready for recycling.
171  */
172 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
173 
174 /*
175  * "Free" vnode target.  Free vnodes are rarely completely free, but are
176  * just ones that are cheap to recycle.  Usually they are for files which
177  * have been stat'd but not read; these usually have inode and namecache
178  * data attached to them.  This target is the preferred minimum size of a
179  * sub-cache consisting mostly of such files. The system balances the size
180  * of this sub-cache with its complement to try to prevent either from
181  * thrashing while the other is relatively inactive.  The targets express
182  * a preference for the best balance.
183  *
184  * "Above" this target there are 2 further targets (watermarks) related
185  * to recyling of free vnodes.  In the best-operating case, the cache is
186  * exactly full, the free list has size between vlowat and vhiwat above the
187  * free target, and recycling from it and normal use maintains this state.
188  * Sometimes the free list is below vlowat or even empty, but this state
189  * is even better for immediate use provided the cache is not full.
190  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191  * ones) to reach one of these states.  The watermarks are currently hard-
192  * coded as 4% and 9% of the available space higher.  These and the default
193  * of 25% for wantfreevnodes are too large if the memory size is large.
194  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195  * whenever vnlru_proc() becomes active.
196  */
197 static u_long wantfreevnodes;
198 static u_long freevnodes;
199 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
200     &freevnodes, 0, "Number of \"free\" vnodes");
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets");
205 
206 static counter_u64_t recycles_free_count;
207 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
208     "Number of free vnodes recycled to meet vnode cache targets");
209 
210 /*
211  * Various variables used for debugging the new implementation of
212  * reassignbuf().
213  * XXX these are probably of (very) limited utility now.
214  */
215 static int reassignbufcalls;
216 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW | CTLFLAG_STATS,
217     &reassignbufcalls, 0, "Number of calls to reassignbuf");
218 
219 static counter_u64_t deferred_inact;
220 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
221     "Number of times inactive processing was deferred");
222 
223 /* To keep more than one thread at a time from running vfs_getnewfsid */
224 static struct mtx mntid_mtx;
225 
226 /*
227  * Lock for any access to the following:
228  *	vnode_free_list
229  *	numvnodes
230  *	freevnodes
231  */
232 static struct mtx __exclusive_cache_line vnode_free_list_mtx;
233 
234 /* Publicly exported FS */
235 struct nfs_public nfs_pub;
236 
237 static uma_zone_t buf_trie_zone;
238 
239 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
240 static uma_zone_t vnode_zone;
241 static uma_zone_t vnodepoll_zone;
242 
243 /*
244  * The workitem queue.
245  *
246  * It is useful to delay writes of file data and filesystem metadata
247  * for tens of seconds so that quickly created and deleted files need
248  * not waste disk bandwidth being created and removed. To realize this,
249  * we append vnodes to a "workitem" queue. When running with a soft
250  * updates implementation, most pending metadata dependencies should
251  * not wait for more than a few seconds. Thus, mounted on block devices
252  * are delayed only about a half the time that file data is delayed.
253  * Similarly, directory updates are more critical, so are only delayed
254  * about a third the time that file data is delayed. Thus, there are
255  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
256  * one each second (driven off the filesystem syncer process). The
257  * syncer_delayno variable indicates the next queue that is to be processed.
258  * Items that need to be processed soon are placed in this queue:
259  *
260  *	syncer_workitem_pending[syncer_delayno]
261  *
262  * A delay of fifteen seconds is done by placing the request fifteen
263  * entries later in the queue:
264  *
265  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
266  *
267  */
268 static int syncer_delayno;
269 static long syncer_mask;
270 LIST_HEAD(synclist, bufobj);
271 static struct synclist *syncer_workitem_pending;
272 /*
273  * The sync_mtx protects:
274  *	bo->bo_synclist
275  *	sync_vnode_count
276  *	syncer_delayno
277  *	syncer_state
278  *	syncer_workitem_pending
279  *	syncer_worklist_len
280  *	rushjob
281  */
282 static struct mtx sync_mtx;
283 static struct cv sync_wakeup;
284 
285 #define SYNCER_MAXDELAY		32
286 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
287 static int syncdelay = 30;		/* max time to delay syncing data */
288 static int filedelay = 30;		/* time to delay syncing files */
289 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
290     "Time to delay syncing files (in seconds)");
291 static int dirdelay = 29;		/* time to delay syncing directories */
292 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
293     "Time to delay syncing directories (in seconds)");
294 static int metadelay = 28;		/* time to delay syncing metadata */
295 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
296     "Time to delay syncing metadata (in seconds)");
297 static int rushjob;		/* number of slots to run ASAP */
298 static int stat_rush_requests;	/* number of times I/O speeded up */
299 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
300     "Number of times I/O speeded up (rush requests)");
301 
302 /*
303  * When shutting down the syncer, run it at four times normal speed.
304  */
305 #define SYNCER_SHUTDOWN_SPEEDUP		4
306 static int sync_vnode_count;
307 static int syncer_worklist_len;
308 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
309     syncer_state;
310 
311 /* Target for maximum number of vnodes. */
312 u_long desiredvnodes;
313 static u_long gapvnodes;		/* gap between wanted and desired */
314 static u_long vhiwat;		/* enough extras after expansion */
315 static u_long vlowat;		/* minimal extras before expansion */
316 static u_long vstir;		/* nonzero to stir non-free vnodes */
317 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
318 
319 /*
320  * Note that no attempt is made to sanitize these parameters.
321  */
322 static int
323 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
324 {
325 	u_long val;
326 	int error;
327 
328 	val = desiredvnodes;
329 	error = sysctl_handle_long(oidp, &val, 0, req);
330 	if (error != 0 || req->newptr == NULL)
331 		return (error);
332 
333 	if (val == desiredvnodes)
334 		return (0);
335 	mtx_lock(&vnode_free_list_mtx);
336 	desiredvnodes = val;
337 	wantfreevnodes = desiredvnodes / 4;
338 	vnlru_recalc();
339 	mtx_unlock(&vnode_free_list_mtx);
340 	/*
341 	 * XXX There is no protection against multiple threads changing
342 	 * desiredvnodes at the same time. Locking above only helps vnlru and
343 	 * getnewvnode.
344 	 */
345 	vfs_hash_changesize(desiredvnodes);
346 	cache_changesize(desiredvnodes);
347 	return (0);
348 }
349 
350 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
351     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
352     "UL", "Target for maximum number of vnodes");
353 
354 static int
355 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
356 {
357 	u_long val;
358 	int error;
359 
360 	val = wantfreevnodes;
361 	error = sysctl_handle_long(oidp, &val, 0, req);
362 	if (error != 0 || req->newptr == NULL)
363 		return (error);
364 
365 	if (val == wantfreevnodes)
366 		return (0);
367 	mtx_lock(&vnode_free_list_mtx);
368 	wantfreevnodes = val;
369 	vnlru_recalc();
370 	mtx_unlock(&vnode_free_list_mtx);
371 	return (0);
372 }
373 
374 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
375     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
376     "UL", "Target for minimum number of \"free\" vnodes");
377 
378 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
379     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
380 static int vnlru_nowhere;
381 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
382     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
383 
384 static int
385 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
386 {
387 	struct vnode *vp;
388 	struct nameidata nd;
389 	char *buf;
390 	unsigned long ndflags;
391 	int error;
392 
393 	if (req->newptr == NULL)
394 		return (EINVAL);
395 	if (req->newlen >= PATH_MAX)
396 		return (E2BIG);
397 
398 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
399 	error = SYSCTL_IN(req, buf, req->newlen);
400 	if (error != 0)
401 		goto out;
402 
403 	buf[req->newlen] = '\0';
404 
405 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | NOCACHE | SAVENAME;
406 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
407 	if ((error = namei(&nd)) != 0)
408 		goto out;
409 	vp = nd.ni_vp;
410 
411 	if (VN_IS_DOOMED(vp)) {
412 		/*
413 		 * This vnode is being recycled.  Return != 0 to let the caller
414 		 * know that the sysctl had no effect.  Return EAGAIN because a
415 		 * subsequent call will likely succeed (since namei will create
416 		 * a new vnode if necessary)
417 		 */
418 		error = EAGAIN;
419 		goto putvnode;
420 	}
421 
422 	counter_u64_add(recycles_count, 1);
423 	vgone(vp);
424 putvnode:
425 	NDFREE(&nd, 0);
426 out:
427 	free(buf, M_TEMP);
428 	return (error);
429 }
430 
431 static int
432 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
433 {
434 	struct thread *td = curthread;
435 	struct vnode *vp;
436 	struct file *fp;
437 	int error;
438 	int fd;
439 
440 	if (req->newptr == NULL)
441 		return (EBADF);
442 
443         error = sysctl_handle_int(oidp, &fd, 0, req);
444         if (error != 0)
445                 return (error);
446 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
447 	if (error != 0)
448 		return (error);
449 	vp = fp->f_vnode;
450 
451 	error = vn_lock(vp, LK_EXCLUSIVE);
452 	if (error != 0)
453 		goto drop;
454 
455 	counter_u64_add(recycles_count, 1);
456 	vgone(vp);
457 	VOP_UNLOCK(vp);
458 drop:
459 	fdrop(fp, td);
460 	return (error);
461 }
462 
463 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
464     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
465     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
466 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
467     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
468     sysctl_ftry_reclaim_vnode, "I",
469     "Try to reclaim a vnode by its file descriptor");
470 
471 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
472 static int vnsz2log;
473 
474 /*
475  * Support for the bufobj clean & dirty pctrie.
476  */
477 static void *
478 buf_trie_alloc(struct pctrie *ptree)
479 {
480 
481 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
482 }
483 
484 static void
485 buf_trie_free(struct pctrie *ptree, void *node)
486 {
487 
488 	uma_zfree(buf_trie_zone, node);
489 }
490 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
491 
492 /*
493  * Initialize the vnode management data structures.
494  *
495  * Reevaluate the following cap on the number of vnodes after the physical
496  * memory size exceeds 512GB.  In the limit, as the physical memory size
497  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
498  */
499 #ifndef	MAXVNODES_MAX
500 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
501 #endif
502 
503 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
504 
505 static struct vnode *
506 vn_alloc_marker(struct mount *mp)
507 {
508 	struct vnode *vp;
509 
510 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
511 	vp->v_type = VMARKER;
512 	vp->v_mount = mp;
513 
514 	return (vp);
515 }
516 
517 static void
518 vn_free_marker(struct vnode *vp)
519 {
520 
521 	MPASS(vp->v_type == VMARKER);
522 	free(vp, M_VNODE_MARKER);
523 }
524 
525 /*
526  * Initialize a vnode as it first enters the zone.
527  */
528 static int
529 vnode_init(void *mem, int size, int flags)
530 {
531 	struct vnode *vp;
532 
533 	vp = mem;
534 	bzero(vp, size);
535 	/*
536 	 * Setup locks.
537 	 */
538 	vp->v_vnlock = &vp->v_lock;
539 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
540 	/*
541 	 * By default, don't allow shared locks unless filesystems opt-in.
542 	 */
543 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
544 	    LK_NOSHARE | LK_IS_VNODE);
545 	/*
546 	 * Initialize bufobj.
547 	 */
548 	bufobj_init(&vp->v_bufobj, vp);
549 	/*
550 	 * Initialize namecache.
551 	 */
552 	LIST_INIT(&vp->v_cache_src);
553 	TAILQ_INIT(&vp->v_cache_dst);
554 	/*
555 	 * Initialize rangelocks.
556 	 */
557 	rangelock_init(&vp->v_rl);
558 	return (0);
559 }
560 
561 /*
562  * Free a vnode when it is cleared from the zone.
563  */
564 static void
565 vnode_fini(void *mem, int size)
566 {
567 	struct vnode *vp;
568 	struct bufobj *bo;
569 
570 	vp = mem;
571 	rangelock_destroy(&vp->v_rl);
572 	lockdestroy(vp->v_vnlock);
573 	mtx_destroy(&vp->v_interlock);
574 	bo = &vp->v_bufobj;
575 	rw_destroy(BO_LOCKPTR(bo));
576 }
577 
578 /*
579  * Provide the size of NFS nclnode and NFS fh for calculation of the
580  * vnode memory consumption.  The size is specified directly to
581  * eliminate dependency on NFS-private header.
582  *
583  * Other filesystems may use bigger or smaller (like UFS and ZFS)
584  * private inode data, but the NFS-based estimation is ample enough.
585  * Still, we care about differences in the size between 64- and 32-bit
586  * platforms.
587  *
588  * Namecache structure size is heuristically
589  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
590  */
591 #ifdef _LP64
592 #define	NFS_NCLNODE_SZ	(528 + 64)
593 #define	NC_SZ		148
594 #else
595 #define	NFS_NCLNODE_SZ	(360 + 32)
596 #define	NC_SZ		92
597 #endif
598 
599 static void
600 vntblinit(void *dummy __unused)
601 {
602 	u_int i;
603 	int physvnodes, virtvnodes;
604 
605 	/*
606 	 * Desiredvnodes is a function of the physical memory size and the
607 	 * kernel's heap size.  Generally speaking, it scales with the
608 	 * physical memory size.  The ratio of desiredvnodes to the physical
609 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
610 	 * Thereafter, the
611 	 * marginal ratio of desiredvnodes to the physical memory size is
612 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
613 	 * size.  The memory required by desiredvnodes vnodes and vm objects
614 	 * must not exceed 1/10th of the kernel's heap size.
615 	 */
616 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
617 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
618 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
619 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
620 	desiredvnodes = min(physvnodes, virtvnodes);
621 	if (desiredvnodes > MAXVNODES_MAX) {
622 		if (bootverbose)
623 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
624 			    desiredvnodes, MAXVNODES_MAX);
625 		desiredvnodes = MAXVNODES_MAX;
626 	}
627 	wantfreevnodes = desiredvnodes / 4;
628 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
629 	TAILQ_INIT(&vnode_free_list);
630 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
631 	/*
632 	 * The lock is taken to appease WITNESS.
633 	 */
634 	mtx_lock(&vnode_free_list_mtx);
635 	vnlru_recalc();
636 	mtx_unlock(&vnode_free_list_mtx);
637 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
638 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
639 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
640 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
641 	/*
642 	 * Preallocate enough nodes to support one-per buf so that
643 	 * we can not fail an insert.  reassignbuf() callers can not
644 	 * tolerate the insertion failure.
645 	 */
646 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
647 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
648 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
649 	uma_prealloc(buf_trie_zone, nbuf);
650 
651 	vnodes_created = counter_u64_alloc(M_WAITOK);
652 	recycles_count = counter_u64_alloc(M_WAITOK);
653 	recycles_free_count = counter_u64_alloc(M_WAITOK);
654 	deferred_inact = counter_u64_alloc(M_WAITOK);
655 
656 	/*
657 	 * Initialize the filesystem syncer.
658 	 */
659 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
660 	    &syncer_mask);
661 	syncer_maxdelay = syncer_mask + 1;
662 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
663 	cv_init(&sync_wakeup, "syncer");
664 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
665 		vnsz2log++;
666 	vnsz2log--;
667 }
668 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
669 
670 
671 /*
672  * Mark a mount point as busy. Used to synchronize access and to delay
673  * unmounting. Eventually, mountlist_mtx is not released on failure.
674  *
675  * vfs_busy() is a custom lock, it can block the caller.
676  * vfs_busy() only sleeps if the unmount is active on the mount point.
677  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
678  * vnode belonging to mp.
679  *
680  * Lookup uses vfs_busy() to traverse mount points.
681  * root fs			var fs
682  * / vnode lock		A	/ vnode lock (/var)		D
683  * /var vnode lock	B	/log vnode lock(/var/log)	E
684  * vfs_busy lock	C	vfs_busy lock			F
685  *
686  * Within each file system, the lock order is C->A->B and F->D->E.
687  *
688  * When traversing across mounts, the system follows that lock order:
689  *
690  *        C->A->B
691  *              |
692  *              +->F->D->E
693  *
694  * The lookup() process for namei("/var") illustrates the process:
695  *  VOP_LOOKUP() obtains B while A is held
696  *  vfs_busy() obtains a shared lock on F while A and B are held
697  *  vput() releases lock on B
698  *  vput() releases lock on A
699  *  VFS_ROOT() obtains lock on D while shared lock on F is held
700  *  vfs_unbusy() releases shared lock on F
701  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
702  *    Attempt to lock A (instead of vp_crossmp) while D is held would
703  *    violate the global order, causing deadlocks.
704  *
705  * dounmount() locks B while F is drained.
706  */
707 int
708 vfs_busy(struct mount *mp, int flags)
709 {
710 
711 	MPASS((flags & ~MBF_MASK) == 0);
712 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
713 
714 	if (vfs_op_thread_enter(mp)) {
715 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
716 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
717 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
718 		vfs_mp_count_add_pcpu(mp, ref, 1);
719 		vfs_mp_count_add_pcpu(mp, lockref, 1);
720 		vfs_op_thread_exit(mp);
721 		if (flags & MBF_MNTLSTLOCK)
722 			mtx_unlock(&mountlist_mtx);
723 		return (0);
724 	}
725 
726 	MNT_ILOCK(mp);
727 	vfs_assert_mount_counters(mp);
728 	MNT_REF(mp);
729 	/*
730 	 * If mount point is currently being unmounted, sleep until the
731 	 * mount point fate is decided.  If thread doing the unmounting fails,
732 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
733 	 * that this mount point has survived the unmount attempt and vfs_busy
734 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
735 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
736 	 * about to be really destroyed.  vfs_busy needs to release its
737 	 * reference on the mount point in this case and return with ENOENT,
738 	 * telling the caller that mount mount it tried to busy is no longer
739 	 * valid.
740 	 */
741 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
742 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
743 			MNT_REL(mp);
744 			MNT_IUNLOCK(mp);
745 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
746 			    __func__);
747 			return (ENOENT);
748 		}
749 		if (flags & MBF_MNTLSTLOCK)
750 			mtx_unlock(&mountlist_mtx);
751 		mp->mnt_kern_flag |= MNTK_MWAIT;
752 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
753 		if (flags & MBF_MNTLSTLOCK)
754 			mtx_lock(&mountlist_mtx);
755 		MNT_ILOCK(mp);
756 	}
757 	if (flags & MBF_MNTLSTLOCK)
758 		mtx_unlock(&mountlist_mtx);
759 	mp->mnt_lockref++;
760 	MNT_IUNLOCK(mp);
761 	return (0);
762 }
763 
764 /*
765  * Free a busy filesystem.
766  */
767 void
768 vfs_unbusy(struct mount *mp)
769 {
770 	int c;
771 
772 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
773 
774 	if (vfs_op_thread_enter(mp)) {
775 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
776 		vfs_mp_count_sub_pcpu(mp, lockref, 1);
777 		vfs_mp_count_sub_pcpu(mp, ref, 1);
778 		vfs_op_thread_exit(mp);
779 		return;
780 	}
781 
782 	MNT_ILOCK(mp);
783 	vfs_assert_mount_counters(mp);
784 	MNT_REL(mp);
785 	c = --mp->mnt_lockref;
786 	if (mp->mnt_vfs_ops == 0) {
787 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
788 		MNT_IUNLOCK(mp);
789 		return;
790 	}
791 	if (c < 0)
792 		vfs_dump_mount_counters(mp);
793 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
794 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
795 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
796 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
797 		wakeup(&mp->mnt_lockref);
798 	}
799 	MNT_IUNLOCK(mp);
800 }
801 
802 /*
803  * Lookup a mount point by filesystem identifier.
804  */
805 struct mount *
806 vfs_getvfs(fsid_t *fsid)
807 {
808 	struct mount *mp;
809 
810 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
811 	mtx_lock(&mountlist_mtx);
812 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
813 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
814 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
815 			vfs_ref(mp);
816 			mtx_unlock(&mountlist_mtx);
817 			return (mp);
818 		}
819 	}
820 	mtx_unlock(&mountlist_mtx);
821 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
822 	return ((struct mount *) 0);
823 }
824 
825 /*
826  * Lookup a mount point by filesystem identifier, busying it before
827  * returning.
828  *
829  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
830  * cache for popular filesystem identifiers.  The cache is lockess, using
831  * the fact that struct mount's are never freed.  In worst case we may
832  * get pointer to unmounted or even different filesystem, so we have to
833  * check what we got, and go slow way if so.
834  */
835 struct mount *
836 vfs_busyfs(fsid_t *fsid)
837 {
838 #define	FSID_CACHE_SIZE	256
839 	typedef struct mount * volatile vmp_t;
840 	static vmp_t cache[FSID_CACHE_SIZE];
841 	struct mount *mp;
842 	int error;
843 	uint32_t hash;
844 
845 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
846 	hash = fsid->val[0] ^ fsid->val[1];
847 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
848 	mp = cache[hash];
849 	if (mp == NULL ||
850 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
851 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
852 		goto slow;
853 	if (vfs_busy(mp, 0) != 0) {
854 		cache[hash] = NULL;
855 		goto slow;
856 	}
857 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
858 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
859 		return (mp);
860 	else
861 	    vfs_unbusy(mp);
862 
863 slow:
864 	mtx_lock(&mountlist_mtx);
865 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
866 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
867 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
868 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
869 			if (error) {
870 				cache[hash] = NULL;
871 				mtx_unlock(&mountlist_mtx);
872 				return (NULL);
873 			}
874 			cache[hash] = mp;
875 			return (mp);
876 		}
877 	}
878 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
879 	mtx_unlock(&mountlist_mtx);
880 	return ((struct mount *) 0);
881 }
882 
883 /*
884  * Check if a user can access privileged mount options.
885  */
886 int
887 vfs_suser(struct mount *mp, struct thread *td)
888 {
889 	int error;
890 
891 	if (jailed(td->td_ucred)) {
892 		/*
893 		 * If the jail of the calling thread lacks permission for
894 		 * this type of file system, deny immediately.
895 		 */
896 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
897 			return (EPERM);
898 
899 		/*
900 		 * If the file system was mounted outside the jail of the
901 		 * calling thread, deny immediately.
902 		 */
903 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
904 			return (EPERM);
905 	}
906 
907 	/*
908 	 * If file system supports delegated administration, we don't check
909 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
910 	 * by the file system itself.
911 	 * If this is not the user that did original mount, we check for
912 	 * the PRIV_VFS_MOUNT_OWNER privilege.
913 	 */
914 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
915 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
916 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
917 			return (error);
918 	}
919 	return (0);
920 }
921 
922 /*
923  * Get a new unique fsid.  Try to make its val[0] unique, since this value
924  * will be used to create fake device numbers for stat().  Also try (but
925  * not so hard) make its val[0] unique mod 2^16, since some emulators only
926  * support 16-bit device numbers.  We end up with unique val[0]'s for the
927  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
928  *
929  * Keep in mind that several mounts may be running in parallel.  Starting
930  * the search one past where the previous search terminated is both a
931  * micro-optimization and a defense against returning the same fsid to
932  * different mounts.
933  */
934 void
935 vfs_getnewfsid(struct mount *mp)
936 {
937 	static uint16_t mntid_base;
938 	struct mount *nmp;
939 	fsid_t tfsid;
940 	int mtype;
941 
942 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
943 	mtx_lock(&mntid_mtx);
944 	mtype = mp->mnt_vfc->vfc_typenum;
945 	tfsid.val[1] = mtype;
946 	mtype = (mtype & 0xFF) << 24;
947 	for (;;) {
948 		tfsid.val[0] = makedev(255,
949 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
950 		mntid_base++;
951 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
952 			break;
953 		vfs_rel(nmp);
954 	}
955 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
956 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
957 	mtx_unlock(&mntid_mtx);
958 }
959 
960 /*
961  * Knob to control the precision of file timestamps:
962  *
963  *   0 = seconds only; nanoseconds zeroed.
964  *   1 = seconds and nanoseconds, accurate within 1/HZ.
965  *   2 = seconds and nanoseconds, truncated to microseconds.
966  * >=3 = seconds and nanoseconds, maximum precision.
967  */
968 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
969 
970 static int timestamp_precision = TSP_USEC;
971 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
972     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
973     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
974     "3+: sec + ns (max. precision))");
975 
976 /*
977  * Get a current timestamp.
978  */
979 void
980 vfs_timestamp(struct timespec *tsp)
981 {
982 	struct timeval tv;
983 
984 	switch (timestamp_precision) {
985 	case TSP_SEC:
986 		tsp->tv_sec = time_second;
987 		tsp->tv_nsec = 0;
988 		break;
989 	case TSP_HZ:
990 		getnanotime(tsp);
991 		break;
992 	case TSP_USEC:
993 		microtime(&tv);
994 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
995 		break;
996 	case TSP_NSEC:
997 	default:
998 		nanotime(tsp);
999 		break;
1000 	}
1001 }
1002 
1003 /*
1004  * Set vnode attributes to VNOVAL
1005  */
1006 void
1007 vattr_null(struct vattr *vap)
1008 {
1009 
1010 	vap->va_type = VNON;
1011 	vap->va_size = VNOVAL;
1012 	vap->va_bytes = VNOVAL;
1013 	vap->va_mode = VNOVAL;
1014 	vap->va_nlink = VNOVAL;
1015 	vap->va_uid = VNOVAL;
1016 	vap->va_gid = VNOVAL;
1017 	vap->va_fsid = VNOVAL;
1018 	vap->va_fileid = VNOVAL;
1019 	vap->va_blocksize = VNOVAL;
1020 	vap->va_rdev = VNOVAL;
1021 	vap->va_atime.tv_sec = VNOVAL;
1022 	vap->va_atime.tv_nsec = VNOVAL;
1023 	vap->va_mtime.tv_sec = VNOVAL;
1024 	vap->va_mtime.tv_nsec = VNOVAL;
1025 	vap->va_ctime.tv_sec = VNOVAL;
1026 	vap->va_ctime.tv_nsec = VNOVAL;
1027 	vap->va_birthtime.tv_sec = VNOVAL;
1028 	vap->va_birthtime.tv_nsec = VNOVAL;
1029 	vap->va_flags = VNOVAL;
1030 	vap->va_gen = VNOVAL;
1031 	vap->va_vaflags = 0;
1032 }
1033 
1034 /*
1035  * This routine is called when we have too many vnodes.  It attempts
1036  * to free <count> vnodes and will potentially free vnodes that still
1037  * have VM backing store (VM backing store is typically the cause
1038  * of a vnode blowout so we want to do this).  Therefore, this operation
1039  * is not considered cheap.
1040  *
1041  * A number of conditions may prevent a vnode from being reclaimed.
1042  * the buffer cache may have references on the vnode, a directory
1043  * vnode may still have references due to the namei cache representing
1044  * underlying files, or the vnode may be in active use.   It is not
1045  * desirable to reuse such vnodes.  These conditions may cause the
1046  * number of vnodes to reach some minimum value regardless of what
1047  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1048  *
1049  * @param mp		 Try to reclaim vnodes from this mountpoint
1050  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1051  * 			 entries if this argument is strue
1052  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1053  *			 pages.
1054  * @return		 The number of vnodes that were reclaimed.
1055  */
1056 static int
1057 vlrureclaim(struct mount *mp, bool reclaim_nc_src, int trigger)
1058 {
1059 	struct vnode *vp;
1060 	int count, done, target;
1061 
1062 	done = 0;
1063 	vn_start_write(NULL, &mp, V_WAIT);
1064 	MNT_ILOCK(mp);
1065 	count = mp->mnt_nvnodelistsize;
1066 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1067 	target = target / 10 + 1;
1068 	while (count != 0 && done < target) {
1069 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1070 		while (vp != NULL && vp->v_type == VMARKER)
1071 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
1072 		if (vp == NULL)
1073 			break;
1074 		/*
1075 		 * XXX LRU is completely broken for non-free vnodes.  First
1076 		 * by calling here in mountpoint order, then by moving
1077 		 * unselected vnodes to the end here, and most grossly by
1078 		 * removing the vlruvp() function that was supposed to
1079 		 * maintain the order.  (This function was born broken
1080 		 * since syncer problems prevented it doing anything.)  The
1081 		 * order is closer to LRC (C = Created).
1082 		 *
1083 		 * LRU reclaiming of vnodes seems to have last worked in
1084 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
1085 		 * Then there was no hold count, and inactive vnodes were
1086 		 * simply put on the free list in LRU order.  The separate
1087 		 * lists also break LRU.  We prefer to reclaim from the
1088 		 * free list for technical reasons.  This tends to thrash
1089 		 * the free list to keep very unrecently used held vnodes.
1090 		 * The problem is mitigated by keeping the free list large.
1091 		 */
1092 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1093 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1094 		--count;
1095 		if (!VI_TRYLOCK(vp))
1096 			goto next_iter;
1097 		/*
1098 		 * If it's been deconstructed already, it's still
1099 		 * referenced, or it exceeds the trigger, skip it.
1100 		 * Also skip free vnodes.  We are trying to make space
1101 		 * to expand the free list, not reduce it.
1102 		 */
1103 		if (vp->v_usecount ||
1104 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1105 		    ((vp->v_iflag & VI_FREE) != 0) ||
1106 		    VN_IS_DOOMED(vp) || (vp->v_object != NULL &&
1107 		    vp->v_object->resident_page_count > trigger)) {
1108 			VI_UNLOCK(vp);
1109 			goto next_iter;
1110 		}
1111 		MNT_IUNLOCK(mp);
1112 		vholdl(vp);
1113 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
1114 			vdrop(vp);
1115 			goto next_iter_mntunlocked;
1116 		}
1117 		VI_LOCK(vp);
1118 		/*
1119 		 * v_usecount may have been bumped after VOP_LOCK() dropped
1120 		 * the vnode interlock and before it was locked again.
1121 		 *
1122 		 * It is not necessary to recheck VIRF_DOOMED because it can
1123 		 * only be set by another thread that holds both the vnode
1124 		 * lock and vnode interlock.  If another thread has the
1125 		 * vnode lock before we get to VOP_LOCK() and obtains the
1126 		 * vnode interlock after VOP_LOCK() drops the vnode
1127 		 * interlock, the other thread will be unable to drop the
1128 		 * vnode lock before our VOP_LOCK() call fails.
1129 		 */
1130 		if (vp->v_usecount ||
1131 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1132 		    (vp->v_object != NULL &&
1133 		    vp->v_object->resident_page_count > trigger)) {
1134 			VOP_UNLOCK(vp);
1135 			vdropl(vp);
1136 			goto next_iter_mntunlocked;
1137 		}
1138 		KASSERT(!VN_IS_DOOMED(vp),
1139 		    ("VIRF_DOOMED unexpectedly detected in vlrureclaim()"));
1140 		counter_u64_add(recycles_count, 1);
1141 		vgonel(vp);
1142 		VOP_UNLOCK(vp);
1143 		vdropl(vp);
1144 		done++;
1145 next_iter_mntunlocked:
1146 		if (!should_yield())
1147 			goto relock_mnt;
1148 		goto yield;
1149 next_iter:
1150 		if (!should_yield())
1151 			continue;
1152 		MNT_IUNLOCK(mp);
1153 yield:
1154 		kern_yield(PRI_USER);
1155 relock_mnt:
1156 		MNT_ILOCK(mp);
1157 	}
1158 	MNT_IUNLOCK(mp);
1159 	vn_finished_write(mp);
1160 	return done;
1161 }
1162 
1163 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1164 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1165     0,
1166     "limit on vnode free requests per call to the vnlru_free routine");
1167 
1168 /*
1169  * Attempt to reduce the free list by the requested amount.
1170  */
1171 static void
1172 vnlru_free_locked(int count, struct vfsops *mnt_op)
1173 {
1174 	struct vnode *vp;
1175 	struct mount *mp;
1176 	bool tried_batches;
1177 
1178 	tried_batches = false;
1179 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1180 	if (count > max_vnlru_free)
1181 		count = max_vnlru_free;
1182 	for (; count > 0; count--) {
1183 		vp = TAILQ_FIRST(&vnode_free_list);
1184 		/*
1185 		 * The list can be modified while the free_list_mtx
1186 		 * has been dropped and vp could be NULL here.
1187 		 */
1188 		if (vp == NULL) {
1189 			if (tried_batches)
1190 				break;
1191 			mtx_unlock(&vnode_free_list_mtx);
1192 			vnlru_return_batches(mnt_op);
1193 			tried_batches = true;
1194 			mtx_lock(&vnode_free_list_mtx);
1195 			continue;
1196 		}
1197 
1198 		VNASSERT(vp->v_op != NULL, vp,
1199 		    ("vnlru_free: vnode already reclaimed."));
1200 		KASSERT((vp->v_iflag & VI_FREE) != 0,
1201 		    ("Removing vnode not on freelist"));
1202 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1203 		    ("Mangling active vnode"));
1204 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
1205 
1206 		/*
1207 		 * Don't recycle if our vnode is from different type
1208 		 * of mount point.  Note that mp is type-safe, the
1209 		 * check does not reach unmapped address even if
1210 		 * vnode is reclaimed.
1211 		 * Don't recycle if we can't get the interlock without
1212 		 * blocking.
1213 		 */
1214 		if ((mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1215 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1216 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
1217 			continue;
1218 		}
1219 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
1220 		    vp, ("vp inconsistent on freelist"));
1221 
1222 		/*
1223 		 * The clear of VI_FREE prevents activation of the
1224 		 * vnode.  There is no sense in putting the vnode on
1225 		 * the mount point active list, only to remove it
1226 		 * later during recycling.  Inline the relevant part
1227 		 * of vholdl(), to avoid triggering assertions or
1228 		 * activating.
1229 		 */
1230 		freevnodes--;
1231 		vp->v_iflag &= ~VI_FREE;
1232 		VNODE_REFCOUNT_FENCE_REL();
1233 		refcount_acquire(&vp->v_holdcnt);
1234 
1235 		mtx_unlock(&vnode_free_list_mtx);
1236 		VI_UNLOCK(vp);
1237 		vtryrecycle(vp);
1238 		/*
1239 		 * If the recycled succeeded this vdrop will actually free
1240 		 * the vnode.  If not it will simply place it back on
1241 		 * the free list.
1242 		 */
1243 		vdrop(vp);
1244 		mtx_lock(&vnode_free_list_mtx);
1245 	}
1246 }
1247 
1248 void
1249 vnlru_free(int count, struct vfsops *mnt_op)
1250 {
1251 
1252 	mtx_lock(&vnode_free_list_mtx);
1253 	vnlru_free_locked(count, mnt_op);
1254 	mtx_unlock(&vnode_free_list_mtx);
1255 }
1256 
1257 static void
1258 vnlru_recalc(void)
1259 {
1260 
1261 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1262 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1263 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1264 	vlowat = vhiwat / 2;
1265 }
1266 
1267 /* XXX some names and initialization are bad for limits and watermarks. */
1268 static int
1269 vspace(void)
1270 {
1271 	u_long rnumvnodes, rfreevnodes;
1272 	int space;
1273 
1274 	rnumvnodes = atomic_load_long(&numvnodes);
1275 	rfreevnodes = atomic_load_long(&freevnodes);
1276 	if (rnumvnodes > desiredvnodes)
1277 		return (0);
1278 	space = desiredvnodes - rnumvnodes;
1279 	if (freevnodes > wantfreevnodes)
1280 		space += rfreevnodes - wantfreevnodes;
1281 	return (space);
1282 }
1283 
1284 static void
1285 vnlru_return_batch_locked(struct mount *mp)
1286 {
1287 	struct vnode *vp;
1288 
1289 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
1290 
1291 	if (mp->mnt_tmpfreevnodelistsize == 0)
1292 		return;
1293 
1294 	TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) {
1295 		VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp,
1296 		    ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist"));
1297 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
1298 	}
1299 	mtx_lock(&vnode_free_list_mtx);
1300 	TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist);
1301 	freevnodes += mp->mnt_tmpfreevnodelistsize;
1302 	mtx_unlock(&vnode_free_list_mtx);
1303 	mp->mnt_tmpfreevnodelistsize = 0;
1304 }
1305 
1306 static void
1307 vnlru_return_batch(struct mount *mp)
1308 {
1309 
1310 	mtx_lock(&mp->mnt_listmtx);
1311 	vnlru_return_batch_locked(mp);
1312 	mtx_unlock(&mp->mnt_listmtx);
1313 }
1314 
1315 static void
1316 vnlru_return_batches(struct vfsops *mnt_op)
1317 {
1318 	struct mount *mp, *nmp;
1319 	bool need_unbusy;
1320 
1321 	mtx_lock(&mountlist_mtx);
1322 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1323 		need_unbusy = false;
1324 		if (mnt_op != NULL && mp->mnt_op != mnt_op)
1325 			goto next;
1326 		if (mp->mnt_tmpfreevnodelistsize == 0)
1327 			goto next;
1328 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) {
1329 			vnlru_return_batch(mp);
1330 			need_unbusy = true;
1331 			mtx_lock(&mountlist_mtx);
1332 		}
1333 next:
1334 		nmp = TAILQ_NEXT(mp, mnt_list);
1335 		if (need_unbusy)
1336 			vfs_unbusy(mp);
1337 	}
1338 	mtx_unlock(&mountlist_mtx);
1339 }
1340 
1341 /*
1342  * Attempt to recycle vnodes in a context that is always safe to block.
1343  * Calling vlrurecycle() from the bowels of filesystem code has some
1344  * interesting deadlock problems.
1345  */
1346 static struct proc *vnlruproc;
1347 static int vnlruproc_sig;
1348 
1349 static void
1350 vnlru_proc(void)
1351 {
1352 	u_long rnumvnodes, rfreevnodes;
1353 	struct mount *mp, *nmp;
1354 	unsigned long onumvnodes;
1355 	int done, force, trigger, usevnodes, vsp;
1356 	bool reclaim_nc_src;
1357 
1358 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1359 	    SHUTDOWN_PRI_FIRST);
1360 
1361 	force = 0;
1362 	for (;;) {
1363 		kproc_suspend_check(vnlruproc);
1364 		mtx_lock(&vnode_free_list_mtx);
1365 		rnumvnodes = atomic_load_long(&numvnodes);
1366 		/*
1367 		 * If numvnodes is too large (due to desiredvnodes being
1368 		 * adjusted using its sysctl, or emergency growth), first
1369 		 * try to reduce it by discarding from the free list.
1370 		 */
1371 		if (rnumvnodes > desiredvnodes)
1372 			vnlru_free_locked(rnumvnodes - desiredvnodes, NULL);
1373 		/*
1374 		 * Sleep if the vnode cache is in a good state.  This is
1375 		 * when it is not over-full and has space for about a 4%
1376 		 * or 9% expansion (by growing its size or inexcessively
1377 		 * reducing its free list).  Otherwise, try to reclaim
1378 		 * space for a 10% expansion.
1379 		 */
1380 		if (vstir && force == 0) {
1381 			force = 1;
1382 			vstir = 0;
1383 		}
1384 		vsp = vspace();
1385 		if (vsp >= vlowat && force == 0) {
1386 			vnlruproc_sig = 0;
1387 			wakeup(&vnlruproc_sig);
1388 			msleep(vnlruproc, &vnode_free_list_mtx,
1389 			    PVFS|PDROP, "vlruwt", hz);
1390 			continue;
1391 		}
1392 		mtx_unlock(&vnode_free_list_mtx);
1393 		done = 0;
1394 		rnumvnodes = atomic_load_long(&numvnodes);
1395 		rfreevnodes = atomic_load_long(&freevnodes);
1396 
1397 		onumvnodes = rnumvnodes;
1398 		/*
1399 		 * Calculate parameters for recycling.  These are the same
1400 		 * throughout the loop to give some semblance of fairness.
1401 		 * The trigger point is to avoid recycling vnodes with lots
1402 		 * of resident pages.  We aren't trying to free memory; we
1403 		 * are trying to recycle or at least free vnodes.
1404 		 */
1405 		if (rnumvnodes <= desiredvnodes)
1406 			usevnodes = rnumvnodes - rfreevnodes;
1407 		else
1408 			usevnodes = rnumvnodes;
1409 		if (usevnodes <= 0)
1410 			usevnodes = 1;
1411 		/*
1412 		 * The trigger value is is chosen to give a conservatively
1413 		 * large value to ensure that it alone doesn't prevent
1414 		 * making progress.  The value can easily be so large that
1415 		 * it is effectively infinite in some congested and
1416 		 * misconfigured cases, and this is necessary.  Normally
1417 		 * it is about 8 to 100 (pages), which is quite large.
1418 		 */
1419 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1420 		if (force < 2)
1421 			trigger = vsmalltrigger;
1422 		reclaim_nc_src = force >= 3;
1423 		mtx_lock(&mountlist_mtx);
1424 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1425 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1426 				nmp = TAILQ_NEXT(mp, mnt_list);
1427 				continue;
1428 			}
1429 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1430 			mtx_lock(&mountlist_mtx);
1431 			nmp = TAILQ_NEXT(mp, mnt_list);
1432 			vfs_unbusy(mp);
1433 		}
1434 		mtx_unlock(&mountlist_mtx);
1435 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1436 			uma_reclaim(UMA_RECLAIM_DRAIN);
1437 		if (done == 0) {
1438 			if (force == 0 || force == 1) {
1439 				force = 2;
1440 				continue;
1441 			}
1442 			if (force == 2) {
1443 				force = 3;
1444 				continue;
1445 			}
1446 			force = 0;
1447 			vnlru_nowhere++;
1448 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1449 		} else
1450 			kern_yield(PRI_USER);
1451 		/*
1452 		 * After becoming active to expand above low water, keep
1453 		 * active until above high water.
1454 		 */
1455 		vsp = vspace();
1456 		force = vsp < vhiwat;
1457 	}
1458 }
1459 
1460 static struct kproc_desc vnlru_kp = {
1461 	"vnlru",
1462 	vnlru_proc,
1463 	&vnlruproc
1464 };
1465 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1466     &vnlru_kp);
1467 
1468 /*
1469  * Routines having to do with the management of the vnode table.
1470  */
1471 
1472 /*
1473  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1474  * before we actually vgone().  This function must be called with the vnode
1475  * held to prevent the vnode from being returned to the free list midway
1476  * through vgone().
1477  */
1478 static int
1479 vtryrecycle(struct vnode *vp)
1480 {
1481 	struct mount *vnmp;
1482 
1483 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1484 	VNASSERT(vp->v_holdcnt, vp,
1485 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1486 	/*
1487 	 * This vnode may found and locked via some other list, if so we
1488 	 * can't recycle it yet.
1489 	 */
1490 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1491 		CTR2(KTR_VFS,
1492 		    "%s: impossible to recycle, vp %p lock is already held",
1493 		    __func__, vp);
1494 		return (EWOULDBLOCK);
1495 	}
1496 	/*
1497 	 * Don't recycle if its filesystem is being suspended.
1498 	 */
1499 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1500 		VOP_UNLOCK(vp);
1501 		CTR2(KTR_VFS,
1502 		    "%s: impossible to recycle, cannot start the write for %p",
1503 		    __func__, vp);
1504 		return (EBUSY);
1505 	}
1506 	/*
1507 	 * If we got this far, we need to acquire the interlock and see if
1508 	 * anyone picked up this vnode from another list.  If not, we will
1509 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1510 	 * will skip over it.
1511 	 */
1512 	VI_LOCK(vp);
1513 	if (vp->v_usecount) {
1514 		VOP_UNLOCK(vp);
1515 		VI_UNLOCK(vp);
1516 		vn_finished_write(vnmp);
1517 		CTR2(KTR_VFS,
1518 		    "%s: impossible to recycle, %p is already referenced",
1519 		    __func__, vp);
1520 		return (EBUSY);
1521 	}
1522 	if (!VN_IS_DOOMED(vp)) {
1523 		counter_u64_add(recycles_free_count, 1);
1524 		vgonel(vp);
1525 	}
1526 	VOP_UNLOCK(vp);
1527 	VI_UNLOCK(vp);
1528 	vn_finished_write(vnmp);
1529 	return (0);
1530 }
1531 
1532 static void
1533 vcheckspace(void)
1534 {
1535 	int vsp;
1536 
1537 	vsp = vspace();
1538 	if (vsp < vlowat && vnlruproc_sig == 0) {
1539 		vnlruproc_sig = 1;
1540 		wakeup(vnlruproc);
1541 	}
1542 }
1543 
1544 /*
1545  * Wait if necessary for space for a new vnode.
1546  */
1547 static int
1548 vn_alloc_wait(int suspended)
1549 {
1550 
1551 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1552 	if (numvnodes >= desiredvnodes) {
1553 		if (suspended) {
1554 			/*
1555 			 * The file system is being suspended.  We cannot
1556 			 * risk a deadlock here, so allow allocation of
1557 			 * another vnode even if this would give too many.
1558 			 */
1559 			return (0);
1560 		}
1561 		if (vnlruproc_sig == 0) {
1562 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1563 			wakeup(vnlruproc);
1564 		}
1565 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1566 		    "vlruwk", hz);
1567 	}
1568 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1569 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1570 		vnlru_free_locked(1, NULL);
1571 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1572 }
1573 
1574 static struct vnode *
1575 vn_alloc(struct mount *mp)
1576 {
1577 	static int cyclecount;
1578 	int error __unused;
1579 
1580 	mtx_lock(&vnode_free_list_mtx);
1581 	if (numvnodes < desiredvnodes)
1582 		cyclecount = 0;
1583 	else if (cyclecount++ >= freevnodes) {
1584 		cyclecount = 0;
1585 		vstir = 1;
1586 	}
1587 	/*
1588 	 * Grow the vnode cache if it will not be above its target max
1589 	 * after growing.  Otherwise, if the free list is nonempty, try
1590 	 * to reclaim 1 item from it before growing the cache (possibly
1591 	 * above its target max if the reclamation failed or is delayed).
1592 	 * Otherwise, wait for some space.  In all cases, schedule
1593 	 * vnlru_proc() if we are getting short of space.  The watermarks
1594 	 * should be chosen so that we never wait or even reclaim from
1595 	 * the free list to below its target minimum.
1596 	 */
1597 	if (numvnodes + 1 <= desiredvnodes)
1598 		;
1599 	else if (freevnodes > 0)
1600 		vnlru_free_locked(1, NULL);
1601 	else {
1602 		error = vn_alloc_wait(mp != NULL && (mp->mnt_kern_flag &
1603 		    MNTK_SUSPEND));
1604 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1605 		if (error != 0) {
1606 			mtx_unlock(&vnode_free_list_mtx);
1607 			return (error);
1608 		}
1609 #endif
1610 	}
1611 	vcheckspace();
1612 	atomic_add_long(&numvnodes, 1);
1613 	mtx_unlock(&vnode_free_list_mtx);
1614 	return (uma_zalloc(vnode_zone, M_WAITOK));
1615 }
1616 
1617 static void
1618 vn_free(struct vnode *vp)
1619 {
1620 
1621 	atomic_subtract_long(&numvnodes, 1);
1622 	uma_zfree(vnode_zone, vp);
1623 }
1624 
1625 /*
1626  * Return the next vnode from the free list.
1627  */
1628 int
1629 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1630     struct vnode **vpp)
1631 {
1632 	struct vnode *vp;
1633 	struct thread *td;
1634 	struct lock_object *lo;
1635 
1636 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1637 
1638 	KASSERT(vops->registered,
1639 	    ("%s: not registered vector op %p\n", __func__, vops));
1640 
1641 	td = curthread;
1642 	if (td->td_vp_reserved != NULL) {
1643 		vp = td->td_vp_reserved;
1644 		td->td_vp_reserved = NULL;
1645 	} else {
1646 		vp = vn_alloc(mp);
1647 	}
1648 	counter_u64_add(vnodes_created, 1);
1649 	/*
1650 	 * Locks are given the generic name "vnode" when created.
1651 	 * Follow the historic practice of using the filesystem
1652 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1653 	 *
1654 	 * Locks live in a witness group keyed on their name. Thus,
1655 	 * when a lock is renamed, it must also move from the witness
1656 	 * group of its old name to the witness group of its new name.
1657 	 *
1658 	 * The change only needs to be made when the vnode moves
1659 	 * from one filesystem type to another. We ensure that each
1660 	 * filesystem use a single static name pointer for its tag so
1661 	 * that we can compare pointers rather than doing a strcmp().
1662 	 */
1663 	lo = &vp->v_vnlock->lock_object;
1664 	if (lo->lo_name != tag) {
1665 		lo->lo_name = tag;
1666 		WITNESS_DESTROY(lo);
1667 		WITNESS_INIT(lo, tag);
1668 	}
1669 	/*
1670 	 * By default, don't allow shared locks unless filesystems opt-in.
1671 	 */
1672 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1673 	/*
1674 	 * Finalize various vnode identity bits.
1675 	 */
1676 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1677 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1678 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1679 	vp->v_type = VNON;
1680 	vp->v_op = vops;
1681 	v_init_counters(vp);
1682 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1683 #ifdef DIAGNOSTIC
1684 	if (mp == NULL && vops != &dead_vnodeops)
1685 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1686 #endif
1687 #ifdef MAC
1688 	mac_vnode_init(vp);
1689 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1690 		mac_vnode_associate_singlelabel(mp, vp);
1691 #endif
1692 	if (mp != NULL) {
1693 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1694 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1695 			vp->v_vflag |= VV_NOKNOTE;
1696 	}
1697 
1698 	/*
1699 	 * For the filesystems which do not use vfs_hash_insert(),
1700 	 * still initialize v_hash to have vfs_hash_index() useful.
1701 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1702 	 * its own hashing.
1703 	 */
1704 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1705 
1706 	*vpp = vp;
1707 	return (0);
1708 }
1709 
1710 void
1711 getnewvnode_reserve(void)
1712 {
1713 	struct thread *td;
1714 
1715 	td = curthread;
1716 	MPASS(td->td_vp_reserved == NULL);
1717 	td->td_vp_reserved = vn_alloc(NULL);
1718 }
1719 
1720 void
1721 getnewvnode_drop_reserve(void)
1722 {
1723 	struct thread *td;
1724 
1725 	td = curthread;
1726 	if (td->td_vp_reserved != NULL) {
1727 		vn_free(td->td_vp_reserved);
1728 		td->td_vp_reserved = NULL;
1729 	}
1730 }
1731 
1732 static void
1733 freevnode(struct vnode *vp)
1734 {
1735 	struct bufobj *bo;
1736 
1737 	/*
1738 	 * The vnode has been marked for destruction, so free it.
1739 	 *
1740 	 * The vnode will be returned to the zone where it will
1741 	 * normally remain until it is needed for another vnode. We
1742 	 * need to cleanup (or verify that the cleanup has already
1743 	 * been done) any residual data left from its current use
1744 	 * so as not to contaminate the freshly allocated vnode.
1745 	 */
1746 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1747 	bo = &vp->v_bufobj;
1748 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
1749 	    ("cleaned vnode still on the free list."));
1750 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1751 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
1752 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1753 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1754 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1755 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1756 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1757 	    ("clean blk trie not empty"));
1758 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1759 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1760 	    ("dirty blk trie not empty"));
1761 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1762 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1763 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1764 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1765 	    ("Dangling rangelock waiters"));
1766 	VI_UNLOCK(vp);
1767 #ifdef MAC
1768 	mac_vnode_destroy(vp);
1769 #endif
1770 	if (vp->v_pollinfo != NULL) {
1771 		destroy_vpollinfo(vp->v_pollinfo);
1772 		vp->v_pollinfo = NULL;
1773 	}
1774 #ifdef INVARIANTS
1775 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
1776 	vp->v_op = NULL;
1777 #endif
1778 	vp->v_mountedhere = NULL;
1779 	vp->v_unpcb = NULL;
1780 	vp->v_rdev = NULL;
1781 	vp->v_fifoinfo = NULL;
1782 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
1783 	vp->v_irflag = 0;
1784 	vp->v_iflag = 0;
1785 	vp->v_vflag = 0;
1786 	bo->bo_flag = 0;
1787 	vn_free(vp);
1788 }
1789 
1790 /*
1791  * Delete from old mount point vnode list, if on one.
1792  */
1793 static void
1794 delmntque(struct vnode *vp)
1795 {
1796 	struct mount *mp;
1797 
1798 	mp = vp->v_mount;
1799 	if (mp == NULL)
1800 		return;
1801 	MNT_ILOCK(mp);
1802 	VI_LOCK(vp);
1803 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1804 	    ("Active vnode list size %d > Vnode list size %d",
1805 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1806 	if (vp->v_iflag & VI_ACTIVE) {
1807 		vp->v_iflag &= ~VI_ACTIVE;
1808 		mtx_lock(&mp->mnt_listmtx);
1809 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1810 		mp->mnt_activevnodelistsize--;
1811 		mtx_unlock(&mp->mnt_listmtx);
1812 	}
1813 	vp->v_mount = NULL;
1814 	VI_UNLOCK(vp);
1815 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1816 		("bad mount point vnode list size"));
1817 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1818 	mp->mnt_nvnodelistsize--;
1819 	MNT_REL(mp);
1820 	MNT_IUNLOCK(mp);
1821 }
1822 
1823 static void
1824 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1825 {
1826 
1827 	vp->v_data = NULL;
1828 	vp->v_op = &dead_vnodeops;
1829 	vgone(vp);
1830 	vput(vp);
1831 }
1832 
1833 /*
1834  * Insert into list of vnodes for the new mount point, if available.
1835  */
1836 int
1837 insmntque1(struct vnode *vp, struct mount *mp,
1838 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1839 {
1840 
1841 	KASSERT(vp->v_mount == NULL,
1842 		("insmntque: vnode already on per mount vnode list"));
1843 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1844 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1845 
1846 	/*
1847 	 * We acquire the vnode interlock early to ensure that the
1848 	 * vnode cannot be recycled by another process releasing a
1849 	 * holdcnt on it before we get it on both the vnode list
1850 	 * and the active vnode list. The mount mutex protects only
1851 	 * manipulation of the vnode list and the vnode freelist
1852 	 * mutex protects only manipulation of the active vnode list.
1853 	 * Hence the need to hold the vnode interlock throughout.
1854 	 */
1855 	MNT_ILOCK(mp);
1856 	VI_LOCK(vp);
1857 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1858 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1859 	    mp->mnt_nvnodelistsize == 0)) &&
1860 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1861 		VI_UNLOCK(vp);
1862 		MNT_IUNLOCK(mp);
1863 		if (dtr != NULL)
1864 			dtr(vp, dtr_arg);
1865 		return (EBUSY);
1866 	}
1867 	vp->v_mount = mp;
1868 	MNT_REF(mp);
1869 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1870 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1871 		("neg mount point vnode list size"));
1872 	mp->mnt_nvnodelistsize++;
1873 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1874 	    ("Activating already active vnode"));
1875 	vp->v_iflag |= VI_ACTIVE;
1876 	mtx_lock(&mp->mnt_listmtx);
1877 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1878 	mp->mnt_activevnodelistsize++;
1879 	mtx_unlock(&mp->mnt_listmtx);
1880 	VI_UNLOCK(vp);
1881 	MNT_IUNLOCK(mp);
1882 	return (0);
1883 }
1884 
1885 int
1886 insmntque(struct vnode *vp, struct mount *mp)
1887 {
1888 
1889 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1890 }
1891 
1892 /*
1893  * Flush out and invalidate all buffers associated with a bufobj
1894  * Called with the underlying object locked.
1895  */
1896 int
1897 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1898 {
1899 	int error;
1900 
1901 	BO_LOCK(bo);
1902 	if (flags & V_SAVE) {
1903 		error = bufobj_wwait(bo, slpflag, slptimeo);
1904 		if (error) {
1905 			BO_UNLOCK(bo);
1906 			return (error);
1907 		}
1908 		if (bo->bo_dirty.bv_cnt > 0) {
1909 			BO_UNLOCK(bo);
1910 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1911 				return (error);
1912 			/*
1913 			 * XXX We could save a lock/unlock if this was only
1914 			 * enabled under INVARIANTS
1915 			 */
1916 			BO_LOCK(bo);
1917 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1918 				panic("vinvalbuf: dirty bufs");
1919 		}
1920 	}
1921 	/*
1922 	 * If you alter this loop please notice that interlock is dropped and
1923 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1924 	 * no race conditions occur from this.
1925 	 */
1926 	do {
1927 		error = flushbuflist(&bo->bo_clean,
1928 		    flags, bo, slpflag, slptimeo);
1929 		if (error == 0 && !(flags & V_CLEANONLY))
1930 			error = flushbuflist(&bo->bo_dirty,
1931 			    flags, bo, slpflag, slptimeo);
1932 		if (error != 0 && error != EAGAIN) {
1933 			BO_UNLOCK(bo);
1934 			return (error);
1935 		}
1936 	} while (error != 0);
1937 
1938 	/*
1939 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1940 	 * have write I/O in-progress but if there is a VM object then the
1941 	 * VM object can also have read-I/O in-progress.
1942 	 */
1943 	do {
1944 		bufobj_wwait(bo, 0, 0);
1945 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
1946 			BO_UNLOCK(bo);
1947 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
1948 			BO_LOCK(bo);
1949 		}
1950 	} while (bo->bo_numoutput > 0);
1951 	BO_UNLOCK(bo);
1952 
1953 	/*
1954 	 * Destroy the copy in the VM cache, too.
1955 	 */
1956 	if (bo->bo_object != NULL &&
1957 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1958 		VM_OBJECT_WLOCK(bo->bo_object);
1959 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1960 		    OBJPR_CLEANONLY : 0);
1961 		VM_OBJECT_WUNLOCK(bo->bo_object);
1962 	}
1963 
1964 #ifdef INVARIANTS
1965 	BO_LOCK(bo);
1966 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1967 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1968 	    bo->bo_clean.bv_cnt > 0))
1969 		panic("vinvalbuf: flush failed");
1970 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1971 	    bo->bo_dirty.bv_cnt > 0)
1972 		panic("vinvalbuf: flush dirty failed");
1973 	BO_UNLOCK(bo);
1974 #endif
1975 	return (0);
1976 }
1977 
1978 /*
1979  * Flush out and invalidate all buffers associated with a vnode.
1980  * Called with the underlying object locked.
1981  */
1982 int
1983 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1984 {
1985 
1986 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1987 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1988 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1989 		return (0);
1990 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1991 }
1992 
1993 /*
1994  * Flush out buffers on the specified list.
1995  *
1996  */
1997 static int
1998 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1999     int slptimeo)
2000 {
2001 	struct buf *bp, *nbp;
2002 	int retval, error;
2003 	daddr_t lblkno;
2004 	b_xflags_t xflags;
2005 
2006 	ASSERT_BO_WLOCKED(bo);
2007 
2008 	retval = 0;
2009 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2010 		/*
2011 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2012 		 * do not skip any buffers. If we are flushing only V_NORMAL
2013 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2014 		 * flushing only V_ALT buffers then skip buffers not marked
2015 		 * as BX_ALTDATA.
2016 		 */
2017 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2018 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2019 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2020 			continue;
2021 		}
2022 		if (nbp != NULL) {
2023 			lblkno = nbp->b_lblkno;
2024 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2025 		}
2026 		retval = EAGAIN;
2027 		error = BUF_TIMELOCK(bp,
2028 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2029 		    "flushbuf", slpflag, slptimeo);
2030 		if (error) {
2031 			BO_LOCK(bo);
2032 			return (error != ENOLCK ? error : EAGAIN);
2033 		}
2034 		KASSERT(bp->b_bufobj == bo,
2035 		    ("bp %p wrong b_bufobj %p should be %p",
2036 		    bp, bp->b_bufobj, bo));
2037 		/*
2038 		 * XXX Since there are no node locks for NFS, I
2039 		 * believe there is a slight chance that a delayed
2040 		 * write will occur while sleeping just above, so
2041 		 * check for it.
2042 		 */
2043 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2044 		    (flags & V_SAVE)) {
2045 			bremfree(bp);
2046 			bp->b_flags |= B_ASYNC;
2047 			bwrite(bp);
2048 			BO_LOCK(bo);
2049 			return (EAGAIN);	/* XXX: why not loop ? */
2050 		}
2051 		bremfree(bp);
2052 		bp->b_flags |= (B_INVAL | B_RELBUF);
2053 		bp->b_flags &= ~B_ASYNC;
2054 		brelse(bp);
2055 		BO_LOCK(bo);
2056 		if (nbp == NULL)
2057 			break;
2058 		nbp = gbincore(bo, lblkno);
2059 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2060 		    != xflags)
2061 			break;			/* nbp invalid */
2062 	}
2063 	return (retval);
2064 }
2065 
2066 int
2067 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2068 {
2069 	struct buf *bp;
2070 	int error;
2071 	daddr_t lblkno;
2072 
2073 	ASSERT_BO_LOCKED(bo);
2074 
2075 	for (lblkno = startn;;) {
2076 again:
2077 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2078 		if (bp == NULL || bp->b_lblkno >= endn ||
2079 		    bp->b_lblkno < startn)
2080 			break;
2081 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2082 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2083 		if (error != 0) {
2084 			BO_RLOCK(bo);
2085 			if (error == ENOLCK)
2086 				goto again;
2087 			return (error);
2088 		}
2089 		KASSERT(bp->b_bufobj == bo,
2090 		    ("bp %p wrong b_bufobj %p should be %p",
2091 		    bp, bp->b_bufobj, bo));
2092 		lblkno = bp->b_lblkno + 1;
2093 		if ((bp->b_flags & B_MANAGED) == 0)
2094 			bremfree(bp);
2095 		bp->b_flags |= B_RELBUF;
2096 		/*
2097 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2098 		 * pages backing each buffer in the range are unlikely to be
2099 		 * reused.  Dirty buffers will have the hint applied once
2100 		 * they've been written.
2101 		 */
2102 		if ((bp->b_flags & B_VMIO) != 0)
2103 			bp->b_flags |= B_NOREUSE;
2104 		brelse(bp);
2105 		BO_RLOCK(bo);
2106 	}
2107 	return (0);
2108 }
2109 
2110 /*
2111  * Truncate a file's buffer and pages to a specified length.  This
2112  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2113  * sync activity.
2114  */
2115 int
2116 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2117 {
2118 	struct buf *bp, *nbp;
2119 	struct bufobj *bo;
2120 	daddr_t startlbn;
2121 
2122 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2123 	    vp, blksize, (uintmax_t)length);
2124 
2125 	/*
2126 	 * Round up to the *next* lbn.
2127 	 */
2128 	startlbn = howmany(length, blksize);
2129 
2130 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2131 
2132 	bo = &vp->v_bufobj;
2133 restart_unlocked:
2134 	BO_LOCK(bo);
2135 
2136 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2137 		;
2138 
2139 	if (length > 0) {
2140 restartsync:
2141 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2142 			if (bp->b_lblkno > 0)
2143 				continue;
2144 			/*
2145 			 * Since we hold the vnode lock this should only
2146 			 * fail if we're racing with the buf daemon.
2147 			 */
2148 			if (BUF_LOCK(bp,
2149 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2150 			    BO_LOCKPTR(bo)) == ENOLCK)
2151 				goto restart_unlocked;
2152 
2153 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2154 			    ("buf(%p) on dirty queue without DELWRI", bp));
2155 
2156 			bremfree(bp);
2157 			bawrite(bp);
2158 			BO_LOCK(bo);
2159 			goto restartsync;
2160 		}
2161 	}
2162 
2163 	bufobj_wwait(bo, 0, 0);
2164 	BO_UNLOCK(bo);
2165 	vnode_pager_setsize(vp, length);
2166 
2167 	return (0);
2168 }
2169 
2170 /*
2171  * Invalidate the cached pages of a file's buffer within the range of block
2172  * numbers [startlbn, endlbn).
2173  */
2174 void
2175 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2176     int blksize)
2177 {
2178 	struct bufobj *bo;
2179 	off_t start, end;
2180 
2181 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2182 
2183 	start = blksize * startlbn;
2184 	end = blksize * endlbn;
2185 
2186 	bo = &vp->v_bufobj;
2187 	BO_LOCK(bo);
2188 	MPASS(blksize == bo->bo_bsize);
2189 
2190 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2191 		;
2192 
2193 	BO_UNLOCK(bo);
2194 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2195 }
2196 
2197 static int
2198 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2199     daddr_t startlbn, daddr_t endlbn)
2200 {
2201 	struct buf *bp, *nbp;
2202 	bool anyfreed;
2203 
2204 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2205 	ASSERT_BO_LOCKED(bo);
2206 
2207 	do {
2208 		anyfreed = false;
2209 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2210 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2211 				continue;
2212 			if (BUF_LOCK(bp,
2213 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2214 			    BO_LOCKPTR(bo)) == ENOLCK) {
2215 				BO_LOCK(bo);
2216 				return (EAGAIN);
2217 			}
2218 
2219 			bremfree(bp);
2220 			bp->b_flags |= B_INVAL | B_RELBUF;
2221 			bp->b_flags &= ~B_ASYNC;
2222 			brelse(bp);
2223 			anyfreed = true;
2224 
2225 			BO_LOCK(bo);
2226 			if (nbp != NULL &&
2227 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2228 			    nbp->b_vp != vp ||
2229 			    (nbp->b_flags & B_DELWRI) != 0))
2230 				return (EAGAIN);
2231 		}
2232 
2233 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2234 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2235 				continue;
2236 			if (BUF_LOCK(bp,
2237 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2238 			    BO_LOCKPTR(bo)) == ENOLCK) {
2239 				BO_LOCK(bo);
2240 				return (EAGAIN);
2241 			}
2242 			bremfree(bp);
2243 			bp->b_flags |= B_INVAL | B_RELBUF;
2244 			bp->b_flags &= ~B_ASYNC;
2245 			brelse(bp);
2246 			anyfreed = true;
2247 
2248 			BO_LOCK(bo);
2249 			if (nbp != NULL &&
2250 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2251 			    (nbp->b_vp != vp) ||
2252 			    (nbp->b_flags & B_DELWRI) == 0))
2253 				return (EAGAIN);
2254 		}
2255 	} while (anyfreed);
2256 	return (0);
2257 }
2258 
2259 static void
2260 buf_vlist_remove(struct buf *bp)
2261 {
2262 	struct bufv *bv;
2263 
2264 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2265 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2266 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
2267 	    (BX_VNDIRTY|BX_VNCLEAN),
2268 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
2269 	if (bp->b_xflags & BX_VNDIRTY)
2270 		bv = &bp->b_bufobj->bo_dirty;
2271 	else
2272 		bv = &bp->b_bufobj->bo_clean;
2273 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2274 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2275 	bv->bv_cnt--;
2276 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2277 }
2278 
2279 /*
2280  * Add the buffer to the sorted clean or dirty block list.
2281  *
2282  * NOTE: xflags is passed as a constant, optimizing this inline function!
2283  */
2284 static void
2285 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2286 {
2287 	struct bufv *bv;
2288 	struct buf *n;
2289 	int error;
2290 
2291 	ASSERT_BO_WLOCKED(bo);
2292 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2293 	    ("dead bo %p", bo));
2294 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2295 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2296 	bp->b_xflags |= xflags;
2297 	if (xflags & BX_VNDIRTY)
2298 		bv = &bo->bo_dirty;
2299 	else
2300 		bv = &bo->bo_clean;
2301 
2302 	/*
2303 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2304 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2305 	 * than _ge.
2306 	 */
2307 	if (bv->bv_cnt == 0 ||
2308 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2309 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2310 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2311 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2312 	else
2313 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2314 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2315 	if (error)
2316 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2317 	bv->bv_cnt++;
2318 }
2319 
2320 /*
2321  * Look up a buffer using the buffer tries.
2322  */
2323 struct buf *
2324 gbincore(struct bufobj *bo, daddr_t lblkno)
2325 {
2326 	struct buf *bp;
2327 
2328 	ASSERT_BO_LOCKED(bo);
2329 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2330 	if (bp != NULL)
2331 		return (bp);
2332 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2333 }
2334 
2335 /*
2336  * Associate a buffer with a vnode.
2337  */
2338 void
2339 bgetvp(struct vnode *vp, struct buf *bp)
2340 {
2341 	struct bufobj *bo;
2342 
2343 	bo = &vp->v_bufobj;
2344 	ASSERT_BO_WLOCKED(bo);
2345 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2346 
2347 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2348 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2349 	    ("bgetvp: bp already attached! %p", bp));
2350 
2351 	vhold(vp);
2352 	bp->b_vp = vp;
2353 	bp->b_bufobj = bo;
2354 	/*
2355 	 * Insert onto list for new vnode.
2356 	 */
2357 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2358 }
2359 
2360 /*
2361  * Disassociate a buffer from a vnode.
2362  */
2363 void
2364 brelvp(struct buf *bp)
2365 {
2366 	struct bufobj *bo;
2367 	struct vnode *vp;
2368 
2369 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2370 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2371 
2372 	/*
2373 	 * Delete from old vnode list, if on one.
2374 	 */
2375 	vp = bp->b_vp;		/* XXX */
2376 	bo = bp->b_bufobj;
2377 	BO_LOCK(bo);
2378 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2379 		buf_vlist_remove(bp);
2380 	else
2381 		panic("brelvp: Buffer %p not on queue.", bp);
2382 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2383 		bo->bo_flag &= ~BO_ONWORKLST;
2384 		mtx_lock(&sync_mtx);
2385 		LIST_REMOVE(bo, bo_synclist);
2386 		syncer_worklist_len--;
2387 		mtx_unlock(&sync_mtx);
2388 	}
2389 	bp->b_vp = NULL;
2390 	bp->b_bufobj = NULL;
2391 	BO_UNLOCK(bo);
2392 	vdrop(vp);
2393 }
2394 
2395 /*
2396  * Add an item to the syncer work queue.
2397  */
2398 static void
2399 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2400 {
2401 	int slot;
2402 
2403 	ASSERT_BO_WLOCKED(bo);
2404 
2405 	mtx_lock(&sync_mtx);
2406 	if (bo->bo_flag & BO_ONWORKLST)
2407 		LIST_REMOVE(bo, bo_synclist);
2408 	else {
2409 		bo->bo_flag |= BO_ONWORKLST;
2410 		syncer_worklist_len++;
2411 	}
2412 
2413 	if (delay > syncer_maxdelay - 2)
2414 		delay = syncer_maxdelay - 2;
2415 	slot = (syncer_delayno + delay) & syncer_mask;
2416 
2417 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2418 	mtx_unlock(&sync_mtx);
2419 }
2420 
2421 static int
2422 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2423 {
2424 	int error, len;
2425 
2426 	mtx_lock(&sync_mtx);
2427 	len = syncer_worklist_len - sync_vnode_count;
2428 	mtx_unlock(&sync_mtx);
2429 	error = SYSCTL_OUT(req, &len, sizeof(len));
2430 	return (error);
2431 }
2432 
2433 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2434     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2435     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2436 
2437 static struct proc *updateproc;
2438 static void sched_sync(void);
2439 static struct kproc_desc up_kp = {
2440 	"syncer",
2441 	sched_sync,
2442 	&updateproc
2443 };
2444 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2445 
2446 static int
2447 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2448 {
2449 	struct vnode *vp;
2450 	struct mount *mp;
2451 
2452 	*bo = LIST_FIRST(slp);
2453 	if (*bo == NULL)
2454 		return (0);
2455 	vp = bo2vnode(*bo);
2456 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2457 		return (1);
2458 	/*
2459 	 * We use vhold in case the vnode does not
2460 	 * successfully sync.  vhold prevents the vnode from
2461 	 * going away when we unlock the sync_mtx so that
2462 	 * we can acquire the vnode interlock.
2463 	 */
2464 	vholdl(vp);
2465 	mtx_unlock(&sync_mtx);
2466 	VI_UNLOCK(vp);
2467 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2468 		vdrop(vp);
2469 		mtx_lock(&sync_mtx);
2470 		return (*bo == LIST_FIRST(slp));
2471 	}
2472 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2473 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2474 	VOP_UNLOCK(vp);
2475 	vn_finished_write(mp);
2476 	BO_LOCK(*bo);
2477 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2478 		/*
2479 		 * Put us back on the worklist.  The worklist
2480 		 * routine will remove us from our current
2481 		 * position and then add us back in at a later
2482 		 * position.
2483 		 */
2484 		vn_syncer_add_to_worklist(*bo, syncdelay);
2485 	}
2486 	BO_UNLOCK(*bo);
2487 	vdrop(vp);
2488 	mtx_lock(&sync_mtx);
2489 	return (0);
2490 }
2491 
2492 static int first_printf = 1;
2493 
2494 /*
2495  * System filesystem synchronizer daemon.
2496  */
2497 static void
2498 sched_sync(void)
2499 {
2500 	struct synclist *next, *slp;
2501 	struct bufobj *bo;
2502 	long starttime;
2503 	struct thread *td = curthread;
2504 	int last_work_seen;
2505 	int net_worklist_len;
2506 	int syncer_final_iter;
2507 	int error;
2508 
2509 	last_work_seen = 0;
2510 	syncer_final_iter = 0;
2511 	syncer_state = SYNCER_RUNNING;
2512 	starttime = time_uptime;
2513 	td->td_pflags |= TDP_NORUNNINGBUF;
2514 
2515 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2516 	    SHUTDOWN_PRI_LAST);
2517 
2518 	mtx_lock(&sync_mtx);
2519 	for (;;) {
2520 		if (syncer_state == SYNCER_FINAL_DELAY &&
2521 		    syncer_final_iter == 0) {
2522 			mtx_unlock(&sync_mtx);
2523 			kproc_suspend_check(td->td_proc);
2524 			mtx_lock(&sync_mtx);
2525 		}
2526 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2527 		if (syncer_state != SYNCER_RUNNING &&
2528 		    starttime != time_uptime) {
2529 			if (first_printf) {
2530 				printf("\nSyncing disks, vnodes remaining... ");
2531 				first_printf = 0;
2532 			}
2533 			printf("%d ", net_worklist_len);
2534 		}
2535 		starttime = time_uptime;
2536 
2537 		/*
2538 		 * Push files whose dirty time has expired.  Be careful
2539 		 * of interrupt race on slp queue.
2540 		 *
2541 		 * Skip over empty worklist slots when shutting down.
2542 		 */
2543 		do {
2544 			slp = &syncer_workitem_pending[syncer_delayno];
2545 			syncer_delayno += 1;
2546 			if (syncer_delayno == syncer_maxdelay)
2547 				syncer_delayno = 0;
2548 			next = &syncer_workitem_pending[syncer_delayno];
2549 			/*
2550 			 * If the worklist has wrapped since the
2551 			 * it was emptied of all but syncer vnodes,
2552 			 * switch to the FINAL_DELAY state and run
2553 			 * for one more second.
2554 			 */
2555 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2556 			    net_worklist_len == 0 &&
2557 			    last_work_seen == syncer_delayno) {
2558 				syncer_state = SYNCER_FINAL_DELAY;
2559 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2560 			}
2561 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2562 		    syncer_worklist_len > 0);
2563 
2564 		/*
2565 		 * Keep track of the last time there was anything
2566 		 * on the worklist other than syncer vnodes.
2567 		 * Return to the SHUTTING_DOWN state if any
2568 		 * new work appears.
2569 		 */
2570 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2571 			last_work_seen = syncer_delayno;
2572 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2573 			syncer_state = SYNCER_SHUTTING_DOWN;
2574 		while (!LIST_EMPTY(slp)) {
2575 			error = sync_vnode(slp, &bo, td);
2576 			if (error == 1) {
2577 				LIST_REMOVE(bo, bo_synclist);
2578 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2579 				continue;
2580 			}
2581 
2582 			if (first_printf == 0) {
2583 				/*
2584 				 * Drop the sync mutex, because some watchdog
2585 				 * drivers need to sleep while patting
2586 				 */
2587 				mtx_unlock(&sync_mtx);
2588 				wdog_kern_pat(WD_LASTVAL);
2589 				mtx_lock(&sync_mtx);
2590 			}
2591 
2592 		}
2593 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2594 			syncer_final_iter--;
2595 		/*
2596 		 * The variable rushjob allows the kernel to speed up the
2597 		 * processing of the filesystem syncer process. A rushjob
2598 		 * value of N tells the filesystem syncer to process the next
2599 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2600 		 * is used by the soft update code to speed up the filesystem
2601 		 * syncer process when the incore state is getting so far
2602 		 * ahead of the disk that the kernel memory pool is being
2603 		 * threatened with exhaustion.
2604 		 */
2605 		if (rushjob > 0) {
2606 			rushjob -= 1;
2607 			continue;
2608 		}
2609 		/*
2610 		 * Just sleep for a short period of time between
2611 		 * iterations when shutting down to allow some I/O
2612 		 * to happen.
2613 		 *
2614 		 * If it has taken us less than a second to process the
2615 		 * current work, then wait. Otherwise start right over
2616 		 * again. We can still lose time if any single round
2617 		 * takes more than two seconds, but it does not really
2618 		 * matter as we are just trying to generally pace the
2619 		 * filesystem activity.
2620 		 */
2621 		if (syncer_state != SYNCER_RUNNING ||
2622 		    time_uptime == starttime) {
2623 			thread_lock(td);
2624 			sched_prio(td, PPAUSE);
2625 			thread_unlock(td);
2626 		}
2627 		if (syncer_state != SYNCER_RUNNING)
2628 			cv_timedwait(&sync_wakeup, &sync_mtx,
2629 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2630 		else if (time_uptime == starttime)
2631 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2632 	}
2633 }
2634 
2635 /*
2636  * Request the syncer daemon to speed up its work.
2637  * We never push it to speed up more than half of its
2638  * normal turn time, otherwise it could take over the cpu.
2639  */
2640 int
2641 speedup_syncer(void)
2642 {
2643 	int ret = 0;
2644 
2645 	mtx_lock(&sync_mtx);
2646 	if (rushjob < syncdelay / 2) {
2647 		rushjob += 1;
2648 		stat_rush_requests += 1;
2649 		ret = 1;
2650 	}
2651 	mtx_unlock(&sync_mtx);
2652 	cv_broadcast(&sync_wakeup);
2653 	return (ret);
2654 }
2655 
2656 /*
2657  * Tell the syncer to speed up its work and run though its work
2658  * list several times, then tell it to shut down.
2659  */
2660 static void
2661 syncer_shutdown(void *arg, int howto)
2662 {
2663 
2664 	if (howto & RB_NOSYNC)
2665 		return;
2666 	mtx_lock(&sync_mtx);
2667 	syncer_state = SYNCER_SHUTTING_DOWN;
2668 	rushjob = 0;
2669 	mtx_unlock(&sync_mtx);
2670 	cv_broadcast(&sync_wakeup);
2671 	kproc_shutdown(arg, howto);
2672 }
2673 
2674 void
2675 syncer_suspend(void)
2676 {
2677 
2678 	syncer_shutdown(updateproc, 0);
2679 }
2680 
2681 void
2682 syncer_resume(void)
2683 {
2684 
2685 	mtx_lock(&sync_mtx);
2686 	first_printf = 1;
2687 	syncer_state = SYNCER_RUNNING;
2688 	mtx_unlock(&sync_mtx);
2689 	cv_broadcast(&sync_wakeup);
2690 	kproc_resume(updateproc);
2691 }
2692 
2693 /*
2694  * Reassign a buffer from one vnode to another.
2695  * Used to assign file specific control information
2696  * (indirect blocks) to the vnode to which they belong.
2697  */
2698 void
2699 reassignbuf(struct buf *bp)
2700 {
2701 	struct vnode *vp;
2702 	struct bufobj *bo;
2703 	int delay;
2704 #ifdef INVARIANTS
2705 	struct bufv *bv;
2706 #endif
2707 
2708 	vp = bp->b_vp;
2709 	bo = bp->b_bufobj;
2710 	++reassignbufcalls;
2711 
2712 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2713 	    bp, bp->b_vp, bp->b_flags);
2714 	/*
2715 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2716 	 * is not fully linked in.
2717 	 */
2718 	if (bp->b_flags & B_PAGING)
2719 		panic("cannot reassign paging buffer");
2720 
2721 	/*
2722 	 * Delete from old vnode list, if on one.
2723 	 */
2724 	BO_LOCK(bo);
2725 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2726 		buf_vlist_remove(bp);
2727 	else
2728 		panic("reassignbuf: Buffer %p not on queue.", bp);
2729 	/*
2730 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2731 	 * of clean buffers.
2732 	 */
2733 	if (bp->b_flags & B_DELWRI) {
2734 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2735 			switch (vp->v_type) {
2736 			case VDIR:
2737 				delay = dirdelay;
2738 				break;
2739 			case VCHR:
2740 				delay = metadelay;
2741 				break;
2742 			default:
2743 				delay = filedelay;
2744 			}
2745 			vn_syncer_add_to_worklist(bo, delay);
2746 		}
2747 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2748 	} else {
2749 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2750 
2751 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2752 			mtx_lock(&sync_mtx);
2753 			LIST_REMOVE(bo, bo_synclist);
2754 			syncer_worklist_len--;
2755 			mtx_unlock(&sync_mtx);
2756 			bo->bo_flag &= ~BO_ONWORKLST;
2757 		}
2758 	}
2759 #ifdef INVARIANTS
2760 	bv = &bo->bo_clean;
2761 	bp = TAILQ_FIRST(&bv->bv_hd);
2762 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2763 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2764 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2765 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2766 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2767 	bv = &bo->bo_dirty;
2768 	bp = TAILQ_FIRST(&bv->bv_hd);
2769 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2770 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2771 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2772 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2773 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2774 #endif
2775 	BO_UNLOCK(bo);
2776 }
2777 
2778 static void
2779 v_init_counters(struct vnode *vp)
2780 {
2781 
2782 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2783 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2784 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2785 
2786 	refcount_init(&vp->v_holdcnt, 1);
2787 	refcount_init(&vp->v_usecount, 1);
2788 }
2789 
2790 /*
2791  * Increment si_usecount of the associated device, if any.
2792  */
2793 static void
2794 v_incr_devcount(struct vnode *vp)
2795 {
2796 
2797 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2798 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2799 		dev_lock();
2800 		vp->v_rdev->si_usecount++;
2801 		dev_unlock();
2802 	}
2803 }
2804 
2805 /*
2806  * Decrement si_usecount of the associated device, if any.
2807  */
2808 static void
2809 v_decr_devcount(struct vnode *vp)
2810 {
2811 
2812 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2813 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2814 		dev_lock();
2815 		vp->v_rdev->si_usecount--;
2816 		dev_unlock();
2817 	}
2818 }
2819 
2820 /*
2821  * Grab a particular vnode from the free list, increment its
2822  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2823  * is being destroyed.  Only callers who specify LK_RETRY will
2824  * see doomed vnodes.  If inactive processing was delayed in
2825  * vput try to do it here.
2826  *
2827  * Both holdcnt and usecount can be manipulated using atomics without holding
2828  * any locks except in these cases which require the vnode interlock:
2829  * holdcnt: 1->0 and 0->1
2830  * usecount: 0->1
2831  *
2832  * usecount is permitted to transition 1->0 without the interlock because
2833  * vnode is kept live by holdcnt.
2834  */
2835 static enum vgetstate __always_inline
2836 _vget_prep(struct vnode *vp, bool interlock)
2837 {
2838 	enum vgetstate vs;
2839 
2840 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2841 		vs = VGET_USECOUNT;
2842 	} else {
2843 		if (interlock)
2844 			vholdl(vp);
2845 		else
2846 			vhold(vp);
2847 		vs = VGET_HOLDCNT;
2848 	}
2849 	return (vs);
2850 }
2851 
2852 enum vgetstate
2853 vget_prep(struct vnode *vp)
2854 {
2855 
2856 	return (_vget_prep(vp, false));
2857 }
2858 
2859 int
2860 vget(struct vnode *vp, int flags, struct thread *td)
2861 {
2862 	enum vgetstate vs;
2863 
2864 	MPASS(td == curthread);
2865 
2866 	vs = _vget_prep(vp, (flags & LK_INTERLOCK) != 0);
2867 	return (vget_finish(vp, flags, vs));
2868 }
2869 
2870 int
2871 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2872 {
2873 	int error, oweinact;
2874 
2875 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2876 	    ("%s: invalid lock operation", __func__));
2877 
2878 	if ((flags & LK_INTERLOCK) != 0)
2879 		ASSERT_VI_LOCKED(vp, __func__);
2880 	else
2881 		ASSERT_VI_UNLOCKED(vp, __func__);
2882 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
2883 	if (vs == VGET_USECOUNT) {
2884 		VNASSERT(vp->v_usecount > 0, vp,
2885 		    ("%s: vnode without usecount when VGET_USECOUNT was passed",
2886 		    __func__));
2887 	}
2888 
2889 	if ((error = vn_lock(vp, flags)) != 0) {
2890 		if (vs == VGET_USECOUNT)
2891 			vrele(vp);
2892 		else
2893 			vdrop(vp);
2894 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2895 		    vp);
2896 		return (error);
2897 	}
2898 
2899 	if (vs == VGET_USECOUNT) {
2900 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2901 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2902 		return (0);
2903 	}
2904 
2905 	/*
2906 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
2907 	 * the vnode around. Otherwise someone else lended their hold count and
2908 	 * we have to drop ours.
2909 	 */
2910 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2911 #ifdef INVARIANTS
2912 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2913 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2914 #else
2915 		refcount_release(&vp->v_holdcnt);
2916 #endif
2917 		VNODE_REFCOUNT_FENCE_ACQ();
2918 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2919 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2920 		return (0);
2921 	}
2922 
2923 	/*
2924 	 * We don't guarantee that any particular close will
2925 	 * trigger inactive processing so just make a best effort
2926 	 * here at preventing a reference to a removed file.  If
2927 	 * we don't succeed no harm is done.
2928 	 *
2929 	 * Upgrade our holdcnt to a usecount.
2930 	 */
2931 	VI_LOCK(vp);
2932 	/*
2933 	 * See the previous section. By the time we get here we may find
2934 	 * ourselves in the same spot.
2935 	 */
2936 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2937 #ifdef INVARIANTS
2938 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2939 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2940 #else
2941 		refcount_release(&vp->v_holdcnt);
2942 #endif
2943 		VNODE_REFCOUNT_FENCE_ACQ();
2944 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2945 		    ("%s: vnode with usecount and VI_OWEINACT set",
2946 		    __func__));
2947 		VI_UNLOCK(vp);
2948 		return (0);
2949 	}
2950 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
2951 		oweinact = 0;
2952 	} else {
2953 		oweinact = 1;
2954 		vp->v_iflag &= ~VI_OWEINACT;
2955 		VNODE_REFCOUNT_FENCE_REL();
2956 	}
2957 	v_incr_devcount(vp);
2958 	refcount_acquire(&vp->v_usecount);
2959 	if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2960 	    (flags & LK_NOWAIT) == 0)
2961 		vinactive(vp);
2962 	VI_UNLOCK(vp);
2963 	return (0);
2964 }
2965 
2966 /*
2967  * Increase the reference (use) and hold count of a vnode.
2968  * This will also remove the vnode from the free list if it is presently free.
2969  */
2970 void
2971 vref(struct vnode *vp)
2972 {
2973 
2974 	ASSERT_VI_UNLOCKED(vp, __func__);
2975 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2976 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2977 		VNODE_REFCOUNT_FENCE_ACQ();
2978 		VNASSERT(vp->v_holdcnt > 0, vp,
2979 		    ("%s: active vnode not held", __func__));
2980 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2981 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2982 		return;
2983 	}
2984 	VI_LOCK(vp);
2985 	vrefl(vp);
2986 	VI_UNLOCK(vp);
2987 }
2988 
2989 void
2990 vrefl(struct vnode *vp)
2991 {
2992 
2993 	ASSERT_VI_LOCKED(vp, __func__);
2994 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2995 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2996 		VNODE_REFCOUNT_FENCE_ACQ();
2997 		VNASSERT(vp->v_holdcnt > 0, vp,
2998 		    ("%s: active vnode not held", __func__));
2999 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
3000 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
3001 		return;
3002 	}
3003 	vholdl(vp);
3004 	if ((vp->v_iflag & VI_OWEINACT) != 0) {
3005 		vp->v_iflag &= ~VI_OWEINACT;
3006 		VNODE_REFCOUNT_FENCE_REL();
3007 	}
3008 	v_incr_devcount(vp);
3009 	refcount_acquire(&vp->v_usecount);
3010 }
3011 
3012 void
3013 vrefact(struct vnode *vp)
3014 {
3015 
3016 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3017 #ifdef INVARIANTS
3018 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3019 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3020 #else
3021 	refcount_acquire(&vp->v_usecount);
3022 #endif
3023 }
3024 
3025 /*
3026  * Return reference count of a vnode.
3027  *
3028  * The results of this call are only guaranteed when some mechanism is used to
3029  * stop other processes from gaining references to the vnode.  This may be the
3030  * case if the caller holds the only reference.  This is also useful when stale
3031  * data is acceptable as race conditions may be accounted for by some other
3032  * means.
3033  */
3034 int
3035 vrefcnt(struct vnode *vp)
3036 {
3037 
3038 	return (vp->v_usecount);
3039 }
3040 
3041 static void
3042 vdefer_inactive(struct vnode *vp)
3043 {
3044 
3045 	ASSERT_VI_LOCKED(vp, __func__);
3046 	VNASSERT(vp->v_iflag & VI_OWEINACT, vp,
3047 	    ("%s: vnode without VI_OWEINACT", __func__));
3048 	if (VN_IS_DOOMED(vp)) {
3049 		vdropl(vp);
3050 		return;
3051 	}
3052 	if (vp->v_iflag & VI_DEFINACT) {
3053 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3054 		vdropl(vp);
3055 		return;
3056 	}
3057 	vp->v_iflag |= VI_DEFINACT;
3058 	VI_UNLOCK(vp);
3059 	counter_u64_add(deferred_inact, 1);
3060 }
3061 
3062 static void
3063 vdefer_inactive_cond(struct vnode *vp)
3064 {
3065 
3066 	VI_LOCK(vp);
3067 	VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
3068 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3069 		vdropl(vp);
3070 		return;
3071 	}
3072 	vdefer_inactive(vp);
3073 }
3074 
3075 enum vputx_op { VPUTX_VRELE, VPUTX_VPUT, VPUTX_VUNREF };
3076 
3077 /*
3078  * Decrement the use and hold counts for a vnode.
3079  *
3080  * See an explanation near vget() as to why atomic operation is safe.
3081  */
3082 static void
3083 vputx(struct vnode *vp, enum vputx_op func)
3084 {
3085 	int error;
3086 
3087 	KASSERT(vp != NULL, ("vputx: null vp"));
3088 	if (func == VPUTX_VUNREF)
3089 		ASSERT_VOP_LOCKED(vp, "vunref");
3090 	ASSERT_VI_UNLOCKED(vp, __func__);
3091 	VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
3092 	    ("%s: wrong ref counts", __func__));
3093 
3094 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3095 
3096 	/*
3097 	 * We want to hold the vnode until the inactive finishes to
3098 	 * prevent vgone() races.  We drop the use count here and the
3099 	 * hold count below when we're done.
3100 	 *
3101 	 * If we release the last usecount we take ownership of the hold
3102 	 * count which provides liveness of the vnode, in which case we
3103 	 * have to vdrop.
3104 	 */
3105 	if (!refcount_release(&vp->v_usecount))
3106 		return;
3107 	VI_LOCK(vp);
3108 	v_decr_devcount(vp);
3109 	/*
3110 	 * By the time we got here someone else might have transitioned
3111 	 * the count back to > 0.
3112 	 */
3113 	if (vp->v_usecount > 0) {
3114 		vdropl(vp);
3115 		return;
3116 	}
3117 	if (vp->v_iflag & VI_DOINGINACT) {
3118 		vdropl(vp);
3119 		return;
3120 	}
3121 
3122 	/*
3123 	 * Check if the fs wants to perform inactive processing. Note we
3124 	 * may be only holding the interlock, in which case it is possible
3125 	 * someone else called vgone on the vnode and ->v_data is now NULL.
3126 	 * Since vgone performs inactive on its own there is nothing to do
3127 	 * here but to drop our hold count.
3128 	 */
3129 	if (__predict_false(VN_IS_DOOMED(vp)) ||
3130 	    VOP_NEED_INACTIVE(vp) == 0) {
3131 		vdropl(vp);
3132 		return;
3133 	}
3134 
3135 	/*
3136 	 * We must call VOP_INACTIVE with the node locked. Mark
3137 	 * as VI_DOINGINACT to avoid recursion.
3138 	 */
3139 	vp->v_iflag |= VI_OWEINACT;
3140 	switch (func) {
3141 	case VPUTX_VRELE:
3142 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3143 		VI_LOCK(vp);
3144 		break;
3145 	case VPUTX_VPUT:
3146 		error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT);
3147 		VI_LOCK(vp);
3148 		break;
3149 	case VPUTX_VUNREF:
3150 		error = 0;
3151 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3152 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3153 			VI_LOCK(vp);
3154 		}
3155 		break;
3156 	}
3157 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
3158 	    ("vnode with usecount and VI_OWEINACT set"));
3159 	if (error == 0) {
3160 		if (vp->v_iflag & VI_OWEINACT)
3161 			vinactive(vp);
3162 		if (func != VPUTX_VUNREF)
3163 			VOP_UNLOCK(vp);
3164 		vdropl(vp);
3165 	} else if (vp->v_iflag & VI_OWEINACT) {
3166 		vdefer_inactive(vp);
3167 	} else {
3168 		vdropl(vp);
3169 	}
3170 }
3171 
3172 /*
3173  * Vnode put/release.
3174  * If count drops to zero, call inactive routine and return to freelist.
3175  */
3176 void
3177 vrele(struct vnode *vp)
3178 {
3179 
3180 	vputx(vp, VPUTX_VRELE);
3181 }
3182 
3183 /*
3184  * Release an already locked vnode.  This give the same effects as
3185  * unlock+vrele(), but takes less time and avoids releasing and
3186  * re-aquiring the lock (as vrele() acquires the lock internally.)
3187  *
3188  * It is an invariant that all VOP_* calls operate on a held vnode.
3189  * We may be only having an implicit hold stemming from our usecount,
3190  * which we are about to release. If we unlock the vnode afterwards we
3191  * open a time window where someone else dropped the last usecount and
3192  * proceeded to free the vnode before our unlock finished. For this
3193  * reason we unlock the vnode early. This is a little bit wasteful as
3194  * it may be the vnode is exclusively locked and inactive processing is
3195  * needed, in which case we are adding work.
3196  */
3197 void
3198 vput(struct vnode *vp)
3199 {
3200 
3201 	VOP_UNLOCK(vp);
3202 	vputx(vp, VPUTX_VPUT);
3203 }
3204 
3205 /*
3206  * Release an exclusively locked vnode. Do not unlock the vnode lock.
3207  */
3208 void
3209 vunref(struct vnode *vp)
3210 {
3211 
3212 	vputx(vp, VPUTX_VUNREF);
3213 }
3214 
3215 /*
3216  * Increase the hold count and activate if this is the first reference.
3217  */
3218 static void
3219 vhold_activate(struct vnode *vp)
3220 {
3221 	struct mount *mp;
3222 
3223 	ASSERT_VI_LOCKED(vp, __func__);
3224 	VNASSERT(vp->v_holdcnt == 0, vp,
3225 	    ("%s: wrong hold count", __func__));
3226 	VNASSERT(vp->v_op != NULL, vp,
3227 	    ("%s: vnode already reclaimed.", __func__));
3228 	/*
3229 	 * Remove a vnode from the free list, mark it as in use,
3230 	 * and put it on the active list.
3231 	 */
3232 	VNASSERT(vp->v_mount != NULL, vp,
3233 	    ("_vhold: vnode not on per mount vnode list"));
3234 	mp = vp->v_mount;
3235 	mtx_lock(&mp->mnt_listmtx);
3236 	if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) {
3237 		TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
3238 		mp->mnt_tmpfreevnodelistsize--;
3239 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
3240 	} else {
3241 		mtx_lock(&vnode_free_list_mtx);
3242 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
3243 		freevnodes--;
3244 		mtx_unlock(&vnode_free_list_mtx);
3245 	}
3246 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
3247 	    ("Activating already active vnode"));
3248 	vp->v_iflag &= ~VI_FREE;
3249 	vp->v_iflag |= VI_ACTIVE;
3250 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
3251 	mp->mnt_activevnodelistsize++;
3252 	mtx_unlock(&mp->mnt_listmtx);
3253 	refcount_acquire(&vp->v_holdcnt);
3254 }
3255 
3256 void
3257 vhold(struct vnode *vp)
3258 {
3259 
3260 	ASSERT_VI_UNLOCKED(vp, __func__);
3261 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3262 	if (refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
3263 		VNODE_REFCOUNT_FENCE_ACQ();
3264 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3265 		    ("vhold: vnode with holdcnt is free"));
3266 		return;
3267 	}
3268 	VI_LOCK(vp);
3269 	vholdl(vp);
3270 	VI_UNLOCK(vp);
3271 }
3272 
3273 void
3274 vholdl(struct vnode *vp)
3275 {
3276 
3277 	ASSERT_VI_LOCKED(vp, __func__);
3278 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3279 	if ((vp->v_iflag & VI_FREE) == 0) {
3280 		refcount_acquire(&vp->v_holdcnt);
3281 		return;
3282 	}
3283 	vhold_activate(vp);
3284 }
3285 
3286 void
3287 vholdnz(struct vnode *vp)
3288 {
3289 
3290 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3291 #ifdef INVARIANTS
3292 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3293 	VNASSERT(old > 0, vp, ("%s: wrong hold count %d", __func__, old));
3294 #else
3295 	atomic_add_int(&vp->v_holdcnt, 1);
3296 #endif
3297 }
3298 
3299 /*
3300  * Drop the hold count of the vnode.  If this is the last reference to
3301  * the vnode we place it on the free list unless it has been vgone'd
3302  * (marked VIRF_DOOMED) in which case we will free it.
3303  *
3304  * Because the vnode vm object keeps a hold reference on the vnode if
3305  * there is at least one resident non-cached page, the vnode cannot
3306  * leave the active list without the page cleanup done.
3307  */
3308 static void
3309 vdrop_deactivate(struct vnode *vp)
3310 {
3311 	struct mount *mp;
3312 
3313 	ASSERT_VI_LOCKED(vp, __func__);
3314 	/*
3315 	 * Mark a vnode as free: remove it from its active list
3316 	 * and put it up for recycling on the freelist.
3317 	 */
3318 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3319 	    ("vdrop: returning doomed vnode"));
3320 	VNASSERT(vp->v_op != NULL, vp,
3321 	    ("vdrop: vnode already reclaimed."));
3322 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3323 	    ("vnode already free"));
3324 	VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
3325 	    ("vnode with VI_OWEINACT set"));
3326 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp,
3327 	    ("vnode with VI_DEFINACT set"));
3328 	VNASSERT(vp->v_holdcnt == 0, vp,
3329 	    ("vdrop: freeing when we shouldn't"));
3330 	mp = vp->v_mount;
3331 	mtx_lock(&mp->mnt_listmtx);
3332 	if (vp->v_iflag & VI_ACTIVE) {
3333 		vp->v_iflag &= ~VI_ACTIVE;
3334 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
3335 		mp->mnt_activevnodelistsize--;
3336 	}
3337 	TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
3338 	mp->mnt_tmpfreevnodelistsize++;
3339 	vp->v_iflag |= VI_FREE;
3340 	vp->v_mflag |= VMP_TMPMNTFREELIST;
3341 	VI_UNLOCK(vp);
3342 	if (mp->mnt_tmpfreevnodelistsize >= mnt_free_list_batch)
3343 		vnlru_return_batch_locked(mp);
3344 	mtx_unlock(&mp->mnt_listmtx);
3345 }
3346 
3347 void
3348 vdrop(struct vnode *vp)
3349 {
3350 
3351 	ASSERT_VI_UNLOCKED(vp, __func__);
3352 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3353 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3354 		return;
3355 	VI_LOCK(vp);
3356 	vdropl(vp);
3357 }
3358 
3359 void
3360 vdropl(struct vnode *vp)
3361 {
3362 
3363 	ASSERT_VI_LOCKED(vp, __func__);
3364 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3365 	if (!refcount_release(&vp->v_holdcnt)) {
3366 		VI_UNLOCK(vp);
3367 		return;
3368 	}
3369 	if (VN_IS_DOOMED(vp)) {
3370 		freevnode(vp);
3371 		return;
3372 	}
3373 	vdrop_deactivate(vp);
3374 }
3375 
3376 /*
3377  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3378  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3379  * OWEINACT tracks whether a vnode missed a call to inactive due to a
3380  * failed lock upgrade.
3381  */
3382 void
3383 vinactive(struct vnode *vp)
3384 {
3385 	struct vm_object *obj;
3386 
3387 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3388 	ASSERT_VI_LOCKED(vp, "vinactive");
3389 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3390 	    ("vinactive: recursed on VI_DOINGINACT"));
3391 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3392 	vp->v_iflag |= VI_DOINGINACT;
3393 	vp->v_iflag &= ~VI_OWEINACT;
3394 	VI_UNLOCK(vp);
3395 	/*
3396 	 * Before moving off the active list, we must be sure that any
3397 	 * modified pages are converted into the vnode's dirty
3398 	 * buffers, since these will no longer be checked once the
3399 	 * vnode is on the inactive list.
3400 	 *
3401 	 * The write-out of the dirty pages is asynchronous.  At the
3402 	 * point that VOP_INACTIVE() is called, there could still be
3403 	 * pending I/O and dirty pages in the object.
3404 	 */
3405 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3406 	    vm_object_mightbedirty(obj)) {
3407 		VM_OBJECT_WLOCK(obj);
3408 		vm_object_page_clean(obj, 0, 0, 0);
3409 		VM_OBJECT_WUNLOCK(obj);
3410 	}
3411 	VOP_INACTIVE(vp, curthread);
3412 	VI_LOCK(vp);
3413 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3414 	    ("vinactive: lost VI_DOINGINACT"));
3415 	vp->v_iflag &= ~VI_DOINGINACT;
3416 }
3417 
3418 /*
3419  * Remove any vnodes in the vnode table belonging to mount point mp.
3420  *
3421  * If FORCECLOSE is not specified, there should not be any active ones,
3422  * return error if any are found (nb: this is a user error, not a
3423  * system error). If FORCECLOSE is specified, detach any active vnodes
3424  * that are found.
3425  *
3426  * If WRITECLOSE is set, only flush out regular file vnodes open for
3427  * writing.
3428  *
3429  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3430  *
3431  * `rootrefs' specifies the base reference count for the root vnode
3432  * of this filesystem. The root vnode is considered busy if its
3433  * v_usecount exceeds this value. On a successful return, vflush(, td)
3434  * will call vrele() on the root vnode exactly rootrefs times.
3435  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3436  * be zero.
3437  */
3438 #ifdef DIAGNOSTIC
3439 static int busyprt = 0;		/* print out busy vnodes */
3440 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3441 #endif
3442 
3443 int
3444 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3445 {
3446 	struct vnode *vp, *mvp, *rootvp = NULL;
3447 	struct vattr vattr;
3448 	int busy = 0, error;
3449 
3450 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3451 	    rootrefs, flags);
3452 	if (rootrefs > 0) {
3453 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3454 		    ("vflush: bad args"));
3455 		/*
3456 		 * Get the filesystem root vnode. We can vput() it
3457 		 * immediately, since with rootrefs > 0, it won't go away.
3458 		 */
3459 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3460 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3461 			    __func__, error);
3462 			return (error);
3463 		}
3464 		vput(rootvp);
3465 	}
3466 loop:
3467 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3468 		vholdl(vp);
3469 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3470 		if (error) {
3471 			vdrop(vp);
3472 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3473 			goto loop;
3474 		}
3475 		/*
3476 		 * Skip over a vnodes marked VV_SYSTEM.
3477 		 */
3478 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3479 			VOP_UNLOCK(vp);
3480 			vdrop(vp);
3481 			continue;
3482 		}
3483 		/*
3484 		 * If WRITECLOSE is set, flush out unlinked but still open
3485 		 * files (even if open only for reading) and regular file
3486 		 * vnodes open for writing.
3487 		 */
3488 		if (flags & WRITECLOSE) {
3489 			if (vp->v_object != NULL) {
3490 				VM_OBJECT_WLOCK(vp->v_object);
3491 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3492 				VM_OBJECT_WUNLOCK(vp->v_object);
3493 			}
3494 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3495 			if (error != 0) {
3496 				VOP_UNLOCK(vp);
3497 				vdrop(vp);
3498 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3499 				return (error);
3500 			}
3501 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3502 			VI_LOCK(vp);
3503 
3504 			if ((vp->v_type == VNON ||
3505 			    (error == 0 && vattr.va_nlink > 0)) &&
3506 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3507 				VOP_UNLOCK(vp);
3508 				vdropl(vp);
3509 				continue;
3510 			}
3511 		} else
3512 			VI_LOCK(vp);
3513 		/*
3514 		 * With v_usecount == 0, all we need to do is clear out the
3515 		 * vnode data structures and we are done.
3516 		 *
3517 		 * If FORCECLOSE is set, forcibly close the vnode.
3518 		 */
3519 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3520 			vgonel(vp);
3521 		} else {
3522 			busy++;
3523 #ifdef DIAGNOSTIC
3524 			if (busyprt)
3525 				vn_printf(vp, "vflush: busy vnode ");
3526 #endif
3527 		}
3528 		VOP_UNLOCK(vp);
3529 		vdropl(vp);
3530 	}
3531 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3532 		/*
3533 		 * If just the root vnode is busy, and if its refcount
3534 		 * is equal to `rootrefs', then go ahead and kill it.
3535 		 */
3536 		VI_LOCK(rootvp);
3537 		KASSERT(busy > 0, ("vflush: not busy"));
3538 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3539 		    ("vflush: usecount %d < rootrefs %d",
3540 		     rootvp->v_usecount, rootrefs));
3541 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3542 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3543 			vgone(rootvp);
3544 			VOP_UNLOCK(rootvp);
3545 			busy = 0;
3546 		} else
3547 			VI_UNLOCK(rootvp);
3548 	}
3549 	if (busy) {
3550 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3551 		    busy);
3552 		return (EBUSY);
3553 	}
3554 	for (; rootrefs > 0; rootrefs--)
3555 		vrele(rootvp);
3556 	return (0);
3557 }
3558 
3559 /*
3560  * Recycle an unused vnode to the front of the free list.
3561  */
3562 int
3563 vrecycle(struct vnode *vp)
3564 {
3565 	int recycled;
3566 
3567 	VI_LOCK(vp);
3568 	recycled = vrecyclel(vp);
3569 	VI_UNLOCK(vp);
3570 	return (recycled);
3571 }
3572 
3573 /*
3574  * vrecycle, with the vp interlock held.
3575  */
3576 int
3577 vrecyclel(struct vnode *vp)
3578 {
3579 	int recycled;
3580 
3581 	ASSERT_VOP_ELOCKED(vp, __func__);
3582 	ASSERT_VI_LOCKED(vp, __func__);
3583 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3584 	recycled = 0;
3585 	if (vp->v_usecount == 0) {
3586 		recycled = 1;
3587 		vgonel(vp);
3588 	}
3589 	return (recycled);
3590 }
3591 
3592 /*
3593  * Eliminate all activity associated with a vnode
3594  * in preparation for reuse.
3595  */
3596 void
3597 vgone(struct vnode *vp)
3598 {
3599 	VI_LOCK(vp);
3600 	vgonel(vp);
3601 	VI_UNLOCK(vp);
3602 }
3603 
3604 static void
3605 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3606     struct vnode *lowervp __unused)
3607 {
3608 }
3609 
3610 /*
3611  * Notify upper mounts about reclaimed or unlinked vnode.
3612  */
3613 void
3614 vfs_notify_upper(struct vnode *vp, int event)
3615 {
3616 	static struct vfsops vgonel_vfsops = {
3617 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3618 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3619 	};
3620 	struct mount *mp, *ump, *mmp;
3621 
3622 	mp = vp->v_mount;
3623 	if (mp == NULL)
3624 		return;
3625 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3626 		return;
3627 
3628 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3629 	mmp->mnt_op = &vgonel_vfsops;
3630 	mmp->mnt_kern_flag |= MNTK_MARKER;
3631 	MNT_ILOCK(mp);
3632 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3633 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3634 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3635 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3636 			continue;
3637 		}
3638 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3639 		MNT_IUNLOCK(mp);
3640 		switch (event) {
3641 		case VFS_NOTIFY_UPPER_RECLAIM:
3642 			VFS_RECLAIM_LOWERVP(ump, vp);
3643 			break;
3644 		case VFS_NOTIFY_UPPER_UNLINK:
3645 			VFS_UNLINK_LOWERVP(ump, vp);
3646 			break;
3647 		default:
3648 			KASSERT(0, ("invalid event %d", event));
3649 			break;
3650 		}
3651 		MNT_ILOCK(mp);
3652 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3653 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3654 	}
3655 	free(mmp, M_TEMP);
3656 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3657 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3658 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3659 		wakeup(&mp->mnt_uppers);
3660 	}
3661 	MNT_IUNLOCK(mp);
3662 }
3663 
3664 /*
3665  * vgone, with the vp interlock held.
3666  */
3667 static void
3668 vgonel(struct vnode *vp)
3669 {
3670 	struct thread *td;
3671 	struct mount *mp;
3672 	vm_object_t object;
3673 	bool active, oweinact;
3674 
3675 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3676 	ASSERT_VI_LOCKED(vp, "vgonel");
3677 	VNASSERT(vp->v_holdcnt, vp,
3678 	    ("vgonel: vp %p has no reference.", vp));
3679 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3680 	td = curthread;
3681 
3682 	/*
3683 	 * Don't vgonel if we're already doomed.
3684 	 */
3685 	if (vp->v_irflag & VIRF_DOOMED)
3686 		return;
3687 	vp->v_irflag |= VIRF_DOOMED;
3688 
3689 	/*
3690 	 * Check to see if the vnode is in use.  If so, we have to call
3691 	 * VOP_CLOSE() and VOP_INACTIVE().
3692 	 */
3693 	active = vp->v_usecount > 0;
3694 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3695 	/*
3696 	 * If we need to do inactive VI_OWEINACT will be set.
3697 	 */
3698 	if (vp->v_iflag & VI_DEFINACT) {
3699 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3700 		vp->v_iflag &= ~VI_DEFINACT;
3701 		vdropl(vp);
3702 	} else {
3703 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
3704 		VI_UNLOCK(vp);
3705 	}
3706 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3707 
3708 	/*
3709 	 * If purging an active vnode, it must be closed and
3710 	 * deactivated before being reclaimed.
3711 	 */
3712 	if (active)
3713 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3714 	if (oweinact || active) {
3715 		VI_LOCK(vp);
3716 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3717 			vinactive(vp);
3718 		VI_UNLOCK(vp);
3719 	}
3720 	if (vp->v_type == VSOCK)
3721 		vfs_unp_reclaim(vp);
3722 
3723 	/*
3724 	 * Clean out any buffers associated with the vnode.
3725 	 * If the flush fails, just toss the buffers.
3726 	 */
3727 	mp = NULL;
3728 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3729 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3730 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3731 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3732 			;
3733 	}
3734 
3735 	BO_LOCK(&vp->v_bufobj);
3736 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3737 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3738 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3739 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3740 	    ("vp %p bufobj not invalidated", vp));
3741 
3742 	/*
3743 	 * For VMIO bufobj, BO_DEAD is set later, or in
3744 	 * vm_object_terminate() after the object's page queue is
3745 	 * flushed.
3746 	 */
3747 	object = vp->v_bufobj.bo_object;
3748 	if (object == NULL)
3749 		vp->v_bufobj.bo_flag |= BO_DEAD;
3750 	BO_UNLOCK(&vp->v_bufobj);
3751 
3752 	/*
3753 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
3754 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
3755 	 * should not touch the object borrowed from the lower vnode
3756 	 * (the handle check).
3757 	 */
3758 	if (object != NULL && object->type == OBJT_VNODE &&
3759 	    object->handle == vp)
3760 		vnode_destroy_vobject(vp);
3761 
3762 	/*
3763 	 * Reclaim the vnode.
3764 	 */
3765 	if (VOP_RECLAIM(vp, td))
3766 		panic("vgone: cannot reclaim");
3767 	if (mp != NULL)
3768 		vn_finished_secondary_write(mp);
3769 	VNASSERT(vp->v_object == NULL, vp,
3770 	    ("vop_reclaim left v_object vp=%p", vp));
3771 	/*
3772 	 * Clear the advisory locks and wake up waiting threads.
3773 	 */
3774 	(void)VOP_ADVLOCKPURGE(vp);
3775 	vp->v_lockf = NULL;
3776 	/*
3777 	 * Delete from old mount point vnode list.
3778 	 */
3779 	delmntque(vp);
3780 	cache_purge(vp);
3781 	/*
3782 	 * Done with purge, reset to the standard lock and invalidate
3783 	 * the vnode.
3784 	 */
3785 	VI_LOCK(vp);
3786 	vp->v_vnlock = &vp->v_lock;
3787 	vp->v_op = &dead_vnodeops;
3788 	vp->v_type = VBAD;
3789 }
3790 
3791 /*
3792  * Calculate the total number of references to a special device.
3793  */
3794 int
3795 vcount(struct vnode *vp)
3796 {
3797 	int count;
3798 
3799 	dev_lock();
3800 	count = vp->v_rdev->si_usecount;
3801 	dev_unlock();
3802 	return (count);
3803 }
3804 
3805 /*
3806  * Print out a description of a vnode.
3807  */
3808 static char *typename[] =
3809 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3810  "VMARKER"};
3811 
3812 void
3813 vn_printf(struct vnode *vp, const char *fmt, ...)
3814 {
3815 	va_list ap;
3816 	char buf[256], buf2[16];
3817 	u_long flags;
3818 
3819 	va_start(ap, fmt);
3820 	vprintf(fmt, ap);
3821 	va_end(ap);
3822 	printf("%p: ", (void *)vp);
3823 	printf("type %s\n", typename[vp->v_type]);
3824 	printf("    usecount %d, writecount %d, refcount %d",
3825 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3826 	switch (vp->v_type) {
3827 	case VDIR:
3828 		printf(" mountedhere %p\n", vp->v_mountedhere);
3829 		break;
3830 	case VCHR:
3831 		printf(" rdev %p\n", vp->v_rdev);
3832 		break;
3833 	case VSOCK:
3834 		printf(" socket %p\n", vp->v_unpcb);
3835 		break;
3836 	case VFIFO:
3837 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3838 		break;
3839 	default:
3840 		printf("\n");
3841 		break;
3842 	}
3843 	buf[0] = '\0';
3844 	buf[1] = '\0';
3845 	if (vp->v_irflag & VIRF_DOOMED)
3846 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
3847 	flags = vp->v_irflag & ~(VIRF_DOOMED);
3848 	if (flags != 0) {
3849 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
3850 		strlcat(buf, buf2, sizeof(buf));
3851 	}
3852 	if (vp->v_vflag & VV_ROOT)
3853 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3854 	if (vp->v_vflag & VV_ISTTY)
3855 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3856 	if (vp->v_vflag & VV_NOSYNC)
3857 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3858 	if (vp->v_vflag & VV_ETERNALDEV)
3859 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3860 	if (vp->v_vflag & VV_CACHEDLABEL)
3861 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3862 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
3863 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
3864 	if (vp->v_vflag & VV_COPYONWRITE)
3865 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3866 	if (vp->v_vflag & VV_SYSTEM)
3867 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3868 	if (vp->v_vflag & VV_PROCDEP)
3869 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3870 	if (vp->v_vflag & VV_NOKNOTE)
3871 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3872 	if (vp->v_vflag & VV_DELETED)
3873 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3874 	if (vp->v_vflag & VV_MD)
3875 		strlcat(buf, "|VV_MD", sizeof(buf));
3876 	if (vp->v_vflag & VV_FORCEINSMQ)
3877 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3878 	if (vp->v_vflag & VV_READLINK)
3879 		strlcat(buf, "|VV_READLINK", sizeof(buf));
3880 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3881 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3882 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3883 	if (flags != 0) {
3884 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3885 		strlcat(buf, buf2, sizeof(buf));
3886 	}
3887 	if (vp->v_iflag & VI_TEXT_REF)
3888 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
3889 	if (vp->v_iflag & VI_MOUNT)
3890 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3891 	if (vp->v_iflag & VI_FREE)
3892 		strlcat(buf, "|VI_FREE", sizeof(buf));
3893 	if (vp->v_iflag & VI_ACTIVE)
3894 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3895 	if (vp->v_iflag & VI_DOINGINACT)
3896 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3897 	if (vp->v_iflag & VI_OWEINACT)
3898 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3899 	if (vp->v_iflag & VI_DEFINACT)
3900 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
3901 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_FREE | VI_ACTIVE |
3902 	    VI_DOINGINACT | VI_OWEINACT | VI_DEFINACT);
3903 	if (flags != 0) {
3904 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3905 		strlcat(buf, buf2, sizeof(buf));
3906 	}
3907 	if (vp->v_mflag & VMP_TMPMNTFREELIST)
3908 		strlcat(buf, "|VMP_TMPMNTFREELIST", sizeof(buf));
3909 	flags = vp->v_mflag & ~(VMP_TMPMNTFREELIST);
3910 	if (flags != 0) {
3911 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
3912 		strlcat(buf, buf2, sizeof(buf));
3913 	}
3914 	printf("    flags (%s)\n", buf + 1);
3915 	if (mtx_owned(VI_MTX(vp)))
3916 		printf(" VI_LOCKed");
3917 	if (vp->v_object != NULL)
3918 		printf("    v_object %p ref %d pages %d "
3919 		    "cleanbuf %d dirtybuf %d\n",
3920 		    vp->v_object, vp->v_object->ref_count,
3921 		    vp->v_object->resident_page_count,
3922 		    vp->v_bufobj.bo_clean.bv_cnt,
3923 		    vp->v_bufobj.bo_dirty.bv_cnt);
3924 	printf("    ");
3925 	lockmgr_printinfo(vp->v_vnlock);
3926 	if (vp->v_data != NULL)
3927 		VOP_PRINT(vp);
3928 }
3929 
3930 #ifdef DDB
3931 /*
3932  * List all of the locked vnodes in the system.
3933  * Called when debugging the kernel.
3934  */
3935 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3936 {
3937 	struct mount *mp;
3938 	struct vnode *vp;
3939 
3940 	/*
3941 	 * Note: because this is DDB, we can't obey the locking semantics
3942 	 * for these structures, which means we could catch an inconsistent
3943 	 * state and dereference a nasty pointer.  Not much to be done
3944 	 * about that.
3945 	 */
3946 	db_printf("Locked vnodes\n");
3947 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3948 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3949 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3950 				vn_printf(vp, "vnode ");
3951 		}
3952 	}
3953 }
3954 
3955 /*
3956  * Show details about the given vnode.
3957  */
3958 DB_SHOW_COMMAND(vnode, db_show_vnode)
3959 {
3960 	struct vnode *vp;
3961 
3962 	if (!have_addr)
3963 		return;
3964 	vp = (struct vnode *)addr;
3965 	vn_printf(vp, "vnode ");
3966 }
3967 
3968 /*
3969  * Show details about the given mount point.
3970  */
3971 DB_SHOW_COMMAND(mount, db_show_mount)
3972 {
3973 	struct mount *mp;
3974 	struct vfsopt *opt;
3975 	struct statfs *sp;
3976 	struct vnode *vp;
3977 	char buf[512];
3978 	uint64_t mflags;
3979 	u_int flags;
3980 
3981 	if (!have_addr) {
3982 		/* No address given, print short info about all mount points. */
3983 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3984 			db_printf("%p %s on %s (%s)\n", mp,
3985 			    mp->mnt_stat.f_mntfromname,
3986 			    mp->mnt_stat.f_mntonname,
3987 			    mp->mnt_stat.f_fstypename);
3988 			if (db_pager_quit)
3989 				break;
3990 		}
3991 		db_printf("\nMore info: show mount <addr>\n");
3992 		return;
3993 	}
3994 
3995 	mp = (struct mount *)addr;
3996 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3997 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3998 
3999 	buf[0] = '\0';
4000 	mflags = mp->mnt_flag;
4001 #define	MNT_FLAG(flag)	do {						\
4002 	if (mflags & (flag)) {						\
4003 		if (buf[0] != '\0')					\
4004 			strlcat(buf, ", ", sizeof(buf));		\
4005 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4006 		mflags &= ~(flag);					\
4007 	}								\
4008 } while (0)
4009 	MNT_FLAG(MNT_RDONLY);
4010 	MNT_FLAG(MNT_SYNCHRONOUS);
4011 	MNT_FLAG(MNT_NOEXEC);
4012 	MNT_FLAG(MNT_NOSUID);
4013 	MNT_FLAG(MNT_NFS4ACLS);
4014 	MNT_FLAG(MNT_UNION);
4015 	MNT_FLAG(MNT_ASYNC);
4016 	MNT_FLAG(MNT_SUIDDIR);
4017 	MNT_FLAG(MNT_SOFTDEP);
4018 	MNT_FLAG(MNT_NOSYMFOLLOW);
4019 	MNT_FLAG(MNT_GJOURNAL);
4020 	MNT_FLAG(MNT_MULTILABEL);
4021 	MNT_FLAG(MNT_ACLS);
4022 	MNT_FLAG(MNT_NOATIME);
4023 	MNT_FLAG(MNT_NOCLUSTERR);
4024 	MNT_FLAG(MNT_NOCLUSTERW);
4025 	MNT_FLAG(MNT_SUJ);
4026 	MNT_FLAG(MNT_EXRDONLY);
4027 	MNT_FLAG(MNT_EXPORTED);
4028 	MNT_FLAG(MNT_DEFEXPORTED);
4029 	MNT_FLAG(MNT_EXPORTANON);
4030 	MNT_FLAG(MNT_EXKERB);
4031 	MNT_FLAG(MNT_EXPUBLIC);
4032 	MNT_FLAG(MNT_LOCAL);
4033 	MNT_FLAG(MNT_QUOTA);
4034 	MNT_FLAG(MNT_ROOTFS);
4035 	MNT_FLAG(MNT_USER);
4036 	MNT_FLAG(MNT_IGNORE);
4037 	MNT_FLAG(MNT_UPDATE);
4038 	MNT_FLAG(MNT_DELEXPORT);
4039 	MNT_FLAG(MNT_RELOAD);
4040 	MNT_FLAG(MNT_FORCE);
4041 	MNT_FLAG(MNT_SNAPSHOT);
4042 	MNT_FLAG(MNT_BYFSID);
4043 #undef MNT_FLAG
4044 	if (mflags != 0) {
4045 		if (buf[0] != '\0')
4046 			strlcat(buf, ", ", sizeof(buf));
4047 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4048 		    "0x%016jx", mflags);
4049 	}
4050 	db_printf("    mnt_flag = %s\n", buf);
4051 
4052 	buf[0] = '\0';
4053 	flags = mp->mnt_kern_flag;
4054 #define	MNT_KERN_FLAG(flag)	do {					\
4055 	if (flags & (flag)) {						\
4056 		if (buf[0] != '\0')					\
4057 			strlcat(buf, ", ", sizeof(buf));		\
4058 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4059 		flags &= ~(flag);					\
4060 	}								\
4061 } while (0)
4062 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4063 	MNT_KERN_FLAG(MNTK_ASYNC);
4064 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4065 	MNT_KERN_FLAG(MNTK_DRAINING);
4066 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4067 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4068 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4069 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4070 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
4071 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
4072 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4073 	MNT_KERN_FLAG(MNTK_MARKER);
4074 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4075 	MNT_KERN_FLAG(MNTK_NOASYNC);
4076 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4077 	MNT_KERN_FLAG(MNTK_MWAIT);
4078 	MNT_KERN_FLAG(MNTK_SUSPEND);
4079 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4080 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4081 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4082 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4083 #undef MNT_KERN_FLAG
4084 	if (flags != 0) {
4085 		if (buf[0] != '\0')
4086 			strlcat(buf, ", ", sizeof(buf));
4087 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4088 		    "0x%08x", flags);
4089 	}
4090 	db_printf("    mnt_kern_flag = %s\n", buf);
4091 
4092 	db_printf("    mnt_opt = ");
4093 	opt = TAILQ_FIRST(mp->mnt_opt);
4094 	if (opt != NULL) {
4095 		db_printf("%s", opt->name);
4096 		opt = TAILQ_NEXT(opt, link);
4097 		while (opt != NULL) {
4098 			db_printf(", %s", opt->name);
4099 			opt = TAILQ_NEXT(opt, link);
4100 		}
4101 	}
4102 	db_printf("\n");
4103 
4104 	sp = &mp->mnt_stat;
4105 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4106 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4107 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4108 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4109 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4110 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4111 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4112 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4113 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4114 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4115 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4116 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4117 
4118 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4119 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4120 	if (jailed(mp->mnt_cred))
4121 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4122 	db_printf(" }\n");
4123 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4124 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4125 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4126 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4127 	db_printf("    mnt_activevnodelistsize = %d\n",
4128 	    mp->mnt_activevnodelistsize);
4129 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4130 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4131 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4132 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4133 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4134 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4135 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4136 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4137 	db_printf("    mnt_secondary_accwrites = %d\n",
4138 	    mp->mnt_secondary_accwrites);
4139 	db_printf("    mnt_gjprovider = %s\n",
4140 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4141 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4142 
4143 	db_printf("\n\nList of active vnodes\n");
4144 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
4145 		if (vp->v_type != VMARKER) {
4146 			vn_printf(vp, "vnode ");
4147 			if (db_pager_quit)
4148 				break;
4149 		}
4150 	}
4151 	db_printf("\n\nList of inactive vnodes\n");
4152 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4153 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
4154 			vn_printf(vp, "vnode ");
4155 			if (db_pager_quit)
4156 				break;
4157 		}
4158 	}
4159 }
4160 #endif	/* DDB */
4161 
4162 /*
4163  * Fill in a struct xvfsconf based on a struct vfsconf.
4164  */
4165 static int
4166 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4167 {
4168 	struct xvfsconf xvfsp;
4169 
4170 	bzero(&xvfsp, sizeof(xvfsp));
4171 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4172 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4173 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4174 	xvfsp.vfc_flags = vfsp->vfc_flags;
4175 	/*
4176 	 * These are unused in userland, we keep them
4177 	 * to not break binary compatibility.
4178 	 */
4179 	xvfsp.vfc_vfsops = NULL;
4180 	xvfsp.vfc_next = NULL;
4181 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4182 }
4183 
4184 #ifdef COMPAT_FREEBSD32
4185 struct xvfsconf32 {
4186 	uint32_t	vfc_vfsops;
4187 	char		vfc_name[MFSNAMELEN];
4188 	int32_t		vfc_typenum;
4189 	int32_t		vfc_refcount;
4190 	int32_t		vfc_flags;
4191 	uint32_t	vfc_next;
4192 };
4193 
4194 static int
4195 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4196 {
4197 	struct xvfsconf32 xvfsp;
4198 
4199 	bzero(&xvfsp, sizeof(xvfsp));
4200 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4201 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4202 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4203 	xvfsp.vfc_flags = vfsp->vfc_flags;
4204 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4205 }
4206 #endif
4207 
4208 /*
4209  * Top level filesystem related information gathering.
4210  */
4211 static int
4212 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4213 {
4214 	struct vfsconf *vfsp;
4215 	int error;
4216 
4217 	error = 0;
4218 	vfsconf_slock();
4219 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4220 #ifdef COMPAT_FREEBSD32
4221 		if (req->flags & SCTL_MASK32)
4222 			error = vfsconf2x32(req, vfsp);
4223 		else
4224 #endif
4225 			error = vfsconf2x(req, vfsp);
4226 		if (error)
4227 			break;
4228 	}
4229 	vfsconf_sunlock();
4230 	return (error);
4231 }
4232 
4233 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4234     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4235     "S,xvfsconf", "List of all configured filesystems");
4236 
4237 #ifndef BURN_BRIDGES
4238 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4239 
4240 static int
4241 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4242 {
4243 	int *name = (int *)arg1 - 1;	/* XXX */
4244 	u_int namelen = arg2 + 1;	/* XXX */
4245 	struct vfsconf *vfsp;
4246 
4247 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4248 	    "please rebuild world\n");
4249 
4250 #if 1 || defined(COMPAT_PRELITE2)
4251 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4252 	if (namelen == 1)
4253 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4254 #endif
4255 
4256 	switch (name[1]) {
4257 	case VFS_MAXTYPENUM:
4258 		if (namelen != 2)
4259 			return (ENOTDIR);
4260 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4261 	case VFS_CONF:
4262 		if (namelen != 3)
4263 			return (ENOTDIR);	/* overloaded */
4264 		vfsconf_slock();
4265 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4266 			if (vfsp->vfc_typenum == name[2])
4267 				break;
4268 		}
4269 		vfsconf_sunlock();
4270 		if (vfsp == NULL)
4271 			return (EOPNOTSUPP);
4272 #ifdef COMPAT_FREEBSD32
4273 		if (req->flags & SCTL_MASK32)
4274 			return (vfsconf2x32(req, vfsp));
4275 		else
4276 #endif
4277 			return (vfsconf2x(req, vfsp));
4278 	}
4279 	return (EOPNOTSUPP);
4280 }
4281 
4282 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4283     CTLFLAG_MPSAFE, vfs_sysctl,
4284     "Generic filesystem");
4285 
4286 #if 1 || defined(COMPAT_PRELITE2)
4287 
4288 static int
4289 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4290 {
4291 	int error;
4292 	struct vfsconf *vfsp;
4293 	struct ovfsconf ovfs;
4294 
4295 	vfsconf_slock();
4296 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4297 		bzero(&ovfs, sizeof(ovfs));
4298 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4299 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4300 		ovfs.vfc_index = vfsp->vfc_typenum;
4301 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4302 		ovfs.vfc_flags = vfsp->vfc_flags;
4303 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4304 		if (error != 0) {
4305 			vfsconf_sunlock();
4306 			return (error);
4307 		}
4308 	}
4309 	vfsconf_sunlock();
4310 	return (0);
4311 }
4312 
4313 #endif /* 1 || COMPAT_PRELITE2 */
4314 #endif /* !BURN_BRIDGES */
4315 
4316 #define KINFO_VNODESLOP		10
4317 #ifdef notyet
4318 /*
4319  * Dump vnode list (via sysctl).
4320  */
4321 /* ARGSUSED */
4322 static int
4323 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4324 {
4325 	struct xvnode *xvn;
4326 	struct mount *mp;
4327 	struct vnode *vp;
4328 	int error, len, n;
4329 
4330 	/*
4331 	 * Stale numvnodes access is not fatal here.
4332 	 */
4333 	req->lock = 0;
4334 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4335 	if (!req->oldptr)
4336 		/* Make an estimate */
4337 		return (SYSCTL_OUT(req, 0, len));
4338 
4339 	error = sysctl_wire_old_buffer(req, 0);
4340 	if (error != 0)
4341 		return (error);
4342 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4343 	n = 0;
4344 	mtx_lock(&mountlist_mtx);
4345 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4346 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4347 			continue;
4348 		MNT_ILOCK(mp);
4349 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4350 			if (n == len)
4351 				break;
4352 			vref(vp);
4353 			xvn[n].xv_size = sizeof *xvn;
4354 			xvn[n].xv_vnode = vp;
4355 			xvn[n].xv_id = 0;	/* XXX compat */
4356 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4357 			XV_COPY(usecount);
4358 			XV_COPY(writecount);
4359 			XV_COPY(holdcnt);
4360 			XV_COPY(mount);
4361 			XV_COPY(numoutput);
4362 			XV_COPY(type);
4363 #undef XV_COPY
4364 			xvn[n].xv_flag = vp->v_vflag;
4365 
4366 			switch (vp->v_type) {
4367 			case VREG:
4368 			case VDIR:
4369 			case VLNK:
4370 				break;
4371 			case VBLK:
4372 			case VCHR:
4373 				if (vp->v_rdev == NULL) {
4374 					vrele(vp);
4375 					continue;
4376 				}
4377 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4378 				break;
4379 			case VSOCK:
4380 				xvn[n].xv_socket = vp->v_socket;
4381 				break;
4382 			case VFIFO:
4383 				xvn[n].xv_fifo = vp->v_fifoinfo;
4384 				break;
4385 			case VNON:
4386 			case VBAD:
4387 			default:
4388 				/* shouldn't happen? */
4389 				vrele(vp);
4390 				continue;
4391 			}
4392 			vrele(vp);
4393 			++n;
4394 		}
4395 		MNT_IUNLOCK(mp);
4396 		mtx_lock(&mountlist_mtx);
4397 		vfs_unbusy(mp);
4398 		if (n == len)
4399 			break;
4400 	}
4401 	mtx_unlock(&mountlist_mtx);
4402 
4403 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4404 	free(xvn, M_TEMP);
4405 	return (error);
4406 }
4407 
4408 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4409     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4410     "");
4411 #endif
4412 
4413 static void
4414 unmount_or_warn(struct mount *mp)
4415 {
4416 	int error;
4417 
4418 	error = dounmount(mp, MNT_FORCE, curthread);
4419 	if (error != 0) {
4420 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4421 		if (error == EBUSY)
4422 			printf("BUSY)\n");
4423 		else
4424 			printf("%d)\n", error);
4425 	}
4426 }
4427 
4428 /*
4429  * Unmount all filesystems. The list is traversed in reverse order
4430  * of mounting to avoid dependencies.
4431  */
4432 void
4433 vfs_unmountall(void)
4434 {
4435 	struct mount *mp, *tmp;
4436 
4437 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4438 
4439 	/*
4440 	 * Since this only runs when rebooting, it is not interlocked.
4441 	 */
4442 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4443 		vfs_ref(mp);
4444 
4445 		/*
4446 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4447 		 * unmount of the latter.
4448 		 */
4449 		if (mp == rootdevmp)
4450 			continue;
4451 
4452 		unmount_or_warn(mp);
4453 	}
4454 
4455 	if (rootdevmp != NULL)
4456 		unmount_or_warn(rootdevmp);
4457 }
4458 
4459 static void
4460 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4461 {
4462 
4463 	ASSERT_VI_LOCKED(vp, __func__);
4464 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4465 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4466 		vdropl(vp);
4467 		return;
4468 	}
4469 	if (vn_lock(vp, lkflags) == 0) {
4470 		VI_LOCK(vp);
4471 		if ((vp->v_iflag & (VI_OWEINACT | VI_DOINGINACT)) == VI_OWEINACT)
4472 			vinactive(vp);
4473 		VOP_UNLOCK(vp);
4474 		vdropl(vp);
4475 		return;
4476 	}
4477 	vdefer_inactive_cond(vp);
4478 }
4479 
4480 static void __noinline
4481 vfs_periodic_inactive(struct mount *mp, int flags)
4482 {
4483 	struct vnode *vp, *mvp;
4484 	int lkflags;
4485 
4486 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4487 	if (flags != MNT_WAIT)
4488 		lkflags |= LK_NOWAIT;
4489 
4490 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4491 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4492 			VI_UNLOCK(vp);
4493 			continue;
4494 		}
4495 		vp->v_iflag &= ~VI_DEFINACT;
4496 		vfs_deferred_inactive(vp, lkflags);
4497 	}
4498 }
4499 
4500 static inline bool
4501 vfs_want_msync(struct vnode *vp)
4502 {
4503 	struct vm_object *obj;
4504 
4505 	if (vp->v_vflag & VV_NOSYNC)
4506 		return (false);
4507 	obj = vp->v_object;
4508 	return (obj != NULL && vm_object_mightbedirty(obj));
4509 }
4510 
4511 static void __noinline
4512 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4513 {
4514 	struct vnode *vp, *mvp;
4515 	struct vm_object *obj;
4516 	struct thread *td;
4517 	int lkflags, objflags;
4518 	bool seen_defer;
4519 
4520 	td = curthread;
4521 
4522 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4523 	if (flags != MNT_WAIT) {
4524 		lkflags |= LK_NOWAIT;
4525 		objflags = OBJPC_NOSYNC;
4526 	} else {
4527 		objflags = OBJPC_SYNC;
4528 	}
4529 
4530 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4531 		seen_defer = false;
4532 		if (vp->v_iflag & VI_DEFINACT) {
4533 			vp->v_iflag &= ~VI_DEFINACT;
4534 			seen_defer = true;
4535 		}
4536 		if (!vfs_want_msync(vp)) {
4537 			if (seen_defer)
4538 				vfs_deferred_inactive(vp, lkflags);
4539 			else
4540 				VI_UNLOCK(vp);
4541 			continue;
4542 		}
4543 		if (vget(vp, lkflags, td) == 0) {
4544 			obj = vp->v_object;
4545 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4546 				VM_OBJECT_WLOCK(obj);
4547 				vm_object_page_clean(obj, 0, 0, objflags);
4548 				VM_OBJECT_WUNLOCK(obj);
4549 			}
4550 			vput(vp);
4551 			if (seen_defer)
4552 				vdrop(vp);
4553 		} else {
4554 			if (seen_defer)
4555 				vdefer_inactive_cond(vp);
4556 		}
4557 	}
4558 }
4559 
4560 void
4561 vfs_periodic(struct mount *mp, int flags)
4562 {
4563 
4564 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4565 
4566 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4567 		vfs_periodic_inactive(mp, flags);
4568 	else
4569 		vfs_periodic_msync_inactive(mp, flags);
4570 }
4571 
4572 static void
4573 destroy_vpollinfo_free(struct vpollinfo *vi)
4574 {
4575 
4576 	knlist_destroy(&vi->vpi_selinfo.si_note);
4577 	mtx_destroy(&vi->vpi_lock);
4578 	uma_zfree(vnodepoll_zone, vi);
4579 }
4580 
4581 static void
4582 destroy_vpollinfo(struct vpollinfo *vi)
4583 {
4584 
4585 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4586 	seldrain(&vi->vpi_selinfo);
4587 	destroy_vpollinfo_free(vi);
4588 }
4589 
4590 /*
4591  * Initialize per-vnode helper structure to hold poll-related state.
4592  */
4593 void
4594 v_addpollinfo(struct vnode *vp)
4595 {
4596 	struct vpollinfo *vi;
4597 
4598 	if (vp->v_pollinfo != NULL)
4599 		return;
4600 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4601 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4602 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4603 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4604 	VI_LOCK(vp);
4605 	if (vp->v_pollinfo != NULL) {
4606 		VI_UNLOCK(vp);
4607 		destroy_vpollinfo_free(vi);
4608 		return;
4609 	}
4610 	vp->v_pollinfo = vi;
4611 	VI_UNLOCK(vp);
4612 }
4613 
4614 /*
4615  * Record a process's interest in events which might happen to
4616  * a vnode.  Because poll uses the historic select-style interface
4617  * internally, this routine serves as both the ``check for any
4618  * pending events'' and the ``record my interest in future events''
4619  * functions.  (These are done together, while the lock is held,
4620  * to avoid race conditions.)
4621  */
4622 int
4623 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4624 {
4625 
4626 	v_addpollinfo(vp);
4627 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4628 	if (vp->v_pollinfo->vpi_revents & events) {
4629 		/*
4630 		 * This leaves events we are not interested
4631 		 * in available for the other process which
4632 		 * which presumably had requested them
4633 		 * (otherwise they would never have been
4634 		 * recorded).
4635 		 */
4636 		events &= vp->v_pollinfo->vpi_revents;
4637 		vp->v_pollinfo->vpi_revents &= ~events;
4638 
4639 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4640 		return (events);
4641 	}
4642 	vp->v_pollinfo->vpi_events |= events;
4643 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4644 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4645 	return (0);
4646 }
4647 
4648 /*
4649  * Routine to create and manage a filesystem syncer vnode.
4650  */
4651 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4652 static int	sync_fsync(struct  vop_fsync_args *);
4653 static int	sync_inactive(struct  vop_inactive_args *);
4654 static int	sync_reclaim(struct  vop_reclaim_args *);
4655 
4656 static struct vop_vector sync_vnodeops = {
4657 	.vop_bypass =	VOP_EOPNOTSUPP,
4658 	.vop_close =	sync_close,		/* close */
4659 	.vop_fsync =	sync_fsync,		/* fsync */
4660 	.vop_inactive =	sync_inactive,	/* inactive */
4661 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4662 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4663 	.vop_lock1 =	vop_stdlock,	/* lock */
4664 	.vop_unlock =	vop_stdunlock,	/* unlock */
4665 	.vop_islocked =	vop_stdislocked,	/* islocked */
4666 };
4667 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4668 
4669 /*
4670  * Create a new filesystem syncer vnode for the specified mount point.
4671  */
4672 void
4673 vfs_allocate_syncvnode(struct mount *mp)
4674 {
4675 	struct vnode *vp;
4676 	struct bufobj *bo;
4677 	static long start, incr, next;
4678 	int error;
4679 
4680 	/* Allocate a new vnode */
4681 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4682 	if (error != 0)
4683 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4684 	vp->v_type = VNON;
4685 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4686 	vp->v_vflag |= VV_FORCEINSMQ;
4687 	error = insmntque(vp, mp);
4688 	if (error != 0)
4689 		panic("vfs_allocate_syncvnode: insmntque() failed");
4690 	vp->v_vflag &= ~VV_FORCEINSMQ;
4691 	VOP_UNLOCK(vp);
4692 	/*
4693 	 * Place the vnode onto the syncer worklist. We attempt to
4694 	 * scatter them about on the list so that they will go off
4695 	 * at evenly distributed times even if all the filesystems
4696 	 * are mounted at once.
4697 	 */
4698 	next += incr;
4699 	if (next == 0 || next > syncer_maxdelay) {
4700 		start /= 2;
4701 		incr /= 2;
4702 		if (start == 0) {
4703 			start = syncer_maxdelay / 2;
4704 			incr = syncer_maxdelay;
4705 		}
4706 		next = start;
4707 	}
4708 	bo = &vp->v_bufobj;
4709 	BO_LOCK(bo);
4710 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4711 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4712 	mtx_lock(&sync_mtx);
4713 	sync_vnode_count++;
4714 	if (mp->mnt_syncer == NULL) {
4715 		mp->mnt_syncer = vp;
4716 		vp = NULL;
4717 	}
4718 	mtx_unlock(&sync_mtx);
4719 	BO_UNLOCK(bo);
4720 	if (vp != NULL) {
4721 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4722 		vgone(vp);
4723 		vput(vp);
4724 	}
4725 }
4726 
4727 void
4728 vfs_deallocate_syncvnode(struct mount *mp)
4729 {
4730 	struct vnode *vp;
4731 
4732 	mtx_lock(&sync_mtx);
4733 	vp = mp->mnt_syncer;
4734 	if (vp != NULL)
4735 		mp->mnt_syncer = NULL;
4736 	mtx_unlock(&sync_mtx);
4737 	if (vp != NULL)
4738 		vrele(vp);
4739 }
4740 
4741 /*
4742  * Do a lazy sync of the filesystem.
4743  */
4744 static int
4745 sync_fsync(struct vop_fsync_args *ap)
4746 {
4747 	struct vnode *syncvp = ap->a_vp;
4748 	struct mount *mp = syncvp->v_mount;
4749 	int error, save;
4750 	struct bufobj *bo;
4751 
4752 	/*
4753 	 * We only need to do something if this is a lazy evaluation.
4754 	 */
4755 	if (ap->a_waitfor != MNT_LAZY)
4756 		return (0);
4757 
4758 	/*
4759 	 * Move ourselves to the back of the sync list.
4760 	 */
4761 	bo = &syncvp->v_bufobj;
4762 	BO_LOCK(bo);
4763 	vn_syncer_add_to_worklist(bo, syncdelay);
4764 	BO_UNLOCK(bo);
4765 
4766 	/*
4767 	 * Walk the list of vnodes pushing all that are dirty and
4768 	 * not already on the sync list.
4769 	 */
4770 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4771 		return (0);
4772 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4773 		vfs_unbusy(mp);
4774 		return (0);
4775 	}
4776 	save = curthread_pflags_set(TDP_SYNCIO);
4777 	/*
4778 	 * The filesystem at hand may be idle with free vnodes stored in the
4779 	 * batch.  Return them instead of letting them stay there indefinitely.
4780 	 */
4781 	vnlru_return_batch(mp);
4782 	vfs_periodic(mp, MNT_NOWAIT);
4783 	error = VFS_SYNC(mp, MNT_LAZY);
4784 	curthread_pflags_restore(save);
4785 	vn_finished_write(mp);
4786 	vfs_unbusy(mp);
4787 	return (error);
4788 }
4789 
4790 /*
4791  * The syncer vnode is no referenced.
4792  */
4793 static int
4794 sync_inactive(struct vop_inactive_args *ap)
4795 {
4796 
4797 	vgone(ap->a_vp);
4798 	return (0);
4799 }
4800 
4801 /*
4802  * The syncer vnode is no longer needed and is being decommissioned.
4803  *
4804  * Modifications to the worklist must be protected by sync_mtx.
4805  */
4806 static int
4807 sync_reclaim(struct vop_reclaim_args *ap)
4808 {
4809 	struct vnode *vp = ap->a_vp;
4810 	struct bufobj *bo;
4811 
4812 	bo = &vp->v_bufobj;
4813 	BO_LOCK(bo);
4814 	mtx_lock(&sync_mtx);
4815 	if (vp->v_mount->mnt_syncer == vp)
4816 		vp->v_mount->mnt_syncer = NULL;
4817 	if (bo->bo_flag & BO_ONWORKLST) {
4818 		LIST_REMOVE(bo, bo_synclist);
4819 		syncer_worklist_len--;
4820 		sync_vnode_count--;
4821 		bo->bo_flag &= ~BO_ONWORKLST;
4822 	}
4823 	mtx_unlock(&sync_mtx);
4824 	BO_UNLOCK(bo);
4825 
4826 	return (0);
4827 }
4828 
4829 int
4830 vn_need_pageq_flush(struct vnode *vp)
4831 {
4832 	struct vm_object *obj;
4833 	int need;
4834 
4835 	MPASS(mtx_owned(VI_MTX(vp)));
4836 	need = 0;
4837 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
4838 	    vm_object_mightbedirty(obj))
4839 		need = 1;
4840 	return (need);
4841 }
4842 
4843 /*
4844  * Check if vnode represents a disk device
4845  */
4846 int
4847 vn_isdisk(struct vnode *vp, int *errp)
4848 {
4849 	int error;
4850 
4851 	if (vp->v_type != VCHR) {
4852 		error = ENOTBLK;
4853 		goto out;
4854 	}
4855 	error = 0;
4856 	dev_lock();
4857 	if (vp->v_rdev == NULL)
4858 		error = ENXIO;
4859 	else if (vp->v_rdev->si_devsw == NULL)
4860 		error = ENXIO;
4861 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4862 		error = ENOTBLK;
4863 	dev_unlock();
4864 out:
4865 	if (errp != NULL)
4866 		*errp = error;
4867 	return (error == 0);
4868 }
4869 
4870 /*
4871  * Common filesystem object access control check routine.  Accepts a
4872  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4873  * and optional call-by-reference privused argument allowing vaccess()
4874  * to indicate to the caller whether privilege was used to satisfy the
4875  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4876  */
4877 int
4878 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4879     accmode_t accmode, struct ucred *cred, int *privused)
4880 {
4881 	accmode_t dac_granted;
4882 	accmode_t priv_granted;
4883 
4884 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4885 	    ("invalid bit in accmode"));
4886 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4887 	    ("VAPPEND without VWRITE"));
4888 
4889 	/*
4890 	 * Look for a normal, non-privileged way to access the file/directory
4891 	 * as requested.  If it exists, go with that.
4892 	 */
4893 
4894 	if (privused != NULL)
4895 		*privused = 0;
4896 
4897 	dac_granted = 0;
4898 
4899 	/* Check the owner. */
4900 	if (cred->cr_uid == file_uid) {
4901 		dac_granted |= VADMIN;
4902 		if (file_mode & S_IXUSR)
4903 			dac_granted |= VEXEC;
4904 		if (file_mode & S_IRUSR)
4905 			dac_granted |= VREAD;
4906 		if (file_mode & S_IWUSR)
4907 			dac_granted |= (VWRITE | VAPPEND);
4908 
4909 		if ((accmode & dac_granted) == accmode)
4910 			return (0);
4911 
4912 		goto privcheck;
4913 	}
4914 
4915 	/* Otherwise, check the groups (first match) */
4916 	if (groupmember(file_gid, cred)) {
4917 		if (file_mode & S_IXGRP)
4918 			dac_granted |= VEXEC;
4919 		if (file_mode & S_IRGRP)
4920 			dac_granted |= VREAD;
4921 		if (file_mode & S_IWGRP)
4922 			dac_granted |= (VWRITE | VAPPEND);
4923 
4924 		if ((accmode & dac_granted) == accmode)
4925 			return (0);
4926 
4927 		goto privcheck;
4928 	}
4929 
4930 	/* Otherwise, check everyone else. */
4931 	if (file_mode & S_IXOTH)
4932 		dac_granted |= VEXEC;
4933 	if (file_mode & S_IROTH)
4934 		dac_granted |= VREAD;
4935 	if (file_mode & S_IWOTH)
4936 		dac_granted |= (VWRITE | VAPPEND);
4937 	if ((accmode & dac_granted) == accmode)
4938 		return (0);
4939 
4940 privcheck:
4941 	/*
4942 	 * Build a privilege mask to determine if the set of privileges
4943 	 * satisfies the requirements when combined with the granted mask
4944 	 * from above.  For each privilege, if the privilege is required,
4945 	 * bitwise or the request type onto the priv_granted mask.
4946 	 */
4947 	priv_granted = 0;
4948 
4949 	if (type == VDIR) {
4950 		/*
4951 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4952 		 * requests, instead of PRIV_VFS_EXEC.
4953 		 */
4954 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4955 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
4956 			priv_granted |= VEXEC;
4957 	} else {
4958 		/*
4959 		 * Ensure that at least one execute bit is on. Otherwise,
4960 		 * a privileged user will always succeed, and we don't want
4961 		 * this to happen unless the file really is executable.
4962 		 */
4963 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4964 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4965 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
4966 			priv_granted |= VEXEC;
4967 	}
4968 
4969 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4970 	    !priv_check_cred(cred, PRIV_VFS_READ))
4971 		priv_granted |= VREAD;
4972 
4973 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4974 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
4975 		priv_granted |= (VWRITE | VAPPEND);
4976 
4977 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4978 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
4979 		priv_granted |= VADMIN;
4980 
4981 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4982 		/* XXX audit: privilege used */
4983 		if (privused != NULL)
4984 			*privused = 1;
4985 		return (0);
4986 	}
4987 
4988 	return ((accmode & VADMIN) ? EPERM : EACCES);
4989 }
4990 
4991 /*
4992  * Credential check based on process requesting service, and per-attribute
4993  * permissions.
4994  */
4995 int
4996 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4997     struct thread *td, accmode_t accmode)
4998 {
4999 
5000 	/*
5001 	 * Kernel-invoked always succeeds.
5002 	 */
5003 	if (cred == NOCRED)
5004 		return (0);
5005 
5006 	/*
5007 	 * Do not allow privileged processes in jail to directly manipulate
5008 	 * system attributes.
5009 	 */
5010 	switch (attrnamespace) {
5011 	case EXTATTR_NAMESPACE_SYSTEM:
5012 		/* Potentially should be: return (EPERM); */
5013 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5014 	case EXTATTR_NAMESPACE_USER:
5015 		return (VOP_ACCESS(vp, accmode, cred, td));
5016 	default:
5017 		return (EPERM);
5018 	}
5019 }
5020 
5021 #ifdef DEBUG_VFS_LOCKS
5022 /*
5023  * This only exists to suppress warnings from unlocked specfs accesses.  It is
5024  * no longer ok to have an unlocked VFS.
5025  */
5026 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
5027 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
5028 
5029 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5030 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5031     "Drop into debugger on lock violation");
5032 
5033 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5034 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5035     0, "Check for interlock across VOPs");
5036 
5037 int vfs_badlock_print = 1;	/* Print lock violations. */
5038 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5039     0, "Print lock violations");
5040 
5041 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5042 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5043     0, "Print vnode details on lock violations");
5044 
5045 #ifdef KDB
5046 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5047 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5048     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5049 #endif
5050 
5051 static void
5052 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5053 {
5054 
5055 #ifdef KDB
5056 	if (vfs_badlock_backtrace)
5057 		kdb_backtrace();
5058 #endif
5059 	if (vfs_badlock_vnode)
5060 		vn_printf(vp, "vnode ");
5061 	if (vfs_badlock_print)
5062 		printf("%s: %p %s\n", str, (void *)vp, msg);
5063 	if (vfs_badlock_ddb)
5064 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5065 }
5066 
5067 void
5068 assert_vi_locked(struct vnode *vp, const char *str)
5069 {
5070 
5071 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5072 		vfs_badlock("interlock is not locked but should be", str, vp);
5073 }
5074 
5075 void
5076 assert_vi_unlocked(struct vnode *vp, const char *str)
5077 {
5078 
5079 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5080 		vfs_badlock("interlock is locked but should not be", str, vp);
5081 }
5082 
5083 void
5084 assert_vop_locked(struct vnode *vp, const char *str)
5085 {
5086 	int locked;
5087 
5088 	if (!IGNORE_LOCK(vp)) {
5089 		locked = VOP_ISLOCKED(vp);
5090 		if (locked == 0 || locked == LK_EXCLOTHER)
5091 			vfs_badlock("is not locked but should be", str, vp);
5092 	}
5093 }
5094 
5095 void
5096 assert_vop_unlocked(struct vnode *vp, const char *str)
5097 {
5098 
5099 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5100 		vfs_badlock("is locked but should not be", str, vp);
5101 }
5102 
5103 void
5104 assert_vop_elocked(struct vnode *vp, const char *str)
5105 {
5106 
5107 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5108 		vfs_badlock("is not exclusive locked but should be", str, vp);
5109 }
5110 #endif /* DEBUG_VFS_LOCKS */
5111 
5112 void
5113 vop_rename_fail(struct vop_rename_args *ap)
5114 {
5115 
5116 	if (ap->a_tvp != NULL)
5117 		vput(ap->a_tvp);
5118 	if (ap->a_tdvp == ap->a_tvp)
5119 		vrele(ap->a_tdvp);
5120 	else
5121 		vput(ap->a_tdvp);
5122 	vrele(ap->a_fdvp);
5123 	vrele(ap->a_fvp);
5124 }
5125 
5126 void
5127 vop_rename_pre(void *ap)
5128 {
5129 	struct vop_rename_args *a = ap;
5130 
5131 #ifdef DEBUG_VFS_LOCKS
5132 	if (a->a_tvp)
5133 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5134 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5135 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5136 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5137 
5138 	/* Check the source (from). */
5139 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5140 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5141 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5142 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5143 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5144 
5145 	/* Check the target. */
5146 	if (a->a_tvp)
5147 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5148 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5149 #endif
5150 	if (a->a_tdvp != a->a_fdvp)
5151 		vhold(a->a_fdvp);
5152 	if (a->a_tvp != a->a_fvp)
5153 		vhold(a->a_fvp);
5154 	vhold(a->a_tdvp);
5155 	if (a->a_tvp)
5156 		vhold(a->a_tvp);
5157 }
5158 
5159 #ifdef DEBUG_VFS_LOCKS
5160 void
5161 vop_strategy_pre(void *ap)
5162 {
5163 	struct vop_strategy_args *a;
5164 	struct buf *bp;
5165 
5166 	a = ap;
5167 	bp = a->a_bp;
5168 
5169 	/*
5170 	 * Cluster ops lock their component buffers but not the IO container.
5171 	 */
5172 	if ((bp->b_flags & B_CLUSTER) != 0)
5173 		return;
5174 
5175 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
5176 		if (vfs_badlock_print)
5177 			printf(
5178 			    "VOP_STRATEGY: bp is not locked but should be\n");
5179 		if (vfs_badlock_ddb)
5180 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5181 	}
5182 }
5183 
5184 void
5185 vop_lock_pre(void *ap)
5186 {
5187 	struct vop_lock1_args *a = ap;
5188 
5189 	if ((a->a_flags & LK_INTERLOCK) == 0)
5190 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5191 	else
5192 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5193 }
5194 
5195 void
5196 vop_lock_post(void *ap, int rc)
5197 {
5198 	struct vop_lock1_args *a = ap;
5199 
5200 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5201 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5202 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5203 }
5204 
5205 void
5206 vop_unlock_pre(void *ap)
5207 {
5208 	struct vop_unlock_args *a = ap;
5209 
5210 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5211 }
5212 
5213 void
5214 vop_unlock_post(void *ap, int rc)
5215 {
5216 	return;
5217 }
5218 
5219 void
5220 vop_need_inactive_pre(void *ap)
5221 {
5222 	struct vop_need_inactive_args *a = ap;
5223 
5224 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5225 }
5226 
5227 void
5228 vop_need_inactive_post(void *ap, int rc)
5229 {
5230 	struct vop_need_inactive_args *a = ap;
5231 
5232 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5233 }
5234 #endif
5235 
5236 void
5237 vop_create_post(void *ap, int rc)
5238 {
5239 	struct vop_create_args *a = ap;
5240 
5241 	if (!rc)
5242 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5243 }
5244 
5245 void
5246 vop_deleteextattr_post(void *ap, int rc)
5247 {
5248 	struct vop_deleteextattr_args *a = ap;
5249 
5250 	if (!rc)
5251 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5252 }
5253 
5254 void
5255 vop_link_post(void *ap, int rc)
5256 {
5257 	struct vop_link_args *a = ap;
5258 
5259 	if (!rc) {
5260 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
5261 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
5262 	}
5263 }
5264 
5265 void
5266 vop_mkdir_post(void *ap, int rc)
5267 {
5268 	struct vop_mkdir_args *a = ap;
5269 
5270 	if (!rc)
5271 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5272 }
5273 
5274 void
5275 vop_mknod_post(void *ap, int rc)
5276 {
5277 	struct vop_mknod_args *a = ap;
5278 
5279 	if (!rc)
5280 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5281 }
5282 
5283 void
5284 vop_reclaim_post(void *ap, int rc)
5285 {
5286 	struct vop_reclaim_args *a = ap;
5287 
5288 	if (!rc)
5289 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
5290 }
5291 
5292 void
5293 vop_remove_post(void *ap, int rc)
5294 {
5295 	struct vop_remove_args *a = ap;
5296 
5297 	if (!rc) {
5298 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5299 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5300 	}
5301 }
5302 
5303 void
5304 vop_rename_post(void *ap, int rc)
5305 {
5306 	struct vop_rename_args *a = ap;
5307 	long hint;
5308 
5309 	if (!rc) {
5310 		hint = NOTE_WRITE;
5311 		if (a->a_fdvp == a->a_tdvp) {
5312 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5313 				hint |= NOTE_LINK;
5314 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5315 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5316 		} else {
5317 			hint |= NOTE_EXTEND;
5318 			if (a->a_fvp->v_type == VDIR)
5319 				hint |= NOTE_LINK;
5320 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5321 
5322 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5323 			    a->a_tvp->v_type == VDIR)
5324 				hint &= ~NOTE_LINK;
5325 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5326 		}
5327 
5328 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5329 		if (a->a_tvp)
5330 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5331 	}
5332 	if (a->a_tdvp != a->a_fdvp)
5333 		vdrop(a->a_fdvp);
5334 	if (a->a_tvp != a->a_fvp)
5335 		vdrop(a->a_fvp);
5336 	vdrop(a->a_tdvp);
5337 	if (a->a_tvp)
5338 		vdrop(a->a_tvp);
5339 }
5340 
5341 void
5342 vop_rmdir_post(void *ap, int rc)
5343 {
5344 	struct vop_rmdir_args *a = ap;
5345 
5346 	if (!rc) {
5347 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5348 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5349 	}
5350 }
5351 
5352 void
5353 vop_setattr_post(void *ap, int rc)
5354 {
5355 	struct vop_setattr_args *a = ap;
5356 
5357 	if (!rc)
5358 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5359 }
5360 
5361 void
5362 vop_setextattr_post(void *ap, int rc)
5363 {
5364 	struct vop_setextattr_args *a = ap;
5365 
5366 	if (!rc)
5367 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5368 }
5369 
5370 void
5371 vop_symlink_post(void *ap, int rc)
5372 {
5373 	struct vop_symlink_args *a = ap;
5374 
5375 	if (!rc)
5376 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5377 }
5378 
5379 void
5380 vop_open_post(void *ap, int rc)
5381 {
5382 	struct vop_open_args *a = ap;
5383 
5384 	if (!rc)
5385 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5386 }
5387 
5388 void
5389 vop_close_post(void *ap, int rc)
5390 {
5391 	struct vop_close_args *a = ap;
5392 
5393 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
5394 	    !VN_IS_DOOMED(a->a_vp))) {
5395 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
5396 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
5397 	}
5398 }
5399 
5400 void
5401 vop_read_post(void *ap, int rc)
5402 {
5403 	struct vop_read_args *a = ap;
5404 
5405 	if (!rc)
5406 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5407 }
5408 
5409 void
5410 vop_readdir_post(void *ap, int rc)
5411 {
5412 	struct vop_readdir_args *a = ap;
5413 
5414 	if (!rc)
5415 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5416 }
5417 
5418 static struct knlist fs_knlist;
5419 
5420 static void
5421 vfs_event_init(void *arg)
5422 {
5423 	knlist_init_mtx(&fs_knlist, NULL);
5424 }
5425 /* XXX - correct order? */
5426 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
5427 
5428 void
5429 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
5430 {
5431 
5432 	KNOTE_UNLOCKED(&fs_knlist, event);
5433 }
5434 
5435 static int	filt_fsattach(struct knote *kn);
5436 static void	filt_fsdetach(struct knote *kn);
5437 static int	filt_fsevent(struct knote *kn, long hint);
5438 
5439 struct filterops fs_filtops = {
5440 	.f_isfd = 0,
5441 	.f_attach = filt_fsattach,
5442 	.f_detach = filt_fsdetach,
5443 	.f_event = filt_fsevent
5444 };
5445 
5446 static int
5447 filt_fsattach(struct knote *kn)
5448 {
5449 
5450 	kn->kn_flags |= EV_CLEAR;
5451 	knlist_add(&fs_knlist, kn, 0);
5452 	return (0);
5453 }
5454 
5455 static void
5456 filt_fsdetach(struct knote *kn)
5457 {
5458 
5459 	knlist_remove(&fs_knlist, kn, 0);
5460 }
5461 
5462 static int
5463 filt_fsevent(struct knote *kn, long hint)
5464 {
5465 
5466 	kn->kn_fflags |= hint;
5467 	return (kn->kn_fflags != 0);
5468 }
5469 
5470 static int
5471 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
5472 {
5473 	struct vfsidctl vc;
5474 	int error;
5475 	struct mount *mp;
5476 
5477 	error = SYSCTL_IN(req, &vc, sizeof(vc));
5478 	if (error)
5479 		return (error);
5480 	if (vc.vc_vers != VFS_CTL_VERS1)
5481 		return (EINVAL);
5482 	mp = vfs_getvfs(&vc.vc_fsid);
5483 	if (mp == NULL)
5484 		return (ENOENT);
5485 	/* ensure that a specific sysctl goes to the right filesystem. */
5486 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
5487 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
5488 		vfs_rel(mp);
5489 		return (EINVAL);
5490 	}
5491 	VCTLTOREQ(&vc, req);
5492 	error = VFS_SYSCTL(mp, vc.vc_op, req);
5493 	vfs_rel(mp);
5494 	return (error);
5495 }
5496 
5497 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
5498     NULL, 0, sysctl_vfs_ctl, "",
5499     "Sysctl by fsid");
5500 
5501 /*
5502  * Function to initialize a va_filerev field sensibly.
5503  * XXX: Wouldn't a random number make a lot more sense ??
5504  */
5505 u_quad_t
5506 init_va_filerev(void)
5507 {
5508 	struct bintime bt;
5509 
5510 	getbinuptime(&bt);
5511 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5512 }
5513 
5514 static int	filt_vfsread(struct knote *kn, long hint);
5515 static int	filt_vfswrite(struct knote *kn, long hint);
5516 static int	filt_vfsvnode(struct knote *kn, long hint);
5517 static void	filt_vfsdetach(struct knote *kn);
5518 static struct filterops vfsread_filtops = {
5519 	.f_isfd = 1,
5520 	.f_detach = filt_vfsdetach,
5521 	.f_event = filt_vfsread
5522 };
5523 static struct filterops vfswrite_filtops = {
5524 	.f_isfd = 1,
5525 	.f_detach = filt_vfsdetach,
5526 	.f_event = filt_vfswrite
5527 };
5528 static struct filterops vfsvnode_filtops = {
5529 	.f_isfd = 1,
5530 	.f_detach = filt_vfsdetach,
5531 	.f_event = filt_vfsvnode
5532 };
5533 
5534 static void
5535 vfs_knllock(void *arg)
5536 {
5537 	struct vnode *vp = arg;
5538 
5539 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5540 }
5541 
5542 static void
5543 vfs_knlunlock(void *arg)
5544 {
5545 	struct vnode *vp = arg;
5546 
5547 	VOP_UNLOCK(vp);
5548 }
5549 
5550 static void
5551 vfs_knl_assert_locked(void *arg)
5552 {
5553 #ifdef DEBUG_VFS_LOCKS
5554 	struct vnode *vp = arg;
5555 
5556 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5557 #endif
5558 }
5559 
5560 static void
5561 vfs_knl_assert_unlocked(void *arg)
5562 {
5563 #ifdef DEBUG_VFS_LOCKS
5564 	struct vnode *vp = arg;
5565 
5566 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5567 #endif
5568 }
5569 
5570 int
5571 vfs_kqfilter(struct vop_kqfilter_args *ap)
5572 {
5573 	struct vnode *vp = ap->a_vp;
5574 	struct knote *kn = ap->a_kn;
5575 	struct knlist *knl;
5576 
5577 	switch (kn->kn_filter) {
5578 	case EVFILT_READ:
5579 		kn->kn_fop = &vfsread_filtops;
5580 		break;
5581 	case EVFILT_WRITE:
5582 		kn->kn_fop = &vfswrite_filtops;
5583 		break;
5584 	case EVFILT_VNODE:
5585 		kn->kn_fop = &vfsvnode_filtops;
5586 		break;
5587 	default:
5588 		return (EINVAL);
5589 	}
5590 
5591 	kn->kn_hook = (caddr_t)vp;
5592 
5593 	v_addpollinfo(vp);
5594 	if (vp->v_pollinfo == NULL)
5595 		return (ENOMEM);
5596 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5597 	vhold(vp);
5598 	knlist_add(knl, kn, 0);
5599 
5600 	return (0);
5601 }
5602 
5603 /*
5604  * Detach knote from vnode
5605  */
5606 static void
5607 filt_vfsdetach(struct knote *kn)
5608 {
5609 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5610 
5611 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5612 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5613 	vdrop(vp);
5614 }
5615 
5616 /*ARGSUSED*/
5617 static int
5618 filt_vfsread(struct knote *kn, long hint)
5619 {
5620 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5621 	struct vattr va;
5622 	int res;
5623 
5624 	/*
5625 	 * filesystem is gone, so set the EOF flag and schedule
5626 	 * the knote for deletion.
5627 	 */
5628 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5629 		VI_LOCK(vp);
5630 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5631 		VI_UNLOCK(vp);
5632 		return (1);
5633 	}
5634 
5635 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5636 		return (0);
5637 
5638 	VI_LOCK(vp);
5639 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5640 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5641 	VI_UNLOCK(vp);
5642 	return (res);
5643 }
5644 
5645 /*ARGSUSED*/
5646 static int
5647 filt_vfswrite(struct knote *kn, long hint)
5648 {
5649 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5650 
5651 	VI_LOCK(vp);
5652 
5653 	/*
5654 	 * filesystem is gone, so set the EOF flag and schedule
5655 	 * the knote for deletion.
5656 	 */
5657 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5658 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5659 
5660 	kn->kn_data = 0;
5661 	VI_UNLOCK(vp);
5662 	return (1);
5663 }
5664 
5665 static int
5666 filt_vfsvnode(struct knote *kn, long hint)
5667 {
5668 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5669 	int res;
5670 
5671 	VI_LOCK(vp);
5672 	if (kn->kn_sfflags & hint)
5673 		kn->kn_fflags |= hint;
5674 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5675 		kn->kn_flags |= EV_EOF;
5676 		VI_UNLOCK(vp);
5677 		return (1);
5678 	}
5679 	res = (kn->kn_fflags != 0);
5680 	VI_UNLOCK(vp);
5681 	return (res);
5682 }
5683 
5684 /*
5685  * Returns whether the directory is empty or not.
5686  * If it is empty, the return value is 0; otherwise
5687  * the return value is an error value (which may
5688  * be ENOTEMPTY).
5689  */
5690 int
5691 vfs_emptydir(struct vnode *vp)
5692 {
5693 	struct uio uio;
5694 	struct iovec iov;
5695 	struct dirent *dirent, *dp, *endp;
5696 	int error, eof;
5697 
5698 	error = 0;
5699 	eof = 0;
5700 
5701 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
5702 
5703 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
5704 	iov.iov_base = dirent;
5705 	iov.iov_len = sizeof(struct dirent);
5706 
5707 	uio.uio_iov = &iov;
5708 	uio.uio_iovcnt = 1;
5709 	uio.uio_offset = 0;
5710 	uio.uio_resid = sizeof(struct dirent);
5711 	uio.uio_segflg = UIO_SYSSPACE;
5712 	uio.uio_rw = UIO_READ;
5713 	uio.uio_td = curthread;
5714 
5715 	while (eof == 0 && error == 0) {
5716 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
5717 		    NULL, NULL);
5718 		if (error != 0)
5719 			break;
5720 		endp = (void *)((uint8_t *)dirent +
5721 		    sizeof(struct dirent) - uio.uio_resid);
5722 		for (dp = dirent; dp < endp;
5723 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
5724 			if (dp->d_type == DT_WHT)
5725 				continue;
5726 			if (dp->d_namlen == 0)
5727 				continue;
5728 			if (dp->d_type != DT_DIR &&
5729 			    dp->d_type != DT_UNKNOWN) {
5730 				error = ENOTEMPTY;
5731 				break;
5732 			}
5733 			if (dp->d_namlen > 2) {
5734 				error = ENOTEMPTY;
5735 				break;
5736 			}
5737 			if (dp->d_namlen == 1 &&
5738 			    dp->d_name[0] != '.') {
5739 				error = ENOTEMPTY;
5740 				break;
5741 			}
5742 			if (dp->d_namlen == 2 &&
5743 			    dp->d_name[1] != '.') {
5744 				error = ENOTEMPTY;
5745 				break;
5746 			}
5747 			uio.uio_resid = sizeof(struct dirent);
5748 		}
5749 	}
5750 	free(dirent, M_TEMP);
5751 	return (error);
5752 }
5753 
5754 int
5755 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
5756 {
5757 	int error;
5758 
5759 	if (dp->d_reclen > ap->a_uio->uio_resid)
5760 		return (ENAMETOOLONG);
5761 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
5762 	if (error) {
5763 		if (ap->a_ncookies != NULL) {
5764 			if (ap->a_cookies != NULL)
5765 				free(ap->a_cookies, M_TEMP);
5766 			ap->a_cookies = NULL;
5767 			*ap->a_ncookies = 0;
5768 		}
5769 		return (error);
5770 	}
5771 	if (ap->a_ncookies == NULL)
5772 		return (0);
5773 
5774 	KASSERT(ap->a_cookies,
5775 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
5776 
5777 	*ap->a_cookies = realloc(*ap->a_cookies,
5778 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
5779 	(*ap->a_cookies)[*ap->a_ncookies] = off;
5780 	*ap->a_ncookies += 1;
5781 	return (0);
5782 }
5783 
5784 /*
5785  * Mark for update the access time of the file if the filesystem
5786  * supports VOP_MARKATIME.  This functionality is used by execve and
5787  * mmap, so we want to avoid the I/O implied by directly setting
5788  * va_atime for the sake of efficiency.
5789  */
5790 void
5791 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
5792 {
5793 	struct mount *mp;
5794 
5795 	mp = vp->v_mount;
5796 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
5797 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
5798 		(void)VOP_MARKATIME(vp);
5799 }
5800 
5801 /*
5802  * The purpose of this routine is to remove granularity from accmode_t,
5803  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
5804  * VADMIN and VAPPEND.
5805  *
5806  * If it returns 0, the caller is supposed to continue with the usual
5807  * access checks using 'accmode' as modified by this routine.  If it
5808  * returns nonzero value, the caller is supposed to return that value
5809  * as errno.
5810  *
5811  * Note that after this routine runs, accmode may be zero.
5812  */
5813 int
5814 vfs_unixify_accmode(accmode_t *accmode)
5815 {
5816 	/*
5817 	 * There is no way to specify explicit "deny" rule using
5818 	 * file mode or POSIX.1e ACLs.
5819 	 */
5820 	if (*accmode & VEXPLICIT_DENY) {
5821 		*accmode = 0;
5822 		return (0);
5823 	}
5824 
5825 	/*
5826 	 * None of these can be translated into usual access bits.
5827 	 * Also, the common case for NFSv4 ACLs is to not contain
5828 	 * either of these bits. Caller should check for VWRITE
5829 	 * on the containing directory instead.
5830 	 */
5831 	if (*accmode & (VDELETE_CHILD | VDELETE))
5832 		return (EPERM);
5833 
5834 	if (*accmode & VADMIN_PERMS) {
5835 		*accmode &= ~VADMIN_PERMS;
5836 		*accmode |= VADMIN;
5837 	}
5838 
5839 	/*
5840 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
5841 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
5842 	 */
5843 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
5844 
5845 	return (0);
5846 }
5847 
5848 /*
5849  * Clear out a doomed vnode (if any) and replace it with a new one as long
5850  * as the fs is not being unmounted. Return the root vnode to the caller.
5851  */
5852 static int __noinline
5853 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
5854 {
5855 	struct vnode *vp;
5856 	int error;
5857 
5858 restart:
5859 	if (mp->mnt_rootvnode != NULL) {
5860 		MNT_ILOCK(mp);
5861 		vp = mp->mnt_rootvnode;
5862 		if (vp != NULL) {
5863 			if (!VN_IS_DOOMED(vp)) {
5864 				vrefact(vp);
5865 				MNT_IUNLOCK(mp);
5866 				error = vn_lock(vp, flags);
5867 				if (error == 0) {
5868 					*vpp = vp;
5869 					return (0);
5870 				}
5871 				vrele(vp);
5872 				goto restart;
5873 			}
5874 			/*
5875 			 * Clear the old one.
5876 			 */
5877 			mp->mnt_rootvnode = NULL;
5878 		}
5879 		MNT_IUNLOCK(mp);
5880 		if (vp != NULL) {
5881 			/*
5882 			 * Paired with a fence in vfs_op_thread_exit().
5883 			 */
5884 			atomic_thread_fence_acq();
5885 			vfs_op_barrier_wait(mp);
5886 			vrele(vp);
5887 		}
5888 	}
5889 	error = VFS_CACHEDROOT(mp, flags, vpp);
5890 	if (error != 0)
5891 		return (error);
5892 	if (mp->mnt_vfs_ops == 0) {
5893 		MNT_ILOCK(mp);
5894 		if (mp->mnt_vfs_ops != 0) {
5895 			MNT_IUNLOCK(mp);
5896 			return (0);
5897 		}
5898 		if (mp->mnt_rootvnode == NULL) {
5899 			vrefact(*vpp);
5900 			mp->mnt_rootvnode = *vpp;
5901 		} else {
5902 			if (mp->mnt_rootvnode != *vpp) {
5903 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
5904 					panic("%s: mismatch between vnode returned "
5905 					    " by VFS_CACHEDROOT and the one cached "
5906 					    " (%p != %p)",
5907 					    __func__, *vpp, mp->mnt_rootvnode);
5908 				}
5909 			}
5910 		}
5911 		MNT_IUNLOCK(mp);
5912 	}
5913 	return (0);
5914 }
5915 
5916 int
5917 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
5918 {
5919 	struct vnode *vp;
5920 	int error;
5921 
5922 	if (!vfs_op_thread_enter(mp))
5923 		return (vfs_cache_root_fallback(mp, flags, vpp));
5924 	vp = (struct vnode *)atomic_load_ptr(&mp->mnt_rootvnode);
5925 	if (vp == NULL || VN_IS_DOOMED(vp)) {
5926 		vfs_op_thread_exit(mp);
5927 		return (vfs_cache_root_fallback(mp, flags, vpp));
5928 	}
5929 	vrefact(vp);
5930 	vfs_op_thread_exit(mp);
5931 	error = vn_lock(vp, flags);
5932 	if (error != 0) {
5933 		vrele(vp);
5934 		return (vfs_cache_root_fallback(mp, flags, vpp));
5935 	}
5936 	*vpp = vp;
5937 	return (0);
5938 }
5939 
5940 struct vnode *
5941 vfs_cache_root_clear(struct mount *mp)
5942 {
5943 	struct vnode *vp;
5944 
5945 	/*
5946 	 * ops > 0 guarantees there is nobody who can see this vnode
5947 	 */
5948 	MPASS(mp->mnt_vfs_ops > 0);
5949 	vp = mp->mnt_rootvnode;
5950 	mp->mnt_rootvnode = NULL;
5951 	return (vp);
5952 }
5953 
5954 void
5955 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
5956 {
5957 
5958 	MPASS(mp->mnt_vfs_ops > 0);
5959 	vrefact(vp);
5960 	mp->mnt_rootvnode = vp;
5961 }
5962 
5963 /*
5964  * These are helper functions for filesystems to traverse all
5965  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
5966  *
5967  * This interface replaces MNT_VNODE_FOREACH.
5968  */
5969 
5970 
5971 struct vnode *
5972 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5973 {
5974 	struct vnode *vp;
5975 
5976 	if (should_yield())
5977 		kern_yield(PRI_USER);
5978 	MNT_ILOCK(mp);
5979 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5980 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
5981 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
5982 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
5983 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
5984 			continue;
5985 		VI_LOCK(vp);
5986 		if (VN_IS_DOOMED(vp)) {
5987 			VI_UNLOCK(vp);
5988 			continue;
5989 		}
5990 		break;
5991 	}
5992 	if (vp == NULL) {
5993 		__mnt_vnode_markerfree_all(mvp, mp);
5994 		/* MNT_IUNLOCK(mp); -- done in above function */
5995 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5996 		return (NULL);
5997 	}
5998 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5999 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6000 	MNT_IUNLOCK(mp);
6001 	return (vp);
6002 }
6003 
6004 struct vnode *
6005 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6006 {
6007 	struct vnode *vp;
6008 
6009 	*mvp = vn_alloc_marker(mp);
6010 	MNT_ILOCK(mp);
6011 	MNT_REF(mp);
6012 
6013 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6014 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6015 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6016 			continue;
6017 		VI_LOCK(vp);
6018 		if (VN_IS_DOOMED(vp)) {
6019 			VI_UNLOCK(vp);
6020 			continue;
6021 		}
6022 		break;
6023 	}
6024 	if (vp == NULL) {
6025 		MNT_REL(mp);
6026 		MNT_IUNLOCK(mp);
6027 		vn_free_marker(*mvp);
6028 		*mvp = NULL;
6029 		return (NULL);
6030 	}
6031 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6032 	MNT_IUNLOCK(mp);
6033 	return (vp);
6034 }
6035 
6036 void
6037 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6038 {
6039 
6040 	if (*mvp == NULL) {
6041 		MNT_IUNLOCK(mp);
6042 		return;
6043 	}
6044 
6045 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6046 
6047 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6048 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6049 	MNT_REL(mp);
6050 	MNT_IUNLOCK(mp);
6051 	vn_free_marker(*mvp);
6052 	*mvp = NULL;
6053 }
6054 
6055 /*
6056  * These are helper functions for filesystems to traverse their
6057  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
6058  */
6059 static void
6060 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
6061 {
6062 
6063 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6064 
6065 	MNT_ILOCK(mp);
6066 	MNT_REL(mp);
6067 	MNT_IUNLOCK(mp);
6068 	vn_free_marker(*mvp);
6069 	*mvp = NULL;
6070 }
6071 
6072 /*
6073  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6074  * conventional lock order during mnt_vnode_next_active iteration.
6075  *
6076  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6077  * The list lock is dropped and reacquired.  On success, both locks are held.
6078  * On failure, the mount vnode list lock is held but the vnode interlock is
6079  * not, and the procedure may have yielded.
6080  */
6081 static bool
6082 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp,
6083     struct vnode *vp)
6084 {
6085 	const struct vnode *tmp;
6086 	bool held, ret;
6087 
6088 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6089 	    TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp,
6090 	    ("%s: bad marker", __func__));
6091 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6092 	    ("%s: inappropriate vnode", __func__));
6093 	ASSERT_VI_UNLOCKED(vp, __func__);
6094 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6095 
6096 	ret = false;
6097 
6098 	TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist);
6099 	TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist);
6100 
6101 	/*
6102 	 * Use a hold to prevent vp from disappearing while the mount vnode
6103 	 * list lock is dropped and reacquired.  Normally a hold would be
6104 	 * acquired with vhold(), but that might try to acquire the vnode
6105 	 * interlock, which would be a LOR with the mount vnode list lock.
6106 	 */
6107 	held = refcount_acquire_if_not_zero(&vp->v_holdcnt);
6108 	mtx_unlock(&mp->mnt_listmtx);
6109 	if (!held)
6110 		goto abort;
6111 	VI_LOCK(vp);
6112 	if (!refcount_release_if_not_last(&vp->v_holdcnt)) {
6113 		vdropl(vp);
6114 		goto abort;
6115 	}
6116 	mtx_lock(&mp->mnt_listmtx);
6117 
6118 	/*
6119 	 * Determine whether the vnode is still the next one after the marker,
6120 	 * excepting any other markers.  If the vnode has not been doomed by
6121 	 * vgone() then the hold should have ensured that it remained on the
6122 	 * active list.  If it has been doomed but is still on the active list,
6123 	 * don't abort, but rather skip over it (avoid spinning on doomed
6124 	 * vnodes).
6125 	 */
6126 	tmp = mvp;
6127 	do {
6128 		tmp = TAILQ_NEXT(tmp, v_actfreelist);
6129 	} while (tmp != NULL && tmp->v_type == VMARKER);
6130 	if (tmp != vp) {
6131 		mtx_unlock(&mp->mnt_listmtx);
6132 		VI_UNLOCK(vp);
6133 		goto abort;
6134 	}
6135 
6136 	ret = true;
6137 	goto out;
6138 abort:
6139 	maybe_yield();
6140 	mtx_lock(&mp->mnt_listmtx);
6141 out:
6142 	if (ret)
6143 		ASSERT_VI_LOCKED(vp, __func__);
6144 	else
6145 		ASSERT_VI_UNLOCKED(vp, __func__);
6146 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6147 	return (ret);
6148 }
6149 
6150 static struct vnode *
6151 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
6152 {
6153 	struct vnode *vp, *nvp;
6154 
6155 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6156 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6157 restart:
6158 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
6159 	while (vp != NULL) {
6160 		if (vp->v_type == VMARKER) {
6161 			vp = TAILQ_NEXT(vp, v_actfreelist);
6162 			continue;
6163 		}
6164 		/*
6165 		 * Try-lock because this is the wrong lock order.  If that does
6166 		 * not succeed, drop the mount vnode list lock and try to
6167 		 * reacquire it and the vnode interlock in the right order.
6168 		 */
6169 		if (!VI_TRYLOCK(vp) &&
6170 		    !mnt_vnode_next_active_relock(*mvp, mp, vp))
6171 			goto restart;
6172 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6173 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6174 		    ("alien vnode on the active list %p %p", vp, mp));
6175 		if (vp->v_mount == mp && !VN_IS_DOOMED(vp))
6176 			break;
6177 		nvp = TAILQ_NEXT(vp, v_actfreelist);
6178 		VI_UNLOCK(vp);
6179 		vp = nvp;
6180 	}
6181 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
6182 
6183 	/* Check if we are done */
6184 	if (vp == NULL) {
6185 		mtx_unlock(&mp->mnt_listmtx);
6186 		mnt_vnode_markerfree_active(mvp, mp);
6187 		return (NULL);
6188 	}
6189 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
6190 	mtx_unlock(&mp->mnt_listmtx);
6191 	ASSERT_VI_LOCKED(vp, "active iter");
6192 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
6193 	return (vp);
6194 }
6195 
6196 struct vnode *
6197 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
6198 {
6199 
6200 	if (should_yield())
6201 		kern_yield(PRI_USER);
6202 	mtx_lock(&mp->mnt_listmtx);
6203 	return (mnt_vnode_next_active(mvp, mp));
6204 }
6205 
6206 struct vnode *
6207 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
6208 {
6209 	struct vnode *vp;
6210 
6211 	*mvp = vn_alloc_marker(mp);
6212 	MNT_ILOCK(mp);
6213 	MNT_REF(mp);
6214 	MNT_IUNLOCK(mp);
6215 
6216 	mtx_lock(&mp->mnt_listmtx);
6217 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
6218 	if (vp == NULL) {
6219 		mtx_unlock(&mp->mnt_listmtx);
6220 		mnt_vnode_markerfree_active(mvp, mp);
6221 		return (NULL);
6222 	}
6223 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
6224 	return (mnt_vnode_next_active(mvp, mp));
6225 }
6226 
6227 void
6228 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
6229 {
6230 
6231 	if (*mvp == NULL)
6232 		return;
6233 
6234 	mtx_lock(&mp->mnt_listmtx);
6235 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
6236 	mtx_unlock(&mp->mnt_listmtx);
6237 	mnt_vnode_markerfree_active(mvp, mp);
6238 }
6239