xref: /freebsd/sys/kern/vfs_subr.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/event.h>
54 #include <sys/eventhandler.h>
55 #include <sys/extattr.h>
56 #include <sys/file.h>
57 #include <sys/fcntl.h>
58 #include <sys/jail.h>
59 #include <sys/kdb.h>
60 #include <sys/kernel.h>
61 #include <sys/kthread.h>
62 #include <sys/lockf.h>
63 #include <sys/malloc.h>
64 #include <sys/mount.h>
65 #include <sys/namei.h>
66 #include <sys/priv.h>
67 #include <sys/reboot.h>
68 #include <sys/sched.h>
69 #include <sys/sleepqueue.h>
70 #include <sys/stat.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 
76 #include <machine/stdarg.h>
77 
78 #include <security/mac/mac_framework.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_kern.h>
87 #include <vm/uma.h>
88 
89 #ifdef DDB
90 #include <ddb/ddb.h>
91 #endif
92 
93 #define	WI_MPSAFEQ	0
94 #define	WI_GIANTQ	1
95 
96 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
97 
98 static void	delmntque(struct vnode *vp);
99 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
100 		    int slpflag, int slptimeo);
101 static void	syncer_shutdown(void *arg, int howto);
102 static int	vtryrecycle(struct vnode *vp);
103 static void	vbusy(struct vnode *vp);
104 static void	vinactive(struct vnode *, struct thread *);
105 static void	v_incr_usecount(struct vnode *);
106 static void	v_decr_usecount(struct vnode *);
107 static void	v_decr_useonly(struct vnode *);
108 static void	v_upgrade_usecount(struct vnode *);
109 static void	vfree(struct vnode *);
110 static void	vnlru_free(int);
111 static void	vgonel(struct vnode *);
112 static void	vfs_knllock(void *arg);
113 static void	vfs_knlunlock(void *arg);
114 static void	vfs_knl_assert_locked(void *arg);
115 static void	vfs_knl_assert_unlocked(void *arg);
116 static void	destroy_vpollinfo(struct vpollinfo *vi);
117 
118 /*
119  * Number of vnodes in existence.  Increased whenever getnewvnode()
120  * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
121  * vnode.
122  */
123 static unsigned long	numvnodes;
124 
125 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
126     "Number of vnodes in existence");
127 
128 /*
129  * Conversion tables for conversion from vnode types to inode formats
130  * and back.
131  */
132 enum vtype iftovt_tab[16] = {
133 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
134 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
135 };
136 int vttoif_tab[10] = {
137 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
138 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
139 };
140 
141 /*
142  * List of vnodes that are ready for recycling.
143  */
144 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
145 
146 /*
147  * Free vnode target.  Free vnodes may simply be files which have been stat'd
148  * but not read.  This is somewhat common, and a small cache of such files
149  * should be kept to avoid recreation costs.
150  */
151 static u_long wantfreevnodes;
152 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
153 /* Number of vnodes in the free list. */
154 static u_long freevnodes;
155 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0,
156     "Number of vnodes in the free list");
157 
158 static int vlru_allow_cache_src;
159 SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
160     &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
161 
162 /*
163  * Various variables used for debugging the new implementation of
164  * reassignbuf().
165  * XXX these are probably of (very) limited utility now.
166  */
167 static int reassignbufcalls;
168 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
169     "Number of calls to reassignbuf");
170 
171 /*
172  * Cache for the mount type id assigned to NFS.  This is used for
173  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
174  */
175 int	nfs_mount_type = -1;
176 
177 /* To keep more than one thread at a time from running vfs_getnewfsid */
178 static struct mtx mntid_mtx;
179 
180 /*
181  * Lock for any access to the following:
182  *	vnode_free_list
183  *	numvnodes
184  *	freevnodes
185  */
186 static struct mtx vnode_free_list_mtx;
187 
188 /* Publicly exported FS */
189 struct nfs_public nfs_pub;
190 
191 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
192 static uma_zone_t vnode_zone;
193 static uma_zone_t vnodepoll_zone;
194 
195 /*
196  * The workitem queue.
197  *
198  * It is useful to delay writes of file data and filesystem metadata
199  * for tens of seconds so that quickly created and deleted files need
200  * not waste disk bandwidth being created and removed. To realize this,
201  * we append vnodes to a "workitem" queue. When running with a soft
202  * updates implementation, most pending metadata dependencies should
203  * not wait for more than a few seconds. Thus, mounted on block devices
204  * are delayed only about a half the time that file data is delayed.
205  * Similarly, directory updates are more critical, so are only delayed
206  * about a third the time that file data is delayed. Thus, there are
207  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
208  * one each second (driven off the filesystem syncer process). The
209  * syncer_delayno variable indicates the next queue that is to be processed.
210  * Items that need to be processed soon are placed in this queue:
211  *
212  *	syncer_workitem_pending[syncer_delayno]
213  *
214  * A delay of fifteen seconds is done by placing the request fifteen
215  * entries later in the queue:
216  *
217  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
218  *
219  */
220 static int syncer_delayno;
221 static long syncer_mask;
222 LIST_HEAD(synclist, bufobj);
223 static struct synclist *syncer_workitem_pending[2];
224 /*
225  * The sync_mtx protects:
226  *	bo->bo_synclist
227  *	sync_vnode_count
228  *	syncer_delayno
229  *	syncer_state
230  *	syncer_workitem_pending
231  *	syncer_worklist_len
232  *	rushjob
233  */
234 static struct mtx sync_mtx;
235 static struct cv sync_wakeup;
236 
237 #define SYNCER_MAXDELAY		32
238 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
239 static int syncdelay = 30;		/* max time to delay syncing data */
240 static int filedelay = 30;		/* time to delay syncing files */
241 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
242     "Time to delay syncing files (in seconds)");
243 static int dirdelay = 29;		/* time to delay syncing directories */
244 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
245     "Time to delay syncing directories (in seconds)");
246 static int metadelay = 28;		/* time to delay syncing metadata */
247 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
248     "Time to delay syncing metadata (in seconds)");
249 static int rushjob;		/* number of slots to run ASAP */
250 static int stat_rush_requests;	/* number of times I/O speeded up */
251 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
252     "Number of times I/O speeded up (rush requests)");
253 
254 /*
255  * When shutting down the syncer, run it at four times normal speed.
256  */
257 #define SYNCER_SHUTDOWN_SPEEDUP		4
258 static int sync_vnode_count;
259 static int syncer_worklist_len;
260 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
261     syncer_state;
262 
263 /*
264  * Number of vnodes we want to exist at any one time.  This is mostly used
265  * to size hash tables in vnode-related code.  It is normally not used in
266  * getnewvnode(), as wantfreevnodes is normally nonzero.)
267  *
268  * XXX desiredvnodes is historical cruft and should not exist.
269  */
270 int desiredvnodes;
271 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
272     &desiredvnodes, 0, "Maximum number of vnodes");
273 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
274     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
275 static int vnlru_nowhere;
276 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
277     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
278 
279 /*
280  * Macros to control when a vnode is freed and recycled.  All require
281  * the vnode interlock.
282  */
283 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
284 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
285 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
286 
287 
288 /*
289  * Initialize the vnode management data structures.
290  *
291  * Reevaluate the following cap on the number of vnodes after the physical
292  * memory size exceeds 512GB.  In the limit, as the physical memory size
293  * grows, the ratio of physical pages to vnodes approaches sixteen to one.
294  */
295 #ifndef	MAXVNODES_MAX
296 #define	MAXVNODES_MAX	(512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16))
297 #endif
298 static void
299 vntblinit(void *dummy __unused)
300 {
301 	int physvnodes, virtvnodes;
302 
303 	/*
304 	 * Desiredvnodes is a function of the physical memory size and the
305 	 * kernel's heap size.  Generally speaking, it scales with the
306 	 * physical memory size.  The ratio of desiredvnodes to physical pages
307 	 * is one to four until desiredvnodes exceeds 98,304.  Thereafter, the
308 	 * marginal ratio of desiredvnodes to physical pages is one to
309 	 * sixteen.  However, desiredvnodes is limited by the kernel's heap
310 	 * size.  The memory required by desiredvnodes vnodes and vm objects
311 	 * may not exceed one seventh of the kernel's heap size.
312 	 */
313 	physvnodes = maxproc + cnt.v_page_count / 16 + 3 * min(98304 * 4,
314 	    cnt.v_page_count) / 16;
315 	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
316 	    sizeof(struct vnode)));
317 	desiredvnodes = min(physvnodes, virtvnodes);
318 	if (desiredvnodes > MAXVNODES_MAX) {
319 		if (bootverbose)
320 			printf("Reducing kern.maxvnodes %d -> %d\n",
321 			    desiredvnodes, MAXVNODES_MAX);
322 		desiredvnodes = MAXVNODES_MAX;
323 	}
324 	wantfreevnodes = desiredvnodes / 4;
325 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
326 	TAILQ_INIT(&vnode_free_list);
327 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
328 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
329 	    NULL, NULL, UMA_ALIGN_PTR, 0);
330 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
331 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
332 	/*
333 	 * Initialize the filesystem syncer.
334 	 */
335 	syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
336 	    &syncer_mask);
337 	syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
338 	    &syncer_mask);
339 	syncer_maxdelay = syncer_mask + 1;
340 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
341 	cv_init(&sync_wakeup, "syncer");
342 }
343 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
344 
345 
346 /*
347  * Mark a mount point as busy. Used to synchronize access and to delay
348  * unmounting. Eventually, mountlist_mtx is not released on failure.
349  */
350 int
351 vfs_busy(struct mount *mp, int flags)
352 {
353 
354 	MPASS((flags & ~MBF_MASK) == 0);
355 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
356 
357 	MNT_ILOCK(mp);
358 	MNT_REF(mp);
359 	/*
360 	 * If mount point is currenly being unmounted, sleep until the
361 	 * mount point fate is decided.  If thread doing the unmounting fails,
362 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
363 	 * that this mount point has survived the unmount attempt and vfs_busy
364 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
365 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
366 	 * about to be really destroyed.  vfs_busy needs to release its
367 	 * reference on the mount point in this case and return with ENOENT,
368 	 * telling the caller that mount mount it tried to busy is no longer
369 	 * valid.
370 	 */
371 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
372 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
373 			MNT_REL(mp);
374 			MNT_IUNLOCK(mp);
375 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
376 			    __func__);
377 			return (ENOENT);
378 		}
379 		if (flags & MBF_MNTLSTLOCK)
380 			mtx_unlock(&mountlist_mtx);
381 		mp->mnt_kern_flag |= MNTK_MWAIT;
382 		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
383 		if (flags & MBF_MNTLSTLOCK)
384 			mtx_lock(&mountlist_mtx);
385 	}
386 	if (flags & MBF_MNTLSTLOCK)
387 		mtx_unlock(&mountlist_mtx);
388 	mp->mnt_lockref++;
389 	MNT_IUNLOCK(mp);
390 	return (0);
391 }
392 
393 /*
394  * Free a busy filesystem.
395  */
396 void
397 vfs_unbusy(struct mount *mp)
398 {
399 
400 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
401 	MNT_ILOCK(mp);
402 	MNT_REL(mp);
403 	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
404 	mp->mnt_lockref--;
405 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
406 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
407 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
408 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
409 		wakeup(&mp->mnt_lockref);
410 	}
411 	MNT_IUNLOCK(mp);
412 }
413 
414 /*
415  * Lookup a mount point by filesystem identifier.
416  */
417 struct mount *
418 vfs_getvfs(fsid_t *fsid)
419 {
420 	struct mount *mp;
421 
422 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
423 	mtx_lock(&mountlist_mtx);
424 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
425 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
426 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
427 			vfs_ref(mp);
428 			mtx_unlock(&mountlist_mtx);
429 			return (mp);
430 		}
431 	}
432 	mtx_unlock(&mountlist_mtx);
433 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
434 	return ((struct mount *) 0);
435 }
436 
437 /*
438  * Lookup a mount point by filesystem identifier, busying it before
439  * returning.
440  */
441 struct mount *
442 vfs_busyfs(fsid_t *fsid)
443 {
444 	struct mount *mp;
445 	int error;
446 
447 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
448 	mtx_lock(&mountlist_mtx);
449 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
450 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
451 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
452 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
453 			if (error) {
454 				mtx_unlock(&mountlist_mtx);
455 				return (NULL);
456 			}
457 			return (mp);
458 		}
459 	}
460 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
461 	mtx_unlock(&mountlist_mtx);
462 	return ((struct mount *) 0);
463 }
464 
465 /*
466  * Check if a user can access privileged mount options.
467  */
468 int
469 vfs_suser(struct mount *mp, struct thread *td)
470 {
471 	int error;
472 
473 	/*
474 	 * If the thread is jailed, but this is not a jail-friendly file
475 	 * system, deny immediately.
476 	 */
477 	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
478 		return (EPERM);
479 
480 	/*
481 	 * If the file system was mounted outside the jail of the calling
482 	 * thread, deny immediately.
483 	 */
484 	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
485 		return (EPERM);
486 
487 	/*
488 	 * If file system supports delegated administration, we don't check
489 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
490 	 * by the file system itself.
491 	 * If this is not the user that did original mount, we check for
492 	 * the PRIV_VFS_MOUNT_OWNER privilege.
493 	 */
494 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
495 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
496 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
497 			return (error);
498 	}
499 	return (0);
500 }
501 
502 /*
503  * Get a new unique fsid.  Try to make its val[0] unique, since this value
504  * will be used to create fake device numbers for stat().  Also try (but
505  * not so hard) make its val[0] unique mod 2^16, since some emulators only
506  * support 16-bit device numbers.  We end up with unique val[0]'s for the
507  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
508  *
509  * Keep in mind that several mounts may be running in parallel.  Starting
510  * the search one past where the previous search terminated is both a
511  * micro-optimization and a defense against returning the same fsid to
512  * different mounts.
513  */
514 void
515 vfs_getnewfsid(struct mount *mp)
516 {
517 	static uint16_t mntid_base;
518 	struct mount *nmp;
519 	fsid_t tfsid;
520 	int mtype;
521 
522 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
523 	mtx_lock(&mntid_mtx);
524 	mtype = mp->mnt_vfc->vfc_typenum;
525 	tfsid.val[1] = mtype;
526 	mtype = (mtype & 0xFF) << 24;
527 	for (;;) {
528 		tfsid.val[0] = makedev(255,
529 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
530 		mntid_base++;
531 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
532 			break;
533 		vfs_rel(nmp);
534 	}
535 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
536 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
537 	mtx_unlock(&mntid_mtx);
538 }
539 
540 /*
541  * Knob to control the precision of file timestamps:
542  *
543  *   0 = seconds only; nanoseconds zeroed.
544  *   1 = seconds and nanoseconds, accurate within 1/HZ.
545  *   2 = seconds and nanoseconds, truncated to microseconds.
546  * >=3 = seconds and nanoseconds, maximum precision.
547  */
548 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
549 
550 static int timestamp_precision = TSP_SEC;
551 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
552     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
553     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, "
554     "3+: sec + ns (max. precision))");
555 
556 /*
557  * Get a current timestamp.
558  */
559 void
560 vfs_timestamp(struct timespec *tsp)
561 {
562 	struct timeval tv;
563 
564 	switch (timestamp_precision) {
565 	case TSP_SEC:
566 		tsp->tv_sec = time_second;
567 		tsp->tv_nsec = 0;
568 		break;
569 	case TSP_HZ:
570 		getnanotime(tsp);
571 		break;
572 	case TSP_USEC:
573 		microtime(&tv);
574 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
575 		break;
576 	case TSP_NSEC:
577 	default:
578 		nanotime(tsp);
579 		break;
580 	}
581 }
582 
583 /*
584  * Set vnode attributes to VNOVAL
585  */
586 void
587 vattr_null(struct vattr *vap)
588 {
589 
590 	vap->va_type = VNON;
591 	vap->va_size = VNOVAL;
592 	vap->va_bytes = VNOVAL;
593 	vap->va_mode = VNOVAL;
594 	vap->va_nlink = VNOVAL;
595 	vap->va_uid = VNOVAL;
596 	vap->va_gid = VNOVAL;
597 	vap->va_fsid = VNOVAL;
598 	vap->va_fileid = VNOVAL;
599 	vap->va_blocksize = VNOVAL;
600 	vap->va_rdev = VNOVAL;
601 	vap->va_atime.tv_sec = VNOVAL;
602 	vap->va_atime.tv_nsec = VNOVAL;
603 	vap->va_mtime.tv_sec = VNOVAL;
604 	vap->va_mtime.tv_nsec = VNOVAL;
605 	vap->va_ctime.tv_sec = VNOVAL;
606 	vap->va_ctime.tv_nsec = VNOVAL;
607 	vap->va_birthtime.tv_sec = VNOVAL;
608 	vap->va_birthtime.tv_nsec = VNOVAL;
609 	vap->va_flags = VNOVAL;
610 	vap->va_gen = VNOVAL;
611 	vap->va_vaflags = 0;
612 }
613 
614 /*
615  * This routine is called when we have too many vnodes.  It attempts
616  * to free <count> vnodes and will potentially free vnodes that still
617  * have VM backing store (VM backing store is typically the cause
618  * of a vnode blowout so we want to do this).  Therefore, this operation
619  * is not considered cheap.
620  *
621  * A number of conditions may prevent a vnode from being reclaimed.
622  * the buffer cache may have references on the vnode, a directory
623  * vnode may still have references due to the namei cache representing
624  * underlying files, or the vnode may be in active use.   It is not
625  * desireable to reuse such vnodes.  These conditions may cause the
626  * number of vnodes to reach some minimum value regardless of what
627  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
628  */
629 static int
630 vlrureclaim(struct mount *mp)
631 {
632 	struct vnode *vp;
633 	int done;
634 	int trigger;
635 	int usevnodes;
636 	int count;
637 
638 	/*
639 	 * Calculate the trigger point, don't allow user
640 	 * screwups to blow us up.   This prevents us from
641 	 * recycling vnodes with lots of resident pages.  We
642 	 * aren't trying to free memory, we are trying to
643 	 * free vnodes.
644 	 */
645 	usevnodes = desiredvnodes;
646 	if (usevnodes <= 0)
647 		usevnodes = 1;
648 	trigger = cnt.v_page_count * 2 / usevnodes;
649 	done = 0;
650 	vn_start_write(NULL, &mp, V_WAIT);
651 	MNT_ILOCK(mp);
652 	count = mp->mnt_nvnodelistsize / 10 + 1;
653 	while (count != 0) {
654 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
655 		while (vp != NULL && vp->v_type == VMARKER)
656 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
657 		if (vp == NULL)
658 			break;
659 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
660 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
661 		--count;
662 		if (!VI_TRYLOCK(vp))
663 			goto next_iter;
664 		/*
665 		 * If it's been deconstructed already, it's still
666 		 * referenced, or it exceeds the trigger, skip it.
667 		 */
668 		if (vp->v_usecount ||
669 		    (!vlru_allow_cache_src &&
670 			!LIST_EMPTY(&(vp)->v_cache_src)) ||
671 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
672 		    vp->v_object->resident_page_count > trigger)) {
673 			VI_UNLOCK(vp);
674 			goto next_iter;
675 		}
676 		MNT_IUNLOCK(mp);
677 		vholdl(vp);
678 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
679 			vdrop(vp);
680 			goto next_iter_mntunlocked;
681 		}
682 		VI_LOCK(vp);
683 		/*
684 		 * v_usecount may have been bumped after VOP_LOCK() dropped
685 		 * the vnode interlock and before it was locked again.
686 		 *
687 		 * It is not necessary to recheck VI_DOOMED because it can
688 		 * only be set by another thread that holds both the vnode
689 		 * lock and vnode interlock.  If another thread has the
690 		 * vnode lock before we get to VOP_LOCK() and obtains the
691 		 * vnode interlock after VOP_LOCK() drops the vnode
692 		 * interlock, the other thread will be unable to drop the
693 		 * vnode lock before our VOP_LOCK() call fails.
694 		 */
695 		if (vp->v_usecount ||
696 		    (!vlru_allow_cache_src &&
697 			!LIST_EMPTY(&(vp)->v_cache_src)) ||
698 		    (vp->v_object != NULL &&
699 		    vp->v_object->resident_page_count > trigger)) {
700 			VOP_UNLOCK(vp, LK_INTERLOCK);
701 			goto next_iter_mntunlocked;
702 		}
703 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
704 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
705 		vgonel(vp);
706 		VOP_UNLOCK(vp, 0);
707 		vdropl(vp);
708 		done++;
709 next_iter_mntunlocked:
710 		if (!should_yield())
711 			goto relock_mnt;
712 		goto yield;
713 next_iter:
714 		if (!should_yield())
715 			continue;
716 		MNT_IUNLOCK(mp);
717 yield:
718 		kern_yield(-1);
719 relock_mnt:
720 		MNT_ILOCK(mp);
721 	}
722 	MNT_IUNLOCK(mp);
723 	vn_finished_write(mp);
724 	return done;
725 }
726 
727 /*
728  * Attempt to keep the free list at wantfreevnodes length.
729  */
730 static void
731 vnlru_free(int count)
732 {
733 	struct vnode *vp;
734 	int vfslocked;
735 
736 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
737 	for (; count > 0; count--) {
738 		vp = TAILQ_FIRST(&vnode_free_list);
739 		/*
740 		 * The list can be modified while the free_list_mtx
741 		 * has been dropped and vp could be NULL here.
742 		 */
743 		if (!vp)
744 			break;
745 		VNASSERT(vp->v_op != NULL, vp,
746 		    ("vnlru_free: vnode already reclaimed."));
747 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
748 		/*
749 		 * Don't recycle if we can't get the interlock.
750 		 */
751 		if (!VI_TRYLOCK(vp)) {
752 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
753 			continue;
754 		}
755 		VNASSERT(VCANRECYCLE(vp), vp,
756 		    ("vp inconsistent on freelist"));
757 		freevnodes--;
758 		vp->v_iflag &= ~VI_FREE;
759 		vholdl(vp);
760 		mtx_unlock(&vnode_free_list_mtx);
761 		VI_UNLOCK(vp);
762 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
763 		vtryrecycle(vp);
764 		VFS_UNLOCK_GIANT(vfslocked);
765 		/*
766 		 * If the recycled succeeded this vdrop will actually free
767 		 * the vnode.  If not it will simply place it back on
768 		 * the free list.
769 		 */
770 		vdrop(vp);
771 		mtx_lock(&vnode_free_list_mtx);
772 	}
773 }
774 /*
775  * Attempt to recycle vnodes in a context that is always safe to block.
776  * Calling vlrurecycle() from the bowels of filesystem code has some
777  * interesting deadlock problems.
778  */
779 static struct proc *vnlruproc;
780 static int vnlruproc_sig;
781 
782 static void
783 vnlru_proc(void)
784 {
785 	struct mount *mp, *nmp;
786 	int done, vfslocked;
787 	struct proc *p = vnlruproc;
788 
789 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
790 	    SHUTDOWN_PRI_FIRST);
791 
792 	for (;;) {
793 		kproc_suspend_check(p);
794 		mtx_lock(&vnode_free_list_mtx);
795 		if (freevnodes > wantfreevnodes)
796 			vnlru_free(freevnodes - wantfreevnodes);
797 		if (numvnodes <= desiredvnodes * 9 / 10) {
798 			vnlruproc_sig = 0;
799 			wakeup(&vnlruproc_sig);
800 			msleep(vnlruproc, &vnode_free_list_mtx,
801 			    PVFS|PDROP, "vlruwt", hz);
802 			continue;
803 		}
804 		mtx_unlock(&vnode_free_list_mtx);
805 		done = 0;
806 		mtx_lock(&mountlist_mtx);
807 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
808 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
809 				nmp = TAILQ_NEXT(mp, mnt_list);
810 				continue;
811 			}
812 			vfslocked = VFS_LOCK_GIANT(mp);
813 			done += vlrureclaim(mp);
814 			VFS_UNLOCK_GIANT(vfslocked);
815 			mtx_lock(&mountlist_mtx);
816 			nmp = TAILQ_NEXT(mp, mnt_list);
817 			vfs_unbusy(mp);
818 		}
819 		mtx_unlock(&mountlist_mtx);
820 		if (done == 0) {
821 #if 0
822 			/* These messages are temporary debugging aids */
823 			if (vnlru_nowhere < 5)
824 				printf("vnlru process getting nowhere..\n");
825 			else if (vnlru_nowhere == 5)
826 				printf("vnlru process messages stopped.\n");
827 #endif
828 			vnlru_nowhere++;
829 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
830 		} else
831 			kern_yield(-1);
832 	}
833 }
834 
835 static struct kproc_desc vnlru_kp = {
836 	"vnlru",
837 	vnlru_proc,
838 	&vnlruproc
839 };
840 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
841     &vnlru_kp);
842 
843 /*
844  * Routines having to do with the management of the vnode table.
845  */
846 
847 void
848 vdestroy(struct vnode *vp)
849 {
850 	struct bufobj *bo;
851 
852 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
853 	mtx_lock(&vnode_free_list_mtx);
854 	numvnodes--;
855 	mtx_unlock(&vnode_free_list_mtx);
856 	bo = &vp->v_bufobj;
857 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
858 	    ("cleaned vnode still on the free list."));
859 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
860 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
861 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
862 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
863 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
864 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
865 	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
866 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
867 	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
868 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
869 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
870 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
871 	VI_UNLOCK(vp);
872 #ifdef MAC
873 	mac_vnode_destroy(vp);
874 #endif
875 	if (vp->v_pollinfo != NULL)
876 		destroy_vpollinfo(vp->v_pollinfo);
877 #ifdef INVARIANTS
878 	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
879 	vp->v_op = NULL;
880 #endif
881 	lockdestroy(vp->v_vnlock);
882 	mtx_destroy(&vp->v_interlock);
883 	mtx_destroy(BO_MTX(bo));
884 	uma_zfree(vnode_zone, vp);
885 }
886 
887 /*
888  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
889  * before we actually vgone().  This function must be called with the vnode
890  * held to prevent the vnode from being returned to the free list midway
891  * through vgone().
892  */
893 static int
894 vtryrecycle(struct vnode *vp)
895 {
896 	struct mount *vnmp;
897 
898 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
899 	VNASSERT(vp->v_holdcnt, vp,
900 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
901 	/*
902 	 * This vnode may found and locked via some other list, if so we
903 	 * can't recycle it yet.
904 	 */
905 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
906 		CTR2(KTR_VFS,
907 		    "%s: impossible to recycle, vp %p lock is already held",
908 		    __func__, vp);
909 		return (EWOULDBLOCK);
910 	}
911 	/*
912 	 * Don't recycle if its filesystem is being suspended.
913 	 */
914 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
915 		VOP_UNLOCK(vp, 0);
916 		CTR2(KTR_VFS,
917 		    "%s: impossible to recycle, cannot start the write for %p",
918 		    __func__, vp);
919 		return (EBUSY);
920 	}
921 	/*
922 	 * If we got this far, we need to acquire the interlock and see if
923 	 * anyone picked up this vnode from another list.  If not, we will
924 	 * mark it with DOOMED via vgonel() so that anyone who does find it
925 	 * will skip over it.
926 	 */
927 	VI_LOCK(vp);
928 	if (vp->v_usecount) {
929 		VOP_UNLOCK(vp, LK_INTERLOCK);
930 		vn_finished_write(vnmp);
931 		CTR2(KTR_VFS,
932 		    "%s: impossible to recycle, %p is already referenced",
933 		    __func__, vp);
934 		return (EBUSY);
935 	}
936 	if ((vp->v_iflag & VI_DOOMED) == 0)
937 		vgonel(vp);
938 	VOP_UNLOCK(vp, LK_INTERLOCK);
939 	vn_finished_write(vnmp);
940 	return (0);
941 }
942 
943 /*
944  * Return the next vnode from the free list.
945  */
946 int
947 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
948     struct vnode **vpp)
949 {
950 	struct vnode *vp = NULL;
951 	struct bufobj *bo;
952 
953 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
954 	mtx_lock(&vnode_free_list_mtx);
955 	/*
956 	 * Lend our context to reclaim vnodes if they've exceeded the max.
957 	 */
958 	if (freevnodes > wantfreevnodes)
959 		vnlru_free(1);
960 	/*
961 	 * Wait for available vnodes.
962 	 */
963 	if (numvnodes > desiredvnodes) {
964 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
965 			/*
966 			 * File system is beeing suspended, we cannot risk a
967 			 * deadlock here, so allocate new vnode anyway.
968 			 */
969 			if (freevnodes > wantfreevnodes)
970 				vnlru_free(freevnodes - wantfreevnodes);
971 			goto alloc;
972 		}
973 		if (vnlruproc_sig == 0) {
974 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
975 			wakeup(vnlruproc);
976 		}
977 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
978 		    "vlruwk", hz);
979 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
980 		if (numvnodes > desiredvnodes) {
981 			mtx_unlock(&vnode_free_list_mtx);
982 			return (ENFILE);
983 		}
984 #endif
985 	}
986 alloc:
987 	numvnodes++;
988 	mtx_unlock(&vnode_free_list_mtx);
989 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
990 	/*
991 	 * Setup locks.
992 	 */
993 	vp->v_vnlock = &vp->v_lock;
994 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
995 	/*
996 	 * By default, don't allow shared locks unless filesystems
997 	 * opt-in.
998 	 */
999 	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
1000 	/*
1001 	 * Initialize bufobj.
1002 	 */
1003 	bo = &vp->v_bufobj;
1004 	bo->__bo_vnode = vp;
1005 	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
1006 	bo->bo_ops = &buf_ops_bio;
1007 	bo->bo_private = vp;
1008 	TAILQ_INIT(&bo->bo_clean.bv_hd);
1009 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
1010 	/*
1011 	 * Initialize namecache.
1012 	 */
1013 	LIST_INIT(&vp->v_cache_src);
1014 	TAILQ_INIT(&vp->v_cache_dst);
1015 	/*
1016 	 * Finalize various vnode identity bits.
1017 	 */
1018 	vp->v_type = VNON;
1019 	vp->v_tag = tag;
1020 	vp->v_op = vops;
1021 	v_incr_usecount(vp);
1022 	vp->v_data = 0;
1023 #ifdef MAC
1024 	mac_vnode_init(vp);
1025 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1026 		mac_vnode_associate_singlelabel(mp, vp);
1027 	else if (mp == NULL && vops != &dead_vnodeops)
1028 		printf("NULL mp in getnewvnode()\n");
1029 #endif
1030 	if (mp != NULL) {
1031 		bo->bo_bsize = mp->mnt_stat.f_iosize;
1032 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1033 			vp->v_vflag |= VV_NOKNOTE;
1034 	}
1035 
1036 	*vpp = vp;
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Delete from old mount point vnode list, if on one.
1042  */
1043 static void
1044 delmntque(struct vnode *vp)
1045 {
1046 	struct mount *mp;
1047 
1048 	mp = vp->v_mount;
1049 	if (mp == NULL)
1050 		return;
1051 	MNT_ILOCK(mp);
1052 	vp->v_mount = NULL;
1053 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1054 		("bad mount point vnode list size"));
1055 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1056 	mp->mnt_nvnodelistsize--;
1057 	MNT_REL(mp);
1058 	MNT_IUNLOCK(mp);
1059 }
1060 
1061 static void
1062 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1063 {
1064 
1065 	vp->v_data = NULL;
1066 	vp->v_op = &dead_vnodeops;
1067 	/* XXX non mp-safe fs may still call insmntque with vnode
1068 	   unlocked */
1069 	if (!VOP_ISLOCKED(vp))
1070 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1071 	vgone(vp);
1072 	vput(vp);
1073 }
1074 
1075 /*
1076  * Insert into list of vnodes for the new mount point, if available.
1077  */
1078 int
1079 insmntque1(struct vnode *vp, struct mount *mp,
1080 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1081 {
1082 	int locked;
1083 
1084 	KASSERT(vp->v_mount == NULL,
1085 		("insmntque: vnode already on per mount vnode list"));
1086 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1087 #ifdef DEBUG_VFS_LOCKS
1088 	if (!VFS_NEEDSGIANT(mp))
1089 		ASSERT_VOP_ELOCKED(vp,
1090 		    "insmntque: mp-safe fs and non-locked vp");
1091 #endif
1092 	MNT_ILOCK(mp);
1093 	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1094 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1095 	     mp->mnt_nvnodelistsize == 0)) {
1096 		locked = VOP_ISLOCKED(vp);
1097 		if (!locked || (locked == LK_EXCLUSIVE &&
1098 		     (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1099 			MNT_IUNLOCK(mp);
1100 			if (dtr != NULL)
1101 				dtr(vp, dtr_arg);
1102 			return (EBUSY);
1103 		}
1104 	}
1105 	vp->v_mount = mp;
1106 	MNT_REF(mp);
1107 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1108 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1109 		("neg mount point vnode list size"));
1110 	mp->mnt_nvnodelistsize++;
1111 	MNT_IUNLOCK(mp);
1112 	return (0);
1113 }
1114 
1115 int
1116 insmntque(struct vnode *vp, struct mount *mp)
1117 {
1118 
1119 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1120 }
1121 
1122 /*
1123  * Flush out and invalidate all buffers associated with a bufobj
1124  * Called with the underlying object locked.
1125  */
1126 int
1127 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1128 {
1129 	int error;
1130 
1131 	BO_LOCK(bo);
1132 	if (flags & V_SAVE) {
1133 		error = bufobj_wwait(bo, slpflag, slptimeo);
1134 		if (error) {
1135 			BO_UNLOCK(bo);
1136 			return (error);
1137 		}
1138 		if (bo->bo_dirty.bv_cnt > 0) {
1139 			BO_UNLOCK(bo);
1140 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1141 				return (error);
1142 			/*
1143 			 * XXX We could save a lock/unlock if this was only
1144 			 * enabled under INVARIANTS
1145 			 */
1146 			BO_LOCK(bo);
1147 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1148 				panic("vinvalbuf: dirty bufs");
1149 		}
1150 	}
1151 	/*
1152 	 * If you alter this loop please notice that interlock is dropped and
1153 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1154 	 * no race conditions occur from this.
1155 	 */
1156 	do {
1157 		error = flushbuflist(&bo->bo_clean,
1158 		    flags, bo, slpflag, slptimeo);
1159 		if (error == 0)
1160 			error = flushbuflist(&bo->bo_dirty,
1161 			    flags, bo, slpflag, slptimeo);
1162 		if (error != 0 && error != EAGAIN) {
1163 			BO_UNLOCK(bo);
1164 			return (error);
1165 		}
1166 	} while (error != 0);
1167 
1168 	/*
1169 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1170 	 * have write I/O in-progress but if there is a VM object then the
1171 	 * VM object can also have read-I/O in-progress.
1172 	 */
1173 	do {
1174 		bufobj_wwait(bo, 0, 0);
1175 		BO_UNLOCK(bo);
1176 		if (bo->bo_object != NULL) {
1177 			VM_OBJECT_LOCK(bo->bo_object);
1178 			vm_object_pip_wait(bo->bo_object, "bovlbx");
1179 			VM_OBJECT_UNLOCK(bo->bo_object);
1180 		}
1181 		BO_LOCK(bo);
1182 	} while (bo->bo_numoutput > 0);
1183 	BO_UNLOCK(bo);
1184 
1185 	/*
1186 	 * Destroy the copy in the VM cache, too.
1187 	 */
1188 	if (bo->bo_object != NULL && (flags & (V_ALT | V_NORMAL)) == 0) {
1189 		VM_OBJECT_LOCK(bo->bo_object);
1190 		vm_object_page_remove(bo->bo_object, 0, 0,
1191 			(flags & V_SAVE) ? TRUE : FALSE);
1192 		VM_OBJECT_UNLOCK(bo->bo_object);
1193 	}
1194 
1195 #ifdef INVARIANTS
1196 	BO_LOCK(bo);
1197 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1198 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1199 		panic("vinvalbuf: flush failed");
1200 	BO_UNLOCK(bo);
1201 #endif
1202 	return (0);
1203 }
1204 
1205 /*
1206  * Flush out and invalidate all buffers associated with a vnode.
1207  * Called with the underlying object locked.
1208  */
1209 int
1210 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1211 {
1212 
1213 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1214 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1215 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1216 }
1217 
1218 /*
1219  * Flush out buffers on the specified list.
1220  *
1221  */
1222 static int
1223 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1224     int slptimeo)
1225 {
1226 	struct buf *bp, *nbp;
1227 	int retval, error;
1228 	daddr_t lblkno;
1229 	b_xflags_t xflags;
1230 
1231 	ASSERT_BO_LOCKED(bo);
1232 
1233 	retval = 0;
1234 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1235 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1236 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1237 			continue;
1238 		}
1239 		lblkno = 0;
1240 		xflags = 0;
1241 		if (nbp != NULL) {
1242 			lblkno = nbp->b_lblkno;
1243 			xflags = nbp->b_xflags &
1244 				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1245 		}
1246 		retval = EAGAIN;
1247 		error = BUF_TIMELOCK(bp,
1248 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1249 		    "flushbuf", slpflag, slptimeo);
1250 		if (error) {
1251 			BO_LOCK(bo);
1252 			return (error != ENOLCK ? error : EAGAIN);
1253 		}
1254 		KASSERT(bp->b_bufobj == bo,
1255 		    ("bp %p wrong b_bufobj %p should be %p",
1256 		    bp, bp->b_bufobj, bo));
1257 		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1258 			BUF_UNLOCK(bp);
1259 			BO_LOCK(bo);
1260 			return (EAGAIN);
1261 		}
1262 		/*
1263 		 * XXX Since there are no node locks for NFS, I
1264 		 * believe there is a slight chance that a delayed
1265 		 * write will occur while sleeping just above, so
1266 		 * check for it.
1267 		 */
1268 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1269 		    (flags & V_SAVE)) {
1270 			BO_LOCK(bo);
1271 			bremfree(bp);
1272 			BO_UNLOCK(bo);
1273 			bp->b_flags |= B_ASYNC;
1274 			bwrite(bp);
1275 			BO_LOCK(bo);
1276 			return (EAGAIN);	/* XXX: why not loop ? */
1277 		}
1278 		BO_LOCK(bo);
1279 		bremfree(bp);
1280 		BO_UNLOCK(bo);
1281 		bp->b_flags |= (B_INVAL | B_RELBUF);
1282 		bp->b_flags &= ~B_ASYNC;
1283 		brelse(bp);
1284 		BO_LOCK(bo);
1285 		if (nbp != NULL &&
1286 		    (nbp->b_bufobj != bo ||
1287 		     nbp->b_lblkno != lblkno ||
1288 		     (nbp->b_xflags &
1289 		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1290 			break;			/* nbp invalid */
1291 	}
1292 	return (retval);
1293 }
1294 
1295 /*
1296  * Truncate a file's buffer and pages to a specified length.  This
1297  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1298  * sync activity.
1299  */
1300 int
1301 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1302     off_t length, int blksize)
1303 {
1304 	struct buf *bp, *nbp;
1305 	int anyfreed;
1306 	int trunclbn;
1307 	struct bufobj *bo;
1308 
1309 	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1310 	    vp, cred, blksize, (uintmax_t)length);
1311 
1312 	/*
1313 	 * Round up to the *next* lbn.
1314 	 */
1315 	trunclbn = (length + blksize - 1) / blksize;
1316 
1317 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1318 restart:
1319 	bo = &vp->v_bufobj;
1320 	BO_LOCK(bo);
1321 	anyfreed = 1;
1322 	for (;anyfreed;) {
1323 		anyfreed = 0;
1324 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1325 			if (bp->b_lblkno < trunclbn)
1326 				continue;
1327 			if (BUF_LOCK(bp,
1328 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1329 			    BO_MTX(bo)) == ENOLCK)
1330 				goto restart;
1331 
1332 			BO_LOCK(bo);
1333 			bremfree(bp);
1334 			BO_UNLOCK(bo);
1335 			bp->b_flags |= (B_INVAL | B_RELBUF);
1336 			bp->b_flags &= ~B_ASYNC;
1337 			brelse(bp);
1338 			anyfreed = 1;
1339 
1340 			BO_LOCK(bo);
1341 			if (nbp != NULL &&
1342 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1343 			    (nbp->b_vp != vp) ||
1344 			    (nbp->b_flags & B_DELWRI))) {
1345 				BO_UNLOCK(bo);
1346 				goto restart;
1347 			}
1348 		}
1349 
1350 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1351 			if (bp->b_lblkno < trunclbn)
1352 				continue;
1353 			if (BUF_LOCK(bp,
1354 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1355 			    BO_MTX(bo)) == ENOLCK)
1356 				goto restart;
1357 			BO_LOCK(bo);
1358 			bremfree(bp);
1359 			BO_UNLOCK(bo);
1360 			bp->b_flags |= (B_INVAL | B_RELBUF);
1361 			bp->b_flags &= ~B_ASYNC;
1362 			brelse(bp);
1363 			anyfreed = 1;
1364 
1365 			BO_LOCK(bo);
1366 			if (nbp != NULL &&
1367 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1368 			    (nbp->b_vp != vp) ||
1369 			    (nbp->b_flags & B_DELWRI) == 0)) {
1370 				BO_UNLOCK(bo);
1371 				goto restart;
1372 			}
1373 		}
1374 	}
1375 
1376 	if (length > 0) {
1377 restartsync:
1378 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1379 			if (bp->b_lblkno > 0)
1380 				continue;
1381 			/*
1382 			 * Since we hold the vnode lock this should only
1383 			 * fail if we're racing with the buf daemon.
1384 			 */
1385 			if (BUF_LOCK(bp,
1386 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1387 			    BO_MTX(bo)) == ENOLCK) {
1388 				goto restart;
1389 			}
1390 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1391 			    ("buf(%p) on dirty queue without DELWRI", bp));
1392 
1393 			BO_LOCK(bo);
1394 			bremfree(bp);
1395 			BO_UNLOCK(bo);
1396 			bawrite(bp);
1397 			BO_LOCK(bo);
1398 			goto restartsync;
1399 		}
1400 	}
1401 
1402 	bufobj_wwait(bo, 0, 0);
1403 	BO_UNLOCK(bo);
1404 	vnode_pager_setsize(vp, length);
1405 
1406 	return (0);
1407 }
1408 
1409 /*
1410  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1411  *		 a vnode.
1412  *
1413  *	NOTE: We have to deal with the special case of a background bitmap
1414  *	buffer, a situation where two buffers will have the same logical
1415  *	block offset.  We want (1) only the foreground buffer to be accessed
1416  *	in a lookup and (2) must differentiate between the foreground and
1417  *	background buffer in the splay tree algorithm because the splay
1418  *	tree cannot normally handle multiple entities with the same 'index'.
1419  *	We accomplish this by adding differentiating flags to the splay tree's
1420  *	numerical domain.
1421  */
1422 static
1423 struct buf *
1424 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1425 {
1426 	struct buf dummy;
1427 	struct buf *lefttreemax, *righttreemin, *y;
1428 
1429 	if (root == NULL)
1430 		return (NULL);
1431 	lefttreemax = righttreemin = &dummy;
1432 	for (;;) {
1433 		if (lblkno < root->b_lblkno ||
1434 		    (lblkno == root->b_lblkno &&
1435 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1436 			if ((y = root->b_left) == NULL)
1437 				break;
1438 			if (lblkno < y->b_lblkno) {
1439 				/* Rotate right. */
1440 				root->b_left = y->b_right;
1441 				y->b_right = root;
1442 				root = y;
1443 				if ((y = root->b_left) == NULL)
1444 					break;
1445 			}
1446 			/* Link into the new root's right tree. */
1447 			righttreemin->b_left = root;
1448 			righttreemin = root;
1449 		} else if (lblkno > root->b_lblkno ||
1450 		    (lblkno == root->b_lblkno &&
1451 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1452 			if ((y = root->b_right) == NULL)
1453 				break;
1454 			if (lblkno > y->b_lblkno) {
1455 				/* Rotate left. */
1456 				root->b_right = y->b_left;
1457 				y->b_left = root;
1458 				root = y;
1459 				if ((y = root->b_right) == NULL)
1460 					break;
1461 			}
1462 			/* Link into the new root's left tree. */
1463 			lefttreemax->b_right = root;
1464 			lefttreemax = root;
1465 		} else {
1466 			break;
1467 		}
1468 		root = y;
1469 	}
1470 	/* Assemble the new root. */
1471 	lefttreemax->b_right = root->b_left;
1472 	righttreemin->b_left = root->b_right;
1473 	root->b_left = dummy.b_right;
1474 	root->b_right = dummy.b_left;
1475 	return (root);
1476 }
1477 
1478 static void
1479 buf_vlist_remove(struct buf *bp)
1480 {
1481 	struct buf *root;
1482 	struct bufv *bv;
1483 
1484 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1485 	ASSERT_BO_LOCKED(bp->b_bufobj);
1486 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1487 	    (BX_VNDIRTY|BX_VNCLEAN),
1488 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1489 	if (bp->b_xflags & BX_VNDIRTY)
1490 		bv = &bp->b_bufobj->bo_dirty;
1491 	else
1492 		bv = &bp->b_bufobj->bo_clean;
1493 	if (bp != bv->bv_root) {
1494 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1495 		KASSERT(root == bp, ("splay lookup failed in remove"));
1496 	}
1497 	if (bp->b_left == NULL) {
1498 		root = bp->b_right;
1499 	} else {
1500 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1501 		root->b_right = bp->b_right;
1502 	}
1503 	bv->bv_root = root;
1504 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1505 	bv->bv_cnt--;
1506 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1507 }
1508 
1509 /*
1510  * Add the buffer to the sorted clean or dirty block list using a
1511  * splay tree algorithm.
1512  *
1513  * NOTE: xflags is passed as a constant, optimizing this inline function!
1514  */
1515 static void
1516 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1517 {
1518 	struct buf *root;
1519 	struct bufv *bv;
1520 
1521 	ASSERT_BO_LOCKED(bo);
1522 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1523 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1524 	bp->b_xflags |= xflags;
1525 	if (xflags & BX_VNDIRTY)
1526 		bv = &bo->bo_dirty;
1527 	else
1528 		bv = &bo->bo_clean;
1529 
1530 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1531 	if (root == NULL) {
1532 		bp->b_left = NULL;
1533 		bp->b_right = NULL;
1534 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1535 	} else if (bp->b_lblkno < root->b_lblkno ||
1536 	    (bp->b_lblkno == root->b_lblkno &&
1537 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1538 		bp->b_left = root->b_left;
1539 		bp->b_right = root;
1540 		root->b_left = NULL;
1541 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1542 	} else {
1543 		bp->b_right = root->b_right;
1544 		bp->b_left = root;
1545 		root->b_right = NULL;
1546 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1547 	}
1548 	bv->bv_cnt++;
1549 	bv->bv_root = bp;
1550 }
1551 
1552 /*
1553  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1554  * shadow buffers used in background bitmap writes.
1555  *
1556  * This code isn't quite efficient as it could be because we are maintaining
1557  * two sorted lists and do not know which list the block resides in.
1558  *
1559  * During a "make buildworld" the desired buffer is found at one of
1560  * the roots more than 60% of the time.  Thus, checking both roots
1561  * before performing either splay eliminates unnecessary splays on the
1562  * first tree splayed.
1563  */
1564 struct buf *
1565 gbincore(struct bufobj *bo, daddr_t lblkno)
1566 {
1567 	struct buf *bp;
1568 
1569 	ASSERT_BO_LOCKED(bo);
1570 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1571 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1572 		return (bp);
1573 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1574 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1575 		return (bp);
1576 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1577 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1578 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1579 			return (bp);
1580 	}
1581 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1582 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1583 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1584 			return (bp);
1585 	}
1586 	return (NULL);
1587 }
1588 
1589 /*
1590  * Associate a buffer with a vnode.
1591  */
1592 void
1593 bgetvp(struct vnode *vp, struct buf *bp)
1594 {
1595 	struct bufobj *bo;
1596 
1597 	bo = &vp->v_bufobj;
1598 	ASSERT_BO_LOCKED(bo);
1599 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1600 
1601 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1602 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1603 	    ("bgetvp: bp already attached! %p", bp));
1604 
1605 	vhold(vp);
1606 	if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1607 		bp->b_flags |= B_NEEDSGIANT;
1608 	bp->b_vp = vp;
1609 	bp->b_bufobj = bo;
1610 	/*
1611 	 * Insert onto list for new vnode.
1612 	 */
1613 	buf_vlist_add(bp, bo, BX_VNCLEAN);
1614 }
1615 
1616 /*
1617  * Disassociate a buffer from a vnode.
1618  */
1619 void
1620 brelvp(struct buf *bp)
1621 {
1622 	struct bufobj *bo;
1623 	struct vnode *vp;
1624 
1625 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1626 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1627 
1628 	/*
1629 	 * Delete from old vnode list, if on one.
1630 	 */
1631 	vp = bp->b_vp;		/* XXX */
1632 	bo = bp->b_bufobj;
1633 	BO_LOCK(bo);
1634 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1635 		buf_vlist_remove(bp);
1636 	else
1637 		panic("brelvp: Buffer %p not on queue.", bp);
1638 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1639 		bo->bo_flag &= ~BO_ONWORKLST;
1640 		mtx_lock(&sync_mtx);
1641 		LIST_REMOVE(bo, bo_synclist);
1642 		syncer_worklist_len--;
1643 		mtx_unlock(&sync_mtx);
1644 	}
1645 	bp->b_flags &= ~B_NEEDSGIANT;
1646 	bp->b_vp = NULL;
1647 	bp->b_bufobj = NULL;
1648 	BO_UNLOCK(bo);
1649 	vdrop(vp);
1650 }
1651 
1652 /*
1653  * Add an item to the syncer work queue.
1654  */
1655 static void
1656 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1657 {
1658 	int queue, slot;
1659 
1660 	ASSERT_BO_LOCKED(bo);
1661 
1662 	mtx_lock(&sync_mtx);
1663 	if (bo->bo_flag & BO_ONWORKLST)
1664 		LIST_REMOVE(bo, bo_synclist);
1665 	else {
1666 		bo->bo_flag |= BO_ONWORKLST;
1667 		syncer_worklist_len++;
1668 	}
1669 
1670 	if (delay > syncer_maxdelay - 2)
1671 		delay = syncer_maxdelay - 2;
1672 	slot = (syncer_delayno + delay) & syncer_mask;
1673 
1674 	queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1675 	    WI_MPSAFEQ;
1676 	LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1677 	    bo_synclist);
1678 	mtx_unlock(&sync_mtx);
1679 }
1680 
1681 static int
1682 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1683 {
1684 	int error, len;
1685 
1686 	mtx_lock(&sync_mtx);
1687 	len = syncer_worklist_len - sync_vnode_count;
1688 	mtx_unlock(&sync_mtx);
1689 	error = SYSCTL_OUT(req, &len, sizeof(len));
1690 	return (error);
1691 }
1692 
1693 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1694     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1695 
1696 static struct proc *updateproc;
1697 static void sched_sync(void);
1698 static struct kproc_desc up_kp = {
1699 	"syncer",
1700 	sched_sync,
1701 	&updateproc
1702 };
1703 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1704 
1705 static int
1706 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1707 {
1708 	struct vnode *vp;
1709 	struct mount *mp;
1710 
1711 	*bo = LIST_FIRST(slp);
1712 	if (*bo == NULL)
1713 		return (0);
1714 	vp = (*bo)->__bo_vnode;	/* XXX */
1715 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1716 		return (1);
1717 	/*
1718 	 * We use vhold in case the vnode does not
1719 	 * successfully sync.  vhold prevents the vnode from
1720 	 * going away when we unlock the sync_mtx so that
1721 	 * we can acquire the vnode interlock.
1722 	 */
1723 	vholdl(vp);
1724 	mtx_unlock(&sync_mtx);
1725 	VI_UNLOCK(vp);
1726 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1727 		vdrop(vp);
1728 		mtx_lock(&sync_mtx);
1729 		return (*bo == LIST_FIRST(slp));
1730 	}
1731 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1732 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1733 	VOP_UNLOCK(vp, 0);
1734 	vn_finished_write(mp);
1735 	BO_LOCK(*bo);
1736 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1737 		/*
1738 		 * Put us back on the worklist.  The worklist
1739 		 * routine will remove us from our current
1740 		 * position and then add us back in at a later
1741 		 * position.
1742 		 */
1743 		vn_syncer_add_to_worklist(*bo, syncdelay);
1744 	}
1745 	BO_UNLOCK(*bo);
1746 	vdrop(vp);
1747 	mtx_lock(&sync_mtx);
1748 	return (0);
1749 }
1750 
1751 /*
1752  * System filesystem synchronizer daemon.
1753  */
1754 static void
1755 sched_sync(void)
1756 {
1757 	struct synclist *gnext, *next;
1758 	struct synclist *gslp, *slp;
1759 	struct bufobj *bo;
1760 	long starttime;
1761 	struct thread *td = curthread;
1762 	int last_work_seen;
1763 	int net_worklist_len;
1764 	int syncer_final_iter;
1765 	int first_printf;
1766 	int error;
1767 
1768 	last_work_seen = 0;
1769 	syncer_final_iter = 0;
1770 	first_printf = 1;
1771 	syncer_state = SYNCER_RUNNING;
1772 	starttime = time_uptime;
1773 	td->td_pflags |= TDP_NORUNNINGBUF;
1774 
1775 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1776 	    SHUTDOWN_PRI_LAST);
1777 
1778 	mtx_lock(&sync_mtx);
1779 	for (;;) {
1780 		if (syncer_state == SYNCER_FINAL_DELAY &&
1781 		    syncer_final_iter == 0) {
1782 			mtx_unlock(&sync_mtx);
1783 			kproc_suspend_check(td->td_proc);
1784 			mtx_lock(&sync_mtx);
1785 		}
1786 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1787 		if (syncer_state != SYNCER_RUNNING &&
1788 		    starttime != time_uptime) {
1789 			if (first_printf) {
1790 				printf("\nSyncing disks, vnodes remaining...");
1791 				first_printf = 0;
1792 			}
1793 			printf("%d ", net_worklist_len);
1794 		}
1795 		starttime = time_uptime;
1796 
1797 		/*
1798 		 * Push files whose dirty time has expired.  Be careful
1799 		 * of interrupt race on slp queue.
1800 		 *
1801 		 * Skip over empty worklist slots when shutting down.
1802 		 */
1803 		do {
1804 			slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1805 			gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1806 			syncer_delayno += 1;
1807 			if (syncer_delayno == syncer_maxdelay)
1808 				syncer_delayno = 0;
1809 			next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1810 			gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1811 			/*
1812 			 * If the worklist has wrapped since the
1813 			 * it was emptied of all but syncer vnodes,
1814 			 * switch to the FINAL_DELAY state and run
1815 			 * for one more second.
1816 			 */
1817 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1818 			    net_worklist_len == 0 &&
1819 			    last_work_seen == syncer_delayno) {
1820 				syncer_state = SYNCER_FINAL_DELAY;
1821 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1822 			}
1823 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1824 		    LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1825 
1826 		/*
1827 		 * Keep track of the last time there was anything
1828 		 * on the worklist other than syncer vnodes.
1829 		 * Return to the SHUTTING_DOWN state if any
1830 		 * new work appears.
1831 		 */
1832 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1833 			last_work_seen = syncer_delayno;
1834 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1835 			syncer_state = SYNCER_SHUTTING_DOWN;
1836 		while (!LIST_EMPTY(slp)) {
1837 			error = sync_vnode(slp, &bo, td);
1838 			if (error == 1) {
1839 				LIST_REMOVE(bo, bo_synclist);
1840 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1841 				continue;
1842 			}
1843 		}
1844 		if (!LIST_EMPTY(gslp)) {
1845 			mtx_unlock(&sync_mtx);
1846 			mtx_lock(&Giant);
1847 			mtx_lock(&sync_mtx);
1848 			while (!LIST_EMPTY(gslp)) {
1849 				error = sync_vnode(gslp, &bo, td);
1850 				if (error == 1) {
1851 					LIST_REMOVE(bo, bo_synclist);
1852 					LIST_INSERT_HEAD(gnext, bo,
1853 					    bo_synclist);
1854 					continue;
1855 				}
1856 			}
1857 			mtx_unlock(&Giant);
1858 		}
1859 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1860 			syncer_final_iter--;
1861 		/*
1862 		 * The variable rushjob allows the kernel to speed up the
1863 		 * processing of the filesystem syncer process. A rushjob
1864 		 * value of N tells the filesystem syncer to process the next
1865 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1866 		 * is used by the soft update code to speed up the filesystem
1867 		 * syncer process when the incore state is getting so far
1868 		 * ahead of the disk that the kernel memory pool is being
1869 		 * threatened with exhaustion.
1870 		 */
1871 		if (rushjob > 0) {
1872 			rushjob -= 1;
1873 			continue;
1874 		}
1875 		/*
1876 		 * Just sleep for a short period of time between
1877 		 * iterations when shutting down to allow some I/O
1878 		 * to happen.
1879 		 *
1880 		 * If it has taken us less than a second to process the
1881 		 * current work, then wait. Otherwise start right over
1882 		 * again. We can still lose time if any single round
1883 		 * takes more than two seconds, but it does not really
1884 		 * matter as we are just trying to generally pace the
1885 		 * filesystem activity.
1886 		 */
1887 		if (syncer_state != SYNCER_RUNNING ||
1888 		    time_uptime == starttime) {
1889 			thread_lock(td);
1890 			sched_prio(td, PPAUSE);
1891 			thread_unlock(td);
1892 		}
1893 		if (syncer_state != SYNCER_RUNNING)
1894 			cv_timedwait(&sync_wakeup, &sync_mtx,
1895 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1896 		else if (time_uptime == starttime)
1897 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1898 	}
1899 }
1900 
1901 /*
1902  * Request the syncer daemon to speed up its work.
1903  * We never push it to speed up more than half of its
1904  * normal turn time, otherwise it could take over the cpu.
1905  */
1906 int
1907 speedup_syncer(void)
1908 {
1909 	int ret = 0;
1910 
1911 	mtx_lock(&sync_mtx);
1912 	if (rushjob < syncdelay / 2) {
1913 		rushjob += 1;
1914 		stat_rush_requests += 1;
1915 		ret = 1;
1916 	}
1917 	mtx_unlock(&sync_mtx);
1918 	cv_broadcast(&sync_wakeup);
1919 	return (ret);
1920 }
1921 
1922 /*
1923  * Tell the syncer to speed up its work and run though its work
1924  * list several times, then tell it to shut down.
1925  */
1926 static void
1927 syncer_shutdown(void *arg, int howto)
1928 {
1929 
1930 	if (howto & RB_NOSYNC)
1931 		return;
1932 	mtx_lock(&sync_mtx);
1933 	syncer_state = SYNCER_SHUTTING_DOWN;
1934 	rushjob = 0;
1935 	mtx_unlock(&sync_mtx);
1936 	cv_broadcast(&sync_wakeup);
1937 	kproc_shutdown(arg, howto);
1938 }
1939 
1940 /*
1941  * Reassign a buffer from one vnode to another.
1942  * Used to assign file specific control information
1943  * (indirect blocks) to the vnode to which they belong.
1944  */
1945 void
1946 reassignbuf(struct buf *bp)
1947 {
1948 	struct vnode *vp;
1949 	struct bufobj *bo;
1950 	int delay;
1951 #ifdef INVARIANTS
1952 	struct bufv *bv;
1953 #endif
1954 
1955 	vp = bp->b_vp;
1956 	bo = bp->b_bufobj;
1957 	++reassignbufcalls;
1958 
1959 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1960 	    bp, bp->b_vp, bp->b_flags);
1961 	/*
1962 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1963 	 * is not fully linked in.
1964 	 */
1965 	if (bp->b_flags & B_PAGING)
1966 		panic("cannot reassign paging buffer");
1967 
1968 	/*
1969 	 * Delete from old vnode list, if on one.
1970 	 */
1971 	BO_LOCK(bo);
1972 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1973 		buf_vlist_remove(bp);
1974 	else
1975 		panic("reassignbuf: Buffer %p not on queue.", bp);
1976 	/*
1977 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1978 	 * of clean buffers.
1979 	 */
1980 	if (bp->b_flags & B_DELWRI) {
1981 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1982 			switch (vp->v_type) {
1983 			case VDIR:
1984 				delay = dirdelay;
1985 				break;
1986 			case VCHR:
1987 				delay = metadelay;
1988 				break;
1989 			default:
1990 				delay = filedelay;
1991 			}
1992 			vn_syncer_add_to_worklist(bo, delay);
1993 		}
1994 		buf_vlist_add(bp, bo, BX_VNDIRTY);
1995 	} else {
1996 		buf_vlist_add(bp, bo, BX_VNCLEAN);
1997 
1998 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1999 			mtx_lock(&sync_mtx);
2000 			LIST_REMOVE(bo, bo_synclist);
2001 			syncer_worklist_len--;
2002 			mtx_unlock(&sync_mtx);
2003 			bo->bo_flag &= ~BO_ONWORKLST;
2004 		}
2005 	}
2006 #ifdef INVARIANTS
2007 	bv = &bo->bo_clean;
2008 	bp = TAILQ_FIRST(&bv->bv_hd);
2009 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2010 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2011 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2012 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2013 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2014 	bv = &bo->bo_dirty;
2015 	bp = TAILQ_FIRST(&bv->bv_hd);
2016 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2017 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2018 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2019 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2020 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2021 #endif
2022 	BO_UNLOCK(bo);
2023 }
2024 
2025 /*
2026  * Increment the use and hold counts on the vnode, taking care to reference
2027  * the driver's usecount if this is a chardev.  The vholdl() will remove
2028  * the vnode from the free list if it is presently free.  Requires the
2029  * vnode interlock and returns with it held.
2030  */
2031 static void
2032 v_incr_usecount(struct vnode *vp)
2033 {
2034 
2035 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2036 	vp->v_usecount++;
2037 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2038 		dev_lock();
2039 		vp->v_rdev->si_usecount++;
2040 		dev_unlock();
2041 	}
2042 	vholdl(vp);
2043 }
2044 
2045 /*
2046  * Turn a holdcnt into a use+holdcnt such that only one call to
2047  * v_decr_usecount is needed.
2048  */
2049 static void
2050 v_upgrade_usecount(struct vnode *vp)
2051 {
2052 
2053 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2054 	vp->v_usecount++;
2055 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2056 		dev_lock();
2057 		vp->v_rdev->si_usecount++;
2058 		dev_unlock();
2059 	}
2060 }
2061 
2062 /*
2063  * Decrement the vnode use and hold count along with the driver's usecount
2064  * if this is a chardev.  The vdropl() below releases the vnode interlock
2065  * as it may free the vnode.
2066  */
2067 static void
2068 v_decr_usecount(struct vnode *vp)
2069 {
2070 
2071 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2072 	VNASSERT(vp->v_usecount > 0, vp,
2073 	    ("v_decr_usecount: negative usecount"));
2074 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2075 	vp->v_usecount--;
2076 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2077 		dev_lock();
2078 		vp->v_rdev->si_usecount--;
2079 		dev_unlock();
2080 	}
2081 	vdropl(vp);
2082 }
2083 
2084 /*
2085  * Decrement only the use count and driver use count.  This is intended to
2086  * be paired with a follow on vdropl() to release the remaining hold count.
2087  * In this way we may vgone() a vnode with a 0 usecount without risk of
2088  * having it end up on a free list because the hold count is kept above 0.
2089  */
2090 static void
2091 v_decr_useonly(struct vnode *vp)
2092 {
2093 
2094 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2095 	VNASSERT(vp->v_usecount > 0, vp,
2096 	    ("v_decr_useonly: negative usecount"));
2097 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2098 	vp->v_usecount--;
2099 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2100 		dev_lock();
2101 		vp->v_rdev->si_usecount--;
2102 		dev_unlock();
2103 	}
2104 }
2105 
2106 /*
2107  * Grab a particular vnode from the free list, increment its
2108  * reference count and lock it.  VI_DOOMED is set if the vnode
2109  * is being destroyed.  Only callers who specify LK_RETRY will
2110  * see doomed vnodes.  If inactive processing was delayed in
2111  * vput try to do it here.
2112  */
2113 int
2114 vget(struct vnode *vp, int flags, struct thread *td)
2115 {
2116 	int error;
2117 
2118 	error = 0;
2119 	VFS_ASSERT_GIANT(vp->v_mount);
2120 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2121 	    ("vget: invalid lock operation"));
2122 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2123 
2124 	if ((flags & LK_INTERLOCK) == 0)
2125 		VI_LOCK(vp);
2126 	vholdl(vp);
2127 	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2128 		vdrop(vp);
2129 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2130 		    vp);
2131 		return (error);
2132 	}
2133 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2134 		panic("vget: vn_lock failed to return ENOENT\n");
2135 	VI_LOCK(vp);
2136 	/* Upgrade our holdcnt to a usecount. */
2137 	v_upgrade_usecount(vp);
2138 	/*
2139 	 * We don't guarantee that any particular close will
2140 	 * trigger inactive processing so just make a best effort
2141 	 * here at preventing a reference to a removed file.  If
2142 	 * we don't succeed no harm is done.
2143 	 */
2144 	if (vp->v_iflag & VI_OWEINACT) {
2145 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2146 		    (flags & LK_NOWAIT) == 0)
2147 			vinactive(vp, td);
2148 		vp->v_iflag &= ~VI_OWEINACT;
2149 	}
2150 	VI_UNLOCK(vp);
2151 	return (0);
2152 }
2153 
2154 /*
2155  * Increase the reference count of a vnode.
2156  */
2157 void
2158 vref(struct vnode *vp)
2159 {
2160 
2161 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2162 	VI_LOCK(vp);
2163 	v_incr_usecount(vp);
2164 	VI_UNLOCK(vp);
2165 }
2166 
2167 /*
2168  * Return reference count of a vnode.
2169  *
2170  * The results of this call are only guaranteed when some mechanism other
2171  * than the VI lock is used to stop other processes from gaining references
2172  * to the vnode.  This may be the case if the caller holds the only reference.
2173  * This is also useful when stale data is acceptable as race conditions may
2174  * be accounted for by some other means.
2175  */
2176 int
2177 vrefcnt(struct vnode *vp)
2178 {
2179 	int usecnt;
2180 
2181 	VI_LOCK(vp);
2182 	usecnt = vp->v_usecount;
2183 	VI_UNLOCK(vp);
2184 
2185 	return (usecnt);
2186 }
2187 
2188 #define	VPUTX_VRELE	1
2189 #define	VPUTX_VPUT	2
2190 #define	VPUTX_VUNREF	3
2191 
2192 static void
2193 vputx(struct vnode *vp, int func)
2194 {
2195 	int error;
2196 
2197 	KASSERT(vp != NULL, ("vputx: null vp"));
2198 	if (func == VPUTX_VUNREF)
2199 		ASSERT_VOP_LOCKED(vp, "vunref");
2200 	else if (func == VPUTX_VPUT)
2201 		ASSERT_VOP_LOCKED(vp, "vput");
2202 	else
2203 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2204 	VFS_ASSERT_GIANT(vp->v_mount);
2205 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2206 	VI_LOCK(vp);
2207 
2208 	/* Skip this v_writecount check if we're going to panic below. */
2209 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2210 	    ("vputx: missed vn_close"));
2211 	error = 0;
2212 
2213 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2214 	    vp->v_usecount == 1)) {
2215 		if (func == VPUTX_VPUT)
2216 			VOP_UNLOCK(vp, 0);
2217 		v_decr_usecount(vp);
2218 		return;
2219 	}
2220 
2221 	if (vp->v_usecount != 1) {
2222 		vprint("vputx: negative ref count", vp);
2223 		panic("vputx: negative ref cnt");
2224 	}
2225 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2226 	/*
2227 	 * We want to hold the vnode until the inactive finishes to
2228 	 * prevent vgone() races.  We drop the use count here and the
2229 	 * hold count below when we're done.
2230 	 */
2231 	v_decr_useonly(vp);
2232 	/*
2233 	 * We must call VOP_INACTIVE with the node locked. Mark
2234 	 * as VI_DOINGINACT to avoid recursion.
2235 	 */
2236 	vp->v_iflag |= VI_OWEINACT;
2237 	switch (func) {
2238 	case VPUTX_VRELE:
2239 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2240 		VI_LOCK(vp);
2241 		break;
2242 	case VPUTX_VPUT:
2243 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2244 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2245 			    LK_NOWAIT);
2246 			VI_LOCK(vp);
2247 		}
2248 		break;
2249 	case VPUTX_VUNREF:
2250 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
2251 			error = EBUSY;
2252 		break;
2253 	}
2254 	if (vp->v_usecount > 0)
2255 		vp->v_iflag &= ~VI_OWEINACT;
2256 	if (error == 0) {
2257 		if (vp->v_iflag & VI_OWEINACT)
2258 			vinactive(vp, curthread);
2259 		if (func != VPUTX_VUNREF)
2260 			VOP_UNLOCK(vp, 0);
2261 	}
2262 	vdropl(vp);
2263 }
2264 
2265 /*
2266  * Vnode put/release.
2267  * If count drops to zero, call inactive routine and return to freelist.
2268  */
2269 void
2270 vrele(struct vnode *vp)
2271 {
2272 
2273 	vputx(vp, VPUTX_VRELE);
2274 }
2275 
2276 /*
2277  * Release an already locked vnode.  This give the same effects as
2278  * unlock+vrele(), but takes less time and avoids releasing and
2279  * re-aquiring the lock (as vrele() acquires the lock internally.)
2280  */
2281 void
2282 vput(struct vnode *vp)
2283 {
2284 
2285 	vputx(vp, VPUTX_VPUT);
2286 }
2287 
2288 /*
2289  * Release an exclusively locked vnode. Do not unlock the vnode lock.
2290  */
2291 void
2292 vunref(struct vnode *vp)
2293 {
2294 
2295 	vputx(vp, VPUTX_VUNREF);
2296 }
2297 
2298 /*
2299  * Somebody doesn't want the vnode recycled.
2300  */
2301 void
2302 vhold(struct vnode *vp)
2303 {
2304 
2305 	VI_LOCK(vp);
2306 	vholdl(vp);
2307 	VI_UNLOCK(vp);
2308 }
2309 
2310 void
2311 vholdl(struct vnode *vp)
2312 {
2313 
2314 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2315 	vp->v_holdcnt++;
2316 	if (VSHOULDBUSY(vp))
2317 		vbusy(vp);
2318 }
2319 
2320 /*
2321  * Note that there is one less who cares about this vnode.  vdrop() is the
2322  * opposite of vhold().
2323  */
2324 void
2325 vdrop(struct vnode *vp)
2326 {
2327 
2328 	VI_LOCK(vp);
2329 	vdropl(vp);
2330 }
2331 
2332 /*
2333  * Drop the hold count of the vnode.  If this is the last reference to
2334  * the vnode we will free it if it has been vgone'd otherwise it is
2335  * placed on the free list.
2336  */
2337 void
2338 vdropl(struct vnode *vp)
2339 {
2340 
2341 	ASSERT_VI_LOCKED(vp, "vdropl");
2342 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2343 	if (vp->v_holdcnt <= 0)
2344 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2345 	vp->v_holdcnt--;
2346 	if (vp->v_holdcnt == 0) {
2347 		if (vp->v_iflag & VI_DOOMED) {
2348 			CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__,
2349 			    vp);
2350 			vdestroy(vp);
2351 			return;
2352 		} else
2353 			vfree(vp);
2354 	}
2355 	VI_UNLOCK(vp);
2356 }
2357 
2358 /*
2359  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2360  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2361  * OWEINACT tracks whether a vnode missed a call to inactive due to a
2362  * failed lock upgrade.
2363  */
2364 static void
2365 vinactive(struct vnode *vp, struct thread *td)
2366 {
2367 
2368 	ASSERT_VOP_ELOCKED(vp, "vinactive");
2369 	ASSERT_VI_LOCKED(vp, "vinactive");
2370 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2371 	    ("vinactive: recursed on VI_DOINGINACT"));
2372 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2373 	vp->v_iflag |= VI_DOINGINACT;
2374 	vp->v_iflag &= ~VI_OWEINACT;
2375 	VI_UNLOCK(vp);
2376 	VOP_INACTIVE(vp, td);
2377 	VI_LOCK(vp);
2378 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2379 	    ("vinactive: lost VI_DOINGINACT"));
2380 	vp->v_iflag &= ~VI_DOINGINACT;
2381 }
2382 
2383 /*
2384  * Remove any vnodes in the vnode table belonging to mount point mp.
2385  *
2386  * If FORCECLOSE is not specified, there should not be any active ones,
2387  * return error if any are found (nb: this is a user error, not a
2388  * system error). If FORCECLOSE is specified, detach any active vnodes
2389  * that are found.
2390  *
2391  * If WRITECLOSE is set, only flush out regular file vnodes open for
2392  * writing.
2393  *
2394  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2395  *
2396  * `rootrefs' specifies the base reference count for the root vnode
2397  * of this filesystem. The root vnode is considered busy if its
2398  * v_usecount exceeds this value. On a successful return, vflush(, td)
2399  * will call vrele() on the root vnode exactly rootrefs times.
2400  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2401  * be zero.
2402  */
2403 #ifdef DIAGNOSTIC
2404 static int busyprt = 0;		/* print out busy vnodes */
2405 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
2406 #endif
2407 
2408 int
2409 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2410 {
2411 	struct vnode *vp, *mvp, *rootvp = NULL;
2412 	struct vattr vattr;
2413 	int busy = 0, error;
2414 
2415 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2416 	    rootrefs, flags);
2417 	if (rootrefs > 0) {
2418 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2419 		    ("vflush: bad args"));
2420 		/*
2421 		 * Get the filesystem root vnode. We can vput() it
2422 		 * immediately, since with rootrefs > 0, it won't go away.
2423 		 */
2424 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2425 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2426 			    __func__, error);
2427 			return (error);
2428 		}
2429 		vput(rootvp);
2430 	}
2431 	MNT_ILOCK(mp);
2432 loop:
2433 	MNT_VNODE_FOREACH(vp, mp, mvp) {
2434 		VI_LOCK(vp);
2435 		vholdl(vp);
2436 		MNT_IUNLOCK(mp);
2437 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2438 		if (error) {
2439 			vdrop(vp);
2440 			MNT_ILOCK(mp);
2441 			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2442 			goto loop;
2443 		}
2444 		/*
2445 		 * Skip over a vnodes marked VV_SYSTEM.
2446 		 */
2447 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2448 			VOP_UNLOCK(vp, 0);
2449 			vdrop(vp);
2450 			MNT_ILOCK(mp);
2451 			continue;
2452 		}
2453 		/*
2454 		 * If WRITECLOSE is set, flush out unlinked but still open
2455 		 * files (even if open only for reading) and regular file
2456 		 * vnodes open for writing.
2457 		 */
2458 		if (flags & WRITECLOSE) {
2459 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2460 			VI_LOCK(vp);
2461 
2462 			if ((vp->v_type == VNON ||
2463 			    (error == 0 && vattr.va_nlink > 0)) &&
2464 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2465 				VOP_UNLOCK(vp, 0);
2466 				vdropl(vp);
2467 				MNT_ILOCK(mp);
2468 				continue;
2469 			}
2470 		} else
2471 			VI_LOCK(vp);
2472 		/*
2473 		 * With v_usecount == 0, all we need to do is clear out the
2474 		 * vnode data structures and we are done.
2475 		 *
2476 		 * If FORCECLOSE is set, forcibly close the vnode.
2477 		 */
2478 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2479 			VNASSERT(vp->v_usecount == 0 ||
2480 			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2481 			    ("device VNODE %p is FORCECLOSED", vp));
2482 			vgonel(vp);
2483 		} else {
2484 			busy++;
2485 #ifdef DIAGNOSTIC
2486 			if (busyprt)
2487 				vprint("vflush: busy vnode", vp);
2488 #endif
2489 		}
2490 		VOP_UNLOCK(vp, 0);
2491 		vdropl(vp);
2492 		MNT_ILOCK(mp);
2493 	}
2494 	MNT_IUNLOCK(mp);
2495 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2496 		/*
2497 		 * If just the root vnode is busy, and if its refcount
2498 		 * is equal to `rootrefs', then go ahead and kill it.
2499 		 */
2500 		VI_LOCK(rootvp);
2501 		KASSERT(busy > 0, ("vflush: not busy"));
2502 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2503 		    ("vflush: usecount %d < rootrefs %d",
2504 		     rootvp->v_usecount, rootrefs));
2505 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2506 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2507 			vgone(rootvp);
2508 			VOP_UNLOCK(rootvp, 0);
2509 			busy = 0;
2510 		} else
2511 			VI_UNLOCK(rootvp);
2512 	}
2513 	if (busy) {
2514 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2515 		    busy);
2516 		return (EBUSY);
2517 	}
2518 	for (; rootrefs > 0; rootrefs--)
2519 		vrele(rootvp);
2520 	return (0);
2521 }
2522 
2523 /*
2524  * Recycle an unused vnode to the front of the free list.
2525  */
2526 int
2527 vrecycle(struct vnode *vp, struct thread *td)
2528 {
2529 	int recycled;
2530 
2531 	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2532 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2533 	recycled = 0;
2534 	VI_LOCK(vp);
2535 	if (vp->v_usecount == 0) {
2536 		recycled = 1;
2537 		vgonel(vp);
2538 	}
2539 	VI_UNLOCK(vp);
2540 	return (recycled);
2541 }
2542 
2543 /*
2544  * Eliminate all activity associated with a vnode
2545  * in preparation for reuse.
2546  */
2547 void
2548 vgone(struct vnode *vp)
2549 {
2550 	VI_LOCK(vp);
2551 	vgonel(vp);
2552 	VI_UNLOCK(vp);
2553 }
2554 
2555 /*
2556  * vgone, with the vp interlock held.
2557  */
2558 void
2559 vgonel(struct vnode *vp)
2560 {
2561 	struct thread *td;
2562 	int oweinact;
2563 	int active;
2564 	struct mount *mp;
2565 
2566 	ASSERT_VOP_ELOCKED(vp, "vgonel");
2567 	ASSERT_VI_LOCKED(vp, "vgonel");
2568 	VNASSERT(vp->v_holdcnt, vp,
2569 	    ("vgonel: vp %p has no reference.", vp));
2570 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2571 	td = curthread;
2572 
2573 	/*
2574 	 * Don't vgonel if we're already doomed.
2575 	 */
2576 	if (vp->v_iflag & VI_DOOMED)
2577 		return;
2578 	vp->v_iflag |= VI_DOOMED;
2579 	/*
2580 	 * Check to see if the vnode is in use.  If so, we have to call
2581 	 * VOP_CLOSE() and VOP_INACTIVE().
2582 	 */
2583 	active = vp->v_usecount;
2584 	oweinact = (vp->v_iflag & VI_OWEINACT);
2585 	VI_UNLOCK(vp);
2586 	/*
2587 	 * Clean out any buffers associated with the vnode.
2588 	 * If the flush fails, just toss the buffers.
2589 	 */
2590 	mp = NULL;
2591 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2592 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2593 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2594 		vinvalbuf(vp, 0, 0, 0);
2595 
2596 	/*
2597 	 * If purging an active vnode, it must be closed and
2598 	 * deactivated before being reclaimed.
2599 	 */
2600 	if (active)
2601 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2602 	if (oweinact || active) {
2603 		VI_LOCK(vp);
2604 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2605 			vinactive(vp, td);
2606 		VI_UNLOCK(vp);
2607 	}
2608 	/*
2609 	 * Reclaim the vnode.
2610 	 */
2611 	if (VOP_RECLAIM(vp, td))
2612 		panic("vgone: cannot reclaim");
2613 	if (mp != NULL)
2614 		vn_finished_secondary_write(mp);
2615 	VNASSERT(vp->v_object == NULL, vp,
2616 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2617 	/*
2618 	 * Clear the advisory locks and wake up waiting threads.
2619 	 */
2620 	(void)VOP_ADVLOCKPURGE(vp);
2621 	/*
2622 	 * Delete from old mount point vnode list.
2623 	 */
2624 	delmntque(vp);
2625 	cache_purge(vp);
2626 	/*
2627 	 * Done with purge, reset to the standard lock and invalidate
2628 	 * the vnode.
2629 	 */
2630 	VI_LOCK(vp);
2631 	vp->v_vnlock = &vp->v_lock;
2632 	vp->v_op = &dead_vnodeops;
2633 	vp->v_tag = "none";
2634 	vp->v_type = VBAD;
2635 }
2636 
2637 /*
2638  * Calculate the total number of references to a special device.
2639  */
2640 int
2641 vcount(struct vnode *vp)
2642 {
2643 	int count;
2644 
2645 	dev_lock();
2646 	count = vp->v_rdev->si_usecount;
2647 	dev_unlock();
2648 	return (count);
2649 }
2650 
2651 /*
2652  * Same as above, but using the struct cdev *as argument
2653  */
2654 int
2655 count_dev(struct cdev *dev)
2656 {
2657 	int count;
2658 
2659 	dev_lock();
2660 	count = dev->si_usecount;
2661 	dev_unlock();
2662 	return(count);
2663 }
2664 
2665 /*
2666  * Print out a description of a vnode.
2667  */
2668 static char *typename[] =
2669 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2670  "VMARKER"};
2671 
2672 void
2673 vn_printf(struct vnode *vp, const char *fmt, ...)
2674 {
2675 	va_list ap;
2676 	char buf[256], buf2[16];
2677 	u_long flags;
2678 
2679 	va_start(ap, fmt);
2680 	vprintf(fmt, ap);
2681 	va_end(ap);
2682 	printf("%p: ", (void *)vp);
2683 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2684 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2685 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2686 	buf[0] = '\0';
2687 	buf[1] = '\0';
2688 	if (vp->v_vflag & VV_ROOT)
2689 		strlcat(buf, "|VV_ROOT", sizeof(buf));
2690 	if (vp->v_vflag & VV_ISTTY)
2691 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2692 	if (vp->v_vflag & VV_NOSYNC)
2693 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2694 	if (vp->v_vflag & VV_CACHEDLABEL)
2695 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2696 	if (vp->v_vflag & VV_TEXT)
2697 		strlcat(buf, "|VV_TEXT", sizeof(buf));
2698 	if (vp->v_vflag & VV_COPYONWRITE)
2699 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2700 	if (vp->v_vflag & VV_SYSTEM)
2701 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2702 	if (vp->v_vflag & VV_PROCDEP)
2703 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2704 	if (vp->v_vflag & VV_NOKNOTE)
2705 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2706 	if (vp->v_vflag & VV_DELETED)
2707 		strlcat(buf, "|VV_DELETED", sizeof(buf));
2708 	if (vp->v_vflag & VV_MD)
2709 		strlcat(buf, "|VV_MD", sizeof(buf));
2710 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2711 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2712 	    VV_NOKNOTE | VV_DELETED | VV_MD);
2713 	if (flags != 0) {
2714 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2715 		strlcat(buf, buf2, sizeof(buf));
2716 	}
2717 	if (vp->v_iflag & VI_MOUNT)
2718 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2719 	if (vp->v_iflag & VI_AGE)
2720 		strlcat(buf, "|VI_AGE", sizeof(buf));
2721 	if (vp->v_iflag & VI_DOOMED)
2722 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2723 	if (vp->v_iflag & VI_FREE)
2724 		strlcat(buf, "|VI_FREE", sizeof(buf));
2725 	if (vp->v_iflag & VI_DOINGINACT)
2726 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2727 	if (vp->v_iflag & VI_OWEINACT)
2728 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2729 	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2730 	    VI_DOINGINACT | VI_OWEINACT);
2731 	if (flags != 0) {
2732 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2733 		strlcat(buf, buf2, sizeof(buf));
2734 	}
2735 	printf("    flags (%s)\n", buf + 1);
2736 	if (mtx_owned(VI_MTX(vp)))
2737 		printf(" VI_LOCKed");
2738 	if (vp->v_object != NULL)
2739 		printf("    v_object %p ref %d pages %d\n",
2740 		    vp->v_object, vp->v_object->ref_count,
2741 		    vp->v_object->resident_page_count);
2742 	printf("    ");
2743 	lockmgr_printinfo(vp->v_vnlock);
2744 	if (vp->v_data != NULL)
2745 		VOP_PRINT(vp);
2746 }
2747 
2748 #ifdef DDB
2749 /*
2750  * List all of the locked vnodes in the system.
2751  * Called when debugging the kernel.
2752  */
2753 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2754 {
2755 	struct mount *mp, *nmp;
2756 	struct vnode *vp;
2757 
2758 	/*
2759 	 * Note: because this is DDB, we can't obey the locking semantics
2760 	 * for these structures, which means we could catch an inconsistent
2761 	 * state and dereference a nasty pointer.  Not much to be done
2762 	 * about that.
2763 	 */
2764 	db_printf("Locked vnodes\n");
2765 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2766 		nmp = TAILQ_NEXT(mp, mnt_list);
2767 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2768 			if (vp->v_type != VMARKER &&
2769 			    VOP_ISLOCKED(vp))
2770 				vprint("", vp);
2771 		}
2772 		nmp = TAILQ_NEXT(mp, mnt_list);
2773 	}
2774 }
2775 
2776 /*
2777  * Show details about the given vnode.
2778  */
2779 DB_SHOW_COMMAND(vnode, db_show_vnode)
2780 {
2781 	struct vnode *vp;
2782 
2783 	if (!have_addr)
2784 		return;
2785 	vp = (struct vnode *)addr;
2786 	vn_printf(vp, "vnode ");
2787 }
2788 
2789 /*
2790  * Show details about the given mount point.
2791  */
2792 DB_SHOW_COMMAND(mount, db_show_mount)
2793 {
2794 	struct mount *mp;
2795 	struct vfsopt *opt;
2796 	struct statfs *sp;
2797 	struct vnode *vp;
2798 	char buf[512];
2799 	u_int flags;
2800 
2801 	if (!have_addr) {
2802 		/* No address given, print short info about all mount points. */
2803 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2804 			db_printf("%p %s on %s (%s)\n", mp,
2805 			    mp->mnt_stat.f_mntfromname,
2806 			    mp->mnt_stat.f_mntonname,
2807 			    mp->mnt_stat.f_fstypename);
2808 			if (db_pager_quit)
2809 				break;
2810 		}
2811 		db_printf("\nMore info: show mount <addr>\n");
2812 		return;
2813 	}
2814 
2815 	mp = (struct mount *)addr;
2816 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2817 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2818 
2819 	buf[0] = '\0';
2820 	flags = mp->mnt_flag;
2821 #define	MNT_FLAG(flag)	do {						\
2822 	if (flags & (flag)) {						\
2823 		if (buf[0] != '\0')					\
2824 			strlcat(buf, ", ", sizeof(buf));		\
2825 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2826 		flags &= ~(flag);					\
2827 	}								\
2828 } while (0)
2829 	MNT_FLAG(MNT_RDONLY);
2830 	MNT_FLAG(MNT_SYNCHRONOUS);
2831 	MNT_FLAG(MNT_NOEXEC);
2832 	MNT_FLAG(MNT_NOSUID);
2833 	MNT_FLAG(MNT_UNION);
2834 	MNT_FLAG(MNT_ASYNC);
2835 	MNT_FLAG(MNT_SUIDDIR);
2836 	MNT_FLAG(MNT_SOFTDEP);
2837 	MNT_FLAG(MNT_NOSYMFOLLOW);
2838 	MNT_FLAG(MNT_GJOURNAL);
2839 	MNT_FLAG(MNT_MULTILABEL);
2840 	MNT_FLAG(MNT_ACLS);
2841 	MNT_FLAG(MNT_NOATIME);
2842 	MNT_FLAG(MNT_NOCLUSTERR);
2843 	MNT_FLAG(MNT_NOCLUSTERW);
2844 	MNT_FLAG(MNT_NFS4ACLS);
2845 	MNT_FLAG(MNT_EXRDONLY);
2846 	MNT_FLAG(MNT_EXPORTED);
2847 	MNT_FLAG(MNT_DEFEXPORTED);
2848 	MNT_FLAG(MNT_EXPORTANON);
2849 	MNT_FLAG(MNT_EXKERB);
2850 	MNT_FLAG(MNT_EXPUBLIC);
2851 	MNT_FLAG(MNT_LOCAL);
2852 	MNT_FLAG(MNT_QUOTA);
2853 	MNT_FLAG(MNT_ROOTFS);
2854 	MNT_FLAG(MNT_USER);
2855 	MNT_FLAG(MNT_IGNORE);
2856 	MNT_FLAG(MNT_UPDATE);
2857 	MNT_FLAG(MNT_DELEXPORT);
2858 	MNT_FLAG(MNT_RELOAD);
2859 	MNT_FLAG(MNT_FORCE);
2860 	MNT_FLAG(MNT_SNAPSHOT);
2861 	MNT_FLAG(MNT_BYFSID);
2862 	MNT_FLAG(MNT_SOFTDEP);
2863 #undef MNT_FLAG
2864 	if (flags != 0) {
2865 		if (buf[0] != '\0')
2866 			strlcat(buf, ", ", sizeof(buf));
2867 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2868 		    "0x%08x", flags);
2869 	}
2870 	db_printf("    mnt_flag = %s\n", buf);
2871 
2872 	buf[0] = '\0';
2873 	flags = mp->mnt_kern_flag;
2874 #define	MNT_KERN_FLAG(flag)	do {					\
2875 	if (flags & (flag)) {						\
2876 		if (buf[0] != '\0')					\
2877 			strlcat(buf, ", ", sizeof(buf));		\
2878 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
2879 		flags &= ~(flag);					\
2880 	}								\
2881 } while (0)
2882 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
2883 	MNT_KERN_FLAG(MNTK_ASYNC);
2884 	MNT_KERN_FLAG(MNTK_SOFTDEP);
2885 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
2886 	MNT_KERN_FLAG(MNTK_DRAINING);
2887 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
2888 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
2889 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
2890 	MNT_KERN_FLAG(MNTK_SUJ);
2891 	MNT_KERN_FLAG(MNTK_UNMOUNT);
2892 	MNT_KERN_FLAG(MNTK_MWAIT);
2893 	MNT_KERN_FLAG(MNTK_SUSPEND);
2894 	MNT_KERN_FLAG(MNTK_SUSPEND2);
2895 	MNT_KERN_FLAG(MNTK_SUSPENDED);
2896 	MNT_KERN_FLAG(MNTK_MPSAFE);
2897 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
2898 	MNT_KERN_FLAG(MNTK_NOKNOTE);
2899 #undef MNT_KERN_FLAG
2900 	if (flags != 0) {
2901 		if (buf[0] != '\0')
2902 			strlcat(buf, ", ", sizeof(buf));
2903 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2904 		    "0x%08x", flags);
2905 	}
2906 	db_printf("    mnt_kern_flag = %s\n", buf);
2907 
2908 	db_printf("    mnt_opt = ");
2909 	opt = TAILQ_FIRST(mp->mnt_opt);
2910 	if (opt != NULL) {
2911 		db_printf("%s", opt->name);
2912 		opt = TAILQ_NEXT(opt, link);
2913 		while (opt != NULL) {
2914 			db_printf(", %s", opt->name);
2915 			opt = TAILQ_NEXT(opt, link);
2916 		}
2917 	}
2918 	db_printf("\n");
2919 
2920 	sp = &mp->mnt_stat;
2921 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
2922 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
2923 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
2924 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
2925 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
2926 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
2927 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
2928 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
2929 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
2930 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
2931 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
2932 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
2933 
2934 	db_printf("    mnt_cred = { uid=%u ruid=%u",
2935 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
2936 	if (jailed(mp->mnt_cred))
2937 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
2938 	db_printf(" }\n");
2939 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
2940 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
2941 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
2942 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
2943 	db_printf("    mnt_noasync = %u\n", mp->mnt_noasync);
2944 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
2945 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
2946 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
2947 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
2948 	db_printf("    mnt_secondary_accwrites = %d\n",
2949 	    mp->mnt_secondary_accwrites);
2950 	db_printf("    mnt_gjprovider = %s\n",
2951 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
2952 	db_printf("\n");
2953 
2954 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2955 		if (vp->v_type != VMARKER) {
2956 			vn_printf(vp, "vnode ");
2957 			if (db_pager_quit)
2958 				break;
2959 		}
2960 	}
2961 }
2962 #endif	/* DDB */
2963 
2964 /*
2965  * Fill in a struct xvfsconf based on a struct vfsconf.
2966  */
2967 static void
2968 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2969 {
2970 
2971 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2972 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2973 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2974 	xvfsp->vfc_flags = vfsp->vfc_flags;
2975 	/*
2976 	 * These are unused in userland, we keep them
2977 	 * to not break binary compatibility.
2978 	 */
2979 	xvfsp->vfc_vfsops = NULL;
2980 	xvfsp->vfc_next = NULL;
2981 }
2982 
2983 /*
2984  * Top level filesystem related information gathering.
2985  */
2986 static int
2987 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2988 {
2989 	struct vfsconf *vfsp;
2990 	struct xvfsconf xvfsp;
2991 	int error;
2992 
2993 	error = 0;
2994 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2995 		bzero(&xvfsp, sizeof(xvfsp));
2996 		vfsconf2x(vfsp, &xvfsp);
2997 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2998 		if (error)
2999 			break;
3000 	}
3001 	return (error);
3002 }
3003 
3004 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD,
3005     NULL, 0, sysctl_vfs_conflist,
3006     "S,xvfsconf", "List of all configured filesystems");
3007 
3008 #ifndef BURN_BRIDGES
3009 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3010 
3011 static int
3012 vfs_sysctl(SYSCTL_HANDLER_ARGS)
3013 {
3014 	int *name = (int *)arg1 - 1;	/* XXX */
3015 	u_int namelen = arg2 + 1;	/* XXX */
3016 	struct vfsconf *vfsp;
3017 	struct xvfsconf xvfsp;
3018 
3019 	printf("WARNING: userland calling deprecated sysctl, "
3020 	    "please rebuild world\n");
3021 
3022 #if 1 || defined(COMPAT_PRELITE2)
3023 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3024 	if (namelen == 1)
3025 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3026 #endif
3027 
3028 	switch (name[1]) {
3029 	case VFS_MAXTYPENUM:
3030 		if (namelen != 2)
3031 			return (ENOTDIR);
3032 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3033 	case VFS_CONF:
3034 		if (namelen != 3)
3035 			return (ENOTDIR);	/* overloaded */
3036 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
3037 			if (vfsp->vfc_typenum == name[2])
3038 				break;
3039 		if (vfsp == NULL)
3040 			return (EOPNOTSUPP);
3041 		bzero(&xvfsp, sizeof(xvfsp));
3042 		vfsconf2x(vfsp, &xvfsp);
3043 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3044 	}
3045 	return (EOPNOTSUPP);
3046 }
3047 
3048 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
3049     vfs_sysctl, "Generic filesystem");
3050 
3051 #if 1 || defined(COMPAT_PRELITE2)
3052 
3053 static int
3054 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3055 {
3056 	int error;
3057 	struct vfsconf *vfsp;
3058 	struct ovfsconf ovfs;
3059 
3060 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3061 		bzero(&ovfs, sizeof(ovfs));
3062 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3063 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3064 		ovfs.vfc_index = vfsp->vfc_typenum;
3065 		ovfs.vfc_refcount = vfsp->vfc_refcount;
3066 		ovfs.vfc_flags = vfsp->vfc_flags;
3067 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3068 		if (error)
3069 			return error;
3070 	}
3071 	return 0;
3072 }
3073 
3074 #endif /* 1 || COMPAT_PRELITE2 */
3075 #endif /* !BURN_BRIDGES */
3076 
3077 #define KINFO_VNODESLOP		10
3078 #ifdef notyet
3079 /*
3080  * Dump vnode list (via sysctl).
3081  */
3082 /* ARGSUSED */
3083 static int
3084 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3085 {
3086 	struct xvnode *xvn;
3087 	struct mount *mp;
3088 	struct vnode *vp;
3089 	int error, len, n;
3090 
3091 	/*
3092 	 * Stale numvnodes access is not fatal here.
3093 	 */
3094 	req->lock = 0;
3095 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3096 	if (!req->oldptr)
3097 		/* Make an estimate */
3098 		return (SYSCTL_OUT(req, 0, len));
3099 
3100 	error = sysctl_wire_old_buffer(req, 0);
3101 	if (error != 0)
3102 		return (error);
3103 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3104 	n = 0;
3105 	mtx_lock(&mountlist_mtx);
3106 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3107 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3108 			continue;
3109 		MNT_ILOCK(mp);
3110 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3111 			if (n == len)
3112 				break;
3113 			vref(vp);
3114 			xvn[n].xv_size = sizeof *xvn;
3115 			xvn[n].xv_vnode = vp;
3116 			xvn[n].xv_id = 0;	/* XXX compat */
3117 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3118 			XV_COPY(usecount);
3119 			XV_COPY(writecount);
3120 			XV_COPY(holdcnt);
3121 			XV_COPY(mount);
3122 			XV_COPY(numoutput);
3123 			XV_COPY(type);
3124 #undef XV_COPY
3125 			xvn[n].xv_flag = vp->v_vflag;
3126 
3127 			switch (vp->v_type) {
3128 			case VREG:
3129 			case VDIR:
3130 			case VLNK:
3131 				break;
3132 			case VBLK:
3133 			case VCHR:
3134 				if (vp->v_rdev == NULL) {
3135 					vrele(vp);
3136 					continue;
3137 				}
3138 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3139 				break;
3140 			case VSOCK:
3141 				xvn[n].xv_socket = vp->v_socket;
3142 				break;
3143 			case VFIFO:
3144 				xvn[n].xv_fifo = vp->v_fifoinfo;
3145 				break;
3146 			case VNON:
3147 			case VBAD:
3148 			default:
3149 				/* shouldn't happen? */
3150 				vrele(vp);
3151 				continue;
3152 			}
3153 			vrele(vp);
3154 			++n;
3155 		}
3156 		MNT_IUNLOCK(mp);
3157 		mtx_lock(&mountlist_mtx);
3158 		vfs_unbusy(mp);
3159 		if (n == len)
3160 			break;
3161 	}
3162 	mtx_unlock(&mountlist_mtx);
3163 
3164 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3165 	free(xvn, M_TEMP);
3166 	return (error);
3167 }
3168 
3169 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3170     0, 0, sysctl_vnode, "S,xvnode", "");
3171 #endif
3172 
3173 /*
3174  * Unmount all filesystems. The list is traversed in reverse order
3175  * of mounting to avoid dependencies.
3176  */
3177 void
3178 vfs_unmountall(void)
3179 {
3180 	struct mount *mp;
3181 	struct thread *td;
3182 	int error;
3183 
3184 	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3185 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3186 	td = curthread;
3187 
3188 	/*
3189 	 * Since this only runs when rebooting, it is not interlocked.
3190 	 */
3191 	while(!TAILQ_EMPTY(&mountlist)) {
3192 		mp = TAILQ_LAST(&mountlist, mntlist);
3193 		error = dounmount(mp, MNT_FORCE, td);
3194 		if (error) {
3195 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3196 			/*
3197 			 * XXX: Due to the way in which we mount the root
3198 			 * file system off of devfs, devfs will generate a
3199 			 * "busy" warning when we try to unmount it before
3200 			 * the root.  Don't print a warning as a result in
3201 			 * order to avoid false positive errors that may
3202 			 * cause needless upset.
3203 			 */
3204 			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3205 				printf("unmount of %s failed (",
3206 				    mp->mnt_stat.f_mntonname);
3207 				if (error == EBUSY)
3208 					printf("BUSY)\n");
3209 				else
3210 					printf("%d)\n", error);
3211 			}
3212 		} else {
3213 			/* The unmount has removed mp from the mountlist */
3214 		}
3215 	}
3216 }
3217 
3218 /*
3219  * perform msync on all vnodes under a mount point
3220  * the mount point must be locked.
3221  */
3222 void
3223 vfs_msync(struct mount *mp, int flags)
3224 {
3225 	struct vnode *vp, *mvp;
3226 	struct vm_object *obj;
3227 
3228 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3229 	MNT_ILOCK(mp);
3230 	MNT_VNODE_FOREACH(vp, mp, mvp) {
3231 		VI_LOCK(vp);
3232 		obj = vp->v_object;
3233 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3234 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3235 			MNT_IUNLOCK(mp);
3236 			if (!vget(vp,
3237 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3238 			    curthread)) {
3239 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3240 					vput(vp);
3241 					MNT_ILOCK(mp);
3242 					continue;
3243 				}
3244 
3245 				obj = vp->v_object;
3246 				if (obj != NULL) {
3247 					VM_OBJECT_LOCK(obj);
3248 					vm_object_page_clean(obj, 0, 0,
3249 					    flags == MNT_WAIT ?
3250 					    OBJPC_SYNC : OBJPC_NOSYNC);
3251 					VM_OBJECT_UNLOCK(obj);
3252 				}
3253 				vput(vp);
3254 			}
3255 			MNT_ILOCK(mp);
3256 		} else
3257 			VI_UNLOCK(vp);
3258 	}
3259 	MNT_IUNLOCK(mp);
3260 }
3261 
3262 /*
3263  * Mark a vnode as free, putting it up for recycling.
3264  */
3265 static void
3266 vfree(struct vnode *vp)
3267 {
3268 
3269 	ASSERT_VI_LOCKED(vp, "vfree");
3270 	mtx_lock(&vnode_free_list_mtx);
3271 	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3272 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3273 	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3274 	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3275 	    ("vfree: Freeing doomed vnode"));
3276 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3277 	if (vp->v_iflag & VI_AGE) {
3278 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3279 	} else {
3280 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3281 	}
3282 	freevnodes++;
3283 	vp->v_iflag &= ~VI_AGE;
3284 	vp->v_iflag |= VI_FREE;
3285 	mtx_unlock(&vnode_free_list_mtx);
3286 }
3287 
3288 /*
3289  * Opposite of vfree() - mark a vnode as in use.
3290  */
3291 static void
3292 vbusy(struct vnode *vp)
3293 {
3294 	ASSERT_VI_LOCKED(vp, "vbusy");
3295 	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3296 	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3297 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3298 
3299 	mtx_lock(&vnode_free_list_mtx);
3300 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3301 	freevnodes--;
3302 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3303 	mtx_unlock(&vnode_free_list_mtx);
3304 }
3305 
3306 static void
3307 destroy_vpollinfo(struct vpollinfo *vi)
3308 {
3309 	knlist_destroy(&vi->vpi_selinfo.si_note);
3310 	mtx_destroy(&vi->vpi_lock);
3311 	uma_zfree(vnodepoll_zone, vi);
3312 }
3313 
3314 /*
3315  * Initalize per-vnode helper structure to hold poll-related state.
3316  */
3317 void
3318 v_addpollinfo(struct vnode *vp)
3319 {
3320 	struct vpollinfo *vi;
3321 
3322 	if (vp->v_pollinfo != NULL)
3323 		return;
3324 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3325 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3326 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3327 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3328 	VI_LOCK(vp);
3329 	if (vp->v_pollinfo != NULL) {
3330 		VI_UNLOCK(vp);
3331 		destroy_vpollinfo(vi);
3332 		return;
3333 	}
3334 	vp->v_pollinfo = vi;
3335 	VI_UNLOCK(vp);
3336 }
3337 
3338 /*
3339  * Record a process's interest in events which might happen to
3340  * a vnode.  Because poll uses the historic select-style interface
3341  * internally, this routine serves as both the ``check for any
3342  * pending events'' and the ``record my interest in future events''
3343  * functions.  (These are done together, while the lock is held,
3344  * to avoid race conditions.)
3345  */
3346 int
3347 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3348 {
3349 
3350 	v_addpollinfo(vp);
3351 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3352 	if (vp->v_pollinfo->vpi_revents & events) {
3353 		/*
3354 		 * This leaves events we are not interested
3355 		 * in available for the other process which
3356 		 * which presumably had requested them
3357 		 * (otherwise they would never have been
3358 		 * recorded).
3359 		 */
3360 		events &= vp->v_pollinfo->vpi_revents;
3361 		vp->v_pollinfo->vpi_revents &= ~events;
3362 
3363 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3364 		return (events);
3365 	}
3366 	vp->v_pollinfo->vpi_events |= events;
3367 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3368 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3369 	return (0);
3370 }
3371 
3372 /*
3373  * Routine to create and manage a filesystem syncer vnode.
3374  */
3375 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3376 static int	sync_fsync(struct  vop_fsync_args *);
3377 static int	sync_inactive(struct  vop_inactive_args *);
3378 static int	sync_reclaim(struct  vop_reclaim_args *);
3379 
3380 static struct vop_vector sync_vnodeops = {
3381 	.vop_bypass =	VOP_EOPNOTSUPP,
3382 	.vop_close =	sync_close,		/* close */
3383 	.vop_fsync =	sync_fsync,		/* fsync */
3384 	.vop_inactive =	sync_inactive,	/* inactive */
3385 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3386 	.vop_lock1 =	vop_stdlock,	/* lock */
3387 	.vop_unlock =	vop_stdunlock,	/* unlock */
3388 	.vop_islocked =	vop_stdislocked,	/* islocked */
3389 };
3390 
3391 /*
3392  * Create a new filesystem syncer vnode for the specified mount point.
3393  */
3394 void
3395 vfs_allocate_syncvnode(struct mount *mp)
3396 {
3397 	struct vnode *vp;
3398 	struct bufobj *bo;
3399 	static long start, incr, next;
3400 	int error;
3401 
3402 	/* Allocate a new vnode */
3403 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
3404 	if (error != 0)
3405 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
3406 	vp->v_type = VNON;
3407 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3408 	vp->v_vflag |= VV_FORCEINSMQ;
3409 	error = insmntque(vp, mp);
3410 	if (error != 0)
3411 		panic("vfs_allocate_syncvnode: insmntque() failed");
3412 	vp->v_vflag &= ~VV_FORCEINSMQ;
3413 	VOP_UNLOCK(vp, 0);
3414 	/*
3415 	 * Place the vnode onto the syncer worklist. We attempt to
3416 	 * scatter them about on the list so that they will go off
3417 	 * at evenly distributed times even if all the filesystems
3418 	 * are mounted at once.
3419 	 */
3420 	next += incr;
3421 	if (next == 0 || next > syncer_maxdelay) {
3422 		start /= 2;
3423 		incr /= 2;
3424 		if (start == 0) {
3425 			start = syncer_maxdelay / 2;
3426 			incr = syncer_maxdelay;
3427 		}
3428 		next = start;
3429 	}
3430 	bo = &vp->v_bufobj;
3431 	BO_LOCK(bo);
3432 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3433 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3434 	mtx_lock(&sync_mtx);
3435 	sync_vnode_count++;
3436 	if (mp->mnt_syncer == NULL) {
3437 		mp->mnt_syncer = vp;
3438 		vp = NULL;
3439 	}
3440 	mtx_unlock(&sync_mtx);
3441 	BO_UNLOCK(bo);
3442 	if (vp != NULL) {
3443 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3444 		vgone(vp);
3445 		vput(vp);
3446 	}
3447 }
3448 
3449 void
3450 vfs_deallocate_syncvnode(struct mount *mp)
3451 {
3452 	struct vnode *vp;
3453 
3454 	mtx_lock(&sync_mtx);
3455 	vp = mp->mnt_syncer;
3456 	if (vp != NULL)
3457 		mp->mnt_syncer = NULL;
3458 	mtx_unlock(&sync_mtx);
3459 	if (vp != NULL)
3460 		vrele(vp);
3461 }
3462 
3463 /*
3464  * Do a lazy sync of the filesystem.
3465  */
3466 static int
3467 sync_fsync(struct vop_fsync_args *ap)
3468 {
3469 	struct vnode *syncvp = ap->a_vp;
3470 	struct mount *mp = syncvp->v_mount;
3471 	int error;
3472 	struct bufobj *bo;
3473 
3474 	/*
3475 	 * We only need to do something if this is a lazy evaluation.
3476 	 */
3477 	if (ap->a_waitfor != MNT_LAZY)
3478 		return (0);
3479 
3480 	/*
3481 	 * Move ourselves to the back of the sync list.
3482 	 */
3483 	bo = &syncvp->v_bufobj;
3484 	BO_LOCK(bo);
3485 	vn_syncer_add_to_worklist(bo, syncdelay);
3486 	BO_UNLOCK(bo);
3487 
3488 	/*
3489 	 * Walk the list of vnodes pushing all that are dirty and
3490 	 * not already on the sync list.
3491 	 */
3492 	mtx_lock(&mountlist_mtx);
3493 	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3494 		mtx_unlock(&mountlist_mtx);
3495 		return (0);
3496 	}
3497 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3498 		vfs_unbusy(mp);
3499 		return (0);
3500 	}
3501 	MNT_ILOCK(mp);
3502 	mp->mnt_noasync++;
3503 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3504 	MNT_IUNLOCK(mp);
3505 	vfs_msync(mp, MNT_NOWAIT);
3506 	error = VFS_SYNC(mp, MNT_LAZY);
3507 	MNT_ILOCK(mp);
3508 	mp->mnt_noasync--;
3509 	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3510 		mp->mnt_kern_flag |= MNTK_ASYNC;
3511 	MNT_IUNLOCK(mp);
3512 	vn_finished_write(mp);
3513 	vfs_unbusy(mp);
3514 	return (error);
3515 }
3516 
3517 /*
3518  * The syncer vnode is no referenced.
3519  */
3520 static int
3521 sync_inactive(struct vop_inactive_args *ap)
3522 {
3523 
3524 	vgone(ap->a_vp);
3525 	return (0);
3526 }
3527 
3528 /*
3529  * The syncer vnode is no longer needed and is being decommissioned.
3530  *
3531  * Modifications to the worklist must be protected by sync_mtx.
3532  */
3533 static int
3534 sync_reclaim(struct vop_reclaim_args *ap)
3535 {
3536 	struct vnode *vp = ap->a_vp;
3537 	struct bufobj *bo;
3538 
3539 	bo = &vp->v_bufobj;
3540 	BO_LOCK(bo);
3541 	mtx_lock(&sync_mtx);
3542 	if (vp->v_mount->mnt_syncer == vp)
3543 		vp->v_mount->mnt_syncer = NULL;
3544 	if (bo->bo_flag & BO_ONWORKLST) {
3545 		LIST_REMOVE(bo, bo_synclist);
3546 		syncer_worklist_len--;
3547 		sync_vnode_count--;
3548 		bo->bo_flag &= ~BO_ONWORKLST;
3549 	}
3550 	mtx_unlock(&sync_mtx);
3551 	BO_UNLOCK(bo);
3552 
3553 	return (0);
3554 }
3555 
3556 /*
3557  * Check if vnode represents a disk device
3558  */
3559 int
3560 vn_isdisk(struct vnode *vp, int *errp)
3561 {
3562 	int error;
3563 
3564 	error = 0;
3565 	dev_lock();
3566 	if (vp->v_type != VCHR)
3567 		error = ENOTBLK;
3568 	else if (vp->v_rdev == NULL)
3569 		error = ENXIO;
3570 	else if (vp->v_rdev->si_devsw == NULL)
3571 		error = ENXIO;
3572 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3573 		error = ENOTBLK;
3574 	dev_unlock();
3575 	if (errp != NULL)
3576 		*errp = error;
3577 	return (error == 0);
3578 }
3579 
3580 /*
3581  * Common filesystem object access control check routine.  Accepts a
3582  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3583  * and optional call-by-reference privused argument allowing vaccess()
3584  * to indicate to the caller whether privilege was used to satisfy the
3585  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3586  *
3587  * The ifdef'd CAPABILITIES version is here for reference, but is not
3588  * actually used.
3589  */
3590 int
3591 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3592     accmode_t accmode, struct ucred *cred, int *privused)
3593 {
3594 	accmode_t dac_granted;
3595 	accmode_t priv_granted;
3596 
3597 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3598 	    ("invalid bit in accmode"));
3599 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3600 	    ("VAPPEND without VWRITE"));
3601 
3602 	/*
3603 	 * Look for a normal, non-privileged way to access the file/directory
3604 	 * as requested.  If it exists, go with that.
3605 	 */
3606 
3607 	if (privused != NULL)
3608 		*privused = 0;
3609 
3610 	dac_granted = 0;
3611 
3612 	/* Check the owner. */
3613 	if (cred->cr_uid == file_uid) {
3614 		dac_granted |= VADMIN;
3615 		if (file_mode & S_IXUSR)
3616 			dac_granted |= VEXEC;
3617 		if (file_mode & S_IRUSR)
3618 			dac_granted |= VREAD;
3619 		if (file_mode & S_IWUSR)
3620 			dac_granted |= (VWRITE | VAPPEND);
3621 
3622 		if ((accmode & dac_granted) == accmode)
3623 			return (0);
3624 
3625 		goto privcheck;
3626 	}
3627 
3628 	/* Otherwise, check the groups (first match) */
3629 	if (groupmember(file_gid, cred)) {
3630 		if (file_mode & S_IXGRP)
3631 			dac_granted |= VEXEC;
3632 		if (file_mode & S_IRGRP)
3633 			dac_granted |= VREAD;
3634 		if (file_mode & S_IWGRP)
3635 			dac_granted |= (VWRITE | VAPPEND);
3636 
3637 		if ((accmode & dac_granted) == accmode)
3638 			return (0);
3639 
3640 		goto privcheck;
3641 	}
3642 
3643 	/* Otherwise, check everyone else. */
3644 	if (file_mode & S_IXOTH)
3645 		dac_granted |= VEXEC;
3646 	if (file_mode & S_IROTH)
3647 		dac_granted |= VREAD;
3648 	if (file_mode & S_IWOTH)
3649 		dac_granted |= (VWRITE | VAPPEND);
3650 	if ((accmode & dac_granted) == accmode)
3651 		return (0);
3652 
3653 privcheck:
3654 	/*
3655 	 * Build a privilege mask to determine if the set of privileges
3656 	 * satisfies the requirements when combined with the granted mask
3657 	 * from above.  For each privilege, if the privilege is required,
3658 	 * bitwise or the request type onto the priv_granted mask.
3659 	 */
3660 	priv_granted = 0;
3661 
3662 	if (type == VDIR) {
3663 		/*
3664 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3665 		 * requests, instead of PRIV_VFS_EXEC.
3666 		 */
3667 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3668 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3669 			priv_granted |= VEXEC;
3670 	} else {
3671 		/*
3672 		 * Ensure that at least one execute bit is on. Otherwise,
3673 		 * a privileged user will always succeed, and we don't want
3674 		 * this to happen unless the file really is executable.
3675 		 */
3676 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3677 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
3678 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3679 			priv_granted |= VEXEC;
3680 	}
3681 
3682 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3683 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3684 		priv_granted |= VREAD;
3685 
3686 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3687 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3688 		priv_granted |= (VWRITE | VAPPEND);
3689 
3690 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3691 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3692 		priv_granted |= VADMIN;
3693 
3694 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3695 		/* XXX audit: privilege used */
3696 		if (privused != NULL)
3697 			*privused = 1;
3698 		return (0);
3699 	}
3700 
3701 	return ((accmode & VADMIN) ? EPERM : EACCES);
3702 }
3703 
3704 /*
3705  * Credential check based on process requesting service, and per-attribute
3706  * permissions.
3707  */
3708 int
3709 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3710     struct thread *td, accmode_t accmode)
3711 {
3712 
3713 	/*
3714 	 * Kernel-invoked always succeeds.
3715 	 */
3716 	if (cred == NOCRED)
3717 		return (0);
3718 
3719 	/*
3720 	 * Do not allow privileged processes in jail to directly manipulate
3721 	 * system attributes.
3722 	 */
3723 	switch (attrnamespace) {
3724 	case EXTATTR_NAMESPACE_SYSTEM:
3725 		/* Potentially should be: return (EPERM); */
3726 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3727 	case EXTATTR_NAMESPACE_USER:
3728 		return (VOP_ACCESS(vp, accmode, cred, td));
3729 	default:
3730 		return (EPERM);
3731 	}
3732 }
3733 
3734 #ifdef DEBUG_VFS_LOCKS
3735 /*
3736  * This only exists to supress warnings from unlocked specfs accesses.  It is
3737  * no longer ok to have an unlocked VFS.
3738  */
3739 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3740 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3741 
3742 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3743 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
3744     "Drop into debugger on lock violation");
3745 
3746 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3747 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
3748     0, "Check for interlock across VOPs");
3749 
3750 int vfs_badlock_print = 1;	/* Print lock violations. */
3751 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
3752     0, "Print lock violations");
3753 
3754 #ifdef KDB
3755 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3756 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
3757     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
3758 #endif
3759 
3760 static void
3761 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3762 {
3763 
3764 #ifdef KDB
3765 	if (vfs_badlock_backtrace)
3766 		kdb_backtrace();
3767 #endif
3768 	if (vfs_badlock_print)
3769 		printf("%s: %p %s\n", str, (void *)vp, msg);
3770 	if (vfs_badlock_ddb)
3771 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3772 }
3773 
3774 void
3775 assert_vi_locked(struct vnode *vp, const char *str)
3776 {
3777 
3778 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3779 		vfs_badlock("interlock is not locked but should be", str, vp);
3780 }
3781 
3782 void
3783 assert_vi_unlocked(struct vnode *vp, const char *str)
3784 {
3785 
3786 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3787 		vfs_badlock("interlock is locked but should not be", str, vp);
3788 }
3789 
3790 void
3791 assert_vop_locked(struct vnode *vp, const char *str)
3792 {
3793 
3794 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3795 		vfs_badlock("is not locked but should be", str, vp);
3796 }
3797 
3798 void
3799 assert_vop_unlocked(struct vnode *vp, const char *str)
3800 {
3801 
3802 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3803 		vfs_badlock("is locked but should not be", str, vp);
3804 }
3805 
3806 void
3807 assert_vop_elocked(struct vnode *vp, const char *str)
3808 {
3809 
3810 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3811 		vfs_badlock("is not exclusive locked but should be", str, vp);
3812 }
3813 
3814 #if 0
3815 void
3816 assert_vop_elocked_other(struct vnode *vp, const char *str)
3817 {
3818 
3819 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3820 		vfs_badlock("is not exclusive locked by another thread",
3821 		    str, vp);
3822 }
3823 
3824 void
3825 assert_vop_slocked(struct vnode *vp, const char *str)
3826 {
3827 
3828 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3829 		vfs_badlock("is not locked shared but should be", str, vp);
3830 }
3831 #endif /* 0 */
3832 #endif /* DEBUG_VFS_LOCKS */
3833 
3834 void
3835 vop_rename_fail(struct vop_rename_args *ap)
3836 {
3837 
3838 	if (ap->a_tvp != NULL)
3839 		vput(ap->a_tvp);
3840 	if (ap->a_tdvp == ap->a_tvp)
3841 		vrele(ap->a_tdvp);
3842 	else
3843 		vput(ap->a_tdvp);
3844 	vrele(ap->a_fdvp);
3845 	vrele(ap->a_fvp);
3846 }
3847 
3848 void
3849 vop_rename_pre(void *ap)
3850 {
3851 	struct vop_rename_args *a = ap;
3852 
3853 #ifdef DEBUG_VFS_LOCKS
3854 	if (a->a_tvp)
3855 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3856 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3857 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3858 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3859 
3860 	/* Check the source (from). */
3861 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
3862 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
3863 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3864 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
3865 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3866 
3867 	/* Check the target. */
3868 	if (a->a_tvp)
3869 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3870 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3871 #endif
3872 	if (a->a_tdvp != a->a_fdvp)
3873 		vhold(a->a_fdvp);
3874 	if (a->a_tvp != a->a_fvp)
3875 		vhold(a->a_fvp);
3876 	vhold(a->a_tdvp);
3877 	if (a->a_tvp)
3878 		vhold(a->a_tvp);
3879 }
3880 
3881 void
3882 vop_strategy_pre(void *ap)
3883 {
3884 #ifdef DEBUG_VFS_LOCKS
3885 	struct vop_strategy_args *a;
3886 	struct buf *bp;
3887 
3888 	a = ap;
3889 	bp = a->a_bp;
3890 
3891 	/*
3892 	 * Cluster ops lock their component buffers but not the IO container.
3893 	 */
3894 	if ((bp->b_flags & B_CLUSTER) != 0)
3895 		return;
3896 
3897 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
3898 		if (vfs_badlock_print)
3899 			printf(
3900 			    "VOP_STRATEGY: bp is not locked but should be\n");
3901 		if (vfs_badlock_ddb)
3902 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3903 	}
3904 #endif
3905 }
3906 
3907 void
3908 vop_lookup_pre(void *ap)
3909 {
3910 #ifdef DEBUG_VFS_LOCKS
3911 	struct vop_lookup_args *a;
3912 	struct vnode *dvp;
3913 
3914 	a = ap;
3915 	dvp = a->a_dvp;
3916 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3917 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3918 #endif
3919 }
3920 
3921 void
3922 vop_lookup_post(void *ap, int rc)
3923 {
3924 #ifdef DEBUG_VFS_LOCKS
3925 	struct vop_lookup_args *a;
3926 	struct vnode *dvp;
3927 	struct vnode *vp;
3928 
3929 	a = ap;
3930 	dvp = a->a_dvp;
3931 	vp = *(a->a_vpp);
3932 
3933 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3934 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3935 
3936 	if (!rc)
3937 		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3938 #endif
3939 }
3940 
3941 void
3942 vop_lock_pre(void *ap)
3943 {
3944 #ifdef DEBUG_VFS_LOCKS
3945 	struct vop_lock1_args *a = ap;
3946 
3947 	if ((a->a_flags & LK_INTERLOCK) == 0)
3948 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3949 	else
3950 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3951 #endif
3952 }
3953 
3954 void
3955 vop_lock_post(void *ap, int rc)
3956 {
3957 #ifdef DEBUG_VFS_LOCKS
3958 	struct vop_lock1_args *a = ap;
3959 
3960 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3961 	if (rc == 0)
3962 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3963 #endif
3964 }
3965 
3966 void
3967 vop_unlock_pre(void *ap)
3968 {
3969 #ifdef DEBUG_VFS_LOCKS
3970 	struct vop_unlock_args *a = ap;
3971 
3972 	if (a->a_flags & LK_INTERLOCK)
3973 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3974 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3975 #endif
3976 }
3977 
3978 void
3979 vop_unlock_post(void *ap, int rc)
3980 {
3981 #ifdef DEBUG_VFS_LOCKS
3982 	struct vop_unlock_args *a = ap;
3983 
3984 	if (a->a_flags & LK_INTERLOCK)
3985 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3986 #endif
3987 }
3988 
3989 void
3990 vop_create_post(void *ap, int rc)
3991 {
3992 	struct vop_create_args *a = ap;
3993 
3994 	if (!rc)
3995 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3996 }
3997 
3998 void
3999 vop_link_post(void *ap, int rc)
4000 {
4001 	struct vop_link_args *a = ap;
4002 
4003 	if (!rc) {
4004 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4005 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4006 	}
4007 }
4008 
4009 void
4010 vop_mkdir_post(void *ap, int rc)
4011 {
4012 	struct vop_mkdir_args *a = ap;
4013 
4014 	if (!rc)
4015 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4016 }
4017 
4018 void
4019 vop_mknod_post(void *ap, int rc)
4020 {
4021 	struct vop_mknod_args *a = ap;
4022 
4023 	if (!rc)
4024 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4025 }
4026 
4027 void
4028 vop_remove_post(void *ap, int rc)
4029 {
4030 	struct vop_remove_args *a = ap;
4031 
4032 	if (!rc) {
4033 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4034 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4035 	}
4036 }
4037 
4038 void
4039 vop_rename_post(void *ap, int rc)
4040 {
4041 	struct vop_rename_args *a = ap;
4042 
4043 	if (!rc) {
4044 		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
4045 		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
4046 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4047 		if (a->a_tvp)
4048 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4049 	}
4050 	if (a->a_tdvp != a->a_fdvp)
4051 		vdrop(a->a_fdvp);
4052 	if (a->a_tvp != a->a_fvp)
4053 		vdrop(a->a_fvp);
4054 	vdrop(a->a_tdvp);
4055 	if (a->a_tvp)
4056 		vdrop(a->a_tvp);
4057 }
4058 
4059 void
4060 vop_rmdir_post(void *ap, int rc)
4061 {
4062 	struct vop_rmdir_args *a = ap;
4063 
4064 	if (!rc) {
4065 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4066 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4067 	}
4068 }
4069 
4070 void
4071 vop_setattr_post(void *ap, int rc)
4072 {
4073 	struct vop_setattr_args *a = ap;
4074 
4075 	if (!rc)
4076 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4077 }
4078 
4079 void
4080 vop_symlink_post(void *ap, int rc)
4081 {
4082 	struct vop_symlink_args *a = ap;
4083 
4084 	if (!rc)
4085 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4086 }
4087 
4088 static struct knlist fs_knlist;
4089 
4090 static void
4091 vfs_event_init(void *arg)
4092 {
4093 	knlist_init_mtx(&fs_knlist, NULL);
4094 }
4095 /* XXX - correct order? */
4096 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4097 
4098 void
4099 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4100 {
4101 
4102 	KNOTE_UNLOCKED(&fs_knlist, event);
4103 }
4104 
4105 static int	filt_fsattach(struct knote *kn);
4106 static void	filt_fsdetach(struct knote *kn);
4107 static int	filt_fsevent(struct knote *kn, long hint);
4108 
4109 struct filterops fs_filtops = {
4110 	.f_isfd = 0,
4111 	.f_attach = filt_fsattach,
4112 	.f_detach = filt_fsdetach,
4113 	.f_event = filt_fsevent
4114 };
4115 
4116 static int
4117 filt_fsattach(struct knote *kn)
4118 {
4119 
4120 	kn->kn_flags |= EV_CLEAR;
4121 	knlist_add(&fs_knlist, kn, 0);
4122 	return (0);
4123 }
4124 
4125 static void
4126 filt_fsdetach(struct knote *kn)
4127 {
4128 
4129 	knlist_remove(&fs_knlist, kn, 0);
4130 }
4131 
4132 static int
4133 filt_fsevent(struct knote *kn, long hint)
4134 {
4135 
4136 	kn->kn_fflags |= hint;
4137 	return (kn->kn_fflags != 0);
4138 }
4139 
4140 static int
4141 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4142 {
4143 	struct vfsidctl vc;
4144 	int error;
4145 	struct mount *mp;
4146 
4147 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4148 	if (error)
4149 		return (error);
4150 	if (vc.vc_vers != VFS_CTL_VERS1)
4151 		return (EINVAL);
4152 	mp = vfs_getvfs(&vc.vc_fsid);
4153 	if (mp == NULL)
4154 		return (ENOENT);
4155 	/* ensure that a specific sysctl goes to the right filesystem. */
4156 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4157 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4158 		vfs_rel(mp);
4159 		return (EINVAL);
4160 	}
4161 	VCTLTOREQ(&vc, req);
4162 	error = VFS_SYSCTL(mp, vc.vc_op, req);
4163 	vfs_rel(mp);
4164 	return (error);
4165 }
4166 
4167 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
4168     NULL, 0, sysctl_vfs_ctl, "",
4169     "Sysctl by fsid");
4170 
4171 /*
4172  * Function to initialize a va_filerev field sensibly.
4173  * XXX: Wouldn't a random number make a lot more sense ??
4174  */
4175 u_quad_t
4176 init_va_filerev(void)
4177 {
4178 	struct bintime bt;
4179 
4180 	getbinuptime(&bt);
4181 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4182 }
4183 
4184 static int	filt_vfsread(struct knote *kn, long hint);
4185 static int	filt_vfswrite(struct knote *kn, long hint);
4186 static int	filt_vfsvnode(struct knote *kn, long hint);
4187 static void	filt_vfsdetach(struct knote *kn);
4188 static struct filterops vfsread_filtops = {
4189 	.f_isfd = 1,
4190 	.f_detach = filt_vfsdetach,
4191 	.f_event = filt_vfsread
4192 };
4193 static struct filterops vfswrite_filtops = {
4194 	.f_isfd = 1,
4195 	.f_detach = filt_vfsdetach,
4196 	.f_event = filt_vfswrite
4197 };
4198 static struct filterops vfsvnode_filtops = {
4199 	.f_isfd = 1,
4200 	.f_detach = filt_vfsdetach,
4201 	.f_event = filt_vfsvnode
4202 };
4203 
4204 static void
4205 vfs_knllock(void *arg)
4206 {
4207 	struct vnode *vp = arg;
4208 
4209 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4210 }
4211 
4212 static void
4213 vfs_knlunlock(void *arg)
4214 {
4215 	struct vnode *vp = arg;
4216 
4217 	VOP_UNLOCK(vp, 0);
4218 }
4219 
4220 static void
4221 vfs_knl_assert_locked(void *arg)
4222 {
4223 #ifdef DEBUG_VFS_LOCKS
4224 	struct vnode *vp = arg;
4225 
4226 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4227 #endif
4228 }
4229 
4230 static void
4231 vfs_knl_assert_unlocked(void *arg)
4232 {
4233 #ifdef DEBUG_VFS_LOCKS
4234 	struct vnode *vp = arg;
4235 
4236 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4237 #endif
4238 }
4239 
4240 int
4241 vfs_kqfilter(struct vop_kqfilter_args *ap)
4242 {
4243 	struct vnode *vp = ap->a_vp;
4244 	struct knote *kn = ap->a_kn;
4245 	struct knlist *knl;
4246 
4247 	switch (kn->kn_filter) {
4248 	case EVFILT_READ:
4249 		kn->kn_fop = &vfsread_filtops;
4250 		break;
4251 	case EVFILT_WRITE:
4252 		kn->kn_fop = &vfswrite_filtops;
4253 		break;
4254 	case EVFILT_VNODE:
4255 		kn->kn_fop = &vfsvnode_filtops;
4256 		break;
4257 	default:
4258 		return (EINVAL);
4259 	}
4260 
4261 	kn->kn_hook = (caddr_t)vp;
4262 
4263 	v_addpollinfo(vp);
4264 	if (vp->v_pollinfo == NULL)
4265 		return (ENOMEM);
4266 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4267 	knlist_add(knl, kn, 0);
4268 
4269 	return (0);
4270 }
4271 
4272 /*
4273  * Detach knote from vnode
4274  */
4275 static void
4276 filt_vfsdetach(struct knote *kn)
4277 {
4278 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4279 
4280 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4281 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4282 }
4283 
4284 /*ARGSUSED*/
4285 static int
4286 filt_vfsread(struct knote *kn, long hint)
4287 {
4288 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4289 	struct vattr va;
4290 	int res;
4291 
4292 	/*
4293 	 * filesystem is gone, so set the EOF flag and schedule
4294 	 * the knote for deletion.
4295 	 */
4296 	if (hint == NOTE_REVOKE) {
4297 		VI_LOCK(vp);
4298 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4299 		VI_UNLOCK(vp);
4300 		return (1);
4301 	}
4302 
4303 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4304 		return (0);
4305 
4306 	VI_LOCK(vp);
4307 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4308 	res = (kn->kn_data != 0);
4309 	VI_UNLOCK(vp);
4310 	return (res);
4311 }
4312 
4313 /*ARGSUSED*/
4314 static int
4315 filt_vfswrite(struct knote *kn, long hint)
4316 {
4317 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4318 
4319 	VI_LOCK(vp);
4320 
4321 	/*
4322 	 * filesystem is gone, so set the EOF flag and schedule
4323 	 * the knote for deletion.
4324 	 */
4325 	if (hint == NOTE_REVOKE)
4326 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4327 
4328 	kn->kn_data = 0;
4329 	VI_UNLOCK(vp);
4330 	return (1);
4331 }
4332 
4333 static int
4334 filt_vfsvnode(struct knote *kn, long hint)
4335 {
4336 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4337 	int res;
4338 
4339 	VI_LOCK(vp);
4340 	if (kn->kn_sfflags & hint)
4341 		kn->kn_fflags |= hint;
4342 	if (hint == NOTE_REVOKE) {
4343 		kn->kn_flags |= EV_EOF;
4344 		VI_UNLOCK(vp);
4345 		return (1);
4346 	}
4347 	res = (kn->kn_fflags != 0);
4348 	VI_UNLOCK(vp);
4349 	return (res);
4350 }
4351 
4352 int
4353 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4354 {
4355 	int error;
4356 
4357 	if (dp->d_reclen > ap->a_uio->uio_resid)
4358 		return (ENAMETOOLONG);
4359 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4360 	if (error) {
4361 		if (ap->a_ncookies != NULL) {
4362 			if (ap->a_cookies != NULL)
4363 				free(ap->a_cookies, M_TEMP);
4364 			ap->a_cookies = NULL;
4365 			*ap->a_ncookies = 0;
4366 		}
4367 		return (error);
4368 	}
4369 	if (ap->a_ncookies == NULL)
4370 		return (0);
4371 
4372 	KASSERT(ap->a_cookies,
4373 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4374 
4375 	*ap->a_cookies = realloc(*ap->a_cookies,
4376 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4377 	(*ap->a_cookies)[*ap->a_ncookies] = off;
4378 	return (0);
4379 }
4380 
4381 /*
4382  * Mark for update the access time of the file if the filesystem
4383  * supports VOP_MARKATIME.  This functionality is used by execve and
4384  * mmap, so we want to avoid the I/O implied by directly setting
4385  * va_atime for the sake of efficiency.
4386  */
4387 void
4388 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4389 {
4390 	struct mount *mp;
4391 
4392 	mp = vp->v_mount;
4393 	VFS_ASSERT_GIANT(mp);
4394 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4395 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4396 		(void)VOP_MARKATIME(vp);
4397 }
4398 
4399 /*
4400  * The purpose of this routine is to remove granularity from accmode_t,
4401  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4402  * VADMIN and VAPPEND.
4403  *
4404  * If it returns 0, the caller is supposed to continue with the usual
4405  * access checks using 'accmode' as modified by this routine.  If it
4406  * returns nonzero value, the caller is supposed to return that value
4407  * as errno.
4408  *
4409  * Note that after this routine runs, accmode may be zero.
4410  */
4411 int
4412 vfs_unixify_accmode(accmode_t *accmode)
4413 {
4414 	/*
4415 	 * There is no way to specify explicit "deny" rule using
4416 	 * file mode or POSIX.1e ACLs.
4417 	 */
4418 	if (*accmode & VEXPLICIT_DENY) {
4419 		*accmode = 0;
4420 		return (0);
4421 	}
4422 
4423 	/*
4424 	 * None of these can be translated into usual access bits.
4425 	 * Also, the common case for NFSv4 ACLs is to not contain
4426 	 * either of these bits. Caller should check for VWRITE
4427 	 * on the containing directory instead.
4428 	 */
4429 	if (*accmode & (VDELETE_CHILD | VDELETE))
4430 		return (EPERM);
4431 
4432 	if (*accmode & VADMIN_PERMS) {
4433 		*accmode &= ~VADMIN_PERMS;
4434 		*accmode |= VADMIN;
4435 	}
4436 
4437 	/*
4438 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4439 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4440 	 */
4441 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4442 
4443 	return (0);
4444 }
4445